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Abstract

We revisit the problem of finding B-block-long collisions in Merkle-Damg̊ard Hash Functions
in the auxiliary-input random oracle model, in which an attacker gets a piece of S-bit advice
about the random oracle and makes T oracle queries.

Akshima, Cash, Drucker and Wee (CRYPTO 2020), based on the work of Coretti, Dodis,
Guo and Steinberger (EUROCRYPT 2018), showed a simple attack for 2 ≤ B ≤ T (with

respect to a random salt). The attack achieves advantage Ω̃(STB/2n + T 2/2n) where n is the
output length of the random oracle. They conjectured that this attack is optimal. However,
this so-called STB conjecture was only proved for B ≈ T and B = 2. Very recently, Ghoshal
and Komargodski (CRYPTO 22) confirmed STB conjecture for all constant values of B, and

provided an Õ(S4TB2/2n + T 2/2n) bound for all choices of B.

In this work, we prove an Õ((STB/2n) ·max{1, ST 2/2n}+T 2/2n) bound for every 2 < B <
T . Our bound confirms the STB conjecture for ST 2 ≤ 2n, and is optimal up to a factor of S
for ST 2 > 2n (note as T 2 is always at most 2n, otherwise finding a collision is trivial by the
birthday attack). Our result subsumes all previous upper bounds for all ranges of parameters

except for B = Õ(1) and ST 2 > 2n.
We obtain our results by adopting and refining the technique of Chung, Guo, Liu, and Qian

(FOCS 2020). Our approach yields more modular proofs and sheds light on how to bypass the
limitations of prior techniques. Along the way, we obtain a considerably simpler and illuminating
proof for B = 2, recovering the main result of Akshima, Cash, Drucker and Wee.

1 Introduction

Merkle-Damg̊ard paradigm [Mer89, Dam89] is a domain extension technique for extending a com-
pression function H : [N ] × [M ] → [N ] (where N := 2n and M > N) with fixed input length
into a full-fledged hash function to handle arbitrary long inputs. Specifically, a B-block message
m = (m1, · · · ,mB) with mi ∈ [M ] is hashed into MDH(a,m) as follows: MD1

H(a,m1) = H(a,m1)
and

MDℓ
H(a, (m1, · · · ,mℓ)) = H(MDℓ−1

H (a, (m1, · · · ,mℓ−1)),mℓ), for ℓ > 1 ,

where a ∈ [N ] is some random given salt. We say m ̸= m′ is a pair of B-block collision with respect
to a salt a if they both have at most B blocks and MDH(a,m) = MDH(a,m′).
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Merkle-Damg̊ard paradigm is widely used in practice for hash functions, including MD5 and
SHA family. The primary requirement of a hash function is collision resistance. In this work,
we are interested in the collision resistance property of Merkle-Damg̊ard hash functions against
preprocessing attackers, which can have an arbitrary (but bounded) precomputed advice about H
to help. The power of preprocessing attacks was first demonstrated by Hellman [Hel80] for inverting
functions. Recently, several works [DGK17, CDG18, ACDW20, GK22] set out to understand the
power of such attacks for finding collisions. All of them studied this question in the auxiliary-input
random oracle model (AI-ROM) proposed by Unruh [Unr07], for dealing with non-uniform and
preprocessing attackers. In this ideal model, H is treated as a random function, and an adversary
A consists of a pair of algorithms (A1,A2). (Computationally unbounded) A1 precomputes S bits
of advice about H in an offline stage, then A2 takes this advice and makes T oracle queries to H
during the attack.

Dodis, Guo, and Katz [DGK17] studied the collision resistance of a salted random function
(which also corresponds to the B = 1 case for Merkle-Damg̊ard). They proved an Õ(S/N +T 2/N)
security upper bound (with respect to a random salt) where the notation Õ(·) hides lower-order
factors that are polynomial in logN . This bound shows the optimality of the naive attack, which
precomputes collisions for S distinct salts as the advice (the T 2/N term is tight due to the birthday
attack).

Since most practical hash functions are based on the Merkle-Damg̊ard paradigm, Coretti, Dodis,
Guo and Steinberger [CDGS18] studied finding collisions for salted Merkle-Damg̊ard hash functions
(corresponds to the unbounded B case). Interestingly, unlike the B = 1 case, they showed an attack
achieving advantage Ω̃(ST 2/N), improving the birthday attack by a factor of S. They also proved
that this attack is optimal.

Akshima, Cash, Drucker and Wee [ACDW20] observed that the collision produced by the attack
of [CDGS18] is very long, which is not appealing for practical relevance. They, therefore, studied
the question of finding short collisions, and put forth the following intriguing conjecture.

STB conjecture [ACDW20]: The best attack with time T and space S for finding col-
lisions of length B in salted MD hash functions built from hash functions with n-bit
outputs achieves success probability Θ((STB + T 2)/2n).

[ACDW20] showed that, a straightforward modification of the attack of [CDGS18] finds B-block
collisions with advantage Ω((STB+T 2)/N). Unfortunately, they also showed that the lower bound
techniques of [CDGS18] can not rule out attacks with success probability Ω(ST 2/N), even forB = 2.
They presented new approaches to prove the STB conjecture for B = 2 in AI-ROM. Combining
with known results for B = 1 and B = T , this demonstrates qualitative jumps in the optimal
attacks for finding length 1, length 2, and unbounded-length collisions. Very recently, Ghoshal and
Komargodski [GK22] confirmed STB conjecture for all constant B. However, for other choices of
B, there is still a significant gap between the best-known attack [ACDW20] and known security
upper bound Õ(S4TB2/N + T 2/N) by [GK22] or Õ(ST 2/N) by [CDGS18]. That motivates us to
study the following question in this paper:

Can we further bridge the gap between the security upper and lower bounds, and prove STB
conjecture for more choices of parameters?

Since prior techniques are limited or laborious even for B = 2, we start by asking:
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Can we prove STB conjecture for B = 2 in a simpler way?

Looking ahead, we answer both questions affirmatively.

1.1 Our results

Our main contribution is the following theorem.

Theorem 1 (Informal). For any 2 < B < T , the advantage of the best adversary with S-bit advice
and T queries for finding B-block collisions in Merkle-Damg̊ard hash functions in the auxiliary-input
random oracle model, is

Õ
(
(STB/N) ·max{1, ST 2/N}+ T 2/N

)
.

Our bound confirms the STB conjecture for any 2 < B < T for the range of S, T such that
ST 2 ≤ N . For the other range of S, T , as T 2 ≤ N (otherwise, finding a collision is trivial by the
birthday attack), Our bound is at most Õ(S2TB/N +T 2/N), which is optimal up to a factor of S.

Comparing to the Õ(STB2(log2 S)B−2/N +T 2/N) bound by [GK22], our bound works for any
2 < B < T , while their bound becomes vacuous when B > logN . However, for B ≤ logN , unlike
our bound, their bound could be tight even when ST 2 > N . In particular, their bound confirms
STB conjecture for B = O(1).

Our bound strictly improves the Õ(S4TB2/N + T 2/N) bound by [GK22], and the Õ(S2T/N)
bound by [CDGS18] for any 2 < B < T and non-trivial choices of S, T (specifically, when STB
attack succeeds with at most a constant probability, i.e., STB = O(N)). The two bounds by
[GK22] only beat [CDGS18] for B ≪

√
T .

As an additional contribution, we give a considerably simpler proof for proving the tight bound
for B = 2, recovering the main result of [ACDW20].

Theorem 2 (Informal). The advantage of the best adversary with S-bit advice and T queries for
finding 2-block collisions in Merkle-Damg̊ard hash functions in the auxiliary-input random oracle
model, is Õ

(
ST/N + T 2/N

)
.

A comparison of our results with the prior works is summarized in Table 1. Overall, our
results subsume all previous upper bounds except for the range of S, T,B such that B ≤ logN and
ST 2 > N .

1.2 Our techniques

In this section, we describe our techniques, how to use them to prove our main results, and what
makes our techniques different from prior approaches used in [CDGS18, ACDW20, GK22].

Existing reduction to sequential multi-instance games. Our initial inspiration is the recent
framework of Chung, Guo, Liu, Qian [CGLQ20] for establishing tight time-space tradeoffs in the
quantum random oracle model. Generally speaking, they reduce proving the security of a problem
with S-bit advice to proving the security of multiple random instances of the problem, presented
one at a time, without advice. Specifically, they observe that1, if any adversary (with no advice)

1The framework of Chung, Guo, Liu, Qian [CGLQ20] reduces to analyzing sequential multi-instance security for
S+logN+1 instances instead of S-instances. We slightly improve their parameters and obtain a considerably cleaner
version in Theorem 3.
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Best known attacks Security bounds Ref. Proof techniques

B = 1 S
N + T 2

N
S
N + T 2

N [DGK17] Compression

B = 2 ST
N + T 2

N
ST
N + T 2

N [ACDW20] Multi-instance problems

B = 2 ST
N + T 2

N
ST
N + T 2

N Theorem 2 Multi-instance games

2 < B < T STB
N + T 2

N
STB2(log2 S)B−2

N + T 2

N [GK22] Multi-instance problems

2 < B < T STB
N + T 2

N
S4TB2

N + T 2

N [GK22] Multi-instance problems

2 < B < T STB
N + T 2

N
STB
N ·max{1, ST 2

N }+
T 2

N Theorem 1 Multi-instance games

Unbounded ST 2

N
ST 2

N [CDGS18] Presampling

Table 1: Asymptotic security bounds on the security of finding B-block-long collisions in Merkle-Dam̊gard
Hash Functions constructed from a random function H : [N ] × [M ] 7→ [N ] against (S, T )-algorithms. For
simplicity, logarithmic terms and constant factors are omitted.

can solve S instances of the problem “sequentially” with success probability at most δS , then any
adversary with S-bit advice can solve one instance of the problem with success probability at most
2δ.

This idea of reducing the security of a problem with advice to the security of a multi-instance
problem without advice was first introduced by Impagliazzo and Kabanets in [IK10]. The idea
was also used by later works [ACDW20, GK22]. The difference between [IK10] and the later
works, including this work, is that we reduce to a “sequential” multi-instance game as opposed to
a “parallel” multi-instance problem. More concretely, in the parallel multi-instance problem, the
adversary is presented with all the randomly chosen instances of the challenge problems to solve
once at the start. Whereas in the multi-instance game, the adversary gets a new randomly chosen
instance of challenge problem one at a time and only after solving all the previous challenges.

Chung et al. [CGLQ20] recently demonstrated a separation between “sequential” multi-instance
games and “parallel” multi-instance problems in the context of function inversion in the quantum
setting2. Guo, Li, Liu and Zhang [GLLZ21] pointed out a connection between “sequential” multi-
instance game and the presampling technique (first introduced by Unruh [Unr07], and further
optimized by Coretti et al. [CDGS18]) —— the main technique used by Coretti et al. [CDGS18]
for proving the O(ST 2/N) bound. Roughly speaking, all results relying on presampling technique
can be reproved using “sequential” multi-instance games. That suggested that “sequential” multi-
instance games have the potential to prove stronger results. Therefore we are motivated to adapt
and take full advantage of “sequential” multi-instance games in the context of collision finding.

To better illustrate the connection between “sequential” multi-instance games and the presam-
pling technique, we show how to recover the O(ST 2/N) bound by Coretti et al. [CDGS18]. Recall
that presampling technique by Coretti et al. [CDGS18] generically reduces security proofs of unpre-

2In particular, they showed that “sequentially” inverting S random images (with T quantum queries per round
to a given random function f : [N ] → [N ]) admits security O(ST/N + T 2/N)S , and the corresponding “parallel”
multi-instance problems admits an attack with advantage Ω(ST 2/N)S .
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dictability applications (including collision finding) in the AI-ROM to a much simpler P -bit-fixing
random-oracle model (BF-ROM), where the attacker can arbitrarily fix the values of the random
oracle on some P := O(ST ) coordinates, but then the remaining coordinates are chosen at random.
Coretti et al. [CDGS18] showed that the security of finding collisions in Merkle-Dam̊gard Hash
Functions in the BF-ROM is O(ST/N).

Using “sequential” multi-instance games, it suffices to bound the advantage of any adversary
(with no advice) winning a new game, conditioning on winning all previous (up to at most S)
ones, by O(ST 2/N). The adversary wins all games with advantage O(ST 2/N)S , which implies the
desired security against S-bit advice. The key point is that the adversary (with no advice) made
at most ST queries in previous games. Therefore, conditioning on any possible events of earlier
games, from the view of the adversary, the random oracle is essentially a (convex combination of)
bit-fixing random oracles (BF-ROM) [CDGS18], where at most ST -positions are known, and the
rest remains independent and random. Hence, it suffices to prove the security of a single game in
BF-ROM by O(ST 2/N), which has been shown by Coretti et al. [CDGS18] as a necessary step to
use the presampling technique.

Barriers of the above idea. Akshima et al. [ACDW20] pointed out a barrier to using the
vanilla presampling technique towards proving B = 2. In particular, one can only hope to achieve
Ω(ST 2/N) in the BF-ROM even for B = 2. Recall that, to prove the sequential multi-instance
security, it is sufficient to bound the advantage of any adversary that finds a 2-block collision for
a fresh salt a, conditioned on it finds 2-block collisions for all the previous random challenge salts
a1, · · · , aS .

We will call these ST queries made during the first S rounds as offline queries. Among the T
queries made for a, we will call the queries that were not made during the first S rounds as online
queries. Throughout the discussion, we will focus on the case that the new salt a has never been
queried before in offline queries, because the other case happens with probability at most ST/N
(so won’t affect our conclusion). As a result, all queries starting with the challenge salt a have to
be online queries.

It is clear that the adversary learns about the function not only using the online queries but
also from the offline queries. The information this algorithm can take advantage of from the offline
queries varies by a lot. The followings are two extreme cases:

1. The offline queries consist of exactly one single query for each of ST distinct salts.

2. The offline queries consist of one collision for each of ST/2 distinct salts

For the first case, the offline queries can barely help3. Whereas, in the second case, as long as
an adversary can find a pre-image (starting with the challenge salt a) of any of these ST/2 salts,
it finds a 2-block collision (Figure 1). Since there are T online queries, the algorithm achieves
advantage at least ST 2/(2N) in the second case.

The vanilla presampling approach works for worst-case offline queries. Given the above example,
the best security bound one can hope to achieve in the BF-ROM for B = 2 is Ω(ST 2/N).

3We do not prove it rigorously here. Instead, we focus on the more interesting case – offline queries do provide
advantages.
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Figure 1: Nodes indicate salts in [N ]. An arrow connected two salts means there is a query on the starting
salt and a message in [M ] such that the output is the other salt. An online query hits an existing collision.
Solid lines denote offline queries. The dotted line denotes the online query that forms a 2-block collision.

Our main technical novelty. Our main insight is that, unlike the presampling technique in
which offline queries can be arbitrary, the worst offline queries are not typical and can be tolerated
by refining the technique. In the above example, the chance that offline queries form ST/2 pairs
of collisions is quite unlikely. We define the following “high knowledge gaining” event E1:

E1: By making ST queries, there are more than S distinct salts with 1-block collision.

The name “high knowledge gaining” suggests that whenever this event happens, the online algo-
rithm can behave significantly better than average (following the attack in Figure 1). If this event
E1 does not happen, the probability that an online algorithm finds a query hitting an existing
offline collision is bounded by O((S/N) · T ); it is much better compared to the worst case – which
is O(ST 2/N). Remember that we have not shown how to prove that E1 happens with a tiny
probability. We will not do that in this section since this is not our main technical novelty.

We then show two more “high knowledge gaining” events, which are all the events we con-
sider. Conditioned on none of them happens, no online algorithms can find 2-block collisions with
advantage better than O(ST/N + T 2/N). The second event E2 is defined as:

E2: By making ST queries, there are more than S2 pairs of queries forming collisions.

In Figure 2a, we denote a multi-collision by a claw. E2 says that many pair-wise collisions are
found among all the offline queries. E1 only cares about collisions starting with the same salt,
whereas E2 counts every pair of collisions (even starting with distinct salts). If there are many
pairs of collisions, as long as an online adversary can hit two queries that form a collision, it finds a
2-block collision. The probability that an online algorithm having two queries hitting one particular
existing collision is at most O(T 2/N2); if E2 does not happen, by union bound, the advantage of
this type of attack is bounded by O(S2 · (T 2/N2)), again smaller than O(ST/N).

The final event E3 is very similar to E1:

E3: By making ST queries, there are more than S distinct salts with self-loops.

If an online algorithm hits an offline self-loop, it forms a 2-block collision. Following the same
reasoning as E1, if E3 does not happen, the probability that an online algorithm finds a query
hitting an existing self-loop is bounded by O((S/N) · T ).

By identifying the “high knowledge gaining” events and managing to show that they are all
unlikely (which is intuitive but non-trivial to prove), we obtain a considerably simpler proof for the
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(a) E2

a

...

(b) E3

Figure 2: Other two “high knowledge gaining” events and their corresponding attacks.

B = 2 result from [ACDW20] using our approach in Section 3 for illustration. More precisely, with
all these “high knowledge gaining” events, we show that4: (1). these events happen with probability
at most O(N−S), even conditioned on the adversary winning all the previous rounds;(2). when none
of them happens, an online algorithm making T queries can find a 2-block collision with advantage
O(ST/N + T 2/N): such a 2-block collision will consist of either hybrid queries (both online and
offline queries) or solely online queries; but for both cases, the probability is small.

It is an upside of our technique that it modularises and separates the bad events, making the
overall proof more straightforward and intuitive. Following the same structure, we then extend our
proof to larger B by identifying a few events, and obtaining our main result.

Applying our new techniques to larger B. As for B = 2, we present results for the sequential
multi-instance model and use the reduction to prove results in the auxiliary input model. We
simplify the sequential multi-instance model into the offline phase and online phase as in the B = 2
result and again use our insight that worst offline queries are unlikely and better bounds than
O(ST 2/N) can be achieved using a more refined analysis. However, unlike for B = 2 analysis,
our larger B analysis is not as straightforward and requires some creative case analysis in terms of
collision types.

We call offline queries that share an image under H with other offline query/ queries as marked
queries. We define the following “high knowledge gaining” event:

E: By making ST queries, there are more than κmarked queries where κ = S·max{1, ST 2/N}.

We can show that this event happens with probability at most O(N−S), even conditioned on the
adversary finding B-length collisions in all the previous rounds. When event E does not happen,
there are two possibilities: 1) The B-length collisions found ‘use’ at least one of these (at most) κ
marked queries 2) The B-length collisions found ‘use’ none of those κ marked queries. For case (1),
we will show that some online query should hit one of (at most) κ · B offline queries en route to
one of κ queries within B steps to succeed, and this happens with probability at most O(κTB/N).
For case (2), note that it implies at least one of the two ‘colliding’ queries among the B-length
collisions is a ‘new’ online query. Then, using this fact along with the structural knowledge of the
type of B-length collision, we can show that probability of finding any of these types of B-length
collisions is bounded by O(STB/N + T 2/N).

4This is not a formal argument but captures the intuition behind our technique. For the formal proofs, please
refer to Section 3.
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Figure 3: Dotted lines denote online queries. Solid lines denote offline queries. Dash-dotted lines can be
either offline or online queries. Red lines denote ‘colliding’ queries.

a
· · ·

· · ·

≤ B-length

Figure 4: The B-length collision uses some marked query. The solid red line denotes the first marked query
along the B-length collisions. The dotted blue line denote the closest online query to the red line along the
B-length collisions.

Here, we focus on one type of B-length collisions to reiterate our strategy with more details.
Refer to Section 4 for the complete proof. Consider the type of B-length collision depicted in
Figure 3a on input salt a.

First, as we have discussed at the beginning of the section, note that the probability that
the input salt a has been queried in the offline queries is at most ST/N (as a is randomly and
independently sampled). So, it suffices to focus on the case that a has not being queried during
offline queries depicted in Figure 3b. For this case, there should exist some queries (including the
queries on a) along with the outputted B-length collisions that are online queries (i.e., made for
the first time during the online phase).

In addition, we can also condition on event E not happening as we can show that the probability
of event E is at most O(N−S), even conditioned on the adversary winning all the previous rounds.
Now observe that the queries in any found this type of B-length collisions would satisfy one of the
two following possibilities:

1. The B-length collision uses some marked query.

2. None of the offline queries used by B-length collision is a marked query.

We first analyze B-length collisions with queries satisfying (1) above. Refer to Figure 4 for a
pictorial depiction of such collisions. Conditioned on event E not happening, there will be at most
κ marked queries. Consider the first such query along the B-length collisions. There is a unique
‘chain’ consisting of at most B offline queries connecting some online query to this marked query.
Thus, the probability of finding B-length collisions satisfying (1) conditioned on event E is at most
the probability of some online query whose output is one of (the salts of) these κB offline queries,
which is at most O(κTB/N).
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Figure 5: The B-length collision uses no marked queries. The solid red line (if any) denotes the colliding
query made in the offline phase. The dotted blue lines denote the two closest online queries to the colliding
queries along the B-length collisions (they can also be colliding queries themselves).

Note that when queries in the B-length collision satisfy (2) above, it implies at least one of the
‘colliding queries’ (two queries denoted by red arrows in Figure 3b) is made for the first time in the
online phase.

The probability of both the colliding queries happening for the first time in the online phase
(see Figure 5b) is bounded by O(T 2/N).

In the case exactly one of the colliding queries happens in the offline phase, there are at most
ST possibilities for this offline colliding query. There is a unique ‘chain’ of at most B offline queries
from some online query to this query and the output of another online query should be the output
of this query (see Figure 5a). Thus, the probability of finding such B-length collisions is bounded
by O(STB · T/N · T/N) = O(STB/N + T 2/N).

For other types of B-length collisions, we can analyze each type in a similar way. Instead of
analyzing each type of B-length collisions, we further abstract out 5 conditions such that any type
of B-length collisions must satisfy one of them. By considering one more “high knowledge gaining”
event, and upper bounding the probability for every condition, we show that the probability of
finding B-length collisions is bounded by O(κTB/N + T 2/N). Please see Section 4 for the details.
It is worth noting that the S2T 2/N term in κ cannot be further improved, because it is expected
to have Ω(S2T 2/N) marked queries among ST random oracle queries. Thus, it seems unlikely to
obtain a better bound by just improving event E and its analysis.

A detailed comparison with prior techniques. The similarity between [ACDW20, GK22]
and us is that we all adopt the idea of reducing the problem of interest to a multi-instance variant,
in which an adversary has to solve multiple copies of the given problem.

Both [ACDW20] and [GK22] directly analyze the probability of solving all instances using the
compression paradigm, which typically requires a non-trivial case analysis of the more complicated
multi-instance problem. These case analyses may be quite laborious and detached from the single-
instance problem (thus may not give many insights for the single-instance problem).

Our approach differs significantly from [ACDW20] and [GK22] in two places. First, we focus
on analyzing a simple variant of the single-instance problem (corresponding to a single round of
the sequential multi-instance game conditioning on winning previous games), which is sufficient
to establish desired results in multi-instance security. This variant is more similar to the original
problem, and may be easier to analyze than the multi-instance problems. The first step (reducing
to a variant of the single-instance problem) is somewhat used and captured in the presampling
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technique (via a different route [CDGS18]). We do think this step is more modular than [ACDW20]
and [GK22], but don’t consider this as our main technical novelty.

The second place, also our main technical novelty, is that we further introduce “knowledge
gaining events” for analyzing the variant of the single-instance problem. These events can be
isolated and analyzed on their own, and precisely highlight the correlation in finding collisions given
“typical” presampled random oracles. Before this work, all the presampling techniques for time-
space tradeoffs considered worst-case presampled random oracles. The worst-case presampling may
make the existing analyses sub-optimal. Our approach analyzes the “average-case” presampling
random oracles and shows that those “worst-case” ones can never happen except with a tiny
probability. To our best knowledge, this is the first work that takes advantage of “average-case”
presampling and achieves tight bounds.

Overall, we consider our proofs more modular, because we utilize sequential games to focus on
variants of the single-instance game (rather than directly compressing multi-instance games used
by [ACDW20] and [GK22]). We further introduce “knowledge gaining events” to take advantage
of “average-case” presampling (rather than working with worst-case ones used by [CDGS18]).

1.3 Discussions and open problems

A better attack or security bound for ST 2 > N? Our main result suggests that the attack
by [ACDW20] is optimal when ST 2 ≤ N , and is potentially sub-optimal when ST 2 > N . This
attack shares many similarities with the Hellman’s attack for inverting random functions. Interest-
ingly, Hellman’s attack is also known to be optimal when ST 2 ≤ N , and is potentially sub-optimal
when ST 2 > N . A better attack for ST 2 > N will be exciting and may give insights for improving
Hellman’s attack. We think that our framework has the potential to prove a better security bound
or even the STB-conjecture, by identifying the right set of “high knowledge gaining” events.

Tight quantum time-space tradeoffs for finding collisions in MD? Motivated by analyzing
post-quantum non-uniform security, several recent works [CGLQ20, GLLZ21] studied the same
question in the quantum setting, in which the adversary is given S-(qu)bit of advice and T quantum
oracle queries. However, unlike the classical setting, no matching bounds are known, even for B = 2
and B = T . The Ω(ST 3/N) security bound by [GLLZ21], suggests that the optimal attack may
speed up the trivial quantum collision finding by a factor of S. However, the best-known attack
achieves O(ST 2/N + T 3/N) for every 2 ≤ B ≤ T . Is there a security jump for finding 2-block
collisions and unbounded collisions in the quantum setting? Can we leverage our new proof for
B = 2 to prove a tight security bound in the quantum setting?

Other related works. We mention that time-space lower bounds of attacks (or non-uniform
security) against other fundamental cryptographic primitives, such as one-way functions, pseudo-
random random generators, discrete log, have been investigated in various idealized models [DTT10,
CHM20, CGK18, CGK19, GGKL21, DGK17, CDG18, CDGS18].
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2 Preliminaries

Notation. For non-negative integers N, k, we write [N ] for {1, 2, · · · , N} and
([N ]

k

)
for the collec-

tion of all size-k subsets of [N ]. For a finite set X, we write X+ for the set of tuples of 1 or more
elements of X. Random variables will be written in bold, and we write x←$ X to indicate that x
is a uniform random variable in X.

Chernoff Bound. Suppose X1, · · · ,Xt are independent binary random variables. Let X denote
their sum and µ = E[X]. For any δ ≥ 0,

Pr[X ≥ (1 + δ)µ] ≤ exp

(
− δ2µ

2 + δ

)
.

Random Oracle [BR93]. In random oracle model, we model a hash function as a random
function H that is sampled uniformly at random from all functions at the beginning. H is publicly
accessible to every entity.

A useful property about random oracle model is that, instead of sampling H uniformly at
random, one can assume H is initialized as a function that always outputs ⊥; which indicates the
response has not been sampled. Whenever an input x is queried and H(x) has not been sampled
(i.e. H(x) = ⊥), the random oracle samples y uniformly from the range and H(x) := y.

Definition 1 (Lazy Sampling and Databases). We refer to the table of sampled queries (for those
H(x) ̸= ⊥) on H and their responses as the database or the partially sampled random oracle.

The set of offline queries is the set of distinct queries made in the offline stage. The set of
online queries is the set of distinct queries made in the online stage and had not been made in
the offline stage.

While dealing with algorithms with both offline and online stages, the table of only the offline
queries on H and their responses is referred to as the offline database.

Note that the outputs of the offline and online queries are independent and uniformly dis-
tributed.

2.1 Merkle-Dam̊gard Hash Functions (MD)

A hash function usually is required to function over inputs with different lengths. Many practical
hash functions are based on the Merkle-Dam̊gard construction (MD). It takes a hash function with
fixed length input to a new hash function with arbitrary input lengths.
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We treat the underlying hash function as a random oracle H : [N ] × [M ] → [N ]. We call a
message m is a B-block message if m can be written as m = (m1, · · · ,mB) where each mi ∈ [M ].
The function MDH(a,m) evaluates on a salt a ∈ [N ] and a message m as the follows:

MDH(a,m) = MDℓ
H(a, (m1, · · · ,mℓ)) =

{
H(MDℓ−1

H (a, (m1, · · · ,mℓ−1)),mℓ) ℓ > 1

H(a,m1) ℓ = 1

It applies the fixed-length hash function H on the salt a and the first block m1 to get a new salt
a2; it then applies H again on a2 and m2 until finally it outputs a single string in [N ].

2.2 Collision-Resistance against Auxiliary Input (AI).

We start by defining the security game of collision-resistance against auxiliary input adversaries.
The adversary is unbounded in the preprocessing stage and leave nothing but a piece of bounded-
length advice for the online stage.

Definition 2 ((S, T)-AI algorithm). A pair of algorithms A = (A1,A2) is an (S, T )-AI adversary
for MD if

• AH
1 is unbounded (making unbounded number of oracle queries to H) and outputs S bits of

advice σ;

• AH
2 takes σ and a salt a ∈ [N ], issues T queries to H and outputs m1,m2.

We are ready to define the security game of collision-resistance against an (S, T )-AI adversary.

Definition 3 (Auxiliary-Input Collision-Resistance). We define the following game B-AICR for a
fixed random oracle H and a salt a ∈ [N ] in Figure 6, where B is a function of N (the range size
of the random oracle). The game outputs 1 (indicating that the adversary wins) if and only if A
outputs a pair of MD collision with at most B(N) blocks.

Game B-AICRH,a(A)
σ ← AH

1

m1,m2 ← AH
2 (σ, a)

If m1 or m2 consists of more than B(N) blocks
Then Return 0

If m1 ̸= m2 and MDH(a,m1) = MDH(a,m2)
Then Return 1

Else Return 0

Figure 6: B-AICRH,a(A)

Game 2-AICRH,a(A)
σ ← AH

1

m1,m2 ← AH
2 (σ, a)

If m1 or m2 consists of more than 2 blocks
Then Return 0

If m1 ̸= m2 and MDH(a,m1) = MDH(a,m2)
Then Return 1

Else Return 0

Figure 7: 2-AICRH,a(A)

For an (S, T )-AI adversary A = (A1,A2), we define the advantage of A as its winning prob-
ability in the B-AICRH,a with uniformly random H ← {f : [N ] × [M ] → [N ]} and random
a ← [N ]. We define the (S, T,B)-auxiliary-input collision-resistance of Merkle-Damg̊ard, denoted
by AdvAI-CR

B-MD (S, T ), as the maximum of advantage taken over all (S, T )-AI adversaries A.

For convenience, we similarly define AdvAI-CR
2-MD (S, T ) as the maximum of advantage of winning

the game 2-AICR (see Figure 7) taken over all (S, T )-AI adversaries A.
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Multi-Instance Collision-Resistance (MI). We then define the sequential multi-instance
collision-resistance of Merkle-Damg̊ard. As shown by [CGLQ20], the AI-security is closely re-
lated to the (sequential) MI-security. Note that in the MI security, an adversary does not take any
advice but tries to solve independent instances sequentially.

Definition 4 (Multi-Instance Collision-Resistance). Fixing functions B and S, and a random
oracle H, we define the following game B-MICRS in Figure 8. In this game, A will receive S
freshly independent and uniform salts and it needs to find a MD collision with respect to each salt
ai of at most B blocks, in a sequential order. In other words, A will never see the next challenge
salt until it solves the current one.

Game B-MICRS
H,a(A)

For i ∈ {1, 2, · · · , S}:
Sample ai ← [N ]
m1,m2 ← AH(ai)
If m1 or m2 consists of more than B blocks,
or MDH(ai,m1) ̸= MDH(ai,m2)

Return 0
Return 1

Figure 8: Games B-MICRS
H,a(A).

In this security game, A is a statefulalgorithm that maintains its internal state between each
stage. We usually consider an (S, T )-MI adversary A which makes at most T queries in each of
these S stages. We similarly define 2-MICR by setting B = 2 in B-MICR.

For an (S, T )-MI adversary A, we define the advantage of A as its winning probability in the
B-MICRS

H,a with uniformly random H and a← [N ].

We define the (S, T,B)-multi-instance collision-resistance of Merkle-Damg̊ard, denoted by AdvMI-CR
B-MD (S, T ),

as the maximum of advantage taken over all (S, T )-MI adversaries A.

For convenience, we similarly define AdvMI-CR
2-MD (S, T ) as the maximum of advantage of winning

the game 2-MICRS
H,a (for random H, a) taken over all (S, T )-MI adversaries A.

The following theorem will be useful for proving the AI collision-resistance of Merkle-Damg̊ard.
It says a lower bound for the MI collision-resistance implies a lower bound for the AI security.
Therefore, in the rest of the paper, we will focus on the MI collision-resistance of Merkle-Damg̊ard
with different lengths B. The theorem is based on the idea of Theorem 4.1 in [CGLQ20], which
implies that if AdvMI-CR

B-MD (S + logN + 1, T ) ≤ δS+logN+1, then AdvAI-CR
B-MD (S, T ) ≤ 4δ. We slightly

improve their parameter, and obtain a considerably cleaner statement.

Theorem 3. For any S, T,B and 0 ≤ δ ≤ 1, if AdvMI-CR
B-MD (S, T ) ≤ δS, then AdvAI-CR

B-MD (S, T ) ≤ 2δ.

Proof of Theorem 3. We prove by contradiction. Assume there is an (S, T )-AI adversary A =
(A1,A2) such that

Pr
H,a

[B-AICRH,a(A) = 1] > 2δ,

Consider the following (S, T )-MI adversary B:

13



1. B samples a uniformly random σ of S bits.

2. For each stage i ∈ [S]:

• B receives ai from the challenger.

• B runs AH
2 (σ, ai) to obtain and output m1,m2.

We will show that PrH,a1,...,aS

[
B-MICRS

H(B) = 1
]
> δS . For every fixed choice of H, we define

δH := Pr
a
[B-AICRH,a(A) = 1] .

Observe that EH [δH ] = PrH,a [B-AICRH,a(A) = 1] > 2δ. For every fixed choice of H, conditioning
on that B guesses the output of AH

1 correctly, then B perfectly simulates A. Therefore,

Pr
a1,...,aS

[B-MICRH(B) = 1] ≥ Pr
a1,...,aS

[B-MICRH(B) = 1|σ = AH
1 ] · Pr[σ = AH

1 ] = δSH/2S .

By averaging over the randomness of H,

Pr
H,a1,...,aS

[B-MICRH,a(B) = 1] ≥ EH [δSH ]/2S ≥ E[δH ]S/2S > δS ,

where the second inequality is by Jensen’s inequality, and the last inequality is by EH [δH ] > 2δ.

3 Auxiliary Input Collision Resistance for B = 2 Merkle-Damg̊ard

In this section we prove the following theorem, which recovers Theorem 7 in [ACDW20].

Theorem 4. For any S, T and N ≥ 64,

AdvAI-CR
2-MD (S, T ) ≤ (200 log2N) · ST + T 2

N
.

By Theorem 3, it suffices to prove the following lemma.

Lemma 5. For any S, T and N ≥ 64, AdvMI-CR
2-MD (S, T ) ≤ 100(ST+T 2) log2 N

N .

The purpose of this section is to show the simplicity of our new framework. The proof will also
serve as a stepping stone for a better understanding of our proof for larger B cases.

Proof of Lemma 5. Let H be a random oracle in the game 2-MICRS and A be an arbitrary (S, T )-
MI adversary. We show that its advantage of succeeding in 2-MICRS is at most (100(ST +
T 2) log2N/N)S . In this proof, we will also assume the random oracle H is lazily sampled by
the challenger, which is equivalent to being sampled at the very beginning.

Let Xi be the indicator variable that A wins the i-th stage on a uniformly random salt ai. The
advantage of A can be then written as Pr[X1 ∧ · · · ∧ XS ]. We additionally define the indicator
variable X<i = X1 ∧ · · · ∧Xi−1, meaning whether A wins the first (i− 1) stages of the sequential
game. Then

Pr[X1 ∧ . . . ∧XS ] =
S∏

i=1

Pr[Xi|X<i]. (1)
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We will bound Pr[X<i+1] < (δS)
i for each i ∈ {1, · · · , S} by induction, where δS = 100 ·

(ST+T 2) log2 N
N .

If Pr[X<i] is already bounded by (δS)
i, then it trivially holds for Pr[X<i+1]. Otherwise, we

assume Pr[X<i] ≥ (δS)
i.

We want to bound Pr[Xi|X<i] ≤ δS for any arbitrary i ∈ [S]. In the following proof, we will
carefully deal with the conditioning on X<i, since A learns about the function H not only using
the T queries in the i-th stage, but also from these (i − 1)T queries in the early stages. We will
call all the queries made in the previous (i − 1) stages as “offline” queries and those made in the
i-th stage as “online” queries. We also recall the definition for “databases” in Definition 1.

As mention in the introduction, one bad example is that the previous (i−1)T queries consist of
(i−1)T/2 distinct salts, each has a pair of 1-block collision. An online adversary can use T queries
to hit any of these salts and form a 2-block collision with probability roughly iT 2/N . Below, we
will show that this event (and other events that give non-trivial advantage to the online adversary)
happens with very small probability.

Defining Knowledge-Gaining Events. To bound the knowledge that A learns in the previous
stages, we define the following events: all events are defined for the lazily sampled random oracle
right after the first (i−1) stages. We are going to show that these events are the “only events” that
A can learn take advantage of the previous queries but they happen with very small probability.

• Let Ei
1 be the event that 1-block collisions can be found for at least 10i logN distinct salts

within (i− 1)T queries.

Formally, in the database, there exist 10i logN salts: for each such salt a, there exists m ̸=
m′ ∈ [N ] satisfying H(a,m) = H(a,m′). See Figure 9a.

...

(a) Ei
1

...

(b) Ei
2

...

(c) Ei
3

Figure 9: All events Ei
1,E

i
2,E

3
i . Nodes indicate salts in [N ]. An arrow connected two salts means there is

a query on the starting salt and a message in [M ], and the output is the other salt.

• Let Ei
2 be the event that at least 10i2 log3N pairs of block collisions can be found within

(i− 1)T queries.

Formally, in the database, there exist 10i2 log3N pairs of inputs (a,m) ̸= (a′,m′) satisfying
H(a,m) = H(a′,m′). We emphasize that we do not ask a pair of collision to start with
distinct salts. See Figure 9b.

• Let Ei
3 be the event that self loops can be found for at least 10i logN distinct salts within

(i− 1)T queries.
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Formally, in the database, there exist 10i logN distinct salts: for each such salt a, there exists
some m ∈ [N ] satisfying H(a,m) = a. See Figure 9c.

Then

Pr[Xi|X<i] ≤ Pr[Xi|X<i ∧Ei
1 ∧Ei

2 ∧Ei
3] + Pr[Ei

1 ∨Ei
2 ∨Ei

3|X<i]

≤ Pr[Xi|X<i ∧Ei
1 ∧Ei

2 ∧Ei
3] +

Pr[Ei
1]

Pr[X<i]
+

Pr[Ei
2]

Pr[X<i]
+

Pr[Ei
3]

Pr[X<i]
.

Here we use the fact that Pr[A|B] ≤ Pr[A]/Pr[B] for Pr[B] > 0.
Next, we will show that assuming none of Ei

1,E
i
2,E

i
3 happens, an adversary can not take

too much advantage of the information from the previous stages. We show that its advantage
Pr[Xi|X<i ∧ Ei

1 ∧ Ei
2 ∧ Ei

3] is bounded by 98 · (ST + T 2) log2N/N . Secondly, any of these event
happens with very small probability. We can safely “assume” these events never happen. In total,
the conditional probability is at most 100 · (ST + T 2) log2N/N = δS .

Claim 6. For any i ∈ [S] and T 2 ≤ N/2, Pr[Ei
1] ≤ N−10i.

Claim 7. For any i ∈ [S], iT + T 2 < N/2 and N ≥ 64, Pr[Ei
2] ≤ 4N−2i.

Claim 8. For any i ∈ [S], N ≥ 4 and T ≤ N/2, Pr[Ei
3] ≤ N−4i.

The proofs for these lemma are deferred to the end of this section (Section 3.1). For now,
readers may skip the proofs for all these claims. The proofs are not necessary for understanding
the rest of the proof.

Recall that we assume Pr[X<i] ≥ (δS)
i, otherwise Pr[X1 ∧ . . . ∧Xi] ≤ (δS)

i holds trivially for
the first i stages. Therefore,

Pr[Xi|X<i] ≤ Pr[Xi|X<i ∧Ei
1 ∧Ei

2 ∧Ei
3] +

Pr[Ei
1]

Pr[X<i]
+

Pr[Ei
2]

Pr[X<i]
+

Pr[Ei
3]

Pr[X<i]
(2)

≤ Pr[Xi|X<i ∧Ei
1 ∧Ei

2 ∧Ei
3] +

1

N
, (3)

where the last inequality comes from the fact that 1/Pr[X<i] ≤ N i but (Pr[Ei
1]+Pr[Ei

2]+Pr[Ei
3]) ≤

6N−2i.

Bounding the Last Term. Finally, we are going to bound Pr[Xi|X<i ∧Ei
1 ∧Ei

2 ∧Ei
3]. In order

to do that, we define another event G as the event that the input salt ai has been queried among
the queries in the previous (i− 1) iterations; i.e., for some m ∈ [N ], (ai,m) is in the lazily sampled
hash function. Then it holds that:

Pr
[
Xi

∣∣∣X<i ∧Ei
1 ∧Ei

2 ∧Ei
3

]
≤Pr

[
G
∣∣∣X<i ∧Ei

1 ∧Ei
2 ∧Ei

3

]
+ Pr

[
Xi

∣∣∣X<i ∧Ei
1 ∧Ei

2 ∧Ei
3 ∧G

]
≤(i− 1)T

N
+ Pr

[
Xi

∣∣∣X<i ∧Ei
1 ∧Ei

2 ∧Ei
3 ∧G

]
.
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Now all that remains to bound is Pr
[
Xi

∣∣∣X<i ∧Ei
1 ∧Ei

2 ∧Ei
3 ∧G

]
, which requires collision

type-wise analysis. By enumeration, there are total 6 types of 2-block collisions (Figure 10).
A dashed line origins from ai. It indicates that the query should be made online, conditioned

on G. Other queries can be either made online or offline in the previous iterations. The label ♣, ♦,
♥ and ♠ will be used later for a better presentation of our proof. By enumerating each solid edge
being an online query or a offline query, we show that it is sufficient to consider the cases in Claim
9.

ai

(♣)

(a) Type 1

ai
(♣)

(♦)

(b) Type 2

ai
(♣)

(♦)

(c) Type 3

ai
(♣) (♦)

(♥)

(d) Type 4

ai
(♣)

(♦) (♥)

(e) Type 5

ai
(♣)

(♦)

(♥)

(♠)

(f) Type 6

Figure 10: All types of 2-block collisions.

Claim 9. For any i ∈ [S], to find a 2-block collision on ai conditioned on G, the queries should
satisfy at least one of the following conditions:

1. There exists an online query (i.e., a query among the T queries in the i-th iteration after
receiving the challenge input ai), denoted (a,m) such that H(a,m) = a.

In other words, a self loop is found among the online queries. This covers the case when
(♣) edge in type 1 collisions and the (♦) edge in type 2 collisions are online queries. See
Figure 11a.

2. There exists two online queries, denoted (a,m) and (a′,m′), such that (a,m) ̸= (a′,m′) and
H(a,m) = H(a′,m′).

A collision is found among the online queries. This covers the case when the (♣) and (♦) edges
in Type 3 collisions, the (♦) and (♥) edges in Type 4 collisions, the (♣) and (♥) edges in Type
5 collisions, the (♥) and (♠) edges in Type 6 collisions are online queries. See Figure 11b.

3. There exists an online query, denoted by (a,m), and one offline query, denoted by (a′,m′),
such that a ̸= a′, H(a,m) = a′ and H(a′,m′) = a′.

This denotes an online query hits an existing self loop. This covers the case when the (♣)
edge in type 2 collisions is an online query. See Figure 11c.

4. There exists an online query, denoted by (a,m), and two offline queries, denoted by (a′,m′)
and (a′,m′′), such that a ̸= a′, H(a,m) = a′ and H(a′,m′) = H(a′,m′′).

This denotes an online query hits an existing collision (starting with the same salt a′). This
covers the case when (♣) edge in type 4 collisions is an online query. See Figure 11d.
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5. There exists two online queries, denoted by (a,m) and (a′,m′), and an offline query, denoted
by (a′,m′′) such that a ̸= a′, H(a,m) = a′ and H(a′,m′) = H(a′,m′′).

This covers the case when the (♣) and (♦) edges in type 4 collisions are online queries. See
Figure 11e.

6. There exists two online queries, denoted by (a,m) and (a′,m′), and an offline query, denoted
by (a′′,m′′) such that H(a,m) = a′ and H(a′,m′) = H(a′′,m′′).

This denotes two online queries hit two ends of an existing queries. This covers the case
when the (♣) and (♦) edges in type 5 collisions, the (♣) and (♠) edges in type 6 collisions
are online queries. See Figure 11f.

7. There exists two online queries, denoted by (a,m) and (a,m′), and two offline queries, denoted
by (b, y), (b′, y′) such that b ̸= b′, H(a,m) = b,H(a,m′) = b′ and H(b, y) = H(b′, y′).

This covers the case when the (♣) and (♦) edges in type 6 collisions are online queries. See
Figure 11g.

a
m

(a) Case 1

a

a′

m

m′

a = a′

m

m′

(b) Case 2

m
m′

a a′

(c) Case 3

m

m′

m′′

a a′

(d) Case 4

m

m′

m′′

a a′

(e) Case 5

m′

m m′′

a

a′′

a′

m′

m m′′

a = a′

a′′

(f) Case 6

m y′

m′ ya

b

b′

(g) Case 7

Figure 11: All possible types of collisions. A dotted line denotes an online query. A solid line denotes a
offline query.

Proof for Claim 9. We only prove for type 6 collisions. Other five cases are easier and similar.
When both (♥) and (♠) are offline queries, it is Case 7. If only one of the two edges is offline,

it is Case 6. If they are all online queries, we can reduce it to Case 2.

Finally, we show that for each case in Claim 9, the advantage is bounded by (98(ST+T 2) log2N)/N .

Case 1. By making T new queries, each query (a,m) has 1/N chance to satisfy H(a,m) = a.
Therefore, the probability is bounded by T/N .

Case 2. The probability of finding a collision among these T new queries is smaller than T 2/N ,
by birthday bound.
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Case 3. Recall Ei
3: there are at most 10i logN salts that has a self loop in the offline queries. By

making T new queries, each query (a,m) has (10i logN)/N chance to hit any of these salts.
Therefore, the probability is bounded by (10iT logN)/N .

Case 4. Recall Ei
1: there are at most 10i logN salts that has a collision starting from it in the

offline queries. By making T new queries, each query (a,m) has (10i logN)/N chance to hit
any of these salts. Therefore, the probability is bounded by (10iT logN)/N .

Case 5. and Case 6. The proofs are identical. Fixing any offline query (a′′,m′′), by making T
queries, the chance of hitting both ends is T 2/N2. This is because we can enumerate which
are the first queries that hit the starting salt a′′ and the end H(a′′,m′′). Each case happens
w.p. at most 1/N2.

Since there are total (i − 1)T offline queries, by union bound, the advantage is at most

(i− 1)T · T 3/N2 ≤ iT
N ·

T 2

N for both cases.

Case 7. Recall Ei
2: there are at most 10i2 log3N pair-wise collisions. For every such collision

that start with different salts, the probability of hitting both salts within T queries is T 2/N2.
This is due to the same counting argument in the analysis of Case 5 and Case 6.

By union bound, the advantage is at most (10i2T 2 log3N)/N2.

We have shown all the cases in Claim 9. Therefore,

Pr[Xi|X<i ∧Ei
1 ∧Ei

2 ∧Ei
3] ≤

98(iT + T 2) log2N

N
.

Combining with Equation (1) and Equation (2), we conclude Lemma 5: Pr[X1 ∧ . . . ∧ XS ] ≤
(δS)

S .

3.1 Bounding Ei
1,E

i
2,E

i
3

Without loss of generality, we assume the algorithm does not make duplicate queries since it can
record every query it makes. We also assume an algorithm makes iT queries instead of (i − 1)T
queries, for the convenience of presentation.

We first show Claim 8 for Ei
3, which is the easiest one.

Proof of Claim 8. Let Bj be the indicator random variable, denote that the j-th query gives a self
loop. Since each output of the random oracle is freshly sampled, it is clearly to see that {Bj}
are independent. For every j ∈ [iT ], E[Bj ] = 1/N . By Chernoff bound (see Preliminary), setting
δ = (9N logN)/T, µ = iT/N ,

Pr [B1 +B2 + · · ·+BiT ≥ 10i logN ] ≤ exp(−δ2µ/(2 + δ)) ≤ exp(−4i logN).

Then we show Claim 6 for Ei
1.
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Proof for Claim 6. Let aj be the j-th distinct salt where an algorithm finds a collision on. If the
algorithm only finds collisions for fewer than j salts, aj is defined as ⊥. Then the probability of
finding collisions for at least t = 10i logN salts is Pr [∀j ∈ [t],aj ̸= ⊥].

Let Zj be the number of queries that are already made towards salt aj ; if aj = ⊥, we define
Zj = 0. We know that Z1 + · · ·+ Zt ≤ iT , since aj are pairwise different.

For every z1, · · · , zt > 0 and z1 + · · ·+ zt ≤ iT , the following probability denotes the event that
collisions are found for at least t salts, and for the j-th collision, it happens at the zj-th queries for
the salt aj :

Pr [∀j ∈ [t],aj ̸= ⊥ ∧ Zj = zj ] ≤
t∏

i=j

zj
N
≤
(
iT

tN

)t

. (4)

The first inequality is due to the fact that for every j ∈ [t], the image of the zj-th query should
match the one of the images among the first zj − 1 queries made towards aj . For each j ∈ [t], the
probability is at most (zj − 1)/N . The last inequality follows from the fact z1 + · · ·+ zt ≤ iT .

By union bound, we have:

Pr [∀j ∈ [t],aj ̸= ⊥] ≤
∑

z1,··· ,zt>0
z1+···+zt≤iT

Pr [∀j ∈ [t],aj ̸= ⊥ ∧ Zj = zj ]

≤
∑

z1,··· ,zt>0
z1+···+zt≤iT

(
iT

tN

)t

.

The last inequality follows Equation (4).
Because

∑
z1,··· ,zt>0

z1+···+zt≤iT
1 ≤

(
2iT
t

)
, assuming T 2 < N/2, the above probability is then bounded by

(
2iT

t

)(
iT

tN

)t

≤
(

2ei2T 2

100i2 log2N ·N

)10i logN

< 2−10i logN .

Finally, we prove Claim 7 for Ei
2.

Proof for Claim 7. We first notice that adaptive queries will not be more useful than non-adaptive
queries. This is simply because when every query is a new query (never queried before), its image
is uniform at random (assuming the random oracle is lazily sampled). Thus, let Yj be the random
variable for the image of the j-th query, j ∈ [iT ]. We know that: (1). Yj is a uniform random
variable in [N ]; (2). {Yj} are independent.

To prove the claim, it is equivalent to show:

Pr

∑
j<k

1Yj=Yk
≥ 10i2 log3N

 ≤ 2 exp(−2i logN).

For every image w ∈ [N ], let Zw denote the number of images among all queries that are equal
to w. Then we have

∑
j<k 1Yj=Yk

=
∑

w∈[N ]

(
Zw

2

)
. This is because if there are Zw queries that

20



have image w, every pair of the queries will contribute one to the sum
∑

j<k 1Yj=Yk
. For the sake

of convenience, we say a pair of collision belong to a claw of size ℓ if their image w satisfies that
Zw = ℓ, similar to Definition 7.

We define the following 3 events:

• Event Fi
1: at least 2i

2 log3N pairs of collisions belong to claws of size in [2, logN).

• Event Fi
2: at least 2i

2 log2N pairs of collisions belong to claws of size in [logN, i logN).

• Event Fi
3: at least 2i

2 log2N pairs of collisions belong to claws of size at least i logN .

Note that the only event we have a log3N factor in the number of pairs of collisions is Fi
1.

Claim 10.
Pr[Ei

2] ≤ Pr[Fi
1] + Pr[Fi

2] + Pr[Fi
3].

Proof. For the event Ei
2 to occur, at least one of the events Fi

1,F
i
2,F

i
3 has to happen. Therefore,

Pr[Ei
2] ≤ Pr[Ei

2 ∩ Fi
1] + Pr[Ei

2 ∩ Fi
2] + Pr[Ei

2 ∩ Fi
3].

It implies the claim as for any j ∈ {1, 2, 3}, Pr[Ei
2 ∩ Fi

j ] ≤ Pr[Fi
j ].

Thus, in order to bound Pr[Ei
2], it is sufficient to bound the probability of events Pr[Fi

1],Pr[F
i
2],Pr[F

i
3].

Fi
1. We then apply counting arguments for bounding all the probabilities. If 2i2 log3N pairs of

collisions have to be obtained from claws of size at most logN , it implies that at least t = 2i2 logN
such claws have to be found. Therefore,

Pr[Fi
1] ≤ Pr[finding t claws of size ≤ logN in iT queries]

≤
(
iT
t

)
·
(
iT
t

)
· (t!)

N t
<

(
T 2

N

)t

.

The counting argument works in the following way: we enumerate which pairs of Yj ,Yk will
collide, and they pairwise collide with probability 1/N t. When T 2 ≤ N/2, it is at most N−2i.

Fi
3. Before bounding the probability of event Fi

2, we will bound the probability of event Fi
3 first.

Pr[Fi
3] ≤ Pr[finding 1 claw of size i logN in iT queries]

=

(
iT

i logN

)
N i logN−1

≤
( eiT
i logN )i logN

N i logN
·N

≤
(
T

N

)i logN

·
(

1

N i

)
·N ≤

(
T

N

)i logN

,

where the second last inequality is obtained using logN ≥ 2. In the counting argument, we
enumerate which i logN queries have the same image and they collide with probability N i logN−1.
This is at most 2−2i logN = N−2i when T ≤

√
N and logN ≥ 2e.
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Fi
2. Finally, we look at event Fi

2. Assume for some k ∈ [logN, i logN) there exists j claws of size
exact k such that they make 2i2 log2N pairs of collisions. Then

j ·
(
k

2

)
≥ 2i2 log2N ⇒ j ≥ 2i2 log2N(

k
2

) ≥ 2i logN

k
.

For any k ∈ [logN, i logN) the probability of finding 2i logN
k claws each of size k in iT queries

is [ (
iT
k

)
Nk−1

]2i logN/k

≤

( eiT
k

N

)k

·N

2i logN/k

≤ 2

(
iT

2N

)2i logN

,

where the last inequality holds using k ≥ logN ≥ 2e.
Then following union bound, the probability that there exists some k ∈ [logN, i logN) such

that 2i logN
k claws each of size k can be found in iT queries is at most

2i logN ·
(

iT

2N

)2i logN

≤ 2

(
iT

N

)2i logN

, (5)

using x ≤ 2x for all x.

Let Sk denote the number of claws of size k found in iT queries. Then the number of pairs of
collisions found for k ∈ [logN, i logN) is

i logN∑
k=logN

Sk ·
(
k

2

)
=

i logN∑
k=logN

Sk ·

(
k∑

ℓ=1

ℓ

)
=

i logN∑
k=logN

Sk ·

(
logN∑
ℓ=1

ℓ

)
+

i logN∑
k=logN

Sk ·

 k∑
ℓ=logN

ℓ


≤ log2N

i logN∑
k=logN

Sk +

i logN∑
ℓ=logN

ℓ ·

(
i logN∑
k=ℓ

Sk

)
,

where
∑i logN

k=ℓ Sk is the number of claws of size at least ℓ. Note that any claw of size (ℓ + x) for

x ≥ 0 contains a claw of size ℓ. Thus,
∑i logN

k=ℓ Sk can be bounded by 2i logN/ℓ with probability at

least 1− 2
(
iT
N

)2i logN
, by Equation (5).

Then, with probability at least 1 − 2
(
iT
N

)2i logN
, the number of pairs of collisions found from

claws of size k ∈ [logN, i logN) in iT queries is

≤ log2N

i logN∑
k=logN

Sk +

i logN∑
ℓ=logN

ℓ ·

(
i logN∑
k=ℓ

Sk

)

≤ log2N · 2i logN
logN

+

i logN∑
ℓ=logN

ℓ · 2i logN
ℓ

≤ 2i log2N + 2i2 log2N ≤ 4i2 log2N.

Thus assuming iT < N/2,

Pr[Fi
3] ≤ 2

(
iT

N

)2i logN

< 2N−2i.

Putting together the above results we obtain Pr[Ei
2] < 4N−2i.
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4 Auxiliary Input Collision Resistance for B Merkle-Damg̊ard

In this section we prove the following theorem.

Theorem 11. For any functions S, T,B, and N ≥ 64

AdvAI-CR
B-MD (S, T ) ≤ (34 log2N) · STB

N
·max

{
1,

ST 2

N

}
+ 2 · T

2

N
.

Lemma 12. For any functions S, T,B, and N ≥ 64,

AdvMI-CR
B-MD (S, T ) ≤

(
17κTB log2N + T 2

N

)S

where κ = S ·max{1, ST 2/N}.

As for the case of B = 2, we prove an upper bound on the advantage of B-block collision finding
adversary in the MI-CR model, which implies an upper bound in the AI-CR model via Theorem 3.

Proof of Lemma 12. We prove this lemma in similar fashion as Lemma 5. Let H be a random
oracle (which is lazily sampled) in the game B-MICRS and A be any (S, T )-MI adversary.

We analogously define Xi to be the indicator variable that A finds at most B-length collisions
on uniformly random salt ai given as input in the i-th stage of the game. We also define X<i =
X1 ∧ · · · ∧Xi−1. So, the advantage of A is

Pr[X1 ∧ . . . ∧XS ] =

S∏
i=1

Pr[Xi|X<i].

As in the proof for B = 2 case, we will inductively bound Pr[X<i+1] for each i ∈ [S]. Here
we will bound Pr[X<i+1] to ((17κiTB log2N + T 2)/N)i where κi = i · max{1, iT 2/N}. Recall
that we will analogously assume Pr[X<i] ≥ ((17κiTB log2N + T 2)/N)i. Otherwise Pr[X<i+1] ≤
((17κiTB log2N + T 2)/N)i holds trivially.

In order to prove the lemma, it suffices to upper bound Pr[Xi|X<i] by 17κiTB log2N/N+T 2/N
for any arbitrary i ∈ [S]. That is because Pr[X<i+1] = Pr[Xi|X<i] · Pr[X<i] where Pr[X<i] ≤
((17κiTB log2N + T 2)/N)i−1 by the inductive hypothesis. In the proof, we will handle the condi-
tioning on X<i in a similar fashion to our proof for B = 2 case.
First we state some useful definitions.

Definition 5. A list of elements (a1,m1), . . . , (aℓ,mℓ) in [N ] × [M ] are said to form a chain for
H when for every j ∈ [ℓ− 1], H(aj ,mj) = aj+1.
A chain (a1,m1), . . . , (aℓ,mℓ) for H is called a cycle when H(aℓ,mℓ) = a1. The length of a cycle
is the number of elements in it, ℓ here.

Definition 6. Two distinct chains (a1,m1), . . . , (aℓ,mℓ) and (a′1,m
′
1), . . . , (a

′
ℓ′ ,m

′
ℓ′) are called col-

liding chains for H if H(aℓ,mℓ) = H(a′ℓ′ ,m
′
ℓ′).

Definition 7. For any a ∈ [N ], a set of elements (a1,m1), . . . , (aℓ,mℓ) in [N ] × [M ] are said to
form a claw at a under H if ℓ > 1, a1, . . . , aℓ are distinct and H(a1,m1) = . . . = H(aℓ,mℓ) = a.
We refer to a1, . . . , aℓ as the pre-images of a.
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Next, we define events to illustrate the bound on ‘useful’ information gained by A from the
prior iterations in the B-MICR game. Each of these events are defined over responses from the
random oracle in the first (i− 1) iterations.

• Let Y be the set of salts with more than one pre-image on it in the offline database. Then
we define Ei

2 to be the event that
∑

a∈Y (# pre-images on a) ≥ 16κi log
2N after (i − 1)T

queries where κi = max
{
i, i

2T 2

N

}
.

• Let Ei
3 be the event that there exists at least i logN ‘special’ cycles of length in [B−1] among

the (i − 1)T offline queries. A cycle (a1,m1), . . . , (aℓ,mℓ) is called ‘special’ if the number of
pre-images on ai is exactly 1 for every i ∈ [ℓ].

Next, we can write

Pr[Xi|X<i] = Pr[Xi|X<i ∧Ei
2 ∧Ei

3] + Pr[Ei
2 ∨Ei

3|X<i]

≤ Pr[Xi|X<i ∧Ei
2 ∧Ei

3] +
Pr[Ei

2]

Pr[X<i]
+

Pr[Ei
3]

Pr[X<i]

≤ Pr[Xi|X<i ∧Ei
2 ∧Ei

3] +
1

N

where the last inequality holds via Claim 13, Claim 14 (which are stated next) and our assumption
that Pr[X<i] ≥ ((17κiTB log2N + T 2)/N)i.

Claim 13. For any i ∈ [S], iT + T 2 < N/2, 2i logN + 1 ≤ N/2 and N ≥ 64, Pr[Ei
2] ≤ 5

N2i .

Claim 14. For any i ∈ [S], Pr[Ei
3] ≤

(
T
N

)i logN
.

We will prove Claim 13 and 14 later.

Next, we want to study Pr[Xi|X<i ∧Ei
2 ∧Ei

3]. We define G to be the event that input salt ai has
been queried among the previous (i−1) iterations or that input salt ai is the output of some query

among the previous (i− 1) iterations. So, we can rewrite Pr[Xi|X<i ∧Ei
2 ∧Ei

3] as follows:

Pr[Xi|X<i ∧Ei
2 ∧Ei

3] ≤ Pr[Xi|X<i ∧Ei
2 ∧Ei

3 ∧G] + Pr
[
G
∣∣∣X<i ∧Ei

2 ∧Ei
3

]
≤ Pr[Xi|X<i ∧Ei

2 ∧Ei
3 ∧G] +

2(i− 1)T

N
.

Note that ai is chosen uniformly and independently and as queries in the previous iterations could
be made on at most (i − 1)T distinct salts and can output at most (i − 1)T distinct salts in the
previous (i− 1) iterations, it is easy to bound

Pr
[
G
∣∣∣X<i ∧Ei

2 ∧Ei
3

]
≤ 2(i− 1)T

N
.

Finally, we analyze Pr[Xi|X<i ∧Ei
2 ∧Ei

3 ∧G].
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Claim 15. For any any i ∈ [S],

Pr[Xi|X<i ∧Ei
2 ∧Ei

3 ∧G] ≤ 16κiTB log2N + T 2

N
.

Proof of claim 15 requires different analysis for different types of colliding chains which we show in
subsection 4.1. Before we move onto that subsection, we first show how we obtain the lemma by
putting together all the claims.

Pr[Xi|X<i] ≤ Pr[Xi|X<i ∧Ei
2 ∧Ei

3 ∧G] + Pr
[
G
∣∣∣X<i ∧Ei

2 ∧Ei
3

]
+ Pr[Ei

2 ∨Ei
3|X<i]

≤ 16κiTB log2N + T 2

N
+

2(i− 1)T

N
+

1

N

≤ 17κiTB log2N

N
+

T 2

N

where the last inequality holds from that κi = max{i, i2T 2/N} and N ≥ 4.

4.1 Proof of Claim 15

To this end, we state the following claim.

Claim 16. For any i ∈ [S], to find a B-length collision on ai, the queries in the database should
satisfy at least one of the following conditions given there exists no query in the offline database
that takes ai as input or outputs ai:

1. There exists an online query (i.e., a query among at most T queries that were made for the
first time in the i-th iteration after receiving the challenge input ai), denoted (a,m) such that
H(a,m) = ai.

2. There exists two distinct online queries, denoted (a,m) and (a′,m′) such that H(a,m) =
H(a′,m′).

This includes both of the following possibilities: the online queries are such (1) a = a′ (and
thus m and m′ will be distinct); (2) a ̸= a′.

3. There exists an online query, denoted (a,m), a chain (recall definition 5) of offline queries1,
denoted (b1,m1), . . . , (bℓ,mℓ) for some 0 < ℓ < B , and an offline query (b,m′) ̸= (bℓ,mℓ)
such that H(a,m) = b1, H(b,m′) = H(bℓ,mℓ) and the number of pre-images for every salt in
{b2, . . . , bℓ} in the offline database is exactly 1.

4. There exists two online queries, denoted (a,m) and (a′,m′), and a chain of offline queries,
denoted (b1,m1), . . . , (bℓ,mℓ) for some ℓ < B, such that H(a,m) = b1, H(a′,m′) = H(bℓ,mℓ)
and the number of pre-images on every salt in {b2, . . . , bℓ} in the offline database is exactly 1.

1The set of Offline queries is the set of distinct queries made in the previous (i − 1) iterations. So there are
at most (i − 1)T of these queries and their outputs are independent and uniformly distributed. The set of Online
queries is the set of distinct queries made in the i-th iteration after receiving the challenge input ai that had not
been made in any of the previous (i− 1) iterations. Note that the outputs of online queries are also independent and
uniformly distributed.
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(a) (b)

· · ·

(c)

· · ·
· · ·

· · ·
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· · ·

· · ·
(e)

Figure 12: All types of colliding chains
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Figure 13: Pictorial depiction of Conditions 1-5. A dotted line denotes an online query. A solid line denotes
an offline query.

5. There exists an online query, denoted (a,m), and a cycle in the offline database, denoted
(b1,m1), . . . , (bℓ,mℓ) for some ℓ < B, such that H(a,m) = b1 and the number of pre-images
on every salt in {b1, b2, . . . , bℓ} in the offline database is exactly 1.

Proof for Claim 16. Fig. 12 enumerates all the possible types of colliding chains. Depending on
where the queries in the chains are first made for each of the types, we show that the list of
conditions in the claim is complete. (Refer to fig. 13 for a visual representation of the conditions
in the claim.)

We know that all the queries with output ai or of the form (ai, ·) in the colliding chains are
online queries. This implies if the colliding chains are of the types in fig. 12a or 12b, the queries in
the database will satisfy condition 1.

For the remaining types of colliding chains (ref fig. 12c,12d,12e), one of the following 3 cases
can happen:
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· · ·

(a)

· · ·

(b)

Figure 14: A dotted line denotes an online query. A solid line denotes an offline query.

1. Both the ‘colliding’ queries are online In this case, the queries in the database will
satisfy condition 2.

2. Both the ‘colliding’ queries are offline In this case, the queries in the database will
satisfy condition 3. Note that bℓ can be thought of as the earliest query among the chains
that has more than one pre-image in the offline database.

3. One of the ‘colliding’ queries is offline and online each For the colliding chains of types
in fig. 12d and 12e), the queries in the database will satisfy condition 4. For the colliding
chains of type in 12c, there are two possibilities as shown in Fig. 14. For the possibility in fig.
14a, the queries in the database satisfy condition 4. On the other hand, for the possibility in
fig. 14b, the queries in the database satisfy condition 5.

Claim 17. For j ∈ [5], let ϵj be the advantage in achieving condition j from claim 16 when Ei
2,

Ei
3 and G hold. Then for any i ∈ [S], the results summarized in Table 2 on the upper bounds of ϵj

hold.

Condition j 1 2 3 4 5

ϵj
T
N

T 2

N
16κiTB log2 N

N
iT
N ·

T 2

N
iTB logN

N

Table 2: Summary of upper bounds on ϵj for j ∈ [5] where κi := max{i, i2T 2/N}.

We prove the bounds stated in Claim 17 next.

Condition 1. Recall that online queries are ‘new’ queries, as in they are made for the first time
among the T queries in the i-th iteration after receiving ai. Thus, the output of online queries is
independent of output from offline queries and has 1/N chance to be ai under H via lazy sampling.
By taking a union bound over at most T online queries, we can bound the probability to T/N .

Condition 2. By birthday bound, it holds that the probability of finding ’colliding’ queries among
T online queries is at most T 2/N .
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Condition 3. Given Ei
2 implies that there can be at most 16κi log

2N queries in the offline
database that are part of some claw. As per the definition of condition 4, there will be a unique
chain of length < B in the offline database ending in each of these at most 16κi log

2N queries,
such that an online query hits the start of this chain. The probability of hitting one of these at
most B · 16κi log2N salts within T queries is at most 16κiTB log2N/N .

Condition 4. As per the definition of condition 5, there can be at most iT such chains of length
< B in the offline database, such that an online query hits the start of this chain and another
online hits the end of this chain. The probability of hitting both the salts within at most T queries
is bounded by T 2/N2. By union bound the advantage is at most iT 3/N2.

Condition 5. Given Ei
3 implies there are at most i logN ’special’ cycles in the offline database,

each with at most B queries in it. So, there are at most iB logN queries in these cycles and the
probability of hitting one of the starting salts of these queries within T online queries is bounded
by iB logN · T/N .

From Claim 17 it holds that the advantage of achieving any of the conditions in Claim 16 given
Ei

2, E
i
3 and G is bounded by (16κiTB log2N+T 2)/N . Note that for i ≤ S, when ST 2 < N implies

iT 2 < N . Hence κi = i if κS = S.
Finally to complete this proof, we prove our Claim 13 and 14 next.

4.2 Proof of Claim 13

We first note that proof of claim 13 is similar to the proof of claim 7 in essence. We again use that
adaptive queries will not be more useful than non-adaptive queries because output of every new
query (never queried before) is uniform at random (assuming the random oracle is lazily sampled).

For every a ∈ [N ], let Za denote the number of pre-images of a. Then proving Claim 13 is
equivalent to showing

Pr

 ∑
a∈[N ];Za ̸=1

Za ≥ max{16i log2N, 16i2T 2 log2N/N}

 ≤ 2 exp (−2i logN).

We will separate the salts into 3 buckets depending on the number of their pre-images (in the
offline database) and analyze the sum of number of pre-images separately for each bucket. Let’s
define the buckets:

• Bucket1 := {a|Za ∈ [2, logN)}

• Bucket2 := {a|Za ∈ [logN, i logN)}

• Bucket3 := {a|Za ≥ i logN}

So for
∑

a∈[N ];Za ̸=1 Za to exceed max{16i log2N, 16i2T 2 log2N/N}, the sum of number of pre-

images of salts in at least one of the buckets has to exceed max{4i log2N, 4i2T 2 log2N/N}. We
show that this happens with exponentially small chance.

In order to do that we define the following 3 events:
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• Event F1:
∑

a∈Bucket1 Za ≥ 4i log2N ·max{1, iT 2/N}.

• Event F2:
∑

a∈Bucket2 Za ≥ 4i log2N ·max{1, iT 2/N}.

• Event F3:
∑

a∈Bucket3 Za ≥ 2i logN ·max{1, iT 2/N}.

In order to prove the claim, it is sufficient to bound the probability of events F1,F2,F3.
We begin with the easiest to analyze events, which is F3.

Bounding Pr[F3]

For F3, we can actually obtain the following stronger statement:

Pr

 ∑
a∈Bucket3

Za ≥ 2i logN

 ≤ 2 exp (−2i logN).

That is because

Pr

 ∑
a∈Bucket3

Za ≥ 2i logN

 ≤ Pr[finding 1 claw of size i logN in iT queries]

=

(
iT

i logN

)
N i logN−1

≤
( eiT
i logN )i logN

N i logN
·N

≤
(
T

N

)i logN

·
(

1

N

)
·N ≤

(
T

N

)i logN

,

where the second last inequality is obtained using logN ≥ 2. In the counting argument, we
enumerate which i logN queries have the same image and they collide with probability N i logN−1.(
T
N

)i logN
is at most 2−2i logN = N−2i when T ≤

√
N and logN ≥ 2e.

Bounding Pr[F2]

Next, we prove bound for Pr[F2]. Again we can show the following stronger statement:

Pr

 ∑
a∈Bucket2

Za ≥ 4i log2N

 ≤ 2 exp (−2i logN).

Assume for some k ∈ [logN, i logN) there exists j claws of size exact k such that the sum of
the number of their pre-images is 2i logN . Then

j · k ≥ 2i logN ⇒ j ≥ 2i logN

k
.

For any k ∈ [logN, i logN) the probability of finding 2i logN
k claws each of size k in iT queries

is [ (
iT
k

)
Nk−1

]2i logN/k

≤

( eiT
k

N

)k

·N

2i logN/k

≤ 2

(
iT

2N

)2i logN

,
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where the last inequality holds using k ≥ logN ≥ 2e.
Then taking a union bound, the probability that there exists some k ∈ [logN, i logN) such that

2i logN
k claws each of size k can be found in iT queries is at most

2i logN ·
(

iT

2N

)2i logN

≤ 2

(
iT

N

)2i logN

, (6)

using x ≤ 2x for all x.

Let Sk denote the number of claws of size k found in iT queries. Then the sum of number of
pre-images of salts in Bucket2 is

i logN∑
k=logN

Sk · k =

i logN∑
k=logN

Sk ·

(
k∑

ℓ=1

1

)
=

i logN∑
k=logN

Sk ·

(
logN∑
ℓ=1

1

)
+

i logN∑
k=logN

Sk ·

 k∑
ℓ=logN

1


≤ logN

i logN∑
k=logN

Sk +

i logN∑
ℓ=logN

(
i logN∑
k=ℓ

Sk

)
,

where
∑i logN

k=ℓ Sk is the number of claws of size at least ℓ. Note that any claw of size (ℓ + x) for

x ≥ 0 contains a claw of size ℓ. Thus,
∑i logN

k=ℓ Sk can be bounded by 2i logN/ℓ with probability at

least 1− 2
(
iT
N

)2i logN
, by Equation (6).

Then, with probability at least 1 − 2
(
iT
N

)2i logN
, the sum of number of pre-images of salts in

Bucket2 in iT queries is

≤ logN

i logN∑
k=logN

Sk +

i logN∑
ℓ=logN

(
i logN∑
k=ℓ

Sk

)

≤ logN · 2i logN
logN

+

i logN∑
ℓ=logN

2i logN

ℓ
≤ 2i logN + 2i log2N ≤ 4i log2N

where the second-to-last inequality holds from the fact that the upper bound on the m-th harmonic
series is log(m+ 1) and 2i logN + 1 ≤ N/2.

Again using the assumption iT < N/2, ∑
a∈Bucket2

Za ≥ 4i log2N

 ≤ 2

(
iT

N

)2i logN

< 2N−2i.

Bounding Pr[F1]

Finally we analyze the event F1.
For analyzing F1, first let’s consider the case when iT 2 ≥ N , i.e., we have to prove

Pr

 ∑
a∈Bucket1

Za ≥ 4i2T 2 log2N/N

 ≤ 2 exp (−2i logN).
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Note that there have to be at least 4i2T 2 logN/N salts in Bucket1 to make
∑

a∈Bucket1 Za ≥
4i2T 2 log2N/N . This means there should be at least 4i2T 2 logN/N claws of size 2. Then,

Pr

 ∑
a∈Bucket1

Za ≥ 4i2T 2 log2N/N


≤Pr[finding 4i2T 2 logN/N distinct claws of size 2 in iT queries]

≤

(
iT

4i2T 2 logN/N

)
·
(

iT
4i2T 2 logN/N

)
· (4i2T 2 logN/N)!

N4i2T 2 logN/N

≤

(
e2i2T 2

4i2T 2·logN
N ·N

)4i2T 2 logN/N

≤
(

e2

4 logN

)4i logN

where the last inequality holds because iT 2 ≥ N .
Next, consider the case when iT 2 < N . So we have to show

Pr

 ∑
a∈Bucket1

Za ≥ 4i log2N

 ≤ 2 exp (−2i logN).

Proceeding in a similar fashion as above,

Pr

 ∑
a∈Bucket1

Za ≥ 4i log2N

 ≤ Pr[finding 4i logN distinct claws of size 2 in iT queries]

≤
(

iT
4i logN

)
·
(

iT
4i logN

)
· (4i logN)!

N4i logN

≤
(

e2i2T 2

4i · logN ·N

)4i logN

≤
(

e2

4 logN

)4i logN

where the last inequality holds using iT 2 < N .

4.3 Proof of Claim 14

We prove the claim via compression. To that end, we use the following lemma from [DTT10].

Lemma 18 ([DTT10], restated in [DGK17]). For any pair of encoding and decoding algorithms,
(Enc,Dec), where Enc : {0, 1}x → {0, 1}y and Dec : {0, 1}y → {0, 1}x such that Dec(Enc(z)) = z
with probability at least ϵ where z ←$ {0, 1}x, then y is at least x− log 1/ϵ.
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Before we present the encoding algorithm, recall the definition of ‘special’ cycles. They are
cycles where the input salt of each query has exactly one pre-image. This implies that no salt is
part of more than 1 of the i logN ‘special’ cycles by definition. Thus, for each cycle there is a
unique and distinct query, denoted (b,m), that is made after all the other queries in the cycle.
Moreover, the input salt of this query, b, has a unique pre-image (among the offline queries), which
itself has a unique pre-image and so on until H(b,m) is the unique pre-image of another salt in the
cycle. Our encoding compresses the output of the last query made on each of the i logN cycles.

We give a formal description of our encoding algorithm next.

• Store the i logN queries that are the last queries made in their respective ‘special’
cycle in an unordered set, say W . This would require log

(
iT

i logN

)
bits.

• Delete the output of the queries, each logN bits long, in the unordered set W from
the database (table of sampled queries on H).

The decoding algorithm is trivial. For every query (b,m) in the set W , it follows the chain
backward using the uniqueness of pre-image, until it reaches some query whose input salt, denote
b′, has no pre-image and set H(b,m) = b′. For completeness we give a formal description of the
decoding algorithm, which is as follows:

For every query in W , say (a,m):

• Set temp= a

• While true:

– If there is no query with output temp: break.

– Find the query in the table with output temp. Say the query is (a′,m′).

– Set temp= a′.

• Output H(a,m) =temp.

Let ϵ = Pr[Ei
3]. Then,

log

(
1

ϵ

)
+ log

(
iT

i logN

)
≥ i logN · logN

⇒ log

(
1

ϵ

)
+ i logN · log

(
eiT

i logN

)
≥ i logN · logN

⇒ ϵ ≤
(
T

N

)i logN

.
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