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Abstract
Side-channel attacks are powerful non-invasive at-
tacks on cryptographic algorithms. Among such
attacks, profiling attacks have a prominent place
as they assume an attacker with access to a copy
of the device under attack. The attacker uses the
device’s copy to learn as much as possible about
the device and then mount the attack on the target
device. In the last few years, Machine Learning
has been successfully used in profiling attacks, as
such techniques proved to be capable of breaking
implementations protected with countermeasures.
In the deep learning-based profiling attack, a core
problem is finding efficient neural network ar-
chitectures to evaluate an implementation’s secu-
rity correctly. Unfortunately, this process is time-
consuming, and a different neural network config-
uration usually needs to be defined for every target.
Hence, we propose the following process: train
a separate autoencoder for each dataset obtained
from different cryptographic implementations and
devices to receive an encoded version for each one.
After that, define a universal model that can break
multiple (encoded) datasets. Thus, instead of find-
ing dataset-specific neural network architectures,
we reduce the effort to find autoencoders to en-
code the datasets and a single neural network to
break them.

1 Introduction
The profiling side-channel attacks field represents an impor-
tant branch of the applied cryptography domain. During this
attack, it is assumed that an attacker has access to a copy of
the device under attack. Additionally, he utilizes it to gather
as much information as possible about the device. After pro-
filing, the attacker use the gained information to launch the
attack on a target device. Based on this approach, profil-
ing attacks are considered one of the most powerful tools for
breaking a cryptographic algorithm [3].

In the last period in applied cryptography, much research
focused on improving profiling side-channel attacks’ perfor-
mance using different methods. For instance, it was observed
that different Machine Learning (ML) techniques could be
used in this domain. Their performance could not be ne-
glected, especially when Deep Learning (DL) techniques
are applied. What happens behind the scene is that firstly,
the traces obtained during the side-channel experiments are
added to a database such that an ML-based model can further
process this information. For this procedure, the scientists

use an oscilloscope to perform the differential power or elec-
tromagnetic analysis on the device that will be attacked. Re-
cently, many papers presented various DL architectures that
can perform well on a specific dataset gained from a single
cryptographic algorithm. Since we need to find the best DL
configurations every time we want to attack a cryptographic
algorithm, serious concerns can be raised: What happens if
the number of cryptographic algorithms and their implemen-
tation still increase and for each one, we have every time to
find a DL architecture which is suitable for achieving good
performance during the attacking process? How much time
will be spent testing all the ML configurations for a single
cryptographic algorithm?

The aforementioned questions are very important for pro-
viding powerful profiling attacks for most of the used cryp-
tographic algorithms. For example, in the study by Picek
et al. [7], it is mentioned that starting from the first issued
works in 2016 exemplifies how convolutional neural net-
works (CNNs) can be used in this domain [5], the number
of public datasets has been increasing every year. Thus, at
some point, the idea of creating a specific ML-based model
for each dataset will no longer be feasible - due to the large
number of datasets which will continuously appear and the
time required to perform this kind of investigation for a sin-
gle ML algorithm.

As a solution, we propose including the Deep Fake con-
cepts into the SCA domain, such that, for each dataset, we
create a compressed version of it. In this manner, we use
Autoencoders (AEs), which can encode the initial dataset of
traces into a smaller one - a dataset that contains a smaller
amount of features and thus reduces the initially required
storage for the original traces. Moreover, we try to find a
universal DL-SCA model such that it can obtain good per-
formance regardless of the type and implementation of the
cryptographic algorithm used in the attack process. As a re-
mark, the universal DL-SCA model attacks the compressed
version of the initial dataset. In summary, we try to find AEs
that can transform the original datasets into universal ones -
all the datasets have the same amount of features. Then, a
single ML algorithm use these for the attacking part.

As an observation, it is important to mention that the new
stated process helps us create compressed versions of the
traces so that they are100% synthetic. Additionally, we do
not modify the number of traces; we only change the num-
ber of features describing a trace.

To be more concrete, we set up beforehand a value Y
which represents the number of features for the ”universal”
dataset, and later, given a dataset that has X traces and each
trace is described by Z features, after the compression part,
the new version of the same dataset will contain X traces,
and Y features will describe each trace. After we have the



compressed versions of all datasets, we use them to train the
DL-SCA models and then analyze their performance.

2 Related Works
Regarding the SCA part, we can observe a series of works
that presented different DL models capable of obtaining
good performances. One of them is the study by Benad-
jila et al. [2], where an entire process of obtaining MLP
and CNNs architectures was conducted. Since this paper
presented the layers in very small details (the parameters,
number of layers, etc.), we use the best 2 DL models to see
how they behave in our environment. More details are pro-
vided in Section 3. Additionally, the research by Wouters et
al. [10] proposed a new approach to creating the architecture
of the DL-SCA models. Since we also want to run new DL
models, particularly ones that do not use a first convolutional
layer and still behave as a CNN, we also use one model from
this paper.

Furthermore, using the AEs for compressing some data is
not new, and it was applied with success in other domains,
especially in Imaging Science [1; 4; 8; 9]. Even if, in most
cases, the images were encoded as 3D or 2D vectors, in work
by Kuester et al. citekuester20211d the perspective of the
used dataset is similar to SCA - the dataset contained in-
stances that have only one dimension. The same situation
applies to the Side-Channel traces. Thus, even though the
study introduced a 1D-CAE (Convolutional AE) analysis, we
think it is still an important sign that the compression using
AEs can perform well on a 1D images. Thus, we can not
neglect that applying this idea of compression in SCA repre-
sents a novelty.

In terms of creating synthetic traces from the orig-
inal dataset using supervised learning, the research by
Mukhtar et al. [6] used Generative Adversarial Networks
(GANs) for generating synthetic traces which were appended
to the original ones, focusing on data augmentation. In this
manner, the new dataset became larger by containing 50%
original traces and 50% synthetical ones, and afterward, a
DL-SCA model was used to attack the obtained dataset.
Hence, we can observe a big difference since we create com-
pressed versions of the datasets that contain 100% synthet-
ical traces generated by the Encoder part of the AE, which
can be considered a significant element of novelty.

3 Experimental Analysis
In this section, we present the experiment design. We cat-
egorize it into five groups: datasets, configuration, results,
create universal dataset formats and discussion.

3.1 Datasets
For the experiments conducted in this paper, we consider
several open-source datasets. They all consist of software
implementations of AES128.

ASCAD fixed key This dataset contains 60 000 side-
channel traces collected from an ATMega8515 device
that runs a masked AES128 implementation [2]. For
this dataset, a fixed key was used for all measurements.
Side-channel measurements from this dataset represent
the power consumption of the first AES encryption
round. We consider the trimmed version of the dataset,
which contains 700 features representing the process-
ing of the Sbox operation related to the third key byte
(which is also the first masked byte). For that, the
dataset is split into 50 000 traces used for the profiling

phase, while the other 10 000 are used for the attacking
part. For simplicity, we use the ASCAD fixed notation
for referring to this dataset.

ASCAD fixed key with desynchronization This dataset
contains the same side-channel traces from
ASCAD fixed dataset, and they are artificially and ran-
domly desynchronized. We consider the two versions of
desynchronized datasets. The first contains trace desyn-
chronization with a maximum window of 50 features.
For the second desynchronized dataset, the maximum
desynchronization is made for up to 100 features. For
simplicity, we use the ASCAD fixed desync50 and
ASCAD fixed desync100 notations for referring to
these two datasets.

ASCAD variable key This dataset contains side-channel
traces collected from the same masked AES128 of
ASCAD fixed dataset. The dataset consists of 300 000
measurements, where 200 000 traces contain a random
key, which is used as profiling traces, and the remain-
ing 100 000 traces were measured with a fixed key,
which are considered for the attacking set. We again
target the third key byte as this is the first masked byte.
The target trace interval represents the processing of
the third Sbox operation in the first encryption round
and contains 1400 features. For simplicity, we use the
ASCAD variable notation for referring to this dataset.

CHESCTF This dataset was released as part of the Capture-
The-Flag competition from Cryptographic Hardware
and Embedded Systems (CHES) 2018. It consists
of power side-channel measurements from four differ-
ent STM32 micro-controller devices running a masked
AES128 implementation. From each device, 10 000
measurements were collected. Thus, our profiling set
consists of 30 000 traces, while the other 10 000 are
used for the attacking part. The original measurements
contain 650 000 features, and here we extract a trimmed
version of the resampled dataset (with a window of 10)
composed of 4 000 features. This interval is a concate-
nation of two main parts of the measurements: the pro-
cessing of mask share at the beginning of the measure-
ments and the processing of the Sbox operation during
the first encryption round. For simplicity, we use the
notation CHESCTF for referring to this dataset.

DPAV42 This dataset consists of power measurements ob-
tained from an 8-bit microcontroller running a masked
AES128 implementation. In total, 80 000 traces were
collected, and a different key was used for each 5 000
measurements. For that, the dataset is split into 70 000
traces used for the profiling phase, while the other 5 000
are used for the attacking part, all of them generated us-
ing a window with the dimension of 800 features. Be-
fore extracting a trimmed interval, the dataset was re-
sampled with a window of 10, and the 800 features re-
sulted in a concatenation of two 400 feature intervals.
These two intervals represent the processing of two se-
cret shares, which allows us to create a second-order
profiling attack. For simplicity, we use the notation
DPAV42 for referring to this dataset.

3.2 Setting
For the research, we create the following setup. We use the
supervised learning technique to search for the most suitable
AE model. Using a non-normalized version of the data, we
explore two types of AEs - Vanilla AE and Convolutional
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Figure 1: Vanilla AE architecture

Table 1: Hyperparameters space for the AE architecure

Hyperparameters Training values

Optimizer Adamax
Epochs 500, 700, 1000
Learning rate 0.01, 0.001, 0.0025
Batch size 200, 400
Shuffle True

AE. Since for the second type of model, we find it remark-
ably sensible to the input data, and it can not perform well
on all the datasets, in this work, we focus on the first type of
AE, which can also be visualized in Figure 1. Additionally,
we use a grid-search technique to find the best hyperparam-
eters for this architecture. Table 1 offers an overview of the
hyperparameter values used for finding the best Vanilla AE
configuration.

After the grid-search process, we select the top-5 best
MSE scores computed on an attacking dataset - we rank the
AE configurations’ performances based on how accurately
they can reproduce the attacking version of the dataset. Then,
for each top-5 best configuration, we take the Encoder part
of the AE and use it to create a compressed version of the
initial dataset. For our study, it is important to mention that
an arbitrary dimension of 500 features is chosen as the bot-
tleneck of AE. However, more research can be done to find
additional good dimensions which can be used for that com-
pression process. Therefore, we convert all trace sets into a
universal format dataset containing 500 features.

Once we have the compressed version of each dataset, we
apply the z-score normalization and proceed with the pro-
filing and attacking phases. For our research, we use four
different DL-SCA models:

1. MLP Basic - it represents a simple MLP with 4 Dense
layers, each one containing 200 neurons. The parame-
ters for the training and testing part are: batch size =
400, epochs = 10 and the optimizer = Adam with a
learning rate = 0.001.

2. MLP Best - this architecture performed well on the AS-
CAD datasets during the foregoing studies [2]. Along
with the model, we reutilize from the paper the param-
eters’ values for which the best performance was ob-
tained: batch size = 200, epochs = 100 and the opti-
mizer = RMSprop with a learning rate = 0.0001.

Table 2: The # traces used for each phase for different datasets

Dataset # traces for:
profiling validation attacking

ASCAD fixed 50 000 3 000 3 000
ASCAD variable 200 000 3 000 3 000
CHESCTF 30 000 3 000 3 000
DPAV42 50 000 1 000 1 000

3. CNN Best - in the same manner as the previous archi-
tecture, it was used with good success in previous pa-
pers [2]. The parameters for the training and testing
part are: batch size = 200, epochs = 75 and the op-
timizer = RMSprop with a learning rate = 0.0001 -
parameters used for obtaining the best performance in
the paper [2].

4. No Conv - this model was used in the study by Wouters
et al. [10], with the purpose of getting as good perfor-
mance as a CNN, but without using a first convolution
layer, which is well time-consuming, especially when
a lot of experiments have to be done. The parameters
for the training and testing part are: batch size = 50,
epochs = 50, and the optimizer = RMSprop with a
learning rate = 0.005, as used for obtaining the best
performance in [10].

3.3 Results on Original Dataset
To see the improvements in the attacks on the chosen
datasets, we need to see the score if the compression oper-
ations are not used. For that, we use the DL-SCA models
presented previously, and we use the z-score normalized ver-
sion of the original dataset. The rest of the paper refers to
these results as baseline scores.

As a metric for evaluating the attack, we use GE - Guess-
ing Entropy and the SR - Success Rate. As an explanation,
the SR has values between [0, 1] while the GE has values
greater than 1.0. Additionally, to declare that an attack is
successful, we must have the GE and SR = 1.0. Even though
the GE and SR ̸= 1.0, we still consider improving the attack
if the NT - number of traces used for the attacking becomes
smaller than the maximum set value. Hence, depending on
the dataset, we establish upper bounds, shown by Table 2.

To see the improvements in the attacks on the chosen
datasets, we need to see the score if the compression oper-
ations are not used. For that, we use the DL-SCA models
presented previously, and we use the z-score normalized ver-
sion of the original dataset. The rest of the paper refers to
these results as baseline scores.

As a metric for evaluating the attack, we use GE - Guess-
ing Entropy and the SR - Success Rate. As an explanation,
the SR has values between [0, 1] while the GE has values
greater than 1.0. Additionally, to declare that an attack is
successful, we must have the GE and SR = 1.0. Even though
the GE and SR ̸= 1.0, we still consider improving the attack
if the NT - number of traces used for the attacking becomes
smaller than the maximum set value. Hence, depending on
the dataset, we establish upper bounds, shown by Table 2.

In Figure 2, we can see how the MLP Basic architecture
performs the attacks on all the original datasets. Since it is
an MLP architecture, we can observe that it performs better
on ASCAD datasets that do not use countermeasures. More-
over, for the datasets that use the clock jitters, the GE can not
converge to 1.0, and its values fluctuate between 100-140 de-
pending on the case. However, for the CHESCTF dataset, we
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Figure 2: GE baseline results for MLP Basic

think that GE is not stable because the number of epochs
used for training this model was insufficient to learn all 4000
features and therefore break the dataset. The exact opposite
behavior happens to the DPAV42 dataset, which uses just 800
features. Therefore the learning process is good enough for
this model to perform a successful attack.

The MLP Best DL-SCA model was built to attack the
ASCAD datasets, and it performs well only on the traces that
do not use countermeasures. This claim can also be observed
from Figure 3 - this type of architecture can perform very
well on the datasets for which it is constructed; however, for
the others, the GE could not reach 1.0, and its value continu-
ously fluctuates.

In Figure 4, we can see that CNN Best is continuing the
same pattern of having the GE = 1.0 for the ASCAD fixed
and ASCAD variable datasets. Additionally, a slight con-
vergence trend for the datasets using the counter measure-
ments seems to be a slight convergence trend, especially
for the ASCAD fixed desync100. However, it is still not
enough to declare their successful attacks. On the other hand,

the DPAV42 and CHESCTF, the model has trouble processing
good attacks with a GE value close to 1.0. We think this be-
havior happens since the CNN architecture was specifically
created for breaking the ASCAD traces and was not tested on
the other datasets.

The reason behind creating the No Conv model presented
in the study by Wouter et al. [10] was to obtain similar per-
formance during the attacking phase as the CNNs but with-
out using a first convolutional layer. In this manner, the time
for the learning process is minimized. As we can see in Fig-
ure 5, this model behaves similarly to an MLP, obtaining GE
= 1.0 for the ASCAD fixed and DPAV42 datasets. Neverthe-
less, for the desynchronized traces, there is an improvement
compared with the CNN Best plots - having the GE values
for No Conv are stable, and the attacking ones are smaller
than the validation ones. This aspect also proves that the
DL-SCA model does not make any overfitting. In the case
of the ASCAD variable dataset, a trend for GE value to be
steady near 40 exists because these traces contain 1400 fea-
tures. Hence, we conclude that for this type of architecture,
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Figure 3: GE baseline results for MLP Best

we would need more data for launching successful attacks.
In addition, the values for CHESCTF are more meaningful in
this regard, since it has 4000 features, which are more than
other datasets’ features.

3.4 Results on universal dataset formats
After running all the required baseline experiments, as is
shown in Section 3.2, we run the grid-search process on the
AE and sort their performance based on the MSE metric.

After having these results, we take the top-5 best AE con-
figurations for each dataset and use only the Encoder part
for doing the compression operation. In practice, for each
utilized Encoder configuration, we generate a compressed
version of the dataset, such that its normalized version is
fetched into DL-SCA models afterward. We organize the
extensive results from all 4 DL-SCA models for evaluation
in Tables 3, 4, 5 and 6.

In Table 3, we can see that for each dataset, there is at
least one encoded dataset version used to launch improved
versions of the attack. We do not obtain a significant dif-

ference between the compressed and the baseline data for
the dataset, which contains many features (e.g., CHESCTF).
However, for the rest of the dataset, there is a significant gap
between those two scores, and we think that the number of
features contained in that dataset is affecting the performance
of the AE model since it could not learn all the features in a
very precise way. Even for desynchronized versions of the
dataset, we obtain at least one model which performs better
than the baseline in terms of GE. Additionally, the ranking
of the AE based on their performance does not respect the
same ranking in terms of the DL-SCA evaluation part. For
instance, for the ASCAD fixed dataset, the 5th AE configura-
tion can improve the attack in terms of the NT. Therefore, we
can see a reason for this kind of behavior. We obtain close
results of MSEs between the top-5 best AE configurations.
Since the learning technique of an ML is a non-deterministic
operation, we do not obtain different MSE values even for
the same input. Therefore, we consider that we can obtain
different encodings for the initial dataset. After this step, the
generated smaller dataset is fetched into another ML algo-
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Figure 4: GE baseline results for CNN Best

rithm, and therefore the initial input affects the results of the
DL-SCA model’s performance.

In Table 4, there is a significant improvement, in terms
of launching successful attacks (GE = 1, SR = 1, and the
NT attacking of the baseline is greater than the one gained
from the encoded version of the traces) is obtained for the
ASCAD fixed and ASCAD variable datasets. This perfor-
mance was expected since this MLP architecture was specif-
ically created to attack these datasets [2]. However, we can
not neglect the progress of enhancing the GE values for the
rest of the datasets.

Similar to MLP Best, the reason for building CNN Best
was to launch much better attacks on all ASCAD
datasets [2]. However, we can see that in Table 5, we do
not obtain a very significant improvement for most of the
datasets. For example, for the ASCAD fixed dataset, none
of the AE models can help in launching the attacks with GE
= 1.0 and SR = 1.0. For the CHESCTF dataset, most of the
values from the baseline are close to the values obtained us-
ing the encoded version of the traces. We think this chaotic

behavior of the CNN model happens because of the higher
amount of traces needed for a very successful learning pro-
cess.

In Table 6, we can see the results which we obtain using
the No Conv model. The results are promising and offer a
significant improvement in the attacking phase. A small ex-
ception is represented by the ASCAD fixed traces, where the
amount of the NT was better just for the 5th AE configu-
ration. However, since the numbers are stable, the setup of
experiments requires a single run, and the learning process
is a non-deterministic technique, we can still consider an im-
provement for this dataset.

3.5 Discussion
As a first remark, if we compare the baseline results with
those obtained using the compressed version of the dataset,
we can see some promising results, which denote the fact
that we improved the attack. For the MLP Basic, MLP Best,
and No Conv, for each dataset, we obtain at least an AE con-
figuration such that it is capable of creating an encoded ver-
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Figure 5: GE baseline results for No Conv

sion of the dataset for which the DL-SCA model improved
the attack significantly. We can create improved versions of
the attacks for the CNN Best model, but the numbers were
not stable; therefore, we consider them a small improvement
and not a significant one. As a reason for that, we invoke
the issue of using a non-deterministic process, being confi-
dent that if more experiments are conducted for this kind of
architecture on both sides - the baseline and the DL-SCA
part - we can see a considerable improvement at the level of
the average scores.

Moreover, another reason we obtain these results can be
based on the capability of the CNNs to analyze the smaller
details within an instance so that it can do good classifica-
tion. Indeed, this raised a problem that was tackled in the
paper [6], where it is mentioned that SCA needs many data
to improve the attacks. Hence, we are sure that for this
kind of model, which consumes much data to gain the de-
sired results, if we can create an environment where we can
fetch more instances, we can also obtain promising results
for this model.

Presenting these results, we address the question of why
DL-SCA models which do not use a CNN architecture can
behave well in the attacking environment.

4 Conclusions and Future Work
In conclusion, even if we want to present a new idea that
can open more doors in the SCA domain and is a feasible
technique for improving the attacks using DL-SCA models,
there are still places for development.

As we already mentioned in Section 3.2, for this research,
we use 500 features to describe one of the dimensions of the
compression traces. Even though we obtain really promising
results with this setup, we think another study focusing on
other values for the bottleneck layer of the AE can add to our
study’s important conclusions. In addition, future research
can focus on the least amount of features that can be used in
the bottleneck layer of the AE, such that we can still obtain
improved versions of the attacks. What will be the minimum
value of the features which are needed for that? This topic
becomes very important if we consider using as small a stor-



Table 3: Comparison with the baseline for the MLP Basic

Baseline Score Using AE Score

AE Configuration DL-SCA Scores

Dataset GE SR NT
attacking

epochs learning
rate

batch
size

mse GE SR NT
attacking

1000 0.0025 200 0.0588 1.0 1.0 271
700 0.001 200 0.0657 1.0 1.0 353

ASCAD fixed 1.0 1.0 295 700 0.0025 400 0.0668 1.0 1.0 264
1000 0.001 200 0.0681 1.0 1.0 503
1000 0.0025 400 0.0684 1.0 1.0 227

1000 0.001 200 0.0598 2.62 0.49 3000
1000 0.0025 200 0.0619 1.27 0.83 2425

ASCAD fixed desync50 141.8 0.0 3000 1000 0.001 400 0.0703 5.47 0.17 3000
700 0.001 200 0.0705 2.43 0.41 3000
700 0.0025 200 0.0726 3.31 0.42 3000

1000 0.0025 200 0.0619 98.3 0.0 3000
700 0.0025 200 0.0601 92.94 0.0 3000

ASCAD fixed desync100 93.66 0.0 3000 1000 0.001 200 0.0670 94.55 0.01 3000
700 0.001 400 0.0706 179.01 0.0 3000
1000 0.001 400 0.0709 38.18 0.01 3000

1000 0.001 200 0.3664 1.0 1.0 57
700 0.001 200 0.3706 1.0 1.0 51

ASCAD variable 1.0 1.0 324 1000 0.001 400 0.3843 1.0 1.0 53
1000 0.0025 200 0.3993 1.0 1.0 52
700 0.001 400 0.3984 1.0 1.0 49

700 0.001 200 0.0397 93.58 0.0 3000
1000 0.0025 400 0.0463 120.52 0.0 3000

CHESCTF 89.49 0.0 3000 500 0.001 200 0.0470 143.48 0.0 3000
500 0.0025 200 0.0478 181.02 0.0 3000
1000 0.0025 200 0.0499 88.88 0.0 3000

700 0.0025 200 0.0326 1.0 1.0 6
1000 0.0025 400 0.0343 1.0 1.0 5

DPAV42 1.0 1.0 52 500 0.0025 200 0.0347 1.0 1.0 5
700 0.001 200 0.0404 1.0 1.0 10
1000 0.001 200 0.0421 1.0 1.0 5

age capacity as possible.
From another perspective, we can also test other types

of AE which can do the compression. As an example,
we can go for Convolutional AE or Variational AE. How-
ever, it is important to mention that for these kinds of AEs,
more experiments and data traces are required for obtaining
significant-good performances against the baselines.

We can also think there may be a good reason for focusing
on a single DL-SCA universal model that can attack all the
datasets. However, during this research, as was mentioned in
Section 3.2, we have used DL-SCA models, which different
scientists propose. Therefore, based on our observations re-
garding using non-CNN’s ML models for this type of attack,
there is a gap for a paper where the main focus is to construct
a DL-SCA universal model that can break different datasets.

Since this work uses six datasets described in Section 3.1,
another curious aspect can be represented if the same results
can be obtained for more cryptographic algorithm implemen-
tations that use or do not use countermeasures. Thus, further
research can be conducted in this direction, and the new re-
sults can represent an extension of this study.



Table 4: Comparison with the baseline for the MLP Best

Baseline Score Using AE Score

AE Configuration DL-SCA Scores

Dataset GE SR NT
attacking

epochs learning
rate

batch
size

mse GE SR NT
attacking

1000 0.0025 200 0.0588 1.0 1.0 298
700 0.001 200 0.0657 1.0 1.0 298

ASCAD fixed 1.0 1.0 1437 700 0.0025 400 0.0668 1.0 1.0 295
1000 0.001 200 0.0681 1.17 0.88 2042
1000 0.0025 400 0.0684 1.0 1.0 855

1000 0.001 200 0.0598 167.93 0.0 3000
1000 0.0025 200 0.0619 7.72 0.21 3000

ASCAD fixed desync50 72.37 0.0 3000 1000 0.001 400 0.0703 42.36 0.01 3000
700 0.001 200 0.0705 103.1 0.0 3000
700 0.0025 200 0.0726 163.93 0.0 3000

1000 0.0025 200 0.0619 98.3 0.0 3000
700 0.0025 200 0.0601 92.94 0.0 3000

ASCAD fixed desync100 59.10 0.0 3000 1000 0.001 200 0.0670 94.55 0.01 3000
700 0.001 400 0.0706 179.01 0.0 3000
1000 0.001 400 0.0709 38.18 0.01 3000

1000 0.001 200 0.3664 1.0 1.0 354
700 0.001 200 0.3706 1.0 1.0 316

ASCAD variable 37.27 0.0 3000 1000 0.001 400 0.3843 1.0 1.0 143
1000 0.0025 200 0.3993 1.0 1.0 151
700 0.001 400 0.3984 1.0 1.0 100

700 0.001 200 0.0397 93.58 0.0 3000
1000 0.0025 400 0.0463 120.52 0.0 3000

CHESCTF 197.48 0.0 3000 500 0.001 200 0.0470 153.95 0.0 3000
500 0.0025 200 0.0478 181.02 0.0 3000
1000 0.0025 200 0.0499 88.88 0.0 3000

700 0.0025 200 0.0326 61.41 0.02 1000
1000 0.0025 400 0.0343 143.79 0.01 1000

DPAV42 136.09 0.0 1000 500 0.0025 200 0.0347 168.22 0.0 1000
700 0.001 200 0.0404 135.07 0.01 1000
1000 0.001 200 0.0421 210.92 0.0 1000



Table 5: Comparison with the baseline for the CNN Best

Baseline Score Using AE Score

AE Configuration DL-SCA Scores

Dataset GE SR NT
attacking

epochs learning
rate

batch
size

mse GE SR NT
attacking

1000 0.0025 200 0.0588 4.81 0.3 3000
700 0.001 200 0.0657 1.16 0.87 2071

ASCAD fixed 1.0 1.0 1218 700 0.0025 400 0.0668 1.84 0.71 2939
1000 0.001 200 0.0681 3.26 0.37 3000
1000 0.0025 400 0.0684 14.46 0.04 3000

1000 0.001 200 0.0598 75.45 0.0 3000
1000 0.0025 200 0.0619 21.56 0.04 3000

ASCAD fixed desync50 123.06 0.0 3000 1000 0.001 400 0.0703 142.47 0.0 3000
700 0.001 200 0.0705 63.76 0.01 3000
700 0.0025 200 0.0726 151.8 0.0 3000

1000 0.0025 200 0.0619 84.99 0.0 3000
700 0.0025 200 0.0601 30.71 0.0 3000

ASCAD fixed desync100 77.52 0.0 3000 1000 0.001 200 0.0670 40.36 0.0 3000
700 0.001 400 0.0706 19.46 0.03 3000
1000 0.001 400 0.0709 41.82 0.01 3000
1000 0.001 200 0.3664 15.1 0.04 3000
70 0.001 200 0.3706 4.55 0.15 3000

ASCAD variable 1.09 0.93 1759 1000 0.001 400 0.3843 2.8 0.41 3000
1000 0.0025 200 0.3993 1.34 0.83 2310
700 0.001 400 0.3984 1.08 0.96 2046
700 0.001 200 0.0397 189.39 0.0 3000
1000 0.0025 400 0.0463 102.55 0.0 3000

CHESCTF 190.67 0.0 3000 500 0.001 200 0.0470 169.83 0.0 3000
500 0.0025 200 0.0478 135.21 0.0 3000
1000 0.0025 200 0.0499 101.26 0.0 3000
700 0.0025 200 0.0326 171.45 0.0 1000
1000 0.0025 400 0.0343 95.15 0.01 1000

DPAV42 134.85 0.0 1000 500 0.0025 200 0.0347 43.48 0.04 1000
700 0.001 200 0.0404 47.16 0.03 1000
1000 0.001 200 0.0421 42.36 0.01 1000



Table 6: Comparison with the baseline for the No Conv

Baseline Score Using AE Score

AE Configuration DL-SCA Scores

Dataset GE SR NT
attacking

epochs learning
rate

batch
size

mse GE SR NT
attacking

1000 0.0025 200 0.0588 1.0 1.0 164
700 0.001 200 0.0657 1.0 1.0 128

ASCAD fixed 1.0 1.0 116 700 0.0025 400 0.0668 1.0 1.0 114
1000 0.001 200 0.0681 1.0 1.0 167
1000 0.0025 400 0.0684 1.0 1.0 122

1000 0.001 200 0.0598 1.0 1.0 289
1000 0.0025 200 0.0619 39.42 0.0 3000

ASCAD fixed desync50 138.05 0.0 3000 1000 0.001 400 0.0703 1.0 1.0 272
700 0.001 200 0.0705 1.0 1.0 932
700 0.0025 200 0.0726 53.07 0.0 3000

1000 0.0025 200 0.0619 20.29 0.0 3000
700 0.0025 200 0.0601 27.36 0.0 3000

ASCAD fixed desync100 179.59 0.0 3000 1000 0.001 200 0.0670 74.47 0.0 3000
700 0.001 400 0.0706 70.2 0.0 3000
1000 0.001 400 0.0709 133.37 0.0 3000

1000 0.001 200 0.3664 1.0 1.0 139
700 0.001 200 0.3706 1.0 1.0 146

ASCAD variable 51.31 0.0 3000 1000 0.001 400 0.3843 1.0 1.0 177
1000 0.0025 200 0.3993 1.0 1.0 155
700 0.001 400 0.3984 1.0 1.0 193

700 0.001 200 0.0397 153.46 0.0 3000
1000 0.0025 400 0.0463 234.02 0.0 3000

CHESCTF 240.26 0.0 3000 500 0.001 200 0.0470 1.0 1.0 1007
500 0.0025 200 0.0478 1.1 0.94 2055
1000 0.0025 200 0.0499 54.84 0.01 3000

700 0.0025 200 0.0326 1.0 1.0 8
1000 0.0025 400 0.0343 1.0 1.0 8

DPAV42 1.0 1.0 14 500 0.0025 200 0.0347 1.0 1.0 15
700 0.001 200 0.0404 1.0 1.0 15
1000 0.001 200 0.0421 1.0 1.0 16
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