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Abstract. In this paper we study search problems that arise very often
in cryptanalysis: nested search problems, where each search layer has
known degrees of freedom and/or constraints. A generic quantum solu-
tion for such problems consists of nesting Grover’s quantum search al-
gorithm or amplitude amplification (QAA) by Brassard et al., obtaining
up to a square-root speedup on classical algorithms. However, the anal-
ysis of nested Grover or QAA is complex and introduces technicalities
that in previous works are handled in a case-by-case manner. Moreover,
straightforward nesting introduces an overhead factor of (π/2)` in the
complexity (for ` layers).
In this paper, we aim to remedy both these issues and introduce a generic
framework and tools to transform a classical nested search into a quan-
tum procedure. It improves the state-of-the-art in three ways: 1) our
framework results in quantum procedures that are significantly simpler
to describe and analyze; 2) it reduces the overhead factor from (π/2)` to√
`; 3) it is simpler to apply and optimize, without needing manual quan-

tum analysis. We give a generic complexity formula that improves the
state-of-the-art both for concrete instantiations and in the asymptotic
setting. For concrete instances, we show that numerical optimizations
enable further improvements over this formula, which results in a fur-
ther decrease in the gap to an exact quadratic speedup.
We demonstrate our framework with applications in cryptanalysis and
improve the complexity of quantum attacks on reduced-round AES.

Keywords: Quantum search · Nested search · Quantum cryptanalysis · Ampli-
tude amplification · Symmetric cryptanalysis.

1 Introduction

The potential advent of large-scale quantum computing devices has prompted
the cryptographic community to evaluate the quantum security of cryptographic
schemes; that is, against an adversary capable of quantum computations. Among

? Part of this work was done while the author was at CWI.



the foundational results of quantum cryptanalysis, Shor’s period-finding algo-
rithm [37] showed that public-key schemes based on the classical hardness of
the factoring and Discrete Logarithm problems would be irremediably broken in
the quantum setting. This has led to a massive effort aiming at replacing these
schemes by quantum-secure ones, which is embodied by the NIST post-quantum
standardization process [2] which selected in 2022 its first set of future standards.

Quantum Search. The second most well-known quantum algorithm impacting
cryptanalysis is Grover’s quantum search [21], generalized into the framework of
quantum amplitude amplification (QAA) [12]. Whereas Shor’s algorithm applies
only to a handful of problems with a specific algebraic structure, Grover’s al-
gorithm generically speeds up any black-box search procedure. By black-box, we
mean that the problem is entirely defined by means of an algorithm that samples
at random from a given search space, and an algorithm that tests an element
of this search space, mapping it to {0, 1}. Classical black-box search consists in
iterating both these algorithms until a preimage of 1 is found. Quantum search
solves the same problem with an asymptotic square-root reduction in the aver-
age number of iterations. In particular, it accelerates the exhaustive search of a
secret key of length |K| from O

(
2|K|

)
trial encryptions to O

(
2|K|/2

)
applications

of a quantum encryption circuit.
Because of its generic nature, quantum search is very often used as a building

block of more complex quantum cryptanalysis procedures. In asymmetric cryp-
tography, generic decoding algorithms based on information set decoding [7,24]
gain most of their quantum speedup from a Grover search. It is also a subroutine
of sieving algorithms for the Shortest Vector Problem in lattices [32,31,28]. In
most of these cases, the quadratic speedup of quantum search seems so far the
best achievable. The design of these algorithms is thus partially guided by the
idea to rephrase classical techniques into black-box searches.

In symmetric cryptanalysis, there are examples of dedicated attacks on con-
structions exploiting specific algebraic structures (see e.g. [30,25]). Nevertheless,
largely current research focuses on quadratic speedups obtained with quantum
search. The goal of these quantum procedures is to have a better complexity
than the generic attack based on Grover search (or quantum collision search in
the case of [22]), in the same way that classical attacks are designed to improve
over the generic exhaustive search. Many classical cryptanalytic techniques have
been shown to admit quantum variants, e.g., differential and linear cryptanaly-
sis [26], rebound attacks on hash functions [22], and so on, often by solving the
underlying classical nested search problem by nesting Grover searches.

Nested Search Problems. Informally, an exhaustive search problem explores a
space of choices C1; choices are sampled at random and evaluated using a filtering
function, which maps c1 ∈ C1 to {0, 1}, where “0” indicates a bad choice to be
discarded, and “1” indicates a valid choice. This situation is pictured in Figure 1,
where we use ci,j for j = 1, 2, . . . , |Ci| to denote the individual members of the
set Ci. It corresponds to the exploration of a tree with one level.
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Fig. 1. Exhaustive search with a single level.
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Fig. 2. Nested search with two levels.

Recursively, we can also allow the filtering function to explore another search
space C2 internally. Typically, the first filter will reduce the possibilities for
c1 ∈ C1, so that we do not have to check all the couples (c1, c2) ∈ C1 × C2 for
the second filter. This corresponds to the exploration of a tree with two levels
(Figure 2). The expected complexity of the search procedure depends on the
expected number of nodes on each level that need to be explored before finding
a solution (c1, c2, 1) at the last level.

If we have quantum algorithms to implement the “choosing” and “filtering”
steps, then a search such as in Figure 1 can be turned into a quantum search.
While both can be “basic” algorithms such as picking a candidate secret key, they
can also embed other quantum searches. This leads to the folklore fact that any
classical nested search admits a corresponding nested quantum search, generally
built over the QAA framework, which reaches up to a quadratic speedup.

Computing the Complexities. Both in asymmetric and symmetric cryptanalysis,
we need precise complexity estimates, either of generic algorithms applied to
certain parameterizations of public-key schemes, or attacks targeting specific
symmetric designs. However, the current state of affairs is that the analysis of
nested quantum searches raises the following problems:

Overhead factor per level: Applying QAA naively results in a multiplicative
overhead factor of π/2 per nesting level, see e.g. [17]. Thus, the quantum
time complexity of a nested search procedure deviates from the square root
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of the classical complexity. With 4 or 5 nesting levels, this deviation may
become significant with respect to the total complexity: this happens for the
quantum key-recovery attack on 8-round AES-256 of [11].

Probability of error: Most of the time, QAA is erroneous: it produces only
a noisy approximation of the exact uniform superposition of the solutions.
When composing the searches, these errors should not pile up too much.

Fixed number of iterates: In a classical nested search like Figure 2, the fil-
tering probability at the second level (c1, c2) can depend on the current
choice c1. This is no concern for a classical time complexity analysis, be-
cause we only need to bound the total number of nodes explored at each
level. But QAA runs in superposition (e.g., of the choices c1) and uses a
fixed number of iterates, which complicates the analysis.

Previous works overcome these problems on a case by case basis. They often
err on the safe side by reducing the error probabilities to negligible amounts. This
usually leads to an overestimate of the complexities, and also, to unnecessarily
technical analyses.

Contributions and Organization. In this paper, we provide a generic frame-
work and tools to transform nested search procedures into quantum procedures.
I.e., we guarantee, by simply rewriting a classical attack in our framework de-
scribed below, the existence of a corresponding quantum algorithm with given
complexity and success probability. We provide a generic formula and, for con-
crete instances, a numerical-optimization-based tool giving slightly better re-
sults.

The search problem that we consider is formally detailed in Section 3, and
depicted in Figure 3. It corresponds to the exploration of a search tree with
multiple levels. Each node in the tree corresponds to certain choices and includes
a certain internal state. Each search layer i comprises three sub-steps: (1) select
a random choice ci ∈ Ci; (2) apply a filtering function Ai that decides whether
the current choices (c1, . . . , ci) form a valid subsolution or not; (3) post-process
the current internal state using a function Di. At the final layer `, A` decides
if the whole path is good, thus yielding a solution to the search problem. We
assume that the tree contains only one solution.

In Section 5, we present a quantum procedure for this problem, which per-
forms a search with backtracking. It corresponds to a depth-first exploration of
the tree, which eliminates whole subtrees and returns to previous states. Intu-
itively, this strategy performs better when there are many choices to make, with
successive filter and post-processing functions of decreasing complexities. Our
generic complexity analysis handles the three problems identified earlier, and in
particular, reduces the quantum overhead factor from (π/2)` to

√
`.

Before this, in Section 4, we first present a quantum procedure for the re-
stricted case of a single choice, i.e., a search with early aborts (as depicted in Fig-
ure 4). Both our quantum procedures are based on nested QAAs and although
their analyses are similar, they correspond to very different strategies.
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Fig. 3. Example of the generic search problem that we want to solve: we look for
(c1, c2, c3) ∈ C1 × C2 × C3 which evaluates to 1 at the last step.

In Section 6, we demonstrate our framework on two key-recovery attacks
on reduced-round AES, taken from [11]. We externalize entirely the quantum
complexity analysis using our framework, which results in a gain up to a factor 24

in time complexity.
Further applications are given in Appendix. We study search with inde-

pendent tests, i.e., searching for an x satisfying several independent testing
functions fi(x), both asymptotically and with exact values. Finally, we deduce
from our framework a simple algorithm for variable-time amplitude amplifica-
tion. The code of our optimizations is available at: https://github.com/
AndreSchrottenloher/quantum-search.

Related work. Over the time, there has been a few attempts at formalizing the
correspondence between classical and quantum nested search algorithms. This
is the case of the filter framework of [11]. Its goal is only to guide the design of
such algorithms. Although they have a very different wording, our backtracking
framework contains the filter framework. But we also provide a generic complex-
ity analysis, in contrast to [11]. In [17], the authors studied generically the case
of impossible differential attacks, which corresponds to the setting of Figure 3
without filtering layers. Contrary to us, they use Exact Amplitude Amplifica-
tion, which gives a success probability 1, but yields the “naive” multiplicative
overhead factor (π/2)`. Also in the context of cryptanalysis, precise complexity
analyses were done for a fixed number of nested searches, e.g., ` = 2 for the
search with two oracles in [16,27].
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Fig. 4. Search with early aborts, with a single choice c ∈ C, and 4 successive filters
A1, A2, A3, A4.

Montanaro [33] designed a generic quantum tree search algorithm, but its
setting is different from ours. Indeed, the main advantage of Montanaro’s al-
gorithm is that the tree structure can be discovered on the fly, and does not
need to be known entirely in advance. This is the case of the trees explored in
lattice enumeration, where this algorithm was applied in [6]. In contrast, our
framework is based on nested QAAs and requires knowledge of the filtering and
success probabilities of each step. Conversely, the main disadvantage of Monta-
naro’s tree search is that it does not amortize the cost of the different filtering
algorithms, while this situation is very common in cryptanalysis: some of them,
which cost less, are computed more often (e.g., the last search layer in the tree);
others, which cost more, are computed less often (e.g., the first search layer in
the tree).

Ambainis [3,4] studied the problem of variable-time amplitude amplification,
which can be seen as a special case of a search with early aborts. In this problem,
one does a search for a good element among N of them, when being “good” is
evaluated in time ti for element number i. Ambainis showed that the solution
could be found in time Õ

(√
t21 + . . .+ t2N

)
even when the ti are unknown. How-

ever, his solution relied on Quantum Amplitude Estimation. Our framework of
search with early aborts yields a solution for this problem, with the same asymp-
totic complexity as Ambainis’. Our algorithm is much simpler since it contains
only nested QAAs. Ambainis also showed in this context that the naive factor
(π/2)

` with ` levels of nesting could be reduced to O(
√
`), but his complexity

analysis was only asymptotic.
Concurrently and independently, Ambainis et al. [5] proposed a new algo-

rithm for variable-time QAA with essentially the same algorithmic structure as
ours. Their complexity analysis improves upon the polynomial factor in the Õ
w.r.t. Ambainis’ and ours, but the improvement is specific to this special case
problem and is unlikely to generalize to our settings.
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2 Preliminaries

In this section, we first cover some preliminaries of quantum algorithms (com-
plexities, memory models, QAA). The formal definition of a nested search prob-
lem will be given in Section 3. The analysis of quantum search requires some
bounds for sin and arcsin. We use the following standard ones.

∀x ≥ 0 : x
(
1− x2/6

)
≤ sinx ≤ x, and x2

(
1− x2/3

)
≤ sin2 x ≤ x2 (1)

∀0 ≤ x ≤ 1 : x ≤ arcsinx ≤ (π/2)x =⇒ x2 ≤ arcsin2 x ≤ (π2/4)x2 (2)

Quantum Algorithms. We refer to [34] for an introduction to quantum com-
puting and the quantum circuit model. We assume knowledge of the notion
of qubits, the ket notation |·〉, and basic quantum gates (e.g., the Hadamard
gate H). In this paper, we will consider the Clifford+T gate set, which is often
used for counting gates in quantum algorithms (see e.g. [23] or [10]).

We use G(U) to denote the gate count of a quantum circuit U , which is the
main metric we are interested in. We use S(U) for the width of the circuit, i.e.,
the number of qubits on which it acts, including ancilla qubits. Any quantum
algorithm U without measurement is reversible. The reverse U† is the “uncom-
putation” of U . Both admit the same gate count.

In symmetric cryptanalysis, time complexity estimates are often expressed
relatively to the cost of a cryptographic function. For example, the exhaustive
key search of a 128-bit block cipher is estimated as 2128 evaluations of the cipher.
This principle remains true in quantum cryptanalysis. We can consider the eval-
uation of a quantum circuit for the cipher to be the benchmarking operation, or
alternatively, as in [11], we can single out some costly component of the cipher
(like an S-Box) and consider only the number of evaluations of this component.

Memory Models. Given an array of M qubit registers, any fixed location can
be queried in polynomial time in the circuit model, as it amounts only to apply
quantum gates to pairs of qubits: |x〉 |y1, . . . , yM 〉

Accessi7−−−−→ |x⊕ yi〉 |y1, . . . , yM 〉.
However, accessing a variable memory location (random access) can a priori
be done only by performing a sequence of Õ(M) such queries, which gives a
cost Õ(M) for the operation: |x〉 |y1, . . . , yM 〉 |i〉

Access7−−−−→ |x⊕ yi〉 |y1, . . . , yM 〉 |i〉.
In the QRAQM1 model, we assume that the operation Access7−−−−→ can be performed
in polynomial time. In practice, we will consider its cost to be comparable to a
block cipher or an S-Box evaluation.

A quantum algorithm can also access a large classical memory with M reg-
isters y1, . . . , yM . The sequential access in time Õ(M) is still allowed by the
quantum circuit model, since it amounts to control at runtime the sequence of
applied gates: |x〉 |i〉 CAccess(y1,...,yM )7−−−−−−−−−−−→ |x⊕ yi〉 |i〉. In the QRACM2 model, we as-
sume that the operation CAccess(y1, . . . , yM ) can be performed in polynomial
1 Quantum random-access quantum memory, following the terminology from [29].
2 Quantum random-access classical memory.
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time. In practice, we will consider its cost to be comparable to a block cipher
call or an S-Box evaluation.

In the following, we will separately consider classical and quantum memory
costs and specify if we use QRAQM / QRACM (otherwise we are in the “plain”
quantum circuit model).

Probability of Success. We consider quantum algorithms with varying prob-
abilities of success, and all our results will be statements of the form:

there exists a quantum algorithm with (exact or average) time complex-
ity T , (classical and/or quantum) memory complexity M , and success
probability ≥ p.

Amplitude Amplification. Quantum amplitude amplification [12], abbrevi-
ated QAA in this paper, is a generalization of Grover search which allows to
increase the success probability of any measurement-free quantum algorithm by
iterating it. Let U be a quantum circuit such that

U |0〉 = √p |ψG〉 |1〉+
√
1− p |ψB〉 |0〉 , (3)

where p is the success probability of U , |ψG〉 and |ψB〉 are two orthogonal quan-
tum states corresponding to the good outcomes and bad outcomes of U respec-
tively. Our goal is to produce a state close to |ψG〉. LetO0 be the inversion around
zero operator, which flips the phase of the basis vector |0〉: O0 = I − 2 |0〉 〈0| ;
and O be the operator which flips the phase of all basis vectors |x, b〉 such that
b = 1. The QAA computes a sequence of states |ψi〉 , 0 ≤ i ≤ t, defined by the
following iterative process:

1. Start from |ψ0〉 = U |0〉
2. For i = 1 to t:
3. |ψi+1〉 = −UO0U†O |ψi〉

Let θ = arcsin(
√
p). As shown in [12], at each iteration, the amplitude of

good outcomes increases as follows:

|ψi〉 = sin((2i+ 1)θ) |ψG〉 |1〉+ cos((2i+ 1)θ) |ψB〉 |0〉 . (4)

This implies that after t =
⌊
π/(4 arcsin

√
p)
⌋
iterations, the value (2t + 1)θ

approaches π
2 . The success probability is at least3 1− p.

In quantum search, and in the algorithms presented in this paper, the only
computational overhead with respect to the iterations of U comes from the im-
plementation of O0 and O. We implement O0 naively using an n-bit Toffoli gate
(a better count for O0 is also given in [20], but not with a generic formula).

Lemma 1. The inversion around zero on n qubits can be implemented using
n − 1 ancilla qubits and 44n − 39 Clifford+T gates. The O operator can be
implemented using 1 ancilla qubit and 3 Clifford gates.
3 Though there exists an exact variant of QAA (also given in [12]), which increases
this probability to 1 if we know p exactly in advance, it is not particularly helpful
for us since we typically prefer to under-amplify the QAAs.
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Nesting Many QAAs. Since each iterate contains two calls to U (one reversed),
a QAA needs approximately π/(2√p) calls to succeed with probability close to
1, thus with overhead factor π/2 compared to 1/

√
p. With ` nested QAAs (U

calls a QAA, etc.), this accumulates into an overhead factor (π/2)`.
Recall that sinx ' x when x is small, so the probability of success of the QAA

initially grows almost as (2i+1)2p: it increases quadratically. The π
2 factor only

appears if we want to make it close to 1. Thus, and perhaps counter-intuitively,
to avoid piling up these factors we must keep the success probability of the QAAs
artificially low. This fact is well-known (see Lemma 9 in [1]) but rarely taken
into account in cryptanalysis.

Unknown Success Probability and “Overcooking”. In this paper, we will
often encounter the situation where we only have a lower bound pmin on p, and
we want to find a solution with constant success probability. This can be done in
expected time O(1/√pmin), by Theorem 3 in [12]. We settle for a simple method
which consists in running a QAA with a random number of iterates.

Lemma 2. LetM =
⌈
1.21/

√
pmin

⌉
. Let U be defined as in Equation 3, operating

on n qubits. There exists a quantum procedure that makes on average 2M + 2
calls to U and U† and contains (M − 1) × (22n − 18) Clifford+T gates, and
returns a good outcome with probability ≥ 1

2 .

Proof. We run the following procedure:

1. Do twice: Execute U and measure its output flag. If it is “1” then exit and
return the measurement result.

2. Do twice: Choose an integer i ≤M−1, whereM =
⌈
1.21/

√
pmin

⌉
, uniformly

at random, and execute a QAA with i iterates. If a “1” flag is measured then
exit and return the measurement result.

First of all, the average number of calls to U and U† is:

2

M

M−1∑
i=0

(2 + 2 · i) = 4 + 4 · (M − 1)M

2

1

M
= 4 + 2(M − 1) = 2M + 2 .

And the average number of additional Clifford+T gates is: M−1
2 × (44n− 36).

Next, we compute the probability that at least one of the substeps obtains a
good outcome. Using standard trigonometric formulas, we obtain:

1

M

M−1∑
i=0

sin2 ((2i+ 1)θ) =
1

2
− 1

2M

sin(2Mθ) cos(2Mθ)

sin(2θ)

≥ 1

2
− 1

4M sin θ cos θ
=

1

2
− 1

4M
√
p(1− p)

.
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Since we only run step 2 if step 1 fails, which occurs with probability 1 − p
by the structure of U , the whole operation fails (i.e., measures a bad outcome)
with probability at most:

(1− p)
(
1/2 + 1/(4M

√
p(1− p))

)
≤ 1/2 + 1/(4M

√
pmin) .

Next, we combine two such procedures. By choosing M =
⌈
1.21/

√
pmin

⌉
, we can

upper bound the failure probability as: (1/2 + 1/(4 · 1.21))
2 ≤ 1/2.

3 Nested Search Problems

In this section, we define the nested search problem that we want to solve, and
introduce all necessary notations for the building blocks of our algorithms. We
use 0r and 1r to denote bit-strings of zeroes (resp. ones) of length r.

3.1 Preliminaries

Choice Set. A “choice set” is just a set C identified with a set of bit-strings. We
consider its size |C| to be a power of 2. If not, we increase its size artificially
by adding choices that always lead to a bad outcome. When choosing from C
classically, we select c ∈ C uniformly at random. The corresponding quantum
algorithm is a Hadamard transform H that maps

∣∣0log2 |C|
〉
to 1√

|C|

∑
c∈C |c〉.

Basic Algorithms. We consider a quantum algorithm A, paired with a (classical)
function A, acting reversibly in place on some workspace W =WRO×WV , where
WRO is the read-only part of the workspace and WV is the modifiable variable
part. To W corresponds a Hilbert space W = WRO ⊗WV , spanned by a basis
of vectors of size 2|W |. Such a pair (A, A) acts as follows:{

A :W → W
x 7→ A(x)

{
A : W → W
|x〉 7→ |A(x)〉 , (5)

where for all x = (xro, xv), if we write A(x) = (x′ro, x
′
v), we have x′ro = xro. In

this definition, A is the function that we are implementing, and A is a quantum
circuit that implements it. For example, a boolean function f : X → {0, 1} can
be realized by a classical algorithm that acts on W = X×{0, 1} and maps (x, b)
to (x, f(x) ⊕ b); the corresponding quantum algorithm is the standard oracle
mapping |x〉 |b〉 to |x〉 |b⊕ f(x)〉. In that case X is the read-only part of the
workspace. It typically contains the results of previous computations, previous
choices, and some large memory storage.

Reversibility. The quantum algorithm A can be derived from A if A is efficiently
implementable, though it does not need to be: e.g., A could be based on Simon’s
algorithm. If A is implementable as a classical reversible circuit using G(A) gates,
then we can implement A as a quantum circuit using the same number of gates.
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Making a classical algorithm reversible is not always easy. A naive way, which we
will use by default, is to track all intermediate computations into the workspace
(at the expense of the memory complexity only).

Remark 1. By Equation 5, A implements exactly the function x 7→ A(x), i.e.,
∀x,A(|x〉) = |A(x)〉. This can be relaxed into an implementation up to some
uniform error ε: ∀x, ‖A(|x〉)− |A(x)〉 ‖ ≤ ε. Then, assuming that A is not called
more than O(1/ε) times, a standard hybrid argument ensures that the final state
of the algorithm deviates from the case of a perfect A by less than a constant
error; and so, the probability of success remains constant. This is used e.g. in [9].
The situation is more favorable if the errors raised by A can be detected, because
in that case, whether A errs or not defines an early-abort layer, and this can go
into our search framework.

3.2 Definition of the Problem and Parameters

Let ` ≥ 1 be an integer. Let C1, . . . , C` be choice sets, which are sets of bit-strings
of respective lengths n1, . . . , n`, totaling n = n1 + . . . + n`. Let W1, . . . ,W` be
sets of bit-strings of respective lengths w1, . . . , w`, totaling w = w1+. . .+w`. Let
F1 = . . . = F` = {0, 1} be flags. We define the workspace of our algorithms as
F ×C×W , where C = C1×· · ·×C`, W =W1×· · ·×W` and F = F1×· · ·×F`.
We use a corresponding Hilbert space F ⊗ C ⊗ W spanned by all workspace
states. Since we represent our algorithms as circuits, we think of a workspace
element as a set of registers: flag registers, choice registers and work registers.
By abuse of notation, we name these registers like the sets in which they take
their values: Fi, Ci,Wi.

We consider ` algorithms A1, . . . , A` (filtering functions) and ` algorithms
D1, . . . , D` (post-processing functions). All of them act on the workspace F ×
C ×W with the following restrictions:

• Ai can only modify the work registersWi, . . . ,W` and the i-th flag Fi; i.e., it
does not change the work registers of the previous steps. Its result depends
only on the current choices and workspace states;

• Di can only modify the work registers Wi, . . . ,W`;
• For i ≥ 2, if the (i− 1)-th flag is 0, both Ai and Di act as the identity. This

means that their respective quantum implementations are controlled on the
(i− 1)-th flag.

Remark 2. Ancilla qubits used in the quantum implementation of the Ai and
Di are counted in the workspace.

Remark 3. While the separation of Di from Ai might seem anecdotal, it will
help to save computation time if Di is noticeably more expensive than Ai.

Remark 4. If all Ai and Di have the same complexity, there is no need for
nesting, and the analysis of this paper will not be of particular help (one would
do a single search in the space C1 × . . . × C`). However, they typically have
different complexities, and the more costly ones must be performed less times.
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Since our problem can be viewed as a tree search, a tuple of choices (c1, . . . , ci)
that passes the first i − 1 filtering steps is called a path. The i-th flag indicates
if the path (c1, . . . , ci) passes the i-th filter, and the `-th flag indicates if it is
a solution. We will use the notation |flag i for extracting the value of the i-th
flag. We assume that a single solution (cg1, . . . , c

g
` ) exists. Our search problem

can thus be formulated as:

Find the path (cg1, . . . , c
g
` ) ∈ C1 × · · · × C` such that:

(D` ◦A`) ◦ · · · ◦ (D1 ◦A1)(0`, c
g
1, . . . , c

g
` , 0w)|flag ` = 1.

For all i, let Ai and Di be quantum implementations of Ai and Di, of gate
complexities G(Ai) and G(Di).

Filtering and Success Probabilities. We define the filtering probability α′2i as
the probability that, starting from the good subpath (cg1, . . . , c

g
i−1), a uniformly

random ci passes the i-th filter:

α′2i = Pr
ci

$←−Ci

(
(Di ◦Ai) ◦ · · · ◦ (D1 ◦A1)(0`, c

g
1, . . . , c

g
i−1, ci, 0w)|flag i = 1

)
. (6)

We define the success probability α2
i as the probability that, after passing the

filtering at step i, a subpath (cg1, . . . , c
g
i−1, ci) is actually the good subpath

(cg1, . . . , c
g
i ). By our assumption that there is a single good path:

∀i, α2
iα
′2
i =

1

|Ci|
=⇒ ∀i, α2

i =
2−ni

α′2i
. (7)

At the last step, the filtering decides already if the path is a solution. Thus,
we have α′` = 1, and the last post-processing step D` is the identity.

Remark 5. The assumption of having exactly one solution path, which is quite
common in cryptanalytic algorithms, allows us to reason only with respect to
this path: in particular, we only need to bound correctly the filtering (α′2i ) and
success (α2

i ) probabilities along this path. The behavior on the other paths turns
out to be irrelevant.

If there is more than one solution, our analysis may still apply, but only if
the solutions have locally the same parameters αi, α′i. This happens for example
if the tree is regular and if there is no filtering (α′i = 1). Otherwise we cannot
guarantee that the solution sub-paths are correctly amplified at each level, and
our analysis breaks down.

3.3 Simplified Case of Search with Early Aborts

Search with early aborts (Figure 4) can be seen as a special case of our generic
tree search, in which a single choice is made at the beginning of the search. This
simplifies considerably the setting and parameterization of the problem.

Let ` ≥ 1 be an integer. Let C be a choice set of bit-length n. Let W be a set
of bit-strings of length w. Let F = F1×· · ·×F` be the set of flags. The workspace
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is defined as F ×C ×W with a corresponding Hilbert space F ⊗C ⊗W. We use
the same naming conventions as in the more general case.

We consider ` algorithms A1, . . . , A` acting on this workspace with the fol-
lowing restrictions: • Ai only modifies W and the i-th flag; • if i ≥ 2 and the
(i − 1)-th flag is 0, Ai is the identity. Thus the quantum implementation of Ai
is controlled on the (i− 1)-th flag.

In this case, we do not need to assume that a single solution exists. Our
search problem is formulated as:

Find c ∈ C such that: A` ◦ · · · ◦A1(0`, c, 0w)|flag ` = 1.

For all i, we letAi be a quantum implementation of Ai, of gate complexityG(Ai).

Filtering Probabilities. We define filtering probabilities which contain all nec-
essary information to analyze the algorithms. The definition is different than
in Section 3.2. We define them as:

β2
1 = Pr

c
$←−C

(A1(0`, c, 0w)|flag 1 = 1) (8)

∀2 ≤ i ≤ `, β2
i =

Pr
c

$←−C (Ai ◦ · · · ◦A1(0`, c, 0w)|flag i = 1)

Pr
c

$←−C (Ai−1 ◦ · · · ◦A1(0`, c, 0w)|flag i−1 = 1)
, (9)

so that β2
i is the probability that it also passes the i-th step, conditioned on c ∈ C

having passed the (i− 1)-th step. We may assume for now they are known.

Difference between Backtracking and Early-Abort. While the “backtracking” case
splits the search space into several choice sets, the “early abort” case splits the
testing function instead. Both approaches could be somewhat unified by con-
sidering a backtracking algorithm in which each testing step is separated into
multiple sub-steps; it will then embed “early abort” algorithms at each level.
However, most applications seem to fall in one of the two cases.

4 Quantum Search with Early Aborts

Since it is a simpler case, we start with the problem defined in Section 3.3. From
a single choice set C, we want to find an element that passes a sequence of filters;
these filters have typically increasing complexities. Only the final filter reveals
the actual solution.

In this section, we detail our quantum algorithm for this problem, compute
its success probability and time complexity, and explain how to optimize this
complexity numerically. We prove in these computations that with ` levels of
nesting, the “naive” overhead factor (π/2)` can be optimized into

√
`.

Although this case has some applications in cryptanalysis, we stress that it
is fundamentally different from our main framework (search with backtracking)
which will be detailed in Section 5. Nevertheless, despite their differences, most
of the technical analysis from this section will be reused for the next one.
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Algorithm 1 B1: finds an element that passes the first filter A1.
Workspace: F , C,W
Modifies: F1, C,W

1: repeat
2: Increment the value c stored in register C
3: Compute A1 in place . Will update the flag F1 and the workspace
4: until F1 contains 1 or register C overflows

Algorithm 2 Bi: samples an element passing the filters A1 to Ai.
Workspace: F , C,W
Modifies: Fi, C,W

1: repeat
2: Call Bi−1

3: Compute Ai in place . Will update the flag Fi and the workspace
4: until Fi contains 1 or the register C overflows

4.1 Classical Early-Abort Algorithm

We start with a classical algorithm which will serve as inspiration for the quan-
tum one. We define ` algorithms B1, . . . , B` where each Bi finds elements that
pass the filters A1 to Ai. Note that we use a counter to explore the choice set C,
that makes the search deterministic (the register C is initialized to 0). This is
one of the key differences between classical and quantum search, where quantum
search instead may be seen as sampling choices at random.

In Algorithm 1, we start by sampling new values for c until we pass the first
filter. In Algorithm 2, we call Bi−1 to setup the workspace according to a new
element that passes filters A1 to Ai−1, then we evaluate Ai, and we continue until
it is passed. When B` stops, either C has overflown (i.e., the whole choice set
was explored without finding a solution), or the workspace contains a solution.

4.2 Description of the Quantum Algorithm

Our quantum algorithm is analogous to Algorithm 1 and Algorithm 2, except
that it replaces the ` Repeat-Until loops by ` nested QAAs. The QAA at
level i produces a superposition of choices which, with high probability, pass
the i first filters. It is not necessary to succeed with probability 1 for these
intermediate levels, and instead, the best strategy is to maintain the current
probability of success below a certain level, which is inverse-linear in `. The
number of iterates of each QAA is then selected depending on our knowledge of
the filtering probabilities βi defined in Section 3.3.

We define a sequence of algorithms Bi (1 ≤ i ≤ `) where Bi calls Ai and
Bi−1 as a subroutine. Each Bi acts on the same Hilbert space F ⊗C ⊗W as the
building blocks Ai. The complete algorithm is B`, which is parameterized by the
number of iterations (k1, . . . , k`) chosen for each QAA.

In the definition of the algorithms (Algorithm 3 and Algorithm 4) we denote
by Oi the test oracle that simply flips the phase if the i-th flag is 1. Each Oi
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Algorithm 3 B1: performs k1 iterates of QAA to filter the elements passing the
first test.

Workspace: F,C,W
Modifies: F1, C,W

1: Apply a Hadamard transform on the register C
2: Compute A1

3: Repeat k1 times
4: Flip the phase if the first flag qubit is 1
5: Uncompute A1

6: Apply a Hadamard transform on the register C
7: Apply −O0 on all registers
8: Apply a Hadamard transform on the register C
9: Compute A1

10: EndRepeat

Algorithm 4 Bi: performs ki iterates of QAA on top of Bi−1, to filter the
elements passing the i-th test.

Workspace: F,C,W
Modifies: F1, . . . , Fi, C,W

1: Compute Ai ◦ Bi−1

2: Repeat ki times
3: Flip the phase if the i-th flag qubit is 1
4: Uncompute Ai ◦ Bi−1

5: Apply −O0 on all registers
6: Compute Ai ◦ Bi−1

7: EndRepeat

costs 3 Clifford gates. Recall that O0 is the inversion around zero, which has a
gate cost linear in the number of workspace qubits.

Example 1. If we take two levels of QAA and one iterate at each level, we obtain
at the first level:

B1 = A1HO0HA†1O1A1H ,

and by writing A′1 = A1H, at the second level:

B2 = A2B1O0(A2B1)
†O2A2B1

= A2A′1O0A′†1 O1A′1O0(A2A′1O0A′†1 O1A′1)†O2A2A′1O0A′†1 O1A′1
= (A2A′1)O0(A′1)†O1(A′1)O0(A′1)†O1(A′1)O0(A2A′1)†O2(A2A′1)O0(A′1)†O1(A′1) .

So the algorithm looks like a QAA applied to the algorithm A2A1H, except that
we stop some of its iterations earlier.

4.3 Analysis

We do the analysis of B` in three steps. First, we express its success probability as
a function of (k1, . . . , k`) and (β1, . . . , β`). Second, we express its time complexity
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as a function of (k1, . . . , k`) and the gate complexities of Ai. Finally, we express
the constraints which allow to choose optimal values for the ki.

Success Probability. For all i, let ν2
i be the probability that after measuring

Bi |0`0n0w〉, the i-th flag qubit is projected on 1; i.e., after running Bi on input a
zero state, we obtain a choice that passes all the first i filters. By definition, ν2

` is
the probability of success of the whole procedure. We show that ν2

i depends only
on the parameters βi (from the search problem) and ki (from the algorithm) as
follows:

Lemma 3. Let ν0 = 1 by convention. For all i ≥ 1 we have:

νi = sin [(2ki + 1) arcsinβiνi−1] . (10)

Proof. To facilitate the notation, we introduce the projectors P 0
i , P

1
i which

project a quantum state in F ⊗ C ⊗W on the i-th flag 0 or 1, i.e.:

∀1 ≤ i ≤ `, P bi = Ii−1 ⊗ |b〉 〈b| ⊗ I`−i−1+c+w ,

where Ir is the identity operator applied to r qubits.
Let |ψi〉 be the uniform superposition of choices c and corresponding state of

the work register at step i, such that c passes all the filters from 1 to i included.
We prove by induction that:

Bi |0`+n+w〉 = νi |1i0`−i〉 |ψi〉+ |χi〉 , (11)

where |χi〉 = P 0
i Bi |0`+n+w〉 is the part of the superposition where the i-th flag

is zero. In general, it will be a superposition of failed states from levels 1, . . . , i,
with different flags of the form |1j0`−j〉 depending on the level which failed. In
other words, Bi outputs |ψi〉 with probability ν2

i .
We start from the output of A1H, which by definition, is:

A1H |0`+n+w〉 = β1 |10`−1〉 |ψ1〉+
(
P 0

1A1H |0`+n+w〉
)
.

Then, B1 applies k1 iterates of QAA on top of A1H, so by Equation 4, we have:

B1 |0`+n+w〉 = sin [(2ki + 1) arcsinβ1] |10`−1〉 |ψ1〉+
(
P 0

1B1 |0`+c+w〉
)
,

where we get the definition of ν1. Next, we assume that Equation 11 is true
for some i ≥ 1. By definition, Bi+1 applies ki+1 QAA iterates to the algorithm
Ai+1Bi. We first look at the output of Ai+1Bi:

Ai+1Bi |0`+n+w〉 = Ai+1

(
νi |1i0`−i〉 |ψi〉+

√
1− ν2

i |χi〉
)

= νi
(
βi+1 |1i+10`−i−1〉 |ψi+1〉+

(
P 0
i+1Ai+1(|1i0`−i〉 |ψi〉)

))
+
√

1− ν2
i |χi〉

= νiβi+1 |1i+10`−i−1〉 |ψi+1〉+ P 0
i+1Ai+1Bi |0`+c+w〉 .
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Indeed, since |χi〉 has always 0 in the flag bit i, Ai+1 leaves it unchanged.
By Equation 4 we have:

Bi+1 |0`+n+w〉 = sin [(2ki + 1) arcsin(νiβi+1)] |1i+10`−i−1〉 |ψi+1〉
+ P 0

i+1Bi+1 |0`+c+w〉 ,

which completes the recurrence.

Time Complexity. The time complexity of B` is a function of the ki and the
gate counts of Ai. Recall that we note G(Ai) the gate count of Ai, that includes
the controls on the flag qubit number i− 1.

Lemma 4. The gate complexity of B`(k1, . . . , k`) is given by:

G(B`) =

∑̀
i=1

∏̀
j=i

(2kj + 1)

G(Ai)

+(44(w+ `+n)− 36+n)
∏̀
j=1

(2kj +1) .

(12)
It uses 2(`+ n+ w)− 1 qubits.

Proof. This is a simple induction on the number of applications of each Ai. For
all i, B` contains

∏`
j=i(2kj + 1) calls to Ai. Each time O0 is called, it is applied

on w + n + ` qubits (the workspace, choices and flags), so it contains less than
44(w + n + `) − 39 Clifford+T gates, and uses w + n + ` − 1 ancillas with the
simple implementation of Lemma 1. By assumption, ancilla qubits used by the
Ai are counted as workspace qubits. Also each Oi contains 3 Clifford gates, and
each H contains n Hadamard gates. Finally, the total number of calls to O0

(resp. H and the Oi) is
∏`
j=1(2kj + 1).

Choice of the ki. Using approximations of the sin and arcsin functions, we
transform Equation 10 into exploitable bounds on the ν2

i .

Lemma 5. Let ν0 = 1 by convention, and si = (2ki + 1)2β2
i . Then for all i ≥ 1

we have:
siν

2
i−1

(
1− siν2

i−1

)
≤ ν2

i ≤ siν2
i−1 . (13)

Proof. Recall Equation 10: ∀i ≥ 1, νi = sin [(2ki + 1) arcsin(βiνi−1)] and ν0 = 1.
For the upper bound, we use the inequality:

| sin [(2ki + 1)x] | ≤ (2ki + 1)| sinx| .

For the lower bound, we use the bounds on sin, then on arcsin:

ν2
i ≥ (2ki + 1)2 arcsin2(βiνi−1)

[
1− (2ki + 1)2 arcsin2(βiνi−1)

3

]
≥ (2ki + 1)2 (βiνi−1)

2

[
1− 1

3

π2

4
(2ki + 1)2(βiνi−1)

2

]
,

and the bound follows from 1/3 · π2/4 ≤ 1.
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Theorem 1. Let si = (2ki + 1)2β2
i . Assume that ∀i ≤ `,

∏i
j=1 sj ≤

1
2` . Then

we have: ν2
` ≥ 1

2

∏`
j=1 sj.

Proof. We start by unfolding recursively the upper bound in Equation 13:

∀i, ν2
i ≤

i∏
j=1

sj .

Then we can use this in the lower bound:

ν2
` ≥

(∏̀
i=1

si

)∏̀
i=1

1−

 i∏
j=1

sj

 .

Assuming that for all j, we have:
∏i
j=1 sj ≤ 1, then we can use the generalized

Bernoulli’s inequality4 to simplify the lower bound:

ν2
` ≥

(∏̀
i=1

si

)1−
∑̀
i=1

 i∏
j=1

sj

 . (14)

The bound
∏i
j=1 sj ≤

1
2` allows to obtain: ν2

` ≥ 1
2

(∏`
i=1 si

)
, which proves the

theorem.

Thus, by keeping the success probability of Bi inverse-linear in `, we ensure
that the nested QAAs amplify without any multiplicative factor in the com-
plexity. However, the final probability of success remains inverse-linear in `. We
need to combine the procedure with an “overcooked” QAA (Lemma 2) with

√
`

iterates to obtain a constant probability. Overall, we have replaced the naive
overhead factor (π/2)` by

√
`.

One can remark that in order to set properly the iteration numbers, it is
required to know only the cumulative success probabilities

∏i
j=1 β

2
j , i.e., the

amount of choices passing the first i filters. This fact is important for the analysis
of variable-time amplitude amplification that we do in Appendix C.

4.4 Optimizing the Complexity Numerically

The complexity is easy to optimize if we know intervals on the β2
i of the form:

β2
i ∈ [l2i ;u

2
i ]. Indeed, we observe that as long as we keep the iteration numbers

sufficiently low, we can bound the final success probability using these known
upper and lower bounds.

Lemma 6. Assume that: ∀i, ki ≤
⌊
π
4

1
arcsinui

− 1
2

⌋
. Let νli (lower bound) and νui

(upper bound) be obtained by replacing the βi by li and ui, respectively, in the
formulas of Lemma 3. Then we have: νu` ≥ ν` ≥ νl`.
4 This technique is inspired by Appendix A in [5].
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Proof. These upper bounds on ki ensure that, regardless of the exact value of
βi, all inputs to sin stay in the interval [0;π/2] where the function is increasing.
The bounds on ν` then follow by a simple induction.

Therefore, we can bypass Theorem 1 and directly express the lower bound
on the success probability ν2

` of B` as a function of the ki:{
νl0 = 1

∀i, νli = sin
[
(2ki + 1) arcsin

[
liν

l
i−1

]] (15)

Then, given the formula for the gate complexity of B` as a function of the
iteration numbers, our goal is to:

minimize G(B`)/νl`
2 under the constraints: ∀i, ki ≤

⌊
π
4

1
arcsinui

− 1
2

⌋
.

We first optimize this numerically, then take the floor of the values ki obtained
(in order to avoid going above the bounds). This last rounding is, in practice,
insignificant for the complexity.

In Appendix B, we study the problem of a search with independent tests, in
which we first use Theorem 1 for the asymptotic case, then the optimization
method for practical cases.

5 Search with Backtracking

In this section, we present a quantum algorithm to solve the search problem
defined in Section 3, which uses a backtracking approach. We stress that this
method differs strongly from Section 4: it targets a search problem with several
choice levels, and would perform badly with a mere sequential combination of
filters. However, the analysis will look similar, even though the ` QAAs are
actually nested in reverse order compared to Section 4.

In general, a backtracking algorithm explores a search space by making partial
choices for partial values of the solution and being able to check whether a partial
solution may lead a full solution. Classically this can be seen as a depth-first tree
search where it recognizes whether the current node can lead to a solution, and
if it doesn’t, returns to the parent node.

5.1 Classical Backtracking Algorithm

We start by explaining how to solve the problem with a classical algorithm.
Recall that we have a sequence of filtering functions A1, . . . , A` and of post-

processing functions D1, . . . , D` acting in place on the workspace F × C ×W .
From them, we define a sequence of algorithms A′i (Algorithm 5) and Bi (Algo-
rithm 6) that also work in place. From a given node in the tree (i.e., a path of
choices c1, ...ci−1), A′i will sample new choices ci passing the filter Ai, and Bi will
write 1 in the flag F` if (c1, . . . , ci−1) = (cg1, . . . , c

g
i−1) (i.e., if the path extends to

the solution) and 0 otherwise. Furthermore, when it writes 1, the choice registers
contain the good path. Each Bi calls Bi+1 recursively, B`+1 does nothing, and
B1 solves the problem.
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Algorithm 5 A′i: finds the next choice that passes the filter at step i. At level
` we define A′` = A` (no loop).

Workspace: F1, . . . , F`, C1, . . . , C`, W1, . . . ,W`

Modifies: Ci, Fi,Wi, . . . ,W`

1: repeat
2: Increment the value ci stored in register Ci

3: Compute Ai in place . Overwrites wi, . . . , w`, fi
4: until fi = 1 or the choice register overflows

Algorithm 6 Bi: given a partial path of choices (c1, . . . , ci−1) (i.e., a node in the
tree), finds whether (c1, . . . , ci−1) = (cg1, . . . , c

g
i−1), and in that case, completes

the solution path.
Workspace: F1, . . . , F`, C1, . . . , C`, W1, . . . ,W`

Modifies: all registers (Fi, Ci, Wi) numbered from i to `
1: Initialize a counter in register Ci to value 0
2: repeat
3: Compute A′i in place . Overwrites ci, wi, . . . , w`, fi
4: if fi = 1 then . A new path to explore
5: Compute Di in place . Overwrites wi, . . . , w`

6: Compute Bi+1 in place . Overwrites all registers from i+ 1 to `
7: until fi = 0 or f` = 1

. If f` = 1, we found the solution path (cg1, . . . , c
g
` ), so we must

stop here and the choice registers (c1, . . . , c`) will contain this path. If fi = 0, we
stopped because there wasn’t any path left to explore.

5.2 Description of the Algorithm

Similarly to the classical backtracking, we define a sequence of quantum algo-
rithms Bi (1 ≤ i ≤ `) such that each Bi calls Ai and Bi+1 as a subroutine.
Intuitively, each Repeat-Until loop that we wrote in Algorithm 5 and Algo-
rithm 6 will now become a QAA.

These algorithms act on the same Hilbert space F⊗C⊗W as the Ai and Di.
Each of them only modifies a subset of the registers. They are parameterized by
two sequences of integers (k1, . . . , k`) and (k′1, . . . , k

′
` = 0) that we will choose

afterwards, which are the numbers of QAA iterates performed at each level, for
Bi and A′i respectively. The complete algorithm, which is intended to solve our
search problem, is B1. It starts from a workspace initialized to zeroes.

Intuitively, Bi is an amplified version of the sequence of steps from i to `;
if it starts from the good subpath (cg1, . . . , c

g
i−1), it returns the complete solu-

tion; otherwise it fails. We start from B`+1 = I, and then the definition of the
algorithms is given in Algorithm 7 and Algorithm 8.

Success Probability. As before, the analysis of B1 starts with an expression of
its success probability as a function of its parameters ki, k′i and the parameters
of the problem α2

i , α
′2
i . In the following, we omit to write the work registers, and
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Algorithm 7 A′i: filters the choices at step i. At level ` we have k′` = 0 and so
A′` = A` ◦H.

Workspace: F1, . . . , F`, C1, . . . , C`, W1, . . . ,W`

Modifies: Ci, Fi,Wi, . . . ,W`

1: Apply a Hadamard transform H on Ci

2: Repeat k′i times
3: Compute Ai

4: Flip the phase if the i-th flag qubit Fi is 1
5: Uncompute Ai

6: Apply H, −O0, and another H, all on Ci

7: EndRepeat
8: Compute Ai

Algorithm 8 Bi: performs a QAA on the algorithm Bi+1 ◦ Di ◦ A′i.
Workspace: F1, . . . , F`, C1, . . . , C`, W1, . . . ,W`

Modifies: all registers (Fi, Ci, Wi) numbered from i to `
1: Compute Bi+1 ◦ Di ◦ A′i
2: Repeat ki times
3: Flip the phase if the `-th flag qubit is 1
4: Uncompute Bi+1 ◦ Di ◦ A′i
5: Apply −O0 on the registers numbered from i to `
6: Compute Bi+1 ◦ Di ◦ A′i
7: EndRepeat

focus only on the flag and choice registers; we also omit the trailing zeroes of an
incomplete path of choices. One should note that the state of the work registers
is a deterministic function of the choice registers. Besides, the definition of our
algorithms ensures that we always apply the algorithms in the right order, i.e.,
we apply Ai when the current work registers contain a valid output of Di−1, and
Di when they contain a valid output of Ai. In order to simplify the notation,
we reuse the projectors P 0

i , P
1
i which project a quantum state in F ⊗ C ⊗W on

the i-th flag 0 or 1. We define the success probability ν2
i of Bi as the probability

that, starting from the good subpath cg1, . . . , c
g
i−1, Bi will output the complete

good path. By definition ν2
1 is the success probability of our complete algorithm.{

∀i ≥ 2, νi = ‖P 1
` Bi |1i−10`−i+1〉

∣∣cg1, . . . , cgi−1

〉
‖

ν1 = ‖P 1
` B1 |0`0c〉 ‖

(16)

Lemma 7. We have: ν` = sin [(2k` + 1) arcsinα`] and for all i < `:

νi = sin [(2ki + 1) arcsin [νi+1αi sin((2k
′
i + 1) arcsin(α′i))]] . (17)

Proof. We do a descending recursion on the value of i, starting from i = `. We
will also verify during this recursion that for all i, if we start Bi on a wrong
subpath, we obtain only zero flags, i.e.:

∀i,∀(c1, . . . , ci−1) 6= (cg1, . . . , c
g
i−1), ‖P

1
` Bi |1i−10`−i+1〉 |c1, . . . , ci−1〉 ‖ = 0 .
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We start by analyzing the behavior of A′i, assuming that we start from the
good path (cg1, . . . , c

g
i−1). After a Hadamard layer and a call to Ai (i.e., before

amplification), we obtain the state:

AiH |1i−10`−i+1〉
∣∣cg1, . . . , cgi−1

〉
|0〉

= α′i |1i0`−i〉
∣∣cg1, . . . , cgi−1

〉 1√
2niα′i

∑
ci∈Ci

passes the filter

|ci〉

︸ ︷︷ ︸
:=|ψi〉

+
√
1− α′2i |1i−10`−i+1〉

∣∣cg1, . . . , cgi−1

〉 1√
2ni
√

1− α′2i

∑
ci∈Ci

does not pass the filter

|ci〉

︸ ︷︷ ︸
:=|χi〉

,

where |ψi〉 and |χi〉 are two normalized quantum states. Therefore, after ampli-
fication (using Equation 4), A′i produces:

A′i |1i−10`−i+1〉
∣∣cg1, . . . , cgi−1

〉
|0〉

= sin((2k′i+1) arcsinα′i) |1i0`−i〉 |ψi〉+cos((2k′i+1) arcsinα′i) |1i−10`−i+1〉 |χi〉 .

In the state |ψi〉, which is a uniform superposition over all ci passing the filter,
we single out the good choice cgi . Since we have 1√

2niα′i
= αi, we see that the

output of A′i is a superposition of flags and paths where (cg1, . . . , c
g
i−1, c

g
i ) has

amplitude: αi sin((2k′i + 1) arcsinα′i).
Applying Di leaves the superposition unchanged (it only modifies the work

registers). Then, we apply Bi+1. On wrong subpaths, Bi+1 will always write the `-
th flag to zero, by the recurrence hypothesis. The good subpath (cg1, . . . , c

g
i−1, c

g
i )

is flagged with probability ν2
i+1, so we have:

‖P 1
` Bi+1DiA′i |1i−10`−i+1〉

∣∣cg1, . . . , cgi−1

〉
|0〉 ‖ = νi+1αi sin((2k

′
i + 1) arcsinα′i) .

Using Equation 4 again, we obtain the wanted formula for ν2
i . If we start from a

wrong path, A′i produces a superposition of wrong paths. Going through Bi+1,
the last flag written is always zero, so even after amplification this remains the
case.

5.3 Choosing the Iteration Numbers

We have to determine the iteration numbers ki and k′i to maximize the success
probability given by Lemma 7. For this, we do not need to know αi and α′i
exactly, but only two intervals of the form:{

l′2i ≤ α′2i ≤ u′2i
l2i :=

1
u′2i |Ci|

≤ α2
i ≤ 1

l′2i |Ci|
:= u2

i

(18)
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where the second is deduced from the first by α2
iα
′2
i = 1

|Ci| . Note that u` = l` =
1√
|C`|

by our assumptions. More generally, the case li = ui happens when αi

and α′i are known exactly, for example where there is no filtering.
First, we remark that such intervals are enough as long as we keep the iter-

ation numbers sufficiently low.

Lemma 8. Assume that: ∀i, ki ≤ π
4

1
arcsinui

− 1
2 and ∀i < `, k′i ≤ π

4
1

arcsinu′i
− 1

2 .
Let νli (lower bound) and νui (upper bound) be obtained by replacing the αi and
α′i by li and l′i, and by ui and u′i, respectively, in the formulas of Lemma 7. Then
we have: νu1 ≥ ν1 ≥ νl1.

Proof. Same as Lemma 6: all inputs to sin stay in the interval [0;π/2] where the
function is increasing.

Our strategy is now as follows: instead of bounding the true ν1, which depends
on parameters that we do not know, we will bound νl1 depending on parameters
that we know (li, l′i, ui, u′i). To simplify the notation, we write ν instead of νl in
what follows.

In order to bound ν1, we first unfold the recursive formula of Lemma 7 into
lower and upper bounds on the νi. The proof is almost the same as Lemma 5,
except that the order of indices has changed, and new factors intervene due to
the intermediate QAAs A′i.

Lemma 9. Let ν`+1 = 1, k′` = 0 and l′` = 1. Let si = (2ki + 1)2l2i and s′i =
sin2 [(2k′i + 1) arcsin(l′i)]. Then for all i ≤ ` we have:

sis
′
iνi+1

2
(
1− sis′iνi+1

2
)
≤ νi2 ≤ sis′iνi+1

2 . (19)

We now state our main theorem, which follows entirely from Equation 19.
The proof is identical to the one of Theorem 1, except for the replacement of si
by sis′i and the order of indices.

Theorem 2. Assume that ∀i,
∏`
j=i(sjs

′
j) ≤ 1

2` . Then: ν
2
1 ≥ 1

2

∏`
j=1(sjs

′
j) .

5.4 Analytic Complexity Formula

We give the gate and space complexities of the algorithm depending on ki and
k′i. Recall that we use G(A) to denote the gate cost of A and S(A) the number
of qubits on which it acts. For the cost of an inversion around zero on r qubits,
we use the costs of Lemma 1, i.e., 44r−39 Clifford+T gates (and 3 gates for the
bit-flipping). We write I(r) = 44r − 36.

For the space complexity, we count all the registers: ` +
∑

1≤i≤`(wi + ni),
and we add to this the number of ancilla qubits required by our implementation
of O0:

∀i, S(Bi) = 2
∑
j≤i≤`

(1 + wj + nj)− 1 = `− j + 2
∑
j≤i≤`

(wj + nj) . (20)
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The gate complexity of Bi is given by the recursive formula:

(2ki + 1)

(
G(Bi+1) +G(Di) + (2k′i + 1) (G(Ai) + ni) + k′iI(ni)

)
+ kiI(S(Bi)) ,

where G(D`) = 0, k′` = 0, G(B`+1) = 0 (since B`+1 and D` do nothing). We
simplify it into:

G(Bi) ≤ (2ki+1)

(
G(Bi+1)+G(Di)+(2k′i+1)

(
G(Ai) + ni +

1

2
I(ni)

)
+
1

2
I(S(Bi))

)
.

(21)
Finally, we choose appropriate iteration numbers, deduce the success proba-

bility of B1 by Theorem 2 and its gate count by the formula above. This completes
the “analytic” study.

Theorem 3. Choose:
k` = max

(⌊
1

2
√

2`
1
u`
− 1

2

⌋
, 0
)

∀i < `, ki = max
(⌊

1
2

1
ui
− 1

2

⌋
, 0
)

∀i < `, k′i = max
(⌊

π
4 arcsin(u′i)

− 1
2

⌋
, 0
) (22)

Then the probability of success of B1 is lower bounded by:

ν2
1 ≥

1

2

∏
i

(2ki + 1)2l2i
∏
i

sin2 ((2k′i + 1) arcsin(l′i)) , (23)

and its gate count is upper bounded by:

∑̀
i=1

∏̀
j=i

(2kj + 1)

(G(Di)+ (2k′i+1)

(
G(Ai) + ni +

1

2
I(ni)

)
+

1

2
I(S(Bi))

)
.

(24)

Proof. We check that the iteration numbers satisfy the conditions of Lemma 8,
especially the choice of ki. If a step has no filtering, then l′i = u′i = 1, in which
case we take k′i = 0 and the term sin2 ((2k′i + 1) arcsin(l′i)) equals 1.

Indeed we have for all x, arcsinx ≤ π
2x, so:

ki ≤
π

4

(
arcsin

(
1

l′i
√
|Ci|

))−1

− 1

2
≤ π

4 arcsinui
− 1

2
.

Next, we have: ∀i, (2ki+1)2l2i ≤ (2ki+1)2u2
i ≤ 1 and (2k`+1)2l2` ≤ (2k`+1)2u2

` ≤
1
2` so we can use Theorem 2 to conclude. The gate count is obtained by recursively
unfolding Equation 21.

We could simplify further the formula by using a bound on the size of the
workspace. However, in some examples (Section 6.1) the factor S(Bi) is not
negligible and should not be bounded away for all i simultaneously.
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5.5 Optimizing the Complexity Numerically

For practical applications, especially when ` is not too large, we will obtain better
results with a direct optimization. We bypass Theorem 3 and directly focus on
the value of νl1, the lower bound of the success probability, which as we recall,
is obtained by the following recursion:{

νl` = sin [(2k` + 1) arcsin (l`)]

∀i, νli = sin
[
(2ki + 1) arcsin

[
νli+1li sin((2k

′
i + 1) arcsin l′i)

]]
.

(25)

We simplify our optimization problem by setting k′i =
⌊
π
4

1
arcsin(u′i)

− 1
2

⌋
(intu-

itively we do not gain anything by postponing the early-abort step). Then, by
simply running B1 repeatedly, a solution is found with average time complexity

1
νl1

2G(B1). Thus, given the formula for the gate complexity of B1, as a function
of the iteration numbers, our goal is to:

minimize
(
G(B1)/ν

l
1
2
)
under the constraints: ∀i, ki ≤ π

4
1

arcsinui
− 1

2 .

We can observe, as it was done in [23], that this direct optimization actually
leads to lower probabilities of success, e.g. between 70% and 80%. In our code, we
increased the exponent on νl1, in order to naturally bring the success probability
closer to 1.

5.6 Analysis of the Memory

When turning a classical nested search into a quantum one, using our framework,
some conversion of the memory model is needed (see Section 2 for an overview
of quantum memory models). We can summarize it with the following rules:

• All registers Fi, Ci,Wi, since they will be overwritten by one of the Ai or
Di, are qubits.

• If one of the Ai needs fast random access to one of the previous work registers
(e.g., reading from a table in memory), then the QRAQM model is required.
Otherwise, performing sequential access, or accessing cells of fixed (global
constant) position can be done with the standard quantum circuit model.

• If one of the Ai needs fast random access to a table that was initialized before
the first step, then the QRACM model is required. The data in this table
will remain classical, but the indices accessed will be put in superposition.
Otherwise, performing sequential access, or accessing cells of fixed (global
constant) position can be done with the standard quantum circuit model,
and no QRACM would be required (only a classical memory).

6 Applications to AES cryptanalysis

In this section, we demonstrate our framework by improving the algorithms and
complexity of the quantum attacks on AES given in [11]. Since we are interested
merely in the shape of these algorithms and their resulting complexities, we refer
to [11] for the details of the attacks and their correctness.
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Preliminaries on AES. The AES [15] is the standardized version of the block ci-
pher Rijndael [14], which is a substitution-permutation network (SPN) operating
on a 4× 4 matrix of bytes. An AES round applies the operations AddRound-
Key (ARK, XORs the current round key to the state), SubBytes (SB, applies
the S-Box S to each byte individually), ShiftRows (SR, permutes the bytes),
MixColumns (MC, applies a linear function to each column).

The states of round i after ARK, SB, SR and MC are denoted respectively
as xi, yi, zi, wi, and ki is the round key of round i. The bytes of these states are
numbered from xi[0] to xi[15] (top to bottom, left to right in the byte matrix).

In these attacks, we are given classical chosen-plaintext access to a black-box
EK implementing a reduced-round AES with a secret keyK. The attacks recover
some key material, i.e., bytes of some round keys ki. A valid quantum attack
must outperform the exhaustive search with Grover’s algorithm, which always
applies. Since the AES S-Box S is the only nonlinear component, it dominates
the cost of quantum circuits, and we estimate the complexity not by counting
individual gates, but by counting S-Box circuits (see e.g. [11])5.

Results. Our numbers are rounded to the second decimal. The results are sum-
marized in Table 1. The memory usage is the same for all approaches, and equal
to [11]: approximately 225 qubits with QRAQM access, and 236 classical memory
without QRACM access for the Square attack; and 288 classical memory without
QRAQM / QRACM for the DS-MITM attack (with a small number of qubits).

We can observe that for the Square attack, there is no benefit with respect
to the previous approach. This is because the nested search terms (and piling-up
constants) do not dominate here. The only advantage of our approach was to
externalize the quantum algorithm design and complexity analysis.

For the DS-MITM attack, already the analytic formula performs better than
the previous analysis, despite the loss in success probability (as can be seen
on the ratio of cost over probability of success). The optimized variant wins a
factor 24 at practically no loss in success probability. We are very close (up to a
factor 2) of what we would obtain if we simply took the square-root of iteration
numbers in the complexity estimate.

6.1 Square Attack on AES

The Square attack on 6-round AES using the partial sums technique [19] is a good
example of a simple backtracking algorithm, without early-abort. Its quantum
version is given in Appendix A.2 of [11]. The path of the attack is reproduced
in Figure 5. It is based on the following 3-round distinguisher: by encrypting a
set of 28 plaintexts which vary only in byte 0 (a δ-set), after 3 rounds of AES,
each byte is balanced: the sum of the 28 values that it takes is equal to zero.

We consider a few structures defined as follows: each structure contains 232

plaintext-ciphertext pairs (pi, ci)0≤i≤232−1, such that the first diagonal of pi (di-
agonal in the state x0 in Figure 5) takes all 232 possible values. It then maps to
5 We keep this metric for simplicity despite the cases when we consider QRAQM /
QRACM, where the S-Box could be also implemented by a (quantum) table lookup.
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Table 1. Estimation of attack complexities, in number of S-Box circuits. “Analytic”:
using Theorem 3. “Optimized”: using numerical optimization as per Section 5.5. “Square
root”: numbers obtained by taking exact square roots of the number of iterates in the
classical search. “Normalized Time”: time complexity divided by the success probability.

[11] Analytic Optimized Square root

6-round AES
Square

Time 244.73 248.24 244.81 244.05

Success prob. 1 0.5 0.98
Normalized Time 244.73 249.24 244.84

8-round AES-256
DS-MITM

Time 2136.17 2133.71 2132.05 2131.07

Success prob. 0.73 0.5× 0.73 0.92× 0.73
Normalized Time 2136.62 2135.16 2132.62

224 δ-sets through the first round, and after the distinguisher, byte x4[0] should
be balanced. For a given guess of key bytes u5[0] and k6[0, 1, 2, 3] (• on the pic-
ture), we can compute backwards one round on each ciphertext ci to reach the
value of the byte x4[0]. By taking the sum of all these values, we check whether
x4[0] is balanced over the whole structure. This sum is expressed as:

∑
0≤i≤232−1

S−1
(
u5[0]⊕ a0S

−1(ci[0]⊕ k6[0])⊕ a1S
−1(ci[1]⊕ k6[1])

⊕ a2S
−1(ci[2]⊕ k6[2])⊕ a3S

−1(ci[3]⊕ k6[3])
)
,

for known constants a0, a1, a2, a3 coming from MixColumns. We want to find
the choice of k6[0, 1, 2, 3] and u5[0] for which this sum is equal to 0 for all struc-
tures. Instead of having to do 232 computations per key guess, Algorithm 9
amortizes this cost thanks to intermediate tables. Here we take Di = I for all i.
The successive algorithms Ai correspond to constructing these tables.

Using the generic formula of Theorem 3, we obtain a worse time complexity
than the one given in [11]. Indeed, we must take the following number of iterates
for the successive steps: 127, 7, 7, 2, with the last one quite small to allow
for a reduced probability of success. We obtain a count of 244.24 S-Boxes for a
probability of success 2−4.74. But in the attack, the calls to A1 dominate the
time complexity. In [11] there are roughly π

2 2
8 such calls, but in our case, we

need to re-amplify the last layer with 16 calls, so we will call A1 roughly 16× 28

times and this is not competitive.

However, the numerical optimization (see Section 5.5) “sees” that A1 domi-
nates, and amplifies the non-dominating steps to a success probability closer to
1. This results in the numbers of iterates 186, 11, 11, 11 for a success probability
0.98 and a time complexity of 244.81 S-Boxes.
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Fig. 5. AES Square attack

6.2 DS-MITM Attack on 8-round AES-256

We consider the DS-MITM key-recovery attack on reduced AES-256 given in [11].
We refer to [11] for the full attack algorithm, and instead focus on its translation
in our framework.

The attack uses a 5-round distinguisher with the following property. Given a
pair of states with only one active byte in input and output of these 5 rounds, by
making the input active byte vary and take all 28 possible values, the sequence
of values (δ-sequence) obtained in the output byte has a relatively small num-
ber of possibilities. In the quantum attack, all possible sequences are actually
enumerated. These 5 middle rounds are extended forwards and backwards by
several rounds using key guesses.

The attack algorithm has then the following structure. One first guesses the
required key bytes, then identifies a pair of plaintexts which satisfies the dif-
ferential condition for the distinguisher. The plaintexts corresponding to the
δ-sequence are encrypted and the δ-sequence is computed. Then, all the possible
δ-sequences are enumerated, and if the found δ-sequence appeared among them,
the key guess is deemed correct with overwhelming probability.

The enumeration of δ-sequences is the most technical step of the algorithm, as
it requires to guess several state differences for the chosen pair of plaintexts; from
these differences, one deduces several internal state values, by solving differential
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Algorithm 9 Square attack on 6-round AES.
Compute 8 structures of 232 classical chosen-plaintext queries

16 bits Choose k6[0], k6[1]

A1

For each structure, for each ciphertext ci, compute:
(t1, t2, t3) = a0S

−1(ci[0]⊕ k6[0])⊕ a1S−1(ci[1]⊕ k6[1]), ci[2], ci[3].
Build a table T1 of 224 entries that stores, for each three-byte value (t1, t2, t3),
how many times it appears.
This costs 232 × 8× 2 = 236 S-Boxes and space: w1 = 8× 224 × 32 = 232

qubits (we keep large 32-bit counters)
8 bits Choose k6[2]

A2

For each 3-byte value (t1, t2, t3), compute: t1 ⊕ a2S−1(t2 ⊕ k6[2]), t3
by accessing T1. Build a table T2 of 216 entries that stores, for each 2-byte
value (s1, s2), how many times it appears.
This costs 8× 224 × 1 = 227 S-Boxes and space: w2 = 8× 216 × 32 = 224

qubits (we keep large counters).
8 bits Choose k6[3]

A3

For each 2-byte value (s1, s2), compute s1 ⊕ a3S−1(s2 ⊕ k6[3]).
Build a table T3 that stores how many times each byte appears.
This costs 8× 216 × 1 = 219 S-Boxes and space: w3 = 8× 28 × 32 = 216 qubits.

8 bits Choose u5[0]

A4

Using the table, compute the sum.
This costs: 8× 28 × 1 S-Boxes and additional small computations,
and approx. 8× 32 = 28 qubits.

equations for the AES S-Box. These differential equations can have 0 (“no match”
in Algorithm 10), 2 or 4 solutions. Finally, several “state-key” equations relate
the internal state values with the key guess.

The complexity analysis of the algorithm relies on several estimations:

• There are 40 S-Box differential equations of the form S(x⊕∆) = S(x)⊕∆′
for known∆,∆′ in the differential path. We suppose that for the good subkey
guess, all of them have 2 solutions exactly, and not 4. This happens for the
whole differential path with probability 2−0.45 as estimated in [11]

• some steps (A3 to A6 in Algorithm 10) have varying success probabilities,
depending on the current key and state guesses. It is estimated in [11] that
this probability varies less than by 2−8

• the computation of the state-key equations in D6 cost less than 210 S-Boxes
(most of these computations are only linear)

• at most 4 different values are found after D6

Using Theorem 3, we obtain an algorithm of complexity: 2129.53 (S-Boxes)
with success probability ≥ 2−5.40. Most of this uncertainty comes from the con-
stant factor and the reduction of the success probability that ensures the cor-
rectness of our algorithm. Using Lemma 2, we find that with on average 18 calls
to this procedure and its inverse, we can bring the success probability to 1/2.
This already improves over [11].
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Algorithm 10 DS-MITM attack on 8-round AES-256.
80 bits Choose k0[0, 5, 10, 15], k1[3], u7[1], u8[0, 7, 10, 13]

D1

Find a pair which satisfies the differential path (253 S-Boxes)
Compute the 25-sequence of differences δw5[5] (< 288 S-Boxes)
Compute ∆x2[4− 7] and ∆y5[3, 4, 9, 14]

64 bits Choose ∆y2[4− 7],∆x5[3, 4, 9, 14]
A2 Match ∆y2[4− 7],∆x5[3, 4, 9, 14] with ∆x2[4− 7], ∆y5[3, 4, 9, 14]
Success: 2−8 Stop if no match
D2 Compute the possible states

Compute ∆x3 and ∆y4
(Here we have assumed that the S-Box differential equations
yield only two solutions)

32 bits Choose ∆x4[0− 3]
A3 Match ∆x4[0− 3] with ∆x3 and ∆y4
Succ.: 2−8(1± 2−8) Stop if no match

32 bits Choose ∆x4[4− 7]
A4 Match ∆x4[4− 7] with ∆x3 and ∆y4
Succ.: 2−8(1± 2−8) Stop if no match

32 bits Choose ∆x4[8− 11]
A5 Match ∆x4[8− 11] with ∆x3 and ∆y4
Succ.: 2−8(1± 2−8) Stop if no match

32 bits Choose ∆x4[12− 15]
A6 Match ∆x4[12− 15] with ∆x3 and ∆y4
Succ.: 2−8(1± 2−8) Stop if no match
D6 Using all the known states, write the state-key equations

Determine the values of x3, x2[4− 7], x4[0− 7, 10, 11, 15]
(Here we assume that at most 4 different values are found,
which leaves 29 choices in total at the next step.)

9 bits Choose one of 29 possibilities for x4[8, 9, 12, 13, 14], x5[4, 9, 14]
A7 Compute the expected δ-sequence (25 × 40 S-Boxes)
Success: 2−9 Check if it equals the expected sequence

By running a numerical optimization instead, we obtain a complexity of
2132.05 S-Boxes with a success probability ≥ 0.92, which gives an average com-
plexity 2132.17 to reach a success. The attack has then a 27% chance of failure,
which is the same for all procedures.
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Appendix

A Search with Two Oracles and Exhaustive Key Search

A simple, but common, example of search with early aborts, as studied in Sec-
tion 4, is the search with two oracles which was considered e.g. in [16,27]. This
algorithm reduces the gate count of a Grover search where the oracle is the AND
of two functions. One should note that if the metric considered is only sequential
depth and / or if we consider a parallelized algorithm, this technique might not
be as useful.

Consider a quantum search on {0, 1}n with two test functions f1 and f2,
implemented as two oracles Of1 and Of2 , with X1 := f−1

1 (1), X2 := f−1
2 (1),

|X1| = α2
12
n, |X2 ∩X1| = α2

2α
2
12
n where the combined success probability p =

α2
1α

2
2 is known. Here we use a layered QAA with two levels and two differing

tests Of1 and Of2 (which write in two different flag results). We compute the
success probability as:

sin2

[
(2k2 + 1) arcsin

[
α2 sin

(
(2k1 + 1) arcsinα1

)]]
.

As we have seen before, α1 does not need to be known exactly; we only need
to ensure that the internal QAA amplifies only to a small success probability,
and does not overamplify. Indeed, if an upper bound α1 ≤ α is given, we have:

α2 sin

(
(2k1 + 1) arcsinα1

)
≥ α2α1(2k1 + 1)

(
1− (2k1 + 1)2α2

1π
2

36

)
≥ √p(2k1 + 1)

(
1− (2k1 + 1)2α2π2

24

)
.

We can then choose k1 and k2 to maximize the success probability:

sin2

[
(2k2 + 1) arcsin

[
√
p(2k1 + 1)

(
1− (2k1 + 1)2α2π2

24

)]]
≥ sin2

[
√
p(2k2 + 1)(2k1 + 1)

(
1− (2k1 + 1)2α2π2

24

)]
.

To do so we choose: k2 =
⌊
π/
(
4
√
p(2k1 + 1)

(
1− (2k1+1)2α2π2

24

))⌋
. This ensures

that the success probability is bigger than:

1− sin2

[
√
p(2k1 + 1)

(
1− (2k1 + 1)2α2π2

24

)]
≥ 1−√p(2k1 + 1)

(
1− (2k1 + 1)2α2π2

24

)
.

Let T1 and T2 be the gate counts of Of1 and Of2 . The time complexity is:

T = k2(2k1 + 1)T1 + k2T2 ≤
π

4
√
p
T1

1 + T2

T1(2k1+1)(
1− (2k1+1)2α2π2

24

) . (26)
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Block Cipher Exhaustive Key Search. Consider a block cipher EK and several
given plaintext-ciphertext pairs (Pi, Ci), i ≤ `, such that with overwhelming
probability there is a single key K such that EK(Pi) = Ci for all i. We are
looking for this K. For example, with AES-256, ` = 3 would be enough. For
all intents and purposes, we can consider ` = 5, which works for most practical
block ciphers, e.g. AES [15], PRESENT [8], etc. Furthermore, we can consider
a key size κ := |K| ≥ 64 and a block size n ≥ 32.

Let trunc be a truncation of n bits to 32 positions. Let Of1 and Of2 be two
quantum oracles evaluating the test functions:{

f1(K) = 1 ⇐⇒ trunc(EK(P1)) = trunc(C1)

f2(K) = 1 ⇐⇒ ∀i, EK(Pi) = Ci
(27)

Since ` = 5 plaintext-ciphertexts suffice, we can consider a ratio of gate
counts of T2/T1 = 10 (this is assuming that computing the truncation is twice
as efficient as computing the whole ciphertext). The success probability of f1

can be bounded using a Chernoff-Hoeffding bound (for this we have to assume
that E is selected at random from all possible block ciphers): Pr

(
α2

1 ≥ 2−31
)
≤

e−2κ−32/3. Since κ ≥ 64, this event has negligible probability. So we can assume
that α2

1 ≤ 2−31. The optimal choice of k1 is k1 = 1480 for which the multiplying
factor is smaller than 1 + 2−7.625 ≤ 20.0073. This means that the cost of f2 is
completely amortized. The corresponding success probability is bigger than:

1− 2−64(2k1 + 1)

(
1− (2k1 + 1)22−31π2

24

)
≥ 1− 2−52.47 . (28)

Fact 1. For any reasonable block cipher with block size n ≥ 32 and key size
κ ≥ 64, if Of1 is the oracle defined above (testing only 32 bits of a single plain-
text), then the complexity of a quantum exhaustive search of the key (to reach
an overwhelming success) is smaller than: π4 2

κ/2+0.01T1.

B Search with Independent Tests

In this section, we tackle the problem of search with many independent tests,
which arises in several cryptographic applications. It corresponds to a search
with early aborts as given in Section 4.

Problem 1 (Sequence of independent tests). Let f1, . . . , fm be m functions: fi :
{0, 1}n → {0, 1}. Let Xi = {x ∈ {0, 1}n,∀j ≤ i, fj(x) = 1}, with X0 = {0, 1}n.
Clearly we have ∀i,Xi+1 ⊆ Xi. Assume that the fi are all independent random
boolean functions, which can be evaluated in time t. Sample from Xm.

B.1 Search with Independent Tests (Asymptotic)

Typically we will have m ≤ n + 3 since with the assumption of independence,
this ensures that |Xm| = 1 with a large probability. For intermediate values
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of i, |Xi| does not deviate too much from its average due to the multiplicative
Chernoff-Hoeffding bound:

∀δ ≥ 0,Pr(|Xi| ≥ 2n−i(1 + δ)) ≤ e−2n−iδ2/(2+δ) ≤ e−2n−iδ2/2 ,

where we take δ = 2−(n−i)/3 to obtain:

∀i,Pr(|Xi| ≥ 2n−i + 22(n−i)/3) ≤ e−2(n−i)/3−1

.

Using a union bound, we can ensure that most of theXi are close to their average
size:

Pr(∃i ≤ n− 9, |Xi| ≥ 2n−i + 22(n−i)/3) ≤
n−9∑
i=0

e−2(n−i)/3−1

≤
∞∑
i=9

(
e−1
)2i/3−1

≤ e−4
∞∑
i=0

e−i ≤ 0.029 ,

where we noticed that 2i/3−1 > i− 5 for i ≥ 9.
In particular |Xi| ≤ 2n−i 9

8 , which simplifies the asymptotic computations.
We will now cut the sequence f1, . . . , fn into a variable-time algorithmA`◦· · ·◦A1

(note that ` is a different parameter than the number of tests m; in particular
` < m). Each Ai will run mi successive functions fi, so that in total m1 +
. . .+m` = n− 9. A final search will be performed for the remaining conditions,
but it will only add a constant overhead. Due to the Chernoff bounds, we know
that the cumulative probabilities of success of the Ai are upper bounded by:∏i
j=1 β

2
j ≤ 2−

∑i
j=1mj+1. So we can take for the number of iterates ki:

k1 =

⌊
1

2
√
9/8× 2`

√
2m1 − 1

2

⌋
,∀i ≥ 1, ki =

⌊
1

2

√
2mi − 1

2

⌋
,

which are sufficient to ensure the conditions of Theorem 1:

∀i ≥ 1,

i∏
j=1

(2kj+1)2 ≤ 1

2`
2m1+...+mi

8

9
=⇒

i∏
j=1

(2kj+1)2β2
j =

i∏
j=1

(2kj+1)2
|Xi|
2n
≤ 1

2`
.

By Equation 12 the complexity of the full procedure is upper bounded by:

∑̀
i=1

∏̀
j=i

(2kj + 1)

mi ≤

(∑̀
i=2

√
2mi+...+m`mi

)
+
√
2m1+...+m`

√
4

9`
m1

≤
√
2n−9

(√
4

9`
m1 +

m2

2m1/2
+

m3

2(m1+m2)/2
+ . . .+

m`

2(m1+...+m`−1)/2

)
.

It appears clearly that when n is very large, we can minimize the complexity
by choosing m2,m3, . . . ,m` as follows:

m` = n− 9−
⌊
log√2 n

⌋
,∀i,m`−i =

⌊
log

(i)√
2
n
⌋
−
⌊
log

(i+1)√
2

n
⌋
,m1 =

⌊
log

(`−1)√
2

n
⌋
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where we have used an iterated logarithm in base
√
2. As long as all these

numbers are strictly positive, we have for all i ≥ 1 :

mi

2(m1+...+mi−1)/2
≤ 1

and so the time complexity is upper bounded by 2(n−9)/2
(√

4
9` log

(`−1)√
2

n+ `
)
.

We are still free to choose ` under the condition k1 ≥ 1 i.e.
√

4
9`

√
2m1 ≥ 3

2 .
It can be remarked that ` = O(log∗√

2
n), and the complexity (after the final

amplification) to have a success probability 1
2 is O

(
(log∗√

2
n)3/22n/2

)
.

B.2 Search with Independent Tests (Exact)

For cryptographically relevant parameters, we estimate that cutting the indepen-
dent tests in three groups should be enough. We select two parameters m1,m2;
we first perform m1 tests, then m2 tests, then the remaining m−m1−m2 where
m = n + 3 to ensure a single solution. We count the complexity in number of
tests:

m1(2k1 +1)(2k2 +1)(2k3 +1)+m2(2k2 +1)(2k3 +1)+(m−m1−m2)(2k3 +1) .

Since the tests are independent, the probabilities of success of the three steps,
β2

1 =
|Xm1 |

2n , β2
2 =

|Xm1∩Xm1+m2 |
|Xm1

| , β2
3 = 1

2nβ2
1β

2
2
, can be bounded using Chernoff-

Hoeffding bounds. There are on average 2n−m1 elements passing the first step
and 2n−m2−m1 elements passing the second. We have for all ε1 and ε2:Pr (||Xm1

| − 2n−m1 | ≥ ε12
n−m1) ≤ 2 exp

(
−ε212n−m1

3

)
Pr (||Xm1

∩Xm1+m2
| − 2n−m1−m2 | ≥ ε22

n−m1−m2) ≤ 2 exp
(
−ε222n−m1−m2

3

)
(29)

Therefore, assuming that n−m1−m2 ≥ 12, we can take both ε1 = ε2 = 2−4

and these two events occur with overwhelming probability. This gives bounds:
β2

1 ∈
[
2−m1(1− ε1);u

2
1 := 2−m1(1 + ε1)

]
β2

2 ∈
[
2−m2 1−ε2

1+ε1
;u2

2 := 2−m2 1+ε2
1−ε1

]
β2

3 ∈
[
2−n+m1+m2 1

1+ε2
;u2

3 := 2−n+m1+m2 1
1−ε2

] (30)

Thus, after choosing values form1 andm2, we can follow the approach of Sec-
tion 4.4: we optimize the complexity as a function of k1, k2, k3 (counting the total
number of individual tests performed) under the constraints:

k1 ≤
⌊
π

4

1

arcsinu1
− 1

2

⌋
, k2 ≤

⌊
π

4

1

arcsinu2
− 1

2

⌋
, k3 ≤

⌊
π

4

1

arcsinu3
− 1

2

⌋
.

(31)
We can then try with different m1 and m2 and see which ones perform best.

For cryptographic parameters, n usually does not exceed 210, and we expect m1

to be quite small, so there are not many parameters to try.
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B.3 Application: Solving Binary Multivariate Quadratic Systems

As an example, we can consider the problem of solving binary quadratic equation
systems using exhaustive search, which was considered in [36] and improved
in [35] (note that an asymptotically better algorithm was given in [18], but
its exact complexity has not been analyzed to date). Assume that we have a
system of n quadratic equations in n boolean variables, with a single solution:
∀i, fi(x) = 0. The algorithm in [36] essentially performs a Grover search on the
whole search space {0, 1}n for x, which tests each equation separately and checks
if fi(x) = 0 for all x. If an equation can be tested in time t (returning a single
bit), this gives a time complexity:

⌊
π
4 2

n/2
⌋
nt.

By applying our framework, for n = 128 we obtain an average complex-
ity of 267.93t with m1,m2 = 5, 10 (instead of 270.65t); for n = 256 we obtain
2132.02t with m1,m2 = 5, 12 (instead of 2135.65t). The improvement over the
naive exhaustive search is comparable to the preprocessing method used in [35];
however both methods are different, since the preprocessing uses the structure
of the quadratic equations. It might be possible to combine them both to further
reduce the cost, and we leave this as an interesting open question.

C Variable-time Amplitude Amplification without
Amplitude Estimation

In this section, we show how the framework of Section 4 allows to solve the
problem of amplitude amplification with a variable-time algorithm [3,4,13]. In
order to fit in our framework, we consider the amplified algorithm to be classical;
however, our method would still apply for any quantum algorithm, with proper
definitions of the average time complexity and probability of success of each
layer.

A similar algorithm was proposed in a concurrent and independent work by
Ambainis, Kokainis and Vihrovs [5]. Their algorithm also performs a layered
QAA with one iteration per level. With a dedicated complexity analysis (rather
than our generic bound), they obtained a slightly better complexity that reduces
the logarithmic factor from a power 3/2 to a power 1.

Setting. A variable-time algorithm A operates on a workspace {0, 1} × C ×W ,
where C is an initial choice set and W a work register. We assume that together
W and C have a size of w bits. The algorithm runs for a variable number of
steps, and either: • stops with a flag bit 1, which indicates a good choice; • stops
with a flag bit 0, which indicates a bad choice. We let tmax be the maximal
runnning time of A on inputs from the choice set C, and assume that a flag bit
1 can only be returned at the very last step.

For each input c ∈ C, we let 0 < t(c) ≤ tmax be the running time of A on
input c. We define the average time complexity of A (in L2) as:

T2 :=

√
1

|C|
∑
c∈C

t(c)2 . (32)
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Furthermore, we let p be the success probability of A, i.e., the proportion of
c ∈ C which return a flag 1. Ambainis showed [3] that even if the running times
t(c) are not known, there exists a quantum algorithm that finds a good c in time
O
(
tmax

√
tmax + T2√

p (log tmax)
3/2
)
. In other words, this algorithm is capable of

averaging the evaluation times of the individual elements (but in L2 norm). His
method is a nested QAA which stops A at certain times. Amplitude Estimation
is used to estimate the times t(c) on the fly, and find out how many iterations
are necessary at each layer.

New Method. Our method relies on a simple quantum search with early aborts.
For now, assume that T2, tmax and p are known. We introduce a sequence of
algorithms A1, . . . , A` which simply run some substeps of A, and at specific
points, copy the current flag register to a new flag. We choose the following
times: ti = 3i where 1 ≤ i ≤ ` = dlog3 tmaxe. So, A1 runs the first t1 steps of
A, then A2 runs the next t2 − t1 steps, and so on. When A has finished, A`
continues to run dummy computing steps until it reaches t`.

Obviously, the corresponding search problem is equivalent to finding a good
output of A. Now it remains to analyze the resulting search with early aborts.
The key to our approach is to estimate, for all i ≤ ` − 1, the quantity

∏i
j=1 β

2
i

only depending on T2, thanks to Markov’s inequality. Then, we will be able to
set iteration numbers in order to use Theorem 1.

By definition,
∏i
j=1 β

2
i is the probability that a uniform random c ∈ C passes

the tests 1 to i included. We can relate this to t(c), as follows: if all these tests
are passed, it means that A runs in strictly more time steps than ti−1. Thus:

i∏
j=1

β2
i ≤ Pr

c
$←−C

(t(c) > ti−1) ≤ Pr
c

$←−C

(
t(c)2 ≥ t2i−1

)
≤ T 2

2

t2i−1

.

Besides, it can be noticed that by definition of p:
∏`
i=1 β

2
i = p. So, in order

to use Theorem 1, we will try to satisfy the condition:

∀i ≤ `,

 i∏
j=1

(2kj + 1)2

 T 2
2

t2i−1

≤ 1

2`

and in that case, we will obtain a resulting success probability greater than
p
2

(∏`
j=1(2kj + 1)2

)
for the nested QAA procedure.

Success Probability. We will now set the iteration numbers for the ` steps. We
start with ki = 0 for i = 1, . . . , im for some well chosen im, then ki = 1 for
i = im+1, . . . `− 1, then k` = 0. The value of im is determined using the known
value of T2. Indeed:

im ≥ log3

[
3
√
2`T2

]
=⇒ 3im ≥ 3

√
2`T2 =⇒ 1

2`
≤ T 2

2

t2im−1

,
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and the inequalities for bigger i follow immediately. Thus we use

im =
⌈
log3

[
3
√
2`T2

]⌉
and lower bound the success probability of the nested QAA as:

P :=
p

2

∏̀
j=1

(2kj + 1)2 =
p

2
32(`−im−1) ≥ 32`−6 p

4`T 2
2

.

Complexity. The gate complexity is given by Equation 12. If w is the number of
qubits in the workspace of A, we can bound it simply as follows:

∑̀
i=1

∏̀
j=i

(2kj + 1)

 (ti − ti−1) + (44(w + `))
∏̀
j=1

(2kj + 1)

≤
im∑
i=1

3`−im−1(3i − 3i−1) +
∑̀

i=im+1

3`−i(3i − 3i−1) + 44(w + `)3`−im−1

≤ (`− im)3` + 3im3`−im−1 + 44(w + `)3`−im−1 .

The term w (the number of qubits used in the workspace of A) is problematic
here, as a priori, A can use up to 3` qubits. However we can remark that each
O0 operator only needs to act on the qubits that are currently non-zero. Even if
A uses 3` qubits, when calling O0 at level i, it needs to act at most on 3i qubits
(the number of time steps performed by Ai · · · A1). Thus, the second term is
also dominated by O

(
`3`
)
.

At this point, we can directly use Lemma 2, since we have a lower bound on
the success probability: a solution is found, with probability 1

2 , after a procedure

that applies O
(
1/
√
P
)
QAA iterates. This gives a final time complexity of order:

O
(
`3`√
P

)
= O

(
1
√
p
`3/2T2

)
= O

(
(log tmax)

3/2 T2√
p

)
. (33)

A priori, we need to know T2, tmax and p to define this algorithm. However
an upper bound on tmax can be obtained from T2 and p by: tmax ≤ T2/

√
p,

so we only need T2 and p. As for T2, we only need to know an upper bound,
because in that case the computed values of im, P and tmax which determine the
algorithm remain good. So we take as bounds increasing powers of 3 until we find
a solution. The asymptotic complexity remains unchanged. Note that Lemma 2
needs only a lower bound on P , and so, only a lower bound estimate of p is
necessary.
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