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Abstract

Frequently, users on the web need to show that they are, for example,
not a robot, old enough to access an age restricted video, or eligible to
download an ebook from their local public library without being tracked.
Anonymous credentials were developed to address these concerns. How-
ever, existing schemes do not handle the realities of deployment or the
complexities of real-world identity. Instead, they implicitly make assump-
tions such as there being an issuing authority for anonymous credentials
that, for real applications, requires the local department of motor vehicles
to issue sophisticated cryptographic tokens to show users are over 18. In
reality, there are multiple trust sources for a given identity attribute, their
credentials have distinctively different formats, and many, if not all, issuers
are unwilling to adopt new protocols.

We present and build zk-creds, a protocol that uses general-purpose
zero-knowledge proofs to 1) remove the need for credential issuers to hold
signing keys: credentials can be issued to a bulletin board instantiated
as a transparency log, Byzantine system, or even a blockchain; 2) convert
existing identity documents into anonymous credentials without modifying
documents or coordinating with their issuing authority; 3) allow for flexible,
composable, and complex identity statements over multiple credentials.
Concretely, identity assertions using zk-creds take less than 150ms in
a real-world scenario of using a passport to anonymously access age-
restricted videos.
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1 Introduction

Privacy-preserving identification is an apparent contradiction in terms: one
cannot both wish to simultaneously identify themselves and stay private. But
this is increasingly necessary on today’s internet. For example, Australia, the
EU, and the UK age-restrict access to some video content, requiring identifica-
tion via a credit card or photo of an official ID to access it [Goob, Gooa]. The
tracking and data exposure risks raised by such requirements can be eliminated
with privacy-preserving cryptography: anonymous credentials allow a user to
assert that they meet some access criteria, e.g., are over 18, without revealing
anything else about themselves, linking their viewing habits to their identity,
or even linking distinct video views together. Beyond this narrow application,
anonymous credentials could be extended to complex identity statements—for
example, checking residency for accessing online library resources or petition-
ing local elected representatives1—and the composition of credentials such as
the pairing of a vaccine card with a photo ID.

While the subject of extensive academic work [Cha85, CL03, CL04, BCKL08,
BL13, GGM14, CDHK15, SAB+19], anonymous credentials have thus far seen
little deployment.2 In large part, this is because most existing systems are
designed with a number of assumptions about identity that, while suitable for
advancing a body of cryptographic knowledge, produce designs that can be
difficult to actually deploy in real-world identity systems.

Existing anonymous credential schemes make, at a minimum, some subset
of the following simplifying assumptions: there is a single issuer for a given
identity property (e.g., date of birth); when there are multiple issuers for a
property, the property formats are compatible; there exist reputable authorities
that are able and (more importantly) willing to be responsible for holding
signing keys, verifying identity properties, and running sophisticated cryp-
tographic protocols for issuing anonymous credentials; all attribute formats
needed for a credential are known in advance; and the set of authorities for
a given identity attribute or credential can be enumerated at the time one
instantiates the system.

In this paper, we build zk-creds, a flexible, issuer-agnostic anonymous
credential toolkit for complex identity statements. The general-purpose proving
functionality supported by zkSNARKs gives us the flexibility to address most
of these challenges. From this approach, we automatically gain support for ad-
hoc composition of credentials and access criteria, and issuance by (threshold)
signatures. In many cases, we can even remove the need for trusted anonymous
credential issuers entirely by instantiating a bulletin board to track issued

1New York State provides such a platform with no privacy guarantees [New].
2Notable exceptions for human uses of credentials are limited trials of CL-sigs with

Idemix [CV02] and, although it is not a full-fledged anonymous credential scheme, Privacy
Pass [DGS+18]. Intel also makes use of DAA [BCC04] for device attestation, and a MAC variant of
anonymous credentials is also being used for private groups in Signal [CPZ20].
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credentials, no longer requiring issuers to hold signing keys or other secrets.
Concretely, this work contributes the design and implementation of a toolkit for
flexible privacy-preserving credentials, and builds two example applications.

1.1 Past work and real-world limitations

Several approaches have tried to address the limitations of anonymous creden-
tials, focusing primarily on the problems of finding and trusting issuers.
Distributing issuance via multiple issuers. To reduce the trust needed in
issuers, schemes have explored threshold issuance [SAB+19] and support for
multiple issuers [CL01]. While this improves the situation if there are multiple
willing issuers, it does not address the potential scarcity of issuers who are
willing or able to deploy novel (or any) cryptography. Nor does it provide
a means to reconcile the differing identity document formats or use cases
multiple issuers would have.
Decentralizing issuance by removing signing keys. In Decentralized Anony-
mous Credentials [GGM14], credentials are maintained in some form of trans-
parency log which can either be centralized and audited, distributed across
cooperating parties, or operated in a decentralized fashion by a Byzantine
system or blockchain. While this approach removes one obstacle to credential
issuance by avoiding signing keys, the concrete protocol has performance and
operational limitations. For example, the protocol requires that all clients
have the full list of issued credentials, and does not address any of the other
complexities of real use cases.
The messy reality of identity claims. We now return to our initial example:
an anonymous credential to allow access to age-restricted videos and prevent
tracking of browsing habits. In theory, whichever authority issues identity
cards in a country can also issue anonymous digital credentials to everyone of
age. But in practice, a number of problems arise when attempting to deploy
such a scheme with existing anonymous credentials.

First, there is not a single source of identity documents (e.g., the US has 50+
drivers license issuers) and few might wish to participate due to the burden of
deploying new technology. Fewer still can be trusted to secure the requisite
signing keys for issuing credentials.

Second, requirements will change. What started as a token for being over 18
will need to support other age checks—under 12, over 21, over 65—necessitating
more complex credentials, access criteria, and potentially credential revocation
and reissuance.

Third, each ID issuer will, by default, form its own anonymity set. Even for
“multi-authority” schemes designed to avoid this, differences in data fields can
distinguish populations:3 a foreign diplomat accessing age-restricted content
in their host country may be distinguished from a resident using a local ID.

3Consider something as simple as date formats: Japanese Drivers Licenses give birth year

3



Fourth, new identity documents need to be integrated as they emerge
to avoid access equity issues, and these documents may have differing for-
mats. For example, many cities now issue IDs in part for undocumented
residents [IDN].

Finally, even for something as conceptually simple as “of age,” identity
statements are not necessarily simple: in the event age limits differ between
jurisdictions, a video platform needs to check where the viewer is located, and
IP geolocation may be insufficient (e.g, in the case of Tor or a VPN). Credentials
can directly encode a home address but, even for physical credentials, this
does not work in practice: people move and do not update their IDs, and as a
result need to provide alternative proofs of address. Supporting this privately
requires composing credentials for, e.g., age and residency.

Minimizing trust when issuing credentials. Current (even non)-anonymous
credential protocols assume the same party verifies claimed identity properties
and signs cryptographic credentials. This requires finding a single party who
is trusted for two different (and not necessarily related) tasks: one who is
both capable of verifying identity attributes and competent to manage signing
keys. The linking of these two roles is often unnecessary and complicates
deployment.

First, many uses of anonymous credentials do not use identity attributes
which must be verified by a trusted party to issue a credential. Looking ahead,
we describe an issuer-less Privacy Pass-like construction [DGS+18] where Sybil-
resistant anonymous tokens are issued by making a blockchain payment. This
has no trusted parties—neither for verifying that the user is not a Sybil, nor for
signing a credential.

Second, even when we must trust some entity to verify identity attributes
(e.g., a passport issuer for a user‘s date of birth), it is not necessary to trust
an additional party to hold key material for a novel cryptographic scheme.
Looking ahead, we offer the minimal trust assumptions in many such cases by
replacing signing with a list maintained by a centralized party or a distributed
bulletin board.

Third, even where there is a trusted party who both verifies identity at-
tributes and issues credentials, trusting a party to maintain a list is safer
than trusting them to secure signing keys. In existing anonymous credential
schemes, compromise of issuing keys is frequently undetectable and rollback
requires rekeying and reissuing. With issuance via a list, compromise is de-
tectable and easily reversible. This is true even if the list is maintained by a
single party.

All of the aforementioned issues can be addressed by a scheme that is
flexible, dynamically adaptable to new use cases post-deployment, minimizes
the need to find new trusted parties, and can support complex access criteria

relative to eras that correspond to the reign of the emperor. However, they use the Gregorian
calendar for months and days.
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that are agnostic to the issuer or credential format.

1.2 Our contribution

We introduce zk-creds, a toolkit for privacy-preserving authentication proto-
cols and anonymous credentials that offers flexible identity assertions and does
not need trusted issuers. A key contribution of zk-creds over previous works
is the usage of general-purpose zero-knowledge proofs rather than bespoke
proof systems over blind signatures.

The switch to general-purpose zero-knowledge proofs as the basis for
anonymous credentials, instead of blind signatures, is a paradigm shift: rather
than imagining a subset of use cases and designing custom protocols for
each while balancing cryptographic tradeoffs, zk-creds gets full privacy and
full expressivity even after a protocol is designed and deployed. A single
scheme, built with zk-creds, is adaptable to shifting requirements without
requiring the development of new custom cryptographic protocols. Moreover,
application-specific logic can be defined and modified in simple programming
languages via a number of publicly available tools [MTBI+22, Ar22, Bow17a]
with the instantiation of the scheme handled by the compiler.

General-purpose zero-knowledge proofs enable zk-creds to support flexi-
ble and composable access criteria. zk-creds not only allows users to privately
show that their credential(s) meet some arbitrary access criteria check, but it
also allows these criteria to be defined at any time (even after system setup
or credential issuance), by any party, and composed dynamically as gadgets.
This flexibility allows zk-creds to meet the reality of real-world authentication
mechanisms: requirements can dynamically change at any time, as can use
cases and even identity issuers.

The second major contribution of zk-creds is its support of existing govern-
ment identity infrastructure without modification or collaboration. Using
general-purpose zero-knowledge proofs, we can convert the digital (non-
anonymous) identity information that is increasingly included in national
identity cards and passports into anonymous credentials. This zk-supporting-
documentation allows us to provide a digital analogue of walking into a US
Department of Motor Vehicles and presenting existing identity documents to
get a driver’s license, without exposing any information to the issuer. We imple-
ment an end-to-end example of this paradigm, using a zero-knowledge proof
over the data in unmodified NFC-enabled US passports to create credentials
for accessing age-restricted videos.

As a third contribution, zk-creds supports publicly verifiable credentials.
Because the issued credential list can be maintained by a public system (i.e., a
transparency log or blockchain) and each credential can include zk-supporting-
documentation justifying its issuance, the set of all issued credentials is publicly
auditable. This is not possible when credentials can be surreptitiously issued
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via signing keys.4 As such, we need only trust the issuer to add credentials
(and their supporting documentation) to the list, and any compromise or
malfeasance is detectable and reversible.

To summarize, in this paper we design, build, and benchmark zk-creds
which:

• drastically improves performance over existing decentralized schemes
via reusable proofs where ShowCred takes < 150ms;

• supports existing physical identity documents (e.g., passports) without
modification via zk-supporting-documentation;

• provides support for flexible and composable gadgets that can be com-
bined to express complex access criteria checks even after system setup;

• allows for public auditability of issued credentials, without harming
anonymity;

• provides (of independent interest), blind Groth16, a novel mechanism for
privately linking together multiple zero-knowledge proofs in a way that
enables proof rerandomization and reuse; and

• includes a full application for age-restricted video access with cloning
resistance, using existing passports for issuance.

Non-goals: On-chain verification of credentials. This work constructs flex-
ible credentials that can be issued without a central party holding a signing
key (although we also support signature-based issuance). This should not
be confused with a different area of both industrial and academic work (see
e.g., [RPX+22]), which considers verification of existing (i.e., centrally issued)
anonymous credentials by a smart contract. The question for on-chain verifica-
tion of anonymous credentials is not how to remove centralized issuance, but
simply how to minimize the cost of verification given the extreme cost of smart
contract execution. Reducing verification costs is typically done by batching
verification inside a zero-knowledge proof5 and is generically applicable to any
anonymous credential scheme, including the ones proposed here.

2 Overview

zk-creds is a system for issuing credentials to users and privately showing
that a credential meets access criteria.

2.1 Example application and credential lifecycle

A credential is a commitment to a set of attributes (e.g., name, date of birth,
etc.). A credential is issued (see Figure 1) when it is made a leaf in a Merkle

4We note, however, that while the credentials are fully auditable, identity statements require
inherent trust in something. If the identity infrastructure, e.g., US passports, is not trusted, then
we can make no guarantees.

5This is, in essence, a specialized zk-rollup [But].
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Name
DOB rk

πcommitment

zk-supporting-docs

issuance list Merkle root

Figure 1: A credential in zk-creds is issued by adding it to a Merkle tree after (option-
ally) presenting zk-supporting-documentation to justify issuance.

tree. We call the set of leaves the issuance list. Optionally, protocol designers
can require zero-knowledge supporting-documentation that the attributes match
some (existing) document without revealing any additional information. In
our implemented example (see Section 7), this consists of a zero-knowledge
proof that the attributes in the credential match a US passport.

We emphasize that, while our example trusts an existing identity document
issuer—the passport authority—it requires no additional trusted parties, no
existing parties to take on additional trusted roles, or even modification of the
issuer. With standard anonymous credentials, we would need to also trust the
security of credential signing keys, likely held by an additional party. In our
example, we need only some way of maintaining a list of issued credentials.

Clients, once issued a credential, show a credential to gain access to some
resource, as shown in Figure 2. The client presents a non-interactive zero-
knowledge proof that: 1) they have a credential (a commitment) in the Merkle
tree of issued credentials and 2) the attributes meet some access criteria.

Crucially, the zero-knowledge proof hides which credential is used, the
credential’s attributes, and the details of how the access criteria were met. In
our example, the client uses a credential containing their birth date to show
they are over 18 and gain access to a website. The verifier learns only that the
client is over 18, not their identity, which credential they used, their exact birth
date, or any of the other attributes in their credential.

2.2 Design features

As illustrated by our example application, our approach to building anonymous
credentials has a number of important features.

Flexible access criteria. Application developers can define arbitrary access
criteria at any point in the lifetime of the system. We support common
features from the anonymous credential literature, such as hidden-attribute
credentials, inequality or expiry checks, rate limiting, and cloning resistance
where violating the rate limit (e.g., by sharing a credential with others) results
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Name
DOB rk user verifier

issuance list

Figure 2: To show a credential in zk-creds, the prover uses knowledge of their credential
opening and the position of the credential in the issuance list to construct a zero-
knowledge proof. The verifier need only know the issuance list root.

in the credential’s identification and revocation. And because we support the
efficient encoding of access criteria as an NP relation, we can easily support
more complex criteria than existing schemes, such as a proof of residency in a
given municipality to access ebooks from a local public library.

Auditable issuance. Credential issuance can be publicly auditable as well:
e.g., in our passport example anyone can download the list of credentials and,
with zk-supporting-documentation, verify both that a credential was issued
and why. Even without such documentation, all issued credentials are visible
and issuance can be investigated. In contrast, it is impossible to enumerate, let
alone audit, every credential signed with a given key.

Flexible credential management. Because credential issuance is simply a
matter of list management, credential issuance is flexible. In many cases, we
need not find a trusted party at all: a simple bulletin board is sufficient, as
is a blockchain. In other cases, a central party can maintain the list without
needing to be trusted to secure signing keys.

Signature-issued credentials. Separately, in cases where there is a party who
is trusted to issue correct credentials without public auditability and is trusted,
willing, and able to secure signing keys, our implementation of zk-creds also
supports issuing credentials via signatures. In this case, there is no issuance list.
When feasible, this leads to faster credential shows and removes the overhead
of managing a witness to list membership.

Witness management. Using Merkle trees for credential issuance requires the
user to maintain an up-to-date witness to the credential’s membership in an
issuer’s list. Periodically, the user can ask the issuer for an updated witness.
Looking ahead, this also lets any user update their witness by downloading
logarithmic-sized updates from the tree’s frontier and a constant number of
Merkle roots (see Appendix B).
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Revocation. Many existing approaches require expensive asymmetric cryp-
tographic operations for each revocation. Some schemes, like EPID [BL09],
require each credential show to perform work linear in the number of revoked
private keys. Other schemes use, e.g., RSA accumulators, which require re-
computing accumulator witnesses per revocation at cost linear in the number
of revocations. And, while more efficient accumulators exist [BBF19], such
techniques have not been used for revocation, to the best of our knowledge. In
contrast, each revocation in zk-creds only requires removing the credential
from its Merkle tree, incurring only logarithmic costs in the number of issued
credentials. This captures revocation of the credential where the holder’s public
identity is known, and so called private key revocation where a stolen or leaked
credential is banned.

3 Preliminaries

3.1 General notation

We write x := z to denote variable assignment, and y← S to denote sampling
uniformly from a set S. y := A(x; r) denotes the execution of a probabilistic
algorithm A on input x, using randomness r. We write x := x1, x2, . . . to
denote a variable-length list, and boldface to denote a vector. For an arbitrary,
efficiently computable predicate P, we say that a proof of knowledge of a relation
R = {(x; w) : P(x, w)} with respect to an instance x is a proof of knowledge
of the witness w such that P(x, w) is satisfied. We use Com(v; r) to denote a
commitment to the value v with randomness r. The security parameter of our
system is denoted by λ.

3.2 Merkle trees

In zk-creds we use Merkle trees T to represent set membership. The root of a
tree T is denoted Troot. A Merkle forest F is a set of Merkle tree roots. Merkle
trees have the following functionality:

T.Insert(v)→ T′ Inserts the value v into the next free leaf in T and returns the
modified tree.

T.Remove(v)→ T′ Removes v from the tree (if present) and returns the modi-
fied tree.

T.AuthPath(v)→ θ Creates an authentication path θ that proves that v ∈ T. The
size of θ is proportional to the height of the tree.

3.3 Cryptographic building blocks

We describe two non-interactive zero-knowledge (NIZK) proof systems we use
to build zk-creds. Both systems operate within a type-3 non-degenerate bilinear
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group which we denote bg. We define the necessary notation and preliminaries
below, and use them in the construction of LinkG16 in Appendix E.

3.3.1 Bilinear groups

We will work exclusively with prime-order groups and their associated scalar
fields. Group elements are denoted by capital letters, e.g. A ∈ G. Following
the conventions of both mathematical literature and programming libraries
for notational convenience, we use additive notation for G1 and G2, and
multiplicative notation for GT (with identity denoted by 1).

bg := (p, G1, G2, GT , e, G, H) is a (non-degenerate) Type-3 bilinear group if
G1, G2, GT are of prime order, there are no efficient group homomorphisms
between G1 and G2, and G ∈ G1 and H ∈ G2 are generators. Moreover, the
equipped bilinear pairing e : G1 ×G2 → GT must have the following properties:

Bilinearity For all a, b ∈ Zp, X ∈ G1, and Y ∈ G2: e(aX, bY) = e(X, Y)ab

Non-degeneracy For any non-trivial G ∈ G1, H ∈ G2: e(G, H) ̸= 1

As a corollary of bilinearity and non-degeneracy, e(G, H) ∈ GT must be a
generator. Hereafter, we represent scalar multiplication with some scalar
a ∈ Zp by [a]1 := aG and [a]2 := aH, respectively.

3.3.2 Groth16

We describe a trusted-setup zkSNARK scheme, due to Groth6 [Gro16], which
operates over a non-degenerate type-3 bilinear group. We use F to denote the
scalar field of the bilinear group. At a high level, a Groth16 proof proves that
an arithmetic circuit over F is satisfied by a set of public inputs (values known
to the verifier) and private inputs (values not known to the verifier).

G16.Setup(bg, desc)→ crs Generates a common reference string for the given
arithmetic circuit description. crs contains the elements from the bilinear
group bg necessary to compute the expressions in G16.Prove below.

G16.Prove(crs, {ai}ℓi=0, {ai}m
i=ℓ+1)→ π Proves the circuit described by crs is

satisfied, where a0, . . . , aℓ ∈ F represent the circuit’s public input wires
and aℓ+1, . . . , am ∈ F represent the private wires. π is of the form
(A, B, C) where A, C ∈ G1 and B ∈ G2.

G16.Verify(crs, π, Ŝ)→ {0, 1} Verifies the proof π = (A, B, C) with respect to
the prepared public input Ŝ = ∑ℓ

0 aiWi by checking the relation

e(A, B) ?
= e([α]1, [β]2) · e(C, [δ]2) · e(Ŝ, H),

6To support linkage, we diverge slightly from Groth’s original construction by setting one of the
trapdoor values γ to 1. This does not affect security; zero-knowledge and knowledge soundness
were proven by Kohlweiss et al. [KMSV21] for a strictly larger CRS which also sets γ := 1.
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where [α]1, [β]2, and [δ]2 come from crs, and Wi is the crs value whose co-
efficient represents the value of the i-th wire in the circuit. As shorthand,
verification can also be written as G16.Verify(crs, π, a).

G16.Rerand(crs, π)→ π′ Rerandomizes the proof π = (A, B, C) by sampling
ζ, ω ← F and computing

π′ := (ζ−1 A, ζB + ζω[δ]2, C + ωA).

By Theorem 3 in [BKSV21], the output of Rerand is perfectly indistin-
guishable from a fresh proof of the same underlying statement.

3.3.3 Groth16 Linkage

We describe a high-level interface that allows us to construct a (blinded) linkage
proof over Groth16 proofs. This allows one to show that a hidden collection
of Groth16 proofs π1, . . . , πk all share some subset of hidden common inputs x∗,
not known to the verifier. Concretely, this proof system proves that

k∧
i=1

G16.Verify(crsi, πi, (x∗, xi))

where xi are the non-hidden public inputs (i.e., public inputs known to the
verifier). See Appendix E for the full description and security proofs of LinkG16.
For zk-creds, however, it suffices to specify the functionality:

LinkG16.Link(x∗, {crsi, πi}k
i=1)→ πlink Constructs a zero-knowledge proof of

the above relation, with respect to hidden common inputs x∗.
LinkG16.LinkVerify(πlink, {crsi, xi}k

i=1) → {0, 1} Verifies the above statement
with respect to the given public inputs and Groth16 CRSs.

3.4 Cryptographic assumptions

We state the security properties of the above schemes and the cryptographic
assumptions necessary to achieve them. For brevity, we defer the definitions of
the specific assumptions to the cited references.

Groth16 is perfectly zero-knowledge and weak white-box simulation-extractable
against algebraic adversaries under q−dlog and a linear independence assump-
tion [BKSV21]. We also assume this result holds under the common Groth16
substitution γ = 1. We use Poseidon [GKK+19] to instantiate a hash for
Merkle trees, as well as commitments. Finally, we assume that the key-prefixed
Poseidon hash function, used to instantiate the gadgets in Section 5.3, is a
PRF. As Poseidon is a sponge construction, prefixing is secure. Separately, see
Appendix G for an alternate instantiation using Pedersen hashes and perfectly
hiding commitments.
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4 Definitions

4.1 Security definitions

Security definitions are given by an ideal functionality in Figure 3, correspond-
ing to the usual security properties of anonymous credentials: unforgeability,
correctness and unlinkability. It also implies an additional security property,
session binding: shows of a credential are inherently bound to the channel or
session in which they are presented, thus preventing replay attacks.

Threat model. The ideal functionality corresponds to the following general
threat model. We assume all issuers, verifiers, and (almost all) users are
malicious and can collude. We inherit the standard requirement that, for
anonymity, there must be at least two honest users with valid issued credentials.
We also assume that there exists a reliable mechanism for parties to agree on
the list of issued credentials.

4.2 Anonymous credentials

We give a generic overview of the data structures and algorithms which our
scheme instantiates.

Let a credential be the commitment cred := Com(nk, rk, attrs; r) where nk
is the pseudonym key, a private random value used to generate persistent
pseudonyms; rk is the rate key, a private random value used to generate rate-
limit tokens; attrs ∈ A is an arbitrary set of public and hidden attributes; and
r is the commitment randomness. Note that the values within the credential
remain private by the hiding property of commitment schemes, with the
exception of attribute information revealed by the user.

We say that an issuer I issues a credential if it appears on I’s credential list
CL. Looking ahead, while the credential list may be instantiated in many ways
(e.g. an accumulator, or Merkle tree), we later instantiate this as a Merkle forest
and a list of corresponding Merkle trees CL := (F, T), with an authentication
path θ providing membership attestation. Every issuer has some issuance
criteria ι that the requester must meet in order to have their cred issued, e.g.,
that the birth date in cred matches a signed digital passport. Over an issuer-
authenticated channel, the requester (running IssueReq) sends cred to the issuer
with some zk-supporting-documentation sd, e.g., a Groth16 proof or a digital
signature, that convinces the issuer of the criteria. The issuer runs IssueGrant
and, upon success, adds cred to their list and returns an authentication path θ
attesting to its issuance.

Next, let the list of all possible access criteria be Φ := {ϕ | ϕ : A → {0, 1}}
which can be defined dynamically by users, verifiers, or even third-parties
for an application using zk-creds, even after system instantiation. Over an
anonymous channel, a user shows a credential (running ShowCred) by present-
ing a zero-knowledge proof that they have a valid issued credential (with θ as
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F .IssueSetup():
1. Decide on relevant issuance criteria ι.
2. Let IssueCriteria[I] := IssueCriteria[I] ∪ {ι}
3. Publish (I, ι)

F .IssueReqU(ι, attrs, wsd, iauxsd):
1. Sample random cred, r // commitment and its opening
2. UserCredsU [cred] := (ι, r, attrs) // construct credential
3. Let HiddenZKSDU [r] := wsd

4. Send (cred, iauxsd) to F .IssueGrant
5. If the previous step aborts or returns ⊥, abort
6. Else, it returns θ: send (cred, r, θ) to U

F .IssueGrantI(ι, cred, iauxsd):
1. If issuer I is honest and user U is corrupted:

(a) Let (ι′, r, attrs) := UserCredsU [cred]
(b) Let wsd := HiddenZKSDU [r]
(c) Check that ι = ι′ and ι ∈ IssueCriteria[I]
(d) Check that ι(attrs, iauxsd, wsd) = 1
(e) If any check fails: send ⊥ to U and abort

2. Arbitrarily, I may choose to deny cred; if so, abort
3. Sample random θ

4. Let IssuedCreds[θ] := cred

5. Send updated IssuedCreds to I
6. Send θ to U
7. Notify all parties that cred has been issued

F .ShowSetup():
1. Decide on relevant access criteria ϕ.
2. Let AccessCriteria[V] := AccessCriteria[V] ∪ {ϕ}
3. Publish (V, ϕ)

F .ShowCredU(ϕ, cred, θ, r, aux):
1. Sample random s
2. Let (·, r′, attrs) := UserCredsU [cred]
3. Check r = r′ and abort if it fails
4. If user U is honest: let ϕ′ := ϕ and θ′ := θ

5. Else, if U is corrupted: let ϕ′, θ′ be arbitrary
6. Let ShowProofsU [s] := (ϕ′, cred, θ′, r, aux)
7. Send (s, aux) to user U

F .VerifyShowV(ϕ, s, aux):

1. Let (ϕ′, cred, θ, r, aux′) := ShowProofsU [s]
2. Let cred′ := IssuedCreds[θ]
3. Let (·, r′, attrs) := UserCredsU [cred]
4. Check that ϕ = ϕ′ and ϕ ∈ AccessCriteria[V]
5. Check that cred = cred′ ̸= nil, r = r′, and aux = aux′

6. If verifier V is honest and user U is corrupted:
check ϕ(attrs, aux) = 1

7. If any check fails: send false to V and abort
8. Arbitrarily, V may choose to deny cred; if so, abort
9. Else, send true to V

F .RevokeCredI(cred):

1. Find index θ such that IssuedCreds[θ] = cred; else, abort
2. Let IssuedCreds[θ] := nil

3. Notify all parties that cred has been revoked

Figure 3: An ideal functionality F for zk-creds.

a private witness) whose attributes in witness w satisfy the verifier’s access
criteria. The proof must also be bound to some session context, aux. The
verifier runs VerifyShow and, upon success, grants access to the user.

An anonymous credential system with zk-supporting-documentation can
then be defined by the following algorithms (where the subscript U, I, or V
denotes that the user, issuer, or verifier runs the algorithm, respectively):

Setup(1λ)→ pp Generates the system parameters.
IssueSetup(pp)→ ι Establishes the public attribute fields and issuance criterion

ι for obtaining a credential.
ShowSetup(pp)→ ϕ Establishes a new access criterion ϕ ∈ Φ for showing a

credential.
IssueReqU(pp, ι, attrs, wsd, iauxsd)→ (cred, sd) Creates and requests a credential

cred with zk-supporting-documentation sd under issuance criteria ι.
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IssueGrantI(pp, ι,CL, cred, sd)→ (CL′, θ) Decides whether to grant a user the
requested credential cred; if so, adds it to the list CL and returns its
issuance attestation θ.

ShowCredU(pp, ϕ,CL, cred, θ, w, aux)→ (πlink, aux) Shows that an issued cred
satisfies access criteria ϕ.

VerifyShowV(pp, ϕ,CL, πlink, aux)→ b Validates a credential show, including
the current session context in aux.

RevokeCredI(pp,CL, cred)→ CL′ Revokes a credential.

5 Construction

zk-creds assumes there is a list of issued credentials maintained by either a
trusted party, some Byzantine system, or a blockchain. Our scheme provides
three sets of functionalities: issue, show, and revoke. Through the issuance
process, a user, Alice, convinces the issuance mechanism she should be given a
credential. Once her credential is put on the issuance list, Alice can then use
the credential to show she meets some access criteria. Conceptually, using a
credential involves two steps: (1) a membership proof that the credential is
on the issuance list, and (2) a proof that the committed attributes meet some
access criteria. Finally, an issuer is able to revoke a credential if need be by
simply removing it from the list.

We can realize this paradigm in different ways and using different set-
membership techniques such as an RSA accumulator, purpose built zero-
knowledge schemes [ZBK+22], or even using signatures of issuance.

In our construction of zk-creds, we realize membership proofs using
Merkle forests, a new approach that allows developers to trade a slight increase
in verification time and witness data for a large reduction in proving time. For
access criteria checks, we provide developers with a set of gadgets. Gadgets
can be composed to form complex access criteria checks. Finally, we tie
these components together with a new blind Groth16 proof, of potentially
independent interest, that lets us show multiple Groth16 proofs shared the
same blinded input without—as in commit-and-prove—creating a persistent
identifier. This allows us to reuse the membership proof across multiple
credential shows without the reused proofs being tracked.

We now give details on our specific instantiation and describe the full
construction in Figure 4.

5.1 Merkle forests

Rather than using a single Merkle tree to accumulate credentials and prove
membership, zk-creds uses a forest of Merkle trees. The membership proof
attests to two parts: cred ∈ T for some Merkle tree T, and Troot ∈ F where F is
the forest of Merkle trees containing issued credentials. Compared to a single
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Setup(1λ, h, n):
1. Choose bilinear group bg w/ large prime order p
2. Let descT be a circuit w/ public inputs (Troot, cred),

where T is a Merkle tree of height h. It asserts that
there is an auth path θ attesting to cred ∈ T

3. Let descF be a circuit w/ public inputs (Troot, cred, F),
where F is a forest of n Merkle trees. It asserts that the
tree is in the forest: (Troot = F1) ∨ . . . ∨ (Troot = Fn)

4. Compute crsT := G16.Setup(bg, descT)

5. Compute crsF := G16.Setup(bg, descF)

6. Let pp := (bg, crsT , crsF)

7. Return pp

IssueSetup(pp):

1. Decide on issuance criteria (ιzk, ιpub) for supporting
docs

2. Let desc be a circuit w/ public input iauxzk asserting:
ιzk(attrs, iauxzk) = 1 ∧ cred opens to (nk, rk, attrs)

3. Compute crsι := G16.Setup(bg, desc)
4. Return (crsι, ιpub)

ShowSetup(pp):

1. Decide on access criteria ϕ for satisfying attributes
2. Let desc be a circuit w/ public inputs (Troot, cred, aux)

which asserts:
ϕ(nk, rk, attrs, aux) = 1 ∧ cred opens to (nk, rk, attrs)

3. Compute crsϕ := G16.Setup(bg, desc)
4. Return crsϕ

IssueReq(pp, crsι, attrs, wsd, (iauxzk, iauxpub)):

1. Sample r, nk, rk // commitment nonce, pseudonym key,
rate key

2. Commit cred := Com(nk, rk, attrs; r)
3. Let w := (wsd, r, nk, rk, attrs) // collect the witnesses
4. Prove πι := G16.Prove(crsι, (cred, iauxzk), w)

5. Let sdzk := (πι, iauxzk) // collect the supporting docs
6. Let sdpub := iauxpub
7. Send (cred, sdzk, sdpub) to issuer
8. Receive the root of the modified credential tree T′ and

a Merkle auth path θ attesting to cred ∈ T′

9. Store (nk, rk, r, attrs, θ)

IssueGrant(pp, (crsι, ιpub), (F, T), cred, (sdzk, sdpub)):

1. Parse (πι, iauxzk) := sdzk
2. Check ιpub(sdpub) // check public supporting docs
3. Check G16.Verify(crsι, πι, (cred, iauxzk)) // check ZK SD
4. If either check fails, reject issuance and abort
5. Else, choose T from forest F and let T′ := T.Insert(cred)
6. Let θ := T′.AuthPath(cred) // θ attests to cred ∈ T′

7. Store T′ and update the forest F
8. Send θ to user U

ShowCred(pp, crs, (F, Troot), cred, θ, {wi, auxi}k
i=1):

1. Parse ({crsϕi}k
i=1, crsT , crsF) := crs and cred’s Troot ∈ F

2. For all i = 1, . . . , k, compute the access criteria proof:
πϕi := G16.Prove(crsϕi , (Troot, cred, auxi), wi)

3. Prove πT := G16.Prove(crsT , (Troot, cred), θ) // tree
4. Prove πF := G16.Prove(crsF, (Troot, cred, F), nil) // for-

est
5. Let π := ({πϕi}k

i=1, πT , πF) // collect the proofs

6. Prove πlink := LinkG16.Link((Troot, cred), {crsi, πi}k+2
i=1 )

7. Send (πlink, {auxi}k
i=1) to verifier V

VerifyShow(pp, crs, F, πlink, {auxi}k
i=1):

1. Parse ({crsϕi}k
i=1, crsT , crsF) := crs

2. Let (auxk+1, auxk+2) := (nil, F) // collect auxiliary inputs
3. Check LinkG16.LinkVerify(πlink, {crsi, auxi}k+2

i=1 )

4. Upon success, accept. Else, reject

RevokeCred(pp, (F, T), cred):
1. Find cred ∈ T within forest F; if cred not found, abort
2. Let T′ := T.Remove(cred)

3. Store T′ and update the forest F
4. Return T′

Figure 4: zk-cred Construction. NB: Although the inputs (Troot, cred) are public in
all Groth16 proofs in ShowCred, they are hidden from the verifier by LinkG16. Also
note that any necessary updates to the auth path θ or credential list (F, T) are handled
out-of-band.
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Merkle tree, the Merkle forest approach gives us a tunable tradeoff between
proving time and verification time. Shorter Merkle trees can drastically reduce
proving costs—up to 50%, or 143ms (see Appendix B). Furthermore, since
forest membership is a simple OR-proof over Merkle tree roots, the cost of a
larger forest is negligible to the prover and allows for a much larger list. Also,
we note that, for the size of the forests we consider, the additional verification
cost is trivial (137µs).

Witness management. Showing a credential in zk-creds requires knowing
the witness (a.k.a., authentication path) θ attesting to issuance in its Merkle
tree. θ must be updated as credentials are added or removed from the tree.
In a naïve construction, a user might download newly-issued credentials to
update the tree. However, this requires the user to construct and maintain a
local copy of their entire Merkle tree, which is often impractical. On the other
extreme, users could periodically query an issuer or list manager to provide
the updated θ. However, this uniquely identifies the credential and strongly
correlates with subsequent shows, posing a large privacy risk (especially in
low-use deployments). We introduce better constructions leveraging Merkle
forests in Appendix B.

5.2 Blind Groth16

The membership proof is the most costly part of ShowCred. Looking ahead, it
takes 460ms to complete. While the access criteria check must be redone for
every show in many cases—for example, rate-limited shows include a token
that uniquely identifies reuse—the membership proof does not change unless
more credentials are issued.

We use a blind Groth16 linkage proof to combine a membership proof
with (perhaps multiple) access proofs. Blind Groth16 lets us reuse an already
computed membership proof in multiple shows without breaking privacy.
Furthermore, it expands the functionality of the system by supporting the
easy composition of access criteria: without this ability to compose access
criteria, system designers would need to either: 1) dynamically generate circuit
parameters for gadgets as they are needed, 2) determine in advance all the
gadgets they will support, or 3) generate the circuit parameters for every
combination of gadgets that could be used.

Concretely, blind Groth16 lets us prove that a number of Groth16 proofs are
all made with respect to the same credential without revealing the credential.
At a high level, the algorithm works as follows. First, it prepares the public
inputs (here, cred and its Merkle root) shared by the underlying proofs. For
each proof, it then blinds a copy of the prepared input, and blinds the proof in
a way that cancels with the blinded input. Finally, it proves that all the blinded
inputs are consistent with each other. After canceling the blinding factors, the
verification equation is identical to the typical Groth16 verification equation.
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For more detail, see the description of LinkG16 in Appendix E.

5.3 Gadgets

Since ShowCred supports arbitrary statements, verifiers have the flexibility to
add and remove helpful subcircuits, or gadgets, from their protocol. In fact,
rather than embedding gadgets in existing circuits, verifiers can make use of
the structure of ShowCred to create a separate proof for each gadget and link
them together. The benefit to this kind of customization is twofold: users can
precompute and cache standalone gadget proofs separately from other access
criteria proofs, and verifiers are freed from having to define custom circuits
and generate the CRSs.

Gadgets are arbitrary NP relations which can capture nearly any conceivable
identity check. We now describe some gadgets that serve as building blocks
for zk-creds-based systems. Recall that rk denotes the rate key, used for
generating rate-limit tokens, and nk denotes the pseudonym key, used for
deriving uniform but linkable tokens.

Linkable show Reveals a pseudonym PRFnk(ctx) that persists across interac-
tions in a given context ctx, but is unlinkable to any use of the credential
in other contexts. For example, a single Sybil-resistant credential could be
used for creating unlinkable accounts across sub-forums within a single
site, such as Discord servers or subreddits.

Rate limiting Limits users to performing ShowCred only N times per epoch,
for some verifier-chosen rate limit N. Every ShowCred, the user produces
a pseudorandom token tok = PRFrk(epoch∥ctr), reveals epoch, and proves
that ctr is less than N.

Cloning resistance Performs the same function as rate limiting, but deanonymizes
rate violators. The technique was introduced by Camenisch et al. [CHK+06]
(Section 5.2). Every run of ShowCred, the user receives a nonce from the
verifier and sends two tokens:

tok1 = PRFrk(epoch∥ctr)
tok2 = id+ H(nonce) · PRF′rk(epoch∥ctr)

where id is an identifying attribute (e.g., credential hash). As above,
ShowCred proves the tokens are constructed correctly. If one of these shows
is reused, tok1 will be repeated, but tok2 will be distinct, giving the veri-
fier two instances of the tok2 equation and two unknown variables: id and
PRF′rk(epoch∥ctr). Solving the equation for id identifies the credential holder.
Note that if id is the credential (or its hash), then the cloned credential can
be revoked immediately by removing it from the issuance list.
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Expiry Opens an attribute e in the credential and proves that e > today, i.e.,
that the credential is not yet expired.

Session binding Gives the verifier the ability to reject replayed ShowCred
proofs by binding a verifier-chosen nonce, or session context, to every
ShowCred. This can be done by including an empty proof that takes the
nonce as the public input7.

Join Allows credentials to be composed by joining them along some common
attribute(s), such as full name or address. This is either done inside a single
ShowCred, or between separate ShowCreds by publicly committing to the
common attribute(s).

5.4 Signature-issued credentials

One of the major advantages of zk-creds is that we do not need issuers who
are trusted to hold signing keys and can instead use a transparency log or
blockchain to issue credentials. However, if this feature is not needed, we
can build a traditionally issued anonymous credential scheme that retains
zk-creds’ other features and flexibility. Because our gadget-based approach is
flexible, we can replace the membership-check gadget with one that instead
verifies a signature. This means zk-creds, like Coconut [SAB+19], also sup-
ports credentials that are issued by signing under a standard signature (e.g.,
ECDSA or Schnorr) either by a single party or by a threshold of parties via a
threshold signature scheme such as FROST [KG21]. Moreover, we can compose
credentials issued via a list with ones issued via signatures.

5.5 Additional features

Notably, our construction of zk-creds also allows for the construction of
protocols with several features previously only available in dedicated schemes.

Hidden issuer We can completely hide the identity of a credential issuer,
e.g., in situations where leaking where a credential came from can cause
significant harm to privacy. While this is not a new notion in the literature,
very few existing schemes support this hidden issuer property. zk-creds
supports this inherently, as ShowCred can be performed with respect to
synthetic lists created by concatenating lists maintained by different issuers,
thus hiding the issuer. One drawback though is that multiple issuers will
likely issue different credential formats.

Hidden credential type zk-creds can also be configured to hide the credential
type which is both independently useful as well as necessary to fully support

7This binds the nonce to the Groth16 proof, assuming some basic properties about the cir-
cuit [BKSV21].
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hidden issuers. In zk-creds, credentials with different attributes can be
padded to the same size post-issuance, and then used interchangeably for
and efficiently verified over an access criterion. This is accomplished by
constructing a new circuit that is the OR of the criteria on the individual
credentials.

Delegation Issuance authority is delegatable in zk-creds. Authority to issue
a credential can be shown via zk-supporting-documentation that is itself the
show of another credential. Moreover, because the proof in zk-supporting-
documentation is general-purpose, the delegation process can constrain
attributes in the credential being issued. For example, we could define a
credential for an authority that can only be delegated three layers deep
by having a hidden attribute of delegation level decremented each time.
Credential attributes can be selectively delegated as well.

5.6 NIZK setup

Groth16 requires a one-time trusted setup to generate a set of parameters called
a common reference string (or CRS) for each statement (a.k.a., circuit). Once
this CRS is generated, it can be used throughout the lifetime of the system to
prove different instances of the statement.

Distributed setup for Groth16 CRSs is a solved problem via multiparty
computation setup ceremonies [BGM17, BCG+15, KMSV21] that need only two
honest parties. These have been run with hundreds of users and used to
secure billions of dollars in cryptocurrency. These protocols are efficient and
produce subversion-resistant zero-knowledge proof systems [Fuc18]—systems which
ensure that, even if all parties in a setup are malicious, the proofs are still
zero-knowledge and user privacy is unaffected.

Independently, as mentioned previously, we have also sought to minimize
the impact of this CRS on the flexibility of zk-creds. By utilizing blind Groth16,
a system designer does not need to decide on and pre-generate CRSs for all
possible combinations of access criteria they wish to support and can instead
just generate CRSs on a per-gadget basis.

5.7 Security argument

We argue that zk-creds is secure under computationally-bounded adversaries
performing static corruption of users, verifiers, and even issuers who can
collude arbitrarily with other parties. Without loss of generality we consider
the security of our protocol under a single issuer, since any corrupted issuer
can potentially corrupt the credential list; see Section 8 for a discussion of
various methods to mitigate and distribute trust in a multi-issuer setting. Let
the ideal functionality F represent the algorithms defined in Figure 3.
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The simulator S first runs Setup and gets the necessary trapdoors for the
simulation and extraction of zero-knowledge proofs in Setup, IssueSetup, and
ShowSetup. S maintains a table mapping credentials in its simulated real-world
protocol to their ideal counterparts in F and, when necessary, updates the
mapping when it needs to create a real-world object for an ideal-world one (or
vice versa).

Because all messages between parties in our security game are accompa-
nied by zero-knowledge proofs, the simulator can extract on all adversarially
generated messages (e.g., for IssueReq or ShowCred), look up the correspond-
ing ideal-world credentials in its table, and proxy the requests to the ideal
functionality. Similarly, for any honest interactions in the ideal functionality,
the simulator can model the adversary’s view of the real-world protocol by
simulating the zero-knowledge proofs with respect to random commitments
and, in the case of rate limiting, PRF outputs.

We note that care must be taken in two cases. First, both honest and cor-
rupted issuers can deny credential issuance, so the simulator’s table needs
to be updated only on successful issuance. Second, both honest and cor-
rupted parties can revoke credentials, so the simulator must also synchronize
revocations.

The security of zk-creds rests on the assumption that Groth16 is perfectly
zero-knowledge and simulation-extractable (in the Algebraic Group Model);
that linkage proofs are sound and zero-knowledge under the Random Oracle
Model and dlog (see Appendix E); that the Poseidon hash function is collision-
resistant and a secure PRF and; for other variants of our scheme, that Schnorr
signatures are unforgeable under dlog, Pedersen hashes are collision-resistant
under dlog, and Pedersen commitments are computationally binding under
the same assumption and perfectly hiding. Then, the adversary’s view of the
real-world protocol is indistinguishable from a simulated view where honest
parties use the ideal functionality F . Therefore, the instantiation of zk-creds
given in Figure 4 is secure against malicious adversaries who engage in static
corruption.

6 Implementation and evaluation

We now detail the evaluation of zk-creds.

6.1 Code and setup

Hardware. All benchmarks were performed on a desktop computer with a
2021 Intel i9-11900KB CPU with 8 physical cores and 64GiB RAM (mostly un-
used in our experiments) running Ubuntu 20.04 with kernel 5.11.0-40-generic.
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Client-opt. (C)
Server-opt. (S)

ShowCred VerifyShow Proof Size
C C (full) S C S S (batch) C S

Simple Possession 5ms 465ms 450ms 3ms 744B
Expiry 53ms 526ms 461ms

Linkable Show 43ms 494ms 457ms
5ms

1.5ms 1.8 verifs/ms
1064B

192B
Rate Limiting 60ms 507ms 461ms

Clone Resistance 90ms 542ms 530ms

Table 1: Gadget microbenchmarks using Poseidon hashes for two versions of zk-creds.
Membership proofs are done on a Merkle forest of size 231 (tree height = 24, #trees = 28).
The first configuration (C) minimizes client-side proving cost; the second configuration
(S) maximizes server throughput. ShowCred (full) gives the cost of including member-
ship recomputation while showing a credential. VerifyShow (batch) gives throughput
for verifying a set of 100 proofs. We emphasize that all verification numbers are single-
threaded, allowing for efficient concurrent processing.

Client-opt. ShowCred VerifyShow Proof Size
Simple Possession 2ms 2ms 424B

Expiry 50ms
Linkable Show 41ms

5ms 744B
Rate Limiting 58ms

Clone Resistance 88ms

Table 2: Benchmarks for zk-creds configured for minimizing client side proving cost,
using signature-based issuance. Unlike the client-optimized benchmarks in Table 1,
which uses list-based membership, there is no distinction between a partial or full
ShowCred, since the membership proof (a signature verification proof) never has to be
recomputed.

Code. zk-creds consists of 7.6k lines of Rust code8 and relies on the Ark-
works [Ar22] zkSNARK framework. For benchmarks and statistics, we used
the Criterion-rs crate. In addition, we modified an existing Android passport
scanner app to extract intermediate cryptographic values from the passport
and dump them to a JSON file.9 The Rust code uses the dump file format for
all its passport proofs.

Statistics. Each figure and plot shows the median runtime of 100 executions.
Over all experiments, the maximum estimated relative standard error of the
median is 1.8%. For completeness, our plots include error bars indicating the
95% confidence interval, though they are not visible due to the low error.

Instantiating cryptographic primitives. We set λ = 128. We compute Groth16
proofs over the BLS12-381 curve [Bow17b]. The collision-resistant hash function
used in all Merkle trees are domain-separated instances of the Poseidon hash
function [GKK+19], configured to be compatible with BLS12-381 and a 128-bit

8Code repository: https://github.com/rozbb/zkcreds-rs
9Code repository: https://github.com/rozbb/zkcreds-passport-dumper
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security level (α = 3 and capacity = 1). We instantiate Com using key-prefixed
Poseidon as well. Separately, in Appendix G, we give benchmarks for an
instantiation with provably secure Pedersen hashes and commitments.

6.2 Microbenchmarks

In this section we measure performance of various common gadgets, with
reasonable parameter choices. Recall the performance of zk-creds depends on
credential list size, attribute size, criteria complexity, and number of standalone
gadget proofs. We measure the effects of these parameters in greater detail in
Appendix A. We also measure the sizes of the associated proving and verifying
keys in Appendix H.

Table 1 gives a summary of zk-creds’s performance for common usage
scenarios. We assume a setting where 231 credentials have been issued. The first
variant (C) minimizes client-side proving cost by separating the Merkle forest
proof, allowing for reuse across shows. A basic show takes 5ms to produce
and 3ms to verify, assuming precomputation of the Merkle tree and forest
membership proofs. More complex statements like rate-limited credentials
with clone resistance take 90ms to show and 5ms to verify. If the Merkle tree
membership proof is not precomputed, then the full show takes an additional
460ms but verification time is unchanged.

The Simple Possession benchmark shows the prover has an attribute-less
credential on a list and proves no predicates. This maps to a use case such as
possessing a valid access card, as that is often sufficient to enter a building. The
remaining benchmarks build on Simple Possession, adding their own predicate
to the set of linked proofs. For example, Expiry proves possession, but also
bears a single attribute and proves that it has a value less than some timestamp.

Separately, we give an alternate variant of zk-creds in Table 1 (S) which is
optimized for verification latency and server throughput. The server-optimized
construction combines the Merkle membership and criteria check circuits into
a single monolithic zkSNARK without proof reuse. As a result, clients pay
approximately the full ShowCred cost every time, but since proofs are a single
Groth16 proof rather than a linkage proof, they can be batch-verified by the
server at 1.8 verifications per millisecond per core. We note it may be possible
to batch verify the non-optimized scheme as well, but throughput would be
lower as there are at least three times as many proofs.

Finally, to demonstrate the full flexibility of our approach, we also provide
a signature-based variant of zk-creds in Table 2, where credentials are issued
in a more traditional signature-based manner by a trusted issuer or threshold
quorum of issuers. We implemented a signature gadget for checking Schnorr
(and therefore FROST threshold [KG21]) signatures and measured the proving
time to be 129ms (compare to 460ms for tree-based issuance).

Memory usage. Peak memory usage for any of our experiments was 824

22



MB. Since prover memory usage is a function of circuit size, this peak was, as
expected, for the server optimized configuration with the larger monolithic
circuit. Separately, the client optimal approach has a peak usage of 800 MB,
which arose when proving LinkG16.

7 Case studies: zk-creds as a toolkit

We design, implement, and benchmark two full scenarios for zk-creds using
credentials derived from existing government identity infrastructure without
any modifications or coordination. Many government identity documents
now include the ability to perform various authentication protocols (e.g, the
German and Estonian [Fed, e-E] smart-card enabled national IDs). For our
applications, we use US passports, which contain a signed digital copy of
the passport’s basic data in an NFC-readable chip. Our applications validate
that zk-creds can be used as a toolkit by application developers to support
privacy-preserving identity in realistic applications with complex, compound
access criteria.

7.1 Digital passport data

Over 150 countries issue passports with an NFC-readable chip which is stan-
dardized in ICAO Doc. 9303 [Rea, ICA]. We are interested in the first two data
groups on the chip. Data group 1 (DG1) contains the textual info available on
the passport’s data page: name, issuing state, date of birth, and passport expiry.
Data group 2 (DG2) contains a JPEG-encoded image of the passport holder’s
face. The ICAO standard also requires the immutable part of the chip’s con-
tents to be signed by the issuing state. For example, every US passport has an
RSA PKCS#1 v1.5 signature under a known US State Department public key.

zk-supporting-documentation for passports. While we could just reveal
the signed passport to the credential issuer, this 1) requires the issuer be
trusted to maintain the confidentiality of sensitive information, and 2) is
wholly incompatible with issuance via a bulletin board or blockchain. Instead,
we design and implement a zero-knowledge proof that the attributes of a
credential commitment match the signed contents of DG1 and DG2.

Parsing the contents of an e-passport in zero-knowledge is non-trivial: the
signature is not just over DG1 and DG2, but the econtent hash, which is calculated
over the mostly variable-length data groups DG1, . . . ,DG16. Variable length
inputs are particularly challenging to parse with a fixed-size zero-knowledge
circuit. Our zero-knowledge proof is made possible by realizing that the
econtent hash is actually a tree hash, roughly of the form

H(H(H(DG1)∥H(DG2)∥ . . . ∥H(DG16)) . . .).
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We do not care about the contents of DG3 through DG16, so their hashes can
be used directly as witnesses to the proof. H(DG2) is the image hash, which
can either be hidden as a witness or revealed by showing all of DG2.10 Since
DG1 contains the attributes we care about, we must parse DG1 inside the zero-
knowledge proof. Luckily, since DG1 mirrors the content of the passport’s
Machine Readable Zone (MRZ), it is fixed-length. The proof then hashes the
data group digests along with other fixed-length values until it has computed
the econtent hash. We avoid the cost of checking the RSA signature by simply
revealing it and the econtent hash.11 Computing this proof takes less than 2
seconds.

Why zk-proofs over passports are insufficient. A folklore solution for anony-
mous credentials is to replace the signature with a zero-knowledge proof of
signature possession. Consider, for example, Cinderella, [DFKP16]. Cinderella
elegantly converts existing X.509 certificates into anonymous credentials via an
intricate zero-knowledge proof that validates the X.509 certificate and its entire
certificate chain. Assuming identity documents with X.509 certificates, this is
seemingly a viable approach for proof of age.

Zero-knowledge proof of possession of an existing signed document is
both insufficient in our case and, more subtly, unnecessarily complex. A proof
over a certificate or indeed any existing credential is insufficient: it may not
include the necessary data and that data cannot be hidden from the issuer.
This is a challenge for, e.g., the random seed we use for cloning resistance. As
a result, we must issue our own standalone credentials and can, at best, use
existing certificates as supporting documentation to justify issuance. But a zero-
knowledge proof for supporting documentation has a subtly different goal from
the folklore solution; while we must hide the attributes in the certificate and
issued credential (e.g., name and date of birth), we can leak other information
such as who issued the credential (e.g., the US State Department). While
this could uniquely identify a user during a credential show, revealing the
same information during issuance poses no such risk: issuance is by definition
unlinkable to show anyway. This drastically simplifies the zero-knowledge
proof and removes unnecessary complexity.

7.2 Instantiating an issuance bulletin board

An instantiation of zk-creds requires a publicly accessible bulletin board to
distribute the credential list, as well as parties running our software. We stress

10In reality, DG2 contains slightly more than the bare image; it also has the image’s creation and
expiry dates.

11Revealing the econtent hash reveals the identity of the requester to the passport authority
during issuance. However, since ShowCred proofs are unlinkable to issuance, this is not a problem.
Moreover, it is possible to hide the hash and verify the RSA signature in the zkSNARK, at a
cost of about 868k constraints using the approach from [KZM+16], or 3.6s in our benchmarking
environment.
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that zk-creds can be deployed either on a blockchain or (at much lower cost) a
more centralized transparency log; we choose to instantiate the bulletin board
here as a smart contract on an Ethereum Virtual Machine (EVM)-compatible
blockchain to demonstrate that full decentralization is feasible and because,
unlike many other consensus systems in development or deployment, the EVM
has comparatively robust development tooling and documentation.

The smart contract stores a list of credentials and corresponding zk-supporting-
documentation—together, referred to as an issuance request—as well as the
current roots of the Merkle forest. An issuer issues a credential by posting the
full issuance request to the smart contract. This allows any external auditor
to download the full list, reconstruct a local copy of the Merkle forest, then
verify in zero-knowledge that each credential was validly issued. While any
party (including the user) can audit the full list themselves if desired, they need
not do so if they trust another party (e.g., an issuer or auditor) to promptly
update and verify the credential list for them. Periodically, users request their
credential’s authentication path and the updated root from the bulletin board
or auditing party. To perform VerifyShow, a verifier only needs to retrieve the
current Merkle tree roots F from the bulletin board.

Furthermore, we must prevent DoS attacks from blocking or flooding
additions to the bulletin board. Our prototype instantiation assumes a smart
contract operator who is authorized to add to the bulletin board contract on
behalf of the issuer. An alternative solution, allowing for operator-free setup, is
to verify all zk-supporting-documentation and Merkle tree root computations
within the EVM smart contract itself. While this is feasible [Torb], verifying
proofs and Merkle tree updates on-chain without extensive optimizations is
expensive. Another solution is to instead support on-chain proof verification
with an optimistic rollup [Eth]: bulletin board additions include a deposit
which is burned if, after the smart contract evaluates a challenge, it determines
that the proofs or computed Merkle tree roots are invalid. While the challenge
still requires costly computation, this is not paid for during issuance.

We implement our smart contract in Solidity and the requisite client-side
scripts to post and retrieve data in web3.js. Note that we can deploy our con-
tract to any EVM-compatible chain, such as Avalanche’s C-Chain or Ethereum
itself. EVM contract operations are measured in gas, which roughly acts as
a complexity-weighted count of the EVM instructions used. Posting each is-
suance request costs 576, 808 gas, while posting a Merkle root costs 78, 355 gas.
The price of gas and the underlying currency it is priced in is highly volatile.
As of early June 2022, Ethereum gas prices range from about 20 to 50 Gwei
(a Giga-wei is 10−9 ETH), and 1 ETH is about $1800 USD; as such, posting
an issuance request costs about $20–$50 USD. Gas prices are proportionally
similar for Avalanche but, at $25 USD per token, actual costs would be 70 times
smaller.
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7.3 Credentials from existing identity infrastructure

Given a construction of zk-supporting-documentation for a passport and a
choice of bulletin board in an Ethereum smart contract, application developers
can now readily build access control schemes. Once the credentials are issued,
multiple developers can independently rely on them by either composing
existing identity gadgets or defining new ones.

Issuance. We provide a toolchain to convert a passport into an anonymous
credential. An Android app extracts the NFC passport data and a separate
program converts it into a credential containing the holder’s nationality, full
name, and date of birth (dob); a rate key (rk); the passport expiry date (expiry);
and the hash of the image of the holder’s face (facehash). Separately the
program computes the zk-supporting-documentation that this credential is
correct with respect to the signature and econtent hash.

The IssueReq payload sent to the issuer consists of the signed econtent
hash, credential, and zk-supporting-documentation proof. IssueGrant verifies
the proof and econtent hash signature. Upon success, the issuer adds the
credential to their list and returns a Merkle authentication path.

Scenario 1: Viewing age-restricted content on the internet. Age-restricted
content is common on the internet. For example, in Switzerland, the EU, and
the UK, YouTube requires users to upload an image of their ID or credit card in
order to prove their age [Gooa]. In this scenario we demonstrate the feasibility
of zk-creds for proving age without revealing any personally identifying
information.

Our zk-creds toolkit has three features that are crucial to building a real-
world feasible age verification credential. First, it can be used without coor-
dination with existing identity infrastructure. Second, it can readily support
other identity credentials, provided they indicate date of birth and are signed.
Third and, most crucially, it can create credentials that are clone-resistant (via
the gadget in Section 5.3) with easy revocation of cloned credentials. This last
point is essential: while a zero-knowledge proof over a passport is itself an
anonymous credential,12 practical usage demands cloning protections. And
cloning resistance requires a rate key to be bound to the credential and kept
secret from the issuer. Existing identity documents (such as a passport) lack
such a key. zk-creds allows composition of identity without coordinating with
the passport issuer or any trusted party to add such information.

Given issued credentials via passports, building a privacy-preserving age
verification scheme with zk-creds is straightforward and requires no new
cryptography: website developers need simply define the issuers they will
accept13 and construct the access criteria they need using gadgets. For this
scenario, the only issuer is our passport-based issuer, and the access criteria

12When augmented to hide the passport signature.
13This defines which credential list they use or defines a new list as some subset of existing ones.
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IssueReq IssueGrant ShowCred ShowCred (full) VerifyShow

Age-restricted vid. 1.97s 2ms 143ms 602ms 5ms
Entering a bar 1.97s 2ms 98ms 557ms 5ms

Table 3: zk-creds case study benchmarks. IssueReq is the time to convert a passport
into a credential using zk-supporting-documentation. ShowCred is the time it takes a
user to prove they are over 18. All other parameters are the same as in Table 1.

being proved are age, expiry, and non-cloning. Concretely, the access predicate
is:

dob ≤ today− 18yrs ∧ expiry > today∧ CloneResistance(rk, nonce, tok1, tok2, . . .)

where CloneResistance, nonce, tok1, and tok2 are as described in Section 5.3.
Table 3 gives performance numbers. Given a credential, it takes Alice

143ms to show a website she is over 18 (and 602ms when she must recompute
her membership proof). The server can verify her assertion in 5ms. If we
wish to optimize for server verification time or throughput, we can switch to
zk-cred’s server-optimized construction and achieve 1.5ms verification times
and 1.8 verifications per ms per core. Extrapolating from the server-optimized
benchmarks in Table 1, proving times would increase to approximately 595ms.

Scenario 2: A cryptographer walks into a bar. To purchase alcohol in the
United States, one needs to show photo ID and proof they are at least 21
years old. But showing a driver’s license reveals name, sex, weight, and
date of birth. And if the license’s barcode is scanned [ACL12], additional
information is revealed, potentially including whether the holder is insulin-
dependent, hearing-impaired, developmentally disabled, or, surprisingly, a
sexual predator [Veh].

We now build a system for in-person age verification coupled with photo-
graphic verification. Importantly, our goal in this scenario is selective disclosure
and not anonymity. Anonymity in an in-person setting is often not possible
or even desired. Rather, what we want is privacy: the ability to control what
information is revealed and limit it to what is necessary—the patron’s photo
and the fact that they have an unexpired ID with a birth date making them of
drinking age.

We envision a hypothetical system where bar patrons have an ID-wallet
application on their phone. The app, using ShowCred, presents an identity
assertion (e.g., via a QR code or NFC) to an app on a bouncer’s phone which
checks the assertion with VerifyShow and displays the user’s photo along with
whether they are over 21. In contrast to scanning the user’s driver’s license,
this reveals only the minimal information necessary. The necessary access
predicate is:

dob ≤ today− 21yrs ∧ expiry > today ∧ facehash = H(face)
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Table 3 gives concrete costs for local computations. To show that a patron
is over 21 takes 98ms in the common case and 557ms if membership proofs
must be recomputed. As before, verification is 5ms in either case.

8 Extensions and applications

We now discuss extensions to zk-creds and additional applications of our
approach.

Other signed identity sources. As shown by our e-passport example, zk-creds
can transform legacy identity sources into anonymous credentials if there is
a digitally signed component. This raises an interesting question about what
parts of existing identity and credential infrastructure include such signatures.
For example, digital diplomas for many US universities include digital signa-
tures over the diploma holder’s name, degree, and institution. Many emails
are signed with DKIM which, while problematic in many contexts [SPG21],
could be a source of identity or membership in an organization. New York’s
Excelsior Pass for COVID vaccination contains the holder’s name, birth date,
and a signature.14 Other existing digital protocols may contain a signature that
establishes ownership of a resource (e.g., a phone number in an eSIM or virtual
SIM card) or identity (e.g., Apple’s digital driver’s license features).

Complex access criteria. We have discussed conceptually simple access control
criteria such as “my credential is not expired,” or “I am of age,” perhaps with
a cryptographically complex mechanism for clone resistance. However, real-
world access criteria can be far more complex. zk-creds provides a way to
deal with such criteria without requiring coordination with identity issuing
authorities for every custom access check that must be implemented.

An example of this comes in the form of online petitions and discussions.
New York State has an online portal for discussion and petition which asks a
user for their address to match them with the appropriate state senator [New].
While this check does not seem to be enforced, one could imagine both wanting
to enforce this constituency check and allowing constituents to leave non-
identifying comments. Similarly, some online resources, such as ebooks from
the New York Public Library, are limited to city residents; enforcing this
currently requires in-person registration for a library card to present proof
of address, and opens up a (hypothetical) risk of tracking online reading
habits [Ame06].

Geolocating an address to the bounds of, e.g., a city council district, how-
ever, is not simple. The computation is, by the standards of credential schemes,
complex, and involves converting the address to a location and then perform-

14This was obtained by scanning the pass’s QR code, whose contents are a W3C Verifiable
Credential [W3C].
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ing a point-in-polygon check.15 For a small number of fixed boundaries (e.g.,
federal congressional districts), one might imagine avoiding the problem by
issuing identity documents with this information included. But even in cases
where the identity issuer would cooperate, coordinating all geocoding restric-
tions one might want to realize (e.g., anonymous discussion boards for a school
zone, a neighborhood, or even specific apartment building) is impractical and
may cause credential sizes to blow up.

Because zk-creds supports general purpose zero-knowledge proofs, geocod-
ing restrictions are made more feasible with Groth16 gadgets: even if the
Groth16 proof for the gadget is expensive, the resident or an outsourced prover
avoids recomputing it every show. After the first time, the proof can be reused
arbitrarily, until the user’s Merkle tree is updated by a new issuance.

Sybil-resistant IDs from email or money. Internet services currently prevent
multiple account registration (Sybils) by requiring the user to consume a
(hopefully) scarce resource, such as money (via a micropayment), attention (via
a captcha), and possession of, e.g., phone number or email address.

zk-creds provides several avenues for Sybil-resistant credentials with
anonymity. Credentials can be issued based on signed identity documents (e.g.,
a passport, as demonstrated in Section 6) with the signature as a uniqueness
check. Similarly, zk-creds can thwart Sybils via cryptocurrency: a simple
smart contract issues credentials if and only if a small fee is paid.

Finally, and perhaps most surprisingly, we can use possession of a valid
email address as a Sybil-resistance mechanism without the use of a trusted
third party or cooperation with the email provider. A DomainKeys Identified
Mail (DKIM) header, which appears on all outgoing mail of most modern email
providers, contains a signature from the email provider. By embedding the
credential issuance request in the email body, we get an externally verifiable
proof of possession of an email address that can be used to issue Sybil-resistant
accounts. This allows us to leverage the Sybil resistance mechanisms used by
Gmail, for example.

These short- and long-lived IDs can be reused and rate-limited across
actions, similar to the functionality of Privacy Pass [DGS+18], which issues
one-time-use anonymous access tokens for every captcha a user completes.

Oracle- and self-issued credentials. A number of academic works and in-
dustrial systems have emerged to address the so-called “oracle problem”: how
does a consensus scheme such as a blockchain come to agreement about real
world events?

One class of solutions [EJN] relies on incentive systems and the ability
to challenge the veracity of data. These approaches, if viable, could be used
to issue anonymous credentials based on public online reputation data (e.g.,
Twitter follower count, Reddit karma, etc.). Crucially, because zk-creds forces

15Indeed, geolocation is the correct way to prove residency. For example, the borders of New
York City’s 10 city council districts are defined by 1.8 megabytes of geospatial vector bounds [NYC].
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all issued credentials to be on a public list, any malfeasance by an issuer could
be detected and punished.

An orthogonal approach is the creation of notaries who attest to data on
third party servers. DECO [ZMM+20] proposes a 2PC protocol between a
client and a notary that authenticates data retrieved over a TLS connection
from a third-party server. DECO also allows users to construct zero-knowledge
proofs to only selectively disclose HTTP response contents. These features
would allow a user to obtain a credential for their name and address by, e.g.,
logging into their utility provider and retrieving the bill. Moreover, in the event
the user has trustworthy secure hardware, they can self-issue the credential by
attesting the hardware ran this notary check itself.

We note, however, that such schemes inherently rely on assumptions (either
non-collusion or the security of trusted hardware) that become increasingly
infeasible as the value of the credential goes up. But, for example, it may be
viable as a simple Sybil prevention or anti-spam mechanism.

Composable credentials. When new use cases for existing credentials emerge,
they often require the combination of two different credentials. Take, for
example, US-issued vaccine cards. Because these contain a person’s name,
but not a photo, COVID-19 vaccine mandates frequently required restaurants
and bars to ask customers for a vaccine card and a photo ID with a matching
name. zk-creds supports this type of post-hoc composition: two credentials
both containing a field for, e.g., full name, can be jointly shown using the Join
gadget described in Section 5.3.

9 Related work

Anonymous credentials derive from a long line of work, starting with Chaum
[Cha85], and subsequently seeing numerous extensions [Cha85, CL01, CL03,
CL04, CHK+06, BCKL08, CG08, BL13, GGM14, CDHK15, SAB+19]. While
showing a credential initially allowed little more than (unlinkably) presenting a
signed token connected to a user’s pseudonym, the schemes were generalized
and extended to provide more sophisticated properties such as issuance of
hidden attributes, rate-limiting, k-show, and efficient selective disclosure of
attributes. Because it uses general-purpose zero-knowledge proofs, zk-creds
can (and does) capture all of these properties as implemented.

One drawback to deploying the majority of these schemes is the requirement
of a single, trusted issuer. As such, existing work has sought to solve this
issuance problem. We briefly compare and contrast other approaches to
addressing this.

Distributed issuance. In 2014, Garman et al. [GGM14] were the first to
propose the notion of decentralized anonymous credentials. Our approach is
directly inspired by their work.
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While the approach of Garman et al. removes the assumptions of a single
issuer and the need for issuers to hold keys, it both leaves open a number of
essential questions for operating a real system and introduces new ones which
we address. First, showing a credential requires users to 1) locally store the full
credential list and 2) compute proofs which take time linear in the number of
issued credentials for every show (even for static credential lists). In contrast,
zk-creds develops a new approach and new cryptography (blind Groth16)
to allow proof reuse and fast credential showing. And, via the use of Merkle
trees, zk-creds requires users to store only logarithmic-sized witness data to
compute credential shows. Second, while Garman et al. suggest the possibility
of more complex features, they do not implement them. More importantly, the
set of bespoke sigma protocols they use does not provide for the composition of
credentials and identity attributes or support complex identity statements. By
developing a protocol based on general-purpose zkSNARKs, we do. Lastly and
most significantly, the work does not answer the question of how the decision
to issue a credential could be made without disclosing sensitive information
to the issuer (i.e., the very problem zk-supporting-documentation addresses).
This also makes it impossible to audit credentials that are issued via Garman
et al.’s construction, in marked contrast to zk-creds.

Threshold issuance. The Coconut [SAB+19] anonymous credential scheme
addresses the issuance challenge via threshold signatures. In Coconut, cre-
dentials are issued by n static parties under the assumption t > 1/2 of them
are honest. The scheme is clever and achieves efficiencies on par with single-
issuer schemes. However, while threshold issuance increases the security of
a scheme by requiring an attacker to corrupt more parties, it only addresses
the scarcity of issuers if we have an abundance of parties who are willing to
issue credentials but, for whatever reason, no individual one is trusted. In
many settings, it is a challenge to find even a single party who both 1) is
empowered to make identity statements and 2) is willing and able to run
cryptographic infrastructure even if, by fiat, we trust them. Moreover, Coconut
only supports selective disclosure of attributes in a credential, not complex
zero-knowledge proofs over attributes. It does not meet our design goals of
flexibility or dynamic generation of access criteria.

Finally, we note that zk-creds, as shown by the version given in Table 2, sup-
ports credential issuance via threshold Schnorr schemes (e.g., FROST [KG21]),
so we do capture the functionality of Coconut.

Decoupling issuance from identity verification. More broadly, another line of
work, starting with TLSNotary [TLS], considers convincing third parties of the
correctness of data. DECO [ZMM+20] extended this protocol to support TLS 1.3
and used zero-knowledge proofs for selective disclosure (e.g., the party learns
a bank account balance is over a threshold, but not the balance itself or the
account holder’s identity). Applying this to the anonymous credential setting,
one could use it to separate finding a cryptographic issuer for credentials
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from the process of verifying entitlement to a credential. Such approaches are
complementary to zk-creds and we consider them as an extension in Section 8.
Without such integrations, however, such an approach would still require at
least one trustworthy party to be willing to run a highly available web service
that holds live signing keys.

Decentralized identity (DID). We note another area of research on decen-
tralized identity which has been the subject of both academic and industrial
work, including some standardization. While zk-creds is compatible with
these goals inasmuch as it allows issuance without a party holding keys, such
works are largely orthogonal: decentralized identity as an area considers who
makes decentralized identity assertions, while our work considers how to trans-
form some identity assertion (centralized or otherwise) into an anonymous
credential without introducing additional trusted parties.

10 Conclusion and future work

The approach we develop here—a switch from blind signatures to zero-
knowledge proofs as the foundation for anonymous credentials—implies sev-
eral avenues for further work. In this section, we enumerate a few immediate
consequences of this paradigm and future research areas.

Instantiating zk-creds with improved zero-knowledge proofs. We have
instantiated zk-creds with Groth16. The zk-creds approach we develop, how-
ever, is proof system-agnostic. As such, instantiating the zk-creds paradigm
with other proof systems, such as ones without trusted setup (e.g., [BBHR18,
Gro16, BBB+18]) or with universal setup (e.g., [MBKM19, GWC19, CHM+20]),
is entirely possible. For the monolithic construction, such a change is a drop-in
replacement. If we wish to support precomputation of separate membership
proofs, as in our client-optimized scheme, we must either adapt blind Groth16
to the new proof system or take an alternative approach, e.g., recursive proofs.
The choice of proof system is also tied to the choice of accumulator scheme.

Instantiating zk-creds with alternative accumulator schemes or primitives.
We have instantiated zk-creds using Merkle trees. However, as with proof
schemes, the same approach generalizes to other accumulator mechanisms such
as RSA accumulators [GGM14], polynomial commitments [KZG10], Verkle
trees [Kus18], or perhaps special-purpose schemes for zkSNARKs [ZBK+22].
Again, for many such accumulators, this is a simple black-box replacement of
the membership zkSNARK. Instantiating zk-creds with alternative accumula-
tors will offer different tradeoffs for witness size, witness update requirements,
witness computation cost, and accumulator verification cost (and hence zk-
SNARK proving time). A particularly exciting prospect is the co-design of
accumulator schemes and zkSNARKs to achieve drastically improved perfor-
mance.

32



Co-design or co-selection of zero-knowledge proofs and credential schemes.
Similarly, one could instantiate either our existing version of zk-creds, or a dif-
ferent construction, with different cryptographic primitives. For example, one
might replace Poseidon with a newer, circuit-optimized hash function, perhaps
making use of low-degree gates in proving systems like Plonk [GWC19].

Batched verification/verification in a smart contract via proof composition.
One interesting question is how to reduce the cost of verifying many credential
shows. Zebra [RPX+22] considers this problem for batch verifying classic blind
signature based anonymous credentials in the context of smart contracts where
computation is very costly. In Section 6.2, we give basic benchmarks using
batched pairings for verification of our server-optimized construction. But it is
also possible to construct a zero-knowledge proof that batches many shows into
one proof that has sublinear (in the number of shows) and potentially constant
verification cost. For example, SnarkPack [GMN22], which can dropped in
to aggregate shows in our server optimized version, quotes a logarithmically
scaling batching mechanism with verification costs of 8192 proofs in 163ms.
The design of better aggregation mechanisms, potentially co-designed with a
zk-creds style scheme, is an interesting avenue for future work.

Instantiating zk-creds with alternative (post-quantum) primitives. While
we have instantiated zk-creds with primitives such as Groth16, as mentioned
previously, the flexibility and modularity of our system easily allows for the
swapping of any primitives with those that fulfill the necessary requirements.
For example, one could easily build a post-quantum version of zk-creds
by instantiating it with post-quantum secure primitives and zero-knowledge
proofs such as [AHIV17, BBHR19].
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A Performance across parameter choices

We expand on the microbenchmarks in Section 6.2 by investigating how
zk-creds scales with respect to various parameters.

Recall that showing a credential requires proving: 1) the credential is in the
list of issued credentials, 2) the relevant attributes are part of the credential,
3) the attributes meet the access criteria being shown, 4) each of the above
is about the same data (linkage proof). Thus, the performance of zk-creds
depends on the number of issued credentials (via 1 above), the size of the
attribute (via 2), and the complexity of the access criteria (via 3).

Membership benchmarks. Recall that a membership proof consists of a proof
of credential membership in a tree, followed by a proof of membership of that
tree in a forest. In Figure 6, we show the performance of proving membership
as the shape of the forest changes. For a fixed number of total leaves, we find
the size of the forest (and, consequently, height of its trees) that minimizes
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#leaves 214 230 246 262

Issuance proof time 141ms 403ms 670ms 962ms

Table 4: Cost of a proof of credential list membership as the size of the list varies.

membership proving time. This results in a 50% (143ms) speedup in the best
case. Further, the verifier pays nothing for this optimization, since all public
inputs are prepared in advance and reused for all verifications.

In Table 4, we show the time to compute a proof of membership in the
credential list as the list size varies. This represents the baseline cost of the
issuance portion of any ShowCred call. The benchmark consists of one Groth16
proof of tree membership plus one Groth16 proof of forest membership. For a
fixed number of leaves, the tree height is chosen using the optimal parameters
from the experiments in Figure 6.

Linkage benchmarks. In Figure 5, we plot the size, proving time, and verifi-
cation time of linkage proofs as the number of standalone gadget proofs varies.
Every additional gadget adds 330B to the proof size.

B Merkle forests and witness management

Showing a credential requires proving membership in a Merkle tree. Since
the list of issued credentials is dynamic, users must somehow maintain an up-
to-date witness to their credential’s membership in the tree. A naïve approach
requires O(N) storage16 and O(N) communication: clients store the entire tree
and retrieve every addition. In this section, we attempt to solve the issues

16This is trivially reduced to O(log(N))storage per credential, as the client can update witnesses
in place.
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introduced in Section 5.1, iteratively building up techniques to optimize Merkle
trees and their membership proofs in the interests of both efficiency and privacy.
First, we address common problems with using Merkle forests which motivate
this discussion and clarify the assumptions our constructions make. Second, in
Appendix B.2 we look at various interoperable batching techniques for Merkle
trees, allowing issuers to summarize prior Merkle tree witness updates for
specific clients based on when they last received an updateand/or defer future
credential issuance until many credentials can be added in a single batch to the
Merkle tree(s). Third, in Appendix B.3 we look at ways to minimize correlation
attacks against privacy due to users requesting then immediately showing their
credential’s membership proof, and suggest replacing update requests with a
universal broadcast of all relevant updates.

We conclude our discussion of Merkle tree optimizations with a unified
Merkle forest construction in Appendix B.4 which balances the competing
tradeoffs of 1) expected number of membership proof updates, 2) privacy,
and 3) communication overhead. We accomplish this by combining the afore-
mentioned techniques into a unified approach which leverages the unique
structure of Merkle trees and authentication paths. Concretely we find that,
compared to a single Merkle tree of similar capacity, our construction requires
fewer membership proof updates over time for all users of older credentials, at
the expense of only a small-constant logarithmic increase in communication
overhead between issuers and users.

B.1 Merkle Trees in Practice: Overview and Motivations

In zk-creds, users must frequently produce membership proofs across the
lifetime of a credential to show that it has been issued on a credential list.
Doing so requires a user to obtain some new information about the list—the
frontier—with which users can update the witness to their credential’s issuance.

A common approach to allow proving membership on a list is to instantiate
it as as a full binary Merkle tree with capacity N, allowing anyone with the
credential and its O(log N)-sized witness (i.e., the authentication path θ) to
verify that it is a leaf node included in the computation of the list’s Merkle
root. Naïve Merkle tree-based instantiations might require the user to manage
a local copy of the entire Merkle tree themselves, or otherwise delegate the task
of updating and distributing the list to some list manager who is only trusted
to not perform DoS attacks against the system. In real systems, however,
keeping up-to-date with the current state of an entire Merkle tree is a non-
trivial problem: credential lists can be fast-growing or large; users’ devices
may be particularly resource-constrained and thus unable to process or even
store the entire list at once (e.g., envisoning its usage on a mobile phone or
domain controller);17 users who become inactive for long periods of time will

17For reference, storing a full 32-height Merkle tree with 256-bit hashes requires about 137 GB.
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need to request much of the updated list; and users who miss any part of the
update would struggle to return to a consistent state.

Moreover, since zk-creds is designed such that an honest user’s credential
remains unlinkable even when a dishonest majority of malicious parties collude,
our credential list instantiation should support strong unlinkability and privacy
in practice as well. However, we observe that a user updating an authentication
path through any kind of request to a third-party will correlate closely with the
subsequent usage of that credential, since doing so is necessary to maintain
a valid membership proof. This leaves users vulnerable to correlation attacks
regardless of whether the updates sent back to the user identify the credential.18

Correlation attacks especially pose a problem if collusion occurs between an
issuer and verifier or if the authentication path update identifies or reduces the
anonymity set of the requesting credential. If adversaries can build plausible
profiles to identify credentials within and across various shows in this manner,
this has serious implications on unlinkability and user privacy. We will address
these various problems in the remainder of this section.

Hereafter, assume that issued credentials can only be added to the Merkle
tree; list entries will never change in-place. For simplicity, assume that creden-
tials are only added from left to right. Lastly, assume that Appendix B.2–B.3
uses the conventional construction for Merkle forests, where each Merkle tree
in the forest has fixed height n and capacity N := 2n; see Appendix B.4 for
design decisions and optimizations that can arise when these assumptions are
relaxed.

B.2 Batching issued credentials

Requesting summaries of newly issued credentials. Observe that, if a user
has a valid Merkle authentication path (i.e., witness) θ attesting to their creden-
tial’s issuance at time t, not all n + 1 nodes in θ will usually need updating by
time t′ > t. Instead, the user only needs a summary of all ≤ n + 1 Merkle tree
nodes which have been added since time t. While users still reveal identifying
information about the credential when updating their authentication paths
with this approach—reducing the anonymity set to anywhere from N/2 to 1
credentials depending on the request—this approach is somewhat better at
both mitigating privacy risks and reducing communication overhead as well
compared to the naïve approach of requesting the entire θ each time.

Deferring credentials to issue. One of the more effective techniques to make
credential list updates more efficient is to allow the issuer to update the

18Practical session privacy protections are also insufficient. Even anonymous communication net-
works such as Tor are (perhaps inherently) vulnerable to de-anonymization via various correlation
attacks [DMMK18, Tora].
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credential list in batches according to a specified epoch. Instead of immediately
adding a validated cred to a Merkle tree T (as with IssueGrant in Figure 4), the
issuer could, for example, define a regular interval ∆I to wait before issuing
all valid credentials they collected at once. For example, if Alice’s credential is
being issued in this manner, she must wait at most ∆I seconds before she can
present a valid membership proof for her issued credential.19 After the batched
credentials are added, Alice can obtain its initial witness as appropriate. Note
that an issuer can decide on an appropriate batching policy based on usability
and efficiency tradeoffs.

Synchronizing Merkle tree state. More generally, we could consider some
agreed-upon list manager (perhaps distinct from the issuer) who determines
the current state of the Merkle tree for the purposes of membership verification.
Even if the issuer themselves is unwilling or unable to batch in the manner
described above, the list manager can snapshot the state of the Merkle forest
according to a specified epoch, e.g. at a regular interval ∆ℓ, and distribute this
snapshot as the “current” agreed-upon state of the Merkle forest.

For example, suppose that the latest snapshot occurred at time t and
that snapshots are published every ∆ℓ seconds. First, the user updates their
authentication path θ to be valid as of time t using the latest snapshot. If the
user and verifier agree that the latest snapshot is treated as current, then θ
is automatically up-to-date; otherwise, the user now only needs to manage
updates to θ between times t and t + ∆ℓ.

In either case, this approach can be particularly useful for users who have
been offline and unable to update their authentication path for many epochs,
or who have corrupted their local copy and need to recover the state of the
credential list; snapshots of the credential list allow the user to more easily
remain up-to-date.

These techniques for batching issued credentials are mostly agnostic to the
list’s instantiation. As we will soon see, however, this technique is amenable to
other approaches where Merkle trees are used.

B.3 Broadcasting frontier nodes

Instead of the user requesting specific updates to frontier nodes in θ, as in
Appendix B.2, consider an alternate approach where a list manager proactively
broadcasts the relevant frontier update(s) to all users. Each addition to the
Merkle tree requires the list manager to broadcast at most 1 + log2 N nodes
to all users, i.e. all updated nodes (as relevant to existing credentials) that
changed after adding one or more credentials. If left unbatched, this requires

19Indeed, many real-world credentials already require a waiting period. For example, a US
passport can take 5–11 weeks to validate and 1–2 days to ship before it can be used [U.S].
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broadcasting a small-constant O(N log N) number of nodes to each user across
the lifetime of the system.

However, one can reduce the number of nodes to stream by summarizing
a sequence of newly issued credentials. As a simple example, if an issuer
issued 2b credentials by placing them in a binary Merkle tree, it suffices to
broadcast a single path of at most n− b + 1 nodes from the updated root of
the tree to the subroot of all new batched credentials. With this, the user of
any previously-issued credential can parse any updated nodes they need for
their authentication path θ to be current up to that batch. Since broadcasted
tree updates now only occur once per batch instead of once per credential, this
helps decrease communication overhead by a factor of at least 2b.

Together, summarizing batches of issued credentials and broadcasting
frontiers preserves the instantiation’s unlinkability across credential usages.
Notably, users no longer need to send identifying information about their cre-
dential to update its authentication path, since the broadcasted frontier nodes
contain every relevant update to the Merkle tree for all users. Furthermore,
proactively broadcasting the frontier updates to users significantly reduces the
ability for adversaries to correlate credential usage, as users no longer even
need to reveal via request when they want to update their authentication path.

While this approach comes at the cost of additional overhead and system
complexity compared to the approach in Appendix B.2, it is especially suitable
for applications where credential lists are relatively static and credentials do
not need to be issued immediately. This approach is also better for many
users compared to the naïve approach of downloading the entire Merkle
tree, especially when using resource-constrained devices. Similar to standard
Merkle-based constructions, the user only needs to store a logarithmic number
of nodes (roughly log2 N + c, where c is a small constant) to process the stream
of frontier nodes and update θ. Furthermore, while broadcasting all Merkle
tree updates results in O(N log N) frontier nodes (more precisely, at most
∑N

i=1 1 + log2 N = N · (n + 1)) being sent to each user across the lifetime of the
Merkle tree, the stream can be processed periodically and in only a single pass
using a logarithmic-sized buffer.

B.4 Optimizing Merkle forests

In this subsection, we propose a novel construction which leverages many of
the techniques discussed above to simultaneously minimize witness update
frequency(and thus proof computation costs), privacy risks (via update request
interactivity), and user storage costs at the expense of a moderate increase in
communication overhead. We believe that this provides an amenable tradeoff
between privacy, efficiency, and usability for many use-cases leveraging Merkle
trees. In particular, users can (eventually) rely solely on broadcasted frontier
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nodes to update their authentication path θ, the Merkle forest scales effectively
as the number of credentials grows, and every user will be required to update
their credentials’ proofs of membership less often compared to a naïve Merkle
tree construction of comparable capacity.

Consider an alternate Merkle forest instantiation F := (r1, r2, . . . , rn) where
each Merkle root ri corresponds to a full binary Merkle tree Ti with height i, and
where n is the current number of roots in F. As such, we define the capacity of
F as N := ∑n

i=1 2i = 2n+1 − 2.
The Merkle forest approach below relies on two crucial observations. First,

any approach based on balanced Merkle forests will have smaller tree heights
than a single Merkle tree of comparable capacity (a single Merkle tree with
capacity 2n+1 has height n + 1). Second, we can leverage the fact that, with
multiple Merkle trees, the authentication path of a credential in tree Ti will only
change when other credentials are added to that same tree Ti. Modifications
to any other tree Tj ̸= Ti in the forest F will only invalidate the user’s forest-
membership proof (which is a simple OR proof) but not their tree-membership
proof, allowing reuse of the latter proof via LinkG16.

r1

T1

c3 c4

r2

T2

c5 c6 c1 c2

1. Fill F with issued creds (here, c3−c6)
and broadcast 2 updated frontiers for Tn

2. Compose
F into Tn+1

r3

T3

r1

c3 c4

r2

c5 c6 c1 c2

T1 T2

3. Broadcast new
frontier for Tn+1

4. Re-instantiate T1, T2, . . . , Tn in F;
n := n + 1

Figure 7: A single iteration of the forest-packing algorithm with n0 = 1 trees in F at
initialization and n = 2 trees as of Step 1. Dashed nodes represent hashes of empty
entries or a root of an empty subtree; grey leaf nodes are hashed entries (i.e., issued
credentials); blue-circled nodes are frontier nodes. Note that, invariably, the forest with
n0 trees requires no frontier because of Step 0 in the witness-update algorithm.

Growing Merkle forests. Assume without loss of generality that the user
knows the representation of the broadcasted frontier updates, and (for sim-
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plicity of analysis alone) that issuance and authentication path updates are
left unbatched. We also assume, as before, that credentials are not modified
in-place once added. We first define a forest-packing algorithm describing how a
list manager or issuer adds newly issued credentials to Merkle forest F:

0. Initialize F with n0 > 0 sparse binary Merkle trees, where each tree Ti
has height i and all leaves/entries are currently empty (i.e., the hash of
nil). That is, F initially contains n := n0 empty trees.

1. Populate the entries in F with newly issued credentials as desired (e.g.,
from left to right, starting with the smallest available tree) until F is full.

2. Compose all now-filled trees T1, . . . , Tn into a single tree Tn+1 with height
n + 1, arranging each Ti into a sequence of right subtrees. Initialize the
remaining 2 leftmost entries in Tn+1 as empty and add rn+1 to F.

3. Immediately, and after any future addition to the 2 leftmost entries from
Step 1, broadcast the frontier to Tn+1 containing its "leftmost" intermediate
nodes and the root rn+1 that updated.

4. Re-instantiate T1, . . . , Tn and their corresponding roots in F as empty,
then repeat from Step 1 with n := n + 1.

Updating authentication paths. For clarity, we also define a witness-update
algorithm which describes how a user tracks changes to their issued credential’s
authentication path θ as F grows. Suppose that the user can only reliably track
the current roots of each Merkle tree F, and does so out-of-band.20 Then:

0. The user first requests to issue a credential. If valid, the issuer adds
it to some Merkle tree Ti in F, allowing the user to obtain their initial
witness/authentication path θ. Initially, a user must track updates to θ as
appropriate until Ti is full.

1. Once the tree Ti holding the credential is filled, the user waits until all
trees in F are completely filled; only the roots in F \ {Ti} may change
after this point, so θ remains a valid Merkle path to the credential.

2. The user listens for a broadcast indicating that their credential has been
composed into the new tree Tn+1 (see above). They scan in a single pass
for the relevant frontier node(s) which, in conjunction with the old θ and
(now sub-)roots in F, form the new authentication path for Tn+1; the user
updates θ accordingly and marks that F has grown with n := n + 1.

3. Thereafter, their credential’s tree will invariably have 2 empty entries;
listen for broadcast(s) indicating that an new credential changed the
relevant frontier nodes, and update θ accordingly. Repeat from Step 1.

20Even for massive Merkle forests of capacity, say, 233 − 2 = 8.6 billion credentials, this only
requires tracking and storing 32 hash values (i.e. for 256-bit digests, 1 KB).
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To see how a user (say, Alice) can correctly compute her current authentica-
tion path θ in this construction, consider the lifetime of her issued credential.
Without loss of generality, consider her credential to be initially committed
to by the i-th Merkle tree Ti (of n) in the Merkle forest F. Alice is initially
responsible for updating or requesting θ herself, doing so until the tree Ti that
her credential resides in is full. Thereafter, her credential will be composed
into the largest tree of the forest, and after this point it suffices for Alice to
track changes to θ using frontier updates alone to keep her membership proof
updated. More precisely, any user with a credential in the (now sub-)trees
T1, . . . , Tn can update its authentication path θ to be current for the tree of
height n + 1 by scanning for the frontier nodes in the Merkle path which
compute from the subroot (i.e., the old ri) up to the current Merkle root rn+1,
also considering the roots of the subtrees that were just composed into Tn+1.
By repeating this process for updates to this largest tree (invariantly, at most
two more times), it follows by induction on the number of trees in the Merkle
forest F that the user can correctly update to a valid authentication path θ
across the lifetime of the credential, and can do so by using only broadcasted
frontier nodes and the forest’s roots after the initial tree is filled.

Comparison to Merkle tree. One of the primary benefits of this Merkle forest
approach is that it allows users to reuse their authentication path more often
than the approaches using fixed-height Merkle trees, greatly reducing how
often a user must recompute expensive tree membership proofs.

For all users of older credentials which have already been composed into
the largest tree in F, each user will only have to update θ at most three times
per new tree. As such, this only requires users of older credentials to perform
O(log N) updates (excluding updates while in the initial tree; see below) for
the remaining lifetime of the Merkle forest. Furthermore, broadcasting a global
frontier eliminates the need for users of older credentials to interact with other
parties to update authentication paths, providing strong privacy guarantees
beyond the short-term.

Even for users of newly issued credentials whose credentials are still in
their initial tree Ti, this Merkle forest approach requires fewer authentication
path updates compared to a standard Merkle tree of near-identical capacity
(i.e. T1, . . . , Tn vs. Tn+1). In the worst case, where a credential is initially added
to tree Tn, this requires a credential to update its authentication path at most
2n times as other added credentials update its Merkle root (compared to 2n+1

for a standard Merkle tree). However, depending on how the issuer distributes
the newly issued credentials across the variable-height trees in F, users might
expect a reduction from the worst case of 2n initial updates. For example,
assuming an average case where a credential has a uniform probability of
being added to any given leaf node (i.e., average number of updates for each
tree weighted by tree capacity in the forest), in expectation a user would need
to perform ∑n

i=1
2i

N · 2i−1 = 1
3 (2

n + 1)authentication path updates in the initial
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tree. As such, the Merkle forest approach requires 2–3× fewer initial updates
(before batching) compared to a single Merkle tree of near-identical size.

And, while the reduced number of updates comes at the expense of in-
creased communication costs to broadcast to all users, the tradeoff is still
competitive compared to standard Merkle trees in some cases. Since at most
three frontiers will be broadcasted for each additional tree Ti+1 added to a
Merkle forest F as it grows from n0 to n ≥ n0 trees, and each frontier contains
i nodes, the system must broadcast at most ∑n

i=n0+1 3i = 3
2 (n− n0)(n + n0 + 1)

frontier nodes to each user across its lifetime. Concretely, assuming 256-bit
hash digests and that the Merkle trees in the forest start with height n0 = 1
and end with height n := 32 (i.e., 8.6 billion credentials), processing the frontier
would require broadcasting at most 51 KB to each user across the lifetime of
the system.

Overall, the issuer or list manager must broadcast a small-constant O(log2 N)
number of nodes to each user, compared to sending O(log N) nodes per user
request as with the naïve Merkle tree approach. Furthermore, since only 3
broadcasts are required per tree with increasing height i, the rate at which
broadcasts occur will decrease exponentially as F grows.

Distributing newly issued credentials. We emphasize that, if using the
Merkle forest packing approach, the issuer or list manager has power to add
credentials in an arbitrary manner to any tree T1, . . . , Tn of variable height in
F by default. This asymmetry in initial tree sizes has important implications
on computational fairness and efficiency for users wishing to mitigate proof
re-computations for their newly issued credentials, even outside an adversarial
setting. We leave further discussion on the implications and importance of
asymmetry in Merkle forests to future work.

C Revocation of issued credentials

In certain situations, some party might wish to revoke an already-issued
credential, invalidating its authentication path θ using mechanisms beyond
simple checks for, e.g., expiry. A naïve approach for credential revocation
would be to replace its leaf node in the Merkle tree with a hash of nil, as was
done with RevokeCred for fixed-height Merkle forests in Figure 4. However,
in-place revocation such as this comes with significant drawbacks. For example,
naïve revocation would cause many of the optimizations mentioned before
(especially batched requests and the forest-packing algorithm) to longer work.
However, other revocation mechanisms for Merkle trees may allow zk-creds
to support both revocation and the Merkle tree optimizations described above.

On the surface, anonymous credentials and X.509 certificate often employ
similar methods for managing membership on a list. As such, one might be
tempted to use the idea of certificate revocation lists (CRLs), as defined in
RFC 5280 [CSF+08], for anonymous credentials as well. This would avoid many
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issues with deleting the credentials in-place on the membership list. However,
there are important consequences to using CRL-based methods for revocation.

Perhaps most importantly, for revocation to be possible RFC 5280 requires
certificates to have some form of persistent identifier; this is not possible
for all types of anonymous credentials, however. More precisely, a CRL-
compatible anonymous credential must contain a unique, persistent, and
privacy-preserving identifier id (e.g., a credential hash or committed attribute).
Additionally, either the user must specifically request for their credential to
be revoked, or a verifier/auditor must be able to de-anonymize a misused
credential (e.g. through violation of cloning resistance) to revoke it.

A CRL-based revocation approach for anonymous credentials would likely
also come with many of the same practical issues as with CRLs for certificates.
For example, strict granularity and consistency of updates is required for all
parties to maintain a secure and synchronized revocation list. Additionally,
trusting a party to manage a credential revocation list may re-introduce trust
assumptions that some central authorities’ signing keys are kept secret and
are used honestly (see [CSF+08], Section 3.3). We leave a more thorough
investigation of zk-creds-compatible revocation techniques to future work.

D Zero-knowledge definitions

To prove security of the protocols in Appendix E and Appendix F, we require
definitions of soundness and zero-knowledge for proof systems. The definitions
below are identical to those of [BMM+19]. ⟨A,B⟩ denotes the transcript of a
protocol run between algorithms A and B.

Definition (Knowledge-sound argument). A public-coin argument Π = (Setup,
Prove, Verify) on a relation R is knowledge-sound with error κ(λ) iff for all determin-
istic efficient (possibly dishonest) provers P∗, there exists an efficient extractor E such
that for all PPT adversaries A,

Pr

tr accepts ∧ (x, w) ̸∈ R

∣∣∣∣∣
crs← Setup(1λ)

(x, tr)← ⟨P∗,Verify⟩(crs)
w← EP∗(crs, x, tr)

 ≤ κ(λ).

We say Π is knowledge-sound iff it is knowledge-sound with negligible error.

Definition (Perfect honest-verifier zero-knowledge (HVZK)). Let Π = (Setup,
Prove, Verify) be an interactive argument of knowledge on a relation R. Let an
adversary be a pair of PPT algorithms A = (A0,A1) such that A0(crs) picks an
instance, witness, and random coins (x, w, ρ); and A1(tr) decides whether a transcript
is the result of a simulation or not.
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Π is perfect honest-verifier zero-knowledge iff there exists an efficient simulator
Sim such that for all adversaries A = (A0,A1),

Pr

(x, w) ∈ R ∧ A1(tr)
∣∣∣ crs← Setup(1λ)

(x, w, ρ)← A0(crs)

tr← Sim(crs, x ; ρ)



= Pr

(x, w) ∈ R ∧ A1(tr)
∣∣∣

crs← Setup(1λ)

(x, w, ρ)← A0(crs)

tr←
〈

Prove(crs, x, w),
Verify(crs, x ; ρ)

〉


E LinkG16

We now describe and prove the security of the LinkG16 proof system.

E.1 Goal

The purpose of LinkG16 is to show that k Groth16 proofs over heterogeneous
circuits crs1, . . . , crsk all share the same first t public inputs {a0, . . . , at−1} with-
out revealing the inputs. That is, given k Groth16 proofs π1, . . . , πk, we wish to
construct a zero-knowledge proof of the following relation:

Rlinkg16 =


({crsi, Ŝi}k

i=1; {aj}t−1
j=0, {πi}k

i=1) :
k∧

i=1
G16.Verify(crsi, πi, Ŝi +

t−1

∑
j=0

ajW
(i)
j )


where W(i)

j represents the wire Wj in crsi, and Ŝi = ∑ℓ
j=t ajW

(i)
j is the verifier-

known prepared input for the i-th proof.

E.2 Construction

We define the new proof system below.

LinkG16.Link({aj}t−1
j=0, {crsi, πi}k

i=1)→ πlink Sample values z1, . . . , zk ← F for

blinding. For each i, commit to the shared inputs, Ui := zi[δ]
(i)
1 +∑t−1

j=0 ajW
(i)
j .

Let πeqwire be an EqWire discrete-log equality proof (described in Ap-
pendix F) that the Ui commit to the same aj values,

Reqwire =


({Ui, crsi}k

i=1; {aj}t−1
j=0, {zi}k

i=1) :
k∧

i=1
Ui = zi[δ]

(i)
1 +

t−1

∑
j=0

ajW
(i)
j

 .
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Rerandomize the underlying proofs in place, πi := G16.Rerand(crsi, πi),
then blind the proofs,

π′i := (Ai, Bi, Ci − [zi]1).

The final output is

πlink := (πeqwire, {Ui, π′i}k
i=1).

LinkG16.LinkVerify(πlink, {crsi, Ŝi}k
i=1)→ {0, 1} Check πeqwire using EqWire.Verify.

Then unpack each π′i into (A′i, B′i , C′i). For each i = 1, . . . , k, check

e(A′i, B′i)
?
= e([α](i)1 , [β](i)2 ) · e(C′i , [δ]

(i)
2 ) · e(Ui + Ŝi, H).

where Ŝi is the Groth16 prepared public input for circuit i.

E.3 Proofs

Theorem 1 (Correctness). If G16.Prove and LinkG16.Link are honestly computed,
then LinkG16.LinkVerify succeeds.

Proof. We show that the LinkVerify equation above holds for all i. For legibility,
we omit the index i in the proof. Suppose πlink is computed honestly, i.e.,
that all U′ and (A′, B′, C′) are well-formed and that the underlying Groth16
verification equations holds on the corresponding (A, B, C). First, we note that,
since C′ and U were computed honestly,

e(C′, [δ]2) · e(U, H)

= e(C− [z]1, [δ]2) · e(∑ ajWj + z[δ]1, H) Expanding

= e(C, [δ]2) · e(−[z]1, [δ]2) · e(z[δ]1, H) · e(∑ ajWj, H) Bilinearity

= e(C, [δ]2) · e(∑ ajWj, H). Bilinearity

Using this and the fact that A′ = A and B′ = B, we see that the LinkVerify
equation

e(A′, B′) = e([α]1, [β]2) · e(C′, [δ]2) · e(U + Ŝ, H)

holds if and only if

e(A, B)

= e([α]1, [β]2) · e(C′, [δ]2) · e(U + Ŝ, H) Subst. A′, B′

= e([α]1, [β]2) · e(C′, [δ]2) · e(U, H) · e(Ŝ, H) Bilinearity

= e([α]1, [β]2) · e(C, [δ]2) · e(∑ ajWj, H) · e(Ŝ, H) Above identity

= e([α]1, [β]2) · e(C, [δ]2) · e(Ŝ + ∑ ajWj, H) Bilinearity

which is precisely the verification equation for the i-th underlying Groth16
instance. Since this equation holds by assumption, LinkVerify succeeds.
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Theorem 2. LinkG16 is perfect HVZK.

Proof. We define a simulator Simlinkg16 with access to Groth16 trapdoors
τ1, . . . , τk as follows. For each i, sample Ā′i, B̄′i , Ūi ← F uniformly. Use the
trapdoor τi to compute C′i ∈ G1 as the unique group element which satisfies
the i-th LinkVerify equation with respect to crsi and public inputs21 {aj}ℓj=t.
Concretely,

C̄′i :=
Ā′i B̄

′
i − α(i)β(i) − Ūi −∑ℓ

j=t ajW
(i)
j

δ(i)
.

For all i, let π′i := ([Āi]1, [B̄i]2, [C̄i]1) and Ui := [Ūi]1. Finally, let

πeqwire ← Simeqwire({crsi, Ui}k
i=1).

The output of Simlinkg16 is (πeqwire, {Ui, π′i}k
i=1).

This is indistinguishable from the real world protocol. In the real world:
each Ui is uniformly distributed due to the blinding values zi; A′i, B′i are
uniformly distributed by the Groth16 proof procedure; and each C′i is the
unique group element which satisfies the i-th LinkVerify equation. Lastly, the
simulated πeqwire is indistinguishable from an honestly generated one due to
the perfect HVZK of the EqWire protocol.

Theorem 3. LinkG16 is knowledge-sound.

Proof. We define an extractor Elinkg16, aborting on verification error, as follows.
By knowledge soundness of EqWire there exists an extractor Eeqwire which

extracts {aj}t−1
j=0, {zi}k

i=1 such that Ui = zi[δ]
(i)
1 + ∑ ajW

(i)
j . For each i = 1, . . . , k,

Elinkg16 then reconstructs the underlying Groth16 proof

πi = (A′i, B′i , C′i + [zi]1).

Elinkg16 outputs ({aj}t−1
j=0, {πi}k

i=1). Since Elinkg16 did not abort, it is the case
that, for each i,

e(A′i, B′i)

= e([α](i)1 , [β](i)2 ) · e(C′i , [δ]
(i)
2 ) · e(Ui + Ŝi, H) LinkVerify

= e([α](i)1 , [β](i)2 ) · e(C′i , [δ]
(i)
2 ) · e(zi[δ]

(i)
1 + ∑ ajW

(i)
j + Ŝi, H) Eeqwire output

= e([α](i)1 , [β](i)2 ) · e(C′i + [zi]1, [δ](i)2 ) · e(Ŝi + ∑ ajW
(i)
j , H) Bilinearity

which is precisely the verification equation for πi.
21How does the verifier know aj (for j ≥ t) if it was only given the prepared input Ŝ? It is merely

for brevity that LinkVerify is written to take Ŝ. The verifier always knows the prepared input’s
constituent aj values.
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EqWire.Prove({aj}t−1
j=0, {crsi, zi}k

i=1) EqWire.Verify({crsi, Ui}k
i=1)

s1, . . . , sk ← F

r0, . . . , rt−1 ← F

∀i : comi := ∑j rjW
(i)
j + si[δ]

(i)
1

{comi}k
i=1

c c← F

∀j : ρj := rj − caj

∀i : σi := si − czi
{ρj}t−1

j=0, {σi}k
i=1

Check for all i:

comi
?
= ∑j ρjW

(i)
j

+ σi[δ]
(i)
1 + cUi

Figure 8: The EqWire protocol

F EqWire

We now define and prove secure a proof system for the discrete-logarithm
equality relation,

Reqwire =


({Ui, crsi}k

i=1; {aj}t−1
j=0, {zi}k

i=1) :
k∧

i=1
Ui = zi[δ]

(i)
1 +

t−1

∑
j=0

ajW
(i)
j

 .

The proof system is instantiated using a proof framework due to Camenisch
and Stadler [CS97]. Concretely, it is the Fiat-Shamir transform of the protocol
described in Figure 8.

Proofs

Theorem 4. The EqWire protocol is knowledge-sound.

Proof. We define extraction in the usual way for Camenisch-Stadtler sigma
protocols. Let Eeqwire be our extractor, aborting on verification failure. The
extractor receives the commitments, and then picks challenge c← F. It sends
c and receives {ρj, σi}i,j. The extractor then rewinds to pick a fresh c′ ← F. It
sends c′ and receives {ρ′j, σ′i }i,j. For all i and j, the extractor computes

aj :=
ρj − ρ′j
c′ − c

zi :=
σi − σ′i
c′ − c

and outputs ({aj}t−1
j=0, {zi}k

i=1). Since the extractor did not abort, i.e., both runs
passed verification, and the commitments did not change, it is the case that
Ui = zi[δ]

(i)
1 + ∑j ajW

(i)
j for all i.

Theorem 5. The EqWire protocol is perfect HVZK.
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Proof. We define a simulator as follows: sample c and all σi, ρj uniformly from

F; for all i, compute comi := ∑j ρjW
(i)
j +σi[δ]

(i)
1 + cUi; output (c, {comi, ρj, σi}i,j).

This is perfectly indistinguishable from a real transcript: all σi and ρj are
uniform iid since they are blinded by si and rj, respectively; c is uniform
and independent by definition of honest-verifier; and all comi are uniquely
determined by these values. In the simulator, each σi and ρj is uniform iid by
construction, and comi is uniquely determined by these values.

G Instantiation with Pedersen hashing

In Table 5 we give benchmarks using a different collision resistant hash for the
Merkle tree. Specifically we use a Pedersen hash over the Jubjub curve.

Client-opt. (C)
Server-opt. (S)

ShowCred VerifyShow Proof Size
C C (full) S C S S (batch) C S

Simple Possession 5ms 784ms 699ms 4ms 744B
Expiry 98ms 875ms 796ms

Linkable Show 104ms 879ms 837ms
6ms

1.5ms 1.8 verifs/ms
1064B

192B
Rate Limiting 117ms 895ms 817ms

Clone Resistance 139ms 916ms 812ms

Table 5: Gadget microbenchmarks using Pedersen hashes for two versions of zk-creds.
Membership proofs are done on a Merkle forest of size 231 (tree height = 24, #trees = 28).
The first configuration (C) minimizes client-side proving cost; the second configuration
(S) maximizes server throughput. ShowCred (full) gives the cost of including member-
ship recomputation while showing a credential. VerifyShow (batch) gives throughput
for verifying a set of 100 proofs. We emphasize that all verification numbers are single-
threaded, allowing for efficient concurrent processing.

H CRS sizes of evaluated circuits

We list in Table 6 the sizes of the proving and verifying keys for all the circuits
evaluated in Sections 6 and 7.
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Proving key (MB) Verifying key (KB)
Forest membership 0.3 12.8

Tree membership 10.1 0.6
Expiry 1.5 0.6

Linkable show 0.4 0.6
Rate limiting 1.3 0.8

Clone resistance 1.2 0.8
Age-restricted vid. 2.8 0.9

Entering a bar 2.5 0.6

Table 6: CRS sizes for our evaluated circuits
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