
MPC for Group Reconstruction Circuits
Lúcás Críostóir Meier

lucas@cronokirby.com

June 23, 2022

Abstract

In this work, we generalize threshold Schnorr signatures, ElGamal
encryption, and a wide variety of other functionalities, using a novel
formalism of group reconstruction circuits (GRC)s. We construct a
UC secure MPC protocol for computing these circuits on secret
shared inputs, even in the presence of malicious parties. Applied
to concrete circuits, our protocol yields threshold signature and en-
cryption schemes with similar round complexity and concrete effi-
ciency to functionality-specific protocols. Our formalism also gen-
eralizes to other functionalities, such as polynomial commitments
and openings.

1 Introduction
Using threshold Cryptography [Des88, DF90], a consortium of parties can
split a secret amongst themselves, such that no individual knows that se-
cret, and yet a sufficiently large quorum can perform tasks using that secret,
such as signing or decrypting a message.

Particularly efficient protocols for threshold signing, using Schnorr signa-
tures [Sch90], have been devised [KG20, NRS21, Lin22]. Similarly, efficient
protocols for threshold encryption can be constructed [DF90, SG01], using
ElGamal encryption [ElG85].

These protocols are so efficient in large part due to the structure of the un-
derlying schemes being lifted to the threshold setting. In particular, these
schemes share the interesting property that their computation is homomor-
phic with respect to their secret inputs.

To illustrate this, consider the computation of a Schnorr signature:

k
R←− Fq

K ← k ·G
e← H(K,m)

s← k + ex

(K,S)

1



Here, the secret values have been marked in red. Notice that each value
we compute is linear with respect to the secrets it uses. For example, if
k = k0 + k1, then we have K = k0 · G + k1 · G. Similarly, if x = x0 + x1,
then we have s = (k0 + ex0) + (k1 + ex1). This property leads to very
efficient protocols when the secrets are shared linearly: each participant
can individually compute their portion of the result, and then reconstruct
the output together, by revealing their portions and adding them together.
This computation needs to be done in stages, because the homomorphic
property is sometimes broken. For example, the use of the hash function
H in this scheme requires the parties to reconstruct K before proceeding
with the rest of the computation.

This linear sharing of inputs is directly amenable to the threshold setting.
This is because the most common method of threshold secret sharing, using
polynomial interpolation [Sha79], allows for a quorum of parties to locally
convert their shares into a linear sharing x1 + . . .+ xn of the secret.

This homomorphic property is not unique to Schnorr signatures and ElGa-
mal encryption. In fact, this property is present among a wide variety of
functionalities, including distributed key generation, as well as polynomial
commitments and openings [KZG10].

In this work, we generalize these disparate functionalities, and unify them
under the novel framework of group reconstruction circuits (GRC). These
can be seen as a special class of programs which precisely capture this prop-
erty of staged homomorphic computation, which is what makes threshold
Schnorr signatures and ElGamal encryption so efficient.

We then provide an efficient multi-party computation (MPC) protocol for
computing GRCs on linearly shared inputs. In fact, our protocol provides
MPC with commitment, in the sense that it also verifies that the inputs used
correspond to publicly known commitments. We prove that our protocol
is secure under concurrent composition, even in the presence of malicious
participants, within the UC framework [Can01]. This proof is done in the
hybrid model, using ideal functionalites for authenticated broadcast, and
for turning sigma protocols into non-interactive zero-knowledge proofs of
knowledge. We also make use of a group G in which the discrete logarithm
is presumed to be hard.

The essence of our protocol is quite simple. The computation is separated
into a series of rounds. In each round, the parties locally compute their
share of the output for this round, which they then send to the other par-
ticipants. The output is then reconstructed by adding all of these shares
together. To prevent parties from cheating, we also require that they prove,
in zero-knowledge, that they correctly computed their output using in-

2



puts which match their public commitments. Because this computation
is homomorphic, there exists an efficient sigma protocol for these proofs
[Mau09].

Finally, we provide examples of GRCs for distributed key generation, Schnorr
signatures, ElGamal encryption, as well as polynomial commitments and
openings, which then automatically yield corresponding protocols for thresh-
old signatures, encryption, polynomial commitments, etc. The round com-
plexity of these protocols are comparable to their functionality-specific
equivalents: we can do threshold Schnorr signatures in 3 rounds, matching
Lindell’s scheme [Lin22], and threshold ElGamal in a single round, which
is optimal.

2 Background
Throughout this paper, we let G denote a group of prime order q, with
generators G and H. Let Fq denote the scalar field associated with this
group, and let Z/(q) denote the additive group of elements in this field.
We also define [n] := [1, . . . , n].

By JxK, we denote a linear secret sharing of some group element x. This is
a set {x1, . . . , xn} such that

∑
i xi = x.

We make heavy use of group homomorphisms throughout this paper. We
let

φ(P1, . . . , Pm) : A→ B

denote a homomorphism from A to B, parameterized by some public values
P1, . . . , Pm. Commonly A will be a product of several groups G1, . . . ,Gn,
in which case we’d write:

φ(P1, . . . , Pm)(x1, . . . , xn)

to denote the application of φ to an element (x1, . . . , xn) of the product
group. The public values Pi are often left implicit.

We often write products (x1, . . . , xn) as a single vector x ∈ An. Opera-
tions between these vectors are done element-wise, so we write x + y for
(x1 + y1, . . . , xn + yn), as well as x ·G for (x1 ·G, . . . , xn ·G).

2.1 Pedersen Commitments
Pedersen commitments [Ped92] are a key component of our protocol. In
their basic form, they allow one to commit to a value x ∈ Z/(q). This

3



is done by sampling a random α
R←− Z/(q), and forming the commit-

ment:
Com(x, α) := x ·G+ α ·H

where H is a generator of G, independent from G.

This scheme is perfectly hiding, because α · H is a random element of G,
completely masking x ·G.

On the other hand, this scheme is only computationally binding. This is
because the discrete logarithm H with respect to G must be kept hid-
den. If the discrete logarithm of H is known, then it becomes possible to
equivocate, by finding two different inputs (x, α) and (x′, α′) with the same
commitment.

In fact, we can characterize this property more precisely: knowing the
discrete logarithm of H is necessary in order to be able to equivocate.

Claim 2.1. Given two inputs (x, α) 6= (x′, α′) such that Com(x, α) = Com(x′, α′),
it’s possible to efficiently compute the discrete logarithm of H.

The proof is just a matter of algebra:

x ·G+ α ·H = x′ ·G+ α′ ·H
(x− x′) ·G = (α′ − α) ·H
(x− x′)
(α′ − α)

·G = H

Thus (x− x′)/(α′ − α) is our discrete logarithm.

■

2.1.1 Vector Pedersen Commitments

It’s useful to generalize this scheme to the case of a vector of scalars
x ∈ Z/(q)n. The randomness becomes a vector of the same size, sampled as
α

R←− Z/(q)n. We then define an analogous commitment scheme by using
scalar multiplication element-wise:

Com(x,α) := x ·G+α ·H

This generalization is naturally also perfectly hiding, and satisfies an anal-
ogous property with regards to equivocation:

Claim 2.2. Given two inputs (x,α) 6= (x′,α′) such that Com(x,α) =
Com(x′,α′), it’s possible to efficiently compute the discrete logarithm of
H.

4



Since the two inputs are different, there exists an index i such that xi 6= x′
i

or αi 6= α′
i. From here we apply Claim 2.1 with (xi,αi) and (x′

i,α
′
i).

■

2.1.2 On the Trusted Setup

In theory, Pedersen commitments require a trusted setup, to generate the
group elements G,H ∈ G. We argue that this trusted setup isn’t a concern
in practice. This is because the generator G is usually part of the specifica-
tion for the group being used, and because there exist efficient methods for
hashing into elliptic curves [Ica09]. This reduces the problem of generating
H to that of finding a credibly “unbiased” choice of seed to hash. This can
be done in many ways.

One method would be to hash a canonical representation of G as bytes in
order to produce H. Presumably, the generator G was not chosen in such a
way as to produce an H with a known discrete logarithm using that specific
method of hashing into the group.

Another method would be to use a public source of randomness, such
as public newspapers, lotteries [BDF+15], or Cryptographic protocols de-
signed to provide such a service [FIP11].

Now, while we can avoid a trusted setup with these methods in practice,
our security proof makes use of this setup. Essentially, we’ll prove that the
security of our protocol reduces to the hardness of the discrete logarithm
problem in G, and to do this we need to be able to use an instance of the
problem as a setup for the participants in our simulation.

2.2 Maurer’s φ-Proof
In [Mau09], Maurer generalized Schnorr’s sigma protocol for knowledge
of the discrete logarithm [Sch90] to a much larger class of relations. In
particular, Maurer provided a sigma protocol for proving knowledge of the
pre-image of a group homomorphism φ. We denote this protocol as a “φ-
proof”, and recapitulate the scheme here.

Given a homomorphism φ : A → B, and a public value X ∈ B, a prover
can demonstrate knowledge of a private value x ∈ A such that φ(x) = X.
The prover does this by means of Protocol 2.1:

5



Protocol 2.1: φ-Proof

Prover Verifier
knows x ∈ A public X ∈ B

k
R←− A

K ← φ(k)

K−→

c
R←− Z/(p)

c←−
s← k + c · x

s−→

φ(s)
?
= K + c ·X

Here, p is chosen such that ∀B ∈ B. p · B = 0. In practice, many groups
will be products of G or Z/(q), for which it suffices to set p = q.

Claim 2.3. Protocol 2.1 is a valid sigma protocol, in the sense of [Dam02].

Completeness follows directly from the fact that φ is a homomorphism.

For the honest verifier zero-knowledge property, the simulator S(X, c) works
by generating a random s

R←− A, and then setting K := φ(S)− c ·X.

Finally, we prove 2-extractability. Given two verifying transcripts (K, c, s)
and (K, c′, s′), sharing the first message, we extract a value x̂ satisfying
φ(x̂) = X as follows:

φ(s)− c ·X = K = φ(s′)− c′ ·X
φ(s)− φ(s′) = c ·X − c′ ·X

1

c− c′
· φ(s− s′) = X

φ

(
s− s′

c− c′

)
= X

Thus, defining x̂ := (s − s′)/(c − c′), we successfully extract a valid pre-
image.

We conclude that the protocol is a valid sigma protocol.

■

6



Maurer’s protocol can also work even in the case where the order of the
groups are not known, but this makes the challenge generation a bit more
complicated, and we don’t need this functionality in this work.

2.3 Ideal Functionalities for Sigma Protocols
The first ideal functionality we need is for non-interactive φ-proofs.

Functionality 2.1: Zero-Knowledge Functionality F(ZK, φ)

A functionality F for parties P1, . . . , Pn.

On input (prove, sid, x) from Pi:
F checks that sid has not been used by Pi before.
F generates a new token π, and sets xπ ← x.
F replies with (proof, π).

On input (verify, X, π):
F replies with (verify-result, φ(xπ)

?
= X).

Functionality 2.1 allows a party to prove knowledge of a value x such that
φ(x) = X, while hiding this value x from other parties. In particular, this
functionality models the case of a non-interactive proof, wherein a proof
can be created and verified without interacting with other parties.

In Section 2.2, we saw an efficient sigma protocol for these proofs, so in-
stantiating this ideal functionality can be done by using transformations
for arbitrary sigma protocols. There exist several such transformations,
but having security in the UC framework is tricky.

2.3.1 UC Secure ZK Proofs of Knowledge

One method consists of using the Fischlin transform [Fis05]. What makes
this transform theoretically useful is that it provides a straight-line extrac-
tor, which can extract the witness without having to rewind the prover.
This scheme is made non-interactive using a random oracle, and work has
been done explicitly considering this scheme in the UC framework, using
the global random oracle model [LR22].

Another method consists of working in the common reference string model,
and using public key encryption to provide a trapdoor for witness extrac-
tion [KS11, KZM+15]. The simulator controls the trusted setup, knowing

7



the private key, which can they can then use to extract witnesses from
proofs.

2.3.2 Session Bound Fiat-Shamir

An alternative method involves the Fiat-Shamir [FS06] transform. Unfortu-
nately, the UC security of this method is heuristic, although we conjecture
that in practice it holds, even under concurrent composition.

The idea is to do a standard Fiat-Shamir transform, including additional
information inside of the hash generating the challenge. In addition to all
of the usual inputs, the hash should also include a unique session identifier
sid, as well as a unique identifier for pid for the party generating the
proof. This session identifier should be unique for each execution of the
protocol. Note that if multiple proofs are needed, each of these is considered
a separate protocol, and thus requires a distinct session identifier. The
party identifier should be unique among the parties participating in the
protocol. The party identifier could even be globally unique, among all
parties, by using a public key, for example.

Heuristically, these two values bind a proof to a particular execution and a
particular party, thus preventing reusing proofs. This is the main practical
concern when composing non-interactive proofs concurrently.

Unfortunately, from a theoretical perspective, this protocol is not extractable,
without being able to rewind the adversary and program the random ora-
cle.

We include this protocol, although theoretically deficient, because its effi-
ciency and simplicity might be attractive to implementations, and it would
seem to satisfy practical notions of composable security.

2.4 Broadcast Functionalities
The second ideal functionality we need is a broadcast functionality. The
purpose of this functionality is to allow a party to send a message to all
other parties, guaranteeing that they receive the same message.

Functionality 2.2: Authenticated Broadcast Functionality C

A functionality C for parties P1, . . . , Pn.

On receiving (broadcast-in, sid,m) from Pi:
C checks that sid has not been used by Pi before.
C sends (broadcast-out, pidi, sid,m) to every party Pj.

8



In fact, our functionality only needs to be usable a single time, so it’s
really a one-time broadcast functionality, which might be simpler to im-
plement.

The key difference between this broadcast functionality and simply sending
a message to all other parties is that the functionality prevents malicious
participants from sending different messages to different parties. We use
this later in the protocol to broadcast commitments, because it’s important
that all parties agree on what the values of these commitments are.

This functionality can be securely implemented in the UC framework using
the “echo-broadcast” protocol from [GL05], which we recapitulate here:

Protocol 2.2: Echo-Broadcast Protocol

Each party Pi has a broadcast input mi.

Each Pi sends (sid,mi) to all other parties.
Upon receiving (sid, m̂j) from Pj, Pi checks that it hasn’t al-
ready received a message from Pj for this sid, and then sends
(rebroadcast, sid, j, m̂j) to all other parties.
Upon receiving (rebroadcast, sid, j, m̂j

i ) from all parties, Pi checks
that m̂j

1 = m̂j
2 = . . . = m̂j

n, and then uses m̂j
1 as the message sent by

Pj for this session.

Protocol 2.2 UC securely implements Functionality 2.2.

We note that instead of each party forwarding m̂j, it’s also possible to
send H(m̂j), where H is a collision-resistant hash function. This might be
advantageous for long messages.

3 Group Reconstruction Circuits
The various functionalities mentioned in the introduction all share quite
a few commonalities. They first convert a threshold sharing of the input
into a linear sharing of the input. These secret shared inputs can be added
together, using JxK and JyK to form Jx + yK, or used to act on a group
element, forming Jx · AK. These operations can be done locally. A secret
shared value JxK can be reconstructed, to have each party learn x.

In essence, group reconstruction circuits are a vast generalization of this
kind of functionality. Our core observation is that the operations done
inside of these functionalities are in fact all group homomorphisms, with
respect to their inputs as a vector. Because of these, the functionality can

9



be efficiently computed by each party locally, with the reconstruction steps
done by having each party reveal their share of the secret. Furthermore, in
the malicious setting, we can use φ-proofs in order to efficiently demonstrate
the correctness of our computations.

3.1 Formal Definition
Formally, a group reconstruction circuit (GRC) is a special kind of directed
acyclic graph (DAG), similar to an arithmetic circuit. This graph is typed,
in the sense that each node is associated with some group A, designating
the set of values that node is supposed to have. This graph is built with
the following nodes:

• An input node, with type Z/(q).

• A random input node, type Z/(q).

• A reconstruction node, which has another node as input, and inherits
the type of that node.

• A φ node, which can have several inputs, and which represents a
homomorphism φ(P1, . . . , Pl) : G1 × . . . × Gm → H. For each of
the public parameters Pi, there should be an input connected to a
reconstruction node. For each of the inputs in Gi, there should be an
input connected to a node of that type.

• An output node, which has a single non-output node as input, inher-
iting its type.

Each φ node has a depth associated with it, equal to the largest number
of reconstruction nodes on a path from an input or random node to the φ
node, plus 1. We can also associate a depth with the circuit, by taking the
largest depth among its φ nodes.

This circuit can be given semantics in the form of a semi-honest MPC
protocol. For each of the input nodes with value x, the parties have a
linear secret sharing JxK. For random nodes, the parties sample a sharingJkK by locally sampling a random share ki

R←− Z/(q). For reconstruction
nodes, the parties go from a secret sharing JyK to a public value y by having
each party reveal their share yi. For φ nodes, the parties use the fact thatJφ(x1, . . . , xm)K = φ(Jx1K, . . . , JxKm), by locally computing their share of
the result as φ(x1i , . . . , xmi ). Finally, for output nodes, they use their local
share of a value, if that value is secret, or the public value, if it has been
reconstructed.

As an example, let’s consider the functionality for Schnorr signatures.

10



Figure 3.1: Schnorr Signature GRC

x

$ ·G ⟲

φ

+ ⟲ s

K

Figure 3.1 presents the circuit for Schnorr signatures, with ⟲ denoting
reconstruction nodes, $ denoting random input nodes, and φ denoting the
parameterized homomorphism:

φ(K)(x) := H(K,m) · x

Both the φ and + nodes have a depth of 2, and thus so does the cir-
cuit.

Using our semantics for circuits, we get a semi-honest protocol for threshold
Schnorr signatures. The quorum turns their threshold secret sharing of
the secret key x into a linear secret sharing JxK. They then generate a
shared nonce JkK by each sampling ki

R←− Z/(q). They calculate a sharingJK := k ·GK by each computing Ki := ki ·G. They then reveal these Ki to
learn K. They can then compute si := φ(K)(xi) locally, creating a sharingJsK, whose shares they then reveal, to learn s. They then use (K, s) as their
signature.

3.2 Normalized Form
While the formal definition of GRCs above is complete, and closely matches
the description of various functionalities, it’s not particularly convenient to
design a protocol for. We can vastly simplify the description of a GRC
through the use of a normalized form, which is a much more compact rep-
resentation of this circuit. This normalized form is also directly amenable
to an implementation as an MPC protocol. This form is derived from a
series of simple transformations on a GRC.

First, note that the random input nodes of the GRC do not depend on any
other node. Because of this, we can move all of these nodes to the start of
the circuit. This has the semantics of generating all the randomness in the
circuit at the start of the execution.

11



Second, instead of having several input nodes x1, . . . , xm, all elements of
Z/(q), we instead have a single input vector x ∈ Z/(q)m. This vector can
also be considered as a single element of the product group, with addition
defined pointwise, as in Section 2. In fact, we can also include random
elements as part of the input. Honest parties will generate this part of the
input randomly for each execution. We treat this issue in more detail in
Section 4.

Third, we can make each φ node depend on the entire input vector x. In
practice, this dependency can be sparse: φ may only make use of a small
number of elements in the input. Nonetheless, φ is still a homomorphism
with respect to the entire input. This is because a projection π : Z/(q)m →
Z/(q)l, which selects a subset of elements from an input vector, is a group
homomorphism. Any homomorphism using only a subset of elements can
be composed with π to make a homomorphism over the entire vector.

Fourth, we can coalesce the homomorphisms together, creating one homo-
morphism for each “layer” of the circuit. We do this by first organizing
the φ nodes into layers, based on their depth. Each node with the same
depth goes into the same layer. We then combine all of the homomorphisms
in this layer into a single homomorphism φ. We can do this because the
duplication map a 7→ (a, a) and the projection map (a,_) 7→ a are both
homomorphisms. We can sort all of the homomorphisms in a layer topo-
logically, and then compose them sequentially, duplicating the input and
projecting as necessary.

Fifth, we can remove reconstruction nodes. Because each layer only has a
single homomorphism, we can consider the output of this homomorphism
to necessarily be reconstructed. We then make each homomorphism param-
eterized by all of the reconstructed outputs from each previous layer.

Finally, we can remove output nodes. By considering the output of every
layer to be part of the output, we include all of the output nodes connected
to reconstruction nodes. For the other outputs, they can be locally com-
puted using the reconstructed outputs along with the shares of the input
vector, so it’s not necessary to include them in the circuit.

Combining all of these transformations gives us the formal description of
normalized form GRCs in Figure 3.2.

12



Figure 3.2: GRCs in normalized form

A group reconstruction circuit (GRC) in normalized form consists of:
• An input length m, and a depth d.
• Groups B1, . . . ,Bd.
• Homomorphisms φ1, . . . , φd. Each φi is a homomorphism

Z/(q)m → Bi, and is parameterized by values V1, . . . ,Vi−1 with
Vi ∈ Bi.

We can also give circuits in this form semantics as a semi-honest MPC
protocol. The parties have a linear secret sharing JxK of the input vec-
tor, some entries of which having been generated randomly for this exe-
cution. Then, for each layer r ∈ [d], the parties locally compute Vi

r :=
φr(V1, . . . ,Vr−1)(xi), and then reveal these shares, allowing each party to
compute Vr :=

∑
i Vi

r. The values V1, . . . ,Vd make up the output of the
protocol.

In Section 5, we provide examples of GRCs in normalized form for several
functionalities, including Schnorr signatures.

4 MPC Protocol for GRCs
In this section, we describe an MPC protocol for computing a GRC on
linearly shared inputs, with associated commitments. We analyze the se-
curity of this protocol, proving that it is secure against an arbitrary number
of malicious parties, and under concurrent composition, in the UC frame-
work.

For inputs, one natural kind of commitment are Pedersen commitments.
In many protocols, however, it’s more natural to use plain commitments,
where a scalar x is committed to with the value x · G. This matches
most threshold Schnorr schemes, in which the secret x is split into shares
xi, with the shares of the public key Xi := xi · G being known for all
parties. While we could subsume these commitments as a case of Pedersen
commitments, with a blinding factor set to 0, explicitly considering these
plain commitments yields a more efficient protocol.

We thus split our input vector into three sections: x, y, and k. Each of
this is linearly split into shares. We have shares x1, . . . ,xn for each party,
such that x =

∑
i xi, and similarly for y and k. The shares of x have plain

commitments Xi = xi · G for each party. The shares of y have Pedersen
commitments Yi = yi · G + αi · H, with αi a vector of blinding factors
held by each party. Finally, k is intended to be randomly generated for

13



each execution of the protocol. Honest parties will generate their share ki

by sampling a random vector. As long as at least one participant in the
protocol is honest, then k :=

∑
i ki will also be random.

4.1 Ideal Functionality
In this section, we describe an ideal functionality for our protocol, as Func-
tionality 4.1. This functionality is parameterized by the circuit Φ, as well
as the input commitments Xi and Yi, for each party i ∈ [n]. The func-
tionality also uses a common reference string (G,H) ∈ G2, for Pedersen
commitments.

Functionality 4.1: GRC functionality F(GRC,Φ,Xi,Yi)

A functionality F for parties P1, . . . , Pn.

After receiving (input, sid,xi,yi,αi,ki) from every party Pi:
F checks, for every i ∈ [n], that:

Xi ?
= xi ·G

Yi ?
= yi ·G+αi ·H

F computes, for each round r ∈ [d]:

Vi
r := φr(V1, . . . ,Vr−1)(xi,yi,ki)

Vr :=
∑
j

Vi
r

F sends (output, sid,V1
1, . . . ,Vn

d) to every party Pi.

This functionality checks that the inputs each party provides match the
public commitments, and then computes the output of the circuit in a
straightforward manner. One slight difference is that instead of simply
learning Vr for every round r, each party learns Vi

r for every party i.
Naturally, we have Vr =

∑
i Vi

r, so this information can be derived by each
party. The reason we allow the parties to also learn the individual shares
is that our protocol will also reveal this information, so we need to model
the leakage in our functionality as well. Furthermore, this matches the
semantics of GRCs, where parties learn the individual shares of the group
element they’re reconstructing. For practical functionalities like Schnorr
signatures or threshold encryption, learning these intermediate values is
not a concern either.

14



4.2 Protocol
In this section, we provide a protocol implementing Functionality 4.1.

The basic idea is that for each round r, the parties locally compute Vi
r :=

φr(xi,yi,ki), and then send these values to the other parties, along with
a proof that the value was computed correctly, and that the inputs used
correspond to the public commitments.

For the random input ki, we need to guarantee that the same input vector
is used throughout the protocol. We do this by creating a Pedersen com-
mitment Ki to the random value, and having an initial round where each
party broadcasts this commitment to the other parties. To prevent a party
from sending different commitments, we use Functionality 2.2 to guarantee
that the same commitment is sent to all parties.

We can easily prove that each step was computed correctly, and with the
right inputs, by using the following homomorphism:

ψr(x,y,α,k,β) := (φr(x,y,k), x ·G, y ·G+α ·H, k ·G+ β ·H)

This homomorphism uses the same inputs to compute φr and reconstruct
all of the commitments. We then combine this with the φ-proofs seen in
Section 2.2 to create an efficient sigma protocol verifying that a value Vi

r

was computed using φr on the correct inputs. We then use Functionality
2.1 to turn these sigma protocols into non-interactive proof of knowledge
functionalities.

Protocol 4.1 describes all of this more formally. Like the ideal functionality,
the protocol is parameterized by the circuit Φ, the public commitments
Xi,Yi, and makes use of a common reference string (G,H) ∈ G2, for
Pedersen commitments. The protocol takes d+1 rounds, with d the depth
of the circuit. As we mentioned in the previous section, the parties learn the
intermediate values Vi

r as a consequence of the protocol’s execution.

15



Protocol 4.1: MPC protocol for Φ,Xi,Yi

Each party Pi has inputs xi and yi, committed to by Xi and Yi. They
also have decommitments αi for Yi. Each party Pi also has a vector
ki, which honest parties will have generated randomly.

Round 0
Each party Pi generates a random vector βi, and creates a commitment
to ki with:

Ki := ki ·G+ βi ·H

Pi sends (broadcast-in, sid,Ki) to the broadcast functionality C.
Pi waits to receive (broadcast-out, sid,Kj) for each other party j.

Round r
Each party Pi computes Vi

r := φr(V1, . . . ,Vr−1)(xi,yi,ki).
Each party Pi sends (prove, sid, (xi,yi,αi,ki,βi)) to F(ZK, ψr),
receiving πi

r in return.
Each party Pi sends (Vi

r, π
i
r) to every other party.

After receiving (Vj
r, π

j
r) from all other parties, Pi checks, for each j,

that the proof is valid, by sending (verify, (Vj
r,Xj,Yj,Kj), πj

r) to
F(ZK, ψr), and aborting if the functionality returns 0.
Each party Pi then stores each Vj

r as part of its output, and computes
Vr :=

∑
j Vj

r.

4.3 Security Analysis
In this section, we prove that Protocol 4.1 implements Functionality 4.1
with UC security, even against an arbitrary number of malicious parties.
More specifically, we work with the SUC model of security [CCL15]. We
also work in the hybrid model, using Functionalities 2.1 and 2.2 for zero-
knowledge proofs of knowledge, and authenticated broadcast, respectively.
We also need a common reference string (G,H) ∈ G2, for Pedersen com-
mitments. In our proof, the simulator provides this string.

Claim 4.1. Provided that the discrete logarithm is hard in G, Proto-
col 4.1 securely implements Functionality 4.1, in the hybrid model of uni-
versally composable security, given a non-interactive φ-proof functionality
F(ZK, φ) (for arbitrary φ), a broadcast functionality C, as well as a com-
mon reference string (G,H) ∈ G2.

Proof Idea:
The basic idea is that we use an instance of the discrete logarithm problem

16



as our common reference string. This makes any violation of the binding
property of Pedersen commitments yield a solution to this discrete loga-
rithm instance. Otherwise, we can perfectly simulate an execution of the
protocol using the ideal functionality, without rewinding the adversary,
which lets us conclude that our protocol is UC secure, using the result in
[KLR09].

One technical detail is that we need inputs from every party to give to the
ideal functionality. Because of this, our simulator first runs the simulated
protocol until the adversary provides the input for their parties in the first
proof. We can then use these values for the parties the simulator controls
in the ideal functionality.

The output of this functionality gives us all of the values we need in the rest
of the simulation, except for the commitments Ki to the random inputs of
the honest parties. For these, we use the fact that Pedersen commitments
are perfectly hiding, and simply generate them at random.

Proof:
We prove this by constructing a simulator S which uses the ideal func-
tionality F(GRC) to perfectly simulate an execution of the hybrid protocol
against an adversary A.

We also work in the common reference string model, where the simulator
S chooses the generators G,H for the Pedersen commitments.

We use this simulator S to construct an adversary against the discrete
logarithm game.

LetM⊆ P be the set of malicious parties, and H ⊆ P be the set of honest
parties. Naturally, we have H ∪M = P and H ∩M = ∅.

As an adversary against the discrete logarithm game, S receives (G,H) as
an instance of the discrete logarithm problem.

The simulator then proceeds as follows:
S starts by setting (G,H) as the common reference string.

Round 0:
For each i ∈ H, S samples Ki R←− G.
For each i ∈M, S waits to receive (broadcast-in, sid,Ki).
S then sends (broadcast-out, pidi, sid,Ki), to all parties, for every i ∈ P ,
emulating C.

Interim:
S waits to receive (prove, sid, (xi,yi,αi,ki,βi)) for each malicious i ∈M,
playing the role of F(ZK, ψ1).

17



S checks, for each i, that:

Xi ?
= xi ·G

Yi ?
= yi ·G+αi ·H

Ki ?
= ki ·G+ βi ·H

otherwise, S sets bad-valuesi
1 ← 1.

S records the values xi,yi,αi,ki,αi, for i ∈M.

Now, in the real execution against F(GRC), with real honest parties Pi, for
each i ∈ M, the parties S controls, S sends (input, sid,xi,yi,αi,ki) to
F(GRC).
S receives (output, sid,V1

1, . . . ,Vn
d) in return, and records these values.

Round r:
For each round r ∈ [d], S proceeds as follows:
S generates a new πj

r for each j ∈ H, and sends (Vj
r, π

j
r) to every malicious

Pi, with i ∈M.

Unless r = 1, S waits to receive (prove, sid, x̂i, ŷi, α̂i, k̂i
, β̂

i
) from each

malicious Pi, for i ∈M, playing the role of F(ZK, ψr).
S then checks, for each i, that:

Xi ?
= x̂i ·G

Yi ?
= ŷi ·G+ α̂i ·H

Ki ?
= k̂i

·G+ β̂
i
·H

and sets bad-valuesi
r ← 1 otherwise.

The first check implies that x̂i = xi. If it holds that ŷi 6= yi or k̂i
6= ki,

then S has found a value h such that h · G = H, as per Claim 2.2, and S
aborts, returning h.

(Including when r = 1) S generates a new πi
r, and returns (proof, πi

r),
playing the role of F(ZK, ψr).

Concurrently, S plays the role of F(ZK, ψr), responding to (verify, (V̂j

r, X̂
j
, Ŷj

, K̂j
), π)

queries. S checks that there exists some i ∈ P such that πi
r = π. S then

returns:

V̂j

r
?
= Vj

r ∧ X̂j ?
= Xj ∧ Ŷj ?

= Yj ∧ K̂j ?
= Kj ∧ bad-valuesi

r 6= 1

S then waits to receive (V̂i
, π̂i

r) for every malicious party Pi, with i ∈M.
S then checks if the query (verify, (V̂i

r,Xi,Yi,Ki), π̂i
r) would yield 1,

18



according to the logic in the section above. (If π̂i
r doesn’t match anything,

the check is considered to fail). If this check fails, then S simulates every
honest Pj aborting, with j ∈ H, to abort, as if they’d seen an invalid proof
themselves.

This concludes the simulation.

If S aborts with a value h, then they’ve successfully solved an instance of
the discrete logarithm problem. Under our assumption that this problem
is hard, this happens with negligible probability.

We argue that if S does not abort in this way, then the simulation is
perfect. For the first round, because pedersen commitments are perfectly
hiding, sampling a random Ki has an identical distribution as an honest
party generating a pedersen commitment. For the rest of the protocol,
all of our checks are equivalent to those made by honest parties. This
is because the Vj

i values are necessarily computed correctly, and use the
inputs provided by the parties the adversary A controls.

Because our simulator S is perfect, and doesn’t rewind the adversary A, we
conclude, using [KLR09], that our protocol satisfies universally composable
security, in the hybrid model.

■

4.3.1 Identifiable Abort

We note that our protocol can be considered to have identifiable aborts,
provided that the implementation of the broadcast functionality also has
this property. After round 0, if a party causes an abort by providing an
invalid proof, then that abort can be detected, since there will be a signed
message containing this invalid proof, which can be used as evidence of
cheating.

4.4 Practical Considerations
In this section we describe a few additional details which might be useful
for concrete implementations of the protocol.

4.4.1 Sparse Proofs

For simplicity, we have each homomorphism φi in the circuit take the entire
input vector x. These homomorphisms may be sparse, in the sense that
they only use a few of the elements in the input vector. It should be noted
that in this case, the φ-proofs can be done as if only these select elements
existed, which gives a smaller and faster proof.

19



4.4.2 Removing Random Commitments

Some functionalities may not use any random input k. In this case, the
first round can be omitted, since there’s no need to commit to an empty
vector. This actually improves the complexity of threshold encryption, as
we’ll see in Section 5.3.

4.4.3 Parallel Echos

In the description of our protocol, we use one round for broadcasting the
commitments to the random inputs, using our broadcast functionality. If
we naively replace this functionality with the echo-broadcast in Protocol
2.2, we increase the round complexity, since that protocol requires 2 rounds.
However, the second round of the echo-broadcast protocol is only needed to
check the consistency of the broadcasted input; the parties already know
the input after the first round. Because of this, we can run this second
round in parallel with the rest of the protocol, and thus incur no additional
cost to round complexity.

4.4.4 Parallel sid

While there are different ways of instantiating the non-interactive proofs
of knowledge Functionality 2.1, some of them heavily rely on the use of a
unique session identifier sid. Because this particular identifier isn’t needed
in the first round, we can run a session identifier agreement protocol, such
as [BLR04], in parallel with the first round. This improves the round
complexity of the concrete protocol as compared to sequential composi-
tion.

4.5 Complexity
The round complexity of our protocol is near-optimal, with only one ad-
ditional round to provide commitments to random inputs, which can be
omitted if the circuit doesn’t use them.

We also argue that the concrete complexity of our protocol compares favor-
ably with more specialized protocols. As noted before, the basic approach
of locally computing the homomorphisms matches the basic strategy of
specialized protocols. The overhead in our case comes from the additional
φ-proofs we need to include, as well as computing additional commitments
for the random inputs. Thankfully, these proofs are quite efficient. The cost
of each proof is dominated by that of computing φ along with 1 or 2 scalar
multiplications per input, to prove that the right inputs were used. While
more expensive than specialized protocols, this is nonetheless a manageable
amount of overhead for a generic protocol.

20



5 Applications
In this section, we describe several applications of our protocol, by pro-
viding concrete GRCs for various functionalities. We also compare the
complexity of our generic protocol, instantiated on these circuits, with spe-
cialized protocols computing the same functionality.

5.1 Distributed Key Generation
Distributed Key Generation (DKG) can be formulated in terms of group
reconstruction circuits. This allows us to create a DKG protocol where the
parties generate a common public key X, and where each party has a share
xi of the private key, such that

∑
i xi ·G = x ·G = X.

We can formulate this as a GRC by having x be considered a random
input to the protocol. Our circuit then consists of the single homomor-
phism:

φ(x) := x ·G

Concretely, the protocol works by having each party generate a random
share xi, and broadcasting a Pedersen commitment Ki. The parties then
send xi · G, along with a proof that this value matches the commitment
Ki sent previously. The parties implicitly learn xi through this process,
even though this output isn’t explicitly considered in the description of the
circuit.

5.2 Threshold Schnorr Signatures
We’ve described the Schnorr signature functionality as a GRC before, but
not yet in normalized form. In this form, our input consists of the private
signature key x, as well as the nonce k. We then have two homomor-
phisms:

φ1(x, k) := k ·G
φ2(K)(x, k) := k +H(K,m) · x

We can then instantiate our protocol with this circuit to get a threshold
signature scheme, assuming that some other distributed key generation
scheme is used. Given a threshold sharing of the private key x, we assume
that a quorum of parties can generate a linear sharing of x as x1 + . . . +
xn, along with public key shares Xi := xi · G. This assumption matches
the standard polynomial schemes used for threshold secret sharing, where
Lagrange interpolation is used to derive linear shares. Using these linear
shares, the parties then run our protocol to compute a signature.

21



The round complexity of this signing protocol matches that 3 round scheme
of Lindell [Lin22]. The only additional security assumption we make is the
hardness of the discrete logarithm in G, which makes our protocol relatively
conservative, as Lindell’s scheme purports to be. The concrete complexity
of our protocol is a bit higher, because of the extra proofs we need to
compute, and our use of Pedersen commitments.

Our protocol compares disfavorably against 2 round signing protocols such
as FROST [KG20], or MuSig2 [NRS21], which also have better concrete
complexity.

5.3 Threshold Encryption
We can create a threshold encryption scheme, by adapting ElGamal en-
cryption [ElG85]. In this scheme, the ciphertext contains a group element
R ∈ G, and the value x · R needs to be computed, using the private key
x ∈ Z/(q).

This can naturally be described as a GRC, with a single input x, and a
homomorphism:

φ1(x) := x ·R

Using the same key generation assumptions as for Schnorr signatures, we
get a threshold encryption scheme. A quorum decrypts a message by deriv-
ing linear shares x = x1+. . .+xn of the private key, along with commitments
Xi := xi · G, and then using our protocol to learn the value x · R, which
allows each party to decrypt the message. Our protocol also guarantees
that the output matches the public key X.

We can skip the initial round, since no random input is needed, making
our protocol only take a single round, which is optimal.

5.4 Polynomial Openings
The polynomial commitment scheme of Kate et al. [KZG10] provides an
efficient scheme for committing to a polynomial f ∈ Fq[X], as well as for
computing evaluation witnesses. These witness are short proofs that a
value f(z) corresponds to the evaluation of the committed polynomial f at
the point z.

We can capture both the commitment and evaluation procedures using the
formalism of GRCs. This gives us a protocol for computing a commitment
to a threshold-shared polynomial, as well as for evaluating that polynomial,
and creating a witness for that evaluation.

22



We recapitulate only the necessary details of these schemes, referring the
reader to the full paper by Kate et al. for the remaining details. The com-
mitment scheme assumes the existence of a trusted setup G0, . . . , Gt ∈ G,
satisfying a special relationship, and allowing commitments for polynomials
of degree t.

A commitment to a polynomial is computed as:

Com(f) :=
∑
i

fi ·Gi

with f0, . . . , ft denoting the coefficients of that polynomial.

An evaluation witness for f at the point z is computed by defining the
polynomial:

ψf (X) :=
f(X)− f(z)
(X − z)

and then computing the witness as Com(ψf ).

If we interpret polynomials f ∈ Fq[X] of degree t as vectors f ∈ Z/(q)(t+1),
then we realize that both of these functionalities are already GRCs. This
is because Com and f 7→ ψf are both homomorphisms with respect to the
vector f.

For Com this is evident. On the other hand, for calculating ψf , it’s not
immediately clear that this is homomorphic. First, note that polynomial
evaluation is homomorphic: f(z) + g(z) = (f + g)(z). Thus, f(X) − f(z)
is also homomorphic with respect of f . Finally, note that division by
a polynomial is also homomorphic. If f(X) = qf (X)p(x), and g(X) =
qg(X)p(X), then (f + g)(X) = (qf + qg)(X)p(X).

Thus, both functionalities consist of a single homomorphism on the input
vector, and are thus implementable as GRCs.

6 Limitations and Further Work
In this work, we presented the formalism of group reconstruction circuits
(GRC)s, as well as a simple protocol for computing them on secret shared
inputs in the malicious setting. We expect future work to expand upon
this formalism, and improve upon the protocol we’ve provided. In this
section, we suggest several potential improvements to our formalism and
the protocol we’ve described.

6.1 Intermediate Values
Functionality 4.1, which our protocol implements, has the side effect of
leaking the intermediate values V1

r, . . . ,Vn
r at each round, rather than just

23



their sum Vr :=
∑

i Vi
r. For functionalities like Schnorr signatures, this

doesn’t reveal information about the secrets, but this may not be the case
in general. A potential improvement would be to design a protocol such
that only the sum Vr is revealed in each round.

6.2 Aggregating Commitments
Our current protocol commits to vectors of values by using independent
commitments. An alternative would be to commit to the entire vector with
a single commitment. We would do this by using independent generators
G1, . . . , Gm, and then defining commitments as the following sum:

Com(y, α) := r ·H +
∑
i

yi ·Gi

Using these commitments have the advantage of a smaller communication
cost. The computation cost would be slightly improved as well, since we
have a single blinding factor α, rather than an entire vector.

Directly applying this change would be disadvantageous for sparse homo-
morphisms. Proofs would no longer be faster for such homomorphisms.
This is because the commitment now relies on the entire input vector, and
so our proofs would need to use the entire input, even if the homomorphism
for that round only used a small portion of that vector.

Further work might find a way to have the advantages of single element
commitments, while also mitigating the overhead for sparse homomor-
phisms.

6.3 Aggregating Proofs
Currently, our protocol requires verifying (n − 1) · d proofs: one for each
layer, and each other party. A natural improvement would be to try ag-
gregating these proofs, to reduce the cost of verifying them. This could
be done by combining the proofs of different parties in a given round, or
even combining proofs across different rounds. While φ-proofs have the
advantage of being simple and efficient, they’re not directly aggregatable,
nor are they concise. We conjecture that improvements on these fronts
might come from exploring other proof techniques.

6.4 Exploiting Circuit Structure
One advantage of the GRC formalism is that our protocol can be used
to implement a large number of functionalities. A disadvantage is that
the protocol is less efficient compared to protocols tailored to a specific

24



functionality. Further work might be able to close this gap by exploiting
specific patterns in circuits, while nonetheless remaining general.

If we look at the DKG protocol of Section 5.1, we include a proof that we
know xi and β such that xi · G = Xi and xi · G + β ·H = Ki. We do this
via a φ-proof, but in this specific case, we could more efficiently prove this
by simply revealing β. There’s no need to hide xi · G in this case, since
the other parties learn this anyways. This pattern could be exploited more
generally as well.

As another example, if we look at the Schnorr signature protocol we end
up with in Section 5.2, we include a proof that the partial signature si :=
ki +H(K,m) · xi was computed correctly. This proof is in fact redundant,
because it suffices to verify the final signature computed by the protocol
is valid. This is another repeatable pattern, wherein many functionalities
are self-verifying, to a certain extent, in the sense that the output already
has some means of validation. Further work could try and more precisely
quantify what this property means, and to what extent it can replace the
use of proofs inside the protocol.

6.5 Threshold Interpretations
One limitation of our current semantics for GRCs is that we require the
inputs to have a linear secret sharing. It might be interesting to explore
an alternative interpretation in which we work directly with inputs using
a threshold secret sharing, throughout the entire protocol.

For example, in our DKG protocol, we produce linear shares of the pub-
lic key. Most applications would rather have a threshold secret sharing
instead. Instead of interpreting the random nodes in our GRC by having
each party generate their own linear share, we could instead use a verifiable
secret sharing (VSS) protocol, such as [Fel87], and create a threshold secret
sharing of this random value. Applying this to the DKG circuit, we would
get a protocol directly usable for generating keys for threshold encryption
or signing.

This alternative interpretation could also be useful for signing or encryption
as well, in order to create a more robust protocol. If we take Schnorr
signatures as an example, our current protocol takes the approach of first
having the quorum of signers derive a linear secret sharing of the secret,
and then having the entire quorum interact throughout the remainder of
the protocol. The disadvantage of this approach is that we can’t tolerate
any failures from the signers after the start of the protocol, even if more
than a threshold remain. In contrast, the protocol of Stinson et al. [SS01],
can continue as long as at least a threshold of signers remains, tolerating

25



failures. It does this by using threshold secret sharings for every value,
which ensures that the parties will be able to reconstruct the final signature,
provided at least a threshold remains by the end of the execution. Using a
threshold interpretation of GRCs would bring this kind of robustness to a
variety of different functionalities.

7 Conclusion
In this work, we generalized various functionalities, including signatures,
encryption, and polynomial commitments, under the novel formalism of
group reconstruction circuits (GRC)s.

We then constructed an efficient MPC protocol to compute these circuits
on secret shared inputs, and proved it to be UC secure against malicious
adversaries.

This construction immediately yields UC secure protocols for threshold
Schnorr signatures, ElGamal encryption, and polynomial commitments.

While we’ve given a handful of examples of how GRCs can be used in
this work, we hope that they might prove useful for other functionalities,
given their generality. Hopefully, further work can improve on the simple
protocol we’ve constructed in this work, further closing the gap between
functionality-specific and generic protocols.

References
[BDF+15] Thomas Baignères, Cécile Delerablée, Matthieu Finiasz, Louis

Goubin, Tancrède Lepoint, and Matthieu Rivain. Trap Me If You
Can – Million Dollar Curve. 2015.

[BLR04] Boaz Barak, Yehuda Lindell, and Tal Rabin. Protocol Initialization
for the Framework of Universal Composability. 2004.

[Can01] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In Proceedings 42nd IEEE Symposium on
Foundations of Computer Science, pages 136–145. IEEE, 2001.

[CCL15] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A Simpler Variant of
Universally Composable Security for Standard Multiparty Computa-
tion. In CRYPTO 2015, volume 9216, pages 3–22. Springer, Berlin,
Heidelberg, 2015.

[Dam02] Ivan Damgård. On Σ-protocols. 2002.

26



[Des88] Yvo Desmedt. Society and Group Oriented Cryptography: a New
Concept. In CRYPTO ’87, LNCS, pages 120–127, Berlin, Heidelberg,
1988. Springer.

[DF90] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In
CRYPTO ’89, LNCS, pages 307–315, New York, NY, 1990. Springer.

[ElG85] Taher ElGamal. A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms. In CRYPTO ’84, LNCS, pages 10–18,
Berlin, Heidelberg, 1985. Springer.

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret
sharing. pages 427–438, Los Angeles, CA, USA, October 1987. IEEE.

[FIP11] Michael J. Fischer, Michaela Iorga, and René Peralta. A public ran-
domness service. pages 434–438, July 2011.

[Fis05] Marc Fischlin. Communication-Efficient Non-interactive Proofs of
Knowledge with Online Extractors. In CRYPTO 2005, volume 3621
of LNCS, pages 152–168. Springer, Berlin, Heidelberg, 2005.

[FS06] Amos Fiat and Adi Shamir. How To Prove Yourself: Practical So-
lutions to Identification and Signature Problems. In CRYPTO ’86,
volume 263 of LNCS, pages 186–194. Springer, Berlin, Heidelberg,
2006.

[GL05] Shafi Goldwasser and Yehuda Lindell. Secure Multi-Party Computa-
tion without Agreement. Journal of Cryptology, 18(3):247–287, July
2005.

[Ica09] Thomas Icart. How to Hash into Elliptic Curves. In CRYPTO 2009,
volume 5677 of LNCS, pages 303–316. Springer, Berlin, Heidelberg,
2009.

[KG20] Chelsea Komlo and Ian Goldberg. FROST: Flexible Round-
Optimized Schnorr Threshold Signatures. Cryptology ePrint Archive,
2020.

[KLR09] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-
Theoretically Secure Protocols and Security Under Composition.
2009.

[KS11] Stephan Krenn and Victor Shoup. A Framework for Practical Univer-
sally Composable Zero-Knowledge Protocols. In ASIACRYPT 2011,
volume 7073 of LNCS, pages 449–467. Springer, Berlin, Heidelberg,
2011.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-
Size Commitments to Polynomials and Their Applications. In ASI-
ACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer,
Berlin, Heidelberg, 2010.

27



[KZM+15] Ahmed Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, T-H Hu-
bert Chan, Charalampos Papamanthou, Rafael Pass, and Elaine
Shi. C∅C∅: A Framework for Building Composable Zero-Knowledge
Proofs. 2015.

[Lin22] Yehuda Lindell. Simple Three-Round Multiparty Schnorr Signing
with Full Simulatability. Cryptology ePrint Archive, 2022.

[LR22] Anna Lysyanskaya and Leah Namisa Rosenbloom. Universally Com-
posable Σ-protocols in the Global Random-Oracle Model. 2022.

[Mau09] Ueli Maurer. Unifying Zero-Knowledge Proofs of Knowledge. In
AFRICACRYPT 2009, volume 5580 of LNCS, pages 272–286.
Springer, Berlin, Heidelberg, 2009.

[NRS21] Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2: Simple Two-
Round Schnorr Multi-signatures. In CRYPTO 2021, volume 12825
of LNCS, pages 189–221. Springer, 2021.

[Ped92] Torben Pryds Pedersen. Non-Interactive and Information-Theoretic
Secure Verifiable Secret Sharing. In CRYPTO 91, volume 576 of
LNCS, pages 129–140. Springer, Berlin, Heidelberg, 1992.

[Sch90] C. P. Schnorr. Efficient Identification and Signatures for Smart
Cards. In CRYPTO 1989, volume 435 of LNCS, pages 239–252,
New York, NY, 1990. Springer.

[SG01] Victor Shoup and Rosario Gennaro. Securing Threshold Cryptosys-
tems against Chosen Ciphertext Attack. 2001.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[SS01] Douglas R. Stinson and Reto Strobl. Provably Secure Distributed
Schnorr Signatures and a (t, n) Threshold Scheme for Implicit Cer-
tificates. In ACISP 2001, LNCS, pages 417–434, Berlin, Heidelberg,
2001. Springer.

28


	Introduction
	Background
	Pedersen Commitments
	Vector Pedersen Commitments
	On the Trusted Setup

	Maurer's varphi-Proof
	Ideal Functionalities for Sigma Protocols
	UC Secure ZK Proofs of Knowledge
	Session Bound Fiat-Shamir

	Broadcast Functionalities

	Group Reconstruction Circuits
	Formal Definition
	Normalized Form

	MPC Protocol for GRCs
	Ideal Functionality
	Protocol
	Security Analysis
	Identifiable Abort

	Practical Considerations
	Sparse Proofs
	Removing Random Commitments
	Parallel Echos
	Parallel sid

	Complexity

	Applications
	Distributed Key Generation
	Threshold Schnorr Signatures
	Threshold Encryption
	Polynomial Openings

	Limitations and Further Work
	Intermediate Values
	Aggregating Commitments
	Aggregating Proofs
	Exploiting Circuit Structure
	Threshold Interpretations

	Conclusion

