
Constrained Pseudorandom Functions from Pseudorandom

Synthesizers

Zachary A. Kissel†

†Department of Computer Science, Merrimack College
kisselz@merrimack.edu

Abstract

In this paper we resolve the question of whether or not constrained pseudorandom
functions (CPRFs) can be built directly from pseudorandom synthesizers. In particu-
lar, we demonstrate that the generic PRF construction from pseudorandom synthesizers
due to Naor and Reingold can be used to construct CPRFs with bit-fixed predicates
using the “direct-line” approach. We further introduce a property of CPRFs that may
be of independent interest.

1 Introduction

A pseudorandom function (PRF) is a family of indexed (keyed) functions {f : K ×X → Y}
such that the behavior of a function selected uniformly at random from the indexed family
is indistinguishable, by a polynomial time adversary, from the behavior of a function chosen
randomly from the set of all functions {f : X → Y} when given only oracle access to the
function. It has been shown that this primitive can be constructed, in a black-box way,
from length-doubling pseudorandom generators (PRGs) [GGM86] and from pseudorandom
synthesizers [NR95, NR04]. A pseudorandom synthesizer can be intuitively thought of as a
length squaring PRG. Both constructions use a binary tree to determine the output of the
function. In the case of [GGM86] we determine the value using a root to leaf path where as
in [NR95] we determine the value by using a leaf to root level order evaluation.

A recent extension to PRFs, known as a constrained pseudorandom function (CPRF),
allow a party that knows the key (also called the master key) to a PRF to delegate evalu-
ation to a third party by providing a special constrained key with an associated evaluation
predicate. The delegatee can use the constrained key to evaluate the PRF at a point x ∈ X if
x satisfies the predicate; otherwise the output will appear random (or possibly be undefined)
[BW13, KPTZ13, BGI14]. GGM based CPRF constructions are built from the following
core observation: a GGM PRF can be evaluated by a third party that has access to some
collection of values associated with nodes in the tree (which form the constrained key).

Given CPRFs exist from the GGM PRF construction, it is natural to ask the question:

1

Can constrained PRFs be built from pseudorandom synthesizers using the PRF
construction of [NR95]?

Our work answers this question in the affirmative.

Construction Overview. Briefly, the PRF from [NR95] takes `-bit inputs, where ` is
a power of two, and maps them to n-bit values using a (master) key that is a 2 × ` bit
matrix of random n-bit values. The first row contains n-bit strings representing the zero
values associated with all ` bits. Similarly, the second row represents the one values. To
evaluate the PRF, a binary tree is constructed where each leaf is given the entry of master
key associated with the bit. The internal nodes become the result of the synthesizer S :
{0, 1}n × {0, 1}n → {0, 1}n applied to its two children. Our main idea is that given the
master key we can construct a constrained key by building a new 2× ` matrix where some
entries come from the master key while other entries are randomly sampled from {0, 1}n. The
evaluation using the constrained key is similar to the evaluation with the master key (except
for the matrix from which the values are drawn). This will allow us to realize a predicate
known as bit-fixing, the input x ∈ {0, 1}n bit-wise matches a pattern string p ∈ {0, 1, ∗}n
where ∗ denotes a wildcard.

Comparison to [GGM86]-Based CPRFs. While the GGM based CPRF of [KPTZ13]
supports range predicates (the input x ∈ X falls within a certain range), our pseudorandom
synthesizer based CPRF supports bit fixing, a more general predicate that implies range
predicates. Both the GGM and pseudorandom synthesizer based CPRF are selectively secure
meaning the constrained key predicates must be declared before interrogating the evaluation
oracle. Additionally, our construction limits the number of constrained key predicates the
adversary can obtain to one. Both constructions support unbounded delegation by which
we mean a party that posses a constrained key for some predicate can construct a key for
a more restrictive predicate without the PRF master key. Lastly in contrast to the generic
constructions from the GGM PRF, our synthesizer based CPRF is inherently parallel with
a shorter evaluation tree (logarithmic in the size of the input) and thus, more efficient than
the constructions based on the GGM PRF (linear in the size of the input). It is important
to recall that the PRF of [NR95] and [GGM86] treat their building blocks as a black box
therefore, richer CPRF constructions are possible using non-blackbox techniques.

1.1 Related Work

The work in constrained pseudorandom function can be divided in to roughly three main
areas: (1) constructing CPRFs for interesting predicates; (2) considering more advanced
notions of security, in particular predicate privacy; or (3) applying CPRFs to existing prob-
lems.

To point one, constructions have been discovered for many predicates. We survey them
here.

2

Puncturing. A predicate that evaluates to true for all x ∈ X \{x∗}. The constructions of
[BW13] and [KPTZ13] realize puncturing from the PRF construction of [GGM86]. Together
with iO, punctured PRFs give rise to the punctured programming approach [SW21].

Ranges. A predicate that evaluates to true for all x ∈ X that fall within a certain range.
One of the original construction to introduce the idea of CPRFs [KPTZ13], demonstrated
how to realize the predicate using the GGM PRF as a foundation.

Prefix. A predicate that evaluates to true for all x ∈ X that share some common prefix.
This predicate can be realized using the GGM PRF which was was done directly by [BW13]
and [BGI14]. The construction of [KPTZ13] also allows for prefix predicate since a prefix is
a special case of their range query construction.

Left-Right. Consider a PRF f : K × X 2 → Y and the fixed value w ∈ X , the predicate
will return true if either input (x, y) = (w, y) or (x,w). Unlike other predicates, this requires
a constrained key pair kw,left and kw,right. This predicate was first considered by [BW13] and
realized using a bilinear map based construction in the random oracle model.

Bit-Fixing. A predicate that evaluates to true if x ∈ {0, 1}n matches a pattern string from

p = {0, 1, ∗}n where a match is defined as
∧n
i=1

((
pi

?
= xi

)
∨
(
pi

?
= ∗
))

. It should be noted

that a bit fixing predicate is more expressive than it may look at first; it captures prefix, suffix
(true for all x ∈ X such that x ends with s), range, and left-right predicates. The construction
has been realized using κ-linear maps by [BW13] applied to a PRF that is very similar to
the PRF from [NR04]. More recently, [DKN+20] were able to realize bit-fixing predicates
by modifying the simple distributed PRF of [MS95], defined as: fk1,...,kn (x) =

⊕n
i=1 f̂ki (x),

where f̂ is some PRF. In particular, they showed that if only Q constrained keys were
generated by the adversary, collusion using keys is impossible. The drawback is the the
number of keys used in the construction is on the order of (2n)Q where Q� n is a constant;
otherwise, the size of the key would be impractical.

Circuits. A predicate that evaluates to true for all x ∈ X if a circuit C outputs one when
given x. While most constructions do not offer all possible circuits: [BW13] use multilinear
maps to support monotone circuits, [CC17] use the LWE assumption to support NC1 while
[AMN+18] use correlated input hash functions to support the same class. The work of
[DKN+20] constructs a predicate for the conjunction of NC0 circuits (t-CNF) from one-way
functions, a similar construction was also found by [Tsa19]. Allowing for the use of iO, the
work of [HKKW19] supports generic circuits and [DKN+20] supports circuits in P/poly.

To point two, many works have considered the notion of predicate privacy [BTVW17,
BLW17, BKM17, CC17, AMN+18, PS20, . . .]. In these CPRF families the constrained key

3

does not reveal its associated predicate. Constructions that hide constraints allow for the
construction of deniable encryption and watermarking, among other applications.

Lastly, the application space for constrained PRFs is rich, mainly due to the fundamental
nature of PRFs. Some highlights include: deniable encryption [BLW17], functional signa-
tures [BGI14], key regression [Kis19], searchable symmetric encryption (SSE) [KPTZ13],
e-Cash [BPS19], and identity-based non-interactive key exchange (ID-NIKE) [BW13].

2 Preliminaries

In what follows we will denote the security parameter by λ and the set of binary strings of
length n by {0, 1}n. We define a predicate family Φ as a set of predicates ϕ : X → {0, 1}.
We denote matrices by upper case letters in a san serif font (e.g., K) and the elements of
the matrix will be represented by the lower-case version of the letter, appropriately indexed.
We denote the set {1, 2, . . . , n} by [n], and an arbitrary negligible function by negl (·). We

denote by a
$← S assigning a a uniformly random sample from set S. We will use the notation

D1≈cD2 to denote that two distributions are computationally indistinguishable.

2.1 Constrained Pseudorandom Functions

A constrained pseudorandom function (CPRF) is a tuple of algorithms
Π = (F.Gen,F.Constrain,F.Eval,F.ConstrainedEval) defined over domain X and range Y with
the following properties:

• F.Gen
(
1λ
)

takes as input a security parameter, 1λ and samples a random function from
PRF family by sampling a master key msk from the appropriate keyspace.

• F.Constrain (msk, ϕ)takes the master key and predicate ϕ as input and returns a key
kϕ that represents the constrained key.

• F.Eval (msk, x) takes the master key and an input x ∈ X and returns the appropriate
value y ∈ Y .

• F.ConstrainedEval (kϕ, x) takes as input a constrained key kϕ and an x ∈ X . If ϕ (x) = 1
the correct value y ∈ Y is returned (i.e. Eval (kϕ, x)); otherwise either a random value
in Y or ⊥ is returned.

Correctness. We say a CPRF is correct if the evaluation of x using the constrained key
agrees with the evaluation of x using the master key when the predicate associated with the
constrained key is satisfied. More formally, F is correct if for all x ∈ X where ϕ (x) = 1,
master keys msk, and constrained keys kϕ, F.Eval(msk, x) = F.ConstrainedEval(kϕ, x).

4

Security Notion. A constrained pseudorandom function has a nuanced security guaran-
tee. With a traditional PRF, security states that under a polynomial number of adaptive
queries a probabilistic-polynomial time (PPT) adversary can not distinguish between the
output of a PRF and the output of a randomly selected function of the same domain and
range. When it comes to CPRFs security is relative to a predicate ϕ ∈ Φ where the adversary
will be able to evaluate the PRF at any point x ∈ X where ϕ (x) = 1 without the assistance
of an evaluation oracle.

Given a CPRF F : K×X → Y , we can cast the security notion as a game ExpCPRF−Secure
A (b, λ)

where A is a probabilistic polynomial-time adversary, b ∈ {0, 1}, and λ is a security param-
eter we define the security game ExpCPRF−Secure

A,F (b, λ) as follows:

ExpCPRF−Secure
A,F (b, λ):

1. The game runs F.Gen
(
1λ
)

to obtain master key msk.

2. If b = 0, the game samples a random function R : X → Y .

3. The adversary is provided access to two oracles:

(a) A F.Constrain oracle which allows A to ask the game for a con-
strained key kϕ for predicate ϕ ∈ Φ, adding ϕ to P , the set of
queried predicates.

(b) An F.Eval oracle which behaves as follows on query x:

• If b = 0, answer the evaluation queries as follows: if ϕ (x) =
1 for some ϕ ∈ P , respond honestly. If there is no such
predicate, output the value of R (x).

• If b = 1, return the output of Eval (msk, x).

4. Eventually the A outputs a bit b′ ∈ {0, 1}.

We say that a CPRF is secure if for all PPT adversaries A there exists a negligible function
negl such that∣∣Pr

[
ExpCPRF−Secure

A,F (0, λ) = 1
]
− Pr

[
ExpCPRF−Secure

A,F (1, λ) = 1
]∣∣ ≤ negl (λ) .

Remark 2.1. If we modify the CPRF-secure game so we force the adversary to commit to
some challenge point before they get access to the oracle we arrive at the (challenge) selective
security game.

Remark 2.2. If in the game the adversary is not given access to a constrain oracle but, rather
can ask for exactly one constrained key before being given access to the the evaluation oracle,
we say that the security notion is (constrained-key) selective. This notion of security was
(seemingly first) considered by [BV15] and we will use the notion in this work.

5

Predicate Privacy. Roughly speaking, predicate privacy implies that the party that
posses the constrained key can not learn the associated predicate. We can formalize this
notion as a game ExpCPRF−Priv

A,F (λ) (first defined by [BTVW17]) between a challenger and a
PPT adversary A as follows:

ExpCPRF−Priv
A,F (λ):

1. Challenger runs msk ← F.Gen
(
1λ
)

and constructs an empty set of
queries Q.

2. Adversary A is given access to an evaluation oracle that on query x
returns y ← F.Eval(msk, x) to A. Every query x is added to Q.

3. Eventually, A outputs two predicates ϕ0 and ϕ1 from Φ such that for

all x ∈ Q, ϕ0 (x) = ϕ1 (x). The challenger samples a bit b
$← {0, 1}

and returns kϕb
← F.Constrain(msk, ϕb) to A.

4. A is given access to the evaluation oracle but, is not allowed to query
on a value of x where ϕ0 (x) 6= ϕ1 (x); otherwise, A can trivially
distinguish between the two keys.

5. Eventually, A outputs a bit b′ ∈ {0, 1}. The adversary A wins the
game if b = b′.

We say that a CPRF F is one-key private if for all PPT adversaries A,

Pr
[
ExpCPRF−Priv

A,F (λ) = 1
]
≤ 1

2
+ negl (λ) .

The game, as presented, is known as one-key privacy as the adversary is only allowed to
make one challenge query. The security notion can be extended to d-key privacy by allowing
the adversary to issue d pairs of predicates. In the case of d-key privacy, what is admissible
for the adversary must be updated, see [BLW17] for details.

2.2 The Direct-Line Approach

As highlighted in [DKN+20] many bit-fixed CPRF constructions (e.g., [DKN+20, CC17, . . .])
use a so called direct-line approach. In the simplest form of this approach, each bit position
i of an `-bit input PRF is assigned one of two possible random values, one that represents
zero r0,i and one that represents one r1,i. During evaluation of an input string x, the random
values rx0,0, . . . , rx`−1,`−1 are combined in some way to arrive at the output of the PRF. The
key of the PRF, K is always a 2 × ` matrix of random values where the top row represents
zeros and the bottom row represents ones. To bit-fix according to a pattern p, a key Kϕp is
constructed such that

kϕp,i,j =

{
kϕpi,j = ki,j if pj = ∗ or pj = i,

ri,j
$← {0, 1}n otherwise.

.

6

In practice the random values that are assigned to elements of Kϕp are committed to in the
CPRF Gen algorithm. A natural extension of the direct-line approach is to divide the input
into blocks of bits and follow a similar approach.

We note that, as presented, the direct-line approach is 1-key private and is secure provided
the adversary only obtains access to one constrained key. To see this observe that every key
matrix is simply a uniformly random matrix and thus is indistinguishable from any other
uniformly random matrix.

In [CC17] these random values are random matrices (making the key matrix a tensor).
The output of the PRF is a rounded product of the appropriate random matrices with an
additional randomly chosen matrix, resembling the PRF of [NR04]. The security of their
construction relies on the LWE assumption.

The work of [DKN+20] demonstrated that the direct line approach can be applied using
the distributed XOR PRF [MS95]. In particular, they treat the random values as keys to
individual sub-PRFs which are appropriately combined using the exclusive-or of the evalua-
tion of the sub-PRFs on the desired input x ∈ {0, 1}`. Specifically, FK (x) =

⊕`−1
i=0 f̂rxi,i (x),

where f̂rxi,i is a PRF with key rxi,i. They further extended the direct-line approach so that a
constant number of constrained keys can be obtained by the adversary while simultaneously
maintaining security at the cost of polynomially larger keys.

Additionally in the work of [DKN+20], it was shown that the direct line approach can
be applied to a t-CNF circuit which is equivalent to the conjunction of NC0 circuits where
each circuit only has t < ` bits of input. Though it should be noted that this is representing
blocks of bits at a time with no requirement that these blocks be constructed from adjacent
bits.

In this work we use the direct line approach to realize bit-fixing CPRFs from pseudoran-
dom synthesizers.

2.3 Pseudorandom Synthesizers

A pseudorandom synthesizer [NR95] is a family of polynomial-time computable functions
{S : {0, 1}n × {0, 1}n → {0, 1}n} where for a specific S and two random sets of q values
X = {x1, x2, . . . , xq} and Y = {y1, y2, . . . , yq} where xi, yi ∈ {0, 1}n, the q2 values S (xi, yj)
are indistinguishable from q2 random strings drawn uniformly from {0, 1}n. More formally,
we say that the matrix of values generated by applying the synthesizer to every possible pair
of elements from X and Y , denoted CS (X, Y), is computationally indistinguishable from a
uniformly random q×q matrix of n-bit strings. It is known, from [NR95], that pseudorandom
synthesizers can be constructed from weak PRFs1 and thus one-way functions.

Given a pseudorandom synthesizer S one can construct a pseudorandom function family{
f : K × {0, 1}` → {0, 1}n

}
where ` is a power of two. The PRF family is indexed by a

2 × ` matrix with elements drawn from {0, 1}n. The top row of the matrix represents the
binary strings associated with zeros and the bottom row of the matrix represents the binary

1A PRF fk : X → Y where {(xi, fk (xi))}ni=1≈c {(xi, yi)}ni=1.

7

strings associated with ones. Each column of the matrix corresponds to a bit position of
the function input. To evaluate a PRF with key-matrix K on `-bit input x, lg ` synthesizer
evaluations must occur. For clarity of exposition, we construct a sequence t1, t2, . . . , t` that
represents the input x. We define each ti as kxi,i and recursively define a squeeze function
SQ to describe the PRF as follows:

SQ (t0, t1, t2, · · · , t`) =

{
S
(

SQ
(
t0, · · · , t `

2
−1

)
, SQ

(
t `
2
, · · · , t`

))
if ` > 2,

S(t0, t1) Otherwise.

The simple case when n = 8 is show in figure 1.

S (,)

S (,) S (,)

S (,) S (,) S (,) S (,)

kx0,0 kx1,1 kx2,2 kx3,3 kx4,4 kx5,5 kx6,6 kx7,7

SQ

Figure 1: The evaluation of the synthesizer based PRF on input x0x1x2x3x4x5x6x7. Each
of the levels of the tree are the result of applying the squeeze operation to the level directly
below.

We note that an `-dimensional pseudorandom synthesizer may be used to directly con-
struct the Naor-Reingold PRF. The construction based on the squeeze function uses a 2-
dimensional pseudorandom synthesizer from which an `-dimensional one can be constructed.

A pseudorandom synthesizer can be used to combine random values in the direct-line
approach, thus allowing us to realize a bit-fixed constrained PRF from one-way functions
(via weak PRFs). In fact the direct-line approach applied to an n-dimensional synthesizer
results in the [NR95] PRF.

3 Bit-fixing from Pseudorandom Synthesizers

Given any pseudorandom synthesizer, one can build a bit-fixing CPRF that constrains pri-
vately. The core idea is to use the PRF construction from pseudorandom synthesizers to-
gether with the direct line approach. Given the key K which is a 2 × ` matrix of values
sampled uniformly from {0, 1}n, a key Kϕp for a bit-fixing predicate ϕp is defined as a 2× `

8

matrix where,

kϕp,i,j =

{
kϕp,i,j = ki,j if pj = ∗ or pj = i,

ri,j
$← {0, 1}n otherwise.

Formally our system can be realized as:

Construction 3.1. Let S : {0, 1}n×{0, 1}n → {0, 1}n be a pseudorandom synthesizer and `
be a power of two. We can define a CPRF Π = (F.Gen,F.Constrain,F.Eval,F.ConstrainedEval)
from domain {0, 1}` to range {0, 1}n as:

• F.Gen
(
1λ
)

return the master key msk =
(
K, K̂

)
where,

K =

(
k0,0, k0,1, . . . k0,`−1
k1,0, k1,1, . . . k1,`−1

)
, ki,j

$← {0, 1}n ;

and

K̂ =

(
k̂0,0, k̂0,1, . . . k̂0,`−1
k̂1,0, k̂1,1, . . . k̂1,`−1

)
, k̂i,j

$← {0, 1}n .

• F.Constrain (msk, ϕv) given the master key and the bit-fixing pattern ϕv we return the
key matrix

Kϕv =

(
kϕv ,0,0, kϕv ,0,1, . . . kϕv ,0,`−1
kϕv ,1,0, kϕv ,1,1, . . . kϕv ,1,`−1

)
,

where

kϕv ,i,j =

{
ki,j if vj = ∗ or vj = i,

k̂i,j otherwise.

• F.Eval (msk, x) we return the value of the recursive function SQ
(
kx0,0kx1,1 · · · kx`−1,`−1

)
• F.ConstrainedEval (Kϕv , x) return the value of Eval (Kϕv , x).

In the above construction, an `-way pseudorandom synthesizer can be directly substituted
thus simplifying the Eval function so that only one synthesizer call is made, instead of the
lg ` needed for the two dimensional synthesizer.

Related Keys. Observe that the F.CosntrainedEval algorithm is nothing more than a call
to F.Eval of the underlying PRF. In fact, we are in effect invoking the PRF with a different
master key. We point out this property, as it is some what unique in the literature; the
only other constructions, which we are aware of, that have this property are [DKN+20] when
Q = 1 and [PS20]. In essence, our construction allows the party that possess the master key
k for the PRF to efficiently find a related key k̂ that indexes a different PRF in the family
with the property that fk (x) = fk̂ (x) for all x ∈ X such that ϕ (x) = 1. Because of this,
the constrained key is non-expanding (unlike GGM based CPRFs, for example).

9

Correctness. The intuition behind the correctness is that for all elements x where the
predicate is satisfied, the key posses the same inputs to the synthesizer as the master key.
Intuitively we can view the constrained key as the selection of a new PRF from the family.
This gives some indication as to why this construction is pseudorandom at values of x that
do not satisfy the bit-fixing predicate.

Theorem 3.1. Construction 3.1 is correct.

Proof. The F.Constrain algorithm guarantees that the elements of the constrained key Kϕp will

agree with the elements of master key
(
K, K̂

)
when the corresponding bit matches pattern

p. For every x where ϕp (x) = 1, we know that the necessary entries of Kϕp are present.
Therefore when evaluation is performed the synthesizer calls will be provided with the same
entries. Thus the evaluation with K will agree with the evaluation with Kϕp . When ϕp (x) = 0
we have that the key Kϕp will not result in F.Eval(K, x) = F.ConstrainedEval

(
Kϕp , x

)
as at

least one of the bits of xi of x disagrees with a corresponding pi in bit pattern p. Thus one
of the synthesizer values will be wrong resulting in a different output.

Security. The security argument is similar to the hybrid argument used in [NR95]. The
main difference is that our hybrids remain consistent with any values, or partial values, the
adversary can compute themselves.

Theorem 3.2. Construction 3.1 is pseudorandom at constrained points (CPRF Secure).

Proof. We prove our result using a standard hybrid argument. We define lg n hybrids such
that hybrid i behaves as the CPRF-secure game except for the handling of evaluation oracle
queries. The evaluation oracle responds honestly for any query x that satisfies the constrained
key’s predicate. If the x does not satisfy the predicate, we replace all nodes at depth i (except
those which the adversary can compute themselves) with random values. We then continue
the labeling of the tree as normal. Note that H0 is the CPRF-secure game when b = 0 and
Hlgn is the CPRF-secure game when b = 1.

Assume by way of contradiction that H0 6≈cHlgn. Therefore, there must exist some
distinguisher D that can distinguish H0 from Hlgn with greater than negligible probability.
Let ε be the distinguishing probability of D. By a the standard hybrid argument, there must
exist some pair of neighboring distributions that can be distiguished with probability at least
ε

lgn
. If D can distinguish these distributions then we can use D to construct a distinguisher

D′ that can distinguish between the matrix of values output by a pseudorandom synthesizer
and the a truly random matrix of values drawn uniformly from the same range. Assuming
D makes at most some polynomial q (n) queries to the evaluation oracle, the algorithm for
D′ takes a matrix B with dimensions nq (n)× nq (n):

10

D′ (B):

1. Sample j uniformly at random from the range [0, lg n)

2. Run D to obtain the bit-fixed predicate ϕ.

3. Run F.Gen
(
1λ
)

to obtain msk.

4. Run F.Constrain(msk, ϕ) to obtain the constrained key Kϕ which is given to
D.

5. Extract a series of submatrices B(i) from B for i ∈ [1, 2j] where

B(i) =
(
b
(i)
u,v

)q(n)
u,v=1

and b
(i)
u,v = bu + ((i− 1) q (n) + 1) , v + ((i− 1) q (n) + 1)

6. When D issues an evaluation oracle query for x ∈ {0, 1}`, respond as follows:

• If ϕ (x) = 1, respond with the value of F.Eval(msk, x).

• If ϕ (x) = 0, label nodes at depth j as follows:

– if the two children x and y of the node i can be computed by D
given Kϕ, then label node i with S (x, y).

– if at least one of the children of node i can not be computed by D
given Kϕ, we label node i, that corresponds to a specific substring

s = s0s1, with the value b
(i)
u,v where u is the is the row we associate

with string s0 and and v is the column we associate with string s1.
If no such association has been fixed, select one. Finally, complete
the labeling of the tree by applying the synthesizer and output the
label associated with the root of the tree.

Observe if B is the output of a synthesizer then D′ is simulating Hj if B was generated by
a pseudorandom synthesizer, D′ is simulating Hj−1. Since, S is a pseudorandom synthe-
sizer D′ can’t distinguish with better than negl (n) probability. Therefore, D succeeds with
probability at most 1

lgn
negl (n).

One-Key Privacy. Our construction is one-key private. Intuitively given a key one can
not determine the predicate used to generate that key from any other key.

Theorem 3.3. Construction 3.1 is one-key private (CPRF predicate private).

Proof. The constrained key for two predicates ϕ0 and ϕ1 will have the same entries for all x
where ϕ0 (x) = ϕ1 (x). Since the adversary can not query for x ∈ Q that do not satisfy both
predicates, the random values in the constrained key matrices will be indistinguishable from
one another.

11

4 Conclusion

We have shown that from the synthesizer based PRF construction of [NR95], a one-key
private single-key selective-secure CPRF for the bit-fixing family of predicates can be con-
structed. Thus we resolve an open question on the richness of CPRFs based on black-box
style PRF constructions. Lastly, we noted a interesting feature present in our CPRF where
F.ConstrainedEval (·) is equivalent to calling F.Eval (·) using the constrained key, implying the
size of the constrained keys and master keys are the same. We leave as an open question
what other CPRFs can be constructed that have this property.

References

[AMN+18] Nuttapong Attrapadung, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada,
and Takashi Yamakawa. Constrained prfs for NC1 in traditional groups. In
Annual International Cryptology Conference, pages 543–574. Springer, 2018.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseu-
dorandom functions. In Public-Key Cryptography–PKC 2014, pages 501–519.
Springer, 2014.

[BKM17] Dan Boneh, Sam Kim, and Hart Montgomery. Private puncturable prfs from
standard lattice assumptions. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 415–445. Springer, 2017.

[BLW17] Dan Boneh, Kevin Lewi, and David J Wu. Constraining pseudorandom functions
privately. In IACR International Workshop on Public Key Cryptography, pages
494–524. Springer, 2017.

[BPS19] Florian Bourse, David Pointcheval, and Olivier Sanders. Divisible e-cash from
constrained pseudo-random functions. In International Conference on the The-
ory and Application of Cryptology and Information Security, pages 679–708.
Springer, 2019.

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee.
Private constrained prfs (and more) from lwe. In Theory of Cryptography Con-
ference, pages 264–302. Springer, 2017.

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic prfs
from standard lattice assumptions. In Theory of Cryptography Conference, pages
1–30. Springer, 2015.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their
applications. In Advances in Cryptology-ASIACRYPT 2013, pages 280–300.
Springer, 2013.

12

[CC17] Ran Canetti and Yilei Chen. Constraint-hiding constrained prfs for NC1 from
lwe. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 446–476. Springer, 2017.

[DKN+20] Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi
Yamakawa. Adaptively secure constrained pseudorandom functions in the stan-
dard model. In Annual International Cryptology Conference, pages 559–589.
Springer, 2020.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM (JACM), 33(4):792–807, 1986.

[HKKW19] Dennis Hofheinz, Akshay Kamath, Venkata Koppula, and Brent Waters. Adap-
tively secure constrained pseudorandom functions. In International Conference
on Financial Cryptography and Data Security, pages 357–376. Springer, 2019.

[Kis19] Zachary A Kissel. Key regression from constrained pseudorandom functions.
Information Processing Letters, 2019.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security,
pages 669–684. ACM, 2013.

[MS95] Silvio Micali and Ray Sidney. A simple method for generating and sharing
pseudo-random functions, with applications to clipper-like key escrow systems.
In Annual International Cryptology Conference, pages 185–196. Springer, 1995.

[NR95] Moni Naor and Omer Reingold. Synthesizers and their application to the parallel
construction of pseudo-random functions. In Foundations of Computer Science,
1995. Proceedings., 36th Annual Symposium on, pages 170–181. IEEE, 1995.

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient
pseudo-random functions. Journal of the ACM (JACM), 51(2):231–262, 2004.

[PS20] Chris Peikert and Sina Shiehian. Constraining and watermarking prfs from
milder assumptions. In IACR International Conference on Public-Key Cryptog-
raphy, pages 431–461. Springer, 2020.

[SW21] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. SIAM Journal on Computing, 50(3):857–908,
2021.

[Tsa19] Rotem Tsabary. Fully secure attribute-based encryption for t-cnf from lwe. In
Annual International Cryptology Conference, pages 62–85. Springer, 2019.

13

	Introduction
	Related Work

	Preliminaries
	Constrained Pseudorandom Functions
	The Direct-Line Approach
	Pseudorandom Synthesizers

	Bit-fixing from Pseudorandom Synthesizers
	Conclusion

