
New Design Techniques for Efficient
Arithmetization-Oriented Hash Functions:

Anemoi Permutations and
Jive Compression Mode

Clémence Bouvier1,2, Pierre Briaud1,2, Pyrros Chaidos3,
Léo Perrin2, Robin Salen4, Vesselin Velichkov5,6, Danny Willems7,8

1Sorbonne University, France,
2Inria, France

3National & Kapodistrian University of Athens, Greece,
4Toposware, Inc., USA

5University of Edinburgh, Scotland
6Clearmatics, England

7Nomadic Labs, France
8LIX, France

anemoi@inria.fr

Abstract. Advanced cryptographic protocols such as Zero-knowledge (ZK) proofs
of knowledge, widely used in cryptocurrency applications such as Zcash, Monero,
Filecoin, demand new cryptographic hash functions that are efficient not only over the
binary field F2, but also over large fields of prime characteristic F𝑝. This need has been
acknowledged by the wider community and new so-called Arithmetization-Oriented
(AO) hash functions have been proposed, e.g. MiMC-Hash, Rescue–Prime, Poseidon,
Reinforced Concrete and Griffin to name a few.
In this paper we propose Anemoi: a new family of ZK-friendly permutations, than
can be used to construct efficient hash functions and compression functions. The
main features of these algorithms are that 1) they are designed to be efficient within
multiple proof systems (e.g. Groth16, Plonk, etc.), 2) they contain dedicated functions
optimised for specific applications (namely Merkle tree hashing and general purpose
hashing), 3) they have highly competitive performance e.g. about a factor of 2
improvement over Poseidon and Rescue–Prime in terms of R1CS constraints, a 28%-
48% Plonk constraint reduction over a highly optimized Poseidon implementation,
as well as competitive native performance, running between two and three times
faster than Rescue–Prime, depending on the field size.
On the theoretical side, Anemoi pushes further the frontier in understanding the design
principles that are truly entailed by arithmetization-orientation. In particular, we
identify and exploit a previously unknown relationship between CCZ-equivalence and
arithmetization-orientation. In addition, we propose two new standalone components
that can be easily reused in new designs. One is a new S-box called Flystel, based on
the well-studied butterfly structure, and the second is Jive – a new mode of operation,
inspired by the “Latin dance” symmetric algorithms (Salsa, ChaCha and derivatives).

Keywords: Anemoi · Flystel · Jive · Arithmetization-oriented · Hash functions ·
CCZ-equivalence · Plonk · R1CS · AIR · Merkle tree · Zero-knowledge · Arithmetic
circuits

mailto:anemoi@inria.fr

2
New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi

Permutations and Jive Compression Mode

1 Introduction
In recent years we have seen a rapid surge of interest in the practical application of an
old cryptographic construction known as zero-knowledge (ZK) proofs of knowledge. Such
protocols allow a prover 𝑃 to convince a verifier 𝑉 that a certain statement 𝑥 is true
without revealing any additional information beyond the fact that it is verifiably correct.
Such a piece of information may, for example, be that the result of a specified complex
computation is 1. With a ZK protocol, 𝑉 can verify that the result of this computation is
correct without having to perform the computation herself. In fact, to verify correctness
𝑉 does not even need to know some of the details of the computation e.g. its intermediate
values or any potentially secret inputs.

ZK proof systems have been introduced with the seminal work of Micali, Goldwasser
and Rackoff back in 1989 [GMR89]. Traditionally, ZK protocols were deployed to allow a
prover to keep some elements of a computation secret (e.g. a private key). More recently,
the blockchain ecosystem has witnessed a rise of a category of ZK protocols, namely
Succinct Non-Interactive Arguments of Knowledge (ZK-SNARKs), that leverages their
succinctness property to relieve the verifier from the necessity to perform an expensive
computation for which it may not have sufficient resources (in terms of space as well as
computational power). The increased interest in such protocols today is largely driven by
the latest advancements in digital currencies such as Bitcoin, Ethereum, etc. In particular,
ZK proofs make it possible to add privacy on a public blockchain (e.g. Zcash [BSCG+14])
and to perform off-chain computation verifiable by network nodes with significantly limited
resources, improving scalability.

The computation performed by 𝑃 and verified by 𝑉 in a ZK proof is often expressed
as an arithmetic circuit composed of gates (algebraic operations e.g. multiplication or
addition) connected by wires. The quantities that pass over the wires and are operated on
by the gates are elements of a field F𝑞, where 𝑞 ≥ 2.

Cryptographic hash functions are fundamental to practical ZK applications. They are
often used for testing membership of some element(s) by means of Merkle trees. They can
also be used as part of the ZK protocol itself e.g. by compressing multiple public inputs
to a single hash. The modified protocol has a reduced input footprint, and the collision
resistance of the hash function implies that security is not impacted. This is relevant in
proof systems where the verifier’s costs are proportional to the number of public inputs
such as Groth16 [Gro16].

Modern cryptographic hash functions such as SHA2, SHA3 and BLAKE are designed
over vector spaces of the binary field F2 (i.e. they work over bits), while ZK protocols often
operate over F𝑞 for a large 𝑞 – usually a prime number. Therefore the efficient execution
of ZK protocols in applications such as Zcash or Filecoin, that aim to process millions
of transactions per day, imposes the need for new hash functions designed to be natively
efficient in F𝑞 – the so-called Arithmetization-Oriented (AO) designs. The need for new
arithmetization-oriented hash functions has been acknowledged by both researchers and
engineers. As a result, the past couple of years have seen a surge of new proposals of hash
functions that operate natively in F𝑞 for 𝑞 prime, enabling efficient verification: MiMC-
Hash [AGR+16], Poseidon [GKR+21], Rescue–Prime [AAB+20, SAD20], Reinforced
Concrete [BGK+21] and Griffin [GHR+22] to name a few.

The Design Requirements of Arithmetization-Orientation. Building upon the works
mentioned above as well as on the study of practical use cases, we have identified several
properties and design requirements that are expected from arithmetization-oriented hash
function.

Evaluation vs. Verification. The operation for which the efficiency of an AO primitive is
the most crucial is not its evaluation, but rather its verification. Concretely, while the

Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin
Velichkov, Danny Willems 3

cost of evaluating 𝑦 = 𝐹 (𝑥) given 𝑥 remains important, the step with the harshest
constraints is a verification: given both 𝑥 and 𝑦, checking if 𝑦 is indeed equal to 𝐹 (𝑥)
should be “efficient”, where the exact meaning of “efficient” depends on the proof
system considered.

𝑏-to-1 compression. One of the main use cases for AO hash functions is in Merkle trees.
In this context, rather than a hash function taking arbitrarily long inputs, protocol
designers need a compression function mapping 𝑏𝑚 to 𝑚 finite field elements, meaning
a compression factor of 𝑏 (often, 𝑏 = 2).

Primitive Factories. Rather than a single primitive or a small family of primitives (such as
for instance AES-128/192/256), AO hash functions are defined for a vast number of
field sizes and security levels. In fact, we would argue that algorithms like Poseidon
are primitive factories1, and that the task of the cryptanalysts is not only to assess
whether specific instances are secure. Rather, it is to verify if such factories can return
weak algorithms. Furthermore, since the protocols and arihmetization techniques
vary, a factory should be able to output primitives optimized for each use case.

Performance constraints. The space and time complexities of the proving systems depend
on the arithmetized program size (i.e. the number of gates) to be verified, meaning
that it is crucial for practical applications to minimize the number of gates, as the
cost of a proof may otherwise be so high as to make it unusable, as the computa-
tional cost of the prover becomes the bottleneck of an entire system. AIR-based
systems additionally require keeping constraint degrees low for practical applications.
Furthermore, good conventional CPU architecture performance is still required as
real world applications tend to use the primitives both outside and inside the circuit.

Outine of our Contributions. In this paper, we study each of the specific design require-
ments of AO, and provide new tools to satisfy them. First, we present the necessary
theoretical background in Section 2.

We then present two building blocks. First, in Section 3 we introduce a new mode of
operation, Jive, which turns a public permutation into a 𝑡-to-1 compression function. Its
main advantage is that it compresses an input consisting of 𝑡𝑢 words using a permutation
operating on a state consisting of 𝑡𝑢 words, unlike the sponge structure which needs a
bigger state in order to accomodate a capacity. Then, in Section 4, we argue that the
asymmetry between the evaluation and the verification of a function is best framed in
terms of CCZ-equivalence. Using this insight, we propose a new family of non-linear
components (S-boxes) operating on F2

𝑞 which we called Flystel: they allow both a high
degree evaluation, and a low degree verification.

In a natural progression, we use the Flystel structure to construct a new permutation
factory: Anemoi. It uses the familiar Substitution-Permutation Network (SPN) structure,
which simplifies our security analysis. Its specification is given in Section 5, and our initial
cryptanalysis is presented in Section 6. We combine all these results together in Section 7,
where we show via detailed benchmarks that combining the Anemoi permutations with
the Jive mode of operation allows us to compete with the best AO hash functions in the
literature in terms of performance, and to substantially outclass them in some contexts.
In particular, in the case of Plonk, we can compute more than twice as many hashes for
a fixed number of constraints as is possible with Poseidon, which to the best of our
knowledge was the best until now. We conclude the paper in Section 8.

1“Factory” is here used in the sense of the programming design pattern, i.e. it is an object returning
functions.

4
New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi

Permutations and Jive Compression Mode

2 Theoretical Background
In what follows, 𝑞 is an integer corresponding to the size of the field F𝑞, so that 𝑞 = 𝑝 for
some prime number 𝑝 or 𝑞 = 2𝑛. As usual, the symbols “+” and “×” denote respectively
the addition and the multiplication over F𝑞. We also let 𝑚 ≥ 1 be an integer corresponding
to the number of field elements we are operating on. We denote ⟨𝑎, 𝑏⟩ the usual scalar
product of 𝑎 ∈ F𝑚

𝑞 and 𝑏 ∈ F𝑚
𝑞 which is such that ⟨𝑎, 𝑏⟩ =

∑︀𝑚−1
𝑖=0 𝑎𝑖𝑏𝑖.

Below, we consider a function 𝐹 : F𝑚
𝑞 → F𝑚

𝑞 , and recall some of the concepts behind the
use and analysis of functions to design symmetric cryptographic primitives. We first recall
the definition of their differential and linear properties, and then that of CCZ-equivalence.
While the latter was seldom used in practice so far, it plays a crucial role in our work.

Differential Properties. The Difference Distribution Table (DDT) of function 𝐹 is the
two dimensional array 𝛿𝐹 , where 𝛿𝐹 [𝑎, 𝑏] = #{𝑥 ∈ F𝑚

𝑞 |𝐹 (𝑥+𝑎)−𝐹 (𝑥) = 𝑏}. The maximum
value of 𝛿𝐹 [𝑎, 𝑏] for 𝑎 ̸= 0 is the differential uniformity [Nyb94] of 𝐹 .

Linear Properties. While a general formula that works both when 𝑞 is a power of two
and a prime can be given, it is simpler to treat the two cases separately, especially
given that the reader is probably familiar with the case of characteristic 2. If 𝑞 = 2𝑛,
then the Walsh transform of the component ⟨𝑏, 𝐹 ⟩ : F𝑞 → F2 for any 𝑏 ∈ F𝑞∖{0} is
𝒲⟨𝑏,𝐹 ⟩(𝑎) =

∑︀
𝑥∈F𝑚

2
(−1)⟨𝑎,𝑥⟩+⟨𝑏,𝐹 (𝑥)⟩.

Otherwise, when 𝑞 = 𝑝 the Fourier transform of a function 𝑓 : F𝑚
𝑝 → F𝑝 is the function

𝒲𝑓 : F𝑚
𝑝 → C such that

𝒲𝑓 (𝑎) =
∑︁

𝑥∈F𝑚
𝑝

exp
(︂

2𝜋𝑖 (⟨𝑎, 𝑥⟩ − 𝑓(𝑥))
𝑝

)︂
.

For a vectorial function 𝐹 : F𝑚
𝑞 → F𝑚

𝑞 , we consider the Fourier transform of each of its
components, i.e. of all the linear combinations ⟨𝑏, 𝐹 ⟩.

CCZ-Equivalence [CCZ98]. Let 𝐹 : F𝑚
𝑞 → F𝑚

𝑞 and 𝐺 : F𝑚
𝑞 → F𝑚

𝑞 be two functions. They
are affine-equivalent if there exists two affine permutation 𝜇 : F𝑚

𝑞 → F𝑚
𝑞 and 𝜂 : F𝑚

𝑞 → F𝑚
𝑞

such that 𝐹 = 𝜂 ∘ 𝐺 ∘ 𝜇. This can alternatively be written using the graphs of these
functions:

Γ𝐹 =
{︀

(𝑥, 𝐹 (𝑥)) | 𝑥 ∈ F𝑚
𝑞

}︀⏟ ⏞
graph of 𝐹

= ℒ(Γ𝐺) =
{︀
ℒ (𝑥, 𝐹 (𝑥)) | 𝑥 ∈ F𝑚

𝑞

}︀
,

where ℒ is the affine permutation defined by ℒ(𝑥, 𝑦) =
(︀
𝜂(𝑥), 𝜇−1(𝑦)

)︀
. If we allow ℒ to be

any affine permutation,2 we obtain CCZ-equivalence.

Definition 1 (CCZ-Equivalence). Let 𝐹 and 𝐺 be functions of F𝑚
𝑞 . We say that they

are CCZ-equivalent if there exists an affine permutation ℒ : (F𝑚
𝑞)2 → (F𝑚

𝑞)2 such that
Γ𝐹 = ℒ(Γ𝐺).

An important property of CCZ-equivalence that is instrumental in our work is that it
preserves the differential spectrum and the squared Walsh coefficients. In other words, all
functions within the same CCZ-equivalence class share the same differential and linear
properties and hence offer the same resilience against differential and linear attacks. It

2Starting from a given function 𝐹 , applying any affine permutation of F2
𝑞 to its graph is unlikely to

yield the graph of another function 𝐺. Indeed, this would require that the left hand side of ℒ(𝑥, 𝐹 (𝑥))
takes all the values in F𝑞 as 𝑥 goes through F𝑞 , which is a priori not the case. A mapping ℒ that does yield
the graph of another function is called “admissible”, a concept that was extensively studied in [CP19].

Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin
Velichkov, Danny Willems 5

also means that it is sufficient to investigate these properties for a single member of a
CCZ-equivalence class.

Another relevant property of CCZ-equivalence is that it does not preserve the degree of
the function. In fact, there are known cases where a low-degree function is CCZ-equivalent
to a higher-degree one. It is most notably the case of the so-called butterfly structure,
originally introduced in [PUB16], and then further generalized in two different ways
in [CDP17] and [LTYW18].

3 Modes of Operation
In advanced protocols, hash functions are used for two purposes. The first is to emulate a
random oracle, in particular to return the “fingerprint” or digest of a message of arbitrary
length. The idea is that this fixed length digest is simpler to sign than the full message.
The second use is as a compression function within a Merkle-tree: in this case, the hash
function 𝐻 is used to map two inputs of size 𝑛 to an output of size 𝑛, and the security of the
higher level scheme relies on its collision resistance. While a general purpose hash function
like SHA-3 [BDPA13, Dwo15] or an arithmetization-friendly one can safely be used for
both uses, for improved efficiency we chose to use a full hash function only for the random
oracle case (Section 3.1). Indeed, the specific constraints of the Merkle-tree case can be
satisfied more efficiently using a dedicated structure that remains permutation-based, and
which we introduce in Section 3.2. SAGE implementations of both modes are provided in
Appendix C.

3.1 Random Oracle: the Sponge Structure
A random oracle is essentially a theoretical function that picks each output uniformly at
random while keeping track of its previous outputs in order to remain a deterministic
function. The sponge construction is a convenient approach to try to emulate this behaviour.
First introduced by Bertoni et al. in [BDPVA07], this method was most notably used
to design SHA-3. It is also how most arithmetization-oriented hash functions have been
designed, e.g. Rescue–Prime, gMiMC-Hash, Poseidon [GKR+21], and Reinforced
Concrete. Such hash functions can easily be tweaked into eXtendable Output Functions
(XOF) [Dwo15] should the need arise.

The overall principle of the sponge construction is best explained by the diagram in
Figure 1. In this paper, we slightly modify the original approach to operate on elements of
F𝑞 instead of F2. The main component of the structure is a permutation 𝑃 operating on
F𝑟+𝑐

𝑞 , where both 𝑟 and 𝑐 are non-zero integers. The rate 𝑟 is the size of the outer part
of the state, while 𝑐 is the capacity and corresponds to the size of the inner part of the
state. The digest consists of ℎ elements of F𝑞. Then, to process a message 𝑚 consisting of
elements of F𝑞, we apply the following operations.

Padding. A basic padding works as follows: append 1 ∈ F𝑞 to the message followed by
enough zeroes so that the total length is a multiple of 𝑟, and then divide the result
into blocks 𝑚0,...,𝑚ℓ−1 of 𝑟 elements.

However, with this approach, we may end up using one more call to 𝑃 in the case
where the length of the message was already a multiple of 𝑟. A more efficient approach
is presented in [Hir16]: if the length of the message is already a multiple of 𝑟, then
we do not append further blocks to it. Instead, we add a constant to the capacity
before squeezing. This is summarized as the addition of 𝜎 which is equal to 0 if the
message length is not a multiple of 𝑟, and to 1 otherwise (see Figure 1). This variant
also has the advantage of gracefully handling the case where 𝑟 = 1.

6
New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi

Permutations and Jive Compression Mode

Absorption. For each message block 𝑚𝑖, we add it into the outer part of the state, and
then apply 𝑃 on the full state.

Squeezing. We extract min(ℎ, 𝑟) elements from the outer part of the state to generate
the first elements of the digest. If ℎ > 𝑟, we apply 𝑃 and then extract additional
elements again from the rate registers, repeating this process until the desired digest
length is reached.

�

𝑚0

F𝑐
𝑞

F𝑟
𝑞

𝑃

�

𝑚1

𝑃

�

𝑚2

𝑃
. . .

. . .

�
𝜎

�

𝑚ℓ−1

𝑃

𝑧0

𝑃
. . .

. . .
𝑧1

𝑃

𝑧ℎ−1

Figure 1: Sponge construction with the modification of [Hir16].

The security of a sponge rests on the properties of its permutation. Informally, the only
special property of the permutation should be the existence of an efficient implementation.
Its differential, linear, algebraic, etc. properties should be similar to those expected from a
permutation picked uniformly at random from the set of all permutations.

Following a flat sponge claim [BDPVA07], the designers of such an algorithm can
essentially claim that any attack against it will have a complexity equivalent to at least
𝑞𝑐/2 calls to the permutation (provided that ℎ ≥ 𝑐). Thus, a flat sponge claim states that
a sponge-based hash function provides 𝑛𝑐/2 bits of security.

3.2 Merkle Compression Function: the Jive Mode
One of the main use cases for an arithmetization-oriented hash function is as a compression
function in a Merkle tree. This case could be easily handled using a regular hashing mode,
such as the sponge structure discussed above. However, due to the specifics of this use
case, it is possible to use a more efficient mode.

In a Merkle tree, the elements considered are in F𝑚
𝑞 , where 𝑚 is chosen so that

𝑚⌊log2 𝑞⌋ ≥ 𝑛, where 𝑛 is the intended security level. We then need to hash two such
elements to obtain a new one. As a consequence, unlike in the usual case, the input size is
fixed, and is equal to exactly twice the digest size. Given a permutation of (F𝑚

𝑞)2, we can
thus construct a suitable hash function by plugging it into the following mode.

Definition 2 (Jive). Consider a permutation 𝑃 defined as follows:

𝑃 :
{︃

(F𝑚
𝑞)𝑏 → (F𝑚

𝑞)𝑏

(𝑥0, ..., 𝑥𝑏−1) ↦→ (𝑃0(𝑥0, ..., 𝑥𝑏−1), ..., 𝑃𝑏−1(𝑥0, ..., 𝑥𝑏−1)) ,

so that it operates on 𝑏𝑚 of elements of F𝑞, where 𝑃𝑖(𝑥0, . . . , 𝑥𝑏−1) : 0 ≤ 𝑖 < 𝑏 refers to
the 𝑖-th element in F𝑚

𝑞 of the output 𝑃 (𝑥0, . . . , 𝑥𝑏−1) from 𝑃 . The mode Jive is built from
𝑃 by defining the following one way function Jive𝑏(𝑃):

Jive𝑏(𝑃) :
{︃

(F𝑚
𝑞)𝑏 → F𝑚

𝑞

(𝑥0, ..., 𝑥𝑏−1) ↦→
∑︀𝑏−1

𝑖=0 (𝑥𝑖 + 𝑃𝑖(𝑥0, ..., 𝑥𝑏−1)) .

This approach can be seen as a permutation-based variant of the Davies-Meyer mode
which, like the latter, crucially relies on a feed-forward to ensure one-wayness. Alternatively,
it can be interpreted as a truncated instance of the mode used in the “Latin dance” ciphers

Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin
Velichkov, Danny Willems 7

𝑥 𝑦

Jive2(𝑥, 𝑦)

𝑃

𝑃0(𝑥, 𝑦) 𝑃1(𝑥, 𝑦)
�

�

(a) Jive2, which maps (F𝑚
𝑞)2 to F𝑚

𝑞 .

𝑥0 𝑥1 . . . 𝑥𝑏−1

Jive𝑏(𝑥0, ..., 𝑥𝑏−1)

𝑃

�

�
�

(b) Jive𝑏, which maps (F𝑚
𝑞)𝑏 to F𝑚

𝑞 .

Figure 2: The Jive mode turning a permutation into a compression function.

ChaCha and Salsa [Ber08], which is also based on a public permutation combined with a
feedforward. Incidentally, we called it Jive after another Latin dance.

If used inside a Merkle tree, this mode can save some computations. For example, in
the case where the fan-in 𝑏 is equal to 2, a sponge would use a permutation operating
on (F𝑚

𝑞)3 in order to leave one vector of F𝑚
𝑞 free for the capacity. Using Jive2 instead, we

only need a permutation of (F𝑚
𝑞)2. The trade-off of course is that, unlike a sponge-based

approach, the relevance of Jive is restricted to some specific cases.

4 The Flystel Structure
The performance metrics for AO algorithms differ substantially from the usual ones in
symmetric cryptography. Neither the number of CPU cycles, nor the RAM consumption
or the code size are the dominant factors. At the same time, pin-pointing exactly what
is needed for the various protocols relying on arithmetization is a difficult task as each
protocol has its own subtleties. For example, Plonk offers custom gates, which are difficult
to develop but can decrease the overall cost of an operation, while other proof systems
might not. On the other hand, additions are essentially free for R1CS or AIR, but not for
Plonk. In addition, permutations of a sequence of field elements are likely to incur cost in
Plonk or AIR (in the form of copy-constraints), but are free in R1CS.

In this section, we present a family of non-linear components that provide both the
cryptographic properties that we need to ensure the security of our primitives, and
efficient implementations across proof systems, which we call open Flystel. It uses—and
highlights—the connection between arithmetization-orientation and CCZ-equivalence.

4.1 On CCZ-Equivalence and Arithmetization-Orientation
In order for a function 𝐹 to be arithmetization-oriented, it is necessary that verifying
whether 𝑦 = 𝐹 (𝑥) can be done using few multiplications in a specific field (whose size is
dictated by other parts of the protocol). A very straight-forward initial approach is to use
a function 𝐹 which, itself, can be evaluated using a small number of multiplications: both
MiMC-Hash [AGR+16] and Poseidon [GKR+21] work in this way. The downside is that
using a low degree round function may imply vulnerability to attacks based on polynomial
solving, known as algebraic attacks. As a consequence, these algorithms have to use a high
number of rounds.

A first breakthrough on this topic was made by the designers of Rescue–Prime [AAB+20].
They noticed that for a permutation 𝐹 , checking if 𝑦 = 𝐹 (𝑥) is equivalent to checking if
𝑥 = 𝐹 −1(𝑦). It allows them to use both 𝑥𝛼 and 𝑥1/𝛼 (where 𝑥 ↦→ 𝑥𝛼 is a permutation of
the field used) in their round function, with 𝛼 chosen so as to minimize the number of

8
New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi

Permutations and Jive Compression Mode

𝑥 𝑦

�

�

�

𝑢 𝑣

𝑄𝛾

𝐸−1

𝑄𝛿

(a) Open Flystel, ℋ.

𝑦 𝑣

�

� �

𝑦 − 𝑣

𝑥 𝑢

𝑄𝛾 𝐸 𝑄𝛿

(b) Closed Flystel, 𝒱.

Figure 3: The Flystel structure (both variants are CCZ-equivalent).

multiplications. It means that both can be verified using a (cheap) evaluation of 𝑥𝛼, and at
the same time that the degree of the round function is very high as 1/𝛼 is a dense integer
of Z/(𝑞 − 1)Z. As a consequence, much fewer rounds are needed to prevent algebraic
attacks.

We go further and propose a generalization of this insight. So far, we have seen that
AO implies that a function or its inverse must have a particular implementation property
(low number of multiplications). In fact, we claim the following:

A subfunction is arithmetization-oriented if it is CCZ-equivalent to a function
that can be verified efficiently.

The above should come as no surprise since a permutation and its inverse are known to be
CCZ-equivalent [BCP06]. In that sense, this insight is a natural generalization of the one
of the Rescue–Prime designers.

Exploiting this idea is simple: suppose that 𝐹 and 𝐺 are such that Γ𝐹 = ℒ(Γ𝐺),
where ℒ : (𝑥, 𝑦) ↦→ (ℒ𝐿(𝑥, 𝑦),ℒ𝑅(𝑥, 𝑦)) is an affine permutation, and where 𝐺 can be
efficiently verified. Then we can use 𝐹 to construct an AO algorithm: checking if 𝑦 = 𝐹 (𝑥)
is equivalent to checking if ℒ𝐿(𝑥, 𝑦) = 𝐺 (ℒ𝑅(𝑥, 𝑦)), which only involves 𝐺 and linear
functions: it is efficient.

Below, we present a first component based on this idea: the Flystel. Nevertheless, we
hope that further research in discrete mathematics will lead to new non-linear components
that are even better suited to this use case: we need more permutations with good
cryptographic properties (including a high degree) that are CCZ-equivalent to functions
with a low number of multiplications.

4.2 High Level View of the Flystel Structure
Let 𝑄𝛾 : F𝑞 → F𝑞 and 𝑄𝛿 : F𝑞 → F𝑞 be two quadratic functions, and let 𝐸 : F𝑞 → F𝑞 be
a permutation. Then, the Flystel is a pair of functions relying on 𝑄𝛾 , 𝑄𝛿 and 𝐸. The
open Flystel is the permutation of (F𝑞)2 obtained using a 3-round Feistel network with
𝑄𝛾 , 𝐸−1, and 𝑄𝛿 as round functions, as depicted in Figure 3a. It is denoted ℋ, so that
ℋ(𝑥, 𝑦) = (𝑢, 𝑣) is evaluated as follows:

1. 𝑥← 𝑥−𝑄𝛾(𝑦),

2. 𝑦 ← 𝑦 − 𝐸−1(𝑥),

3. 𝑥← 𝑥 + 𝑄𝛿(𝑦),

4. 𝑢← 𝑥, 𝑣 ← 𝑦 .

The closed Flystel is a function of F2
𝑞 defined by 𝒱 : (𝑦, 𝑣) ↦→ (𝑅𝑖(𝑦, 𝑣), 𝑅𝑓 (𝑣, 𝑦)),

where 𝑅𝑗 : (𝑦, 𝑣) ↦→ 𝐸(𝑦 − 𝑣) + 𝑄𝑗(𝑦) for 𝑗 ∈ {𝑖, 𝑓}.
Our terminology of “open” for the permutation and “closed” for the function is based

on the relation between the Flystel and the butterfly structure, as detailed later. In
particular, the two Flystels are linked in the following way.

Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin
Velichkov, Danny Willems 9

Proposition 1. For a given tuple (𝑄𝛾 , 𝐸, 𝑄𝛿), the corresponding closed and open Flystel
are CCZ-equivalent.

Proof. Let (𝑢, 𝑣) = ℋ(𝑥, 𝑦). Then it holds that 𝑣 = 𝑦 − 𝐸−1 (𝑥−𝑄𝛾(𝑦)), so that we can
write 𝑥 = 𝐸(𝑦 − 𝑣) + 𝑄𝛾(𝑦). Similarly, we have that 𝑢 = 𝑄𝛿(𝑣) + 𝐸(𝑦 − 𝑣). Consider now
the set Γℋ =

{︀
((𝑥, 𝑦),ℋ(𝑥, 𝑦)) , (𝑥, 𝑦) ∈ F2

𝑞

}︀
. By definition, we have

Γℋ =
{︀

((𝑥, 𝑦), (𝑢, 𝑣)) , (𝑥, 𝑦) ∈ F2
𝑞

}︀
= ℒ

(︀ {︀
((𝑦, 𝑣), (𝑥, 𝑢)) , (𝑥, 𝑦) ∈ F2

𝑞

}︀)︀
where ℒ is the permutation of (F2

𝑞)2 such that ℒ ((𝑥, 𝑦), (𝑢, 𝑣)) = ((𝑦, 𝑣), (𝑥, 𝑢)), which is
linear. Using the equalities we established at the beginning of this proof, we can write:

ℒ−1(Γℋ) =
{︀

((𝑦, 𝑣), (𝑥, 𝑢)) , (𝑥, 𝑦) ∈ F2
𝑞

}︀
=

{︀(︀
(𝑦, 𝑣), (𝑄𝛾(𝑦) + 𝐸(𝑦 − 𝑣), 𝑄𝛿(𝑣) + 𝐸(𝑦 − 𝑣))

)︀
, (𝑦, 𝑣) ∈ F2

𝑞

}︀
= Γ𝒱 .

We deduce that Γℋ = ℒ(Γ𝒱), so the two functions are CCZ-equivalent.

This simple proposition has two crucial corollaries on which we will rely in the remainder
of the paper. The first is that it suffices to investigate the differential and linear properties
of the closed butterfly to obtain results on the open one.

Corollary 1. The open and closed Flystel structures have identical differential and
linear properties. More precisely, the set of the values in the DDT of both functions is the
same, and the set of the square of the Fourier coefficients of the components is also the
same.

The second corollary is the key reason behind the relevance of the Flystel structure
in the airthmetization-oriented setting and is stated below.

Corollary 2. Verifying that (𝑢, 𝑣) = ℋ(𝑥, 𝑦) is equivalent to verifying that (𝑥, 𝑢) = 𝒱(𝑦, 𝑣).

Indeed, Corollary 2 means that it is possible to encode the verification of the evaluation
of the high degree open Flystel using the polynomial representation of the low degree
closed Flystel.

In characteristic 2, quadratic mappings correspond to different exponents than in
the general case. As a consequence, when giving concrete instanciations of the Flystel
structure, we need to treat this case separately. To highlight the difference, we call
Flystel2 the instances used in characteristic 2, and Flystelp the instances used in odd
prime characteristic.

4.3 Characteristic 2
Let 𝑞 = 2𝑛, with 𝑛 odd. Furthermore, let 𝛼 = 2𝑖 + 1 be such that gcd(𝑖, 𝑛) = 1,
so that 𝑥 ↦→ 𝑥𝛼 is a permutation of F𝑞. In this case, the Flystel2 structure with
𝑄𝛾(𝑥) = 𝑄𝛿(𝑥) = 𝛽𝑥𝛼, with 𝛽 ̸= 0, and with 𝐸(𝑥) = 𝑥𝛼 is a degenerate generalized
butterfly structure. It was studied in [LTYW18] as a generalization of the structure
introduced in [PUB16], which was also refined in [CDP17]. We recall the following
particular case3 in Theorems 3, 4 and 5 of [LTYW18].

Proposition 2 ([LTYW18]). Let 𝑞 = 2𝑛 with 𝑛 odd, 𝐸 = 𝑥 ↦→ 𝑥𝛼, where 𝛼 = 2𝑖 + 1
is such that gcd(𝑖, 𝑛) = 1, and 𝑄𝛾 = 𝑄𝛿 = 𝑥 ↦→ 𝛽𝑥𝛼, where 𝛽 ̸= 0. Then the Flystel2

structures defined by the functions 𝑄𝛾 , 𝐸, and 𝑄𝛿 have differential uniformity equal to 4,
linearity equal to 22𝑛−1 − 2𝑛, and algebraic degree of 𝑛.

3The result of Li et al. covers all generalized butterflies, not just those corresponding to Flystel
structures. In a Flystel, the first parameter (which we will denote 𝑎) is set to 1. Their results for the
differential uniformity and the linearity holds only when 𝛽 ̸= (1 + 𝑎)𝛼, meaning that we simply need to
make sure that 𝛽 ̸= 0. For the algebraic degree, the condition they give in their Theorem 5 to have a
degree equal to 𝑛 + 1 degenerates into 𝛽2𝑖+1 = 𝛽2𝑖+1, which is never the case as 𝑖 > 0.

10
New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi

Permutations and Jive Compression Mode

In practice, to prevent some attacks (see Section A.3), we instead use 𝑄𝛾(𝑥) = 𝛽𝑥3 + 𝛾
and 𝑄𝛿(𝑥) = 𝛽𝑥3 + 𝛿, where 𝛾 and 𝛿 are constants of F𝑞 such that 𝛾 ̸= 𝛿. The resulting
construction is depicted in Figure 4a.

𝑥 𝑦

𝑡

𝑢 𝑣

𝛽𝑥3 + 𝛾⊕

𝑥1/3 ⊕

𝛽𝑥3 + 𝛿⊕

(a) Flystel2 in characteristic 2.

𝑥 𝑦

𝑡

𝑢 𝑣

𝛽𝑥2 + 𝛾�

𝑥1/𝛼 �

𝛽𝑥2 + 𝛿�

(b) Flystelp in odd prime characteristic.

Figure 4: The two variants of the open Flystel, mapping (𝑥, 𝑦) to (𝑢, 𝑣).

4.4 Odd Characteristic
When 𝑞 = 𝑝, the Flystelp structure uses three rounds functions: 𝑄𝛾 : 𝑥 ↦→ 𝛽𝑥2 + 𝛾,
𝐸 : 𝑥 ↦→ 𝑥1/𝛼, and 𝑄𝛿 : 𝑥 ↦→ 𝛽𝑥2 + 𝛿, where 𝛼, 𝛽, 𝛾 ∈ F𝑞 and 𝛽 ̸= 0.

Differential Properties. Such structures have a low differential uniformity.

Proposition 3. Let 𝑞 = 𝑝 be a prime number, 𝐸 = 𝑥 ↦→ 𝑥𝛼, where 𝛼 is such that
gcd(𝛼, 𝑝 − 1) = 1, and 𝑄𝛾 = 𝑥 ↦→ 𝛾 + 𝛽𝑥2, 𝑄𝛿 = 𝑥 ↦→ 𝛿 + 𝛽𝑥2 where 𝛽 ̸= 0. Then the
Flystelp structures defined by the functions 𝑄𝛾 , 𝐸, and 𝑄𝛿 has a differential uniformity
equal to 𝛼− 1.

Proof. Let 𝑎, 𝑏, 𝑐, 𝑑 be elements of F𝑝 such that (𝑎, 𝑏) ̸= (0, 0). To investigate the differential
uniformity of 𝒱 : (𝑦, 𝑣) ↦→ (𝑅𝑖(𝑦, 𝑣), 𝑅𝑓 (𝑣, 𝑦)), we look at the number of solutions (𝑦, 𝑣) of
(1). {︃

𝑅𝑖(𝑦 + 𝑎, 𝑣 + 𝑏)−𝑅𝑖(𝑦, 𝑣) = 𝑐

𝑅𝑓 (𝑣 + 𝑏, 𝑦 + 𝑎)−𝑅𝑓 (𝑣, 𝑦) = 𝑑 .
(1)

We have:{︂
𝑅𝑖(𝑦 + 𝑎, 𝑣 + 𝑏) − 𝑅𝑖(𝑦, 𝑣) = (𝑦 + 𝑎 − (𝑣 + 𝑏))𝛼 + 𝛾 + 𝛽(𝑣 + 𝑏)2 − (𝑦 − 𝑣)𝛼 − 𝛾 − 𝛽𝑣2

𝑅𝑓 (𝑣 + 𝑏, 𝑦 + 𝑎) − 𝑅𝑓 (𝑣, 𝑦) = (𝑣 + 𝑏 − (𝑦 + 𝑎))𝛼 + 𝛿 + 𝛽(𝑦 + 𝑎)2 − (𝑣 − 𝑦)𝛼 − 𝛿 − 𝛽𝑦2 .

As 𝛼 is odd, we deduce:{︂
𝑅𝑖(𝑦 + 𝑎, 𝑣 + 𝑏) − 𝑅𝑖(𝑦, 𝑣) = (𝑦 + 𝑎 − (𝑣 + 𝑏))𝛼 + 𝛽(𝑣 + 𝑏)2 − (𝑦 − 𝑣)𝛼 − 𝛽𝑣2

𝑅𝑓 (𝑣 + 𝑏, 𝑦 + 𝑎) − 𝑅𝑓 (𝑣, 𝑦) = −(𝑦 + 𝑎 − (𝑣 + 𝑏))𝛼 + 𝛽(𝑦 + 𝑎)2 + (𝑦 − 𝑣)𝛼 − 𝛽𝑦2 .

Noting respectively ℓ1 and ℓ2 the rows of the system, we get:

ℓ1 + ℓ2 = 𝛽(𝑣 + 𝑏)2 − 𝛽𝑣2 + 𝛽(𝑦 + 𝑎)2 − 𝛽𝑦2 = 𝑐 + 𝑑 ,

which is equivalent to:

𝑣 = (2𝑏)−1 (︀
𝛽−1(𝑐 + 𝑑)− (2𝑎𝑦 + 𝑎2 + 𝑏2)

)︀
.

Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin
Velichkov, Danny Willems 11

As a consequence, we know that 𝑣 can be expressed as an affine polynomial in 𝑦. So, we
have

ℓ2 = −(𝑦 + 𝑎− (𝑣 + 𝑏))𝛼 + 𝛽(𝑦 + 𝑎)2 + (𝑦 − 𝑣)𝛼 − 𝛽𝑦2

Recalling that 𝑣 is of degree 1 in 𝑦, we have that ℓ2 is an equation in 𝑦 of degree 𝛼 − 1
(since the terms 𝑦𝛼 cancel out), and thus at most 𝛼− 1 solutions for 𝑦. In the end, we have
at most 𝛼− 1 solutions (𝑦, 𝑣) for the system (since for each value of 𝑦, there is one 𝑣).

Linear Properties. We do not have a theoretical bound on the correlation for the Flystelp
structure, but we provide informal arguments supporting its security against linear crypt-
analysis attacks. Notice first that Flystelp is defined by the functions 𝑄𝛾 , 𝐸−1 and 𝑄𝛿,
where 𝑄𝛾 and 𝑄𝛿 are quadratic. Given that the function 𝑥2 is bent (i.e. its correlations
are the lowest possible), we argue that a linear trail which would activate just one of these
functions should be expected to have a very low correlation. In Appendix A, we give a
conjecture supported by experimental results, stating that the linearity of Flystelp is
lower than 𝑝 log 𝑝.

Invariant Subset. Regardless of the characteristic, it holds thatℋ (𝑄𝛾(𝑥), 𝑥) = (𝑄𝛿(𝑥), 𝑥).
Thus, setting 𝑄𝛾 = 𝑄𝛿 would mean that Flystel is the identity over a subset of size 𝑞,
which is why we use constant additions to ensure 𝑄𝛾 ̸= 𝑄𝛿. Nevertheless, this only ensures
that the open Flystel is a translation over the set {(𝑄𝛾(𝑥), 𝑥) , 𝑥 ∈ F𝑞}, which remains
cryptographically weak. While a priori undesirable, the impact of this property can be
mitigated. First, the subset over which it has a simple expression is not an affine space.
Second, as we show in Appendix A.3, the propagation of such patterns can be broken via
the linear layer.

Degree. Given the structure of the open Flystelp, its degree is lower bounded by the
inverse of 𝛼 modulo 𝑝− 1, a quantity which in practice corresponds to a dense integer of
Z/(𝑝−1)Z. We deduce that one call to the open Flystelp is likely to be of maximum degree
and is therefore sufficient to thwart attacks that exploit the low degree of a component,
such as higher order differentials.

4.5 Implementation Aspects
For direct computation, (or witness calculation) one can simply implement the open
Flystel. For the verification however, we also have the option to use the closed Flystel
structure, since there is no requirement for the various verification steps to be performed
in a particular order as long as consistency is enforced. In this case, the cost is one
multiplication for 𝑄𝛾 and 𝑄𝛿, and as many as are needed to compute 𝑥 ↦→ 𝑥𝛼. This can
be implemented using a technique slightly more subtle than basic fast exponentiation,
instead relying on addition chains as discussed for example in [BC90]. Good addition
chains can be found using the addChain tool [McL21]. They are also particularly useful
for implementing 𝑥 ↦→ 𝑥1/𝛼.

5 Description of Anemoi

In this section, we present new primitives, and the way to deterministically construct all
of their variants. At their core are the Anemoi permutations, that operate on F2ℓ

𝑞 for any
field size 𝑞 that is either a prime number or a power of two, and for positive integer ℓ. The
round function of these permutations is presented in Section 5.1: for each value of ℓ, and
for each value of 𝑞, there is a unique round function.

12
New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi

Permutations and Jive Compression Mode

In order to build the primitives themselves, we need also to consider the security
level required as it will influence the number of rounds of the permutation (note that the
security level will also influence the size of the internal state). The procedures to follow to
define higher level algorithms are described in Section 5.2. We then provide some specific
instances in Section 5.3.

5.1 Round Function
A round function is a permutation of F2ℓ

𝑞 , where ℓ > 0 is an integer, and where 𝑞 is either4

a prime number or a power of 2 with a bitlength of at least 10.
In order to define it, we organize its state into a rectangle of elements of F𝑞 of dimension

2 × ℓ. The elements in the first row are denoted (𝑥0, ..., 𝑥ℓ−1), and those in the second
row are (𝑦0, ..., 𝑦ℓ−1) (see Figure 5a). We refer to vectors of Fℓ

𝑞 using the same upper-case
letters, e.g. (𝑥0, ..., 𝑥ℓ−1) is denoted 𝑋. Subscripts correspond to indices within a vector
of Fℓ

𝑞, and superscripts to round indices, so 𝑋𝑖 is the top part of the state at the start of
round 𝑖. We let 𝑔 be a specific generator of the multiplicative subgroup of the field F𝑞. If 𝑞
is prime, then 𝑔 is the smallest such generator using the usual integer ordering. Otherwise,
we have that F𝑞 = F2𝑛 = F2[𝑥]/𝑝(𝑥), where 𝑝 is an irreducible polynomial of degree 𝑛, in
which case we let 𝑔 be one of its roots.

The function applied during round 𝑟 is denoted R𝑟. It has a classical Substitution-
Permutation Network structure, whose components are described below: first the linear
layer, then the S-box layer, and finally the constant addition. The overall action of each
of these operations on the state is summarized in Figure 5, and a complete round is
represented in Figure 6.

𝑥0 𝑥1 ... 𝑥ℓ−1

𝑦0 𝑦1 ... 𝑦ℓ−1

𝑋

𝑌

(a) Internal state

ℳ𝑥

ℳ𝑦

(b) The diffusion layer ℳ.

ℋ ℋ ... ℋ

(c) The S-box layer 𝒮.

𝑋𝑖

𝑌 𝑖

𝐶𝑖

𝐷𝑖+=
(d) The constant addition 𝒜.

Figure 5: The internal state of Anemoi and its basic operations.

Diffusion Layer ℳ. If ℓ > 1, then the diffusion layerℳ operates on 𝑋 and 𝑌 separately,
so that

ℳ(𝑋, 𝑌) =
(︀
ℳ𝑥(𝑋),ℳ𝑦(𝑌)

)︀
,

as summarized in Figure 5b. The linear permutations ℳ𝑥 and ℳ𝑦 are closely related,
but differ in order to break the column structure imposed by the non-linear layer (see
below). More precisely, we impose that ℳ𝑥 is a matrix of size ℓ× ℓ of F𝑞 with maximum
diffusion, i.e. such that its branching number5 is equal to ℓ + 1. We then construct ℳ𝑦 as
ℳ𝑦 =ℳ𝑥 ∘ 𝜌, where 𝜌 is a simple word permutation: 𝜌(𝑥0, ..., 𝑥ℓ−1) = (𝑥1, ..., 𝑥ℓ−1, 𝑥0).

The specifics of the linear permutationℳ𝑥 then depend on the value of ℓ. Furthermore,
in order for our permutation to best satisfy different proof systems, we use different
techniques to construct them. At a high level, there are two different situations:

4The field order must have a bitlength of at least 10 bits. The aim of this restriction is to ensure that
e.g. MDS matrices can be found as those might not be defined for small field sizes.

5Recall that the branching number of a linear permutation 𝐿 is the minimum over 𝑥 ̸= 0 of hw(𝑥) +
hw (𝐿(𝑥)), where hw counts the number of non-zero elements.

Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin
Velichkov, Danny Willems 13

𝑥𝑟
0 𝑥𝑟

1 𝑥𝑟
2 ... 𝑥𝑟

ℓ−1

𝑐𝑟
0

𝑐𝑟
1

𝑐𝑟
2
.
.
.

𝑐𝑟
ℓ−1

�

�

�

�

𝑥
𝑟+1
0 𝑥

𝑟+1
1 𝑥

𝑟+1
2

... 𝑥
𝑟+1
ℓ−1

ℳ𝑥

𝑦𝑟
0 𝑦𝑟

1 𝑦𝑟
2 ... 𝑦𝑟

ℓ−1

𝑑𝑟
0

𝑑𝑟
1

𝑑𝑟
2
.
.
.

𝑑𝑟
ℓ−1

�

�

�

�

𝑦
𝑖+1
0 𝑦

𝑖+1
1 𝑦

𝑖+1
2

... 𝑦
𝑖+1
ℓ−1

ℳ𝑦

ℋ ℋ ℋ ℋ. . .

(a) (Assuming ℓ >1)

◁ Constant addition
for 𝑖 ∈ {0, ..., ℓ− 1} do

𝑥𝑖 ← 𝑥𝑖 + 𝑐𝑟
𝑖

𝑦𝑖 ← 𝑦𝑖 + 𝑑𝑟
𝑖

end for
◁ Linear layer ℳ
if ℓ > 1 then

𝑋 ←ℳ𝑥(𝑋)
𝑌 ←ℳ𝑥 ∘ 𝜌(𝑌)

else
(𝑥0, 𝑦0)←ℳ𝑥(𝑥0, 𝑦0)

end if
◁ S-box layer ℋ
for 𝑖 ∈ {0, ..., ℓ− 1} do

𝑥𝑖 ← 𝑥𝑖 − 𝑔𝑄(𝑦𝑖)
𝑦𝑖 ← 𝑦𝑖 − 𝑥

1/𝛼
𝑖

𝑥𝑖 ← 𝑥𝑖 + 𝑔𝑄(𝑦𝑖) + 𝑔−1

end for
return (𝑋, 𝑌)

(b)

Figure 6: R𝑟, the 𝑟-th round of Anemoi, applied on the state (𝑋, 𝑌) ∈ Fℓ
𝑞 × Fℓ

𝑞, where
𝑋 = (𝑥0, ..., 𝑥ℓ−1) and 𝑌 = (𝑦0, ..., 𝑦ℓ−1).

∙ if ℓ is small, then the value of the field size is expected to be large in order for the
permutation to operate on a state large enough to offer security against generic
attacks, meaning that this case is expected to happen when using pairing-based proof
systems like Groth16 or standard Plonk which require large scalar fields for security.

∙ if ℓ is large, then the situation is the opposite, meaning that we would expect the
field size to be smaller and thus to correspond to e.g. in FRI-based proving systems.

In the Plonk case, additions have a non-negligible cost during verification. As a consequence,
when ℓ is at most equal to 4, we use linear layers requiring a number of additions as
small as possible. To this end, we adapt results from [DL18] where Duval and Leurent
present generic matrix constructions with a minimal number of additions. In practice,
when ℓ ∈ {1, 2, 3, 4}, we use the matrix ℳℓ

𝑥 where

ℳ1
𝑥 =ℳ2

𝑥 =
[︀ 1 𝑔

𝑔 𝑔2 + 1

]︀
, ℳ3

𝑥 =
[︁

𝑔 + 1 1 𝑔 + 1
1 1 𝑔
𝑔 1 1

]︁
, ℳ4

𝑥 =
[︂ 1 1 + 𝑔 𝑔 𝑔

𝑔2 𝑔 + 𝑔2 1 + 𝑔 1 + 2𝑔

𝑔2 𝑔2 1 1 + 𝑔
1 + 𝑔 1 + 2𝑔 𝑔 1 + 𝑔

]︂
.

If ℓ = 1, then there is a unique column in the internal state. In this case, to destroy some
undesirable patterns at the S-box level, we still use a linear layer, except that it is applied
on the vector (𝑥0, 𝑦0).

Low-addition implementations are shown in Appendix C, and the corresponding dia-
grams are given in Figure 7. As [DL18] contains several different matrices for each number
of inputs, we based our matrices on their candidates that have the lowest number of
additions, and the least symmetries.

In the AIR (STARK) case, linear operations are essentially free. Thus, the dominating
constraint on a linear layer is its native implementation cost, i.e. the time it takes for a C
or Rust program to evaluate ℳ𝑥(𝑥). To minimize this cost, we need to minimize the value
of the coefficients appearing in the matrix. To this end, we use the circulant matrix where
the first row is the smallest in the lexicographic order, and such that the overall matrix is
MDS. A script implementing this generation method is provided in Appendix C.

14
New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi

Permutations and Jive Compression Mode

𝑥0 𝑥1

�

�

𝑔

𝑔

(a) ℓ = 2.

𝑥0 𝑥1 𝑥2

�

�

�

�

�

𝑔

𝑔

(b) ℓ = 3.

𝑥0 𝑥1 𝑥2 𝑥3

� �
�

�

�
�

�
�

𝑔

𝑔 𝑔

(c) ℓ = 4.

Figure 7: Diagram representations of ℳ𝑥.

S-box Layer 𝒮. Let ℋ be an open Flystel operating over F2
𝑞. Then we let

𝒮(𝑋, 𝑌) =
(︀
ℋ(𝑥0, 𝑦0), ...,ℋ(𝑥ℓ−1, 𝑦ℓ−1)

)︀
,

as summarized in Figure 5c. A Flystel instance is defined by 4 parameters, regardless
of whether it is a Flystelp or Flystel2: the exponent 𝛼, the multiplier 𝛽, and the two
added constants 𝛾 and 𝛿. First, we let 𝛽 = 𝑔: setting 𝛽 = 1 would lead to the invariant
space (Section A.3) having equation (𝑥2, 𝑥), which we deem too simple; 𝑔 is then the most
natural non-trivial constant. Furthermore, in order to break the symmetry of the Flystel,
we impose that 𝛾 ̸= 𝛿. We thus let 𝛾 = 0 and 𝛿 = 𝑔−1 as this value is both different from 1
and 𝑔 while retaining a simple definition.

All that remains is to choose the exponent 𝛼. If 𝑞 = 2𝑛, then we let 𝛼 = 3: we have
to use a Gold exponent (i.e. of the shape 2𝑘 + 1), and 3 always works since 𝑛 is odd.
Otherwise, when 𝑞 is prime, the process is a bit more involved as a higher value allows
using fewer rounds to thwart Gröbner-basis-based attacks, but is also more expensive.
Users should use the value of 𝛼 that yields the most efficient algorithm according to their
metrics.

Constant Additions 𝒜. We let 𝑥𝑗 ← 𝑥𝑗 +𝑐𝑖
𝑗 and 𝑦𝑗 ← 𝑦𝑗 +𝑑𝑖

𝑗 , where 𝑐𝑖
𝑗 ∈ F𝑞 and 𝑑𝑖

𝑗 ∈ F𝑞

are round constants that depend on both the position (index 𝑗) and the round (index 𝑖).
The aim is to increase the complexity of the algebraic expression of multiple rounds of the
primitive and to prevent the appearance of patterns that an attacker could leverage in
their attack.

They are derived using the digits of 𝜋 using the following procedure. We let

(𝜋0, 𝜋1) =

(1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679,

8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196)

be the first and second blocks of 100 digits of 𝜋. We derive the round constants 𝑐𝑖
𝑗 and 𝑑𝑖

𝑗

by applying an open Flystel with the same parameters as in the round function on the
pair (𝜋𝑖

0, 𝜋𝑗
1), where superscripts are exponents, so that⎧⎨⎩𝑐𝑖

𝑗 = 𝑔(𝜋𝑖
0)2 +

(︁
𝜋𝑖

0 + 𝜋𝑗
1

)︁𝛼

𝑑𝑖
𝑗 = 𝑔(𝜋𝑗

1)2 +
(︁

𝜋𝑖
0 + 𝜋𝑗

1

)︁𝛼

+ 𝑔−1 ,

where the computations are done in F𝑞. When 𝑞 = 2𝑛, 𝜋0 and 𝜋1 are cast to field elements
using the usual mapping sending

∑︀𝑛−1
𝑘=0 𝑥𝑖2𝑖 to

∑︀𝑛−1
𝑘=0 𝑥𝑖𝑔

𝑖, where (𝑥0, ..., 𝑥𝑛−1) is the
binary representation of 𝑥 modulo 2𝑛.

Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin
Velichkov, Danny Willems 15

5.2 Higher Level Algorithms
Anemoi. The Anemoi permutation iterates 𝑛𝑟 rounds of the round function described in
Figure 6, followed by a call to the linear layer ℳ:

Anemoi𝑞,𝛼,ℓ = ℳ∘ R𝑛𝑟−1 ∘ ... ∘ R0 .

In symmetric cryptography, we usually remove outer linear layers, e.g. in the AES.
That is because they don’t contribute to the cryptographic strength of a block cipher (e.g.
can be removed “for free” by an adversary). In the case of a sponge construction however,
the adversary only controls a part of the state, namely the outer part (the rate). Thus,
starting/finishing with a diffusion layer ensures that this control is spread across the full
state in a way which is not aligned with the non-linear layer. A similar goal could be
achieved using indirect injection, as is done in Esch [BBC+20].

The number of rounds 𝑛𝑟 is computed using the following rule that is derived from
our security analysis in Section 6. Let 𝑠 be the required security level, and (𝑞, ℓ, 𝛼) be
the parameters imposed by the use case. As we believe that a construction with more
branches gives more freedom to the attacker, we choose a security margin that increases
with the size of the internal state. Then the number of rounds 𝑛𝑟 is the smallest value
satisfying both of the following conditions:

𝑛𝑟 ≥ 10, and

𝑛𝑟 ≥ 1 + ℓ⏟ ⏞
security margin

+ min
{︃

𝑟 ∈ N

⃒⃒⃒⃒
⃒

(︂
2ℓ𝑟 + 𝛼 + 1 + 2 · (ℓ𝑟 − 2)

2ℓ𝑟

)︂2
≥ 2𝑠

}︃
⏟ ⏞

to prevent algebraic attacks, see Section 6.2

. (2)

We derived the number of rounds needed for various values of ℓ and 𝛼. They are in
Appendix A.4.

AnemoiSponge. This function is a “regular” hash function, in the sense that it should be
able to process messages of arbitrary length. We therefore rely on the sponge construction
detailed in Section 3, where 𝑟 words are used as the rate, 𝑐 are used as the capacity, and
where the permutation is the Anemoi instance operating on F𝑟+𝑐

𝑞 . Note that the inner
workings of Anemoi imply that 𝑟 + 𝑐 must be even.

AnemoiJive. We can construct a compression function mapping 𝑏-to-1 vectors of F𝑚
𝑞

elements, using Jive𝑏 and an Anemoi instance operating on 𝑏𝑚 elements of F𝑞. The only
constraint is, again, that 𝑏𝑚 must be even.

Security Claims. All the Anemoi permutations generated as defined above can be used
safely to construct cryptographic primitives with the given security level. In particular,
we make a “hermetic sponge” claim about all the hash functions AnemoiSponge generated
as above, and we claim that all the AnemoiJive functions are secure 𝑏-to-1 compression
functions (provided of course that the state size is chosen correctly).

5.3 Specific Instances
In this section, we present some examples of functions in the Anemoi family that are
defined over different fields, aim for different APIs (both AnemoiSponge and AnemoiJive),
and for a security level of 127 bits.

We consider the case of the BLS12-381 curve, in which case (log2(𝑞), 𝛼, 𝑔) = (255, 5, 7),
and the case of the BN-254 curve, in which case (log2(𝑞), 𝛼, 𝑔) = (254, 5, 2). In both cases,
we aim for 127 bits of security.

16
New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi

Permutations and Jive Compression Mode

AnemoiJive. AnemoiJive-BLS12-381 and AnemoiJive-BN-254 are Merkle Compression
functions mapping two elements of F𝑞 to a unique one. In order to reach a security level of
127 bits, ℓ = 1 is sufficient in both cases. The underlying permutations of the compression
functions then use the following components.

S-box. ℋ uses the parameters 𝑔 and 𝛼 corresponding to the elliptic curve.

Linear layer. As ℓ = 1 < 4, we use the corresponding low-addition linear layers ℳ𝑥. For
BLS12-381 and BN-254, these are respectively

ℳBLS12-381
𝑥 =

[︂
1 7
7 50

]︂
and ℳBN-254

𝑥 =
[︂

1 5
5 26

]︂
. (3)

Round Constants. These are generated as described in Section 5.1.

Number of Rounds. Using Equation (2), we obtain that 19 rounds are needed for a
security level of 127 bits.

Round 𝑟 is then defined as R𝑟 : (𝑥, 𝑦) ↦→ ℋ ∘ ℳ(𝑥 + 𝑐𝑟, 𝑦 + 𝑑𝑟), and we define the
compression functions as follows. Let (𝑥, 𝑦) be the input, and 𝑃 be the Anemoi instance
defined by 𝑃 :=ℳ∘ R18 ∘ ... ∘ R0. Then AnemoiJive(𝑥, 𝑦) is evaluated as follows: first,
let (𝑢, 𝑣)← 𝑃 (𝑥, 𝑦), then, return 𝑥 + 𝑦 + 𝑢 + 𝑣.

Security Claims. The best way to find collisions in AnemoiJive-BLS12-381 (respectively
AnemoiJive-BN-254) is to rely on a generic collision search. Since the output is an element
of F𝑞 with log2(𝑞) ≥ 254, this is expected to require about 2127 function calls on average.

AnemoiSponge. AnemoiSponge-BLS12-381 and AnemoiSponge-BN-254 are hash functions
mapping a sequence {𝑥𝑖}0≤𝑖<𝑚 of elements of F𝑞 to an element of F𝑞, where 𝑚 is a positive
integer. It is constructed using a sponge which relies on Anemoi as the permutation.
We aim to provide about 127 bits of security, meaning that a capacity of 1 word of F𝑞

is enough in both cases. We then pick an identical rate, so that 𝑟 = 𝑐 = 1, and thus
ℓ = 1. The permutations used are then the same as for AnemoiJive-BLS12-381 and
AnemoiJive-BN-254.

Security Claims. We claim that AnemoiSponge-BLS12-381 and AnemoiSponge-BN254
provide 127 bits of security against all known attacks.

6 Security Analysis
The security of our high level algorithms is reduced to the security of their inner permutation,
namely the Anemoi family. In this section, we argue that the latter has sufficient security
level.

6.1 “Classical” Attacks
We call “classical” attacks those that have been used to target algorithms designed over
(F2)𝑛. As we argue below, we do not expect those to be a significant problem. More
detailed arguments are provided in Appendix A.

Statistical attacks like differential and linear cryptanalysis exploit patterns that exist at
the S-box level, and which are then propagated through the linear layers to form so-called
“trails”. As the Flystel has excellent differential and linear properties, we do not expect
those to pose a threat (especially given that our linear layers are MDS).

Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin
Velichkov, Danny Willems 17

For integral attacks and invariant subspaces, we rely on the fact that our round
structure is not “aligned”, meaning that the non-linear and linear layers operate over
different alphabets (the columns and the rows). As a consequence, the propagation of
the patterns exploited by these attacks is hindered. Similarly, thanks to the MDS matrix,
truncated differentials, boomerang attacks and MitM attacks also do not pose a threat.

We refer the reader to Appendix A for a more detailed security analysis of the proposed
constructions with respect to classical attacks.

6.2 Algebraic Attacks
In this section, we evaluate the security of Anemoi with respect to Gröbner basis attacks.
As we are mainly interested in a minimal condition on the number of rounds to reach
a security of 2𝑠 bits, we allow ourselves to underestimate complexity in several places,
out of caution. For practical reasons, we restrict our experiments to ℓ = 1 for even and
odd characteristics. We focus on the following version of the CICO (Constrained Input
Constrained Output) problem:

Definition 3. Let 𝑃 : F2
𝑞 → F2

𝑞 be a permutation. The CICO problem consists in finding
(𝑦in, 𝑦out) ∈ F2

𝑞 such that 𝑃 (0, 𝑦in) = (0, 𝑦out).

Solving method.

There are plenty of ways to model CICO as an algebraic system. In this paper, we consider
the possibly most promising one for Anemoi which is by introducing equations and variables
at each round. Such an approach was already proposed to study similar arithmetization-
oriented primitives [DGGK21, BSGL20, GØSW22]. More precisely, for 0 ≤ 𝑗 ≤ 𝑛𝑟 − 1, we
define 𝑓𝑗 and 𝑔𝑗 by

(𝑥𝑗+1, 𝑦𝑗+1) = R𝑗(𝑥𝑗 , 𝑦𝑗)⇔
{︂

𝑓𝑗 := 𝑓(𝑥𝑗 , 𝑦𝑗 , 𝑥𝑗+1, 𝑦𝑗+1) = 0
𝑔𝑗 := 𝑔(𝑥𝑗 , 𝑦𝑗 , 𝑥𝑗+1, 𝑦𝑗+1) = 0,

where R𝑗 is the round function and where 𝑓 and 𝑔 are closely related to the verification
equations. Also, let ℱ := {𝑓0, 𝑔0, 𝑓1, 𝑔1, . . . , 𝑓𝑛𝑟−1, 𝑔𝑛𝑟−1} and let ℱCICO := ℱ ∪ {𝑥0, 𝑥𝑛𝑟

}.
This system contains 2𝑛𝑟 equations and 2𝑛𝑟 variables. To solve it, we apply the standard
zero-dimensional strategy:

1. Compute a Gröbner basis 𝒢drl for a DRL ordering [Lou94, Definition 1.4.3],

2. Compute a new Gröbner basis 𝒢lex for the LEX ordering by using the FGLM algorithm
[FGLM93] on 𝒢drl.

For Step 1, the running time of Gröbner basis algorithms such as F4 [Fau99] or F5 [Fau02]
is usually estimated by evaluating the solving degree of the system denoted by 𝑑solv. This
degree can be informally defined as the maximal degree of a polynomial which occurs
during the Gröbner basis computation. Once 𝑑solv is known, a generic estimate for the
cost of F4/F5 is

𝒪
(︂(︂

𝑑solv + 𝑛𝑣

𝑛𝑣

)︂𝜔)︂
(4)

field operations, where 𝑛𝑣 is our number of variables and where 2 ≤ 𝜔 ≤ 3 is a linear
algebra constant. We stress that this estimation is heuristic and it is an upper bound that
does not take into account the structure or the sparsity of the given Macaulay matrices.
In particular, to use it as a guidance, we will adopt the conservative 𝜔 = 2 for the
linear algebra constant. Also, contary to other arithmetization-oriented primitives (see
for instance [BSGL20]), we notice that Step 2 had a negligible cost compared to Step 1.
Due to space constraints, details on the complexity of this FGLM step are presented in
Appendix B.3 and we now estimate 𝑑solv (𝐼CICO) for Anemoi when ℓ = 1.

18
New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi

Permutations and Jive Compression Mode

6.2.1 Characteristic 2.

When 𝑞 = 2𝑛 for odd 𝑛, recall that 𝛼 = 3, 𝑄𝑖(𝑥) = 𝛽𝑥3 + 𝛾 and 𝑄𝑓 (𝑥) = 𝛽𝑥3 + 𝛿. The
ℱCICO system then contains 2𝑛𝑟 cubic polynomials in 2(𝑛𝑟 + 1)− 2 = 2𝑛𝑟 variables. For
such a system, one usually relies on the Macaulay bound for an upper bound on 𝑑solv,
namely 2𝑛𝑟(3− 1) + 1 = 4𝑛𝑟 + 1. This bound would be tight if the system of homogeneous
parts of highest degree was regular. However, our experiments indicate that ℱCICO does not
behave as such, see Appendix B.1. Therefore, we chose to extrapolate these data to find a
lower bound on 𝑑solv. As this method might lead to inaccuracies for a higher number of
rounds, our bound is voluntarily very coarse.

Conjecture 1. For 𝑛𝑟 ≥ 2, the maximal degree 𝑑solv (𝐼CICO) which occurs while computing
a DRL-Gröbner basis for 𝐼CICO is such that 𝑑solv (𝐼CICO) ≥ 3𝑛𝑟.

Finally, we evaluate the complexity of Step 1 using Equation (4) with the lower bound
on 𝑑solv (𝐼CICO) given by Conjecture 1 and 𝑛𝑣 = 2𝑛𝑟.

6.2.2 Odd characteristic.

When 𝑞 > 2 is an odd prime, the equations 𝑓𝑗 and 𝑔𝑗 are affine of degree 𝛼 but it has
already been noted in the proof of Proposition 3 that their difference ℎ𝑗 := 𝑓𝑗 − 𝑔𝑗 is a
quadratic polynomial. In particular, taking {𝑓𝑗 , ℎ𝑗} instead of {𝑓𝑗 , 𝑔𝑗} as a generating set
for each round does not change the final ideal 𝐼CICO but it better captures the specificity
of the system. In contrast to the even characteristic case, an important remark is that the
equations have a part of degree 2 due to the expressions of 𝑄𝑖 and 𝑄𝑗 and a degree 𝛼 part
due to the 𝑥 ↦→ 𝑥𝛼 permutation. This feature seems to make the analysis of 𝑑solv slightly
more complicated, for instance it is not encompassed in a standard Hilbert series which is
a common tool to estimate 𝑑solv. Experimentally, the behaviour of ℱCICO was clearly not
the one of a generic system especially when 𝛼 grows. Our experiments as well as further
explanations are provided in Appendix B.2, and from them we also propose

Conjecture 2. For 𝑛𝑟 ≥ 2, the maximal degree 𝑑solv (𝐼CICO) which occurs while computing
a DRL-Gröbner basis for 𝐼CICO is such that 𝑑solv (𝐼CICO) ≥ 𝛼 + 1 + 2(𝑛𝑟 − 2).

From Conjecture 2 we can then derive a lower bound for the cost of Step 1 in the same
way as in even characteristic.

Several columns.

When ℓ > 1, the number of equations and variables is naturally multiplied by ℓ and thus
experiments were extremely difficult to conduct. We generalize our formulae to ℓ > 1 by
replacing 𝑛𝑟 by ℓ · 𝑛𝑟 everywhere, which is natural when looking at the expressions of the
Macaulay bound. Similarly, we note that the bounds given for Rescue in [BSGL20] exhibit
this extra ℓ factor.

7 Benchmarks
In this section, we compare various instances of Rescue–Prime, Poseidon, Griffin and
Anemoi with respect to SNARK metrics: R1CS (Section 7.1) and Plonk (Section 7.2), and
STARK: AIR (Section 7.3). For Plonk performance, we will also conduct a comparison
with Reinforced Concrete.

Due to the increasing number of projects revolving around zk-STARKs, which do not
require an algebraic group with large underlying fields, we also illustrate native performance
comparison of 2-to-1 compression functions based on Rescue’ , Poseidon and Anemoi on a
64-bit field used in various projects ([add22], [Zer22]).

Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin
Velichkov, Danny Willems 19

To do so, we need to set the parameters. Then, let F𝑞, where 𝑞 = 𝑝, be a prime field,
and let 𝑚 be the number of field elements we operate on (𝑚 = 2ℓ for Anemoi). Besides,
let 𝑠 denote the security level in bits, 𝑛𝑟 the number of rounds, and 𝒞𝛼 the cost of an
exponentiation 𝑥 ↦→ 𝑥𝛼.

Rescue–Prime requires 1.5 · max{5, ⌈(𝑠 + 2)/4𝑚⌉} rounds when 𝛼 = 3 and 1.5 ·
max{5, ⌈(𝑠 + 3)/5.5𝑚⌉} rounds when 𝛼 = 5 (see [AAB+20, SAD20]). Poseidon has
𝑛𝑟 = RF + RP rounds. While the bound is a complex expression, in our setting and for the
safety margin recommended by the authors, it holds that RF = 8, and that RP must be
higher than (or equal to) 1.075 · (⌈log𝛼(2) ·min{𝑠, log2(𝑝)}⌉+ ⌈log𝑎 𝑚⌉ − RF). Griffin
requires at least ⌈1.2 max{6, 1 + 𝑅GB}⌉ rounds where 𝑅GB is the smallest integer such that
min

{︁(︀
𝑅GB·(𝛼+𝑚)+1

1+𝑚·𝑅GB

)︀
,
(︀

𝛼𝑅GB +1+𝑅GB
1+𝑅GB

)︀}︁
≥ 2𝑠/2.

While we also consider 𝛼 = 17 as a good exponent (the cost of an exponentiation for
𝛼 = 17 is not so far from an exponentiation for 𝛼 = 5), we will compare here only instances
with 𝛼 = 3 and 𝛼 = 5, as previously proposed in the other designs. In the following, we
use the 𝑛𝑟 values from Section 5.2. Concrete values are presented in Appendix A.4.

7.1 R1CS Systems
We first estimate the number of constraints for R1CS. Using the closed Flystel of Figure 3b,
we obtain the following verification equations for the S-Box:{︃

(𝑣 − 𝑦)𝛼 + 𝛽𝑦2 + 𝛾 − 𝑥 = 0
(𝑣 − 𝑦)𝛼 + 𝛽𝑣2 + 𝛿 − 𝑢 = 0 .

(5)

Then, evaluating one S-Box costs 𝒞𝛼 constraints to obtain (𝑣−𝑦)𝛼, and 1 constraint for each
of the two quadratics. For Rescue–Prime and Poseidon, each S-Box costs 𝒞𝛼 constraints.
For Griffin, each S-Box costs 2 · 𝒞𝛼 constraints for the first two words, and 1 constraint
for each squaring of 𝐿 and each word of the remaining state. As a consequence, when
using Rescue–Prime, Poseidon, Griffin and Anemoi as hash functions in sponge mode,
the number of constraints is respectively 𝒞𝛼 · 2𝑚 · 𝑛𝑟, 𝒞𝛼 · (𝑚RF + RP), (𝒞𝛼 + 𝑚− 2) · 2𝑛𝑟

and (𝒞𝛼 + 2) · (𝑚
2 · 𝑛𝑟).

We compare the number of constraints for those four schemes in Table 1. As we can
see, the Anemoi permutations are consistently much more efficient than both Poseidon
and Rescue–Prime by about a factor 2. Besides Anemoi and Griffin are on par, and
Anemoi takes the advantage for 𝛼 = 3.

7.2 Plonk
For ease of exposition, we will consider rounds to be shifted so that constant additions and
linear operations come after the S-box. As for R1CS, we again investigate Equation (5).
In standard Plonk, evaluating an S-Box costs 1 constraint to derive 𝑤 = 𝑦 − 𝑣 and 𝒞𝛼

constraints to obtain 𝑤𝛼, 1 constraint for each of the two quadratics, and 1 each for the
sums on 𝑥, 𝑢. The total cost for the S-box layer with 3 wires is (𝒞𝛼 + 5) 𝑚

2 .
The constant additions can be folded into the 𝑛𝑟 + 1 linear layers and can thus

be disregarded. For 𝑚 > 2, the linear layer itself consists of 2 separate matrix-vector
multiplications, each producing 𝑚

2 sums of 𝑚
2 terms, requiring 𝑚 · (𝑚

2 − 1) constraints.
However, the number of constraints per matrix multiplication can be lowered by choosing
MDS matrices lowering the number of additions. For the matrices given for 𝑚 = 6 and
𝑚 = 8 in 5.1, we have respectively a cost of 10 and 16 per linear layer. For 𝑚 = 2, the
linear layer is different, and we only require 2 constraints, which is especially relevant for
the Jive2 mode of operation.

Poseidon uses simpler S-Boxes, each costing 𝒞𝛼 constraints. Full rounds use 𝑚 S-boxes
whereas partial ones use only one. The linear layer costs 𝑚 · (𝑚− 1) constraints for all

20
New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi

Permutations and Jive Compression Mode

Table 1: Total R1CS, Plonk and AIR cost for several hash functions (𝑠 = 128).
𝑚 Rescue’ Poseidon Griffin Anemoi

R1CS

2 208 198 - 76
3 216 214 96 -
4 224 232 112 96
6 216 264 - 120
8 256 296 176 160

Plonk

2 312 380 - 173
3 432 760 197 -
4 560 1336 291 220
6 756 3024 - 320
8 1152 5448 635 456

AIR

2 156 300 - 114
3 162 324 144 -
4 168 348 168 144
6 162 396 - 180
8 192 480 264 240

(a) when 𝛼 = 3.

𝑚 Rescue’ Poseidon Griffin Anemoi

R1CS

2 240 216 - 95
3 252 240 96 -
4 264 264 110 120
6 288 315 - 150
8 384 363 162 200

Plonk

2 320 344 - 192
3 420 624 173 -
4 528 1032 253 244
6 768 2265 - 350
8 1280 4003 543 496

AIR

2 200 360 - 190
3 210 405 180 -
4 220 440 220 240
6 240 540 - 300
8 320 640 360 400

(b) when 𝛼 = 5.

rounds. Rescue–Prime uses 𝑚 standard and 𝑚 inverted S-Boxes, each costing 𝒞𝛼. Each
round also utilizes 2 independent linear layers each costing 𝑚 · (𝑚− 1) constraints for all
rounds.

For Griffin, the cost of the S-BOX is 2 · 𝐶𝛼 + 3 + 4 · (𝑚− 3). Regarding the linear
layer, the circulant matrix 𝐶𝑖𝑟𝑐(2, 1, 1) used for 𝑚 = 3 can be computed in 5 constraints.
For 𝑚 = 4, the cost of one multiplication by the matrix 𝐶𝑖𝑟𝑐(3, 2, 1, 1) is 11. By observing
intermediate variables from the S-BOX computation can be reused in the linear layer
computation, Griffin gives 253 constraints for 𝑚 = 4 (resp. 543 for 𝑚 = 8).

We then compare the number of constraints for these four schemes in Table 1. Again,
Anemoi is consistently ahead of the competition with a significant margin.

7.2.1 Plonk Optimizations.

One of the more fruitful, but also challenging aspects of Plonk is its ability to extend
the expressive power of the constraints at a reasonable cost. In the analysis, the linear
layer cost dominates that of the S-Boxes. This is particularly impactful for Poseidon,
as the efficiency benefit of its partial rounds is negated. The recent work of Ambrona et
al. [ASTW22] presents a set of generic and tailored optimizations for Plonk applicable to
Poseidon.

While an exhaustive comparison of optimization options is beyond the scope of this
work, real-world usage implies that a reasonable set of optimizations have been applied
before deployment. For this reason, we perform a minimal comparison between: Poseidon
as optimized by Ambrona et al., and Reinforced Concrete [BGK+21] which was built
with Plonk optimizations in mind, and Anemoi. As Poseidon and Reinforced Concrete
are sponge based we use 𝑠 = 128, 𝛼 = 5 and 𝑚 = 3 to represent popular deployment
choices, while we set 𝑚 = 2 for Anemoi, using the Jive2 mode . For comparison we
also extrapolate a Jive2 versions of Poseidon with the optimizations of [ASTW22], and
Reinforced Concrete.

We use one of the constraint systems used by Ambrona et al. [ASTW22]: a 3-wire
constraint system with a 𝑥5, as well as selectors for the next constraint wires:

𝑞𝐿.𝑎 + 𝑞𝑅.𝑏 + 𝑞𝑂.𝑐 + 𝑞𝑀 .𝑎.𝑏 + 𝑞5.𝑐5 + 𝑞𝐿′ .𝑎′ + 𝑞𝑅′ .𝑏′ + 𝑞𝑂′ .𝑐′ .

At a base level, the relations we need to express one AnemoiJive2 round are6

6For readability, we omit the coefficients for the linear layer.

Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin
Velichkov, Danny Willems 21

Table 2: Constraints comparison of several hash functions for Plonk with an additional
custom gate to compute 𝑥5. We fix 𝑠 = 128, and prime field sizes of 256.

𝑚 Constraints

Poseidon 3 110
2 88

Reinforced Concrete 3 378
2 236

Griffin 3 125

AnemoiJive 2 79

(a) With 3 wires.

𝑚 Constraints

Poseidon 3 98
2 82

Reinforced Concrete 3 267
2 174

Griffin 3 111

AnemoiJive 2 58

(b) With 4 wires.

1. 𝑦 − 𝑣 − 𝑤 = 0

2. 𝑤5 + 𝛽𝑦𝑦 + 𝛾 − 𝑥 = 0

3. 𝑤5 + 𝛽𝑣𝑣 + 𝛿 − 𝑢 = 0

4. 𝑢̃− 𝑢− 𝑣 − 𝜌 = 0

5. 𝑣 − 𝑢− 𝑣 − 𝜅 = 0

where 𝑢̃, 𝑣 are the values of 𝑢, 𝑣 after the linear layer and 𝜌, 𝜅 are derived from round
constants. We can save one constraint by calculating 𝑢̃ directly and eliminating 𝑢. We also
need to make sure that the relations fit into the available wires, and make sure that the
last constraint leaves the “next constraint” wires free, so that each set of round constraints
can be followed by any constraint without restriction. To accomplish this, we also need to
perform some reordering. Setting 𝜌′ = 𝜌 + 𝛿, the end result is:

1. 𝑤5 + 𝛽𝑦𝑦 + 𝛾 − 𝑥 = 0, where: (𝑎, 𝑏, 𝑐) = (𝑦, 𝑦, 𝑤) and (𝑎′, 𝑏,′ 𝑐′) = (𝑥_, _) ,

2. 𝑦 − 𝑣 − 𝑤 = 0, where: (𝑎, 𝑏, 𝑐) = (𝑥, 𝑦, 𝑤) and (𝑎′, 𝑏,′ 𝑐′) = (𝑣, _, _) ,

3. 𝑤5 + 𝛽𝑣𝑣 + 𝜌′ + 𝑣 − 𝑢̃ = 0, where: (𝑎, 𝑏, 𝑐) = (𝑣, 𝑣, 𝑤) and (𝑎′, 𝑏,′ 𝑐′) = (𝑢̃, _, _) ,

4. 𝑣 − 𝑢̃− 𝑣 − 𝜅 = 0, where: (𝑎, 𝑏, 𝑐) = (𝑢̃, 𝑣, 𝑣) and (𝑎′, 𝑏,′ 𝑐′) = (_, _, _) .

Thus, we are able to perform one AnemoiJive round in 4 constraints, 2 additional
constraints to account for the initial linear layer, and 1 more for the final Jive2 addition
(using the “next” wires). With four wires, we can eliminate 𝑤, by having a 5th power
gate operate on 𝑦 − 𝑣. Rounds are reduced to 3 constraints, and we need only 1 extra
constraint for the first linear layer as handle 𝑥0 inline.

We summarize our findings in Table 2. We extrapolate the 𝑚 = 2 costs for Poseidon
and Reinforced Concrete by assuming a Jive2 mode of operation is feasible at no addi-
tional overhead or increase in rounds. We note while that the costs between Poseidon,
Anemoi and Griffin are directly comparable as they use the same features (namely 𝑥5

and “next constraint” selectors), Reinforced Concrete leverages lookup tables [BGK+21,
GW20] instead. We do note that by [ASTW22, Table 2], the additional cost (compared to
standard Plonk) for the custom gates we describe is between 10% and 40%.

7.2.2 Plonk optimisations with an additional quadratic custom gate

We can go further in the optimisation given above by extending Plonk with a custom gate
to compute the square of a wire, which adds a negligeable overhead to the prover and the
verifier time. In the 3-wires setting, having the quadratic custom gate on the wire 𝑏 frees a
wire in the constraints given above and allow us to compute two rounds in 5 constraints as
described below 7, giving a total number of constraints of 51.

7For readability, the selectors values have been omitted

22
New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi

Permutations and Jive Compression Mode

Table 3: Native performance comparison of 2-to-1 compression functions for F𝑝 with
𝑝 = 264 − 232 + 1. We fix 𝑠 = 128. Times are given in 𝜇s.

Rescue–Prime-12-8 Poseidon-12-8 Griffin-12-8 Anemoi-8
11.39 1.93 3.13 3.93

1. 𝑤2
0 + 𝑤0𝑦0 + 𝑤0 − 𝑥0 − 𝑦0 + 𝑦1 + 𝑞𝑐, where: (𝑎, 𝑏, 𝑐) = (𝑦0, 𝑤0, 𝑥0)

and (𝑎′, 𝑏,′ 𝑐′) = (𝑦1, _, _) ,

2. 𝑤2
1 + 𝑤1𝑦1 − 𝑤0 + 𝑤1 + 𝑥2 + 𝑦0 − 𝑦1 + 𝑞𝑐, where: (𝑎, 𝑏, 𝑐) = (𝑦1, 𝑤1, 𝑤0)

and (𝑎′, 𝑏,′ 𝑐′) = (𝑦0, 𝑥2, _) ,

3. 𝑤1 − 𝑥2 − 𝑦1 + 𝑦2 − 𝑞𝑐, where: (𝑎, 𝑏, 𝑐) = (𝑦0, 𝑥2, 𝑦2)
and (𝑎′, 𝑏,′ 𝑐′) = (𝑤1, 𝑦1, _) ,

4. 𝑤5
1 + 𝑦2

1 − 𝑤0 + 𝑦0 − 𝑦1 + 𝑞𝑐, where: (𝑎, 𝑏, 𝑐) = (𝑤1, 𝑦1, _)
and (𝑎′, 𝑏,′ 𝑐′) = (𝑤0, 𝑦0, _) .

5. 𝑤5
0 + 𝑦2

0 − 𝑥0 + 𝑞𝑐, where: (𝑎, 𝑏, 𝑐) = (𝑤0, 𝑦0, 𝑥0)
and (𝑎′, 𝑏,′ 𝑐′) = (_, _, _) .

7.3 AIR
Finally, we also study the performance of Anemoi in the Algebraic Intermediate Represen-
tation (AIR) arithmetization used in STARKs [BBHR18]. Here, the relevant quantities
are: the width of the computation state 𝑤, the number of computation steps 𝑇 , and the
maximum degree of the constraints 𝑑max. While there are several ways to estimate the
cost of a given AIR program given the above quantities, we will consider the total cost to
be expressed as 𝑤 · 𝑇 · 𝑑max, following [AAB+20].

For Rescue–Prime, Griffin and Anemoi, we have 𝑤 = 𝑚, 𝑇 = 𝑛𝑟 and 𝑑max = 𝛼. For
Poseidon, we have 𝑤 = 𝑚, 𝑇 = RF + ⌈RP/𝑚⌉ and 𝑑max = 𝛼.

We then compare the total cost for these four schemes in Table 1. Anemoi and Griffin
are quite similar, and Anemoi is ahead of Rescue–Prime due to the lower number of rounds
for small widths.

7.4 Native performance
Outside of proving systems, Anemoi performance can challenge other algebraic hash
functions, especially in a Merkle tree setting thanks to its Jive mode. In particular in
STARKs settings where one can use small cryptographic fields, Anemoi offers the best
balance in terms of native evaluation and number of constraints. In Table 3, we illustrate the
running time of a 2-to-1 compression method with AnemoiJive, Rescue–Prime, Poseidon
and Griffin over the 64 bits prime field F𝑝 with 𝑝 = 264 − 232 + 1. Each instantiation
has a 4 field elements (32 bytes) digest size to ensure 128 bits security. Rescue–Prime and
Poseidon instantiations both have a state width of 12 elements and rate of 8 elements.
Anemoi has a state width of 8 elements8. All experiments were performed on an Intel(R)
Core(TM) i7-9750H CPU @ 2.60GHz. We present average times in microseconds of each
experiment running for 5 seconds. Standard deviations are negligible. The mentioned
instantiations of Anemoi, Rescue–Prime and Griffin over F𝑝 are implemented in Rust.

In Table 4, we compare the native performance with Rescue–Prime, Poseidon and
Griffin with a state size useful for applications like Merkle tree over the scalar field of

8While other instances need to have a sufficiently large rate to absorb two digests with only one
permutation call, Anemoi can have any desired rate as it does not come into play in the Jive construction.

Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin
Velichkov, Danny Willems 23

Table 4: Native performance comparison of a permutation for the scalar field of
𝐵𝐿𝑆12− 381. We fix 𝑠 = 128. Rescue–Prime, Poseidon and Griffin are
instantiated with a state size of 3 and Anemoi with 𝑙 = 1. Times are in 𝜇𝑠.

Rescue–Prime Poseidon Griffin Anemoi

255.36 14.43 73.66 115.82

BLS12-381. For small state size, the dominant computation for Anemoi (like Rescue–Prime
and Griffin) is 𝑥1/𝑑 and requires 305 field operations with an appropriate addition chain
taking around 6𝜇𝑠. All experiments were performed on an Intel(R) Core(TM) i7-8565U
CPU @ 1.80GHz. We present average times in microseconds of each experiment running for
2 seconds. Standard deviations are in the order of tens of nanoseconds. Our implementation
uses C via FFI through an OCaml binding, but this introduces a negligible overhead.

8 Conclusion
We have made several contributions towards both the theoretical understanding and the
practical use of arithmetization-oriented hash functions. Our main contribution is of
course Anemoi, a family of permutations that are efficient across various arithmetization
methods, yielding gains from 10% up to more than 50% depending on the context, over
existing designs. Furthermore, in order to be able to design its main component, the
Flystel structure, we had to first identify the link between arithmetization-orientation
and CCZ-equivalence. We hope that functions such as the Flystel itself as well as similar
ones will be studied by mathematicians as we believe those to be of independent interest.

Finally, we provided a new simple mode, Jive𝑏, which adds to the growing list of
permutation-based modes of operation providing a 𝑏-to-1 compression function, of particular
relevance in Merkle trees. It allows us to further improve upon the state-of-the-art, so that
AnemoiJive requires only 51 Plonk constraints in total (when 3 wires and 2 custom gates
are used), compared to the best sponge-based instance of Poseidon which requires 98
constraints with 4 wires (or 110 with 3) and 1 custom gate. With only one custom gate,
AnemoiJive requires 58 constraints for 4 wires (or 79 with 3).

Acknowledgements
Thanks to Markulf Kohlweiss, Antoine Rondelet and Duncan Tebbs for proof-reading a
draft version of the first version of this paper, and for providing insightful comments and
suggestions. Thanks to Duncan Tebbs for providing an independent estimation of the
Flystel circuit cost interms of R1CS constraints. The work of Léo Perrin is supported by
the European Research Council (ERC, grant agreement no. 101041545 “ReSCALE”). We
thank Tomer Ashur for pointing out a mistake in Figure 1. We also thank Miguel Ambrona
and Raphaël Toledo for the idea of the quadratic custom gate and their contribution to
the Plonk implementation.

References
[AAB+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan

Szepieniec. Design of symmetric-key primitives for advanced cryptographic
protocols. IACR Trans. Symm. Cryptol., 2020(3):1–45, 2020.

[add22] Polygon miden. Repository https://github.com/maticnetwork/miden,
September 2022.

https://github.com/maticnetwork/miden

24
New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi

Permutations and Jive Compression Mode

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and
Tyge Tiessen. MiMC: Efficient encryption and cryptographic hashing with
minimal multiplicative complexity. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 191–219.
Springer, Heidelberg, December 2016.

[ASTW22] Miguel Ambrona, Anne-Laure Schmitt, Raphael R. Toledo, and Danny
Willems. New optimization techniques for plonk’s arithmetization. Cryptology
ePrint Archive, Paper 2022/462, 2022. https://eprint.iacr.org/2022/
462.

[Bar04] Magali Bardet. Étude des systèmes algébriques surdéterminés. Applications
aux codes correcteurs et à la cryptographie. Theses, Université Pierre et Marie
Curie - Paris VI, December 2004.

[BBC+20] Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann Großschädl,
Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, and Qingju Wang.
Lightweight AEAD and hashing using the Sparkle permutation family. IACR
Trans. Symm. Cryptol., 2020(S1):208–261, 2020.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable,
transparent, and post-quantum secure computational integrity. Cryptology
ePrint Archive, Report 2018/046, 2018. https://eprint.iacr.org/2018/
046.

[BC90] Jurjen N. Bos and Matthijs J. Coster. Addition chain heuristics. In Gilles
Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 400–407. Springer,
Heidelberg, August 1990.

[BCD+20] Tim Beyne, Anne Canteaut, Itai Dinur, Maria Eichlseder, Gregor Leander,
Gaëtan Leurent, María Naya-Plasencia, Léo Perrin, Yu Sasaki, Yosuke Todo,
and Friedrich Wiemer. Out of oddity - new cryptanalytic techniques against
symmetric primitives optimized for integrity proof systems. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume
12172 of LNCS, pages 299–328. Springer, Heidelberg, August 2020.

[BCP06] Lilya Budaghyan, Claude Carlet, and Alexander Pott. New classes of al-
most bent and almost perfect nonlinear polynomials. IEEE Transactions on
Information Theory, 52(3):1141–1152, 2006.

[BDPA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak.
In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 313–314. Springer, Heidelberg, May 2013.

[BDPVA07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. In ECRYPT hash workshop, number 9. Citeseer, 2007.

[Ber08] Daniel J Bernstein. The Salsa20 family of stream ciphers. In New stream
cipher designs, pages 84–97. Springer, 2008.

[BGK+21] Mario Barbara, Lorenzo Grassi, Dmitry Khovratovich, Reinhard Luefteneg-
ger, Christian Rechberger, Markus Schofnegger, and Roman Walch. Re-
inforced concrete: Fast hash function for zero knowledge proofs and veri-
fiable computation. Cryptology ePrint Archive, Report 2021/1038, 2021.
https://eprint.iacr.org/2021/1038.

https://eprint.iacr.org/2022/462
https://eprint.iacr.org/2022/462
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2021/1038

Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin
Velichkov, Danny Willems 25

[BS01] Alex Biryukov and Adi Shamir. Structural cryptanalysis of SASAS. In Birgit
Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 394–405.
Springer, Heidelberg, May 2001.

[BS10] Alex Biryukov and Adi Shamir. Structural cryptanalysis of SASAS. Journal
of Cryptology, 23(4):505–518, October 2010.

[BSCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous
payments from bitcoin. Cryptology ePrint Archive, Report 2014/349, 2014.
https://ia.cr/2014/349.

[BSGL20] Eli Ben-Sasson, Lior Goldberg, and David Levit. Stark friendly hash – survey
and recommendation. Cryptology ePrint Archive, Report 2020/948, 2020.
https://ia.cr/2020/948.

[BSV07] Thomas Baignères, Jacques Stern, and Serge Vaudenay. Linear cryptanalysis
of non binary ciphers. In Carlisle M. Adams, Ali Miri, and Michael J. Wiener,
editors, SAC 2007, volume 4876 of LNCS, pages 184–211. Springer, Heidelberg,
August 2007.

[CCZ98] Claude Carlet, Pascale Charpin, and Victor Zinoviev. Codes, bent functions
and permutations suitable for DES-like cryptosystems. Designs, Codes and
Cryptography, 15(2):125–156, 1998.

[CDP17] A. Canteaut, S. Duval, and L. Perrin. A generalisation of Dillon’s APN
permutation with the best known differential and nonlinear properties for all
fields of size 24𝑘+2. IEEE Transactions on Information Theory, 63(11):7575–
7591, Nov 2017.

[CLO07] David Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms.
an introduction to computational algebraic geometry and commutative algebra.
2007.

[CP19] Anne Canteaut and Léo Perrin. On CCZ-equivalence, extended-affine equiva-
lence, and function twisting. Finite Fields and Their Applications, 56:209–246,
2019.

[DGGK21] Christoph Dobraunig, Lorenzo Grassi, Anna Guinet, and Daniël Kuijsters.
Ciminion: Symmetric encryption based on toffoli-gates over large finite fields.
Springer-Verlag, 2021.

[DL18] Sébastien Duval and Gaëtan Leurent. MDS matrices with lightweight circuits.
IACR Trans. Symm. Cryptol., 2018(2):48–78, 2018.

[Dwo15] Morris Dworkin. Sha-3 standard: Permutation-based hash and extendable-
output functions, 2015-08-04 2015.

[Fau99] Jean-Charles Faugére. A new efficient algorithm for computing gröbner bases
(f4). Journal of Pure and Applied Algebra, 139(1):61–88, 1999.

[Fau02] Jean Charles Faugère. A new efficient algorithm for computing gröbner bases
without reduction to zero (f5). In Proceedings of the 2002 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’02, pages 75–83,
New York, NY, USA, 2002. Association for Computing Machinery.

https://ia.cr/2014/349
https://ia.cr/2020/948

26
New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi

Permutations and Jive Compression Mode

[FGLM93] J.C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of
zero-dimensional gröbner bases by change of ordering. Journal of Symbolic
Computation, 16(4):329–344, 1993.

[FM11] Jean-Charles Faugère and Chenqi Mou. Fast algorithm for change of ordering
of zero-dimensional Gröbner bases with sparse multiplication matrices. In IS-
SAC 2011 - International Symposium on Symbolic and Algebraic Computation,
pages 115–122, San Jose, United States, June 2011. ACM.

[GHR+22] Lorenzo Grassi, Yonglin Hao, Christian Rechberger, Markus Schofnegger,
Roman Walch, and Qingju Wang. A new feistel approach meets fluid-SPN:
Griffin for zero-knowledge applications. Cryptology ePrint Archive, Report
2022/403, 2022. https://eprint.iacr.org/2022/403.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. Poseidon: A new hash function for zero-knowledge proof
systems. In Michael Bailey and Rachel Greenstadt, editors, USENIX Security
2021, pages 519–535. USENIX Association, August 2021.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complex-
ity of interactive proof systems. SIAM Journal on Computing, 18(1):186–208,
1989.

[GØSW22] Lorenzo Grassi, Morten Øygarden, Markus Schofnegger, and Roman Walch.
From farfalle to megafono via ciminion: The prf hydra for mpc applications.
Cryptology ePrint Archive, Report 2022/342, 2022. https://ia.cr/2022/
342.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016.

[GW20] Ariel Gabizon and Zachary J. Williamson. plookup: A simplified polynomial
protocol for lookup tables. Cryptology ePrint Archive, Report 2020/315, 2020.
https://eprint.iacr.org/2020/315.

[Hir16] Shoichi Hirose. Sequential hashing with minimum padding. In NIST Work-
shop on Lightweight Cryptography 2016. National Institute of Standards and
Technology (NIST), 2016.

[Knu95] Lars R. Knudsen. Truncated and higher order differentials. In Bart Preneel,
editor, FSE’94, volume 1008 of LNCS, pages 196–211. Springer, Heidelberg,
December 1995.

[Lou94] W.W.A.P. Loustaunau. An Introduction to Grobner Bases. American Mathe-
matical Soc., 1994.

[LTYW18] Yongqiang Li, Shizhu Tian, Yuyin Yu, and Mingsheng Wang. On the general-
ization of butterfly structure. IACR Trans. Symm. Cryptol., 2018(1):160–179,
2018.

[McL21] Michael B. McLoughlin. addchain: Cryptographic addition chain generation
in go. Repository https://github.com/mmcloughlin/addchain, October
2021.

[Nyb94] Kaisa Nyberg. Differentially uniform mappings for cryptography. In Tor Helle-
seth, editor, EUROCRYPT’93, volume 765 of LNCS, pages 55–64. Springer,
Heidelberg, May 1994.

https://eprint.iacr.org/2022/403
https://ia.cr/2022/342
https://ia.cr/2022/342
https://eprint.iacr.org/2020/315
https://github.com/mmcloughlin/addchain

Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin
Velichkov, Danny Willems 27

[PUB16] Léo Perrin, Aleksei Udovenko, and Alex Biryukov. Cryptanalysis of a theorem:
Decomposing the only known solution to the big APN problem. In Matthew
Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815
of LNCS, pages 93–122. Springer, Heidelberg, August 2016.

[SAD20] Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe. Rescue-prime: a
standard specification (SoK). Cryptology ePrint Archive, Report 2020/1143,
2020. https://eprint.iacr.org/2020/1143.

[Zer22] Polygon Zero. Plonky2. Repository https://github.com/mir-protocol/
plonky2, September 2022.

https://eprint.iacr.org/2020/1143
https://github.com/mir-protocol/plonky2
https://github.com/mir-protocol/plonky2

28
New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi

Permutations and Jive Compression Mode

Supporting Material

Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin
Velichkov, Danny Willems 29

A Details of our Security Analysis
A.1 Differential and Linear Attacks
In this part, we argue that differential and linear attacks can be prevented by the Flystel
construction, thanks to the differential and linear properties of the scheme as presented in
Section 5.

Differential attacks exploit the probability distribution of a given non-zero input
difference leading to a given output difference after a certain number of rounds. As
established in Proposition 2 for the Flystel2 and in Proposition 3 for the Flystelp, the
differential uniformity of a Flystel is low (namely 4 in the former case and (𝛼 − 1) in
the latter). As a consequence, the probability of any transition of the form ℋ(𝑥 + 𝑎, 𝑦 +
𝑏)−ℋ(𝑥, 𝑦) = (𝑐, 𝑑) is small: it is upper bounded by (𝛼− 1)/𝑞2. Given that 𝑞 is typically
bigger than 263, we only need to activate 3 S-boxes to obtain more than 128 bits of security,
and 5 for 256 bits.

A similar arguments holds for linear attacks. As for the differential uniformity, the
correlation increases slowly with 𝑞 according to Conjecture 1.

Conjecture 1. If 𝑞 = 𝑝 is a prime number, then the maximum module of the Walsh
transform of ℋ satisfies

max
𝑎∈F𝑚

𝑝 ,𝑏∈(F𝑚
𝑝)*
|𝒲⟨𝑏,ℋ⟩(𝑎)| ≤ 𝑝 log 𝑝 .

While the most general case remains a conjecture at the time of writing, this results
holds for small values of 𝑝 (𝑝 ≤ 71), as can be seen in Figure 8.

Figure 8: The maximum value of the module of the Walsh transform of ℋ.

As a consequence, it is again sufficient to activate a few S-boxes to prevent the existence
of high correlation linear trails. Indeed, as established in [BSV07], a linear attack against
𝐹 becomes possible when the squared modulus of 𝒲⟨𝑏,𝐹 ⟩(𝑎) for some 𝑎, 𝑏 ∈ F𝑚

𝑞 is high
enough. Roughly speaking, the data complexity of a linear attack is around 1/|𝒲⟨𝑏,𝐹 ⟩(𝑎)|2,
so activating a few S-boxes will be sufficient for this quantity to drop below 2−𝑠, where 𝑠
is the intended security level.

For both attacks, the activation of many S-boxes is further helped by our use of MDS
diffusion matrices. The structure ℳ, based on two parallel MDS matrices ℳ𝑥 and ℳ𝑦,
ensures that at least ℓ + 1 S-boxes are active in every pair of rounds.

A.2 Integral Attacks
A classical integral attack tracks the evolution of simple patterns through the rounds.
Consider a function of Fℓ

𝑞. As explained in [BS01, BS10], a multiset of elements of Fℓ
𝑞 can

30
New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi

Permutations and Jive Compression Mode

have a word be saturated (i.e. this word takes all possible values exactly once), be constant,
have a sum equal to zero, or not yield any specific pattern. These patterns are denoted “*”,
“𝐶”, “0”, and “?” respectively. For example, through an S-box layer, (*, 𝐶, ..., 𝐶) is mapped
to (*, 𝐶..., 𝐶), while the application of an MDS matrix maps (*, 𝐶, ..., 𝐶) to (*, *, ..., *).

In our case, such attacks do not pose a significant threat. First, the open Flystel is
a 3-round Feistel network where the center round function is a permutation, so that the
only integral pattern is of the form (*, 𝐶) (?, *). As a consequence, patterns at the
word level cannot be propagated over two full rounds since we would need to consider
open Flystel instances where one of the inputs has the ? pattern. Patterns at the open
Flystel level are a bit more promising, i.e. saturating a full column using 𝑞2 queries
would lead to having fully saturated columns after one round, a patterned destroyed by
the following linear layer (see [BS01, BS10] for a more thorough treatment of such generic
integral attacks against SPNs).

As shown in [BCD+20], a new direction can be used in F𝑝: instead of saturating a
word of F𝑞, it is possible instead to saturate a multiplicative subgroup. Against some
algorithms like gMiMC-Hash, this approach is promising as the diffusion is slow and the
only non-linear operations are monomials—under which subgroups are stable. In our case,
subgroups will not be stable through an open Flystelp call because of its three internal
addition/subtractions and constant additions.

In binary fields, primitives with low algebraic degree are potentially vulnerable to
higher order differential cryptanalysis [Knu95], which are themselves closely related to
integral attacks. The open Flystel2 is an efficient counter-measure against such attacks
since open butterflies operating on (F2𝑛)2 are known to have an algebraic degree equal to
𝑛 (see Proposition 2). As shown in [BCD+20], a low degree can also be leveraged in the
case where 𝑞 is prime. Still, a similar argument will hold: the degree of 𝑥 ↦→ 𝑥1/𝛼 is too
high to allow any meaningfull pattern to emerge.

A.3 Invariant Subspaces

Remember that, regardless of the characteristic, it always holds that ℋ (𝑄𝑖(𝑦), 𝑦) =
(𝑄𝑓 (𝑦), 𝑦). For each Flystel instance in the round function (i.e., for each column in
the state), the probability that an input is in this set is equal to 1/𝑞. As this pattern is
non-linear, we deem it unlikely that it is preserved by the combination of the constant
addition and the linear layer with a probability higher than chance, meaning that this
pattern will be activated in inner rounds with a negligible probability.

That being said, it is a pattern that can be used to simplify the equations modeling
a call to Anemoi during an algebraic attack: if an attacker has some degrees of freedom,
then forcing the emergence of such a pattern within some Flystel instances is the best
strategy to simplify these equations.

A.4 Number of Rounds

Based on our security analysis, we derived what we deem to be a suitable number of rounds
for a given set of parameters. We plugged in the numbers and computed the numbers of
rounds needed both for a security level of 128 bits (Table 5a), and of 256 bits (Table 5b).
Note that the values of the digest size ℎ and of the state size 2ℓ𝑛 = 2ℓ log2(𝑞) must be
coherent with the desired security level.

Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin
Velichkov, Danny Willems 31

Table 5: Number of Rounds of Anemoi.
𝛼 3 5 7 11 13 17

ℓ = 1 19 19 18 18 17 16

ℓ = 2 12 12 11 11 11 10

ℓ = 3 10 10 10 10 10 10

ℓ = 4 10 10 10 10 10 10

(a) When 𝑠 = 128.

𝛼 3 5 7 11 13 17

ℓ = 1 35 35 34 34 33 32

ℓ = 2 20 20 19 19 19 18

ℓ = 3 15 15 15 15 15 14

ℓ = 4 14 14 13 13 13 13

(b) When 𝑠 = 256.

B Details on Algebraic Attacks
In Sections B.1 and B.2, we focus on the computation of the first Gröbner basis 𝒢drl (Step
1) in both even and odd characteristics. Regardless of the value of 𝑞 we have

(𝑥𝑗+1, 𝑦𝑗+1) := ℋ(ℳ𝑥(𝑥𝑗 , 𝑦𝑗)[0] + 𝑐𝑗 ,ℳ𝑥(𝑥𝑗 , 𝑦𝑗)[1] + 𝑑𝑗),

where ℳ𝑥 is the linear layer and where (𝑐𝑗 , 𝑑𝑗) ∈ F2
𝑞 are round constants. In Section B.3,

we give details on the change of order step using FGLM (Step 2) to explain why it has
been neglected in the main text.

B.1 Gröbner Basis in Characteristic 2
For even characteristic we chose 𝑄𝑖(𝑥) = 𝛽𝑥3 + 𝛾 and 𝑄𝑓 (𝑥) = 𝛽𝑥3 + 𝛿 for 𝛾 ̸= 𝛿, so that

(𝑢, 𝑣) = ℋ(𝑥, 𝑦)⇔
{︂

(𝑣 − 𝑦)3 + 𝛽𝑦3 + 𝛾 − 𝑥 = 0
(𝑣 − 𝑦)3 + 𝛽𝑣3 + 𝛿 − 𝑢 = 0.

Assuming a linear layer of the form ℳ𝑥 : (𝑥, 𝑦) ↦→ (𝑥 + 𝑔𝑦, 𝑔𝑥 + (𝑔2 + 1)𝑦) where 𝑔 is a
primitive element of F𝑞 = F2𝑛 , the cubic equations at hand are{︂

𝑓𝑗 := (𝑦𝑗+1 − 𝑔𝑥𝑗 − (𝑔2 + 1)𝑦𝑗 − 𝑑𝑗)3 + 𝛽(𝛼𝑥𝑗 + (𝑔2 + 1)𝑦𝑗 + 𝑑𝑗)3 − 𝑔𝑦𝑗 − 𝑥𝑗 − 𝑐𝑗

𝑔𝑗 := (𝑦𝑗+1 − 𝑔𝑥𝑗 − (𝑔2 + 1)𝑦𝑗 − 𝑑𝑗)3 + 𝛽𝑦3
𝑗+1 − 𝑥𝑗+1.

Experiments for Conjecture 1.

We compared the behaviour of Magma’s F4 algorithm on the ℱCICO system for various
values of 𝑛𝑟. In Table 6, “𝑑solv(ℱCICO)" stands for the maximal degree which occurs while
computing the Gröbner basis and “Macaulay bound" is equal to 4𝑛𝑟 + 1. The F4 algorithm
consists in a sequence of steps, each of these steps considering all pairs of polynomials
having minimal degree and treating them at the same time. Column “Step degrees" lists the
degree of these steps and may provide more information than just the solving degree alone.
More precisely, the “𝑥→ 𝑦" indication means that the working degree of F4 increases by 1
at each step from degree 𝑥 to degree 𝑦 and that no degree fall polynomials occur, which
can be considered as the expected pattern in this case. On the one hand, we see that the
ℱCICO system seems to behave as such by looking at the sequence of step degrees. On the
other hand, the solving degree grows more slowly than the Macaulay bound which is the
expected bound for a random cubic system in 2𝑛𝑟 equations and more than 2𝑛𝑟 variables.
Finally, the lower bound of 3𝑛𝑟 that we give in Conjecture 1 seems quite conservative
regarding our results.

B.2 Gröbner Basis in Odd Characteristic
In this section, we explain why the analysis may be more complicated for odd 𝑞 and we
give the results of our Magma experiments to support Conjecture 2. This part is a bit

32
New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi

Permutations and Jive Compression Mode

Table 6: Gröbner basis computation on the ℱCICO system with ℓ = 1 over F215 .
𝑛𝑟 𝑑solv(ℱCICO) Macaulay bound Step degrees Total F4 time (𝑠)
2 8 9 3 → 8 0.009
3 12 13 3 → 12 0.510
4 15 17 3 → 15 11.580
5 18 21 3 → 18 344.050
6 21 25 3 → 21 14807.639

more involved and we refer the reader to [CLO07, Bar04] for some details on Gröbner
basis computation. We may consider a DRL ordering such that the largest variables are
the 𝑦𝑖’s and for which 𝑦𝑛𝑟 > · · · > 𝑦0 > 𝑥𝑛𝑟−1 > · · · > 𝑥1 > 𝑥𝑛𝑟 > 𝑥0. This choice is quite
natural since 𝑥0 and 𝑥𝑛𝑟

are the fixed variables in CICO. Similarly to Appendix B.1, the
expressions for 𝑓𝑗 and 𝑔𝑗 can be obtained from the verification equations

(𝑣 − 𝑦)𝛼 + 𝛽𝑦2 + 𝛾 − 𝑥 = 0
(𝑣 − 𝑦)𝛼 + 𝛽𝑣2 + 𝛿 − 𝑢 = 0.

These are polynomials of degree 𝛼 with leading monomial 𝑦𝛼
𝑗+1, and their difference

ℎ𝑗 := 𝑔𝑗 − 𝑓𝑗 is quadratic with leading monomial 𝑦2
𝑗+1. By Buchberger’s First Criterion,

this implies that polynomial pairs involving equations from different rounds 𝑖 ̸= 𝑗 do not
need to be treated in the first step of F4 since the leading terms are coprime. In particular,
this first step only selects the pairs {ℎ𝑗 , 𝑓𝑗} and therefore it may be relevant to analyze
what happens for only one round:

Lemma 1. A Gröbner basis for {ℎ𝑗 , 𝑓𝑗} can be found in degree 𝛼+1 and the set of leading
terms in the reduced Gröbner basis is

𝜁𝑗 := {𝑦2
𝑗+1, 𝑦𝛼

𝑗 } ∪ {𝑦𝑗+1𝑥𝑢
𝑗+1𝑦𝛼−1−𝑢

𝑗 , 0 ≤ 𝑢 ≤ 𝛼− 3}.

In particular, there is one quadratic leading term and 𝛼− 1 leading terms of degree 𝛼. The
latter come from degree falls from degree 𝛼 + 1 to degree 𝛼.

Experiments for Conjecture 2.

We proceed in the same way as in Appendix B.1 to derive the following Table 7 but we
do not include the Macaulay bound. Instead, we compare the behaviour of Magma’s F4
on ℱ and ℱCICO for various values of 𝛼 and 𝑛𝑟 to grasp the effect of the fixed variables.
Compared to Table 6, we may also bracket the maximal degree of a polynomial in the
reduced Gröbner basis in columns “𝑑solv(ℱ)" and “𝑑solv(ℱCICO)".

A first observation is that the results for ℱ and ℱCICO are the same when 𝛼 = 3. This
might be a consequence of Lemma 1. Indeed, the leading terms in the system do not
depend on the 𝑥𝑗 variables in this case, and therefore fixing 𝑥0 = 0 and 𝑥𝑛𝑟 = 0 does not
seem to affect the analysis. Moreover, the behaviour of the Gröbner basis algorithm seems
quite close to the one on a regular system: the sequence of step degrees increases steadily
until we reach the maximal degree. Also, there are no degree falls apart from the ones
associated to the plateau at 𝛼 + 1 = 4 which are once again a consequence of Lemma 1. All
seems to happen as if there were no 𝑥𝑗 variables, so among {ℎ𝑗 , 𝑓𝑗} one would only keep
𝑓𝑗 since ℎ𝑗 expresses 𝑥𝑗+1 in terms of larger variables. Also, note that the observed value
2𝑛𝑟 + 1 for the maximal degree indeed corresponds to the Macaulay bound 𝑛𝑟(3− 1) + 1
for {𝑓0, . . . , 𝑓𝑛𝑟−1} assuming that it is regular.

When 𝛼 grows, the behaviour of ℱCICO starts to deviate from the one of ℱ . The unusual
behaviour of the computation may also be seen by looking at the sequence of step degrees

Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin
Velichkov, Danny Willems 33

Table 7: Gröbner basis computation on ℱ and ℱCICO for 3 ≤ 𝛼 ≤ 11 and for various
number of rounds (odd characteristic).

𝛼 𝑛𝑟 𝑑solv(ℱ) 𝑑solv(ℱCICO) Step degrees ℱCICO
3 2 5 5(5) 3,4,4,5

3 7 7(7) 3,4,4,5,6,7
4 9 9(9) 3,4,4,5,6,7,8,9
5 11 11(11) 3,4,4,5,6,7,8,9,10,11
6 13 13(13) 3,4,4,5,6,7,8,9,10,11,12,13

5 2 10(10) 7(6) 5,6,6,6,6,7,6,6
3 15(15) 8(8) 5,6,6,6,6,7,8,8,8,8,8,8
4 18(18) 10(10) 5,6,6,6,6,7,8,8,8,9,9,9,9,10,10,10,10
5 12(12) 5,6,6,6,6,7,8,8,8,9,9,9,9,10,9,10,9,10,10,11,11,11,11,12,12,12

7 2 14(14) 8(7) 7,8,8,8,8,8,8,8,8,7,7
3 10(9) 7,8,8,8,8,8,8,9,10,10,10,10,10,10,10,10
4 12(12) 7,8,8,8,8,8,8,9,10,10,10,10,11,11,11,12,11,12,12,12,12,12,12,12

9 2 18(18) 10(9)
3 13(11)
4 15(?)

11 2 12(10)
3 15(13)
4 18(?)

which is quite erratic. In particular, many degree fall polynomials at degree larger than
𝛼 + 1 occur and they imply why the solving degree remains quite low. We have not been
able to analyze these degree falls at high degree. Overall, an explanation only based on
simple algebraic considerations seems out of reach since it would probably be valid for any
value of 𝛼 while the observed results depend a lot on 𝛼. Still, it is reasonable to believe
that the increased sparsity of the system for large 𝛼 comes into play.

Regarding the experimental lower bound of Conjecture 2, it would be tempting to
suggest an increase of 𝑑solv larger than 2 at each round when 𝛼 is higher, for instance 3 for
𝛼 = 11 and more generally 𝜆𝛼 for 𝛼 where 𝛼 ↦→ 𝜆𝛼 slowly increases. However, looking at
the case 𝛼 = 9 between rounds 2 and 3 and rounds 3 and 4 should not give us confidence
regarding a constant increase, and also there are no theoretical arguments (for instance
Hilbert series based ones) to support such a claim.

B.3 Details on the FGLM step

Regarding Step 2, the complexity of FGLM is in 𝒪 (𝑛𝑟 · deg (𝐼CICO)𝜔), where 𝐼CICO :=
⟨ℱCICO⟩ is the ideal generated by the system and where deg (𝐼CICO) is the degree of this
ideal.

Definition 4. Let 𝐼 ⊂ F𝑞[𝑥0, . . . , 𝑥𝑛𝑟
, 𝑦0, . . . , 𝑦𝑛𝑟

] be a zero-dimensional ideal. The degree
deg (𝐼) is defined as the dimension of F𝑞[𝑥0, . . . , 𝑥𝑛𝑟

, 𝑦0, . . . , 𝑦𝑛𝑟
]/𝐼.

Note that there exists a sparse variant of FGLM [FM11] but the key quantity to grasp
its complexity is still deg (𝐼CICO). Also, for some arithmetization-oriented primitives, the
cost of this step was even estimated by 𝒪 (𝑛𝑟 · deg (𝐼CICO)), see for instance [BSGL20,
Appendix, p.12]. We are not aware of the techniques employed to derive this result; in
particular, this bound might underestimate the real cost in the case of Anemoi.

34
New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi

Permutations and Jive Compression Mode

Characteristic 2.

Using the generic Bezout bound for a system of 2𝑛𝑟 cubic equations, we obtain

deg (𝐼CICO) ≤ 32𝑛𝑟 .

Also, from experiments it seems that this bound is tight as we always have deg (𝐼CICO) =
32𝑛𝑟 . Therefore, we estimate the complexity of Step 2 to be 𝒪(𝑛𝑟 · 32𝑛𝑟) with 𝜔 = 1, and
this is much smaller than the one obtained for Step 1.

Odd characteristic.

For Step 2 as well, the situation is slightly more complicated in odd characteristic. Indeed,
the Bezout bound yields deg (𝐼CICO) ≤ 2𝑛𝑟 𝛼𝑛𝑟 while the observed degree is much smaller:

Conjecture 3 (Degree, odd characteristic). We have deg (𝐼CICO) ≤ (𝛼 + 2)𝑛𝑟 .

We are able to prove Conjecture 3 “by hands" for 𝑛𝑟 = 1 and an investigation of the
general case is left for future work. Actually, even by adopting the Bezout bound instead
of Conjecture 3 as well as 𝜔 = 2, a very rough upper-bound for Step 2 is 𝒪(𝑛2

𝑟 · 22𝑛𝑟 ·𝛼2𝑛𝑟),
and similarly this is already quite below the cost of Step 1.

Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin
Velichkov, Danny Willems 35

C Reference Implementation
A full reference implementation of Anemoi, including AnemoiJive and AnemoiSponge, is
provided in our GitHub9 repository. It contains various routines to evaluate these functions
and to generate the corresponding systems of equations as well. Nevertheless, we include
some snippets from this implementation below. First, we provide the linear layers.

1 def M_2(x_input , b):
2 """ Adapted from a pseudo - Hadamard transform """
3 x = x_input [:]
4 x[0] += b*x[1]
5 x[1] += b*x[0]
6 return x
7
8 def M_3(x_input , b):
9 """ Adapted from figure 6 of [DL18]. """

10 x = x_input [:]
11 t = x[0] + b*x[2]
12 x[2] += x[1]
13 x[2] += b*x[0]
14 x[0] = t + x[2]
15 x[1] += t
16 return x
17
18
19 def M_4(x_input , b):
20 """ Adapted from figure 8 of [DL18]. """
21 x = x_input [:]
22 x[0] += x[1]
23 x[2] += x[3]
24 x[3] += b*x[0]
25 x[1] = b*(x[1] + x[2])
26 x[0] += x[1]
27 x[2] += b*x[3]
28 x[1] += x[2]
29 x[3] += x[0]
30 return x
31
32 def circulant (field , l):
33 for row in itertools . combinations_with_replacement (range (0,l+1) , l):
34 mat = matrix . circulant (list(row)). change_ring (field)
35 if is_mds (mat):
36 return mat

The, the following function computes the number of rounds.
1 def get_n_rounds (s, l, alpha):
2 """ Returns the number of rounds needed in Anemoi (based on the
3 complexity of algebraic attacks).
4
5 """
6 r = 0
7 complexity = 0
8 while complexity < 2**s:
9 r += 1

10 complexity = binomial (
11 2*l*r + alpha + 1 + 2*(l*r -2) ,
12 2*l*r
13)**2
14 r += l+1 # security margin
15 if r > 10:
16 return r
17 else:
18 return 10

9https://github.com/vesselinux/anemoi-hash

https://github.com/vesselinux/anemoi-hash

36
New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi

Permutations and Jive Compression Mode

Finally, the two modes in which Anemoi can be plugged are implemented by the
following function. They both take an input P which must implement a permutation.
Concretely, it must be such that calling P(x) on a list x of elements of the relevant field
returns a list of elements of the same field of the same size.

1 def jive(P, b, _x):
2 """ Returns an output b times smaller than _x using the Jive mode of
3 operation and the permutation P.
4
5 """
6 if b < 2:
7 raise Exception ("b must be at least equal to 2")
8 if P. input_size () % b != 0:
9 raise Exception ("b must divide the input size!")

10 x = _x [:]
11 u = P(x)
12 compressed = []
13 c = P. input_size ()/b # length of the compressed output
14 for i in range (0, c):
15 compressed . append (sum(x[i+c*j] + u[i+c*j]
16 for j in range (0, b)))
17 return compressed
18
19 def sponge_hash (P, r, h, _x):
20 """ Uses Hirose ’s variant of the sponge construction to hash the
21 message x using the permutation P with rate r, outputting a digest
22 of size h.
23
24 """
25 x = _x [:]
26 if P. input_size () <= r:
27 raise Exception ("rate must be strictly smaller than state size!")
28 # message padding (and domain separator computation)
29 if len(x) % r == 0 and len(x) != 0:
30 sigma = 1
31 else:
32 sigma = 0
33 x += [1]
34 x += (len(x) % r)*[0]
35 padded_x = [[x[pos+i] for i in range (0, r)]
36 for pos in range (0, len(x), r)]
37 # absorption phase
38 internal_state = [0] * P. input_size ()
39 for pos in range (0, len(padded_x)):
40 for i in range (0, r):
41 internal_state [i] += padded_x [pos][i]
42 internal_state = P(internal_state)
43 if pos == len(padded_x) -1:
44 # adding sigma if it is the last block
45 internal_state [-1] += sigma
46 # squeezing
47 digest = []
48 pos = 0
49 while len(digest) < h:
50 digest . append (internal_state [pos])
51 pos += 1
52 if pos == r:
53 pos = 0
54 internal_state = P(internal_state)
55 return digest

	Introduction
	Theoretical Background
	Modes of Operation
	Random Oracle: the Sponge Structure
	Merkle Compression Function: the Jive Mode

	The Flystel Structure
	On CCZ-Equivalence and Arithmetization-Orientation
	High Level View of the Flystel Structure
	Characteristic 2
	Odd Characteristic
	Implementation Aspects

	Description of Anemoi
	Round Function
	Higher Level Algorithms
	Specific Instances

	Security Analysis
	``Classical'' Attacks
	Algebraic Attacks

	Benchmarks
	R1CS Systems
	Plonk
	AIR
	Native performance

	Conclusion
	Details of our Security Analysis
	Differential and Linear Attacks
	Integral Attacks
	Invariant Subspaces
	Number of Rounds

	Details on Algebraic Attacks
	Gröbner Basis in Characteristic 2
	Gröbner Basis in Odd Characteristic
	Details on the FGLM step

	Reference Implementation

