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Abstract. A union-only signature (UOS) scheme (informally introduced
by Johnson et al. at CT-RSA 2002) allows signers to sign sets of mes-
sages in such a way that (1) any third party can merge two signatures to
derive a signature on the union of the message sets, and (2) no adversary,
given a signature on some set, can derive a valid signature on any strict
subset of that set (unless it has seen such a signature already).
Johnson et al. originally posed building a UOS as an open problem. In
this paper, we make two contributions: we give the first formal definition
of a UOS scheme, and we give the first UOS constructions. Our main
construction uses hashing, regular digital signatures, Pedersen commit-
ments and signatures of knowledge. We provide an implementation that
demonstrates its practicality. Our main construction also relies on the
hardness of the short integer solution (SIS) problem; we show how that
this assumption can be replaced with the use of groups of unknown order.
Finally, we sketch a UOS construction using SNARKs; this additionally
gives the property that the size of the signature does not grow with the
number of merges. 3

Keywords: homomorphic signatures, union-only signature schemes, history-
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1 Introduction

A set-homomorphic digital signature is a signature scheme which supports the
computation of set operations — for example union and difference — over signed
messages. Let Sign(sk,M) be the signing operation for such a signature scheme,
for some private signing key sk and a set of messages M .

For sets of messages X = {x1, . . . , xk} and Y = {y1, . . . , yn} which were
signed as Sign(sk, X) and Sign(sk, Y ), any third party can compute the signa-
ture on their union as Sign(sk, X)× Sign(sk, Y ) (we use × to denote the homo-
morphic union operation). If the homomorphic operation × is invertible, and
X ⊆ Y , one can also compute the signature on their difference Sign(sk, X \Y ) =
Sign(sk, X) × Sign(sk, Y )−1. The notion was initially introduced by Johnson et

3 A full version of this paper, with all proofs and preliminaries, is available on the
ePrint Archive.
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al. [15], together with a practical construction based on RSA accumulators, but
there are instantiations based on hardness assumptions other than integer fac-
torization [1,16].

A union-only signature (UOS) scheme is a special case of a set-homomorphic
signature scheme where the homomorphic operation is not invertible (that is,
it is one-way). In a UOS scheme, computing a signature on a set of messages
is easy given signatures on subsets of those messages, but computing the signa-
ture on the difference of two sets (the inverse operation) is hard. Constructing
union-only signatures was first posed as an open problem in the seminal work of
Johnson et al. [15]. Because previous set-homomorphic constructions represent
signatures as multiplicative structures (rings and multiplicative groups), com-
puting the difference operation amounts to inverting elements in such structures,
which can be done efficiently. For this reason, building a UOS based on those
constructions is challenging, and implies the existence of groups with infeasible
inversion (GIIs) [19], a powerful algebraic structure that further implies strong
associative one-way functions [22], efficient two-party secret key agreement pro-
tocols, and direct transitive signatures [14]. In a GII, computing the inverse of
a group element is required to be hard, while performing the group operation
is computationally efficient. While GIIs are not known to exist, there are recent
candidate constructions based on self-bilinear maps assuming indistinguishabil-
ity obfuscation [24] and isogeny graphs [5].

Contributions. In this paper, we make two contributions. First, we take the
opportunity to formalize the definition of a secure UOS scheme. Second, we
present two constructions which circumvent the roadblock described above by
choosing the signature format to not have a multiplicative structure. Our first
construction is based on hashing, Schnorr signatures, Pedersen commitments
and signatures of knowledge instantiated with elliptic curves. It also relies on
the hardness of the short integer solution (SIS) problem [3,18]. We show how to
replace this assumption with the use of groups of unknown order in a variant. A
second construction based on SNARKs appears in the full version of this paper.

All of our constructions support multiple signers and offer a notion of privacy
which precludes an adversary from learning how the signatures were derived (i.e.,
which subsets were actually signed by the signer, and which order the signatures
were merged in). The first construction performs much better, so we explore
it in detail; the SNARK-based construction produces constant-size signatures,
offering a trade-off between performance and compactness.

In our first construction, we employ multisets; we design a scheme that pre-
serves duplicates in the intersection of the merged sets instead of removing them,
which technically makes it homomorphic with respect to multiset sum. However,
this naturally coincides with the union operation for disjoint input sets and satis-
fies the original intuition of UOS given by Johnson et al. [15]. From this point on,
we abstract this technicality away in the scheme’s interface and refer only to the
set union operation for simplicity. We provide a proof-of-concept implementation
in Rust that shows that the construction is indeed efficient and scalable.
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Applications. To the best of our knowledge, the literature does not contain
concrete applications specific to UOS schemes. We devise application scenarios
considering a minimum of 4 parties:

Signer(s): Assumed to be honest, one or more Signers sign(s) sets of messages
with their signing keys, and make them available to a Merger. Importantly,
signatures over sets containing individual messages should not be publicly
available; otherwise, a third party (e.g. Prover) can remove them from a
merged signature simply by re-executing the merge on all the other signa-
tures.

Merger: a Merger merges signatures following a public procedure and for-
wards the resulting signature to a Prover. The merger must be indepen-
dent of the signer(s), and is trusted only to discard the merge history (when
hiding the history is desirable for privacy reasons).

Prover: a Prover trusts the public key(s) belonging to the Signer(s), and
therefore can be convinced that signatures are valid. It attempts to convince
a Verifier that all relevant messages are included in the merged signature
provided by the Merger.

Verifier: a Verifier verifies the signature and wants to check that the prover
did not exclude any messages from the set.

Figure 1 illustrates the workflow. In terms of incentives, signers want to pub-
lish their signed messages for credibility or to achieve some common goal. They
do not trust each other unconditionally (e.g. they still want privacy against one
another) and thus have their own key pairs. Signatures are merged by the merger,
and used by the prover to convince external parties (verifiers) that uncomfortable
messages or data points were not omitted on purpose.

g

g
...

g
Signer(s)

msgmsgmsg
�

msgmsgmsg
�

msgmsgmsg
�

msgmsgmsg
�

Signatures

,

Merger

3

Prover



Verifier

merged
signature

msgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsg
����

data
analysis

msgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsg
����

�

Fig. 1. Application scenario illustrating how authenticated data flows from Signer(s)
to the interaction between Prover and Verifier, after being merged by the Merger.

The general framework motivates a few scenarios. In epidemiology studies,
healthcare providers sign patient medical records (e.g. containing vaccination or
infection information) that are of interest to researchers. An independent gov-
ernment entity merges the medical records from multiple providers, with an in-
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centive to have as many as possible for credibility, even if specific data points are
not desirable. In this case, the government does not have a trusted signing key to
include new authenticated records (otherwise, we could imagine the government
using this key to inflate the number of records). Researchers can then perform
statistical analysis of the records and verifiably convince the public that all data
points available were taken into consideration to reach the conclusions. Privacy
guarantees are important to prevent the public from matching certain patient
data to a given healthcare provider, increasing their chances of de-anonymizing
the patient in question.

In a biodiversity setting, databases are jointly built4 by multiple curators con-
tributing data points (e.g. wildlife sightings for species in danger of extinction).
The database infrastructure merges the individual datasets with an incentive to
have as much data as possible available to researchers, who can then analyse
records and provide guarantees to the public that all data was considered. We
argue that privacy guarantees are important to collect data and perform impact-
ful research in these domains, as to prevent the public from being able to track
down and further jeopardize endangered species.

Related work. Homomorphic signatures were initially proposed by Johnson et
al. [15]. Many possibilities for the homomorphic operation were developed in
the literature [10,11,23,7], but the original paper already gave constructions for
redactable and set-homomorphic signatures. For the latter, assume that N is an
RSA modulus for which only the signer knows the factorization sk = (p, q). For
X = {x1, . . . , xk}, define Sign(sk, X) = v1/d mod N for random v ∈ Z∗

N and a

hash function h(·) that maps elements to a set of primes and d =
∏k

i=0 h(xi).
Given a signature σ on X, one can compute a signature on a subset X \ {xi}
by computing σh(xi) mod N . For d,X as above and Y = {y1, . . . , yn}, e =∏n

j=0 h(yj), a signature onX∪Y can be computed as v1/lcm(d,e) = (v1/d)a(v1/e)b

mod N with integers (a, b) such that ae+bd = gcd(d, e). The multiplicative struc-
ture of the signatures allows efficient union/difference by respectively adding/
removing elements from the accumulator, but complicates the design of UOS.
Because of the set difference operation, this does not imply UOS.

Abiteboul et al. [1] study homomorphic signatures for modifiable collections,
with applications to access control and secure data aggregation. They first recast
the scheme above as delete-only, for which an initial signature is computed over
the entire universe of elements and individual elements can be progressively
removed. They also give privacy definitions in a single-signer context and propose
an insert-only signature scheme satisfying computational privacy that supports
both insertion of individual elements and computation of a set intersection. The
scheme is constructed from a cryptographically-enforced “write-only” memory
and the delete-only scheme as building blocks, and imposes an upper bound on
the collection size, forcing a key refresh when the limit is reached. Additional
constructions based on zero-knowledge proofs are given for both delete- and
insert-only schemes, but without privacy claims.

4 Global Biodiversity Information Facility: https://www.gbif.org/

https://www.gbif.org/
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Kaaniche et al. [16] propose pairing-based set-homomorphic signatures sup-
porting union, difference and intersection for secure data aggregation within
the Internet of Things. The construction builds on efficient accumulators from
bilinear maps instead of RSA accumulators. Privacy is informally defined as
the adversary not being able to link signatures to signers or to detect removed
content. In terms of performance, pairing-based schemes rely on rather special
pairing-friendly curves, which are known to be less efficient than plain elliptic
curves due to their larger parameters [8].

A generalized notion introduced by Ahn et al. in [2] is P -homomorphic sig-
natures, in which anyone can derive a signature for a message m′ from the
signatures of a set of messages M as long as the predicate P (M,m′) holds.
The paper puts forward not only the abstract notion, but also a few concrete
constructions for fixed predicates, including string subset. Many homomorphic,
transitive and redactable signature schemes can be recast under this notion, but
it is not clear how to extend such constructions for the union-only predicate
efficiently. Another related notion is mergeable signatures [20,21], which are de-
fined for redactable signature schemes which allow a subset operation by design.
A construction based on signed RSA accumulators is also given, together with
applications such as merging databases while redacting specific entries.

A last related notion is that of extendable threshold ring signatures [6], where
signatures can be thought of as homomorphic with respect to the set of signers
(i.e., given a message signed by an anonymous subset of a set of signers, new
signers can contribute their support and potentially expand the anonymity set).
However, extendable threshold ring signatures do not offer any homomorphism
when it comes to the message in question. They also offer a very different notion
of privacy: they protect the identities of the signers, while our history-hiding
property protects the history and origins of the message set.

The schemes discussed previously do not satisfy the UOS requirement of al-
lowing union of messages as the only homomorphic operation, since they support
deletion and/or set intersection, or operate over the set of signers.

Organization. The paper is organized as follows. Section 2 defines the syntax
for UOS, and Section 3 defines the desired security notions. Section 4 presents
our main and most efficient construction. The experimental results supporting
our efficiency claims are discussed in Section 5, followed by the conclusion. An
interested reader can find our SNARK-based construction in the full version of
this paper.

2 Syntax

As described above, in a UOS scheme, signers sign sets of messages, and any
third party can merge signatures on such sets.

Definition 1 (Union-only Signature Scheme). A UOS=(Setup,KeyGen,Sign,
Merge,Verify) consists of five algorithms with the following syntax:
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Setup(1λ) → p takes the security parameter λ and outputs public parameters p
which are implicitly given to all algorithms.

KeyGen() → (pk, sk) generates a public-secret key pair.
Sign(sk,M) → σ takes a secret key sk and a set of messages M . Outputs a sig-

nature σ.
Merge({(σi,Mi, PKi)}µi=1) → σ takes a set of µ tuples, where each tuple consists

of a set of messages Mi, a signature σi and a set public keys PKi. Outputs
a new signature σ (which should verify for the message set M = ∪µ

i=1Mi

under the public key set PK = ∪µ
i=1PKi).

Verify(σ,M,PK) → {accept, reject} takes a signature σ, a set of messages M
and a set of public keys PK, and outputs either accept or reject.

These algorithms should satisfy the natural notion of correctness; that is, the
output of any sequence of honestly executed Sign and Merge operations should
be a verifying signature. They should also satisfy Definition 4 and Definition 3,
described in Section 3.

3 Security Definitions

We require two properties of a UOS: unforgeability and history-hiding. Informally,
unforgeability demands that an adversary not be able to sign on behalf of a set
of signers none of whom are corrupt. History-hiding demands that an adversary
not be able to determine how a given signature was derived.

3.1 Notation

We formalise the power of the adversary through four oracles, with access to some
common state, described in Figure 4. The first three oracles provide bookkeeping
of identities: KeyGenO adds a new honest party to the system, while CorruptO
corrupts an existing party, and RegKeyO registers a new corrupt party. The keys
in the system are stored by the oracles in a list LK ; the indices corresponding
to honest and corrupt parties in the key list are tracked in the sets H and C
respectively.

The final oracle we define is the signing oracle, denoted MergeO. It takes a
sequence of sign and merge operations described by the adversary, and outputs
the resulting signature. The oracle maintains a set of past queries LT , and a
counter qs for the number of queries made. For ease of notation, we define a
query tree T representing the kind of query an adversary can submit to a signing
oracle in our security games. (Since a signature can be derived by merging other
signatures, our signing oracle takes queries that are more complex than a single
message set and the signer the adversary wishes to see a signature from.)

In a query tree T , each leaf l represents a signature on a set of messages
l.M by signers in l.PK. If a leaf does not contain a signature provided by the
adversary and l.PK is a singleton containing the public key pkl.i of an honest
signer l.i, we call this an honest leaf. The leaves of T may be partitioned into the



Union-Only Signatures for Data Aggregation 7

set of honest leaves hl(T ) and the set of corrupt leaves cl(T ). Corrupt leaves may
have an arbitrary l.PK and can contain a signature provided by the adversary.
The signing oracle MergeO only answers queries where corrupt leaves contain
verifying signatures. To enforce this we introduce the VerifyLeaves procedure,
which checks that all corrupt leaves verify.

VerifyLeaves(T ):

for l ∈ cl(T ) do
if Verify(l.σ, l.M, l.PK) = ⊥ then

return ⊥

Fig. 2. VerifyLeaves. This algorithm checks that all signatures included in a query tree
by the adversary verify. It is used in Figure 4. The set of public keys PK contains all
public keys pki associated with the tree. Note that. if l.σ is not provided, verification
will always return ⊥.

Each internal node n of T represents the signature derived by merging its
children. So, each node n has associated message and signer sets n.M and n.PK
respectively. These are defined as the union of the corresponding sets across the
children of n. We denote the set of signers at the root of the tree as T.PK.

When given a query tree T , the challenger signs the appropriate leaves on
behalf of the honest signers, and merges the nodes as specified by the tree struc-
ture, until it derives the signature associated with the tree root. That signature
will be the query answer. The MergeO oracle produces signatures following the
SignAndMerge procedure, described in Figure 3. It uses a depth first approach to
signing and merging following the structure of the tree T . During the traversal
signatures are produced for each honest leaf, while corrupt leaves already contain
a signature provided by the adversary. The signatures at leaves are progressively
merged towards the root, such that each node contains the signature produced
by merging the signatures of its children.

3.2 Unforgeability

We define unforgeability with respect to the security game described in Figure
6. Informally, we don’t want an adversary to be able to forge a signature on
behalf of a set of honest signers, as long as that signature is on a set of messages
that could not have been obtained through taking unions of message sets on
which the signing oracle was queried. To formalize this, we define an outside
span algorithm (Definition 2, Figure 5) that determines whether a given set of
messages and honest signer identities are outside the span of the set of signing
oracle queries.

Definition 2 (Outside span). We define the predicate

OutsideSpan(M∗, PK∗, {(Mh
i , PKh

i )}i∈[n])
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SignAndMerge(T, SK):

Q := {T.root} ▷ new stack
while ¬Q.isEmpty do

n := Q.pop()
if n.isLeaf ∧ n.σ = ∅ then

n.σ := Sign(skn.i, n.M)
else if n.childrenQueued then

n.σ := Merge({(c.σ, c.M, c.PK)}c∈n.children)
else

Q.push(n)
for c ∈ n.children do

c.childrenQueued := ⊥
Q.push(c)

n.childrenQueued := ⊤
return n.σ

Fig. 3. SignAndMerge. The set of secret keys SK contains all honest parties’ secret
keys ski.

for sets of messages and public keys Mh
i , PKh

i as

̸ ∃S ⊆ [n] :
(
M∗ =

⋃
i∈S

Mh
i

)
∧
(
PK∗ =

⋃
i∈S

PKh
i

)
.

This can be efficiently checked as described in the algorithm in Figure 5.

For instance, imagine that we asked the signing oracle the set of queries
S = {({m1}, {pk1}), ({m2}, {pk2})}; in other words, we requested a signature on
m1 under pk1, and a signature m2 under pk2 from the signing oracle. Then, a sig-
nature on {m1,m2} under {pk1, pk2} should be computable in a UOS scheme; so,
it is within the span (in other words, OutsideSpan({m1,m2}, {pk1, pk2}, S) = ⊥).
However, anything which is not computable via union operations is outside
the span. As an example, a signature on {m1,m2} under pk1 alone should
not be computable (so, OutsideSpan({m1,m2}, {pk1}, S) = ⊤). A signature on
{m1,m2,m3} under {pk1, pk2} should also not be computable (so, OutsideSpan(
{m1,m2,m3}, {pk1, pk2}, S) = ⊤).

Definition 3 (Unforgeability). A UOS scheme is unforgeable if for all PPT
adversaries A it holds that

|Pr[A wins EUF(λ)]| ≤ negl(λ)

with the game EUF defined in Figure 6.

3.3 History Hiding

We define history-hiding for UOS schemes to require that no adversary can tell
the difference between signatures on trees which are “similar enough”. We leave
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KeyGenO(i)

1 : if (i, ·, ·) ∈ LK : return ⊥
2 : (pki, ski)← KeyGen()

3 : LK ← LK ∪ {(i, pki, ski)}
4 : H ← H ∪ {i}
5 : return pki
CorruptO(i)

1 : if (i, ·, ·) ̸∈ LK : return ⊥
2 : retrieve (i, pki, ski) from LK

3 : H ← H \ {i}
4 : C ← C ∪ {i}
5 : return ski

RegKeyO(i, pki)

1 : if (i, ·, ·) ∈ LK : return ⊥
2 : LK ← LK ∪ {(i, pki,⊥)}
3 : C ← C ∪ {i}
MergeO(Tj)

1 : qs ← qs + 1

2 : LT ← LT ∪ {(qs, Tj)}
3 : if (Tj .PK ̸⊂ {pki | i ∈ H ∪ C}) ∨

(VerifyLeaves(Tj) = ⊥) :
4 : return ⊥
5 : σj ← SignAndMerge(Tj , {ski | i ∈ H})
6 : return σj

Fig. 4. Oracles for key generation, signing and corruption, used in the Unforgeability
and History Hiding games.

OutsideSpan(M∗, PK∗, {(Mi, PKi)}µi=1)

S := {i ∈ [n] | (Mi \M∗ = ∅) ∧ (PKi \ PK∗ = ∅)}
M :=

⋃
i∈S Mi

PK :=
⋃

i∈S PKi

return ¬
(
(M∗ = M) ∧ (PK∗ = PK)

)
Fig. 5. OutsideSpan

the definition of “similar enough” as a parameter of the history-hiding property,
formalized as an equivalence relation ≡T . We describe two options for ≡T here.

≡strong: This equivalence relation deems two trees T0 and T1 equivalent if the
union of their leaf message sets, and the union of their leaf identities, are the
same.

≡weak: This equivalence relation deems two trees T0 and T1 equivalent if:

1. The set of corrupt leaves on the two trees are the same.

2. The number of leaves per honest signer is equal.

3. The multiset union of the honest leaf message sets are equal.

The use of both these relations within the history-hiding definition demands
that honest signers who contribute signatures to a merged signature cannot
be linked to a specific subset of the signed messages, even in the presence of
malicious signers. The use of ≡strong additionally demands that even corrupt
parties cannot be linked to a specific subset of messages.
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EUF(λ)

1 : H ← ∅; C ← ∅; LK ← ∅; LT ← ∅; qs ← 0

2 : p← Setup(1λ)

3 : O ← {KeyGenO,CorruptO,RegKeyO,MergeO}

4 : (σ∗,M∗, PK∗)← AO(p)

5 : for (·, Tj) ∈ LT :

6 : PKh
j := {pkl.i}l∈hl(Tj)

7 : Mh
j :=

⋃
l∈hl(Tj)

l.M

8 : if Verify(σ∗,M∗, PK∗) = ⊥ : A loses

9 : if OutsideSpan(M∗, PK∗, {(Mh
j , PKh

j )}qsj=1) = ⊥ :

10 : A loses

11 : if PK∗ \ {pki}i∈H ̸= ∅ : A loses

12 : else A wins

Fig. 6. The Unforgeability Game

HHb(λ)

1 : H ← ∅; C ← ∅; LK ← ∅; LT ← ∅; qs ← 0

2 : p← Setup(1λ)

3 : O ← {KeyGenO,CorruptO,RegKeyO,MergeO}

4 : (T0, T1, aux)← AO
1 (p)

5 : if VerifyLeaves(T0, T0.PK) = ⊥ : A loses

6 : if VerifyLeaves(T1, T1.PK) = ⊥ : A loses

7 : σb ← SignAndMerge(Tb)

8 : b′ ← AO
2 (σb, aux)

9 : if ¬(T0 ≡T T1) : A loses

10 : if b ̸= b′ : A loses

11 : else A wins

Fig. 7. The History-Hiding Game

Definition 4 (History Hiding). A UOS scheme is history-hiding with respect
to equivalence relation ≡T if for all PPT adversaries A = {A1,A2} it holds that

|Pr[A wins HH0(λ)]− Pr[A wins HH1(λ)]| ≤
1

2
+ negl(λ)

with the game HHb defined in Figure 7.
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Remark 1. Note that the equivalence of the trees (T0 ≡T T1) depends on which
signers are corrupt; for that reason, the equivalence check is performed after the
adversary (possibly using access to the corruption oracle) produces the bit b′.

4 A UOS Scheme

In this section, we present a concrete UOS scheme. The construction uses sig-
natures, Pedersen commitments and signatures of knowledge. The proof of se-
curity additionally uses additive and multiplicative secret sharing, the discrete
logarithm assumption, and either the short integer solution (SIS) assumption
or groups of unknown order. Formal preliminaries are presented in the full
version of this paper; here, we go directly to the construction. We first de-
scribe an intuitive construction similar the anonymously aggregatable signature
of SwapCT [13] which doesn’t quite give us the unforgeability guarantees we
would like. We then describe the two ways to obtain those guarantees.

4.1 Initial Construction

When signing a set of messages {mj}µj=1, the signer assigns each message mj

a random proxy sj ∈ G.5 The signer commits to the proxy as Cj = GsjHrj ,
using a freshly chosen random witness rj . To ensure that the signer knows the
commitment opening (i.e. to ensure that she didn’t simply copy someone else’s
commitment without knowing its contents), and to bind the commitment to the
message mj , the signer creates a signature of knowledge πj of mj , using sj and
rj as the witness.

To complete the signature, the signer adds up all of the proxies as s :=∑µ
j=1 sj , and commits to s as D := Gs. She then signs D using a regular signa-

ture scheme Sig, resulting in σ′.
The resulting UOS signature σ contains three parts:

1. The value D and the associated signature σ′ (together with the public sig-
nature verification key of the signer, for ease of notation). We denote this
part of the signature as

L = {(σ′, D, pk)}.
(We write this as a set to facilitate notation for merging later.)

2. The set of messagesmj , commitments Cj and associated signatures of knowl-
edge πj . We denote this part of the signature as

R = {(πj , Cj ,mj)}µj=1.

3. The sum r :=
∑µ

j=1 rj of all the values rj used in the commitments.6

5 A signer might want to sign an empty message set, if she is contributing the signature
solely for the purposes of expanding the others’ anonymity set. If this is the case,
and the message set is empty, a placeholder message ⊥ outside of the message space
is added.

6 If the order of the group G is known, the sum can be computed modulo that order.
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To merge two signatures σ1 = (L1, R1, r1) and σ2 = (L2, R2, r2), any third
party can simply compute σ = (L1 ∪ L2, R1 ∪R2, r = r1 + r2).

Note that the public verification key pk is included in L, and the messages
mj are included in R, even though the public keys and the messages are in-
dependently given to verification algorithm. This is done to make clear that a
given public key should be used to verify σ′ on D, and that a given message
corresponds to commitment Cj . This mapping is necessary for verification of
σ = (L,R, r), during which the verifier checks the following three things:

1. For (σ′, D, pk) ∈ L, the signature σ′ on D verifies under the key pk.
2. For (π,C,m) ∈ R, the signature of knowledge π verifies on the message m

for the corresponding statement C.
3. Let D′ =

∏
(·,D,·)∈L D, and C ′ =

∏
(·,C,·)∈R C. Then, HrD′ = C ′.

Informally, we get the weak history hiding property because the items in L
correspond to signers and the items in R correspond to messages, but there is
nothing to link a given item in L to a given item in R. Unforgeability is a bit
trickier to argue. There are several kinds of forgeries we would like to prevent:

1. One where the attacker adds a new value D.
2. One where the attacker uses a subset of D’s produced by the honest signers,

but changes the set of corresponding C’s.

We can rule out the first kind of forgery simply by relying on the unforgeability
of the underlying digital signature scheme: the attacker cannot sign a new value
D on behalf of any of the honest signers. Within the second kind of forgery, we
must consider the case where the attacker uses a strict subset of the honestly
produced C’s, and the case where the attacker adds new values of C. In the first
case, we can use the attacker to find the discrete logarithm relationship between
G and H.

However, in the second case, there is a trivial attack — the attacker can add
the message m to any signature σ = (L,R, r) by (1) choosing r′ randomly, (2)
choosing s = 0 modulo the order of the group G, (3) computing (π,C,m) using
those values of s and r′, and (4) setting the new signature to be

σ′ = (L,R ∪ {(π,C,m)}, r + r′).

This new signature will verify, since we have not changed the exponent of G on
either side, and have made sure that the exponents of H change consistently on
the two sides (by adding r′ to r).

We can preclude this kind of attack in one of two ways: by relying on groups
of unknown order, or by relying on the hardness of the short integer solution
problem. We describe our construction formally in Figure 8, and informally
below.

4.2 Secure Variant from Groups of Unknown Order

If we require that every signature of knowledge π additionally prove that the
s contained in the witness is positive, then to carry out the above attack, the
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Setup(1λ):

(G, q,G) ← GroupGen(1κ), where κ is the bit-length of the group order q,
and G is a generator of G.
Pick a second generator H of G.
for all k ∈ [w] do

Gk
$←− G,Hk

$←− H
crs← SoK[Lped].Setup(1λ)
return p := (H,G, (G1, . . . , Gw), (H1, . . . ,Hw),crs)

KeyGen():

(pk, sk)← Sig.KeyGen(1λ)
return (pk, sk)

Sign(sk,M = {mj}µj=1):

if µ = 0 then µ := 1; m1 := ⊥
for all j ∈ [µ] do

▷ Let q be the order of G or 22κ chosen such that 2κ is bigger than the
order of G

sj , rj
$←− Zq

Cj := HrjGsj

πj ← SoK[Lped or Lped’].Sign(x := Cj ,w := (sj , rj),mj)
for all k ∈ [w] do hk,j := Hk(Cj)

s :=
∑µ

j=1 sj (mod q)

for all k ∈ [w] do hk =
∑µ

j=1 hk,j (mod q)

D := Gs∏w
k=1 G

hk
k

σ′ ← Sig.Sign(sk, D)
r :=

∑µ
j=1 rj (mod q)

return σ := ({(σ′, D, pk)}, {(πj , Cj ,mj)}j∈[µ], r), where pk is the public key
corresponding to sk.

Merge({σi,Mi, PKi}ni=1):

parse σi as (Li, Ri, ri)
L :=

⋃
i∈[n] Li, R :=

⋃
i∈[n] Ri

r :=
∑n

i=1 ri (mod q)
return σ := (L,R, r) (where sets are represented in lexicographic order to
hide how they were formed).

Verify(σ,M,PK):

parse σ as (L,R, r), with L := {(σ′
i, Di, pki)}i∈[n] and R :=

{(πj , Cj ,mj)}j∈[µ]

if {mj}j∈[µ] ̸= M then return 0

if {pki}i∈[n] ̸= PK then return 0

if Cj = Cj′ for j ̸= j′ then return 0

for all j ∈ [µ] do
if SoK[Lped or Lped’].Verify(x = Cj , πj ,mj) = 0 then return 0

for all i ∈ [n] do
if Sig.Verify(σ′

i, Di, pki) = 0 then return 0

for all k ∈ [w] do hk,j := Hk(Cj)

return Hr ∏n
i=1 Di =

∏µ
j=1(Cj

∏w
k=1 G

hk,j

k )

Fig. 8. Constructions for UOS. We mark steps only present in the variant based on a
group of unknown order in blue; and steps only present in the lattice variant in teal.
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adversary would need to find a (set of) value(s) s whose sum is positive, but is
zero modulo the order of G. Then, we can use any adversary who can carry out
the attack described above to take roots in the group G, which should be hard
to do in a group of unknown order. However, using groups of unknown order is
very costly in terms of modulus size, since the parameters scale closer to RSA
than to elliptic curves [12].

4.3 Secure Variant from Lattices

We could instead make sure that we can use any adversary who carries out
the attack described above to solve the short integer solution (SIS) problem.
We can embed a SIS instance by using several additional generators G1, . . . , Gw

and several hash functions H1, . . . ,Hw, and by modeling each hash function as
a random oracle.

During signing, the signer does almost everything as before. However, she
additionally computes hk,j = Hk(Cj) for each k ∈ [1, . . . , w] and j ∈ [1, . . . , µ],

sets hk =
∑µ

j=1 hk,j , and changes D to be D = Gs
∏w

k=1 G
hk

k . The third step of
the verification algorithm now consists of checking that

Hr
n∏

i=1

Di =

µ∏
j=1

(CjG
H1(Cj)
1 . . . GHw(Cj)

w ).

If an adversary now succeeds in adding new commitments, either we can use her
to solve for the discrete logarithm relationship of some of the generators, or we
can use her to solve an instance of the SIS problem which we can embed into
the hash values (by means of the random oracle assumption).

4.4 Security Analysis

In Figure 8, we describe our constructions formally.

Theorem 1. The construction based on lattices described in Figure 8, including
teal steps, is unforgeable (Definition 3) assuming that (a) the SIS(w,m, q,

√
m)

problem is hard (where the parameters are w hash functions, m random oracle
queries, and group order q), (b) the discrete logarithm problem is hard in for
group generation algorithm GroupGen, (c) the signature scheme Sig is secure,
and (d) the signature of knowledge scheme SoK is secure.

We prove Theorem 1 in Section 4.4.1.

Theorem 2. Both variants of the construction described in Figure 8 are history-
hiding (Definition 4) with respect to equivalence relation ≡weak assuming that
the signature of knowledge scheme SoK is secure.

We prove Theorem 2 in Section 4.4.2.
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Theorem 3. The construction based on groups of unknown order described in
Figure 8, including blue steps, is unforgeable (Definition 3) assuming that (a) the
discrete logarithm problem is hard in group G, (b) finding roots is hard for group
generation algorithm GroupGen (as it produces groups off unknown order), (c) the
signature scheme Sig is secure, and (d) the signature of knowledge scheme SoK
is secure.

The proof of Theorem 3 may be found in the full version of this paper.

4.4.1 Proof of Theorem 1 To prove this theorem we rely on reducing to
discrete log in the final step. Achieving a tight reduction proves difficult, since
if the reduction included the discrete log challenge in any single commitment
the adversary would have to exclude that specific commitment while keeping the
corresponding left side fixed for it to be possible to solve the challenge. Similarly,
trying to embed the challenge in any one leaf of the tree when producing a
signature does not yield a tight reduction. To avoid this we must instead take
special care to embed the challenge throughout an entire signature.

Lemma 1 shows how a discrete log challenge P may be embedded through-
out the values produced by signing while maintaining the same distribution as
honestly produced signatures. Given this lemma, we can exploit the properties
of additive secret sharing to construct the values we will need for our reduction.

Lemma 1. Consider the distribution

((D′
1, . . . , D

′
n), ((C

1
1 , . . . C

µ1

1 ), . . . , (C1
n, . . . C

µn
n )), r)

where

– P,G and H are generators in a group of prime order q,
– s, t, r are independent uniformly random values modulo q,

– D′
i = Gslefti P tlefti for additive secret sharings ⟨s⟩ = (slefti )i∈[n] and ⟨t⟩ =

(tlefti )i∈[n],

– Cj
i = Gsrighti,j P trighti,j Hri,j for fresh additive secret sharings (srighti )i∈[n], (t

right
i )i∈[n]

and (ri)i∈[n] of s, t and r, with secondary sharings ⟨srighti ⟩ = (srighti,j )j∈[µj ],

⟨trighti ⟩ = (trighti,j )j∈[µj ] and ⟨ri⟩ = (ri,j)j∈[µj ].

Then, the following properties hold:

1. For any strict subset I ⊂ [n], {tlefti }i∈I is independent of {trighti,j }i∈[n],j∈[µi].

2. For any strict subset I ⊂ {(i, j)|i ∈ [n], j ∈ [µi]}, {trighti,j }(i,j)∈I is independent

of {tlefti }i∈[n].

3. The distribution is independent of t and the subsequent choices of {tlefti }i∈[n]

and {trighti,j }i∈[n],j∈[µi].

4. The distribution conditioned on t, s and subsequent choices of {tlefti }i∈[n],

{trighti,j }i∈[n],j∈[µi] is independent of the choices of {srighti }i∈[n].
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Note that (3) and (4) imply that the described values would be indistinguish-
able to those produced by the construction in Figure 8 (where each Di is set to

D′
i

∏µi

j=1 G
H(Cj

i )). The construction fits the case where all tlefti and trighti,j are 0 and

{srighti }i∈[n] = {slefti }i∈[n].

Proof. We prove the four parts of the lemma separately. First, we note that (1)
and (2) follow directly from the properties of additive secret sharing.

(3) follows from the fact that for every fixed value ((D′
1, . . . , D

′
n), ((C

1
1 , . . . C

µ1

1 ),
. . . , (C1

n, . . . C
µn
n )), r) in the distribution and for every choice of values {tlefti }i∈[n],

{trighti,j }i∈[n],j∈[µi] and {ri,j}i∈[n],j∈[µi] (consistent with r), there exists a unique

choice of values {slefti }i∈[n] and {srighti,j }i∈[n],j∈[µi] that explains ((D′
1, . . . , D

′
n),

((C1
1 , . . . C

µ1

1 ), . . . , (C1
n, . . . C

µn
n )), r).

(4) follows from the fact that for every fixed t, s, r and subsequent choice of

{trighti,j }i∈[n],j∈[µi], for every choice of {s
right
i,j }i∈[n],j∈[µi] and every set {Cj

i }i∈[n],j∈[µi]

such thatGsP tHr =
∏

i∈[n],j∈[µi]
Cj

i , there exists a unique choice of {ri,j}i∈[n],j∈[µi]

such that Gsrighti,j P trighti,j Hri,j = Cj
i .

Now, we move on to prove Theorem 1.

Proof (of Theorem 1). We reduce the unforgeability of our lattice-based con-
struction to the assumptions enumerated in the theorem. The construction relies
on the hardness of the SIS and discrete log problems, as well as the security of
the underlying signature scheme and the signature of knowledge scheme.

In the following hybrids we will consider an adversary producing a verifying
forgery σ∗,M∗, PK∗, where σ∗ is of the form (L∗, R∗, r∗) = ({(σz, Dz, pkz)}n

∗

z=1,

{(πj , Cj ,mj)}µ
∗

j=1, r
∗). We define a reduction R in a sequence of hybrids:

1. In this hybrid, the reduction runs the challenger according to the instructions
in Figure 6.

2. In this hybrid, the reduction aborts if it gets a forged (underlying) signature.
This hybrid is indistinguishable from the previous one by the unforgeability
of the underlying signature scheme.
At this point, since PK∗ must all belong to honest parties, all signatures
must be generated by the challenger, allowing us to only consider honestly
generated Dz.

3. In this hybrid, the reduction uses a trapdoor to simulate the SoKs.
This hybrid is indistinguishable from the previous one by the zero knowledge
property of the SoK scheme.

4. In this hybrid, the reduction aborts if it cannot extract a witness from any
signature of knowledge.
This hybrid is indistinguishable from the previous one by the simulation
extractability of the SoK scheme. At this point the reduction knows a witness
for each commitment which is part of a verifying forgery.

5. In the following hybrid the reduction aborts if the adversary provides a ver-

ifying forgery where Cj = GsjHrj for each j ∈ [µ∗], but r∗ ̸=
∑µ∗

j=1 rj . That
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is, the reduction aborts if the provided r∗ does not correspond appropriately
to the witnesses extracted from the sigantures of knowledge.
This is indistinguishable from the previous hybrid as an adversary providing
a forgery where this is the case may be used to solve a discrete log challenge
H base G.
Each Gk for k ∈ [w] may be chosen at setup by the reduction as a uniform

power ofG. Since the forgery is valid,Hr∗
∏n∗

z=1 Dz =
∏µ∗

j=1(Cj

∏w
k=1 G

Hk(Cj)
k )

must hold. The reduction knows a witness for each commitment, and the ex-
ponents for Dz, which it itself must have produced in response to signing

queries. It can then find the discrete logarithm of H, since r∗−
∑µ∗

j=1 rj ̸= 0.
6. In the following two hybrids we will address the case where the forgery

is a valid merging of the outputs of the signing oracle queries, with some
extra commitments C1, . . . , Cv on the right-hand side. As all other com-

mitments are part of a verifying signature and r∗ =
∑µ∗

j=1 rj the extra
commitments must not affect the product in the verification formula, i.e.∏v

j=1(G
sj
∏w

k=1 G
Hk(Cj)
k ) = 1.

In this hybrid, the reduction will abort if either
∏v

j=1 G
sj ̸= 1 or

∏v
k=1 G

Hk(Cj)
k

̸= 1 for any k ∈ [w]. In the next hybrid we will exploit the separation of these
generators to embed an instance of the SIS problem, where each generator
Gk may be used for a separate dimension of the problem. This hybrid is in-
distinguishable from the previous by a reduction to a discrete log challenge.
For notational convenience, throughout the rest of this hybrid, we will denote
G as G0 and define s0,j = sj and sk,j = Hk(Cj). Note the reduction knows
both the powers sj and Hk(Cj). To find the discrete log of a challenge Y base
X the reduction proceeds by first choosing Gk for k ∈ [w] ∪ {0} as XakY bk

where ak and bk are uniformly random integers modulo q.
For an adversary successfully producing a forgery where
(
∏

k∈[w]∪{0}
∏v

j=1 G
sk,j

k ) = 1 but there is an i such that:

v∏
j=1

G
si,j
i = Z ̸= 1,

∏
k∈[w]∪{0}

k ̸=i

(

v∏
j=1

G
sk,j

k ) = Z−1 ̸= 1,

the reduction may find the discrete log with probability at least 1 - 1/q.
The only case where a discrete log cannot be found is when

ai(

v∑
j=1

si,j) =
∑

k∈[w]∪{0}
k ̸=i

ak(

v∑
j=1

sk,j).

Consider the distribution of G0, . . . , Gk provided to the adversary by the
reduction. A fixed Gi may have been produced by any choice of ai ∈ Zq

along with the one possible corresponding bi, where each of these cases is
indistinguishable to the adversary. When all other values are fixed the above
equality may only hold for exactly one value of ai, thus the reduction will
only fail to find a discrete log of Y with probability 1/q.
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7. In this hybrid, the reduction embeds an instance of the SIS(w,m, q,
√
m)

problem by programming the random oracle. Recall we are still focusing on
the case where the forgery is a valid merge of the outputs of the signing
oracle queries, with some extra commitments C1, . . . , Cv on the right-hand
side. This hybrid now aborts if this is the case.
The indistinguishability of this hybrid from the previous will follow from the
hardness of the SIS(w,m, q,

√
m) problem. For a bound m on the number of

random oracle queries made by the adversary, we may consider a uniformly
random matrix A ∈ Zw×m

q provided by an SIS(w,m, q,
√
m) challenger. We

let Ai,j denote the jth entry of the ith row of A.
For each distinct query to the random oracle we may embed one column
of the matrix A in the oracle responses. Specifically, for the ith unique
commitment C queried to the random oracle we define Hk(C) = Ak,i for
each k ∈ [w]. The output distribuition of the random oracle is unchanged by
this as each entry Ai,j is uniform and independent.
Due to the previous hybrid we know that verification with only extra com-

mitments C1, . . . , Cv implies
∏v

k=1 G
Hk(Cj)
k = 1 for all k ∈ [w]. Thus the

adversary has provided commitments such that
∑v

j=1 Hk(Cj) = 0 mod q
for each k ∈ [w].
Let t(j) be the index of the first query of Cj to the oracle. The adversary will
then have found indices t(j), such that

∑µ
j=1 Ak,t(j) = 0 for each k ∈ [w].

This provides a solution to the SIS(w,m, q,
√
m) instance defined by A, as

the vector v which is one exactly for each index in {t(j)}j∈[v] and zero
otherwise satisfies A · v = 0. Note v satisfies the length requirements as
each commitment must be unique and the ℓ2-norm of a zero-one vector of
dimension m is bounded by

√
m.

8. In this hybrid, the reduction embeds a discrete log challenge P base G. An
adversary breaking the unforgeability of our UOS may be used to find the
discrete log with high probability. In this hybrid the H and Gk for k ∈ [w]
are chosen as uniform powers of G. The reduction proceeds as follows:
(a) For each query to the oracleMergeO(Ti), instead of using the SignAndMerge

procedure in Figure 3 the challenger generates values for the honest
leaves following the structure of Lemma 1. This produces ((D′

1, . . . , D
′
n),

((C1
1 , . . . , C

µ1

1 ), . . . , (C1
n, . . . , C

µn
n )), r), and the reduction sets

Di := D′
i

∏µi

j=1

∏w
k=1 G

Hk(C
j
i )

k . Now, Di and (C1
i , . . . C

µi

i ) correspond to
the values of the ith honest leaf. The reduction produces the necessary
signatures and simulates each required SoK.
From properties (3) and (4) of Lemma 1, it follows that this is indistin-
guishable from the original distribution. The distribution produced by
the SignAndMerge procedure corresponds to the case where all tlefti and

trighti,j are 0, and (slefti )i∈[n] = (srighti )i∈[n].
(b) Say the adversary produces some forgery σ∗,M∗, PK∗ winning the EUF

game, where σ∗ is of the form (L∗, R∗, r∗) = ({(σz, Dz, pkz)}n
∗

z=1, {(πj ,

Cj ,mj)}µ
∗

j=1, r
∗). We may start by removing elements from L∗ and R∗

where the adversary has used the entire content of a signature σi pro-
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duced by the reduction on Mh
i ⊆ M∗, such that Lh

i ⊆ L∗ and Rh
i ⊆ R∗.

The forged signature σ∗ is updated to (L∗ \ Lh
i , R

∗ \Rh
i , r

∗ − rhi ). Mes-
sages which no longer appear in R∗ are removed from M∗, and public
keys which no longer appear in L∗ are removed from PK∗. This must
leave R∗ non-empty, as a winning forgery must satisfy OutsideSpan(M∗,
PK∗, {(PKh

i ,M
h
i )}

qs
i=1), i.e. M∗ cannot be produced as the union of

honestly signed message sets. Importantly, if the original forgery ver-

ified, then Hr∗
∏

D∈L∗ D =
∏

C∈R∗ C
∏w

k=1 G
Hk(C)
k is maintained. We

update n∗ := |L∗| and µ∗ := |R∗|.
There are three cases for the contents of L∗ and R∗; we state them now
and analyze them below.
i. L∗ is empty and R∗ contains only fresh C’s (not produced by the

reduction).
ii. At least one C was produced by the reduction (in response to a

signing oracle query), but is now linked to a new message via a new
signature of knowledge.

iii. The above don’t hold, and for at least one signing oracle query, either
a D is missing from L∗ or a C is missing from R∗.

We consider these cases separately.
(i) This option is excluded, as the reduction did not abort in hybrid (7).

(ii) The adversary reuses a commitment Cj = Gsrightj P trightj Hrj with a new
signature of knowledge (on a new message) separately. Extracting
the witness from the SoK would give s, r such that Cj = GsHr. This

clearly allows finding the discrete log of P base G when trightj ̸= 0
which is the case except with probability 1/q. The distribution seen

by the adversary is independent of trightj by property (3) of Lemma 1
(iii) Now, we move on to consider the case where the adversary did not

reuse a commitment with a new signature of knowledge. Verification

requiresHr∗
∏n∗

z=1 Dz =
∏µ∗

j=1(Cj

∏w
k=1 G

Hk(Cj)
k ). The commitments

Cj were either produced earlier by the challenger (such that Cj =

Gsrightj P trightj Hrj for known srightj , trightj and rj) or constructed by the
adversary with an accompanying signature of knowledge π (such that

srightj , rj satisfying Cj = Gsrightj Hrj can be extracted; this may be

regarded as a special case where trightj = 0).
Since we did not abort in hybrid (2), and the forgery may not contain
any corrupt signer public keys, we may be certain all Dz ∈ L∗ were
signed by the reduction. Therefore the reduction knows sleftz , tleftz such

that Dz = Gsleftz P tleftz for each z ∈ [n∗].
The reduction may find the discrete log of P as long as

∑
j∈[n∗] t

left
j ̸=∑

j∈[µ∗] t
right
j , we argue that the adversary cannot avoid this with

non-negligible probability.
For any Lh

i ⊂ L∗ at least one element of Rh
i must not be in R∗.

We denote the included subset as R′ ⊂ Rh
i . Due to property (2)

from Lemma 1, the difference in powers of P between Lh
i and R′,
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Dz∈Lh

i
tleftz −

∑
Cj∈R′ t

right
j will be uniformly random and indepen-

dent. Therefore even if the adversary knew all remaining tleftz , trightj

they would not be able to make
∑

j∈[n∗] t
left
j =

∑
j∈[µ∗] t

right
j with

probability better than chance, 1/q.
The case where Rh

i ⊂ R∗ and Lh
i ̸⊂ L∗ is largely analogous, but using

property (1). If both Lh
i and Rh

i are partially included the difference
in powers of P will also be uniform and independent following both
properties (1) and (2).

4.4.2 Proof of Theorem 2

Proof (of Theorem 2). We reduce the history hiding of our UOS construction to
the simulatability property of the signature of knowledge scheme or the hiding
property of the commitment scheme. (Since the Pedersen commitment scheme
used in our construction is perfectly hiding, this does not require an additional
assumption.) We define a reduction R in a sequence of hybrids as follows:

1. In this hybrid, the reduction runs the challenger according to the instructions
in Figure 7.

2. In this hybrid, when answering a SignAndMerge query, the reduction uses a
trapdoor to simulate SoKs.
This hybrid is indistinguishable from the previous one by the simulatability
of the SoK scheme.

3. In this hybrid, when answering a SignAndMerge query, for each honest leaf
i ∈ H containing µi messages, the reduction computes the right side R of
the signature as follows:
– For j ∈ [µi], it picks the commitment Ci,j as a random element of G.

It then independently computes ri as follows:
– For j ∈ [µi], it picks ri,j at random (from the appropriate space; either

at random modulo q, or as a random 2κ-bit integer).
– It computes ri as the modular or integer sum of the ri,j ’s. (Note that

when the modular sum is used, this is the same as choosing ri at random
directly, without going through the step of choosing the ri,j ’s.)

It computes the final R and r as per the merge algorithm (including the
values from the corrupt leaves). Finally, the reduction produces the left side
L of the signature as follows, to ensure a total lack of coupling between
elements of R and elements of L:
– It computes D as (

∏
C∈R C

∏w
k=1 G

Hk(C)
k )/Hr, and computes the indi-

vidual Di’s (for honest leaves) as a random factoring of D (divided by
corrupt leaf Di’s). That is, it produces all but the last honest Di as ran-
dom elements of G; it picks the last honest Di as D divided by all other
Di’s (including the corrupt ones).

– It signs the honest Di’s on behalf of the honest parties.
This hybrid is indistinguishable from the previous one because the responses
to the challenge SignAndMerge query are indistinguishable (identical) in the
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two hybrids, by the perfect hiding property of the commitment scheme; for
each choice of factoring of D, there exists a unique consistent multiplicative
decomposition of Hr.
Observe that now, there is no link at all between the Di’s (linked to party
identities) and the Cj ’s (linked to messages). So, the outputs of SignAndMerge
on T0 and T1 are identically distributed as long as T0 ≡weak T1.

5 Performance

To evaluate the performance of our signature scheme, we provide an imple-
mentation in Rust based on the curve25519-dalek crate implementing the
edwards25519 elliptic curve [9] and the Ristretto encoding for points. Our
implementation is available with build instructions at https://github.com/

felix-engelmann/union-only-signatures. The signature scheme used is a
Schnorr signature. As hash function, we use SHA256 which is hardware accel-
erated on modern processors. Most of the signature generation and verification
is independent of each other. This allows parallel execution on multi-core pro-
cessors. As our benchmarking system, we use an Intel Core i7-6820HQ CPU at
2.70GHz for a total of 8 threads.

Figure 9 shows the signing and verification time for an increasing number
of messages and different number of hash functions. There are clearly visible
and linear steps at multiples of 8 messages, supporting our claim of efficient
parallelization. To achieve a difficulty for the SIS problem similar to the discrete
logarithm in edwards25519, we require 478 dimensions. We used the approach
described in [17] with the model put forward by Albrecht et al. [4] to estimate the
bit-security of SIS(w,m, q,

√
m). In this case m = 2128 is a bound on the number

of oracle queries, and q is the order of the edwards25519 curve, allowing us to
find the smallest dimension w providing the necessary difficulty. This results in
signatures which require 1 group element and the size of the Schnorr signature
(1 group element and 1 scalar) for each merged leaf plus an additional 2 group
elements and 2 scalars for each message. Concretely, 100 merged signatures, over
100 messages each for a total of 10,000 messages, requires 1.2 MB.

The merging of signatures consists of adding the randomness, which is inde-
pendent of the messages and linear in the number of parts. To maintain history
hiding, the inputs and outputs need to be sorted, which is possible in O(n log k)
where n is the total number of messages and k is the number of already ordered
signatures to be merged. There are always less or equal signatures to be sorted.

Figure 10 shows the time required for merging signatures. The two depen-
dencies are the number of signatures on the x-axis and we measured this for
different numbers of messages per signature. For all experiments with more than
one message per signature, we notice that the majority of time is required copy-
ing memory and sorting the messages and adding the randomness is marginal.
This observation is derived from the fact, that merging with an equal number of
messages have the same timings. Each step right are 10 times more signatures
but a 10th of the messages per signature, resulting in the same total number.

https://github.com/felix-engelmann/union-only-signatures
https://github.com/felix-engelmann/union-only-signatures
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Fig. 9. Signing and verification time depending on number of messages with 8 threads.

For single message signatures, adding the randomness is noticeable and they are
a bit slower than the experiment with an equal number of messages distributed
in a 10th of the signatures.

In absolute terms, our implementation handles merging a million messages
in less than half a second, making it usable for large datasets.

6 Conclusion

We presented two constructions for UOS schemes, closing the open problem
posed by Johnson et al. [15]. This is made possible by the fact that our signatures
do not have a multiplicative structure. Our first construction is experimentally
evaluated as computationally efficient when instantiated with a state-of-the-art
elliptic curve implementation, but not compact in terms of signature size. Our
second construction is based in SNARKs and produces constant-size signatures,
but with a significant performance penalty due to the inherent cost of SNARKs.
We finish by pointing out that our first step may lead to more efficient UOS
constructions, and hope that it provides techniques useful to close the other
open problem of concatenable signatures posed in the same paper.
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