Lattice-based Interactive Zero-Knowledge without Aborts

Xavier Arnal¹, Tamara Finogina², and Javier Herranz¹

¹ Dept. Matemàtiques, Universitat Politècnica de Catalunya
Barcelona, Spain
xavier.arnal@upc.edu, javier.herranz@upc.edu

² Scytl Election Technologies
Barcelona, Spain
tamara.finogina@scytl.com

Abstract. Interactive zero-knowledge systems are a very important cryptographic primitive, used in many applications, especially when non-transferability is desired. In the setting of lattice-based cryptography, the currently most efficient interactive zero-knowledge systems employ the technique of rejection sampling, which implies that the interaction does not always finish correctly in the first execution; the whole interaction must be re-run until abort does not happen. While aborts and repetitions are acceptable in theory, in some practical applications of such interactive systems it is desirable to avoid re-runs, for usability reasons. In this work, we present a generic transformation that departs from an interactive zero-knowledge system (maybe with aborts) and obtains a 3-moves zero-knowledge system (without aborts). The transformation combines the well-known Fiat-Shamir technique with a couple of initially exchanged messages. The resulting 3-moves system enjoys (honest-verifier) zero-knowledge and soundness, in the random oracle model. We finish the work by showing some practical scenarios where our transformation can be useful.

1 Introduction

Traditional cryptography is based on the hardness of number-theoretic assumptions that, unfortunately, are solvable by quantum computers. Therefore, switching to post-quantum cryptography is a necessity. A promising source of post-quantum hardness is the shortest vector problem in lattices [2]. Common examples of such problems are the learning with errors (LWE) problem and the short integer solution (SIS) problem.

Interactive zero-knowledge systems are a basic but extremely useful cryptographic primitive. One of the most famous examples is canonical identification protocols, such as the one by Schnorr [26], where a prover convinces a verifier that it knows the discrete logarithm of some public element of a cyclic group.
However, a direct translation of the Schnorr identification protocol to the lattice-based settings is challenging. The security of LWE and SIS requires that the solution not only have a specific structure but also be small. Thus, a masking term has to be small, but that unavoidably leaks parts of the secret.

A solution to this problem was proposed by Lyubashevsky in [18]. He proposed the smart idea of a (possibly) aborting prover, using rejection sampling to ensure that the answer’s distribution is independent of the secret. The rejection sampling allowed to ensure correctness and security and led to many fundamental cryptographic constructions: canonical identification (CID) and signatures (e.g. [18]), zero-knowledge proofs (e.g. [20]), blind signatures (e.g. BLAZE+ [4]), and others. The main downside of the idea is the possibility of multiple protocol repetitions; this is not actually a problem if the interactive zero-knowledge system is going to be transformed into a non-interactive one, via for instance the Fiat-Shamir transformation [14], as it is the case in standard, ring or group signatures.

But in some other applications, for instance, when the non-transferability property is desired, the protocol must remain interactive and, therein, the presence of aborts and repetitions may be very undesirable: real people running these protocols usually expect to interact only once and always receive the (correct) result of this interaction.

Behnia et. al. [7] studied rejection conditions in Lyubashevsky’s CID scheme and found a way to remove one of the two conditions. However, they concluded that full elimination of rejection sampling is problematic.

One of the simplest methods to ensure the protocol terminates after a fixed number of repetitions $M \geq 2$ (with a high probability) is to use a large enough distribution over Z. However, this comes at the cost of increased execution time and proof size.

Another well-known method to decrease the probability of aborts is parallel repetition. Prover starts N independent instances of the protocol and sends N commitments to the verifier, replying only with the first proof that did not cause an abort. While this increases the probability of successful protocol termination, it significantly increases communication and computational complexity (by a factor of N) and does not eliminate completely the probability of aborts.

An improvement over parallel repetition — a generic construction for reducing aborts in 3-moves protocols — was proposed in [4]. This construction builds on top of the idea of ℓ parallel repetitions and uses
(unbalanced) binary hash trees to reduce the size of the first answer, from ℓ-commitments to a tree root.

However, so far there is no efficient way to completely eliminate aborts in general lattice-based interactive protocols. A notable exception is [9], a zero-knowledge system for proving knowledge of Learning With Errors (LWE) pre-images; it uses ideas from probabilistically checkable proofs (PCPs) and interactive oracle proofs (IOPs), cleverly combined with lattice-based algebraic techniques. The resulting systems do not involve aborts. In contrast, they are more efficient than other general lattice-based systems (with aborts) only for some specific settings, for instance when proving at the same time knowledge of a lot of LWE pre-images with the same matrix A.

1.1 Our Contribution

In this work, we show a quite simple way (in the random oracle model) to eliminate aborts from interactive lattice-based zero-knowledge systems. We demonstrate the security and effectiveness of our construction and its applicability to a wide class of protocols.

The general idea of the transformation is to apply the Fiat-Shamir transformation to the original system Π, combined with an initial message by the prover; the challenges of the non-interactive Fiat-Shamir version of Π will not be simply the outputs of the hash functions (as in Fiat-Shamir), but a combination (a sort of trapdoor commitment) of these outputs with the values sent by the prover in the initial message. This allows us to prove that the resulting 3-moves protocol enjoys the honest-verifier zero-knowledge property.

1.2 Illustrating Our Technique

We show how to eliminate aborts using the lattice-based CID scheme [18] as an example (see Fig. 1). First, we briefly recall the CID scheme and then show how to apply our transformation.

Let A be a public matrix selected uniformly at random from $\mathbb{Z}_{q}^{n \times m}$. The prover P would like to prove the knowledge of a secret matrix $S \in \mathbb{Z}^{m \times n}$ with small entries such that $B = A \cdot S \pmod{q}$, where $B \in \mathbb{Z}_{q}^{n \times n}$ is also public. To do so, P samples a fresh masking vector y from χ, where χ is some distribution over \mathbb{Z} (the discrete Gaussian over \mathbb{Z} or the uniform over a small subset of \mathbb{Z}). Then it sends commitment $v = A \cdot y \pmod{q}$ to the verifier V. The V picks a random challenge from the challenge space $C = \{ (c_1, \ldots, c_n) \in \mathbb{Z}^n : c_i \in \{-1,0,1\}, \sum_{i=1}^{n} |c_i| = \kappa \}$.
The P returns response $z = y + c \cdot S$ to the challenge only if rejection sampling algorithm $\text{RejSampl}(z)$ does not abort. The protocol is repeated by sampling a fresh y until RejSampl accepts. The verifier V accepts if and only if $v = A \cdot z - B \cdot c \pmod{q}$ and $||z||_p$ is smaller than a pre-defined bound B, where $p \in \{2, \infty\}$ depending on the distribution χ.

In our construction, a proof is generated non-interactively (via the Fiat-Shamir transformation) and turned back into an interactive one with the help of a very simple trapdoor commitment:

1. To prove a statement st, P samples a value $r \in \{0, 1\}^\ell$ at random and sends it to the verifier V.
2. V sends to P a random challenge $\gamma \in \{0, 1\}^\ell$.
3. P runs a non-interactive version of the CID scheme (if necessary, re-running it until abort does not happen) to get a typical proof (com, e, z); but the challenge e is defined as $e = H_1(r \oplus H(st, \text{com}, \gamma))$ instead of the usual $H(st, \text{com})$ in the Fiat-Shamir transformation.

Fig. 1 gives an example of non-aborting CID scheme. Note that in case of aborting, a fresh y is sampled and the process is repeated until $\text{RejSampl}(z)$ accepts, ensuring z is statistically indistinguishable from $e \cdot S$.

Intuitively, we see that security is inherited from the non-interactive version of the protocol. On the one hand, P commits to r prior to receiving the verifier’s challenge γ, thus it cannot manipulate the non-interactive challenge e. Therefore the resulting proof behaves as a standard non-interactive version of the initial (interactive) protocol. On the other hand, thanks to the use of the simple trapdoor commitment, anyone can generate a simulated transcript that is indistinguishable from the real one.

In the protocol described in Fig. 1, $H : \{0, 1\}^* \rightarrow \{0, 1\}^\ell$ and $H_1 : \{0, 1\}^\ell \rightarrow \mathcal{C}$ denote two hash functions and \oplus denotes component-wise XOR operation between two strings of ℓ bits.

2 Preliminaries: (Public Coin) Interactive Proofs

Let $\mathcal{R} \subset \{0, 1\}^* \times \{0, 1\}^*$ be a binary relation. If a pair $(x, w) \in \mathcal{R}$, we call x an statement and w a witness for x. The relation is an NP-relation if, given (x, w), one can decide in polynomial time if $(x, w) \in \mathcal{R}$ or not. Such a relation \mathcal{R} gives rise to the set of “yes”-instances defined as $\mathcal{L}_\mathcal{R} = \{x \in \mathcal{X} \mid \exists w \in \mathcal{W} \text{ s.t. } (x, w) \in \mathcal{R}\}$, known as the language of \mathcal{R}. The set of witnesses for a valid statement $x \in \mathcal{L}_\mathcal{R}$ is denoted as $\mathcal{R}(x)$.
Interactive Proofs. An interactive proof system Π for relation R is an interactive protocol between two probabilistic polynomial-time (PPT) algorithms, the prover P and the verifier V. The common input of the two parties is a statement x, whereas P has as an additional input a witness $w \in R(x)$. We thus denote an execution of such a protocol as $\langle P(y), V(x) \rangle_\Sigma$. The final output of the protocol is a bit — 1 if V accepts, 0 otherwise. The set of messages exchanged during the execution of Π is called an (accepting or rejecting) transcript.

We will consider in this work a specific but very common type of interactive proof systems: those where the first and last messages are sent by P, leading to $(2\mu + 1)$ rounds of communication, for some integer $\mu \geq 1$. We will be considering public coin systems: all the random choices of V are made public during the execution of Π. This is equivalent to say that the $2i$-th message of the protocol, sent by V to P, is a random element $c_i \leftarrow_R C_i$, called a challenge, taken from some challenge space(s) C_i.

The first property that must be required to such an interactive system is δ-completeness: if $(x, w) \in R$ then it holds $Pr[(P(x, w), V(x))_\Pi = 1] = 1 - \delta$.

Zero-Knowledge. A public coin interactive protocol Π as above enjoys the honest-verifier zero-knowledge (HVZK) property if there exists a PPT algorithm M_Π such that, for any $(x, w) \in R$, on input x and μ challenge val-
ues c_1, \ldots, c_μ with $c_i \in C_i$, outputs an accepting transcript with the same distribution as the one produced by an execution of $\langle \mathcal{P}(x, w), \mathcal{V}(x) \rangle_\Pi$ run with a honest verifier \mathcal{V} that has chosen those challenges $c_i \leftarrow_R C_i$, for $i = 1, \ldots, \mu$.

A stronger notion is full zero-knowledge, which requires that, for every verifier \mathcal{V}^* there exists a PPT simulator $M_{\mathcal{V}^*}$ such that for every $(x, w) \in \mathcal{R}$ the output $\langle \mathcal{P}(x, w), \mathcal{V}^*(x) \rangle_\Pi$ is identically distributed to the output $M_{\mathcal{V}^*}(x)$. This property can be relaxed requiring that the outputs only be statistically or computationally indistinguishable.

(Knowledge) Soundness. A protocol Π has the ϵ-soundness property if, for any $x \notin \mathcal{L}_\mathcal{R}$, it holds $Pr[\langle \mathcal{P}(x), \mathcal{V}(y) \rangle_\Pi = 1] \leq \epsilon$.

There is a stronger version of soundness — that of knowledge soundness. A protocol Π enjoys knowledge soundness with knowledge error $\kappa : \mathbb{N} \rightarrow [0,1]$ if there exist a positive polynomial $q(\cdot)$ and algorithm K, such that for every prover \mathcal{P}^* and $x \in \mathcal{L}_\mathcal{R}$, the extractor K, on input x, with black-box oracle access to \mathcal{P}^* and within an expected number of steps polynomial in $|x|$, outputs a witness $w \in R(x)$ with probability at least

$$\frac{Pr[\langle \mathcal{P}(x, w), \mathcal{V}(x) \rangle_\Pi = 1] - \kappa(|x|)}{q(|x|)}$$

3 The Transformation

Let $\Pi = \langle \mathcal{P}(x, \omega), \mathcal{V}(x) \rangle_\Pi$ be a public coin $(2\mu + 1)$-rounds interactive proof system for language $\mathcal{L}_\mathcal{R}$. We denote as a_i the message sent by \mathcal{P} to \mathcal{V} in round $2i - 1$, for $i = 1, \ldots, \mu$, and as z the last message sent by \mathcal{P} in round $2\mu + 1$. The message sent by \mathcal{V} in round $2i$ is a random challenge $c_i \in C_i$, for some challenge space C_i, for $i = 1, \ldots, \mu$.

Let us consider $1 + \mu$ hash functions: on the one hand $H : \{0,1\}^* \rightarrow \{0,1\}^\ell$ and on the other hand $H_i : \{0,1\}^\ell \rightarrow C_i$, for $i = 1, \ldots, \mu$.

We construct a 3-rounds interactive proof system $\Sigma = \langle \mathcal{P}(x, w), \mathcal{V}(x) \rangle_\Sigma$ for the same language $\mathcal{L}_\mathcal{R}$, as follows.

1. For $i = 1, \ldots, \mu$, \mathcal{P} chooses $r_i \in \{0,1\}^\ell$ uniformly at random. These values r_1, \ldots, r_μ are sent to \mathcal{V}.
2. \mathcal{V} chooses a challenge $\gamma \in \{0,1\}^\ell$ uniformly at random and sends it to \mathcal{P}.
3. \mathcal{P} runs an execution of the system Π by using inputs (x, ω), and playing also the role of the verifier, by defining the challenges as $c_i = H_i(r_i \oplus h_i)$, where $h_i = H(x, a_1, \ldots, a_i, c_1, \ldots, c_{i-1}, \gamma)$, for $i = 1, \ldots, \mu$.

The resulting transcript $(a_1, a_2, \ldots, a_\mu, z)$ is sent by \mathcal{P} to \mathcal{V}.

\(\mathcal{V} \) accepts the interaction as valid if
\((a_1, c_1, a_2, c_2, \ldots, a_{\mu}, c_{\mu}, z) \) is an accepting transcript for \(\Pi \) with input \(x \), where
\(c_i = H_i(r_i \oplus h_i) \) and
\(h_i = H(x, a_1, \ldots, a_i, c_1, \ldots, c_{i-1}, \gamma) \), for \(i = 1, \ldots, \mu \).

3.1 Security Analysis

The completeness property of \(\Sigma \) is trivially satisfied, assuming the interactive system \(\Pi \) enjoys completeness. In the next sections we show how the zero-knowledge and soundness properties of \(\Pi \) are also inherited by \(\Sigma \).

Zero-Knowledge

Proposition 1. Assuming \(\Pi \) enjoys the honest-verifier zero-knowledge (HVZK) property, then the new interactive system \(\Sigma \) also enjoys the HVZK property.

Proof. The goal is to show that, for any \((x, w) \in L_R \), a simulator algorithm \(M_\Sigma \) can, on input \(x \) and any (honest) random challenge \(\gamma \in \{0,1\}^\ell \), produce transcripts \((r_1, \ldots, r_\mu, \gamma, a_1, \ldots, a_\mu, z) \) indistinguishable from those produced by an execution of \(\langle P(x, w), V(x) \rangle_\Sigma \) with a honest verifier \(V \) which takes that \(\gamma \) uniformly at random in \(\{0,1\}^\ell \).

By hypothesis, there is a simulator \(M_\Pi \) for \(\Pi \). What the simulator \(M_\Sigma \) does first is to choose uniformly at random \(\mu \) values \(v_1, \ldots, v_\mu \in \{0,1\}^\ell \) and to compute \(c_i = H_i(v_i) \) for \(i = 1, \ldots, \mu \). Then \(M_\Pi \) runs simulator \(M_\Sigma \) with input \(x \) and challenges \(c_1, \ldots, c_\mu \), which results in an accepting transcript \((a_1, c_1, a_2, c_2, \ldots, a_\mu, c_\mu, z) \), indistinguishable from those produced by \(\langle P(x, w), V(x) \rangle_\Pi \). After that \(M_\Sigma \) computes the values \(h_i = H_i(x, a_1, \ldots, a_i, c_1, \ldots, c_{i-1}, \gamma) \) and \(r_i = v_i \oplus h_i \), for \(i = 1, \ldots, \mu \).

It is easy to check that the transcript has the same distribution as those produced in a real execution of \(\langle P(x, w), V(x) \rangle_\Sigma \) where \(\gamma \) is the challenge chosen by the honest verifier.

In the random oracle model for hash functions \(H_i \), the values \(c_i = H_i(v_i) \) generated by \(M_\Sigma \) and given as inputs to \(M_\Pi \) are random and uniform elements in \(C_i \). \(\square \)

Soundness

Proposition 2. Assuming \(\Pi \) has \(\epsilon \)-soundness and if \(\ell \) is big enough, then the new interactive system \(\Sigma \) has the \(\epsilon' \)-soundness, in the (classical) Random Oracle Model, where \(\epsilon' \leq \epsilon \cdot Q^\mu \) and \(Q \) is an upper bound on the number of hash queries that a prover of \(\Sigma \) can make.
Proof. The proof of this result works in a similar way as the well-known (in its naive, non-optimized version) proof that the Fiat-Shamir transformation of a public-coin interactive system with soundness results in a secure non-interactive system: the idea is to rewind the adversary several (in our case, μ times), by fixing the randomness and the answers to the hash queries up to a specific point, and then to use the Forking Lemma [24] to ensure that, with non-negligible probability, all the instances of the adversary will lead to forgeries with the desired outputs (that have been fixed in the rewrites).

First of all, if ℓ is big enough, then the probability $2^{-\ell}$ of breaking soundness by guessing the challenge $\gamma \in \{0,1\}^\ell$ is negligible. In that setting, let us assume that Σ still does not have ϵ'-soundness. Thus, there exists a prover P_{Σ} that is accepted with probability $> \epsilon'$, when run with some instance $x' \not\in \mathcal{L}_R$. We are going to construct a prover P_{Π} against the soundness of Π, running thus with the same $x' \not\in \mathcal{L}_R$.

As its first instruction, P_{Π} starts running P_{Σ}, which sends its first message (r_1,\ldots,r_μ). Now P_{Π} chooses at random $\gamma \in \{0,1\}^\ell$ and sends it to P_{Σ}. We remark that (r_1,\ldots,r_μ) and γ are going to be fixed for all the calls that P_{Π} makes to P_{Σ}. In this first call, P_{Σ} gives its final answer $(a^{(1)}_1,\ldots,a^{(1)}_{\mu},z^{(1)})$, which is valid with probability $\geq \epsilon'$.

During this and the other executions of P_{Σ}, our new prover P_{Π} has to answer the hash queries made by P_{Σ}. This is done in the usual way, by keeping track of all previous queries, selecting a random output for new queries, storing the (input,output) relations in a table, etc. With overwhelming probability, a successful prover P_{Σ} will have made all the key queries $h_i \leftarrow H(x',a^{(1)}_1,\ldots,a^{(1)}_i,c^{(1)}_1,\ldots,c^{(1)}_{i-1},\gamma)$ and $H_i(r_i + h_i)$, for $i = 1,\ldots,\mu$.

After the first execution, P_{Π} sends the value $a^{(1)}_1$ to its verifier V_{Π}, which then sends a challenge c_1. With overwhelming probability, it will be the case that $c_1 \neq H_1(r_1 \oplus h_1)$. What P_{Π} does now is to rewind: it starts a new running of P_{Σ}, with the same random tape and the same answers to the hash queries, up to the point where the query $H_1(r_1 \oplus h_1)$ is made; this time, the answer to this query is defined as c_1. The Forking Lemma ensures that, with non-negligible probability, this second execution of P_{Σ} will produce a valid transcript $(a^{(1)}_1,a^{(2)}_2,\ldots,a^{(2)}_\mu,z^{(2)})$ with the same value $a^{(1)}_1$ as in the first execution (because, with overwhelming probability, the value $a^{(1)}_1$ had been queried to hash oracle H to produce h_1, before the key query $H_1(r_1 \oplus h_1)$ was made). At this point, P_{Π} sends the value $a^{(2)}_2$ to its verifier V_{Π}, which then sends a challenge c_2.
The same rewind argument is done again, with the same random tape and hash answers as in the second execution, but now defining \(H_2(r_2 \oplus h_2) \) to be \(c_2 \). Again with overwhelming probability this query, which depends on \(h_2 \) which depends on \(c_1 \), must have been made after the query \(H_1(r_1 \oplus h_1) \), which is again answered as \(c_1 \). With non-negligible probability, this third execution of \(P_\Sigma \) produces a valid transcript \((a_1^{(1)}, a_2^{(2)}, a_3^{(3)}, \ldots, a_{\mu}^{(\mu)}, z^{(3)})\).

Repeating this argument \(\mu \) times, letting \(P_\Pi \) send \(a_i^{(i)} \) to its verifier \(V_\Pi \) in round \(i \), getting \(c_i \) as answer and rewinding \(P_\Sigma \) accordingly, at the end we eventually finish, after \(\mu + 1 \) executions of \(P_\Sigma \), with a valid transcript \((a_1^{(1)}, a_2^{(2)}, a_3^{(3)}, \ldots, a_\mu^{(\mu)}, z^{(\mu+1)})\) satisfying \(c_i = H_i(r_i \oplus h_i) \), where \(h_i = H_i(x', a_1^{(1)}, \ldots, a_i^{(i)}, c_1, \ldots, c_{i-1}, \gamma) \). Thus, our \(P_\Pi \) has convinced its verifier \(V_\Pi \) with non-negligible probability \(\epsilon \). By the iterated use of the Forking Lemma, the relation between \(\epsilon \) and \(\epsilon' \) is essentially \(\epsilon \approx \frac{\epsilon'}{Q^\mu} \).

3.2 Extensions

- The three-rounds protocol \(\Sigma \) that results from our transformation has honest-verifier zero-knowledge. Full zero-knowledge can be obtained by using well-known techniques. For instance, by adding one round of communication at the beginning, where the verifier commits to the challenge \(\gamma \) that is going to be sent later.
- The same idea as in the proof for soundness can be applied to prove that knowledge soundness of \(II \) implies knowledge soundness of \(\Sigma \).
- The soundness property of \(\Sigma \) is obtained in the classical Random Oracle Model. If one wants to achieve soundness in the Quantum Random Oracle Model, then one can use alternative transformations to Fiat-Shamir, either generic \([29, 11]\) or specific for lattice-based systems \([17]\), that have been proposed in the last years.
- The naive reduction in our proof for the soundness property implies a loss factor \(Q^\mu \) which is exponential in the number of rounds of \(II \). This problem can be solved by using the results in \([5]\), whenever the starting protocol \(II \) enjoys \((k_1, \ldots, k_\mu)\)-special soundness. We stress that most (if not all) popular interactive systems \(II \) enjoy this property, including lattice-based ones.
- If the challenge spaces \(C_i \) of the interactive protocol \(II \) are closed spaces for some mathematical operation (that we denote for simplicity as \(+\)), then a small modification to our construction is possible, basically choosing \(r_i \leftarrow_R C_i \) and then defining \(c_i = r_i + h_i \), where \(h_i = H_i(x, a_1, \ldots, a_i, h_1, \ldots, h_{i-1}, \gamma) \), being now \(H_i : \{0, 1\}^* \rightarrow C_i \).
With this modification, the random oracle model assumption is not needed in the proof of the honest-verifier zero-knowledge property. This situation happens for instance when Π is the protocol in [30]: the challenge space contains integers modulo a prime p.

4 Applications

The transformation proposed in the previous section is useful in settings where a lattice-based interactive zero-knowledge protocol is mandatory, or for some reason preferable to a non-interactive protocol. In such a situation, the most efficient existing protocols Π involve rejection sampling and thus aborts [10, 13, 30, 12, 21, 20]. Our transformation results in a 3-round protocol Σ without aborts, at the cost of relying on the Random Oracle Model to achieve provable security.

We give below three specific examples of situations where such interactive protocols are used. After that, we discuss other situations where our result in the previous section does not seem applicable.

4.1 Canonical Identification Schemes

Canonical Identification (CID) schemes are three round public coin protocols in which a prover (who sends the first and third messages) proves knowledge of the secret key matching a specific public key. The second message, sent by the verifier, is a random challenge.

Although these schemes are often used as building blocks to design other cryptographic protocols (in particular, signature schemes, with no interaction between the signer and the verifier), they can be used on their own: for instance, in access control systems where the user trying to get access proves to the access entity (the verifier, in this context) that he owns the secret key which matches a public key of some authorized user. If the users want their access to remain private, a solution can be to run a CID scheme, so that the transcript is non-transferable and the (possibly dishonest) access entity cannot prove to someone else that a user got access to the system. An example of the use of such non-transferable identification schemes can be found in [8].

CID schemes are one of the examples considered in the work [4] to motivate their use of trees of commitments, in order to reduce the abort probability of lattice-based interactive zero-knowledge systems. They use Lyubashevsky’s identification protocol [18] (recalled in the Section 1.2 of this work) as an illustrative lattice-based CID scheme. Therein, the
probability of aborting in a single execution of the protocol is \(\approx 1 - \frac{1}{M} \),
where \(M = \exp \left(\frac{12}{\alpha} + \frac{1}{2\alpha^2} \right) \), being \(\alpha \) a lattice parameter that affects the size of the standard deviation \(\sigma \) used to sample the underlying Gaussian distribution: \(\alpha = T\alpha \).

There are basically four options\(^3\) if one wants to be sure that the identification protocol will finish with overwhelming probability \(p_{sc} \) in three rounds of communication (that is, without forcing the verifier to send more than one message):

1. keep the typically proposed parameters for \(\alpha, \sigma \), and repeat the protocol, in parallel, at least \(M \) times. Here the choice of \(\alpha \) will depend on the desired probability \(p_{sc} \). The \(M \) repetitions imply that the global communication contains \(M \) vectors in the ring \((R_q)^k\);
2. run a single execution of the protocol, but with highly increased parameters \(\alpha, \sigma \) so that \(M \) is very close to one;
3. keep the typical values for \(\alpha, \sigma \) and apply the tree of commitments technique introduced in [4], which increases the computational complexity of the prover by a factor \(\ell \) and the communication complexity by \(\log(\ell) \) hash values, where \(\ell \) (the number of leaves in the tree) depends on \(\alpha, p_{sc} \);
4. apply our transformation to Lyubashevsky’s CID scheme, which results in a protocol that always succeeds; the communication complexity of the protocol is almost the same as in the original CID scheme, whereas the computational cost for the prover is essentially the same as in options 1, 2, and 3 above.

Note that option 4 is the only one that ensures that the protocol will always finish successfully. The other advantage of option 4 over the three first options is, of course, its communication complexity. On the negative side, option 4 is the only one that needs the heuristic Random Oracle Model to have provable security.

Some specific values given in Section 3 of [4] are as follows, for \(p_{sc} = 1 - 2^{-10} \): option 1 could have \(\alpha = 11 \) and \(M \approx 3 \), option 2 should have \(\alpha > 2^{13.6} \) and option 3 could have \(\alpha = 23 \) and \(\ell = 8 \) or alternatively \(\alpha = 12 \) and \(\ell = 16 \).

For higher values of \(p_{sc} \), parameters in options 1,2,3 must be increased even more. As an example, authors of [4] show that \(\alpha = 42 \) and \(\ell = 64 \) are needed for \(p_{sc} = 1 - 2^{-128} \).

\(^3\) We stress that the abort-free protocol in [9] is not really suitable for this setting, in terms of efficiency.
4.2 Non-Transferable Signatures

In some kinds of signature schemes that have been introduced in the last decades, the validity of the signature is not universally verifiable as it happens in standard signatures. In contrast, the signer puts some limit on the user(s) who can verify a signature, and also on the capability to transfer this conviction to other users. Examples of this kind of signature schemes are designated verifier signatures, directed signatures, nominative signatures, undeniable signatures, and designated confirmer signatures.

Some of them are aggregated under the name of on-line non-transferable signatures [27]. In such schemes, the signing algorithm is run by the signer, but then there are interactive protocols, Confirm and Disavow, run by both the signer and the verifier, which confirm the verifier of the validity or invalidity of a signature. The verifier cannot convince anybody else of any of these facts. Applications of these kinds of signatures include machine-readable travel documents and identity documents like e-Passports [23, 6].

The interaction between signer and verifier typically involves a three-rounds zero-knowledge system. If one intends to design such schemes in a lattice-based setting, thus, our result in this paper can be directly used as an ingredient of such designs, so that the interaction between signer and verifier needs to be run only once, without the verifier noticing the presence of aborts and without (parallel) repetitions.

As a particular example, the first (and maybe only) secure lattice-based undeniable signature scheme is the one in [25]. The confirmation and disavowal protocols of the scheme are designed by using Stern’s techniques [28]: a dishonest prover is accepted with probability 2/3 (soundness error), which means the protocols must be run a large number of times to achieve real soundness. Our techniques, combined with some suitable and efficient lattice-based zero-knowledge system Π for the languages involved in those confirmation / disavowal protocols, would result in protocols Σ with overwhelming soundness, without aborts or repetitions. There are many options today (see for instance [20] and references therein) to find a suitable and efficient Π for the specific lattice-based languages appearing in the confirmation / disavowal protocols of [25].

4.3 eVoting with CAI and CR Properties

Two important properties of an electronic voting system are cast-as-intended (CAI) verifiability and coercion-resistance (CR). CAI verifiability means that the voter is convinced that the option inside a ciphertext
that goes to the ballot box is the one that he/she has chosen, when the ciphertext has been created by an external (possibly dishonest) voting device. Coercion-resistance is achieved if a voter has means of deceiving a coercer who tries to force the voter to act in a specific way during the voting protocol.

In scenarios where voters do not receive secret information (such as credentials) from the election authorities, it has been recently shown [15] that at least three rounds of interaction between the voter and voting device are necessary in order to achieve CAI and CR at the same time. The authors of that paper propose two generic constructions involving four rounds of communication. For instance, in one of the constructions, the interaction is essentially a combination of a commitment scheme (where the voter commits to the challenge that will be used later) and a zero-knowledge system, with honest-verifier zero-knowledge, where the voting device proves knowledge of randomness r such that $\text{Enc}_{pk}(m; r) = c$, for some public parameters pk, m, c: the public key pk of the encryption scheme Enc, the plaintext m which the voting option chosen by the voter and the ciphertext c that will go to the ballot box.

If one wants to instantiate this construction with post-quantum secure tools, one can choose a lattice-based encryption scheme, for instance, one based on the hardness of the Ring Learning With Errors (RLWE) problem [22] and combine it with some of the recent efficient zero-knowledge systems for lattice-based relations [10, 13, 30, 12, 21, 20]. Since the interactive versions of all these zero-knowledge systems Π involve rejection sampling and aborts, we can apply our transformation to get a three-rounds system Σ, with honest-verifier zero-knowledge as desired, and without any abort. This means that the voter does not need to run many executions of the system (in parallel or not) in order to get convinced that the ciphertext contains the voting option m.

4.4 Settings where Our Result Is Not Useful

We insist once again that the “abort problem” of zero-knowledge systems based on lattices is not an issue if these systems are to be used in the non-interactive version resulting from applying Fiat-Shamir or a similar transformation. In these cases, the party acting as the prover will eventually abort and start the process again, without the final verifier noticing. This happens in a lot of practical uses of these protocols — including standard signatures, group signatures, ring signatures, and attribute-based signatures.
A kind of signature that requires interaction is blind signature, where a user wants to obtain a signature by a signer on some message \(m \), without the signer obtaining any information about the message \(m \). Currently, in the setting of lattice-based blind signatures, the tree of commitments technique introduced in [4] to reduce the abort probability has been successfully used a couple of times, first in the same paper [4] as an improvement of the signature scheme BLAZE [3] and then in [16] to construct a provably-secure (in contrast to BLAZE and BLAZE+) but inefficient scheme which involves three rounds of communication.

A natural question is thus: can our \(\Pi \to \Sigma \) transformation be applied in the setting of (lattice-based) blind signatures, as it happened with the tree of commitments technique? The answer seems to be no, as a blind signature scheme where the signer proves something using \(\Sigma \) appears to be very far from achieving the blindness property. In any case, a positive answer to the question would result in a blind signature scheme with at least three rounds of communication, which would not improve the state-of-the-art: recently, a couple of schemes involving only two rounds of communication have been proposed in the lattice setting [1, 19].

Acknowledgements

This work is partially supported by the Spanish Ministerio de Ciencia e Innovación (MICINN), under Project PID2019-109379RB-I00 and by the European Union PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant 780701).

References

