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Abstract

It is well-known that in the presence of majority coalitions, strongly fair coin toss is impossi-
ble. A line of recent works have shown that by relaxing the fairness notion to game theoretic, we
can overcome this classical lower bound. In particular, Chung et al. (CRYPTO’21) showed how
to achieve approximately (game-theoretically) fair leader election in the presence of majority
coalitions, with round complexity as small as O(log log n) rounds.

In this paper, we revisit the round complexity of game-theoretically fair leader election. We
construct O(log∗ n) rounds leader election protocols that achieve (1−o(1))-approximate fairness
in the presence of (1 − O(1))n-sized coalitions. Our protocols achieve the same round-fairness
trade-offs as Chung et al.’s and have the advantage of being conceptually simpler. Finally, we also
obtain game-theoretically fair protocols for committee election which might be of independent
interest.
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1 Introduction

Suppose that Murphy, Murky, and Moody co-authored a paper that proved a ground-breaking
theorem and the paper got accepted at the prestigious CRYPTO’22 conference. Murphy, Murky,
and Moody want to run a coin toss protocol over the Internet to elect a winner who will present
the paper at the conference. Since everyone wants to go to the beautiful beaches of Santa Barbara,
all of them want to be the winner. They each are worried that the other coauthors might deviate
from the honest protocol to gain an unfair advantage. There is both good and bad news. The
bad news is that due to a famous lower bound by Cleve [Cle86], there is no strongly fair coin toss
protocol when half of the parties may be corrupt and misbehaving — roughly speaking, strong
fairness requires that the coalition cannot bias the outcome of the coin toss whatsoever. The good
news is that a more recent line of work [CCWS21,GGS,CGL+18,WAS22] has shown that a relaxed
fairness notion called game-theoretic fairness is indeed possible for the leader election problem, even
when an arbitrary number of parties may be corrupt. To see why, first observe that the original
Blum’s coin toss protocol [Blu83] actually gives a game-theoretically fair leader election scheme for
n = 2 parties. Imagine that each party first commits to a random coin, they then open their coin,
and the XOR of the two bits is used to elect a random winner. If one party fails to commit or
correctly open, it is eliminated and the remaining party is declared the winner. Blum’s coin toss
satisfies game-theoretic fairness in the following sense. As long as the commitment scheme is not
broken, a corrupt layer cannot bias the coin to its own favor no matter how it deviates from the
protocol. Note that Blum’s protocol is not strongly fair since a corrupt party can indeed bias the
coin, but only to the other player’s advantage.

For the more general case of the n parties, we can use a folklore tournament-tree protocol to
accomplish the same purpose. Suppose that n is a power of 2 for simplicity. We first divide the n
parties into n/2 pairs, and each pair elects a winner using Blum’s coin toss. The winner survives
to the next round, where we again divide the surviving n/2 parties into n/4 pairs. The protocol
continues after a final winner is elected after log2 n rounds. At any point in the protocol, if a party
fails to commit or correctly open its commitment, it is eliminated and its opponent survives to the
next round.

The recent work of Chung et al. [CCWS21] argued that this simple tournament tree protocol
satsfies a strong notion of game-theoretic fairness as explained below. Suppose that the winner
obtains a utility of 1 and everyone else obtains a utility of 0. As long as the commitment scheme is
not broken, the tournament tree protocol guarantees that 1) no coalition of any size can increase its
own expected utilty no matter what (polynomially-bounded) strategy it adopts; and 2) no coalition
of any size can harm any individual honest player’s expected utility, no matter what (polynomially-
bounded) strategy it adopts. Recent work in this space [CCWS21, GGS, CGL+18, WAS22] calls
the former notion cooperative-strategy-proofness (or CSP-fairness for short), and calls the latter
notion maximin fairness. Philosophically, CSP-fairness guarantees that any rational, profit-seeking
individual or coalition has no incentive to deviate from the honest protocol; and maximin fairness
ensures that any paranoid individual who wants to maximally protect itself in the worst-case sce-
nario has no incentive to deviate either. In summary, the honest protocol is an equilibrium and
also the best response for every player and coalition. Therefore, prior works [CGL+18, CCWS21,
WAS22, GGS] have argued that game-theoretic notions of fairness are compelling and worth in-
vestigating because 1) they are arguably more natural (albeit stricly weaker) than the classical
strong fairness notion in practical applications; and 2) the game-theoretic relaxation allows us to
circumvent classical impossibility results pertaining to strong fairness in the presence of majority
coalitions [Cle86].

Having established the general feasibility of game-theoretically fair leader election in the pres-
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ence of majority-sized coalitions, Chung et al. [CCWS21] asked the following natural question:
what is the round complexity of game-theoretically fair leader election in the presence of majority
coalitions? Specifically, can we asymptotically outperform the logarithmic round complexity of the
folklore tournament tree protocol? They then gave a partial answer to this question, showing that
for any desired round complexity parameter Θ(log log n) ≤ R ≤ log n, there is an O(R)-round

n-party leader election protocol that achieves
(

1− 1
2Θ(R)

)
-fairness against coalitions of size up to(

1− 1
2Θ(R)

)
n. In particular, their result statement adopts an approximate notion of game-theoretic

fairness. Roughly speaking, a protocol is (1− ε)-fair if it satisfies the aforementioned game theoretic
fairness (including CSP-fairness and maximin fairness) up to an ε slack. More specifically, we want
that the coalition’s expected utility cannot exceed 1/(1− ε) times its normal utility had everyone
behaved honestly, and we require that any honest individual’s expected utility cannot drop below
(1 − ε) times its normal utility had everyone behaved honestly. Chung et al.’s result [CCWS21]
enables a smooth and mathematically quantifiable tradeoff between the efficiency of the protocol
and its resilience to strategic behavior. However, their result requires the protocol to have at least
Θ(log log n) rounds to give any meaningful fairness guarantee. Indeed, a more careful examination
suggests that their framework has a sharp cutoff at Θ(log log n) rounds, i.e., the approach funda-
mentally fails when we want round complexity to be less than log log n. Therefore, an obvious gap
in our understanding is the following:

In the presence of majority-sized coalitions, can we achieve any meaningful fairness guarantee
for small-round protocols whose round complexity is less than log logn?

1.1 Our Results and Contributions

In this paper, we revisit the round complexity of game-theoretically fair leader election. We make
the following contributions. First, we show positive results in the style of Chung et al. [CCWS21],
but now for a broader range of parameters as explained in the following Theorem 1.1. In particular,
our result shows that under standard cryptographic assumptions, there is a O(log∗ n)-round leader
election protocol that achieves (1− o(1))-game-theoretic-fairness, in the presence of (1−O(1)) · n-
sized coalitions.

Second, we give conceptually simpler constructions than those of Chung et al. [CCWS21], which
also result in simpler analyses. More specifically, Chung et al.’s construction relies on combinatorial
objects called extractors, which we get rid of in our construction. We believe that our conceptually
simpler constructions can lend to better understanding and make it easier for future work to extend
our framework. Interestingly, our constructions are inspired and have structural resemblance to
Feige’s famous lightest bin leader election protocol [Fei99]. We stress, however, that Feige’s protocol
itself does not satisfy game-theoretic fairness, but rather, achieves only a much weaker notion of
resilience, i.e., an honest party is elected leader with constant probability. At a very high level, our
approach augments Feige’s protocol lightest-bin protocol with a “commit and open” and a “virtual
identity” mechanism, and we prove that the resulting protocol satisfies the desired game-theoretic
properties.

Third, we also present results for the more generalized problem of fair committee election, where
the goal is to elect a committee of size c. The leader election problem can be viewed as a special case
of committee election where c = 1. Our main results are summarized in the following theorems.

Theorem 1.1 (Game-theoretically fair leader election). Assume the existence of enhanced trapdoor
permutations, and collision-resistant hash functions. Fix n and let log∗ n ≤ R ≤ C log n be the
round complexity we want to achieve for some constant C. Then there exists an O(R)-round leader
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election that achieves (1− 1
2Θ(R) )-game-theoretic fairness against a non-uniform p.p.t. coalition of

size at most (1− L
Θ(R))n, where L is the smallest integer such that log(L) n ≤ 2R.

For readers who are familiar with the line of work on approximate strong fairness [Cle86,MNS09,
AO16,BOO10,HT14], an interesting observation is that for game-theoretic fairness, the efficiency-
fairness tradeoff is exponentially better than that of strong fairness. Specifically, it is known that any
R-round protocol cannot achieve Ω(1/R) strong fairness1 against an n/2-sized coalition, whereas
we show that R-round protocols can achieve (1− 1/2Θ(R))-fairness.

Theorem 1.2 (Game-theoretically fair committee election). Assume the existence of enhanced
trapdoor permutations and collision-resistant hash functions. Fix n and c. Let L∗ be the smallest
integer such that log(L∗) n ≤ c. Then for any L∗ ≤ R ≤ C0 log n for some constant C0, we have
that

• If c ≥ 2R, there exists an O(R)-round committee election that achieves (1 − 1
cΘ(1) )-game-

theoretic fairness against a non-uniform p.p.t. coalition of size at most (1− L∗

Θ(R))n.

• If c < 2R, there exists an O(R)-round committee election that achieves (1 − 1
2Θ(R) )-game-

theoretic fairness against a non-uniform p.p.t. coalition of size at most (1− L
Θ(R))n, where L

is the smallest integer such that log(L) n ≤ 2R.

Below are some interesting examples with respect to different committee size c and the round
complexity R.

• For committee size c = 1, i.e., leader election, and round complexity R = O(log∗ n), our
protocol achieves Θ(1)-game-theoretic fairness against a coalition of size Θ(n) assuming log ∗n
is a constant;

• For committee size c = 1, i.e., leader election, and round complexity R = log log log n, out
protocol achieves (1− 1

poly log logn)-fairness against a coalition of size n− n
Θ(log log logn) .

• For committee size c = poly log log n and for constant round complexity R = Θ(1), our
protocol achieves (1− 1

poly log logn)-fairness against Θ(n)-sized coalition.

In this paper, we consider the standard notions of approximate CSP-fairness and maximin-
fairness. The standard notion of approximate CSP-fairness is also sometimes referred to as ap-
proximate coalition-resistant Nash equilibrium in some earlier works such as Fruitchain [PS17]. It
is also known [CCWS21] that the standard notion of approximate CSP-fairness (or maximin-
fairness) is equivalent in some sense to approximate notions of fairness formulated by the more
classical Rational Protocol Design (RPD) paradigm [GKM+13,GTZ15,GKTZ15].

Although the standard notion of approximate fairness seems the most natural one, Chung
et al. [CCWS21] pointed out that when defining approximate fairness, one can in fact adopt a
strengthened notion which they call sequential fairness. Their game-theoretically fair leader election
result is in fact stated for the sequential notion. In this sense, our result is incomparable to
theirs: they consider a stronger solution concept but their approach inherently cannot give any
meaningful result for protocols of o(log log n) rounds. By contrast, we consider the more standard
non-sequential notion and we are able to generalize the smooth tradeoff between efficiency and
fairness shown by Chung et al. [CCWS21] to a broader range of parameters.

1The approximate strong fairness line of work defines what we call (1− ε)-fairness as ε-fairness (but for the notion
of strong fairness instead). Following the notations of Chung et al. [CCWS21], we flipped this notation to make it
more intuitive: with our notation, 1-fair is more fair than 0-fair which agrees with our intuition.
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1.2 Additional Related Work

Game theory meets cryptography. Some recent efforts have instigated the intersection of the game
theory [Nas51, Aum74] and multi-party computation [GMW19, Yao82]. See [Kat08, DR+07] for a
survey. There have been two classes of questions that have attracted a lot of interests.

Some work [HT04,KN08,ADGH06,OPRV09,AL11,ACH11] explore how to define game-theoretic
notions of security, as opposed to cryptography security notions for distributed computing tasks
such as secure function evaluation. Existing works in this line considered a different notion of
utility than our work. Their utility functions are often defined assuming that players prefer to
compute the function correctly, or prefer to learn others’ secret data and prefers that other players
do not gain knowledge about their own secrets. Garay et al. propose a paradigm called Rational
Protocol Design [GKM+13] and develop this paradigm in subsequent works [GTZ15,GKTZ15]. As
mentioned in Section 1, the standard notion of approximate CSP-fairness (or maximin fairness) is
in some sense equivalent to the approximate notion of fairness formulated in RPD paradigm.

Another line of work explores how cryptography can help traditional game theory. Many works
in game theory assumed the existence of a trusted mediator, which can be realized under cryptog-
raphy [DHR00, IML05,GK12,BGKO11].

Recently, there has been renewed interest in the connection between game theory and cryp-
tography. Besides the work of Chung et al. [CCWS21] that inspires our work, and [GGS] that
generalized the lower bound of the round complexity of game-theoretically fair leader election, the
recent work [CGL+18,WAS22] have also suggested game-theoretically fair multi-party binary-coin
toss. Binary-coin toss considers tossing a binary coin among n players, while in leader election,
we consider tossing an n-way coin among n players. These two formulations are different and they
exhibit starkly different theoretical landscape.

Leader election in other models. Leader election has been studied extensively. A line of
work [BK14,ADMM14] considered how to achieve “financially-fair” n-party lottery over cryptocur-
rencies. Their game-theoretic notion of fairness is similar to ours, yet they rely on collateral and
penalty mechanisms to achieve fairness. As a comparison, our fairness can be achieved without
relying on additional assumptions such as collateral and penalty. Moreover, [ADGH06] studied an
incomparable game-theoretic notion for leader election. In their notions, all users prefer to have a
leader, and users may have different preferences of who the leader is.

Besides, leader election was considered in the full information model [RZ01, RSZ02, Fei99,
Dod06]. Their notion of security concentrates on electing an honest leader with some small constant
probability, assuming honest majority [Fei99]. This notion is much weaker than the game-theoretic
notion considered in our work, which are more suitable in some decentralized applications, where
honest majority assumption is not applicable. Moreover, in the full-information model, leader elec-
tion is impossible against a majority coalition even under this weak notion of security. Interestingly,
our committee election protocol actually builds on Feige’s lightest bin protocol [Fei99].

Approximate strong fairness. As mentioned in Section 1, the de facto notion of fairness con-
sidered in the multi-party computation literature is strong fairness or unbiasability. The celebrated
result of Cleve [Cle86] showed that it is not possible to achieve Ω( 1

R)-unbiasable coin toss against
a coalition consisting of half or more players. Moran et al. [MNS09] showed how to obtain an R-
round protocol that achieves Ω( 1

R)-unbiasability in the two-party setting, that matches Cleve’s lower
bound. Recent work [AO16,BOO10,HT14] have been making encouraging progress on building fair
multi-party coin toss. However, they rely on constant number of players to ensure polynomial round
complexity. We cannot directly rely on multi-party unbiasable coin toss to build game-theoretically
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fair leader election because our trade-off curve between round complexity and the fairness slack ε
is exponentially better than that of the unbiasability.

2 Technical Roadmap

2.1 Electing Poly-logarithmically Sized Committees: Achieving CSP-Fairness

We start by observing that a single iteration of Feige’s lightest-bin protocol [Fei99] can elect a
committee of size c ≥ poly log n while satisfying CSP-fairness against relatively large coalitions.
Feige’s ingenious protocol works as follows (we describe a single iteration of the protocol): each
player i ∈ [n] chooses a random bin bi among a total of B = n/c bins, and broadcasts its choice
bi. At this moment, we identify the lightest bin, and everyone who has placed itself in the lightest
bin is elected as a committee member. A simple analysis shows that this protocol satisfies CSP-
fairness against relatively large coalitions. Specifically, the lightest bin cannot exceed a capacity
of c = n/B. Moreover, applying the standard Chernoff bound and the union bound, we know
that with probability at least 1 − n · exp(−Ω(ε4 · c)), a good event that every bin has at least
(1 − ε2) · (1 − β) · c honest players must happen, where β · n is the maximum coalition size for
β ∈ (0, 1). Now we show that if the coalition has size larger than ε · n, then Feige’s lightest bin
is (1 − Θ(ε))-CSP-fair. Given that the good event happens, the expected fraction of corrupted
players in the committee is at most 1 − (1 − ε2) · (1 − β) ≤ β

1−2ε . For large n, it is easy to see
that the good event happens with 1 − negl(n) probability and the expected fraction of coalition
in the committee is at most β

1−Θ(ε) . For small n, however, the calculation is more involved, as
we will describe below. The overall expected fraction of the coalition in the committee is at most
β

1−2ε + δ, where δ = n · exp(−Ω(ε4 · c)) is the probability that the good event does not happen. To

guarantee that the expected fraction of the coalition in the committee is at most β
1−Θ(ε) , we need

the failure probability δ ≤ β ·Θ(ε). The expected fraction of the coalition in the committee is thus
β

1−2ε + δ ≤ β( 1
1−2ε + Θ(ε)) ≤ β

1−Θ(ε) . For example, if we pick ε = 1
logn and c = (log n)10, then the

probability that the good event does not happen is at most n exp{−Ω((log n)6)} ≤ ε2 ≤ β ·ε for any
n ≥ 3. Henceforth the protocol satisfies (1−Θ(ε)) -CSP-fairness as long as the coalition contains
at least εn players.

Unfortunately, the protocol does not satisfy CSP-fairness for small coalitions. For example, a
single individual i ∈ [n] (i.e., a coalition of size 1) can examine all others’ bin choices and then
decide to place itself in the lightest bin. In this case, if the lightest bin (not counting player i) is
at least 2 lighter than the second lightest bin, player i is elected into the committee. This happens
with a probability at least 6

5 ·
c
n for large n , which is significantly higher than the normal probability

c/n that player i ought to be elected in an all-honest execution.

Commit-and-reveal lightest bin. We introduce commit-and-reveal version of Feige’s lightest
bin protocol which achieves CSP-fairness not just against large coalitions, but also against small
coalitions as well. The idea is quite simple — below we describe the scheme assuming ideal com-
mitments, although in our formal technical sections we will instantiate the commitments using
standard non-malleable commitments. Everyone first commits to a random bin number among
B = n/c bins. They then open their commitments. Those who land in the lightest bin are declared
the committee, and like before, anyone who fails to commit or correctly open is kicked out. Using
the same argument as before, we can show that the commit-and-reveal lightest bin protocol also
achieves (1−Θ(ε))-CSP-fairness against coalitions of size at least εn .
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We now argue why it also satifies CSP-fairness against small coalitions of size βn < εn. In-
tuitively, the coalition’s best strategy is to pick a bin with the fewest number of honest players
(henceforth called the honest-lightest bin), and place as many coalition members in it as possible
while still maintaining that it is the lightest. However, the coalition does not know which one is
the honest-lightest bin when committing to its own bin choices. In fact, even when conditioned
on the coalition’s view during the commitment phase, each bin is the honest-lightest bin with
equal probability. No matter how the coalition spreads its members across the bins, the expected
number of coalition members in a randomly chosen bin is at most β · n/B = β · c. Further, with
1 − n · exp(−Ω(ε4 · c)) probability, the good event that honest-lightest bin should have at least
(1 − ε2)(1 − β)c honest players happens. Therefore, the coalition’s expected representation on
the committee cannot exceed β

(1−ε2)(1−β)
≤ β

1−2ε given that the good event happens. Overall, the

expected fraction of the coalition in the committee is at most β
1−2ε +δ, where δ = n ·exp(−Ω(ε4 ·c))

is the probability that the good event does not happen. Still, as long as δ ≤ βε, by the same
analysis as before, the expected fraction of the coalition in the committee is at most β

1−Θ(ε) .

2.2 Electing Poly-logarithmically Sized Committees: Achieving Maximin Fair-
ness

Although simple and cute, the commit-and-reveal lightest bin protocol does not satisfy maximin
fairness. For example, a Θ(n)-sized coalition can target a victim player i ∈ [n] and prevent it
from being elected with high probability using the following strategy. During the commitment
phase, spread the coalition members evenly across all bins. During opening, first observe which bin
(denoted b∗) player i lands in. Then, all coalition members fail to open except those whose choice
was b∗.

To achieve maximin fairness, we are inspired by a virtual identity technique originally proposed
by Chung et al. [CCWS21], but unfortunately, directly applying this idea to the lightest bin does
not work. At a high level, a strawman idea is as follows:

1. Every player i ∈ [n] selects a random virtual identity vi from a sufficiently large space, and
commits to the pair (i, vi).

2. Every player i ∈ [n] selects a random bin bi among B = n/c bins, and commits to the pair
(vi, bi) where vi is its secret virtual identity.

3. Everyone i ∈ [n] opens their commitment of (vi, bi). The virtual identities contained in the
lightest bin will be elected committee.

4. Everyone opens their real-virtual identity mapping (i, vi). This will allow everyone to compute
the real identities of those elected to the committee.

Now, as long as the coalition does not know an honest player i’s virtual ID, it does not know who
to target during the commit-and-reveal lightest bin steps (Steps 2 and 3). Therefore, as long as the
good event that each bin contains at least (1− ε)(1− β)c honest players happens, an honest player

i will be elected into the committee with probability at least (1−ε)(1−β)c
(1−β)n = (1−ε)c

n . By law of total
probability, the probability that an honest player i gets elected into the committee with probability
at least (1−ε)(1−δ)c

n , where 1− δ is the probability that the good event happens. Henceforth, as long

as δ ≤ ε, an honest player i gets elected into the committee with probability at least (1−Θ(ε))c
n .

Unfortunately, this idea does not work if the coalition can eavesdrop on the network channel
and observe who sent which (bin, virtual ID) pair in the commit-and-reveal lightest bin protocol.
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This would allow the coalition to immediately learn the correspondance between virtual and real
identities.

To salvage this idea, our high-level idea is simple but realizing it turns out to be somewhat sub-
tle as we explain later. First, if we are willing to assume the existence of an idealized anonymous
communication network where players can post messages anonymously, then we can overcome the
aforementioned problem by running Steps 2 and 3 over an anonymous communication network.
Therefore, it suffices to find a suitable anonymous communication protocol to realize anonymous
communication. Although anonymous communication has been extensively studied in the litera-
ture [Cha81, Cha88, Abe99, CGF10, DMS04, SGR99, ZZZR05], in our setting, it is tricky to adopt
existing schemes directly. The main technicality is that in the presence of a majority coalition, we
cannot guarantee the liveness of the anonymous communication protocol.

To overcome this problem, one näıve idea is to rely on an anonymous communication protocol
with identifiable abort, and if the protocol fails, we kick out an offending player and retry. Unfor-
tunately, the vanilla notion of identifiable abort does not work for us because we cannot afford to
kick out offending players one by one since we are aiming for small round complexity. Our idea
is to devise an anonymous communication protocol not just with identifiable abort, but with with
plentiful identifiable aborts. In other words, if the protocol fails, we want to kick out sufficiently
many players, such that we can eventually succeed without too many retries.

Therefore, we adapt an anonymous communication protocol inspired by DC-nets [Cha88] to
achieve such a plentiful identifiable abort notion. Assuming an upper bound of βn on the coalition
size, our protocol kicks out at least (1 − β)n players in the event of failure. Thus the round
complexity is at most 1

1−β . For example, if β = 99%, we can still succeed in O(1) rounds.
We give a formal description of our poly-logarithmically-sized committee election protocol and

prove its security in Section 4. We present a formal description of our anonymous communication
protocol in Section 6.2.

2.3 Leader Election

Although the lightest bin protocol via anonymous broadcast (denoted as LBin-V below) achieves
CSP-fairness and maximin-fairness simultaneously, it cannot be directly used to select a leader,
i.e., c = 1. Indeed, the fairness of LBin-V depends on the occurrence of the good event that each
bin has at least (1 − ε2)(1 − β)c number of honest players, where β · n is the maximum coalition
size for β ∈ (0, 1). If we are to choose a leader directly using LBin-V, then the probability that this
good event happens is 0, which makes our protocol unfair.

To construct a leader election protocol, we compose the committee election LBin-V for multiple
iterations. In each iteration: we choose a log-sized committee. In the first iteration we choose a
poly log-sized committee C1, and then in the second iteration we choose a poly log log sized committee
C2 from C1, and so on. As analyzed earlier, each iteration of LBin-V is (1−Θ(ε))-game-theoretically
fair given that the failure probability δ that the good event does not happen in this iteration is
small compare to β · ε.

However, as the committee size becomes smaller in each iteration, the probability that the
good event does not happen becomes larger. In the last few rounds, when the committee becomes
constant size, the probability that the good event does not happen becomes a constant. Therefore,
we need to cut off at some point and instead run the “almost perfect” tournament tree protocol. As
shown in Chung et al. [CCWS21], the tournament tree protocol among c players chooses a leader in
O(log c) rounds and is (1− negl)-game-theoretically fair. If we want to achieve a round complexity
of R, then we can stop running LBin-V when the committee size becomes smaller than 2Θ(R) and
run the tournament tree protocol among the committee to elect a leader.

8



Now suppose that we run L iterations of committee election LBin-V and get a committee of size
2Θ(R). Then we need to guarantee that the round complexity of these L iterations of LBin-V is at
most O(R). By the analysis above, if we kick out (1−β)n players in each anonymous communication
protocol, the round complexity of each LBin-V is at most 1

1−β . This requires that the fraction of

coalition β ≤ 1− L
Θ(R) .

Now since the probability that the good event does not happen increases in each iteration, the
probability that there is an iteration in which the good event does not happen is dominated by
L · δL, where δL = exp{−ε4 · 2−Θ(R)} is the probability that good event does not happen in the last
iteration. As long as this probability is smaller than β · ε, the protocol is (1 − Θ(ε))-fair. Picking
ε = 1

2R
suffices. Therefore, if we run LBin-V multiple iterations to elect a committee C of size is

2Θ(R), and then run the tournament tree protocol among C to elect a leader, our leader election
protocol achieves (1− 1

2Θ(R) )-game-theoretic fairness.
In Section 5, we give a generalized protocol that combines multiple iterations of LBin-V and

the tournament tree protocol to elect an arbitrary-sized committee, including the special case of
committee size 1, i.e., leader election.

3 Preliminaries

Notation. Throughout, we use λ to denote the security parameter. The notation log(`) n means
taking logarithm ` times over n. For example, log(3) n ≡ log log log n. Moreover, we use log∗ n to
denote the smallest integer ` such that log(`) n ≤ 1. For an event E, we denote E as the event
that E does not happen. For a vector X of length M , we use X[j] for j ∈ [M ] to denote the j-th
element of X. By t-out-of-n SS, we refer to a Shamir secret sharing protocol in which any t + 1
players can reconstruct the secret, while any t players know nothing about the secret [Sha79]. We
use the acronym p.p.t. for non-uniform probabilistic polynomial time. We use {Xλ}λ ≡c {Yλ}λ to
denote that two distribution ensembles {Xλ}λ and {Yλ}λ are computationally indistinguishable,
i.e., for all non-uniform p.p.t. A, there exists a negligible function negl(·), such that for any λ ∈ N,

|Pr[x
$←Xn,A(x) = 1]− Pr[y

$←Yn,A(y) = 1]| < negl(λ).

3.1 Probability Tools

Lemma 3.1 (Chernoff bound, Corollary A.1.14 [AS16]). Let X1, . . . , Xn be independent Bernoulli
random variables. Let µ = E [

∑n
i=1Xi]. Then, for any ε ∈ (0, 1), it holds that

Pr

[
n∑
i=1

Xi ≤ (1− ε)µ

]
≤ e−ε2µ/2.

3.2 Fairness Notions for Committee Election

Since a leader is a special case of a 1-sized committee, we will define correctness and fairness with
respect to committee election protocol.

In a (c, n)-committee election protocol, n players interact through pairwise private channels
and a public broadcast channel. We assume that each player has identity 1, 2, . . . , n, respectively.
We assume that all communication channels are authenticated, i.e., messages carry the sender’s
identity. Moreover, the network is synchronous, and the protocol proceeds in rounds.

The protocol execution is parametrized with the security parameter λ. We assume that the
coalition (adversary) A performs a rushing attack. In every round r, it waits for all honest players
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(those not in A) to send messages in round r and decide what messages the players in the coalition
send in round r. At the end of the committee election, the protocol outputs a set of at most c
players called the committee. The output is defined as a deterministic, polynomial-time function
over all public messages posted to the broadcast channel. Since we assume that all players wish to
be selected into the committee, the utility function we consider is as follows: each player elected
into the committee gains a utility of 1, while everyone else gains a utility of 0. If all players behave
honestly, the committee is chosen uniformly at random.

Correctness. We say that a (c, n)-committee election protocol is correct, if in an all honest
execution, every subset C ⊂ [n] of size c has an equal probability of being elected as the committee,
where the probability is taken over the randomness of (an honest execution) the protocol.

For the fairness notion, we recall the definitions proposed by Chung et al. [CCWS21]. The first
notion of fairness (CSP-fairness) protects against a malicious coalition from increasing its utility.
The second notion (maximin-fairness) protects against a malicious coalition from decreasing the
utility of any honest party. Each of these notions is natural and useful on its own, and in some
sense, they complement each other. A protocol that satisfies both simultaneously is called game-
theoretically fair.

Approximate CSP-fairness. The CSP-fairness requires that no coalition can increase its own
expected utility by more than a (1 − ε) multiplicative factor, no matter how it deviates from the
honest protocol.

Definition 3.2 ((1− ε)-CSP-fair committee election). A (c, n)-committee election is (1− ε)-CSP-
fair against a non-uniform probabilistic polynomial time (p.p.t.) coalition A of size βn, iff no
matter what strategy A adopts,

E[β̃] ≤ β

1− ε
,

where β̃ is the fraction of players in the coalition among the committee, where the expectation is
taken over the randomness of the protocol.

In our proof, we will also make use of another fairness notion:

Definition 3.3 ((1 − ε, δ)-CSP-fair committee election). A (c, n)-committee election is (1 − ε, δ)-
CSP-fair against a non-uniform probabilistic polynomial time (p.p.t.) coalition A of size βn, if
there exists an event GOOD, where Pr[GOOD] ≥ 1− δ, such that no matter what strategy A adopts,

E[β̃ | GOOD] ≤ β

1− ε
,

where β̃ is the fraction of the coalition’s representation in the committee, and the expectation is
taken over the randomness of the protocol.

Analogously, we define (1−ε)-maximin-fair and (1−ε, δ)-maximin-fair committee election, which
requires that the probability that an honest individual gets into the committee is large enough given
that the good event happens.
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Approximate maximin-fairness. Maximin-fairness requires that no coalition can harm any
honest individual by more than a (1− ε) multiplicative factor, no matter how it deviates from the
honest protocol.

Definition 3.4 ((1 − ε)-maximin-fair committee election). A (c, n)-committee election is (1 − ε)-
maximin-fair against a non-uniform probabilistic polynomial time (p.p.t.) coalition A of size βn,
iff for any honest individual i, the probability that i gets into the committee is

Pr[i is in the committee] ≥ (1− ε)c
n

,

no matter what strategy A adopts. The probability is taken over the randomness of the protocol.

Definition 3.5 ((1− ε, δ)-maximin-fairness). A (c, n)-committee election is (1− ε, δ)-maximin-fair
against a non-uniform probabilistic polynomial time (p.p.t.) coalition A of size βn, if there exists
an event GOOD, where Pr[GOOD] ≥ 1− δ, such that no matter what strategy A adopts,

Pr[i is in the committee | GOOD] ≥ (1− ε)c
n

,

for any honest individual i. The probability is taken over the randomness of the protocol.

Although committee election is a constant-sum game, these two notions of fairness are non-
equivalent. As shown in [CCWS21], approximate CSP-fairness and approximate maximin-fairness
are different, although committee election is a constant-sum game. For example, in a (1 − o(1))-
CSP-fair (c, n) committee election protocol against a coalition A of size 0.9n, the coalition may
exclude a specific individual from being elected. Because the c

n utility transferred from this honest
individual to the coalition is very small compared to the coalition’s default utility when playing
honestly. On the other hand, in a (1−O(1))-maximin-fair (c, n) committee election against a small

coalition A of size O(1), the coalition can transfer O(c)
n utility from each honest individual, and

significantly increase its utility by a Θ(n) factor.
Finally, we define game-theoretical fairness. This notion of fairness requires CSP and maximin-

fairness simultaneously.

Definition 3.6 ((1 − ε)-game-theoretical fairness). A (c, n)-committee election is (1 − ε) game-
theoretically fair committee election against a non-uniform probabilistic polynomial time (p.p.t.)
coalition A, iff it is (1− ε)-CSP-fair and (1− ε)-maximin-fair against A.

Definition 3.7 ((1− ε, δ)-game-theoretical fairness). A (c, n)-committee election is (1− ε) game-
theoretically fair committee election against a non-uniform probabilistic polynomial time (p.p.t.)
coalition A, iff it is (1− ε, δ)-CSP-fair and (1− ε, δ)-maximin-fair against A.

By definition, a (1 − ε)-game-theoretically fair committee election is also (1 − ε, 0)-game-
theoretically fair. Next we give the translation from (1 − ε, δ)-CSP/maximin-fair to (1 − ε)-
CSP/maixin-fair.

Lemma 3.8. Let n be the number of parties and fix a parameter c. Let CElect be an R-round
(1− ε, δ)-CSP-fair (c, n)-committee election protocol against a coalition of size βn. Then the above
leader election protocol is (1− ε1)-CSP-fair against a coalition of size βn, with a round complexity
R+O(log c), where

ε1 =
βε+ δ(1− ε)
β + δ(1− ε)

+ negl(λ).
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Proof. Let β̃ denote the fraction of the coalition in committee C. By Definition 3.5, there exists
an event GOOD with Pr[GOOD] ≥ 1 − δ, such that E[β̃ | GOOD] ≤ β

1−ε . By the law of total
expectation,

E
[
β̃
]

= E
[
β̃ | GOOD

]
· Pr [GOOD] + E

[
β̃ | GOOD

]
· Pr

[
GOOD

]
≤ β

1− ε
+ (1− Pr[GOOD])

≤ β

1− ε
+ δ

= β · β + δ(1− ε)
β(1− ε)

.

Combine with Lemma 5.1, the expected utility of the coalition is at most β · β+δ(1−ε)
β(1−ε)(1−negl(λ)) ≤

β
1−ε1 ,

and the round complexity is R+O(log c). The lemma thus follows.

Lemma 3.9. Let n be the number of parties and fix a parameter c. Let CElect be an R-round
(1 − ε, δ)-maximin-fair (c, n)-committee election protocol against a coalition of size βn. Then the
above leader election protocol is (1− ε2)-maximin-fair, with a round complexity R+O(log c), where

ε2 = ε+ δ + negl(λ).

Proof. Let Hi denote the event that honest player i gets elected into the committee C. By Defini-
tion 3.7, there exists an event GOOD with Pr[GOOD] ≥ 1 − δ, such that Pr[Hi | GOOD] ≥ (1−ε)c

n .
By the law of total probability,

Pr [Hi] ≥ Pr [Hi | GOOD] Pr [GOOD]

≥ (1− ε)c
n

· (1− δ) ≥ (1− ε− δ)c
n

.

Combine with Lemma 5.1, the probability that an honest player gets elected as the leader is at least
(1−ε−δ)c

n · 1−negl(λ)
2 ≥ 1−ε2

n , and the round complexity is R+O(log c). The lemma thus follows.

Hybrid vs. real worlds. For ease of presentation and modulatiry purposes, we shall sometimes
consider protocols in a hybrid setting where we assume some “generic” functionality is given for
free. This is called a “hybrid world”. That is, we say that a protocol is in the F-hybrid world if
players interacting in this protocol have access to an ideal functionality F . A protocol in the (plain)
real world is a protocol without any ideal functionalities or setup assumptions. Specifically for us,
we say that a (c, n)-committee election protocol achieves (1− ε)-game-theoretic fairness against a
coalition A in the F-hybrid world, if the protocol achieves (1 − ε)-game-theoretic fairness against
this coalition A, assuming the ideal functionality F .

3.3 Publicly Verifiable Concurrent Non-Malleable Commitment

A publicly verifiable commitment scheme (C,R,V) consists of a pair of interacting Turing machines,
the committer C, the receiver R, and a deterministic, polynomial-time public verifier V. We assume
that the protocol has two phases, a commitment phase and an opening phase. The public verifier,
upon receiving a transcript Γ of the commitment protocol, outputs either a bit b ∈ {0, 1} to accept
or ⊥ to reject. We use 〈C∗(z),R∗(z′)〉 to denote an execution between C∗ on input z, 1λ, and R∗ on
input z′, 1λ, where λ is the security parameter.
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Correctness. Correctness guarantees that an honest committer always completes the protocol
and correctly opens its input bit; and will not be stuck by a malicious, non-aborting receiver.
Formally, for b ∈ {0, 1}, for any λ ∈ N, if C is honest and receives input bit b, then 〈C(z),R∗(z′)〉
will complete with the accepting bit b with probability 1, for any non-aborting R∗. If the messages
sent by R∗ are outside the valid range, it is treated as aborting.

Perfect Binding. Perfect binding guarantees that the commitment phase will determine only
one bit that can be successfully opened. Formally, let (Γc,Γo) ∈ {0, 1}`(λ) be the transcripts of the
commitment phase and the opening phase, respectively, where `(λ) is a fixed polynomial function
denoting the maximum length of the transcripts. Then for any λ ∈ N, any transcripts Γc,Γo,Γ

′
o, if

V(1λ,Γc,Γo) = b and V(1λ,Γc,Γ
′
o) = b′, where b, b′ ∈ {0, 1}, it must be that b = b′.

Computationally Hiding. Computationally hiding guarantees that at the end of the commit-
ment phase, the receiver learns only a negligible amount of information about the input that the
committer commits to. Formally, let pλ(v) denote the probability that R∗ outputs 1 at the end
of the commitment phase in an execution 〈C∗(1λ, v),R∗(1λ)〉, then for any non-uniform p.p.t. R∗,
there exists a negligible function negl(·) such that for every λ ∈ N and every v1, v2 ∈ {0, 1}λ, it
holds that |pλ(v1)− pλ(v2)| ≤ negl(λ).

Concurrent Non-malleability. We follow the definition of Lin et al. [LPV08]. Consider a man-
in-the-middle adversary A that participate on the left m interactions with an honest committer
who runs commitment phase committing to values v1, . . . , vm with identity id1, . . . , idm, and on the
right m interactions with an honest receiver trying to commit to values v′1, . . . , v

′
m with identity

id′1, . . . , id
′
m. If any of the right commitments are invalid its value is set to ⊥. For every i ∈ [m], if

id′j = idi for some j ∈ [m], then v′j is set to be ⊥. Let mitmA(1λ, v1, v2, . . . , vm, z) denote the view
of A and the values v′1, . . . , v

′
m.

Definition 3.10. A commitment scheme is concurrent non-malleable if for every polynomial p(·),
for every non-uniform p.p.t. adversary A that participates in at most m = p(λ) concurrent execu-
tions, there exists a polynomial time simulator S such that

{mitmA(1λ, v1, v2, . . . , vm, z)}v1,...,vm∈{0,1},z∈{0,1}∗,λ∈N ≡c
{S(1λ, z)}v1,...,vm∈{0,1},z∈{0,1}∗,λ∈N.

Theorem 3.11 ( [LPV08]). Assume that one-way permutations exist. Then there exists a constant-
round, publicly verifiable commitment scheme that is perfectly correct, perfectly binding, and con-
current non-malleable.

In this paper, we will only consider bounded concurrency. Without loss of generality, the number
of concurrent calls to public verifiable concurrent non-malleable commitment in our protocol is
upper bounded by n2, where n is the number of players.

4 Game-Theoretically Fair Committee Election

In this section, we present our game-theoretically fair committee election that extends Feige’s
lightest bin protocol. Later, in Section 5, we will use it as a building block to get our committee
election protocol that achieves game-theoretic fairness for arbitrary committee size.
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4.1 Electing Poly-logarithmically Sized Committees: Achieving CSP-Fairness

In this section, we give a CSP-fair committee election protocol. This is the first step towards our
game-theoretically fair committee election (that needs to be CSP-fair and maximin fair, simulta-
neously).

Our CSP-fair protocol is a commit-and-reveal variant of Feige’s well-known lightest bin proto-
col [Fei99]. Specifically, we require all parties to (cryptographically) commit to their bin choices
and only afterward to reveal their choices. The parties whose choices correspond to the lightest
bin are the committee. The commitments that we use are interactive. To commit to a string, a
player invokes n instances of NMC, one for each of the n receivers. To open the commitments,
the committer posts the openings for all n instances in the broadcast channel, and the opening is
correct iff all of the n instances are correctly opened to the same string. Without loss of generality,
we assume that the committer only needs to send one message in the opening phase. Moreover,
we assume that messages are posted to the broadcast channel, and it can be checked publicly if a
commitment is correctly opened. This is why we also require public verifiability of the commitment
scheme. We say that a player fails to commit if the player fails to commit in an instance, where
the receiver is non-aborting.

LBin-C: Commit-and-Reveal Lightest Bin

Parameters: Let c be an upper bound of the size of the required committee and n is the
number of players. Fix B = dnc e as the number of bins. For simplicity, we assume c divides n.

Building blocks: A publicly verifiable concurrent non-malleable commitment as in Sec-
tion 3.3, NMC.

Protocol:

1. Round 1: Every player i randomly chooses a bin bi ∈ [B], invokes n NMC instances and
run the commit phase with n receivers to commit to bi. The messages are sent in a
broadcast channel. Exclude those players who fail to commit.

2. Round 2: Every player i runs the opening phase with n receivers to open its bin choice
bi. Exclude those players who fail to open all n instances correctly.

3. Let b̂ be the lightest bin after exclusion (break ties with lexicographically the smallest
bin). The players who choose bin b̂ constitute the committee.

Theorem 4.1. Assume that NMC is publicly verifiable concurrent non-malleable commitment as
in Section 3.3. For n, c ∈ N, ε ∈ (0, 1/2), and β ∈ (0, 1), the protocol LBin-C is a constant round
(1− 2ε, δ)-CSP-fair (c, n)-committee election protocol against a coalition K of size βn, where

δ =
n

c
exp

{
−ε

4

2
(1− β)c

}
. (1)

Proof. Fix n, c, ε, and β as in the statement. Define GOOD to be the event that each bin has at
least (1−ε2)(1−β)c honest players. Let β̃ denote the fraction of players in K among the committee.
Then, we have the following lemma.

Lemma 4.2. E
[
β̃ | GOOD

]
≤ β

1−2ε .

For now assume that Lemma 4.2 holds and we explain why Theorem 4.1 follows from it. The
proof of Lemma 4.2 appears right afterwards. Let Xi,b be an indicator random variable that
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honest player i chooses bin b ∈ [B]. Then, Xi,b is a Bernoulli random variable that takes 1
with probability c/n. Since the number of honest players is n − βn, by linearity of expectation,
E[
∑

i∈HXi,b] = (1− β)c, where H denotes the set of honest players. For a fixed bin b, by Chernoff
bound (Lemma 3.1), the probability that the number of honest players choosing this bin is less
than (1− ε2)(1− β)c is

Pr

[∑
i∈H

Xi,b ≤ (1− ε2)(1− β)c

]
≤ exp

{
−ε

4

2
(1− β)c

}
.

By the union bound over the B bins, the probability that GOOD happens is at least

Pr [GOOD] ≥ 1− n

c
exp

{
−ε

4

2
(1− β)c

}
. (2)

Combing Lemma 4.2 and (2), LBin-C is a (1 − 2ε, δ)-CSP-fair committee election protocol by
Definition 3.5.

We now proceed with the proof of Lemma 4.2.

Proof of Lemma 4.2. We split into two cases. First, assume that β ≥ ε. In this case, the claim
follows directly from the assumption that GOOD holds. Specifically, since each bin contains at least
(1 − ε2)(1 − β)c honest players, the committee contains at least (1 − ε2)(1 − β) fraction of honest
players. It follows that the fraction of players in K among the committee must satisfy

β̃ ≤ 1− (1− ε2)(1− β) = β

(
1 +

ε2

β
− ε2

)
≤ β

1− 2ε
,

as required.
Now, we focus on the case where β < ε. In this case, the proof relies on the concurrent non-

malleability of the commitment scheme. Specifically, we consider the following hybrid experiment.

Hybrid experiment Hyb: the hybrid experiment essentially runs LBin-C but the bin choices of the
coalition are chosen by the NMC’s simulator S. Recall that the simulator S outputs at most n2

values that the coalition commits to, as well as the view of the coalition in the man-in-the-middle
game.

Hyb: Hybrid experiment

1. Each honest player randomly chooses a bin bi ∈ [B], invokes n instances of NMC and run
the commit phase with n receivers to commit to bi.

2. Run the simulator S for NMC, that outputs 1) βn2 values {b1j , . . . , bnj }j∈K that the coali-

tion is trying to commit: each player j ∈ K commits to bij to receiver i, for i ∈ [n]; and
2) the view of the adversary view. If the same player j is committing to different values
to different receivers, we simply let its committed value be bj = 0; otherwise, we let bj ,
i.e., the bin choice of player j, be the value output by the simulator S.

Output: The experiment outputs the bin choices of each players b1, . . . , bn.

Note that the outputs b1, . . . , bn are not efficiently computable but are well-defined due to the
perfect binding property of NMC. The hybrid experiment Hyb stops before the opening phase of
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the NMC, because by the concurrent non-malleability definition (Section 3.3), the simulatability of
the NMC only holds for the commitment phase.

We use Real to denote a real execution of Round 1 of LBin-C, i.e., every player commits to its
bin choice by invoking n instances of NMC and running the commit phase with n receivers. The
output is the bin choice of each player. Still, the outputs b1, . . . , bn are not efficiently computable
but are well-defined due to the perfect binding property of NMC.

To compute E[β̃ | GOOD], we define a random variable γ, which depends only on {bi}ni=1, that

upper bounds β̃ in an execution of LBin-C. Let b̃ ∈ [B] be the index of the bin that contains least
number of honest players; and b∗ ∈ [B] be index of the lightest bin at the end of the commit phase.
Note that by the way the protocol works, b̃ and b∗ depends only on {bi}ni=1. Below, for l ∈ [B], we
use hl to denote the number of honest players in bin l, and fl to denote the number of players in
K in bin l.

Claim 4.3. Given the bin choices {bi}ni=1 at the end of the commit phase, the fraction of players

in K among the committee β̃ is at most γ :=
f
b̃

hb∗+fb∗
.

Proof. Given the bin choices at the end of the commit phase {bi}ni=1, by the perfect binding property
of NMC, a player j ∈ K can either choose to open the correct bin choice bj it commits to, or fail to
open its bin choice in the opening phase. If some players in K refuse to open their commitments,
by the public verifiability of NMC, they will be excluded at the end of the opening phase, which
may change the lightest bin. That is to say, after the commit phase, the only way the coalition can
deviate is essentially to refuse to open some of their bin choices, in order to change the lightest bin.

If the some players in K refuse to open their commitments and make bin k the lightest bin,
then after excluding those misbehaved players, the number of players in bin k is at most fb∗ + hb∗

(otherwise bin b∗ is still the lightest bin). Since the number of honest players in bin l is hl, the
fraction of players in K in bin l, after excluding the misbehaved players, is at most 1 − hl

fb∗+hb∗
.

To maximize the fraction of the coalition in the committee, the best strategy for the coalition is to
choose bin l = b̃, which contains the least number of honest players.

Therefore, the best strategy for the malicious coalition is to make bin b̃ the lightest bin at the
end of the opening phase. The maximum fraction of the coalition in the committee is thus bounded
by

β̃ ≤ 1−
h
b̃

hb∗ + fb∗
≤

f
b̃

hb∗ + fb∗
,

where the inequality follows from the fact that the number of the coalition’s representation in bin
b̃ is at most f

b̃
.

Therefore, to upper bound E[β̃ | GOOD], it suffices to bound E[γ | GOOD] in the Real experi-
ment, which only depends on {bi}ni=1.

We then argue the computational indistinguishability of γ in Hyb and in Real. If this holds,
then we only need to bound E[γ | GOOD] in the Hyb experiment.

Claim 4.4. The distribution of γ in the real experiment Real (denoted as γreal) is computationally
indistinguishable from that of γ in the hybrid experiment Hyb (denoted as γHyb).

Proof. Suppose for the sake of contradiction that there exists a non-uniform p.p.t. adversary D
that can distinguish γReal and γHyb.

Consider the following hybrid experiment Hyb′, which is same as Hyb except that the bin
choices of players in the coalition are chosen by mimtA(1λ, 0, . . . , 0, z). Since in both Hyb and Hyb′,
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the coalition’s bin choices are chosen independently from honest players’ bin choices, by the non-
malleability of NMC, Hyb ≡c Hyb′. Therefore, the random variable γHyb should be indistinguishable
from γ in Hyb′, denoted as γHyb′ . This means that D should be able to distinguish γReal from γHyb′

with a non-negligible probability.
Now we can construct a non-uniform p.p.t. adversaryD′ that can distinguish mimtA(1λ, {bi}i∈H, z)

from mimtA(1λ, 0, . . . , 0, z). D′ works as follows: it randomly picks {bi}i∈H as the bin choices each
honest player commits to, and send {bi}i∈H to the challenger. Upon receiving the bin choices for
players in the coalition from the challenger, which is either output from mimtA(1λ, {bi}i∈H, z), or
mimtA(1λ, 0, . . . , 0, z), it computes γ given the bin choices of every player. D′ then passes γ to D
and output whatever D outputs.

If the coalition’s bin choices are generated from mimtA(1λ, {bi}i∈H, z), then D’s view is same as
γReal; otherwise, D’s view is same as γHyb′ . This implies thatD′ can distinguish mimtA(1λ, {bi}i∈H, z)
from mimtA(1λ, 0, . . . , 0, z) with a non-negligible probability. This contradicts the non-malleability
of NMC that there exists a simulator S, such that

mimtA(1λ, {bi}i∈H, z) ≡c S(1λ, z) and

mimtA(1λ, 0, . . . , 0, z) ≡c S(1λ, z)

To conclude, γReal is computationally indistinguishable from γHyb.

Now, it suffices to bound E[γ | GOOD] in the hybrid experiment Hyb.

Claim 4.5. In the hybrid experiment, E [γ | GOOD] ≤ β
(1−ε2)(1−ε) .

Proof. In Hyb, the coalition K’s bin choices are chosen by the simulator S, who has no access
to the bin choice of honest players. Therefore, the malicious coalition’s bin choices {bj}j∈K are
independent of honest players’ bin choices {bi}i∈H, where K and H denote the coalition and the
set of honest players, respectively. This implies that the number of the coalition’s representation
fl in bin l is independent from b̃, which depends only on {bi}i∈H. Moreover, fl is independent from
GOOD since GOOD also depends only on honest players bin choices.

As a consequence, by the law of total expectation,

E[γ | GOOD]

=
B∑
l=1

B∑
l′=1

E
[
γ | b̃ = l, b∗ = l′,GOOD

]
Pr
[
b̃ = l, b∗ = l′ | GOOD

]
=

B∑
l=1

B∑
l′=1

E
[
γ | b̃ = l, b∗ = l′,GOOD

]
Pr
[
b∗ = l′ | b̃ = l,GOOD

]
Pr
[
b̃ = l | GOOD

]
=
c

n

B∑
l=1

B∑
l′=1

E
[

fl
hl′ + fl′

| b̃ = l, b∗ = l′,GOOD

]
Pr
[
b∗ = l′ | b̃ = l,GOOD

]
. (3)

Since when GOOD happens, the number of honest players in every bin is at least (1− ε2)(1− β)c,
we have that fl

hl′+fl′
≤ fl

(1−ε2)(1−β)c
for any l, l′ ∈ [B]. Thus, (3) is at most

(3) ≤ 1

(1− ε2)(1− β)n

B∑
l=1

(
B∑
l′=1

E
[
fl | b̃ = l, b∗ = l′,GOOD

]
Pr
[
b∗ = l′ | b̃ = l,GOOD

])

=
1

(1− ε2)(1− β)n

B∑
l=1

E
[
fl | b̃ = l,GOOD

]
.
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Since fl is independent of b̃ and GOOD, we have that

E[γ | GOOD] =
1

(1− ε2)(1− β)n

B∑
l=1

E [fl] =
β

(1− ε2)(1− β)
≤ β

(1− ε2)(1− ε)
,

where the last inequality comes from the assumption that β < ε.

Putting together, the expectation E
[
β̃ | GOOD

]
in the committee election LBin-C is at most

β
(1−ε2)(1−ε) + negl(λ) ≤ β

1−2ε .

Corollary 4.6. Pr[β̃ ≤ β(1− ε2) + ε2 | GOOD] = 1.

Proof. This is because when GOOD happens, the fraction of honest players in the committee is at
least (1− ε)(1− β). The fraction of the coalition is at most 1− (1− ε)(1− β) = β(1− ε2) + ε2, i.e.,
Pr[β̃ ≤ β(1− ε2) + ε2 | GOOD] = 1.

4.2 Electing Poly-logarithmically Sized Committees: Achieving Maximin-Fairness

In Section 4.1 we gave a commit-and-reveal variant of Feige’s lightest bin protocol for committee
election and showed that it is CSP-fair. The protocol is, however, not maximin-fair. While the
adversary cannot gain too much utility by deviating from the protocol, it can still harm the utility
of an honest individual. Specifically, consider the following adversarial strategy. The coalition
generates commitments so that the coalition’s representations in each bin are equal. Then, when
it wants to target at a specific player i to not participate in the committee, it waits to see which
bin l was chosen by that honest party and then it refuses to reveal commitments from some other
bin l′ which will then be lighter than the bin l chosen by honest player i. This attack prevents an
honest individual i from being elected into the committee.

By the properties of the commitment scheme and how our protocol works, this is the only useful
attack for the adversary. Thus, we modify our protocol to withstand this attack by masking the
identity of parties. Namely, we hide which bin choice belongs to which party. We achieve this by
requiring players to choose a random virtual ID and use it throughout the execution. Players will
only reveal their virtual IDs at the end of the protocol, after the lightest bin has been fixed. A-
priori, it seems hard to implement such a system because once a party sends its message, everybody
knows who sent it (recall that we are in the broadcast model). We overcome this by implementing
an “anonymous” broadcast channel on top of our existing broadcast channel.

Thus, we first describe our anonymous broadcast functionality F t,Oanon. Then, we show that in
a F t,Oanon-hybrid model, we can build a committee election protocol that ensures CSP-fairness and
maximin-fairness simultaneously.

4.2.1 Anonymous Broadcast Functionality

Let O be the set of all players involving in the protocol. Our anonymous broadcast functionality
F t,Oanon works as follows.

F t,Oanon: Anonymous broadcast with t-identifiable abort

Parameters: O is the set of players involving in the protocol and t is a bound on the number
of misbehaved players to exclude.

Functionality:

18



1. Input: Every player i sends a single message mi or ⊥ to F t,Oanon.

2. Output: F t,Oanon computes a multiset Out = {mi : i ∈ O and mi 6= ⊥}.
If the number of corrupted players is smaller than t, send (ok,Out) to everyone in O.
Otherwise, send Out to the adversary A.

• If receives ok from A, F t,Oanon sends (ok,Out) to every honest player in O.

• Otherwise, it receives a set D of corrupted IDs of size at least t from the adversary
A, and then send (fail,D) to every honest player in O.

We say that an adversary A is admissible if 1) it sends only one message for each corrupt
player, and 2) it either sends ok, or a set of corrupted players of size at least t in Step 2.

The functionality exhibits several appealing properties that are important for us. Specifically,
in the ideal functionality F t,Oanon, it holds that:

1. Each player can only send one message.

2. The coalition has to choose their messages independently from honest players’ messages.

3. The coalition cannot tell which honest player sends which message.

4. The output is either (ok,Out), or (fail,D) with a set D of size at least t.

4.2.2 Formal Description of the Protocol

Here we present the formal description of our lightest bin via anonymous broadcast protocol in the
F t,Oanon-hybrid model.

LBin-V(c, n, β): Lightest Bin via Anonymous Broadcast

Parameters: Let c be an upper bound of the required committee and n is the number of
players. Fix B = dnc e as the number of bins. For simplicity, we assume c divides n. Let O
be initialized as [n] that denotes the set of active players. β · n is the maximum size of the
coalition for β ∈ (0, 1).

Building blocks: A publicly verifiable concurrent non-malleable commitment as in Sec-
tion 3.3, NMC.

Protocol:

1. Every player i randomly chooses a string vi ← {0, 1}λ as its virtual ID, invokes n instances
of NMC, and runs the commit phase with n receivers to commit to (i, vi). Exclude those
players who fail to commit.

2. Each player randomly chooses a bin bi ← [B] with fresh randomness, and sets mi =
(bi, vi). Broadcast mi using F t,Oanon with t = b(1− β)nc.

• If the output is (fail,D), exclude the players in D from O (namely, set O = O \D).
Then, the remaining players (i.e., those in the updated O) re-run step 2.

• If the output is (ok,Out), go to the next step.
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3. Let b∗ be the lightest bin. Every player opens its virtual ID (i, vi). Let Ub∗ be the set
of virtual IDs that are unique and choose the lightest bin b∗. Those who open the (i, vi)
successfully with vi ∈ Ub∗ are chosen to be the committee.

Note that in LBin-V, players do not need to commit to their bin choices and then open, since the
functionality F t,Oanon guarantees that the malicious coalition has to choose their messages, i.e., bin
choices, independently from honest players’ messages. In the following theorem we show that the
protocol LBin-V described above is both maximin-fair and CSP-fair in the F t,Oanon-hybrid model.

Theorem 4.7. Assume that NMC is a publicly verifiable concurrent non-malleable commitment
as in Section 3.3. For any n, c ∈ N and ε ∈ (0, 1/2), β ∈ (0, 1), the committee election protocol
LBin-V(c, n, β) is a (1− ε, δ)-maximin-fair and a (1− 2ε, δ)-CSP-fair (c, n)-committee election 2 in
the F t,Oanon-hybrid model, against a coalition K of size βn, where

δ =
2n

(1− β)c
exp

{
−ε

4

2
(1− β)c

}
+ negl(λ).

Moreover, the round complexity of LBin-V is at most 2
1−β + 2.

Proof. Fix n, c, ε, and β as in the statement. Let Unique be the event that honest players choose
unique virtual IDs, and their virtual IDs do not collide with any players in the coalition. Let GOOD
be the event that in every execution of F t,Oanon in Step 2, each bin has at least (1− ε2)(1−β)c honest
players.

We use the following lemma to prove maximin-fairness and CSP-fairness. The proof to the
lemma appears afterward.

Lemma 4.8. Pr [Unique,GOOD] ≥ 1− δ.

Maximin-fairness Let Hi denote the event that an honest player i is chosen into the committee.
The claimed maximin-fairness follows from the following lemma. The proof of the lemma appears
below.

Lemma 4.9. Pr [Hi | Unique,GOOD] ≥ (1− ε)c/n.

Combining Lemmas 4.8 and 4.9, we have that LBin-V is a (1 − ε, δ)-maximin-fair committee
election protocol against a coalition of size βn by Definition 3.7.

CSP-fairness Let β̃ denote the fraction of the coalition in the committee. Now, the claimed CSP-
fairness follows from the following lemma. The proof of the lemma appears below.

Lemma 4.10. E
[
β̃ | GOOD,Unique

]
≤ β

1−2ε .

Combining Lemmas 4.8 and 4.10, we have that LBin-V is a (1 − 2ε, δ)-CSP-fair committee
election protocol against a coalition of size βn by Definition 3.5.

4.2.3 Proof of Lemma 4.8

Since Unique depends only on the virtual IDs (v1, . . . , vn), Consider the following hybrid experi-
ment.

2Theorem 4.7 implies that the protocol LBin-V is a (1 − 2ε, δ)-game-theoretic fairness by Definition 3.7.
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Hyb: Hybrid experiment

1. Each honest player randomly chooses a virtual ID vi ∈ {0, 1}λ, invokes n instances of
NMC and run the commit phase with n receivers to commit to vi.

2. Run the simulator S for NMC, that outputs 1) βn2 values {v1
j , . . . , v

n
j }j∈K that the

malicious coalition is trying to commit: each player j ∈ K commits to vij to receiver i, for
i ∈ [n]; and 2) the view of the adversary viewA. If the same player j ∈ K is committing
to different values to different receivers, we simply let its committed value be vj = 0λ;
otherwise, we let vj , i.e., the virtual ID of player j ∈ K, be the value output by the
simulator S.

Output: The experiment outputs the set of virtual IDs of honest players VH and the set of
virtual IDs of the coalition VK , as well as the view of the malicious coalition viewK .

We use Real to denote a real execution of Step 1 of LBin-V. The output is the set of virtual
IDs chosen by honest players, players in the coalition, and the view of the adversary. By a similar
argument as Claim 4.4, Pr[Unique] in Real should be negligibly close to Pr[Unique] in Hyb. Note
that in Hyb, the probability that an honest player i chooses a virtual ID that collides with another
player j with probability at most 1

2λ
. By the union bound over the number of pairs of players,

Unique happens with 1− n(n−1)
2·2λ probability in Hyb. Therefore, in Real, the probability Pr[Unique] ≥

1− negl(λ).
By Chernoff’s bound (Lemma 3.1) and the union bound over B bins, in a single execution of

F t,Oanon, each bin contains at least (1− ε2)(1− β)c honest players with probability

p = 1− n

c
exp

{
−ε

4

2
(1− β)c

}
.

Next, we argue that the number of executions of F t,Oanon in LBin-V is at most 2
1−β . Indeed, each

time we invoke F t,Oanon, the protocol either outputs ok or outputs a set of players in the coalition
of size at least t. These t players in the coalition are excluded from the later executions of F t,Oanon.
Since t = b(1− β)nc, we will run at most βn

b(1−β)nc <
2

1−β rounds of F t,Oanon.

Thus, the probability that each bin contains at least (1 − ε2)(1 − β)c honest players in every

execution of F t,Oanon is p
2

1−β . Henceforth,

Pr[GOOD,Unique] ≥ p
2

1−β (1− negl(λ))

≥
(

1− 2

1− β
n

c
exp

{
−ε

4

2
(1− β)c

})
(1− negl(λ))

≥ 1− 2

1− β
n

c
exp

{
−ε

4

2
(1− β)c

}
− negl(λ) = 1− δ.

4.2.4 Proof of Lemma 4.9

In LBin-V, the players choose their bins in Step 2 with their virtual IDs and broadcast the bin
choices using F t,Oanon. By the property of the functionality, in each execution of F t,Oanon, the coalition
has to choose their input, i.e., their bin choices, independently from honest players’ bin choices.
If the coalition chooses to fail a call to F t,Oanon, then t players in the coalition will be wiped out,
and honest players choose bins with fresh randomness in the next call to F t,Oanon. Therefore, the
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coalition’s strategy Sl of whether to fail the l-th call to F t,Oanon in Step 2 depends only on the output
of the first l number of calls to F t,Oanon, and the view viewcomm

K of the coalition K in Step 1. Still, we
use H to denote the set of honest players, where |H| = n− βn.

Let L denote the maximum number of F t,Oanon calls in Step 2. We use Outl to denote the output
of the l-th call to F t,Oanon, and Sl to denote the coalition’s strategy of whether to fail the l-th call.
The support of Sl is {fail, ok,⊥}. If Sl = ok, then for any l′ ≥ l, Sl′ = ⊥. Moreover, Outl′ = ⊥.

For the l-th call to F t,Oanon, let Hi,j denote the event that honest player i chooses bin j in that

F t,Oanon call. Now we proceed to bound

Pr[Hi,j | Out1, . . . ,Out`, viewcomm
K , S1, . . . , S`].

Since honest players choose their bins independently in different calls to F t,Oanon, and moreover, the
coalition’s strategy Sl depends only on Out1, . . . ,Outl and viewcomm

K , it follows that

Pr [Hi,j | Out1, . . . ,OutL, viewcomm
K , S1, . . . , SL] = Pr [Hi,j | Outl, viewcomm

K ] .

Next, we show that given the output of each call to F t,Oanon, and viewcomm
K , the map between the

honest virtual ID and the honest players’ identity remains hidden from the coalition K. Formally,

Claim 4.11. Let VH and VK be the (unordered) set of virtual IDs chosen by the honest players and
the players in the coalition, respectively, that the transcript of Step 1 binds to, and viewcomm

K be the
corresponding view of the malicious coalition in Step 1. Then, for any honest player i ∈ H,

γi := Pr [Honest player i chooses vi ∈ VH | VH , VK , viewcomm
K ] ≥ 1

|H|
− negl(λ).

Proof. By a similar argument as in Claim 4.4, by the non-malleability of NMC, for any i, γi in Real
is computationally indistinguishable from γi in Hyb. Therefore, it suffices to bound γi in Hyb.

In Hyb, the virtual IDs of the coalition and the view viewcomm
K are independent of honest players’

virtual IDs. Hence, in Hyb, for any i ∈ H,

γi = Pr [Honest player i chooses vi ∈ VH | VH , VK , viewcomm
K ] =

1

|H|
.

The claim thus follows.

Recall that Outl is an unordered set of all messages {(vi, bi)}i∈[n], where vi is the virtual ID

chosen by player i and bi is the bin choice of player i in the l-th call to F t,Oanon (If |Outl| < n, just pad
n−|Outl| copies of (⊥,⊥) to Outl). For j ∈ [B], we use Vj to denote the set Vj = {vi : (vi, j) ∈ Outl},
i.e., the set of virtual IDs choosing bin j. By Claim 4.11, we have that

Pr[Hi,j | Outl = {(vi, bi)}i∈[n], view
comm
K = v]

= Pr

[
Player i chooses virtual ID vi ∈ Vj

∣∣∣∣ Outl = ((v1, b1), . . . , (vn, bn)),

viewcomm
K = v

]
≥ hj
|H|
− negl(λ),

where hj is the number of honest players in bin j. Given the assumption that GOOD happens,
hj ≥ (1−ε2)(1−β)c for every j ∈ [B]. Hence, for any output ((v1, b1), . . . , (vn, bn)), and any view v,

Pr

[
Hi,j

∣∣∣∣ Outl = ((v1, b1), . . . , (vn, bn)),

viewcomm
K = v,GOOD

]
≥ (1− ε2)c

n
− negl(λ). (4)
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Note that the lightest bin b∗ is a deterministic function given the outputs of F t,Oanon and the
coalition’s strategy: given Out1, . . . ,OutL and S1, . . . , SL, b∗ is the lightest bin in the first success
call to F t,Oanon. Let Hi denote the event that honest player i is chosen into the committee.

We use viewK to denote the view of the adversary at the end of Step 2, which includes viewcomm
K ,

and Out1, . . . ,OutL, as well as A’s strategy S1, . . . , SL. Then, for any i ∈ H,

Pr[Hi | GOOD] =
∑
j∈[B]

Pr [Hi,j , b
∗ = j | GOOD]

=
∑
j∈[B]

∑
v∈supp(viewK)

Pr [Hi,j , b
∗ = j | viewK = v,GOOD] · Pr [viewK = v | GOOD]

≥
∑

v∈supp(viewK)

(
(1− ε2)c

n
− negl(λ)

)
Pr [viewK = v | GOOD]

=
(1− ε2)c

n
− negl(λ),

where the inequality follows from (4), and the last equality results from the fact that the sum of
probability over the whole support is 1.

Therefore, at the end of Step 2, the probability that an honest player i’s virtual ID is in the
lightest bin b∗ is at least (1− ε2)c/n−negl(λ). As the event Unique happens (Recall that Ub∗ is the
set of virtual IDs that are unique and chooses the lightest bin b∗), if honest player i’s virtual ID vi
is in the lightest bin, then vi is also in the set Ub∗ . Thus, player i will be elected into the committee.
This implies that the honest player i will be elected into the committee with a probability at least
(1− ε2)c/n− negl(λ) ≥ (1− ε)c/n, given that GOOD and Unique happens.

4.2.5 Proof of Lemma 4.10

The proof to this Lemma is similar to the proof of Lemma 4.2, except that now we do not commit
and then open the bin choices. Instead, the players directly send their bin choice with the virtual ID
using the anonymous broadcast functionality F t,Oanon. Note that in Step 2, the coalition can choose
to fail F t,Oanon and change their bin choices. Yet, in the next run of F t,Oanon, honest players choose
their bins with fresh randomness, and the coalition’s bin choices are still independent of the honest
players’ bin choices in the new call. Therefore, the proof of Lemma 4.2 still applies in each call of
F t,Oanon. Consequently, the fraction of the coalition in the lightest bin at the end of Step 2 is at most
β

1−2ε given that GOOD happens. In addition, since Unique happens, every honest player choosing
the lightest bin will appear in the committee. The fraction of the coalition in the committee is thus
at most β

1−2ε given GOOD and Unique happens. That is, E[β̃ | GOOD,Unique] ≤ β
1−2ε . In addition,

Corollary 4.6 still holds in LBin-V.

5 Fairness Amplification Though Iteration

This section gives our final game-theoretically fair committee election and leader election proto-
cols to select arbitrary committee size with good fairness parameters. The committee election
protocol LBin-V introduced in Section 4.2 does not achieve fairness with good parameter for ar-
bitrary committee size. For example, if we want to choose a log log n-sized committee from n
players using LBin-V, the probability that the GOOD event does not happen is upper bounded
by n

log logn exp{− ε4

2 log logn}, which is even larger than 1. This makes LBin-V not fair enough for
electing a small sized-committee.
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Therefore, to build a fair committee election protocol that works for arbitrary committee size,
we compose LBin-V for multiple iterations, and combine it with the tournament tree protocol if
necessary.

We first give the formal description of the tournament tree protocol and its “almost perfect”
fairness. Then we give our final committee election protocol that achieves game-theoretic fairness
for arbitrary committee size.

5.1 Preliminary: Fairness of Tournament Tree Protocol

This section gives a formal description of the tournament tree protocol.

Tournament tree protocol Tourn(O)

Let n be the size of O.

• If n = 1, return the single player in O.

• Otherwise, let n1 = bn2 c and n2 = dn2 e. Let O1 be the first n1 players in O and O2 be
the remaining players.

• In parallel, run Tourn(O1) and Tourn(O2), and denote the output as O1 and O2, respec-
tively.

• The final winner is determined by the duel protocol between O1 and O2 such that Oi
wins with probability ni/n. This is described below.

Duel Protocol between O1 and O2

Let k1
k1+k2

and k2
k1+k2

be the probability that player O1 and O2 wins, respectively.

• Let k = k1 + k2, and ` = dlog ke. Each player Oi commits to an `-bit random string that
represents some si ∈ Zk−1 for i = 1, 2.

• Each player Oi opens its commitment and reveals si. If s1 + s2 mod k ∈ {0, . . . , k1− 1},
player O1 wins. Otherwise, O2 wins.

• If a player aborts or fails to open the commitment correctly, it is treated as forfeiting and
the other player wins.

Lemma 5.1 (Theorem 3.5 of Chung et al. [CCWS21]). Let n be the number of players and λ be the
security parameter. Then, the tournament-tree protocol, when instantiated with a suitable publicly
verifiable, non-malleable commitment scheme as defined in Section 3.3, satisfies (1−negl(λ))-CSP-
fairness and (1 − negl(λ))-maximin-fairness against coalition of arbitrarily sizes. Moreover, the
round complexity is O(log n).

5.2 Our Final Game-Theoretically Fair Committee Election

In this section, we give our fair committee election protocol that works for arbitrary committee
size. Our final protocol runs multiple iterations of LBin-V and combines it with the tournament
tree protocol if necessary. The F t,Oanon ideal functionality in LBin-V can be instantiated in real-world
cryptography, with only a constant round blowup. The instantiation will be given in Section 6.
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Let c be the upper bound of the committee size we want to achieve. The final committee
election is given below.

Committee election protocol CElect(n, c)

Parameter: Let c be the upper bound of the committee size and R be the round complexity
we want to achieve. The initial committee is C0 = [n], c0 = n. The fraction of the coalition
is β0 = β. If c ≥ 2R, let L ≤ R be the smallest integer such that log(L) n ≤ c0.1 and ε = 1

c0.1
;

otherwise, set L ≤ R be the smallest integer such that log(L) n ≤ 2R and ε = 1
2R

.

Protocol

1. For ` = 1, . . . , L− 1:

• Let c` = (log(`) n)10, O = C`−1, β` = β`−1(1− ε2) + ε2.

• Run LBin-V(c`, C`−1, β`−1). That is, we choose a committee C` of size c` = (log(`) n)10

from C`−1.

• ` = `+ 1.

2. If c ≥ 2R, set cL = c; otherwise, set cL = 211R. Run the committee election protocol
LBin-V(cL, CL−1, βL−1) to elect a committee CL of size at most cL.

3. If cL ≥ c, run c number of parallel instances of Tournsid (CL) for sid ∈ [c]. Let the final
committee be the set of elected leaders in these c instances of tournament tree protocol.

Note that in the protocol, β` is just a parameter that passes to LBin-V, together with c and O.
It is not the real fraction of the coalition in committee C`. Instead, it is the upper bound of the
real fraction of the coalition in C` if good event happens in each round up to `. The parameter β`
is only used to set the parameter t of F t,Oanon in the `-th LBin-V call.

Theorem 5.2. Assume the existence of enhanced trapdoor permutations and collision-resistant
hash functions. Fix n and c. Let L∗ be the smallest integer such that log(L∗) n ≤ c. Then for any
L∗ ≤ R ≤ C0 log n for some constant C0, we have that

• If c ≥ 2R, there exists an O(R)-round committee election that achieves (1 − 1
cΘ(1) )-game-

theoretic fairness against a non-uniform p.p.t. coalition of size at most (1− L∗

Θ(R))n.

• If c < 2R, there exists an O(R)-round committee election that achieves (1 − 1
2Θ(R) )-game-

theoretic fairness against a non-uniform p.p.t. coalition of size at most (1− L
Θ(R))n, where L

is the smallest integer such that log(L) n ≤ 2R.

Proof. Consider the CElect protocol given above. By the theorem statement, L is the number of
invocations of the committee election protocol LBin-V. The size of the committee chosen in each
round of LBin-V satisfies that c` = (log(`) n)10 for ` = 1, . . . , L − 1 and cL = c if c ≥ 2R and
cL = 211R otherwise. We use β̃` to denote the random variable of the fraction of the coalition in
committee C` and B` to denote the support of β`.

If c ≥ 2R: In this case, the protocol runs L rounds of LBin-V. Recall that L∗ is the smallest
integer such that log(L∗) n ≤ c, we have that L ≤ L∗ ≤ L+C∗ for some non-negative constant C∗.
Therefore, β ≤ 1− L∗

Θ(R) ≤ 1− L
Θ(R) .

Round complexity: By Theorem 4.7, the round complexity of the `-th committee election LBin-V
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is at most 2C′

1−β` + 2 for a constant C ′. Since β` = β`−1(1− ε2) + ε2, we have that, for any ` ∈ [L],

β` = β`−1(1− ε2) + ε2

= β(1− ε2)` + ε2
`−1∑
i=0

(1− ε2)i

= β(1− ε2)` + ε2 · 1− (1− ε2)`

ε2

= 1− (1− β)(1− ε2)`

≤ 1− L

Θ(R)

(
1− `

c0.1

)
≤ 1− L

Θ(R)

(
1− `

2Θ(R)

)
, (5)

where the last inequality comes from the assumption that c ≥ 2R. Therefore, the round complexity
of the committee election CElect protocol is

L∑
`=1

(
2C ′

1− β`
+ 2

)
≤2L+ L · 2C

1− βL

≤L · 2C ′

L
Θ(R)

(
1− L

2Θ(R)

) +O(R) By L ≤ R and (5)

=
C ′ ·Θ(R)

1− L
2Θ(R)

+O(R) = O(R).

We now proceed to prove the CSP fairness and the maximin fairness separately.
CSP fairness: By Theorem 4.7, the LBin-V in the `-th round is (1−2ε, δ)-CSP fair against a coalition

of size β̃`−1c`−1, where

δ` =
2

1− β`
c`−1

c`
exp

{
−ε

4

2
(1− β̃`−1)c`

}
+ negl(λ)

≤ (log(`−1) n)10 exp
{
−5(1− β̃`−1)(log(`) n)6

}
, for ` = 1, . . . , L− 1

δL =
2

1− βL
cL−1

c
exp

{
−ε

4

2
(1− β̃L−1)c

}
+ negl(λ)

≤ (log(L−1) n)10 exp
{
−5(1− β̃L−1)c0.6

}
.

By definition, for ` = 1, . . . , L, there exists an event G` that satisfies the following:

Pr[G` | β̃`−1 = x] ≥ 1− δ`(x), (6)

E[β̃` | G`, β̃`−1 = x] ≤ x

1− 2ε
, (7)

where

δ`(x) = (log(`−1) n)10 exp
{
−5(1− x)(log(`) n)6

}
, for ` = 1, . . . , L− 1

δL(x) = (log(L−1) n)10 exp
{
−5(1− x)c0.6

}
.
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Let G denote the event that G1, . . . ,GL happens.
We first bound E[β̃L | G]. For ` = 1, . . . , L, we have that

E[β̃` | G1, . . . ,G`]

=
∑

x∈B`−1

E

[
β̃`

∣∣∣∣∣ β̃`−1 = x,

G1, . . . ,G`

]
Pr[β̃`−1 = x | G1, . . . ,G`]

≤
∑

x∈B`−1

x

1− 2ε
Pr[β̃`−1 = x | G1, . . . ,G`] (By (7))

=
1

1− 2ε
E[β̃`−1 | G1, . . . ,G`−1]

Consequently E[β̃L | G] = E[β̃L | G1, . . . ,GL] ≤ β
(1−2ε)L

.

To compute the probability that G happens, note that for ` = 1, . . . , L

Pr[G` | G1, . . . ,G`−1]

=
∑

x∈B`−1

Pr

[
G`

∣∣∣∣∣ β̃`−1 = x,

G1, . . . ,G`−1

]
Pr[β̃`−1 = x | G1, . . . ,G`−1]

≤
∑

x∈B`−1

δ`(x) Pr[β̃`−1 = x | G1, . . . ,G`−1]

=E[δ`(β̃`−1) | G1, . . . ,G`−1].

We give the following claim and show that the result follows from it. The proof of the claim is
given afterward.

Claim 5.3. There exists a constant C, such that or any ` = 1, . . . , L, the expectation

E[δ`(β̃`−1) | G1, . . . ,G`−1] ≤ exp
{
−C(log(`) n)4

}
.

Therefore, the probability that G happens is at least

Pr[G] =

L∏
`=1

Pr[G` | G1, . . . ,G`−1]

≥
L∏
`=1

(
1− exp

{
−C(log(`) n)4

})
≥ 1− L exp

{
−C(log(L) n)4

}
.

Thus, CElect is a (1− (1− 2ε)L, δ)-CSP fair (cL, n)-committee election, where the probability that

G does not happen is at most δ = L exp
{
−C(log(L) n)4

}
. By Lemma 3.8, CElect is a (1− ε1)-CSP

fair leader election, where

ε1 =
β(1− (1− 2ε)L) + δ(1− 2ε)L

β + δ(1− 2ε)L
+ negl(λ) ≤ β · 2Lε+ δ

β + δ
, (8)

where the inequality comes from the fact that (1 − 2ε)L ≥ 1 − 2Lε, and that for any 0 < a
b < 1,

a
b ≤

a+ε
b+ε for ε > 0. We consider the following cases based on the fraction of the coalition β.
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• Case 1: β ≥ δ
ε . Substitute into (8), we have

ε1 ≤
β · 2Lε+ δ

β + δ
≤ β · 2Lε+ βε

β + βε
=

(2L+ 1)ε

1 + ε
=

1

cΘ(1)
.

Thus, the committee election protocol CElect is
(

1− 1
cΘ(1)

)
-CSP fair.

• Case 2: β < δ
ε = L

ε exp{C(log(L) n)4}
. In this case, substituting β into (8) directly does not yield

the desired result. However, note that the fraction of the coalition is very small. With some
large probability, there will be no coalition’s representation on the committee in the last few
rounds of committee election LBin-V, and the coalition gains utility 0 no matter the good
events happen or not in the last few rounds.

Let `∗ ∈ [L] be the value such that L
ε exp{C(log(`∗−1) n)4}

≤ β < L
ε exp{C(log(`∗) n)4}

. Note that

since β ≥ 1
n (otherwise we are in an all-honest execution), such `∗ must exist.

Since the expected fraction of the coalition in C` is E[β̃` | G1 . . .G`] ≤ β
(1−2ε)`

, the expected

number of the coalition’s representations f` in C` is E[f` | G1, . . . ,G`] ≤ βc`
(1−2ε)`

. For any

` ≥ `∗ − 1, the expected number of the coalition’s representation in the committee is

E[f` | G1, . . . ,G`] ≤
βc`

(1− 2ε)`
<

L · 2R(log(`) n)10

exp{C(log(`∗) n)4}(1− 2ε)`
< 1.

If there is no coalition’s representation in C` for some ` ∈ [L], the expected utility of the
coalition is 0, no matter whether the good events happen or not in the later committee
elections, i.e., for any `′ > `, E[β̃`′ | f` < 1] = 0.

By Markov inequality, for any ` ≥ `∗ − 1, the probability that there exist players from the
coalition in the `-th committee is C` is

Pr [f` ≥ 1 | G1, . . . ,G`] ≤
βc`

(1− 2ε)`
. (9)

Let G′ denote the event that G1, . . . ,G`∗ happens. Then the probability that G′ happens is
at least (`∗ − 1) exp{−C(log(`∗−1) n)4} by a similar argument as before. Next we proceed to
bound E[β̃L | G′]. Recall that f` is the number of the coalition’s representations in C`, we
have

E[β̃L | G1, . . . ,G`∗−1]

=
L∑

`=`∗−1

E
[
β̃L

∣∣∣∣ G1, . . . ,G`,

f`−1 ≥ 1, f` < 1

]
Pr

[
G`∗ , . . . ,G`,

f`−1 ≥ 1, f` < 1

∣∣∣∣ G1, . . . ,G`∗−1

]

+

L−1∑
`=`∗−1

E
[
β̃L

∣∣∣∣ G1, . . . ,G`,

f` ≥ 1,G`+1

]
Pr

[
G`∗ , . . . ,G`,

f` ≥ 1,G`+1

∣∣∣∣ G1, . . . ,G`∗−1

]
+E[β̃L | G1, . . . ,GL, fL ≥ 1] Pr[G`∗ , . . . ,GL, fL ≥ 1 | G1, . . . ,G`∗−1]. (10)

Intuitively, the first term is the expectation of β̃L if the number of the coalition’s representation
after ` rounds of LBin-V becomes 0; the second term is the expectation of β̃L given that there
exist the coalition’s representations in each round, yet the good event does not happen in the
`-th round of LBin-V; the third term is the expected fraction of the coalition given that good
event happens in every round of LBin-V, and that the number of the coalition’s representations
in every round is at least one. We now proceed to calculate the above terms separately.
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1. For any ` ≥ `∗ − 1, E[β̃L | G1, . . . ,G`, f`−1 ≥ 1, f` < 1] = 0.

2. For any L− 1 ≥ ` ≥ `∗ − 1, E[β̃L | G1, . . . ,G`, f`−1 ≥ 1,G`+1] ≤ 1. The probability

Pr[G`∗ , . . . ,G`, f` ≥ 1,G`+1 | G1, . . . ,G`∗−1]

= Pr[G`+1 | G1, . . . ,G`, f` ≥ 1]

· Pr[f` ≥ 1 | G1, . . . ,G`] Pr[G`∗ , . . . ,G` | G1, . . . ,G`∗−1]

≤ exp{−C(log(`+1) n)4} βc`
(1− 2ε)`

≤ β

exp{C ′(log(`+1) n)2}
,

for some constant C ′.

3. E[β̃L | G1, . . . ,GL, fL ≥ 1] ≤ β
(1−2ε)L

.

Substituting all three terms back into (10):

E[β̃L | G1, . . . ,G`∗−1] ≤
β

(1− 2ε)L
+

L−1∑
`=`∗−1

β

exp{C ′(log(`+1) n)2}

≤β
[

1

(1− 2ε)L
+ L exp{−C ′(log(L) n)2}

]
≤ β

[
1

(1− 2ε)L
+ Θ(ε)

]
.

Therefore, for L
ε exp{C′(log(`∗−1) n)4}

≤ β < L
ε exp{C′(log(`∗) n)4}

, the expected fraction of the coali-

tion in the committee is at most β
[

1
(1−2ε)L

+ Θ(ε)
]

+ δ′, where

δ′ = (`∗ − 1) exp{−C ′(log(`∗−1) n)4} ≤ βε.

That is, the expected fraction of the coalition in the committee is at most

β

[
1

(1− 2ε)L
+ Θ(ε)

]
≤ β

1− 1
cΘ(1)

.

Therefore, the committee election protocol is (1− ε1)-CSP fair for ε1 = 1
cΘ(1) .

Maximin fairness: Let Hi,` be the event that an honest individual i gets elected into the committee

C`. Then by Theorem 4.7, for ` = 1, . . . , L,

Pr [Hi,` | Hi,`−1,G`] ≥
(1− ε)c`
c`−1

, Pr
[
Hi,` | Hi,`−1

]
= 0.

Still, let G denote the event that G1, . . . ,GL happens. Then the probability that G happens is at

least Pr[G] ≥ 1− L exp
{
−C(log(L) n)4

}
. Therefore, we have

Pr[Hi,L | G] ≥ Pr[Hi,L | Hi,L−1,G1, . . . ,GL] Pr[Hi,L−1 | G1, . . . ,GL]

≥ (1− ε)cL
cL−1

Pr[Hi,L−1 | G1, . . . ,GL−1] Pr[G1, . . . ,GL]

≥ . . .

≥ cL
n

(1− ε)L
(

1− L exp
{
−C(log(L) n)4

})
≥ cL

n

(
1− Lε− L exp

{
−C(log(L) n)4

})
≥ cL

n
(1− 2Lε)

Thus, CElect is a (1− 2Lε, δ)-maximin fair committee election, where δ ≤ L exp
{
−C(log(L) n)4

}
.

It follows from Lemma 3.9 that the committee election CElect is (1− 1
cΘ(1) )-maximin fair.
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If c < 210R In this case, the protocol runs L rounds of LBin-V and then c parallel instance of the
tournament tree protocol, which takes at most O(R) rounds. Pick ε = 1

2Θ(R) , by a similar argument
as above, we have that the expected fraction of the coalition in CL (the committee chosen by the
L-th LBin-V) is at most β

1−ε , and the probability that an honest individual i gets elected into CL is

at least (1−ε)cL
n , where cL = |CL|.

CSP fairness: Let Xi be an indicator of whether the elected leader in the k-th instance of Tourn(CL)
is a player from the coalition. Then by Lemma 5.1, E[Xk] ≤ β

1−ε +negl(λ). Therefore, the expected
fraction of the coalition in the final committee is

E

[∑
k∈[c]Xk

c

]
=

1

c

∑
i∈[c]

E[Xk] ≤
β

(1− ε)(1− negl(λ))
≤ β

1− 1
2Θ(R)

.

Therefore, CElect is a (1− 1
2Θ(R) )-CSP fair committee election.

Maximin fairness: For any fixed honest individual i, let Yk be an indicator of whether honest player
i gets elected as the leader of the k-th instance of Tourn(CL). Then by Lemma 5.1, we have that

Pr[Yk | Player i in CL] ≥ 1−negl(λ)
cL

. Therefore,

Pr[Player i in the committee]

= Pr[Player i in the committee | Player i in CL] Pr[Player i in CL]

=

1−
∏
k∈[c]

(1− Pr[Yk | Player i in CL])

 (1− ε)cL
n

≥

1−
∏
k∈[c]

1− negl(λ)

cL

 (1− ε)cL
n

≥
(
c

cL
− c(c− 1)

2c2
L

− negl(λ)

)
(1− ε)cL

n
≥ c

cL

(
1− 1

2R

)
(1− ε)cL

n

≥ c

n
(1− 1

2Θ(R)
).

Therefore, CElect is (1− 1
2Θ(R) )-maximin fair against at most (1− L

Θ(R))n. The theorem thus follows.

Proof of Claim 5.3. Recall that β` = β`−1(1 − ε2) + ε2 for ` = 1, . . . , L. By Corollary 4.6, the
probability that Pr[β̃` ≤ x(1 − ε2) + ε2 | β̃`−1 = x,G`] = 1. Therefore, given that G1, . . . ,G`
happens, β̃` ≤ β` with probability 1.

Now we proceed to bound E[δ`(β̃`−1) | G1, . . . ,G`−1]. By the definition of expectation and the
fact that δ`(x) is monotone, we have that

E[δ`(β̃`−1) | G1, . . . ,G`−1] =
∑

x∈B`−1

δ`(x) Pr[β`−1 = x]

=
∑

x≤β`−1

δ`(x) Pr[β̃`−1 = x | G1, . . . ,G`−1]

≤ δ`(β`−1)
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For ` = 1, . . . , L− 1, we have that

δ`(β`−1) = (log(`−1) n)10 exp

{
− 5L

Θ(R)

(
1− `

2R

)
(log(`) n)6

}
≤ exp{−C(log(`) n)4}.

For ` = L, we have that

δL(βL−1) ≤ (log(L−1) n)10 exp

{
− 5L

Θ(R)

(
1− L

c0.1

)
c0.6

}
≤ exp{−C(log(L) n)4},

where the last inequality follows from the fact that log(L) n ≤ c0.1. The claim thus follows.

Remark 5.4. As we will see in Theorem 6.2, the parameter β` should be appropriately chosen
such that in each round, c` − t ≥ β̃`c` where t = b(1 − β`)c`c. Note that in the proof, we only
care about the case when good events G` happen in each round. Otherwise, we just assume that the
committee contains no honest players, and we do not care about the security of F t,Oanon. When good
events happen in each round, as analyzed in the proof, β̃` ≤ β` with probability 1 for ` = 1, . . . , L.
Therefore, we have the guarantee that c` − t ≥ β̃`c`, as shown in (5).

Our final leader election protocol can be gained directly by picking c = 1 in Theorem 5.2.

Theorem 5.5. Assume the existence of enhanced trapdoor permutations, and collision-resistant
hash functions. Fix n and let log∗ n ≤ R ≤ C log n be the round complexity we want to achieve for
some constant C. Then there exists an O(R)-round leader election that achieves (1− 1

2Θ(R) )-game-

theoretic fairness against a non-uniform p.p.t. coalition of size at most (1− L
Θ(R))n, where L is the

smallest integer such that log(L) n ≤ 2R.

Proof. By picking c = 1 in Theorem 5.2, we have that L∗ = log∗ n. Thus, by Theorem 5.2, for
log∗ n ≤ R ≤ C log n, there is an O(R)-round committee election that achieves (1 − 1

2Θ(R) )-game-

theoretic fairness against a non-uniform p.p.t. coalition of size at most (1− L
Θ(R))n, where L is the

smallest integer such that log(L) n ≤ 2R. This size-1 committee will be the elected leader.

6 Instantiation of the Ideal Functionalities

In this section, we show how to instantiate the ideal functionalities F t,Oanon used in committee election
LBin-V. Recall that the ideal functionality F t,Oanon receives one message from each player and either
sends the set of all messages it receives to everyone or a set of corrupt players of size at least t to
everyone. We will first give our protocol in a IdealZK∗-hybrid model in which players have access
to an ideal zero-knowledge proof functionality. Then we use the elegant techniques of Pass [Pas04]
to instantiate the protocol with real-world cryptography. Next. we will first describe the IdealZK∗

functionality in Section 6.1, and then we will give our protocol in the IdealZK∗-hybrid world in
Section 6.2.

6.1 Ideal Zero-Knowledge Functionality IdealZK∗

Basically, IdealZK∗ either sends success to everyone indicating that the proof is correct, or the
identity of the prover/verifier who leads to the failure of the proof. Formally,
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Ideal Zero-knowledge Functionality IdealZK∗[x, L, i, j]
The functionality involves n parties 1, . . . , n, and is parametrized with a statement x, the

language L, the prover’s identity i and the verifier’s identity j.

1. If both the prover i and the verifier j are corrupted, receive a bit b from the prover i. If
b = 1, send (success, i, j) to everyone.

2. Receive ok or ⊥ from the verifier j.

3. If received ⊥ from the verifier, send (fail, j) to everyone.

4. Receive w or ⊥ from the prover.

5. If R(x,w) = 1, send (success, i, j) to everyone. Otherwise send (fail, i) to everyone.

In an n-party IdealZK∗-hybrid protocol, the players can invoke the ideal zero-knowledge func-
tionality IdealZK∗[x, L, i, j] between any prover i ∈ [n] and any verifier j ∈ [n], and for arbitrary
NP language L. Without loss of generality, in every round, there can be at most n2 concurrent
invocations of IdealZK∗. Given an n-party IdealZK∗-hybrid protocol, we can instantiate IdealZK∗

with actual cryptography using the elegant techniques suggested by Pass [Pas04].

Theorem 6.1. (Constant-round, bounded concurrent secure computation [Pas04]). Assume the
existence of enhanced trapdoor permutations and collision-resistant hash functions. Then, given an
n-party IdealZK∗-hybrid protocol Π∗, in which the number of concurrent calls of IdealZK∗ is upper
bounded by a priori known bound m = poly(λ), there exists a real-world protocol Π such that the
following hold:

• Simulatability: For every real-world non-uniform p.p.t. adversary A controlling an arbi-
trary subset of up to n − 1 players in Π, there exists a non-uniform p.p.t. adversary A∗ in
the protocol Π∗, such that for any input (x1, . . . , xn), every auxiliary string z ∈ {0, 1}∗,

ExecΠ,A(1λ, x1, . . . , xn, z) ≡c ExecΠ∗,A∗(1λ, x1, . . . , xn, z).

In the above, the notation ExecΠ,A (or ExecΠ∗,A∗) outputs each honest players’ outputs as well
as the corrupt players’ (arbitrary) outputs.

• Round efficiency: The round complexity of Π is at most a constant factor worse than that
of Π∗.

This real-world protocol is fulfilled by replacing the IdealZK∗ instance with the bounded con-
current zero-knowledge proofs. All the zero-knowledge proof messages are posted to the broadcast
channel. We defer the proof of Theorem 6.1 to Appendix A.

Now it suffices to show how to replace F t,Oanon with a protocol Anont,O in the IdealZK∗-hybrid
world. In the protocol, we will omit the language L when it is clear from the context.

6.2 Implementing Anonymous Broadcast Functionality

In this section, we describe how to implement F t,Oanon in the IdealZK∗-hybrid model. The protocol
makes use of a perfect binding, statistically hiding commitment scheme comm. Also, every player
keeps track of two sets, Ds and Dr, the set of players who fail to share and the set of players who
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fail to reconstruct, respectively, to guarantee the identifiable abort property. Still, we use K to
represent the set of corrupted players, H to represent the set of honest players. The number of
parallel sessions is set to be λ. The protocol Anont,O is given below.

Anont,O: instantiating F t,Oanon in the IdealZK∗ -hybrid world

Parameters: Let M = 2n be the number of slots. Let Ds, Dr and Out be initially empty sets.
Without loss of generality we assume that O = [n].

Building blocks: A perfectly binding, computationally hiding commitment scheme comm.

Input: Each player has an input mi ∈ F for a finite field F with size larger than 2λ. The sum
of tuples is computed entry-wise, i.e., (a1, b1, c1) + (a2, b2, c2) = (a1 + a2, b1 + b2, c1 + c2).

Preparation Phase Run the following for λ independent, parallel sessions:

1. Player i uniformly randomly choose a nonce midi ∈ F. It then uniformly randomly
chooses a slot li ← [M ] and computes a vector Si ∈ (F3)M such that Si[l] = (0, 0, 0) if
l 6= li, and Si[l] = (mi,midi, 1) if l = li.

2. Player i then splits Si into (n − t)-out-of-n Shamir secret shares. Let Xi,j be the j-th

share of Si. Let X̂i,j = comm(Xi,j , ri,j) where ri,j are fresh randomness. Broadcast the

commitments {X̂i,j}j∈[n].

3. If a player i fails to broadcast the commitments, add i to the set Ds.

Validation Phase For sid ∈ [λ], let ∗sid denote the variable ∗ in session sid . Player i invoke
IdealZK∗[stmti, i, j] for each j ∈ [n], with the statement stmti = {X̂sid

i,j }j∈[n],sid∈[λ], and send

the witness w = (mi,midi, {Ssid
i }sid∈[λ], {Xsid

i,j , r
sid
i,j }j∈[n],sid∈[λ]) to prove that

• For each sid ∈ [λ], for each j ∈ [n], (Xsid
i,j , r

sid
i,j ) is the correct opening of X̂sid

i,j ;

• For each sid ∈ [λ], {Xsid
i,j }j∈[n] forms a valid (n− t)-out-of-n secret sharing of Ssid

i ;

• For each sid ∈ [λ], the vector Ssid
i contains only one non-zero slot (mi,midi, 1).

For each i ∈ [n], if there exists a j that IdealZK∗[stmti, i, j] outputs (fail, i), i.e., the prover fails
to prove the statement to receiver j, add i to the set Dsid

s for all sid ∈ [λ].

Sharing phase Continue the following for λ independent, parallel sessions:

1. For j ∈ [n], player i sends (Xi,j , ri,j) to player j.

2. Player i does the following: for every j ∈ [n] \ Ds, if it receives a message (Xj,i, rj,i)

that is a correct opening with respect to X̂j,i, record (Xj,i, rj,i) and broadcast (ok, i, j).
Otherwise, broadcast (complain, i, j) to complain about j.

3. Player i does the following: for all j such that there is a complain (complain, j, i) in
Step 2, player i broadcasts the corresponding opening (i, j,Xi,j , ri,j).
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4. Unless player i broadcasts all correct openings for those players who has sent (complain, j, i)
to complain about i, add i to the set Ds.

5. Player i does the following: for j ∈ [n] \ Ds, if player i sent (complain, i, j) in Step 2,
and j broadcast a correct opening (Xj,i, rj,i) in Step 3. then record the correct opening
(Xj,i, rj,i).

Reconstruction Phase Run the following for λ independent, parallel sessions:

1. Player i computes Yi =
∑

j∈[n]\Ds Xj,i and broadcast Yi. If a player j fails to broadcast,
add j to the set Dr.

2. Player i does the following for each j ∈ [n]: invoke IdealZK∗[stmt′i, i, j] with the statement

stmt′i = (Ds,Yi, {X̂j,i}j∈[n]\Ds). It sends the witness w′ = ({Xj,i, rj,i}j∈[n]\Ds) to the
ideal functionality IdealZK∗ to prove that

• For any j ∈ [n] \ Ds, (Xj,i, rj,i) is a correct opening of X̂j,i;

• Yi =
∑

j∈[n]\Ds Xj,i.

3. If there exists a j such that IdealZK∗[stmt′i, i, j] outputs (fail, i), i.e., the prover fails to
prove the statement to receiver j, add i to the set Dr.

4. If |Dr| ≥ t, everyone stores (fail,Dr ∪ Ds) for the reconstruction phase of this session.

5. Otherwise, every player uses all broadcast shares {Yi}i∈[n]\Dr to reconstruct the sum
S =

∑
i/∈Ds Yi. Store (ok,S) for the reconstruction phase of this session.

Output Phase For each sid ∈ [λ], we use (fail,Dsid ) or (ok,Ssid ) to denote the value each
player stores in the reconstruction phase of session sid . Each player i does the following:

1. If there is a sid ∈ [λ] such that player i stores (fail,Dsid ) for that session, outputs
(fail,∪sid∈[λ]Dsid ), where Dsid = ∅ for those successfully reconstructed sessions.

2. Otherwise, each player does the following: We say that (m,mid) appears in session sid if
there exists a slot l ∈ [M ] such that Ssid [l] = (m,mid, 1).

For each pair (m,mid) that appears in a majority number of sessions, add a copy of m
to Out.

3. Output (ok,Out).

Theorem 6.2. If the commitment scheme comm is perfectly binding and computationally hiding,
then Anont,O securely realizes F t,Oanon in the IdealZK∗-hybrid model as long as |O|−t ≥ |K|. Moreover,
Anont,O runs in constant number of rounds.

Proof. We show that for any non-uniform p.p.t. adversary A interacting with Anont,O, there exists
an admissible adversary S interacting with F t,Oanon, such that A’s views in an execution with Anont,O

is computationally indistinguishable from its view simulated by S. Still, we assume that O = [n].
We use H to denote the set of honest players and K to denote the set of corrupted players.

The simulator behaves as follows:

Preparation Phase Run the following for λ independent, parallel sessions:
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1. Emulate honest player i ∈ H as follows: For corrupt player k ∈ K, let Xi,k be uniformly
random chosen. For honest i′ ∈ H, let Xi,i′ = 0.

2. Emulate honest player i ∈ H as follows: commit to the shares X̂i,j = comm(Xi,j , ri,j) using

fresh randomness ri,j for j ∈ [n]. Send the commitments {X̂i,j}j∈[n] to A.

3. Wait for corrupted players to send their commitments {X̂k,j}j∈[n] for k ∈ K. If a corrupted
player k fails to send the commitments, add k to Ds.

Validation Phase Emulate the IdealZK∗ ideal functionality IdealZK∗ as follows:

• For honest prover i and honest verifier i′ where i, i′ ∈ H, send (success, i, i′) to A.

• For honest prover i ∈ H and corrupt verifier k ∈ K: If received ⊥ from a corrupted verifier
k ∈ K, send (fail, k) to A. Otherwise, send (success, i, k) to A.

• For corrupt prover k ∈ K and honest verifier, send ok to IdealZK∗ for the honest verifier, and
forward ⊥ or witness w received from A to IdealZK∗. Send the output of IdealZK∗ to A.

• For corrupt prover k ∈ K and corrupt verifier k′ ∈ K, receive a bit from A, and send the
output of IdealZK∗ to A.

For corrupt prover k ∈ K, if there exists a verifier j ∈ [n] such that the output of IdealZK∗[stmtk, k, j]
is (fail, k), add k to Dsid

s for all sid ∈ [λ]. Note that by this point, for k ∈ K \ Ds, the simulator S
has received the witness mk, midk, {Ssid

k }sid∈[λ] and {Xsid
k,j , r

sid
k,j }j∈[n],sid∈[λ].

Sharing Phase Run the following for λ independent, parallel sessions:

1. Emulate the honest players i ∈ H to send the shares {(Xi,k, ri,k)}k∈K to A.

2. Receive the shares {(Xk,i, rk,i)}i∈H from corrupted player k ∈ K.

3. Emulate honest player i as follows: it checks whether (Xk,i, rk,i) it receives from corrupted

player k ∈ K is a correct opening of X̂k,i. If yes, send (ok, i, k) to A. Otherwise send
(complain, i, k) to A.

4. Emulate honest player i as follows: If it receives (complain, k, i) from a corrupt player k, send
(Xi,k, ri,k) to A.

5. Receive opening (Xk,i, rk,i) from corrupt player k ∈ K \ Ds, if there exists a complain
(complain, i, k) for k.

6. Check for all corrupted players k ∈ K \ Ds: If k sent all correct openings (Xk,j , rk,j) of

commitment X̂k,j for those j who complained, record the correct openings. Otherwise, add
k to the set Ds.

At the end of the sharing phase, for corrupt players k ∈ K \ Ds, the simulator S has seen their
secrets {Ssid

k }sid∈[λ] as part of the witness of IdealZK∗. For each sid ∈ [λ], the simulator S computes

Zsid =
∑

k∈K\Ds Ssid
k . Let OutK be an initially empty set. S uniformly randomly picks |H| slots

{lsidi }i∈H from [M ] with replacement. We say that the pair (m,mid) registers in session sid if there
exists a slot l ∈ [M ] \ {lsidi }i∈H, such that Zsid [l] = (m,mid, 1). For every k ∈ K, if (mk,midk)
registers in a majority number of sessions, add a copy of mk to OutK . Send messages in OutK and
|K| − |OutK | number of ⊥ to F t,Oanon.
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Reconstruction Phase Receive a set Out of messages from F t,Oanon. Let OutH = Out \ OutK be
the set of honest messages. Then |OutH | = |H|. The simulator parses OutH = {mi}i∈H. For each
honest player i, the simulator uniformly randomly picks a nonce midi from F. If there exists an
i ∈ H and a j ∈ [n] \ Ds where j 6= i, such that midi = midj , the simulator aborts.

For each sid ∈ [λ], the simulator computes a vector Ssid as follows: for each message mi ∈ OutH ,
the simulator adds (mi,midi, 1) to the slot lsidi in Zsid . The simulator then checks if for each honest
message mi in OutH , the pair (mi,midi) appears in a majority number of sessions (Recall that a
pair (m,mid) appears in session sid if there exists an l ∈ [M ] such that Ssid [l] = (m,mid, 1)). If
not, the simulator aborts.

1. Let S = Ssid for the current session sid .

2. Compute an (n− t)-out-of-n sharing {Yj}j∈[n] of S such that for k ∈ K, Yk =
∑

j∈[n]\Ds Xj,k.

Note that Xi,k for i ∈ H are generated by S in the sharing phase, while Xk′,k for k′ ∈ K \Ds
are received as part of the witness of IdealZK∗ in the sharing phase. This can be done due to
the security of Shamir secret sharing and the assumption that n− t ≥ |K|.

3. Send {Yi}i∈H to A.

4. Wait the corrupt players k ∈ K to send Yk. If a corrupt player k fails to send Yk, add k to
the set Dr.

5. Emulate the IdealZK∗ functionality IdealZK∗[stmt′i, i, j] as follows:

• For honest prover i and honest verifier i′ where i, i′ ∈ H, send (success, i, i′) to A.

• For honest prover i ∈ H and corrupt verifier k ∈ K: If received ⊥ from a corrupted
verifier k ∈ K, send (fail, k) to A. Otherwise, send (success, i, k) to A.

• For corrupt prover k ∈ K and honest verifier, send ok to IdealZK∗ for the honest verifier,
and forward ⊥ or witness w received from A to IdealZK∗. Send the output of IdealZK∗

to A.

• For corrupt prover k ∈ K and corrupt verifier k′ ∈ K, receive a bit from A, and send the
output of IdealZK∗ to A.

6. If |Dr| ≥ t, store (fail,Dr ∪ Ds) to F t,Oanon for this session.

7. Otherwise, store ok for this session.

Output phase If there exists a session sid ∈ [λ] that the simulator stores (fail,Dsid ), then send
D = ∪sid∈[λ]Dsid to F t,Oanon. Otherwise, send ok to F t,Oanon.

We first show that the probability that the simulator aborts is negligible.

Claim 6.3. There exists a negligible function negl(·), such that the probability that the simulator
S aborts is at most negl(λ).

Proof. The simulator aborts if either 1) there exists an honest message ID that collides with another
message ID; or 2) there exists an honest message m, such that (m,midm) does not appear in a
majority number of sessions. We now compute the probability of these two events separately.

For the first event, note that the probability that an honest message ID for honest player i
collides with another message ID for player j, where j ∈ [n] \ Ds is 1

2λ
. By a union bound over the
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total number of pairs of i ∈ H and j ∈ [n] \Ds, the probability that there exists an honest message

ID that collides with another message ID is at most n(n−1)
2 · 1

2λ
, which is negligible.

For the second event, for any fixed session sid , the probability that an honest message (m,midm)
does not appear in this session sid is at most n

M = 1
2 . Therefore, the probability that m does not

appear in more than λ
2 sessions is at most

(
1
2

)λ/2
. By a union bound over the number of honest

messages, the probability that there exists an honest message m, such that (m,midm) does not

appear in a majority number of sessions is at most n ·
(

1
2

)λ/2
, which is negligible.

Therefore, the probability that the simulator aborts is at most n(n−1)
2 · 1

2λ
+n ·

(
1
2

)λ/2
= negl(λ).

We now show that the joint distribution of the output of the honest parties and the view of the
adversary in the ideal execution (denoted as ExpIdealA ) is computationally indistinguishable to the
output of the honest parties and the view of the adversary in the real execution (denoted as ExpAnonA ).

Consider the following hybrids:

1. Hyb0: denotes an execution of Anont,O, in which the simulator acts on behalf of all honest
players and interacts with the adversary. Moreover, the simulator emulates IdealZK∗ for the
adversary.

2. Hyb1: The simulator behaves same as in Hyb1 except that in the preparation phase, for honest
player i ∈ H, it generates (n− t)-out-of-n sharing {Xi,j}j∈[n] of Si; but the commitments are

computed as follows: X̂i,k = comm(Xi,k, ri,k) for k ∈ K, and X̂i,i′ = comm(0, ri,i′) for i′ ∈ H.

Then, in the validation phase, the simulator emulates the IdealZK∗ functionality and vouches
for honest players’ commitments as follows:

• For honest prover i and honest verifier i′ where i, i′ ∈ H, send (success, i, i′) to A.

• For honest prover i ∈ H and corrupt verifier k ∈ K: If received ⊥ from a corrupted
verifier k ∈ K, send (fail, k) to A. Otherwise, send (success, i, k) to A.

During the sharing phase, the simulator acts on behalf of honest player i ∈ H and sends the
shares Xi,j to player j. However, the honest players do not complain about another honest
share. Then in the reconstruction phase, the simulator emulates the IdealZK∗ functionality
as in the validation phase.

3. Hyb2: same as Hyb1 except that, if there exists an honest message that does not appear in
the final output Out, the simulator aborts.

ExpAnonA ≡ Hyb0: By definition.

Hyb0 ≡c Hyb1: This is due to the computational hiding property of the commitment scheme comm.

Consider a sequence of hybrids Hybi0 for i ∈ H. Without loss of generality we just assume that
i ∈ [|H|].

• Hyb0
0 is same as Hyb0.

• Hybi0 is same as Hybi−1
0 except that the commitments X̂i,j for j ∈ H are replaced with

commitment of 0.

• Hyb
|H|
0 is exactly Hyb1.
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By the computational hiding property of the commitment scheme comm, for any i ∈ [|H|], we
have Hybi0 ≡c Hybi−1

0 . Otherwise, if there exists a non-uniform p.p.t. adversary D that can
distinguish Hybi0 from Hybi−1

0 with a non-negligible probability, then we can build a non-uniform
p.p.t. adversary D′ that can distinguish the commitments of 0 and the commitments of the sharing
{Xi,j}j∈H with the same advantage. This breaks the hiding property of comm. Consequently, by
hybrids argument, we have that Hyb0 ≡ Hyb1.

Hyb1 ≡c Hyb2: If the simulator does not abort, then these two experiments are identical. Since the
probability that the simulator aborts is negligible, it follows that Hyb1 ≡c Hyb2.

Hyb2 ≡c ExpIdealA : We first show that if the simulators in both experiments do not abort, then the
views of the adversary in these two experiments are identical. In Hyb2, the shares {Xi,j}j∈[n] are
computed based on honest players’ inputs Si; and the reconstruction share Yi for honest player
i equals

∑
j∈[n]\Ds Xj,i. In ExpIdealA , however, the shares {Xi,j}j∈[n] are independent from honest

players’ inputs Si; and the reconstruction share Yi is computed based on honest players’ messages
in OutH . Since the reconstructed vector S in both experiments are of the same distribution, and
that n− t ≥ |K|, by the security of Shamir secret sharing, the views of the adversary in these two
experiments are identical, had the simulator not aborted.

Next, we show that given any fixed view of the adversary, the outputs of the honest players in
these two experiments are identical if the simulators do not abort in both experiments.

Claim 6.4. If the simulators do not abort in both experiments, then the honest players’ outputs
are identical in Hyb2 and ExpIdealA .

Proof. If there is a session sid ∈ [λ] in which the reconstruction fails, i.e., |Dsid
r | ≥ t, then the

honest players in the ideal experiment will output D, the set that S sends to the ideal functionality
F t,Oanon in the output phase, while the honest players in Hyb1 will also output D, according to the
protocol.

If the reconstruction succeeds in every session sid ∈ [λ], the simulator S sends ok to F t,Oanon,
and the honest players in the ideal experiment output Out. Meanwhile, the honest players in Hyb2

compute a set Out′ based on the reconstructed vectors {Ssid}sid∈[λ] according to the protocol. We
now show that Out′ = Out.

To see that Out ⊆ Out′, note that every single message mi ∈ OutH is assigned with a unique
message ID midi. Since the simulator does not abort, every (mi,midi) appears in a majority
number of sessions. This implies that every message mi in OutH appears in Out′. In addition, for
every message mk in OutK , the pair (mk,midk) appears in a majority number of sessions by the
construction, and thus mk belongs to Out′. Henceforth, Out ⊆ Out′.

On the other hand, every honest message in Out′ comes from OutH . Every corrupt message
in Out′ must be a subset of OutK . Otherwise, if there exists a corrupt message mk in Out′ that
does not belong to OutK , then it means that the pair (mk,midk) appears in a majority number
of sessions yet it does not register in a majority number of sessions. This can only happen if the
simulator adds this exact pair (mk,midk) at the beginning of the reconstruction phase, which is
impossible by the guarantee that each honest message ID does not collide with any corrupt message
ID. Therefore, Out′ ⊆ Out, and the conclusion follows.

To conclude, the simulated experiment ExpIdealA is computationally indistinguishable from the
real experiment ExpAnonA .

38



7 Open Questions

Our work leaves open several natural avenues for future research. We highlight a few of them here:

1. Our leader election protocol does not satisfy the stronger notion called approximate sequen-
tial fairness proposed by Chung et al. [CCWS21]. It would be interesting to explore the
construction of leader election protocols that satisfy sequential notion of fairness with less
than log log n round complexity.

2. We do not claim practicality of our construction. We believe it is an exciting future direction
to design practical variants of our protocols.
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Appendix

A Proof of Theorem 6.1

A.1 Public verifiability

In this section we give the proof of Theorem 6.1. Our IdealZK∗-functionality requires additional
public verifiability and identifiable abort on top of the zero-knowledge proof ideal functionality in
Pass [Pas04], and we can tailor the proof in Pass [Pas04] to our new IdealZK∗-functionality to have
public verifiability and identifiable abort. For completeness we will give the full proof here.

We first introduce the public verifiability definitions we need in the proofs.

A.1.1 Bounded-concurrent public-coin zero-knowledge proof

A public verifiable zero-knowledge proof (P,V, f) for a language L consists of a pair of interacting
Turing Machines called the prover P and the verifier V, as well as a deterministic, polynomial-time
public audit function f . If the prover and the verifier completes the proof successfully and produce
a transcript Γ, then f(x,Γ) outputs a bit b ∈ {0, 1} as the the acceptance of the proof: f(x,Γ)
outputs 1 to accept a proof, and 0 to reject a proof. We use 〈P(x, z),V(x)〉 to denote a possibly
randomized execution between P with input x, z and V with input x.

It is treated as aborting if a malicious verifier V∗ (or prover P∗) sends malformed messages
outside the valid range. This guarantees that anyone who observes the transcript can determine
whether the verifier (or prover) aborts from the protocol.

Public-coin. An interactive proof (P,V, f) is public-coin, if V’s messages only contain random
strings; Moreover, the acceptance of the proof is computed by f(x,Γ〈P∗,V〉).

Completeness. If x ∈ L, for any non-aborting V∗, f(x,Γ〈P(x,z),V∗(x)〉) = 1.

Soundness. If x /∈ L, we have that Pr[f(x,Γ〈P∗(x,z),V(x)〉) = 1] ≤ negl(λ) for any non-aborting
prover P∗.

Bounded-concurrent zero-knowledge There exists a strict polynomial-time simulator S, such
that for any a-priori known m = poly(λ), for any polynomial time V∗, and every list {xi, wi}mi=1

where RL(xi, wi) = 1, the view of V∗ in an m-times concurrent execution of (P,V∗) with input
{xi, wi}mi=1 is computationally indistinguishable from S(V∗, x1, . . . , xm).

The zero-knowledge proof introduced by Barak [Bar01] and Pass [Pas04] are bounded-concurrent
public verifiable zero-knowledge proofs.

A.1.2 Public verifiable commit-with-extract

A public verifiable commitment-with-extract scheme (C,R, g) consists of a pair of interacting Turing
machines called the committer C, the receiver R, and a deterministic polynomial-time public audit
function g. The commitment protocol contains two phases, the commitment phase and the opening
phase. If both phases complete sucessfully and produce some transcript Γ, the audit function g(Γ)
outputs either a bit b ∈ {0, 1} to accept or ⊥ to reject. We call b the accepting bit. We use the
notation 〈C(z),R(z′)〉 to indicate a possibly randomized execution between C with input z and R
with input z′.
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The valid range of a message in the proof can be deterministically computed in polynomial time,
given the previous messages in the interaction. If a malicious committer C∗ (or receiver R∗) sends
malformed messages outside the valid range, it is treated as aborting. Formally, let m1, . . . ,m2r

be the messages that are sent in a commitment scheme (the committer C sends message m2i−1

and the receiver R sends message m2i, for i = 1, . . . , r). There exist deterministic polynomial-time
functions f1, . . . , f2r, each outputs a set Mi = fi(m1, . . . ,mi−1) that serves as the valid range of
the i-th message. If mi /∈Mi, then the party who sends mi is treated as aborting. This guarantees
that anyone who observes the transcript can determine whether the committer (or receiver) aborts
from the protocol.

Perfect correctness Correctness guarantees that an honest committer always complete the pro-
tocol and correctly open its input bit, and will not be stuck by a malicious, non-aborting receiver.
Formally, for b ∈ {0, 1}, for any λ ∈ N, if C is honest and receives input bit b, then 〈C(1λ, b),R∗(1λ)〉
will successfully complete with the accepting bit b with probability 1, for any non-aborting R∗.
Moreover, any malicious, non-aborting committer C∗ cannot cause an honest receiver R to abort
the protocol.

Perfect Binding. Perfect binding guarantees that, if the commit phase is completed, the com-
mitment phase will determine only one bit that can be successfully opened. Formally, let (Γc,Γo) ∈
{0, 1}`(λ) be the transcripts of the commitment phase and the opening phase, respectively, where
`(λ) is a fixed polynomial function denoting the maximum length of the transcripts. Then for
any λ ∈ N, any transcripts Γc,Γo,Γ

′
o ∈ {0, 1}`(λ), if g(1λ,Γc,Γo) = b and g(1λ,Γc,Γ

′
o) = b′ where

b, b′ ∈ {0, 1}, it must be that b = b′.

Computationally Hiding. Computationally hiding guarantees that at the end of the commit-
ment phase, the receiver learns only a negligible amount of information about the input that the
committer commits to. Formally, let p(1λ, v) denote the probability that R∗ outputs 1 at the
end of the commitment phase in an execution 〈C(1λ, v),R∗(1λ)〉, then for any non-uniform p.p.t.
R∗, there exists a negligible function negl(·) such that for every λ ∈ N, for every v1, v2 ∈ {0, 1},
|p(1λ, v1)− p(1λ, v2)| ≤ negl(λ). This should hold even if R∗ aborts prior to the end of the commit-
ment phase.

Extractability There exists a strict probabilistic polynomial-time commitment extractor CK,
such that for every probabilistic polynomial-time committer C∗ and for every input x, auxiliary
input y and random tape r, there exists a negligible function negl(·), such that given input the
description of C∗, denoted as desc|x|(C

∗), and x, y, r, the machine CK outputs a pair, denoted as
(CK1(desc|x|(C

∗), x, y, r), CK2(desc|x|(C
∗), x, y, r)), such that

1. {CK1(desc|x|(C
∗), x, y, r)}x,y,r∈{0,1}∗ ≡c {viewC∗〈C∗(x, y, r),R〉}x,y,r∈{0,1}∗ , where the right

hand side viewC∗〈C∗(x, y, r),R〉 denotes the view of C∗ when interacting with an honest re-
ceiver R;

2. Pr[CK2(desc|x|(C
∗), x, y, r) = commit-value(CK1(desc|x|(C

∗), x, y, r))] > 1 − negl(λ), where
commit-value(·) is a function that takes a commiter’s view and output the unique value the
the view binds to, or ⊥ if no such value exists.

Although the above definition is defined with respect to bits, it can be generalized to commitments
of strings. The commit-with-extract protocol given in Barak and Lindell [BL04] is a public verifiable
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commit-with-extract protocol. 3

Now we proceed to prove Theorem 6.1 using a public verifiable and identifiable abort variant
of the zero-knowledge proof suggested by Pass [Pas04].

Theorem A.1. (Restatement of Theorem 6.1). Assume the existence of enhanced trapdoor permu-
tations, and collision-resistant hash functions. Then, given an n-party IdealZK∗-hybrid protocol Π∗,
in which the number of total calls to IdealZK∗ is upper bounded by a priori known bound m = poly(λ),
some of which can be concurrent, there exists a real-world protocol Π such that the following hold:

• Simulatability: For every real-world non-uniform p.p.t. adversary A controlling an arbi-
trary subset of up to n − 1 players in Π, there exists a non-uniform p.p.t. adversary A∗ in
the protocol Π∗, such that for any input (x1, . . . , xn), every auxiliary string z ∈ {0, 1}∗,

ExecΠ,A(1λ, x1, . . . , xn, z) ≡c ExecΠ∗,A∗(1λ, x1, . . . , xn, z).

In the above, the notation ExecΠ,A (or ExecΠ∗,A∗) outputs each honest players’ outputs as well
as the corrupt players’ (arbitrary) outputs.

• Round efficiency: The round complexity of Π is at most a constant factor worse than that
of Π∗.

To prove Theorem 6.1, we use a similar proof indicated in Pass [Pas04]. We will show that any
protocol in the IdealZK∗-hybrid world can be reduced to a protocol in MemberZK∗-hybrid world,
which can then be realized under bounded concurrent composition by a real-world protocol.

Roughly speaking, the MemberZK∗ functionality behaves like IdealZK∗, except that it does not
require the prover to provide a witness to the statement x. Instead, if it receives (x, b) from the
prover, MemberZK∗ sends (success, i, j) to everyone if b = 1 and x is in the language L. Formally,
the MemberZK∗ ideal functionality is defined as follows:

Ideal functionality MemberZK∗[x, L, i, j]
The functionality involves n parties 1, . . . , n, and is parametrized with the statement x, the

language L, the prover’s identity i, and the verifier’s identity j.

1. If both the prover i and the verifier j are corrupt, receive a bit b from the prover i. If
b = 1, send (success, i, j) to everyone.

2. Receive a message ok or ⊥ from the verifier.

3. If the verifier sends ⊥, send (fail, j) to everyone.

4. Receive a message ⊥ or (x, b) from the prover i, where x is the statement and b ∈ {0, 1}
is a bit.

5. Otherwise if b = 1 and x ∈ L, send (success, i, j) to everyone.

6. Otherwise, send (fail, i) to everyone.

Generally, the MemberZK∗ functionality cannot be computed efficiently, because it is difficult
to determine whether x ∈ L without the witness. Thus, we consider non-abusing adversary, which
almost always make proper use of the MemberZK∗ functionality.

3The commit-with-extract protocol makes use of a bounded-concurrent public coin zero-knowledge proof. We
define that failing a proof is also treated as aborting.
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Definition A.2 (Non-abusing adversaries). We say that an adversary A in the MemberZK∗-hybrid
model is non-abusing if, with overwhelming probability, A only invokes the MemberZK∗ functionality
with input of (x, b) in Step 4, such that b = 0 if x /∈ L.

With the restriction to non-abusing adversaries in the MemberZK∗-hybrid model, the MemberZK∗

functionality is efficiently computable.

A.2 Realizing the MemberZK∗-hybrid model

We now show that running the zero-knowledge proof in [Pas04] over the broadcast channel real-
izes MemberZK∗. Formally, suppose that there exist a collision resistant hash functions ensemble
{Hk}h∈{0,1}k , as well as a perfect binding, computationally hiding commitment scheme comm. Let
m = poly(λ) be an a-priori known bound on the number of concurrent sessions. The special purpose
protocols cZK1, . . . , cZKm each involves n parties, and are parametrized with the statement x, the
language L, the prover’s identity i and the verifier’s identity j. Recall that cZK are public-coin,
and the acceptance can be computed by a public audit function f(x,Γ), where Γ is the transcript
of the proof.

Protocol cZKsid [x, L, i, j]

Input: prover i has input (1λ, w), other players have input 1λ.

Length parameter: `(λ).

Set-up:

Verifier j chooses h
$←Hk, and posts (h, sid) to the broadcast channel.

Slot 1:

Prover i computes c1 = comm(0λ) and posts (c1, sid) to the broadcast channel.

Verifier j chooses a random challenge r1
$←{0, 1}sid ·`(λ), and posts (r1, sid) to the broadcast

channel.

Slot 2:

Prover i computes c2 = comm(0λ) and posts (c2, sid) to the broadcast channel.

Verifier j chooses a random challenge r2
$←{0, 1}(m+1−sid)`(λ), and posts (r2, sid) to the

broadcast channel.

Proof Body

The prover i interact with the verifier j over the broadcast channel to run a witness-
indistinguishable universal argument, proving the OR of the following two statements:

1. There exists w such that RL(x,w) = 1.

2. There exists a triple 〈Π, s, y〉 such that either Rsim(〈h, c1, r1〉, 〈Π, s, y〉) = 1, or
Rsim(〈h, c2, r2〉, 〈Π, s, y〉) = 1

Output: Every player auditing the transcript of the proof over the broadcast channel does
the following: if the prover aborts from the proof, every player outputs (fail, i); if the verifier
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aborts from the proof, every player outputs (fail, j). Otherwise if the proof completes and pro-
duces transcript Γ, run the public audit function f(x,Γ). If f(x,Γ) = 1, output (success, i, j).
Otherwise if f(x,Γ) = 0, output (fail, i).

Relation Rsim

Input: A triple 〈h, c, r〉.

Witness: A program Π, a string y ∈ {0, 1}|r|−λ, a string s.

Relation: Rsim(〈h, c, r〉, 〈Π, s, y〉) = 1 if and only if

1. c = comm(h(Π); s).

2. Π(c, y) = r within T (λ) steps.

As mentioned in Section A.1, since this protocol is public-coin, everyone who sees the transcript
can determine whether the prover (or verifier) aborts from the protocol, and can compute the
acceptance of an honest verifier. Therefore, every player’s output is well-defined.

Given the access to the description of the adversary A, the protocol can be simulated. The
simulator S commits to A’s next-message function, and prove the Rsim relation. The next-message
function of A outputs r1 (or r2), given the description of all the messages A received between c1

and r1 (or c2 and r2). The next-message function, together with the description of these messages
that A receives between c1 and r1 (or c2 and r2), serve as the witness y of Rsim. Therefore, to
prove the Rsim relation, the simulator needs a short description y of length |r1| − λ (or |r2| − λ) of
all the messages A receives from the honest players in Slot 1 (or Slot 2). Since the length of all the
messages in one execution of cZK is bounded by 2λ2, not counting the long random challenge r1

and r2, the length parameter is chosen such that `(λ) = m · 4λ2 + length(Π′) + λ, where m is the
upper bound of the total number of concurrent MemberZK∗ calls, and length(Π′) is the length of
messages of Π′ in the MemberZK∗-hybrid model. This guarantees that the simulator have a short
description y of all the messages A receives.

Lemma A.3. Let Π′ be an n-party protocol in the MemberZK∗-hybrid model, in which the number
of calls of MemberZK∗ is upper bounded by an a-priori known bound m = poly(λ). Then, assuming
the existence of collision resistance hash functions, there exists a protocol Π with the following
properties:

• Simulatability: For every real-model non-uniform p.p.t. adversary A participating in Π,
there exists an non-abusing non-uniform p.p.t. adversary A′ interacting with Π′, such that
for all inputs (x1, x2, . . . , xn), every auxiliary string z ∈ {0, 1}∗,

{ExecΠ,A(1λ, x1, . . . , xn, z)} ≡c {ExecΠ′,A′(1λ, x1, . . . , xn, z)}.

In the above, ExecΠ,A or (ExecΠ′,A′) outputs each honest player’s outputs as well as the corrupt
players’ (arbitrary) outputs.

• Round-efficiency: The protocol Π uses same round complexity as Π′ up to a constant factor.

Proof. The protocol Π is constructed from protocol Π′ by instantiating them concurrent MemberZK∗

calls with the special-purpose zero-knowledge protocols cZK1, . . . , cZKm.
The simulator A′ acts as follows: given the description of A, its input x and auxiliary input

z, A′ internally incorporates A for Π and externally forward all messages that are not part of the
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protocols cZK1, . . . , cZKm. Messages for these cZK protocols are dealt with internally. At the end
of the protocol, A′ outputs whatever A outputs.

We now proceed to describe how to deal with the messages in cZK. Each execution of cZK is
treated independently. We separate the cases when the prover is corrupt and when the prover is
honest. Recall that f is the public audit function, that given a complete transcript of the proof,
computes the acceptance of the proof.

Both the prover i and the verifier j are corrupted

1. A′ audits the transcript Γ that the prover i and the verifier j broadcast. If both the prover
and the verifier do not abort, and that f(x,Γ) = 1, then A′ sends b = 1 to MemberZK∗.

2. Otherwise, if the prover aborts, then A′ sends ⊥ for the prover to MemberZK∗; if the verifier
aborts, then A′ sends ⊥ for the verifier to MemberZK∗.

Both the prover i and the verifier j are honest

1. Upon receiving (success, i, j) from MemberZK∗ functionality, A′ emulates an interaction be-
tween the honest prover and the honest verifier, by simulating a proof on the code of the
honest verifier. In the emulation, instead of sending truly random challenges r1, r2 on behalf
of the verifier j, it picks a λ-bits string and expands it to the appropriate length using a
pseudorandom generator. It uses the expanded string as the challenge.

2. A′ posts the transcript to the broascast channel.

If the prover i is corrupt and the verifier j is honest

1. A′ runs the honest verifier strategy, except that the random challenge r1, r2 are generated
from pseudorandom generator with a seed length λ.

2. If the prover aborts, A′ sends ⊥ to MemberZK∗ for the prover i.

3. If the proof completes and the honest verifier strategy accepts the proof, A′ sends (x, 1) to
MemberZK∗. Otherwise, A′ sends (x, 0) to MemberZK∗.

If the prover i is honest and the verifier j is corrupt

1. A′ runs the simulator of cZK for the verifier j to generate a proof for A.

2. If the verifier aborts the protocol, send ⊥ to MemberZK∗. Otherwise, send ok to MemberZK∗.

Claim A.4. The adversary A′ described above is non-abusing. That is, if x /∈ L, A′ only accepts
a proof of x from A with a negligible probability.

Proof of Claim A.4. This follows from the simulation soundness of cZK1, . . . , cZKm proved in
Pass [Pas04].

The view of A when interacting in the real-world protocol Π and when interacting with A′ in
the MemberZK∗-hybrid model are indistinguishable, following a similar proof as in Pass [Pas04].
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A.3 Reduce IdealZK∗ to MemberZK∗

In this section we show that a protocol in the IdealZK∗-hybrid model, which contains at most
m = poly(λ) number of concurrent IdealZK∗ calls, can be reduced to a protocol in MemberZK∗-
hybrid model, with at most m concurrent calls to MemberZK∗.

Lemma A.5. Let Π∗ be an n-party protocol in the IdealZK∗-hybrid model, in which the num-
ber of concurrent calls of IdealZK∗ is upper bounded by an a-priori known bound m = poly(λ).
Then, assuming the existence of enhanced trapdoor permutation, there exists a protocol Π′ in the
MemberZK∗-hybrid model, in which the number of concurrent calls of MemberZK∗ is at most m,
that satisfies the following properties:

• Simulatability: For every non-abusing non-uniform p.p.t. adversary A′ participating in Π′,
there exists a non-uniform p.p.t. adversary A∗ interacting with Π∗, such that for all inputs
(x1, x2, . . . , xn), every auxiliary string z ∈ {0, 1}∗,

{ExecΠ′,A′(1λ, x1, . . . , xn, z)} ≈ {ExecΠ∗,A∗(1λ, x1, . . . , xn, z)}.

In the above, ExecΠ′,A′ or (ExecΠ∗,A∗) outputs each honest player’s outputs as well as the
corrupt players’ (arbitrary) outputs.

• Round-efficiency: The protocol Π′ uses same round complexity as Π∗ up to a constant
factor.

Proof. The protocol Π′ is obtained by replacing the IdealZK∗[x, L, i, j] in Π∗ by the protocol below.

Protocol implementing IdealZK∗ in the MemberZK∗-hybrid model

Input: Player i has input (1λ, w), other players have input 1λ.

1. The prover i and the verifier j run the commit phase of a public verifiable commit-with-
extract protocol (C,R, g) in which the prover i commits to the witness w. The interaction
of this protocol is over the broadcast channel. Let Γ denote the transcript of the commit
phase.

2. Run MemberZK∗[Γ, L′, i, j], in which the prover i proves to the verifier j that in Step 1
it has committed to a valid witness w. Formally, Γ ∈ L′ iff there exists an opening
transcript Γo such that g(Γ,Γo) = w, and RL(x,w) = 1.

Output: Every player auditing the transcript computes the following output: If the prover
aborts in Step 1, outputs (fail, i); if the verifier aborts in Step 1, outputs (fail, j); Otherwise,
output whatever it receives from MemberZK∗.

Since the commit-with-extract is public verifiable, anyone who audits the transcript can determine
whether the prover or the verifier aborts. Therefore, the output is well-defined. Let A′ be a
MemberZK∗ adversary interacting in protocol Π′. We construct A∗ that internally incorporates A′,
given the description of A′, its input x′, and the auxiliary input z′. A∗ forward all messages in
Π∗ that do not belong to the IdealZK∗ call. Messages belong to the IdealZK∗ calls are dealt with
internally. At the end of the protocol, A∗ outputs whatever A′ outputs.

We now describe how to deal with the messages belong to the IdealZK∗ call. Let trans be the
transcript in Π′ right before the IdealZK∗ calls. Let A′(x′, z′, trans) denote the residual machine
with transcript trans (when it is clear from the context, we abuse the notation and use A′ to denote
the residual machine). We separate the cases when the prover is corrupt and when the prover is
honest.
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Both the prover i and the verifier j are corrupted.

1. A∗ audits the transcript of Step 1. If the prover aborts, send ⊥ to IdealZK∗ for the prover i;
if the verifier aborts, send ⊥ to IdealZK∗ for the verifier.

2. Otherwise if both the prover and the verifier do not abort, A∗ emulates the MemberZK∗

functionality and sends the output of MemberZK∗ to A′.

3. If the output of MemberZK∗ is (success, i, j), send b = 1 to IdealZK∗.

4. Otherwise, if the output is (fail, j), send ⊥ to IdealZK∗ for the verifier j; if the output is
(fail, i), send ⊥ to IdealZK∗ for the prover i.

Given the construction, it directly follows that the view of A′ when executing the protocol Π′

is identical to the view of A′ in the emulation by A∗ in the protocol Π∗. Moreover, the honest
players’ outputs are identical in these two experiments.

Both the prover i and the verifier j are honest.

1. Upon receiving (success, i, j) from the IdealZK∗ functionality, emulate the honest prover i and
the honest verifier j to run the public verifiable commit-with-extract protocol, in which the
prover i commits to 0. Send the transcript to A′.

2. Emulate the MemberZK∗ functionality and send (success, i, j) to A′.

The view of A′ when executing the protocol Π′ is computationally indistinguishable to the view
of A′ in the emulation by A∗ in the protocol Π∗, due to the computational hiding property of the
commitment. Moreover, the honest players’ outputs are identical in these two experiments.

If the prover i is honest and the verifier j is corrupt.

1. A∗ commits to 0 to verifier j using the commit-with-extract protocol. If the verifier aborts,
A∗ sends ⊥ to IdealZK∗ for the verifier j.

2. Otherwise, A∗ emulates the MemberZK∗ functionality. If received ⊥ from the verifier, send
(fail, j) to A′, and send ⊥ to IdealZK∗ for the verifier j.

3. If received ok from the verifier, A∗ emulates the MemberZK∗ functionality and send (success, i, j)
to A′. It then sends ok to IdealZK∗.

The view of A′ when executing the protocol Π′ is computationally indistinguishable to the view
of A′ in the emulation by A∗ in the protocol Π∗, due to the computationally hiding property of the
commit-with-extract commitment. Moreover, the honest players’ outputs are also computationally
indistinguishable in these two experiments.

If the prover i is corrupt and the verifier j is honest.

1. A∗ interacts in the commit-with-extract phase as the receiver with the residual machine
A′(x′, z′, trans). If the prover i aborts, A∗ sends ⊥ to IdealZK∗ for the prover i. Let Γc denote
the transcript for the commit phase.

2. A∗ then emulates the MemberZK∗ functionality and sends the output to A′.

49



3. If MemberZK∗ outputs (success, i, j), then A∗ runs the extractor CK of the commit-with-
extract scheme on input (desc|x′|(A′), x′, z′, trans) to obtain a view ṽ, along with a string w̃
that is the unique value that the view ṽ binds to. It then sends w̃ to IdealZK∗ and reset the
view of A′ of commitment phase to ṽ.

4. Otherwise if MemberZK∗ outputs (fail, i), sends ⊥ to IdealZK∗ for the prover i.

The view of A′ when executing the protocol Π′ is identical to the view of A′ in the emulation
by A∗ in the protocol Π∗. Now we show that the honest players’ outputs in these two experiments
are computationally indistinguishable. To show this, it suffices to prove that when the MemberZK∗

functionality outputs (success, i, j), the extracted w̃ is indeed a valid witness of x with overwhelming
probability.

Since A is non-abusing, the output (success, i, j) implies that the prover i sends (Γw, 1) to
MemberZK∗, where Γw is the transcript of Step 1, in which the residual machine A′ commits to
w. Hence, the probability that the prover i commits to a valid witness in the commit phase is
1− negl(λ) in the real execution.

Consider a modified simulator Ã∗ that runs the extractor CK and obtains a pair (ṽ, w̃). It then
obtains the input to MemberZK∗ of prover i defined by the view ṽ. Then, Ã∗ sends w̃ to IdealZK∗ if
and only if the emulated input to MemberZK∗ is (Γw̃, 1). Since Ã∗ contains only additional checks,
A∗ sends w̃ to IdealZK∗ whenever Ã∗ sends w̃ to IdealZK∗. Now it suffices to show that Ã∗ sends
w̃ to IdealZK∗ with an overwhelming probability.

By the extractability, ṽ is indistinguishable from the view of prover i in the execution emulated
by A∗, the probability that the emulated input to MemberZK∗ (computed by Ã∗) is (Γw̃, 1) must
be negligibly close to the probability that prover i sends (Γw, 1) to MemberZK∗. (Otherwise, it is
possible to distinguish between the real view of A′ and the view output by CK by emulating the
input of prover i to MemberZK∗. This emulation can be carried out because prover i is polynomial-
time, and the description of prover i as well as the view ṽ fully define the residual prover). Again,
since prover i is non-abusing, if the emulated input to MemberZK∗ is (Γw̃, 1), then w̃ must be a valid
witness with 1−negl(λ) probability. Therefore, given that the prover i sends (Γw, 1) to MemberZK∗

in the execution simulated by A∗, the probability that the extracted w̃ is a valid witness is at least
1− negl(λ).

To conclude, the view of A′ when interacting with Π′ in the MemberZK∗-hybrid model is indis-
tinguishable from its view simulated by A∗ in the IdealZK∗-hybrid model.
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