
MoNet: A Fast Payment Channel Network for
Scriptless Cryptocurrency Monero

Zhimei Sui
Monash University, Melbourne, Australia

Email: zhimei.sui1@monash.edu
Jiangshan Yu

Monash University, Melbourne, Australia
Email: jiangshan.yu@monash.edu

Joseph K. Liu
Monash University, Melbourne, Australia

Email: joseph.liu@monash.edu
Xianrui Qin

The University of Hong Kong, Hong Kong
Email: xrqin@cs.hku.hk

Abstract—We propose MoNet, the first bi-directional payment
channel network with unlimited lifetime for Monero. It is fully
compatible with Monero without requiring any modification of
the current Monero blockchain. MoNet preserves transaction
fungibility, i.e., transactions over MoNet and Monero are indis-
tinguishable, and guarantees anonymity of Monero and MoNet
users by avoiding any potential privacy leakage introduced by
the new payment channel network. We also propose a new
crypto primitive, named Verifiable Consecutive One-way Func-
tion (VCOF). It allows one to generate a sequence of statement-
witness pairs in a consecutive and verifiable way, and these
statement-witness pairs are one-way, namely it is easy to compute
a statement-witness pair by knowing any of the pre-generated
pairs, but hard in an opposite flow. By using VCOF, a signer
can produce a series of consecutive adaptor signatures CAS. We
further propose the generic construction of consecutive adaptor
signature as an important building block of MoNet. We develop a
proof-of-concept implementation for MoNet, and our evaluation
shows that MoNet can reach the same transaction throughput
as Lightning Network, the payment channel network for Bitcoin.
Moreover, we provide a security analysis of MoNet under the
Universal Composable (UC) security framework.

I. INTRODUCTION

Monero is the top one privacy-preserving cryptocurrency
with a market cap of over 2.6 Billion US dollars1. It dedi-
cates to chasing its strong privacy-preserving functionalities
(anonymity and fungibility [1], [2]), but still suffers from
performance issues, including low throughput, high transaction
fees and slow confirmation.

Payment channel network has been known as a promising
solution to solve the above issues. However, as most payment
channel network protocols require the support of script lan-
guages for the underlying blockchains, it is very challenging
for scriptless blockchains, including Monero, to adopt this
type of solutions. Another challenge in designing a payment
channel network for Monero is the requirement of fungibility,
which requires that any third party observer cannot distinguish
a transaction of a payment channel network from a standard
transaction of the underlying blockchain. For example, Bit-
coin Lightning Network [3] allows both channel parties to

* Jiangshan Yu is the corresponding author.
1Data collected on 15 Jan 2022 from https://coinmarketcap.com/.

establish a channel by transferring coins into a P2WSH 2-of-
2 multi-signature address, which can easily be identified and
is vulnerable to bribery attacks [4]. As Monero is a privacy-
preserving blockchain, fungibility should be guaranteed when
adopting a payment channel network solution.

Related Work. There are some Monero-compatible pay-
ment channels, DLSAG channel [5], PayMo [1], Sleepy
Channel [6] and AuxChannel [7], proposed recently. Both
DLSAG channel and PayMo are uni-directional channels with
limited lifespan. In addition, DLSAG channel proposes a new
primitive for Monero to enable dual-key transactions with
time flag on-chain, which not only harms the Monero token’s
fungibility but also requires a hard fork of Monero ledger.
Sleepy channel is a bi-directional payment channel protocol,
and requires only the support of digital signatures. However,
it has limited lifetime and requires additional collateral (which
reduces liquidity) for both channel parties to incentivize the
fast channel closure, thus limiting its usability. AuxChannel is
the only bi-directional payment channel with unlimited lifes-
pan for scriptless blockchain, which only requires the support
of adaptor signature for the underlying blockchain. It processes
channel dispute on a script-enabled chain by employing a
distributed Key Escrow Service (KES) to guarantee the honest
party’s payout. However, AuxChannel is a generic construction
that cannot be applied to Monero directly, and it does not
consider the potential privacy leakage from the use of the
second chain, and does not provide a mechanism for enabling
payment network to support multi-hop payments. This work
addresses this unclear design and provides a formal security
model and analysis for our proposed system.

A. Our Contributions

This work designs a payment channel network system for
Monero, that does not compromise Monero token’s anonymity
and fungibility. Our contributions are summarized as follows:
Verifiable Consecutive One-way function (VCOF) and
Generic Consecutive Adaptor Signature (CAS). We propose
the verifiable consecutive one-way function (VCOF), which
generates a sequence of statement-witness pairs in a single
direction, and provides the one-wayness property, where it is

1

https://coinmarketcap.com/

easy to compute on the input, but hard to invert given the
image of a random input, can be publicly verified. We further
construct the generic construction of consecutive adaptor sig-
nature (CAS) by using VCOF, which is an important building
block of MoNet.
MoNet. We construct an efficient payment channel network,
MoNet, for Monero. In particular, we propose MoChannel to
enable bi-directional payment channels (with no limit on the
lifetime) between both channel parties, and build our MoNet
on top of the MoChannel to enable multi-hop payments.
Both MoChannel and MoNet also preserve the anonymity and
fungibility of Monero. We also construct the security model
for MoNet, and prove that MoNet is UC-secure.
Implementation and Optimization. We develop and evaluate
a proof-of-concept implementation of MoNet. Our evaluation
shows that MoChannel enables Monero to process approx-
imately 2.34D transactions per second (TPS), where D is
the number of established channel on Monero. For example,
as of Jan 2022, there are more than 80, 000 channels in
Lightning Network for Bitcoin. If MoChannel is of the same
scale, then it can support Monero to process over 180, 000
transactions per second. We further optimize MoChannel’s
performance by using pre-computation to calculate and verify
a batch of statement-witness pairs, improving the throughput
to approximately 1, 100, 000 TPS, which reaches the same
throughput level of lightning network2. In terms of multi-
hop payment, MoNet can process a multi-hop payment within
68.68ms · nh via nh hops with 4G WAN latency of 60ms.

II. PRELIMINARY

A. Anonymous Multi Hop Locks (AMHL)

Anonymous Multi Hop Locks (AMHL) proposed by Mala-
volta et al. [8] allows n+1 channel parties to setup n payment
locks, denoted by l1, . . . , ln, in a path. AMHL guarantees
that the lock li can be “unlocked” if and only if li+1 is also
released, where i ∈ [1, . . . , n − 1]. It enforces the atomicity
of multi-hop payments and also offers better on-chain privacy.
A recent work [1] by Thyagarajan et al, constructs a LRS-
compatible AMHL scheme.

B. Signature Scheme and Adaptor Signature Scheme

Signature scheme SIG allows a signer to authenticate
messages, and adaptor signature aSIG is a signature con-
cealed by a secret, it allows a signer to pre-sign a message
under her secret key, such that this pre-signature can be
adapted into a valid signature for anyone who knows the
pre-signature and the corresponding secret, or anyone who
knows the pre-signature and signature can extract a secret from
them. Figure 1 is the generic construction of digital signature,
where HSIG is the challenge hash function, P1 and P2 are
two algorithms employed by the signing algorithm producing
the corresponding signature, and V0 is the verifier algorithm
employed by the verification algorithm. Erwig et al. [9] further

2Data collected from https://medium.com/coinmonks/
how-does-bitcoin-get-scalable-with-the-lightning-network-63591040462c

Gensk(λ)
return (sk, pk)

Signsk(m)
(R, st)← P1(sk)
h := HSIG(R,m)
s := P2(sk,R, h, st)
σ := (h, s)
return σ

Vrfysk(m,σ))
parse (h, s)← σ
R := V0(pk, h, s)

return h ?
= HSIG(R,m)

Fig. 1. Generic Construction of Digital Signature

constructs a generic transformation from signature schemes
into adaptor signatures schemes, as shown in Figure 2, where
fshift, fadapt and fext are a randomness shift function, an
adapt operation function, and a witness extraction function
respectively.

PSignsk(m,Y)
(Rpre, St)← P1(sk);
Rsign := fshift(Rpre, Y);
h := HSIG(Rsign,m)
ŝ← P2(sk,Rpre, h, St)
σ̂ := (h, ŝ)
return σ̂

PVrfypk(m,Y, σ̂)
parse (h, ŝ)← σ̂;
R̂pre := V0(pk, h, ŝ);
R̂sign := fshift(R̂pre, Y);
return h ?

= HSIG(R̂sign,m)

Adaptpk(σ̂, y)
parse (h, ŝ)← σ̂;
s = fadapt(ŝ, y);
σ := (h, s)
return σ;

Extpk(σ, σ̂, Y)
parse (h, s)← σ;
parse (h, ŝ)← σ̂;
return y := fext(s, ŝ)

Fig. 2. Generic Adaptor Signature aSIG.

III. GENERALIZED CONSECUTIVE ADAPTOR SIGNATURE

This section introduces Verifiable Consecutive One-way
Function (VCOF), and proposes a generic construction of
consecutive adaptor signature (CAS) by using VCOF. More-
over, we apply CAS to 2-party linkable ring adaptor signature
denoted by 2-party consecutive linkable ring adaptor signature
(2P-CLRAS), which is key building block of MoNet.

A. Verifiable Consecutive One-way Function

We propose the concept of verifiable consecutive one-way
function (VCOF), which produces a new statement-witness
pair from the last generated statement-witness pair (consec-
utive), the last generated statement-witness pair is referred
to as the “ancestors” pair, and the new statement-witness
pair generation can be public verified (verifiable). Also it is
efficient to compute the new statement-witnesses pair from its
“ancestors” pair, but is computationally hard to compute in an
opposite flow (one-wayness). A VCOF can be efficiently used
in a stateful system, such as a bi-directional payment channel
protocol, where a state is revoked if the channel capacity is
reallocated. VCOF can be used for some stateful schemes
requiring a sequence of interactions and updates.

Let fR : ∆w → ∆s be the function to produce a statement
Y ∈ ∆s by inputting the witness y ∈ ∆w. We assume a
secure one-way function fc : ((∆s,∆w), pp) → (∆s,∆w)
(fc is also called the consecutive function) to generate a new
statement-witness pair (Y ′, y′) by taking the given statement-
witness pair (Y, y) and a public parameter pp, where pp would
be a value or an operation, as inputs. Let Pc and Vc be a
proof system, where Pc((Y, y), (Y ′, y′)) generates a proof P
on the two statement-witness pairs (Y, y) and (Y ′, y′), and
the corresponding verification function Vc((Y, Y ′), P) outputs

2

https://medium.com/coinmonks/how-does-bitcoin-get-scalable-with-the-lightning-network-63591040462c
https://medium.com/coinmonks/how-does-bitcoin-get-scalable-with-the-lightning-network-63591040462c

1 to accept the two pairs (Y, y) and (Y ′, y′) or 0 to reject. The
three functions fc, Pc and Vc satisfy the following equations:

(Y ′, y′)← fc((Y, y), pp)

1← Vc((Y, Y
′), Pc((Y, y), (Y ′, y′)))

The proof system (Pc, Vc) is secure, if the following holds:
• Correctness: given two statement-witness pairs (Y, y)

and (Y ′, y′), where (Y ′, y′) ← fc((Y, y), pp), anyone
can produce a proof P ← Pc((Y, y), (Y ′, y′)), where
1← Vc((Y, Y

′), P).
• Soundness: once a proof P on (Y, y) and (Y ′, y′) is

accepted by the verification function Vc, then (Y ′, y′)←
fc((Y, y), pp).

• Zero-knowledge: the inputs of Vc, ((Y, Y ′), P), do not
leak any information of (y, y′).

The formal definition of verifiable consecutive one-way
function is presented as follows:

Definition 1 (Verifiable Consecutive One-way Func-
tion (VCOF)): A verifiable consecutive function w.r.t a
hard relation R consists of a tuple of three algorithms
VCOFR:=(SWGen, NewSW, CVrfy):
• (Y 0, y0)← SWGen(λ): the statement-witness generation

algorithm takes the security parameter λ as input, and
produces a statement-witness pair (Y 0, y0).

• ((Y i+1, yi+1), P i+1) ← NewSW((Y i, yi), pp): the new
statement-witness algorithm takes a statement-witness
pair (Y i, yi) and a public parameter pp as inputs, and
produces a new statement-witness pair (Y i+1, yi+1) and
a proof P , where i ∈ N.

• 1/0← CVrfy(Y i, Y i+1, P i+1): the verification algorithm
takes two statements (Y i, Y i+1) and the proof P i+1 as
inputs, and outputs 1 (acceptance) or 0 (rejection).

SWGen(λ)
y0 ← ∆w;
Y 0 ← fR(y0);
return (Y 0, y0)

NewSW((Y i, yi), pp)
(Y i+1, yi+1)← fc((Y

i, yi), pp);
P i+1 ← Pc((Y

i+1, yi+1), (Y i, yi));
return ((Y i+1, yi+1), P i+1)

CVrfy((Y i, Y i+1), P i+1)
return 1/0← Vc(Y

i, Y i+1, P i+1)

Fig. 3. Verifiable Consecutive One-way Function (VCOF)
Comparison between VCOF and Forward Secrecy. In

a signature scheme, forward secrecy FS guarantees that a
forward secure signature in the past remains secure even if the
current key is lost. The main idea is to divided the lifetime
of the public key into T intervals, and in each time interval
the same public key corresponds to different secret keys. A
current secret key can be used to derive the secret key in the
future, but not the past. Thus, even a compromise of the current
secret key dose not enable the adversary to forge signatures
pertaining to the past. The main difference between VCOF
and FS is that VCOF updates a statement-witness pair, while
FS only updates the private key and the public key remains
unchanged.

Security Model of VCOF. The verifiable consecutive one-
way function should satisfy three properties, consecutiveness,
consecutive verifiability, and one-wayness:

• Consecutiveness: a new statement-witness (Y i+1, yi+1)
is derived from the given statement-witness by using the
function fc((Y i, yi), pp).

• Consecutive verifiability: given two statements and an
associated proof, anyone can be convinced that two
witnesses associated to the given statements are consec-
utive, meaning that one of the statement-witness pairs is
generated from the other.

• One-wayness: given a newly generated statement-witness
pair, no one can derive the previous statement-witness.

We defer the formal definition of three properties and the
corresponding proof to Appendix A.

Application of VCOF. VCOF can be combined to achieve
some useful functionalities. We show one of the applications
- consecutive adaptor signature (CAS) in Section III-B, which
combines adaptor signature with VCOF. Briefly, CAS allows
a signer to pre-sign some messages by using VCOF, and
revealing one of the intermediate witnesses makes an exposure
of the following signatures.

B. Generalized Consecutive Adaptor Signature

Consecutive adaptor signature (CAS) allows a signer to
make multiple adaptor signatures σ̂ = {σ̂0, . . . , σ̂ic}, where
ic ∈ N, on some messages m = {m0, . . . ,mic} by using a
sequence of witnesses y = {y0, . . . , yic}. Sui et al, propose
the concept of the consecutive verifiably encrypted signature
(CVES) [7]. This section provides a generic transformation
from adaptor signature and VCOF to CAS, which is the
generalized version of CVES.

CAS uses VCOF to update the embedded statements
(Y ic , Y ic+1) of two adaptor signatures. Once a witness
is revealed, the corresponding signature and the following
signatures are adaptable. Remark that, the first statement-
witness pair is generated by executing SWGen(·), and each
of witnesses-statement pairs is generated from its ancestor
by executing NewSW(·). Let ic ∈ N and i′c ∈ N+ be
the index number of signing sessions. Following the generic
signature and adaptor signature construction from Section II-B,
our generic construction of consecutive adaptor signature is
presented in Algorithm 1.

Since the security model of CAS follows directly from
CVES [7], we omit it and the corresponding proof.

C. 2-Party Consecutive Linkable Ring Adaptor Signature

A linkable ring signature (LRS) [10] preserves a signer’s
anonymity by hiding the signer’s verification key vk among a
set of verification keys ~vk = {vk1, . . . , vkn}. LRS scheme can
be extended to 2-party linkable ring signature (2P-LRS) [1]
scheme, which allows two signers to jointly sign a linkable
ring signature by using their partial signing keys associated
to a single public key, where the identity of the two signers
is considered as a single signer for an observer and the
corresponding verification algorithm is same as a LRS scheme.

We show that our generic consecutive adaptor signature can
be applied to the 2-party linkable ring adaptor signature with
aggregatable public keys denoted by 2P-CLRAS. It allows

3

Algorithm 1: Generic Transformation from aSIG and
VCOF to Consecutive Adaptor Signature (CAS).

1 Procedure SetUp(λ):
2 return param

3 Procedure Gen(λ):
4 sk ← ∆sk(param);
5 vk = fvk(sk);
6 return (sk, vk)

7 Procedure PSignsk(mic , Y ic):
8 (Rpre, St)← P1(sk);
9 Rsign := fshift(Rpre, Y

ic);
10 hic := H(Rsign,m

ic);
11 ŝic ← P2(sk,Rpre, h

ic , St);
12 σ̂ic := (hic , ŝic);
13 return σ̂ic

14 Procedure PVrfyvk(mic , Y ic , σ̂ic):
15 (hic , ŝic) := σ̂ic ;
16 R̂pre := V0(pk, hic , ŝic);
17 R̂sign := fshift(R̂pre, Y

ic);

18 return hic ?
= H(R̂sign,m

ic)

19 Procedure Vrfyvk(mic , σic):
20 (hic , sic) := σic ;
21 Rsign := fshift(pk, h

ic , sic);

22 return hic ?
= H(Rsign,m

ic)

23 Procedure Adaptvk(σ̂ic , yic):
24 (hic , ŝic) := σ̂ic ;
25 sic = fAdapt(ŝ

ic , yic);
26 return (hic , sic);

27 Procedure Extvk(σic , σ̂ic , Y ic):
28 (hic , sic) := σic ;
29 (hic , ŝic) := σ̂ic ;
30 return fext(s

ic , ŝic)

31 Procedure SWGen(λ):
32 y0 ← ∆w ;
33 Y 0 ← fR(y0);
34 return (Y 0, y0)

35 Procedure NewSW((Y i′c , yi
′
c), pp):

36 (Y i′c+1, yi
′
c+1)←

fc((Y i′c , yi
′
c), pp);

37 P i′c+1 ←
Pc((Y i′c , yi

′
c), (Y i′c+1, yi

′
c+1));

38 return ((Y i′c+1, yi
′
c+1), P i′c+1)

39 Procedure
CVrfy((Y ic , Y ic+1), P ic+1):

40 return 1/0←
Vc((Y ic , Y ic+1), P ic+1)

two signers with single aggregatable public key to generate
a sequence of linkable ring adaptor signature together. Let A
and B be two signers in a 2P-LRS scheme, and P ∈ {A,B}
and P ′ = {A,B} \ P . Let ⊕ be a group operation in ∆r,
and ⊕R be a group operation in the domain of R. The inverse
functions are defined in the corresponding group operations ⊕
and ⊕R. We present a generic construction of 2P-CLRAS in
Algorithm 2.

IV. DESCRIPTION OF MONET

The goal of this work is to build a payment channel network
for Monero, a fully scriptless blockchain with strong privacy
requirements on the payment channel (network) construction.
This section proposes MoChannel, a bi-directional payment
channel for Monero, and further constructs the payment chan-
nel network, MoNet, built upon MoChannel. For simplicity,
we assume that Alice has frequent transactions with Bob, so
they maintain a channel. However, Alice needs to pay Carol
causally, through Bob.

A. Overview

For the ease of understanding, this section presents high-
level description of MoNet. Alice and Bob join MoNet col-
laboratively by funding a MoChannel with some coins. They
transact with each other by re-distributing their balances within
the established channel, and exit MoNet by recording their
final balances on Monero. By using MoNet, Alice can pay
Carol, who has no channel with her but does have one with
Bob. By leveraging 2P-CLRAS, it is hard for each of the
channel parties to revert a history state from the latest state,
but easy to infer the latest state if the counterparty tries to
close the channel with a history state.

Algorithm 2: Generic 2-Party Consecutive Linkable
Ring Adaptor Signature (2P-CLRAS) from both 2P-
LRS and GCAS among ns signers by using VCOF.

1 Procedure Setup(λ):
2 defined hash

Hlrs : {0, 1}∗ → ∆c;
3 return param;

4 Procedure JGen(λ):
5 receiving vkP′ from P′ and

generate vk = vkP ⊕ vkP′ ;
6 return (vk, skP)

7 Procedure PSign~vk(skP ,m
ic , Y ic):

8 rP ←s ∆r ;
9 RP = P1(rP , ~vk);

10 receiving RP′ from P′ and
generate
R = RP ⊕R RP′ ⊕R Y ic ;

11 c = Hlrs(m,R, ~vk);
12 ẑP := P2(skP , ~vk, rP , c);
13 receiving ẑicP′ from P′ and

generate ẑic = ẑicP ⊕ ẑ
ic
P′ ;

14 return σ̂ic = (ẑic , c)

15 Procedure PVrfy~vk(m
ic , σ̂ic , Y ic):

16 parse σ̂ic = (ẑ, c);
17 R = V0(~vk, c, ẑ,mic)⊕R Y ic ;
18 if c 6= Hlrs(m,R, ~vk) then
19 return 0;

20 return 1;

21 Procedure Vrfy~vk(m
ic , σic):

22 parse σic = (z, c);
23 R = V0(~vk, c, z);
24 if c 6= Hlrs(mic , R, ~vk) then
25 return 0;

26 return 1;

27 Procedure Adapt~vk(σ̂
ic , yic) and

Ext~vk(σ̂ic , σic , Y ic):
28 parse σ̂i := (ẑ, c);
29 z = ẑ ⊕ yic ;
30 σic = (z, c);
31 return σic ;

32 Procedure SWGen(λ):
33 pick y0P ∈ ∆t;

34 Y 0
P = gy

0
P ;

35 receiving Y 0
P′ from P′ and

compute Y 0 = Y 0
P ⊕R Y 0

P′ ;
36 return (Y 0, (Y 0

P , y
0
P));

37 Procedure NewSW((Y
i′c
P , y

i′c
P), pp):

38 (Y
i′c+1

P , y
i′c+1

P)←
fc((Y

i′c
P , y

i′c
P), pp);

39 P
i′c+1

P ←
Pc((Y i′cP, yi

′
c
P , (Y

i′c+1

P , y
i′c+1

P));

40 receiving Y ic
P′ , P

i′c+1

P′ from P′
and compute
Y ic = Y ic

P ⊕R Y ic
P′ and

P ic = P ic
P ⊕R P ic

P′ ;
41 return

(Y i′c+1, (Y
i′c+1

P , y
i′c+1

P), P i′c+1);

42 Procedure
CVrfy((Y ic

P , Y ic+1
P), P ic+1

P):
43 if Vc((Y ic

P , Y ic+1
P), P ic+1

P) =
1 then

44 return 1;

45 return 0;

To establish a MoChannel, Alice or Bob executes 2P-
CLRAS.SWGen(·) and 2P-CLRAS.JGen(·) collaboratively
to generate their partial initial statement-witness pairs asso-
ciated with a joint initial statement and their partial signing
keys associated with an aggregatable public key. Each of them
then creates two transactions. The first is funding transaction,
which funds a channel by transferring Monero tokens from
their private addresses respectively to the aggregatable public
key address as the channel capacity. The other is commitment
transaction, which spends the output of funding transaction to
both parties’ private addresses respectively. This transaction
guarantees that each channel party can exit MoChannel even
if there is no transactions within the channel. Alice and
Bob perform 2P-CLRAS.PSign(·) to pre-sign commitment
transaction collaboratively, and sign funding transaction and
broadcast the signed funding transaction to Monero network.
A channel is established between Alice and Bob, once the
funding transaction is recorded on-chain.

To update the channel, Alice and Bob preforms 2P-
CLRAS.PSign(·) collaboratively on a newly created transac-
tion to redistribute their channel balances, where the difference
of their balances indicates the transaction amount.

To close the channel, Alice and Bob exchange their latest
witnesses, and adapt a signature from the corresponding pre-

4

signature by executing 2P-CLRAS.Adapt(·). Finally, each of
them can close the channel by uploading a transaction with
the adapted signature to Monero.

When the channel between Alice and Bob is on a payment
path for a multi-hop payment, they lock a payment collabora-
tively within their channel first and unlock the payment only
if the receiver in their channel paid for the next hop.

B. Security Properties
We expect the following properties to be guaranteed:
For a single MoChannel:
Guaranteed channel closure. Normally, closing MoChannel

requires both Alice and Bob’s cooperation. This property
requires that either Alice or Bob can close the channel unilat-
erally, which prevent the channel from being locked forever.

Guaranteed payout for honest channel parties. Assuming
that there is at least one honest party within a channel, he can
withdraw with no less than his latest balance.

On-chain unidentifiability. On-chain transactions cannot be
identified as being for opening or closing a channel.

For a payment via multi-hop MoChannel:
Atomicity. All the payments on the path are either successful

or failed, and no “half paid” scenario exists.
Unlockability. All the on-path payments can be unlocked,

even if the receiver does not cooperate.
Sender/Receiver privacy. For successful payments, any in-

termediary cannot determine if the left (right) neighbor along
the path is the actual sender (receiver) or just an honest user
connected to the sender (receiver) through a path of non-
compromised users.

Path privacy. In the case of a successful payment, malicious
intermediaries cannot determine which users participated in
the payment aside from their direct neighbors.

C. Main Construction
MoNet allows users to build payment channels, MoChannel,

upon Monero and make payments to a recipient connecting
directly or through a path of payment channels with the
sender. This section describes how MoNet works. Moreover,
we provide intuitions on how MoNet satisfies these properties,
before formally proving them in the next section.

MoChannel (Figure 4). To establish a channel, Alice and
Bob generate their partial signing keys s̃kA, s̃kB associated
with their joint verification key vkAB (line 1). They also
generate the initial statement-witness tuples (S0, (S0

A, w
0
A))

and (S0, (S0
B , w

0
B)) (line 2) collaboratively and create two

transactions: funding transaction Txf := (vkA : bal0A, vkB :
bal0B)||(vkAB : balC) and commitment transaction Tx0

c :=
(vkAB : balC)||(vkA′ : bal0A, vkB′ : bal0B) (line 3). The
funding transaction Txf indicates that Alice and Bob transfer
bal0A and bal0B (their initial channel balances) from vkA and
vkB respectively to vkAB as channel capacity balC . The
commitment Tx0

c spends the output of Txf to reallocate the
channel capacity from their joint account vkAB to vkA′ and
vkB′

3. They collaboratively produce pre-signature σ̂0
s̃kA,s̃kB

3Due to fresh key policy in Monero, vkA′ and vkB′ are different from
vkA and vkB respectively.

over Tx0
c by using s̃kA, s̃kB and S0 (line 4), and sign and

exchange their signatures σskA and σskB on the funding trans-
action Txf by using their signing keys skA and skB associated
with vkA and vkB respectively (line 5-6). Each of them can
upload the signed funding transaction (σskA , σskB , Txf) to
Monero, and the channel ChAB established.

To update the channel, Alice and Bob collaboratively gener-
ate a statement Si, exchange their partial statements and proofs
(SiA, P

i
A) and (SiB , P

i
B), and keep the corresponding witnesses

wiA and wiB secret (line 11). Once the received statement is
verified, they collaboratively produce a pre-signature σ̂i

s̃kA,s̃kB
over Txic := (vkAB : balC)||(vkA′ : baliA, vkB′ : baliB) by
using (s̃kA, S

i
A) and (s̃kB , S

i
B) (line 12-13).

To close a channel, Alice and Bob exchange their latest
witnesses wiA and wiB (line 14-17), and adapt the correspond-
ing signature σ0

s̃kA,s̃kB
on Txic from σ̂0

s̃kA,s̃kB
, wiA and wiB

(line 18). Each of Alice and Bob can upload the signed
(σi
s̃kA,s̃kB

, Txic) to Monero, which closes the channel ChAB
(line 19-20).

Alice Bob
. Channel Establishment .
1 : Call 2P-CLRAS.JGen Call 2P-CLRAS.JGen

and Obtain (vkAB , s̃kA) and Obtain (vkAB , s̃kB)

2 : Call 2P-CLRAS.SWGen Call 2P-CLRAS.SWGen
Obtain (S0, (S0

A, w
0
A)) Obtain (S0, (S0

B , w
0
B))

3 : Generate Txf , Tx0
c Generate Txf , Tx0

c

4 : Call 2P-CLRAS.PSign(·) Call 2P-CLRAS.PSign(·)
and Obtain σ̂0

s̃kA,s̃kB
and Obtain σ̂0

s̃kA,s̃kB

5 : Call LRS.SignskA
(Txf)

Obtain σvkA6 : σvkA

7 : Call LRS.SignskB
(Txf)

and Obtain σvkB8 : σvkB

9 : Broadcast signed Txf to Monero Broadcast signed Txf to Monero
10 : Channel Established Channel Established

. Channel Update (i-th payment) .

11 : Call 2P-CLRAS.NewSW(·) 2P-CLRAS.NewSW(·)
Obtain (Si, (Si

A, w
i
A), P i

A) Obtain (Si, (Si
B , w

i
B), P i

B)

12 : If 2P-CLRAS.CVrfy((Si−1
B If 2P-CLRAS.CVrfy((Si−1

A

Si
B), P i

B) = 0 :⊥ Si
A), P i

A) = 0 :⊥

13 : Elif Call 2P-CLRAS.PSign(·) Elif Call 2P-CLRAS.PSign(·)
and Obtain σ̂i

s̃kB
and Obtain σ̂i

s̃kA

. Channel Closure .
14 : wi

A

15 : If fR(wi
A) 6= Si

A :⊥ ; Elif
16 : wi

B

17 : If fR(wi
B) 6= Si

B :⊥ ; Elif
18 : Call 2P-CLRAS.Adapt(·) Call 2P-CLRAS.Adapt(·)

Obtain σi
vkAB

Obtain σi
vkAB

19 : broadcast signed Txic to Monero broadcast signed Txic to Monero
20 : Channel closed Channel closed

Fig. 4. MoChannel. The double arrows (e.g. line 1, 2, 4, 11, 13) denote that
both channel parties execute an interactive algorithm collaboratively, and the
number of interactions are decided by the corresponding algorithm.

Multi-hop Payments (Figure 5). For the sake of clarify, we
describe a scenario that Alice wants to transfer x coins to Carol
via Bob, who has channels with Alice and Carol respectively.

As Monero does not support any script execution, to lock
a payment within a channel in MoNet, both channel parties
jointly create an incomplete pre-signature, which is an adaptor
signature concealed by a secret value, by using a locking key
(public key), their newly generated statements and their partial

5

signing key associated with the joint address in the output of
funding transaction on a new commitment transaction.

To simplify notations, we assume that both channels ChAB
and ChBC are in the (i − 1)-th state when processing a
multi-hop payment. The multi-hop payment in MoNet is
processed as follows: 1) Setup. Alice, the sender of the
multi-hop payment, generates some locks and unlocking keys,
(YB , yb) and (YC , yc), for each intermediate channel, and
sends ((YB , YC), yb) and ((YC , 0), yc), to Bob and Carol
respectively (line 1-7). 2) Lock. In each on-path channel,
for example channel ChAB , Alice and Bob collaboratively
generate their new statements, witnesses and the corresponding
proofs (SiAB , (S

i
A, w

i
A), P iA) and (SiAB , (S

i
B , w

i
B), P iB), and

an incomplete pre-signature σ̂i∗AB on Txic,AB by using YB ,
which locks channel ChAB (line 8, 10). The process is
identical to Bob and Carol, they collaboratively lock the
channel ChBC at state i by using the lock YC (line 9, 11). 3)
Unlock. Carol adapts σ̂ivkBC

from σ̂∗ivkBC
by adding yc, and

sends σ̂ivkBC
to Bob (line 12-13), who then calculates yc from

σ̂∗ivkBC
and σ̂ivkBC

, and recovers σ̂ivkAB
from σ̂∗ivkAB

by adding
yb and yc (line 16-17). Finally, all channels updated and the
payment succeed.

We discuss that how MoNet satisfies the properties in
Section IV-B below.

To ensure the sender/receiver privacy and path privacy,
MoNet leverages anonymous multi-hop locks (AMHLs [8],
see Section II-A) scheme, which allows the sender of a multi-
hop payment to generate locks and deliver messages via an
anonymous communication channel [11] to each on-path user.

Resolve the Dispute. MoNet also provides solutions for
resolving some potential disputes, e.g., any of channel parties
does not release his witness at the channel closure phase.

We employ a distributed Key Escrow Service following
AuxChannel paradigm [7] to provide the guaranteed channel
closure, guaranteed payout and unlockability properties. Key
Escrow Service can be implemented on a script-enabled plat-
form, for example on Ethereum. Alice and Bob escrow their
initial witnesses to Key Escrow Service among ne escrowers
by using publicly verifiable secret sharing scheme [12], [13],
[14] before establishing a channel. Therefore, each channel
party can reconstruct the other’s initial witness from ne
escrowers and further compute the other’s latest witness and
recover a valid signature on the latest commitment transaction
within the channel.

To ensure the guaranteed channel closure, each channel
party can propose a channel dispute request to KES and
reconstruct the counterparty’s initial witness from escrowers
if he does not cooperate to close the channel. A channel
dispute request contains a timer τ i and both channel parties’s
statements (SiP , S

i
P′) at channel state i. Notice that, both

channel parties agree on and cross-sign over a timer and two
puzzles with the signature scheme employed by KES at each
channel update phase.

To ensure the unlockability when routing a multi-hop
payment, the locked payment can be cancelled within each on-
path channel or processed by calling KES if there is a dispute.

We follow the scenario that Alice pays Carol x Monero tokens
via Bob, and a successful payment updates both ChAB and
ChBC from state i − 1 to i. Alice and Bob, which are the
senders in channel ChAB and ChBC respectively, can redeem
their coins by updating channel ChAB or ChBC to state i+1
with their balances at state i−1. This requires the collaboration
between both channel parties in channel ChAB or ChBC
respectively. Moreover, if Bob or Carol does not cooperate in
channel ChAB or ChBC to cancel a locked payment, Alice
or Bob can redeem their coins by proposing a dispute request
to KES. The channel under dispute will be closed. Usually,
only the channel in the last hop is close, when suffering an
unexpected locking time due to the malicious recipient (Carol),
who does not unlock a payment. So other on-path participants
(Alice and Bob) are rational and still want to make transactions
within their channels (ChAB), they would cancel the payment
within their channels.

To satisfy the atomicity, MoNet ensures that there is no
“half paid” scenario happens. Similar to LN [3], the atomicity
of a multi-hop payment is guaranteed by the cascade timers,
where τ iAB > τ iBC , and the hard relationship of each lock. As
both parties can redefine their channel timer at each channel
state, it guarantees the cascade time-lock requirement.

As both channel parties expose their initial statement-
witness pairs to KES, anyone who knows both parties’ wit-
nesses can extract an adaptor signature once the corresponding
signature is recorded on-chain, which will be identified as
a closing channel transaction. This is not desired and goes
against the on-chain unidentifiability property. To guarantee
this property, both parties can re-randomize their witnesses and
statements by setting S

′0
P = S0

P × gr and w
′0
P = w0

P + r for
some random value r chosen uniformly over the randomness
domain and generator g.

V. SECURITY MODEL AND ANALYSIS OF MONET

This section formally defines the ideal functionality of
MoNet, provides the analysis of how the ideal functionality
satisfies the security properties described in Section IV-B, and
proves that MoNet is secure under universal composable (UC)
framework introduced by Canetti [15].

A. Security Model

UC-Security. Let EXECΠ,A,E be the ensemble of the outputs
of the environment E when interacting with the adversary A
and parties running the protocol Π (over the random coins of
all the involved machines).

Definition 2 (UC-Security): A protocol Π UC-realizes an
ideal functionality F if for any adversary A there exists a
simulator S such that for any environment E the ensemble
EXECΠ,A,E and EXECF,S,E are computationally indistin-
guishable.
Attacker Model. We model participants in our protocol as
interactive Turing machines that interact with a trusted func-
tionality F via secure and authenticated channels. We model
the attacker A as an interactive Turing machine that all the

6

Alice Bob Carol
. Setup (state i− 1) .

1 : (yB , yC)←$ ∆y;

2 : YC = fR(yC);

3 : YB = fR(yB ⊕y yC);
4 : ((YB , YC), yB)

5 :
((YC , 0), yC)

−−→
6 : If YB 6= YC ⊕Y fR(yB) :⊥; If YC 6= fR(yC) :⊥;

7 : return (YB , YC , yB , yC) return ((YC , YB), yB) return ((YC , 0), yC)

. Lock (from state i− 1 to i) .

8 : Call 2P-CLRAS.NewSW Call 2P-CLRAS.NewSW

Obtain (Si
AB , (S

i
A, w

i
A), P i

A) Obtain (Si
AB , (S

i
B , w

i
B), P i

B)

9 : Call 2P-CLRAS.NewSW Call 2P-CLRAS.NewSW

Obtain (Si
BC , (S

i
B′ , w

i
B′), P

i
B′) Obtain (Si

BC , (S
i
C , w

i
C), P i

C)

10 : 2P-CLRAS.PSignYB
2P-CLRAS.PSignYB

Obtain σ̂∗iAB Obtain σ̂∗iAB

11 : 2P-CLRAS.PSignYC
2P-CLRAS.PSignYC

Obtain σ̂∗iBC Obtain σ̂∗iBC

. .Unlock (Success, all on-path channels updated to i) .

12 : 2P-CLRAS.Adaptyc ; Obtain σ̂i
BC

13 : σ̂i
vkBC

14 : Channel ChBC updated to state i
15 : payment success
16 : 2P-CLRAS.Ext; Obtain yC
17 : 2P-CLRAS.AdaptyC+yB

; Obtain σ̂i
AB

18 : σ̂i
vkAB

19 : Channel ChAB updated to state i
20 : payment success

Fig. 5. Multi-hop Payment in MoNet

actions (i.e. incoming and outgoing communication) of P is
taken over by A.
Communication Model. We model our system under a syn-
chronous communication network, where a message broad-
casted by a participant P at time T will be reached to all
other participants within T + τ∆, and τ∆ denotes the network
latency. In the ideal world, participants do not communicate,
but only receive and forward messages from and to the
functionality Fpay .
Key Escrow Service. Let Fkes be a Key Escrow Ser-
vice functionality that maintains a set of active contract
instances, Ke:=(Ke.id, Ke.key, Ke.timer,φke.id), with some
attributes, an unique KES identifier, escrowed key, a timer and
a verification function, where the escrowed key is defined as
a tuple Ke.key := {ka, kb}, and the function φke.id defines
the validity of a dispute request message. Let P be one of
two participants who deploy a KES instance together, and
P ′ be the other. All the attributes should be initiated when
deploying a KES instance except for the timer Ke.timer. The
functionality Ke has four interfaces. Initialization initiates a
KES space Kn≤0 received from environment E . Deploy creates
a new KES instance agreed by two participants involved in
this instance within 2τ∆. Setting Timer allows one of the
participants P to propose a dispute by setting the timer
of a KES instance Ke. Whether the other participant P ′
respond or not, Ke will be terminated after time τKe.id.
Let CommitP be a commitment for a channel state, where
φke.id(CommitP) = 1 indicates a valid channel state agreed
by both channel parties and vice versa. TerminateKe is called
to remove a KES instance from K.

Initialization: The functionality is initialized by a message
(ke1, . . . , ken) ∈ Kn

≤0 that describes the initial KES instances space
from the environment E . The functionality stores this tuple.
Deploy:Upon Receiving a message (Deploy, Ke.id, Ke.keys(P)) (for
Ke.id /∈ K):
Within 2τ∆, if received the message (AddOk, Ke.id, Ke.keys(P ′))
from P ′, let K := K ∧Ke;
If not, ignore this message and send (Ke-not-deplyed,Ke.id) to P .
Setting Timer: Upon Receiving a message (KeSetTimer, Ke.id,
CommitP , τKe.id) for Ke ∈ K and Ke.timer =⊥, if
φke.id(CommitP) = 1, let K := K \ Ke and set Ke.timer =
τKe.id, then K := K ∧Ke:
Option 1): If within time τKe.id + τ∆ after step 1, received message
(Resp, Ke.id, CommitP′) from P ′, if φke.id(CommitP′) = 1,
terminates Ke and sends message (KeTerminated, Ke.id) to P and
P ′ respectively;
Option 2): After τKe.id + τ∆, sends (KeyRelease, Ke.keys) to P
privately, and (KeTerminated, Ke.id) to both P and P ′ respectively.
Otherwise, ignore the setting timer message, and sends a message
(KeTimer-not-set, Ke.id) to P .
Terminate:Upon Receiving a message (KeTerminate, Ke.id)(for
Ke.id ∈ K) from P , Fkes forwards this message to P ′:
1. After the time τKe.id + τ∆, let K := K \Ke.
2. Within τKe.id + τ∆, Fkes received a message
(KeTerminate-confirm, Ke.id) from P ′, let K := K \ Ke,
and forwards this message to P ′.

Fig. 6. Functionality Fkes

Money Mechanics of Monero. Monero uses unspent trans-
action output (UTXO) model to maintain a non-negative set
of tuples R := {(ri, xmri)}, where ri denotes an address
and xmri is amount of Monero tokens in this addresses. Let
φM (ri, xmri) be the verification function of (ri, xmri), where
φM (ri, xmri) = 1 indicates that the corresponding transaction
is valid and φM (ri, xmri) = 0 stands for an invalid transaction.

7

In the verification level, maintaining a Monero ledger is same
as maintaining the UTXO set R. We construct the ledger
functionality FM in figure 7. FM maintains R by processing

Initialization: The functionality is initialized by a message
((r1, xmr1), . . . , (rn, xmrn)) ∈ Rn

≤0 that describes the initial coin
distribution and come from the environment E . FM stores this tuple.
Remove UTXO: Upon Receiving a message (Remove, (ri, xmri))
(for (ri, xmri) ∈ R and 1 = φM ((ri, xmri))), let R := R \ ri.
Adding UTXO: Upon Receiving a message (Add, (rj , xmrj)) (for
(rj , xmrj) /∈ R and 1 = φM ((rj , xmrj))), let R := R ∧ (rj , xmrj).

Fig. 7. Ledger Functionality FMthe message Remove or Add, which remove or add UTXO
from or to R if the corresponding proof is verified. Otherwise,
FM ignores this message.

In our model, the operation to Key Escrow Service and
Monero ledger will be transferred to the modification of the
KES space and UTXO set R. Participants cannot directly
access K and R. Instead the UTXO set R is maintained via
the KES protocol and ledger protocol in the real world or via
the functionality Fpay (see Figure 8) in the ideal world.

B. Ideal Functionality

Let ChAB := (Ch.id, Ch.Alice, Ch.Bob, Ch.Bal,
Ch.State, Ch.Ke, Ch.τ) denote a channel with some at-
tributes, channel identifier, channel parties, channel capacity
(consisting of Alice and Bob’s balances), channel state (a
monotonic increasing number), a KES instance associated
with Ch.id, and a timer. Ch.Bal is defined as a tuple
(r, xmr), which has the same format as an element in R,
and Ch.Bal.r = xmr. To associate a channel with the
corresponding Key Escrow Service but not be identified by a
third party observer, we require Ch.ke = Ke.id 6= Ch.id. The
functionality Fpay maintains a channel space C, that consists
of some registered MoChannel. The ideal functionality Fpay
is specified in Figure 8.

The functionality Fpay offers three interfaces: 1) Channel
Establishment describes an channel establishment between
Alice and Bob with a deployed KES instance Ke. This
interface adds a channel instance only if both participants
confirm the open channel message. Otherwise, Fpay ignores
this message. Usually, channel update can process two types of
payments: 1) both channel parties transfer coins for the sake
of their own needs, which is proceed in one-round; 2) the
channel is on the path of a multi-hop payment, which requires
a 2-round (lock-then-unlock) interaction among both channel
parties and Fpay . For the sake of clarify, we divide them
into two interfaces, Channel Update and Payment Routing.
Moreover, Payment Routing can handle two scenarios, where
the locked payment is successful or canceled. 3) Channel
Closure describes the channel closure procedure, which can
be called unilaterally or bilaterally as per different conditions
defined in this interface.

We then discuss how these security properties are captured
by functionality Fpay .
Guaranteed channel closure. According to functionality Fpay ,
as the interface Closing a Channel is called collaboratively or
unilaterally, an established channel can be closed even if there
is a malicious party in the channel.

Channel Establishment:
Upon receiving a message m:=(mc-open, Ke,Ch) from Ch.P , where
Ke is initiated with KES id Ke.id and P’s secret key Ke.key(kP),
and Ch is initiated with channel id Ch.id, both channel parties Ch.P
and Ch.P ′, Ch.P’s balance Ch.Bal(rCh.P , xmrP), initial channel
state Ch.State(0) and KES identifier Ch.Ke(Ke.id) at time T ,
Fpay removes (rCh.P , xmrP) from R, and forwards the message
m:=(mc-open, Ke, Ch) to Ch.P ′.
Within time τ∆, if Fpay receives a message (mc-open, Ke,
Ch), which sets Ke.key(kP′) and Ch.Bal(rCh.P′ , xmrP′), from
Ch.P ′, then removes rP′ from R and adds Ke and Ch to K and
C respectively. Sending a message (mc-opened) to parties Ch.P and
Ch.P ′ and to the simulator S.
Otherwise, adds rCh.P into R and output (mc-not-opened) to Ch.P .

Channel Update:
Upon receiving a message m:= (mc-update, Ch.id, xmr∆) from
a channel party P , where xmr∆ is the transaction amount. If
Ch /∈ C or Ch.bal(rCh.P) − xmr∆ < 0 then ignores this
message. Otherwise, set Ch.bal(rCh.P) = Ch.bal(rCh.P)−xmr∆,
Ch.bal(rCh.P′) := Ch.bal(rCh.P′) + xmr∆, and Ch.State =
Ch.State+ 1, replace Ch in C with newly updated Ch, and sends
(mc-updated, Ch.id) to P and P ′ within τ∆.

Payment Routing:
Upon receiving a message m:= (mc-routepay, C′, xmr∆, {τid}),
where the number of elements in C equals to the number of
elements in {τid} (e.g. there are n elements in C and {τid}
respectively), if C′ 6⊂ C or Ch.bal(rCh.P) − xmr∆ < 0 for every
Ch ∈ C′, then ignore this message. Otherwise, sends (mc-routepay,
Ch,Ch′, τCh.id, τCh′.id, xmr∆) to Ch′.P within τ∆, where
Ch′.P = Ch.P ′ (Setup). If τid′ < τid, Ch′.P sends a lock
payment message m′:= (mc-routepay-lock, Ch′.id′, xmr∆, τid′) to
Fpay (Lock). Otherwise, Ch′.P ignores this message. The unlock
phase is proceed as follows:
1. Within τCh.id + 2τ∆, where τCh.id is the largest number
in {τid}, upon receives 2n messages (each Ch has two
messages) m:= (mc-routepay-unlock, Ch.id), for Ch ∈ C′,
Fpay sets Ch.bal(rCh.P) := Ch.bal(rCh.P) − xmr∆,
Ch.bal(rCh.P′) := Ch.bal(rCh.P′) + xmr∆, and
Ch.State = Ch.State + 1, and replaces the old Ch in C
with the newly updated Ch.
2. For a channel Ch ∈ C′, after τid + 2τ∆, if received messages
m:= (mc-routepay-cancel, Ch.id, Ch.State + 2) from both Ch.P
and Ch.P ′, Fpay sets Ch.State = Ch.State+ 2, and replaces the
old Ch in C with newly updated Ch.
3. Otherwise, Ch.P sends a message m:= (mc-close,
Ch.id, Ch.State, τid) following the interface Channel Closure.

Channel Closure:
Upon receiving a message m := (mc-close, Ch.id, Ch.State,
CommitP , τid) from Ch.P .
1) If φke.id(CommitP) = 1, Fpay calls Fkes.Setting Timer with a
message (KeSetTimer, Ch.Ke.id, CommitP , τCh.id).
Within τid, Fpay receives (mc-close-Ok, Ch.id, Ch.State,
CommitP′) from Ch.P ′ and φke.id(CommitP′) = 1, removes
Ch from C and Ke from K, adds r′Ch.P and r′Ch.P′ to R;
Otherwise, Fpay receives (mc-key, Ch.id, Ke.id(Ch.Ke),
Ke.key(kP′)) from Fkes and forwards this message to Ch.P , adds
r′A with Ch.bal(Ch.P) + Ch.bal(Ch.P ′) coin to R, and removes
Ch from C and Ke from K.
2) Else if φke.id(CommitP) = 0: ignore this message and send
(mc-not-closed, Ch.id) to Ch.P .

Fig. 8. Ideal Functionality Fpay

Guaranteed payout for honest channel parties. According to
functionality Fpay , the honest party will be paid no less than
his latest balance in the channel.
On-chain unidentifiability. The functionality Fpay follows the
original money mechanics of Monero, thus the environment
E cannot distinguish whether the operation over R is proceed

8

by Fpay in the ideal world or the protocol in the real world.
Atomicity. The intermediate participants Ch.P ′ can unlock a
route-payment only when he received a message from Fpay
denoting that he has paid in the next hop. It implies that all
the on-path payments are atomic.
Unlockablity. According to the interface Channel Update, it
covers the scenario that a locked payment is succeed or failed,
which prevent a channel from being locked forever.
Sender/Receiver privacy. According to the interface Channel
Update, all the intermediate nodes receive messages with the
same format from Fpay , and neither of them can inform
whether the node connected with him is the sender/receiver.
Path privacy. Similar to the Sender/Receiver privacy property,
an intermediate node will receive the messages containing only
two channels he involved, but no additional information about
the entire path.
Fpay captures the all the the security properties defined in

Section IV-B, if the Theorem 1 holds.
Theorem 1: Assuming that the signature scheme on Mon-

ero and employed by Key Escrow Service are existentially
unforgeable against adaptive chosen-message attacks and our
CAS scheme is secure, our system running in the (Fkes,FM)-
hybrid world emulates an ideal functionality Fpay w.r.t Mon-
ero ledger LM .
Proof: We have already informally argued about the security
of our scheme above. We then construct a simulator S in the
ideal world to observe then emulate the behavior of some
fixed adversary A in the real world. S generates the secret-
public key pairs and initial witness-statement pairs for each
participants. S then sends these public keys to each corrupted
participant with his secret key, and the initial statements to two
corrupted participants who share a channel together with their
initial witnesses respectively. We assume that honest party will
response a message once he received, while the corrupted party
can decide when the message are delivered within a time τ∆.
S starts from the channel establishment as an honest party,
and watches the instruction of A to the corrupt parties. To
make it impossible to distinguish between the simulated and
the real execution, S forwards the message from Fkes, FM ,
Fpay and other honest parties to the corrupted parties.
a) Channel Establishment. The simulation of this part: S sim-
ulates the ledger functionality and KES functionality, plays the
role of a honest party Ch.P sending message (mc-open,Ke,
Ch) to the functionality Fpay , which removes the UTXO
rCh.P from R. When received another open channel message
from Ch.P ′, Fpay adds Ke and Ch to K and C respectively
(or adds rCh.P to R if not received the message from Ch.P ′).
b) Channel Update. This part starts when S receives a
message (mc-update, Ch.id, xmr∆) from E , and forwards the
message to party Ch.P . We discuss two cases of P below:
1. Ch.P is honest. Ch.P sends a message meaning that he
wants to updates the channel. Within time τ∆, S forwards the
message to Fpay , who sends a confirmation message to Ch.P
indicating Ch.P ′’s agreement on the update request.
2. Ch.P is honest, but Ch.P ′ is corrupted. Ch.P sends a
message meaning that he wants to updates the channel. Within

time τ∆, S forwards the message to Fpay , and Ch.P ′ does not
send the message to confirm this update. Whether this update
is beneficial to Ch.P or Ch.P ′, if Ch.Bal(rCh.P ′)−xmr∆ >
0, S sends the confirmation message in the name of Ch.P ′ as
he knows the private keys and witnesses of all the parties and
the channel updated. If he uses a previous state to close Ch, S
will correct their balances and Ch.P loses coins. Otherwise,
if Ch.Bal(r′Ch.P)− xmr∆ < 0 and Ch.P ′ does not confirm
this message, then S does not either.
c) Payment Routing. This part starts when S receives a mes-
sage (mc-routepay, Ch.id, xmr∆, τid) from E , and forwards
the message to P , we consider the following cases:
1. P is the sender. P sends some messages to setup a multi-
hop payment path. S forwards these messages to the receiver
and all the intermediate participants respectively. Notice that
P ′ is on the next hop of the payment path and shares a channel
Ch with P . P ′ replies confirm payment message within the
time τ∆. Fpay receives all lock payment messages within the
next time τ∆, all the on-path payments are succeed.
2. Ch.P is an honest participant, but Ch.P ′ is a corrupted
receiver. Ch.P and Ch.P ′ sends a message to confirm a pay-
ment lock within the channel between Ch.P and Ch.P ′ How-
ever, Ch.P ′ does not unlock this payment within τidP,P′+τ∆.
This will be corrected by S, who sends a unlock payment
message to Ch.P in the name of Ch.P ′.
d) Channel Closure. This part starts when S receives a
message (mc-close, Ch.id, Ch.State, CommitP , τid) from
E , we consider the following cases:
1. P proposes a channel closure request. P sends a message
to Fkes for closing the channel, which will be forwarded to
P ′ within the time τ∆. P ′ then confirm or update the request.
Once the close channel request is updated by Ch.P ′, and S
forwards P ′ response to Fkes.
2. P proposes a channel closure request, but P ′ is corrupted.
P sends a message to Fkes for closing the channel, which will
be forwarded to P ′ within the time τ∆. P ′ ignores this close
channel request, S will respond in the name of P ′ .

VI. PERFORMANCE

We develop MoNet over Monero as a proof of concept
implementation to evaluate its efficiency.

A. Evaluation

Implementation. We implement 2P-CLRAS scheme over
Monero in golang using the libraries, moneroutil [17],
emmy [18], and kyber [19]. The implementation takes about
800 lines of code (LoC) over these libraries. All experiments
are run on a macOS with processor 2.6 GHz 6-Core Intel Core
i7 and memory 16GB 2400 MHz DDR4.

As per MoNet, the message complexity within a channel
in each phase includes the number of on-chain transactions,
signatures and off-chain messages.

The number of on-chain transactions. Establishing a channel
requires 1 transaction on Monero and Ethereum respectively,
and no on-chain transaction is required on both Monero and
Ethereum for processing an off-chain payment (updating the

9

channel). Routing a payment in the best case does not require
any on-chain transaction on neither Monero nor Ethereum,
but requires 1 on-chain transaction on Monero and 2 on-chain
transactions on Ethereum for the worst case. It requires 1
transaction on Monero and Ethereum respectively if both chan-
nel parties close the channel collaboratively or an additional
transaction on Ethereum under a dispute scenario.

The number of signatures and off-chain messages. As per
the 2P-CLRAS scheme in Algorithm 2, some algorithms
requires both signers’ interaction, and a single interaction
has two messages exchange between them. For example,
2P-CLRAS.PSign has two interactions with 4 messages
between both signers, and each of 2P-CLRAS.JGen, 2P-
CLRAS.SWGen and 2P-CLRAS.NewSw requires 1 inter-
action with 2 messages. Signatures are required for each off-
chain message, adaptor signatures, and on-chain transactions.
According to Figure 4 and 5: there are 10 off-chain messages,
1 on-chain transactions with two signatures from both channel
parties, and 1 adaptor signature at the channel establishment
phase, thus it requires 13 signatures; there are 4 off-chain
messages and an adaptor signature at the channel update phase,
thus it requires 5 signatures; there are 7 off-chain messages and
an adaptor signature when routing a payment, thus it requires 8
signatures (We count the number of messages delivered within
a channel but do not include the messages received from the
sender in the count); there are 2 off-chain messages with 2
signatures to close a channel (the signature required by the
on-chain transaction is created in each channel update phase
as an adaptor signature, thus we do not count it in).

Computation time. Our evaluation of 2P-CLRAS scheme
shows that the computation time of SWGen(·) is about
3.5ms, NewSW (·) is about 30ms, PSign(·) is about 3.5ms,
Adapt(·) is about 198ns, PV rfy(·) is about 3.4ms, and
CV rfy(·) is about 330ms.

The computation time of processing an off-chain payment
equals to the time of executing the algorithms, including
NewSW (·), PSign(·), PV rfy(·), and CV rfy(·), which is
about 367ms. As the general network latency is about 60ms
for 4G WAN and internet connections4, it requires about
427ms to process a transaction within a channel. MoChannel
improves the throughput on Monero from 10005 tps to 2.34D,
where D is the number of channels opened on Monero. For
example, as of Jan 2022, there are more than 80, 000 channels6

in the Lightning Network for Bitcoin. If the MoChannel is of
the same scale, it has the potential to provide a throughput of
over 180, 000 TPS.

Communication Overhead. We measure the communication
overhead as the size of messages that two parties need to
exchange for each off-chain payment. The to be exchanged

4Data collected from https://www.sas.co.uk/learning/
complete-guide-to-4g-wan

5Data collected from https://alephzero.org/blog/
what-is-the-fastest-blockchain-and-why-analysis-of-43-blockchains/ on
23 Aug, 2021

6Data collected from https://txstats.com/dashboard/db/lightning-network?
orgId=1.

messages size, including an adaptor signature, a newly gener-
ated statement and the proof on two consecutive statements,
is about 18 KB.

Optimization. We can further optimize MoChannel by pre-
computing a batch of statement-witness pairs. The optimized
channel update requires only the creation and verification of
an adaptor signature. We present the comparison in processing
an off-chain payment between the original and optimized
MoChannel in Table I. The computation time of creating and
verifying an off-chain payment is about 6.9ms, thus it requires
66.9ms to process an off-chain payment within a channel
under the 4G WAN network latency, which is 6.4× faster
than the non-optimized version (441ms). If at the same scale of
lightning network, the optimized MoChannel can handle about
14.9 transactions per channel per second, and throughput is
more than 1, 100, 000 tps, which could reach the same level
of lightning network (1, 000, 000 tps 7).

TABLE I
PERFORMANCE COMPARISON.

Original MoChannel Optimization
Creation 33.5ms 3.5ms
Verification 333.4ms 3.4ms
Throughput 180, 000 tps 1, 100, 000 tps

In the optimized MoChannel, it requires only about 0.03
KB exchanged data in processing an off-chain transaction.
We evaluate the optimized MoChannel with 100 transactions
by using the pre-computation. The result shows that if two
channel parties pre-compute 100 payment sessions, it requires
about 0.08ms for each party to create 100 witness-statement
pairs and the proof on two consecutive witnesses, and about
3.46s to verify these witness-statement pairs consecutiveness.
The size of all proof is about 1.76 MB.

We also evaluate the performance of routing a payment via
multi-hop MoChannel described in Section IV-C. Our imple-
mentation simulates the optimistic scenario, where the receiver
unlocks the a payment by himself. Within a channel, locking
a payment means creating a locked 2P-CLRAS scheme. The
performance of a multi-hop payment in a single channel (with
pre-computation) is concluded in Table II. Routing a multi-hop

TABLE II
PERFORMANCE OF A MULTI-HOP MOCHANNEL PAYMENT.

the Optimized MoChannel
Setup 0.25ms
Lock 4.78ms
Unlock 3.65ms

payment by using MoNet can be processed within 68.68ms·nh
via nh hops with a 4G WAN latency 60ms.

For the sake of exploring the feasibility of our system,
we also provide a proof of concept implementation for Key
Escrow Service contract in Ethereum using Truffle [20], a
development framework of Ethereum smart contract. The eval-
uation shows that, it costs 127869 gas to deploy a Key Escrow
Service contract, about 49801 gas to retrieve both parties’
funds without dispute, and about 123412 gas to process the

7Data collected from https://medium.com/coinmonks/
how-does-bitcoin-get-scalable-with-the-lightning-network-63591040462c

10

https://www.sas.co.uk/learning/complete-guide-to-4g-wan
https://www.sas.co.uk/learning/complete-guide-to-4g-wan
https://alephzero.org/blog/what-is-the-fastest-blockchain-and-why-analysis-of-43-blockchains/
https://alephzero.org/blog/what-is-the-fastest-blockchain-and-why-analysis-of-43-blockchains/
https://txstats.com/dashboard/db/lightning-network?orgId=1.
https://txstats.com/dashboard/db/lightning-network?orgId=1.
https://medium.com/coinmonks/how-does-bitcoin-get-scalable-with-the-lightning-network-63591040462c
https://medium.com/coinmonks/how-does-bitcoin-get-scalable-with-the-lightning-network-63591040462c

channel dispute (including the scenario that closing a channel
with dispute and routing a payment with dispute) on Ethereum.

ACKNOWLEDGEMENT

This work was partially supported by the Australian Re-
search Council (ARC) under project DE210100019 and project
DP220101234.

REFERENCES

[1] S. A. K. Thyagarajan, G. Malavolta, F. Schmidt, and D. Schröder,
“Paymo: Payment channels for monero,” IACR Cryptol. ePrint Arch.,
p. 1441, 2020.

[2] S. A. Thyagarajan, G. Malavolta, and P. Moreno-Sánchez, “Universal
atomic swaps: Secure exchange of coins across all blockchains,” IEEE
Security and Privacy 2022, 2022.

[3] J. Poon and T. Dryja, “The Bitcoin lightning network: scalable off-chain
instant payments,” 2016.

[4] I. Tsabary, M. Yechieli, and I. Eyal, “MAD-HTLC: because HTLC is
crazy-cheap to attack,” CoRR, vol. abs/2006.12031, 2020.

[5] P. Moreno-Sanchez, A. Blue, D. V. Le, S. Noether, B. Goodell, and
A. Kate, “DLSAG: non-interactive refund transactions for interoperable
payment channels in monero,” in Financial Cryptography, ser. Lecture
Notes in Computer Science, vol. 12059. Springer, 2020, pp. 325–345.

[6] L. Aumayr, S. A. K. Thyagarajan, G. Malavolta, P. Monero-Sánchez, and
M. Maffei, “Sleepy channels: Bitcoin-compatible bi-directional payment
channels without watchtowers,” CCS’22, 2022.

[7] Z. Sui, J. K. Liu, J. Yu, M. H. Au, and J. Liu, “AuxChannel: Enabling ef-
ficient bi-directional channel for scriptless blockchains,” in AsiaCCS’22,
2022.

[8] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate, and
M. Maffei, “Anonymous multi-hop locks for blockchain scalability
and interoperability,” in 26th Annual Network and Distributed System
Security Symposium, NDSS 2019, San Diego, California, USA, February
24-27, 2019. The Internet Society, 2019.

[9] A. Erwig, S. Faust, K. Hostáková, M. Maitra, and S. Riahi, “Two-
party adaptor signatures from identification schemes,” in Public Key
Cryptography (1), ser. Lecture Notes in Computer Science, vol. 12710.
Springer, 2021, pp. 451–480.

[10] J. K. Liu, V. K. Wei, and D. S. Wong, “Linkable spontaneous anonymous
group signature for ad hoc groups,” in Australasian Conference on
Information Security and Privacy. Springer, 2004, pp. 325–335.

[11] J. Camenisch and A. Lysyanskaya, “A formal treatment of onion
routing,” in Advances in Cryptology - CRYPTO 2005: 25th Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 14-18, 2005, Proceedings, ser. Lecture Notes in Computer
Science, V. Shoup, Ed., vol. 3621. Springer, 2005, pp. 169–187.

[12] M. Stadler, “Publicly verifiable secret sharing,” in Advances in Cryptol-
ogy - EUROCRYPT ’96, International Conference on the Theory and
Application of Cryptographic Techniques, Saragossa, Spain, May 12-
16, 1996, Proceeding, ser. Lecture Notes in Computer Science, U. M.
Maurer, Ed., vol. 1070. Springer, 1996, pp. 190–199.

[13] B. Schoenmakers, “A simple publicly verifiable secret sharing scheme
and its application to electronic,” in CRYPTO, ser. Lecture Notes in
Computer Science, vol. 1666. Springer, 1999, pp. 148–164.

[14] M. P. Jhanwar, “A practical (non-interactive) publicly verifiable secret
sharing scheme,” in ISPEC, ser. Lecture Notes in Computer Science,
vol. 6672. Springer, 2011, pp. 273–287.

[15] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proceedings 42nd IEEE Symposium on
Foundations of Computer Science. IEEE, 2001, pp. 136–145.

[16] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun: Virtual
payment hubs over cryptocurrencies,” in IEEE Symposium on Security
and Privacy. IEEE, 2019, pp. 106–123.

[17] Paxos, “moneroutil,” 2017.
[18] Xlab, “Library for zero-knowledge proof based applications (like anony-

mous credentials),” 2020.
[19] dedis, “Advanced crypto library for the go language,”

https://github.com/dedis/kyber, 2020.
[20] C. S. Inc., “Truffle Suite.”

cOnewayA,R(λ):
(Y 0, y0)← SWGen(λ);
((Y i+1, yi+1), P i+1)
← NewSW((Y i, yi), pp);
CVrfy((Y i, Y i+1), P i+1) = 1;

(Y ∗, y∗)← A(Y i+1, yi+1);
If CVrfy(Y i+1, Y ∗, P i+1) = 1 :

return 1;
Else return 0;

cVrfyA,R(λ):
(Y 0, y0)← swGen(λ);
((Y i+1, yi+1), P i+1)←
NewGen((Y i, yi), pp);

CVrfy((Y i, Y i+1), P i+1) = 1;
((Y ∗, y∗), P ∗)

R← A(Y i, yi);
If CVrfy(Y, Y ∗, P ∗) = 1 :

return 1;
Else return 0;

Fig. 9. Experiments cOnewayA,R and cVrfyA,R(λ)

APPENDIX

This section formally defines the three properties, consecu-
tiveness and consecutive verifiability, one-wayness of VCOF.

Definition 3 (Consecutiveness): The two statement-witness
pairs (Y i, yi) and (Y i+1, yi+1) are consecutive, if

(Y 0, y0)← SWGen(λ)

((Y i+1, yi+1), P i+1)← NewSW((Y i, yi), pp)

Definition 4 (Consecutive Verifiability): A VCOF is con-
secutive verifiable, if for every probabilistic polynomial-
time adversary A, the probability of running the experiment
CVrfyA,R, defined in Fig. 9, is Pr[CVrfyA,R(λ) = 1] ≤
negl(λ), where the probability of Y i+1 = Y i+1∗ is a neg-
ligible value 1

|∆Y | .
Definition 5 (One-wayness): A VCOF satisfies one-

wayness for a PPT adversary A, if the advantage Adv =
Pr[cOnewayA,R(λ) = 1] ≤ negl(λ)], where the experiment
cOnewayA,R is defined in Fig 9.

The consecutiveness of the VCOF is straightforward. We
skip the proof of consecutiveness and present proofs of con-
secutive verifiability and one-wayness.

Lemma A.1: A VCOF is consecutive verifiable, if the
embedded proof system (Pc, Vc) is secure.
Proof. Suppose that there is a PPT adversaryA, who can break
the consecutive verifiability security of VCOF, we construct
a simulator B to break the embedded proof system of VCOF.
First, there is a given statement-witness pair (Y, y) to B, and
B forwards (Y, y) to A.

For all the consecutiveness oracle queries of a qo-tuple
{(Ỹ , ỹ)} from A on a statement-witness pair (Y, y) ∈
{(Ỹ , ỹ)}, B picks a random (Y ′∗, y′∗) from their correspond-
ing domain and constructs a P ∗ by using (Y, y) and (Y ′∗, y′∗),
then returns ((Y ′∗, y′∗), P ∗) to A. We have (Y ′, y′) ←
fc((Y, y), pp), and the probability of (Y ′∗, y′∗) equals to
(Y ′, y′) is negligible.

If A can output ((Y ′∗, y′∗), P ∗), which satisfies 1 ←
Vc((Y, Y

′∗), P ∗), B can produce not only a P on (Y, y) and
(Y ′, y′), but also a P ∗ on (Y, y) and (Y ′∗, y′∗), which breaks
the soundness requirement of the embedded proof system.

Lemma A.2: A VCOF is one-way, if the embedded consecutive
function fc is one-way.
Proof. Suppose that there is a PPT adversaryA, who can break
the one-wayness of VCOF, we construct a simulator C to break
the security of the embedded consecutive function fc. First,
given a statement-witness pair (Y ′, y′), which is generated

11

from an pair (Y, y), where y is unknown to C, who forwards
(Y ′, y′) to A. C forwards (Y ′, y′) to A.

For all the consecutiveness oracle queries of a qc-tuple
{(Ỹ ′, ỹ′)} from A on a statement-witness pair (Y ′, y′) ∈
{(Ỹ ′, ỹ′)}, C picks (Y ∗, y∗) randomly from their correspond-
ing domain, and return them to A.

If A outputs a ((Y ∗, y∗), P ∗) on a given ((Y ′, y′), P,∆),
where (Y ′, y′) /∈ {(Ỹ ′, ỹ′)} and 1← CVrfy((Y ∗, Y ′), P ∗). It
implies that C can output a solution (Y ∗, y∗) for the given
instance (Y ′, y′), where fc((Y ∗, y∗), pp) = (Y ′, y′). Thus, C
breaks the security of the embedded one-way function fc.

12

	Introduction
	Our Contributions

	preliminary
	Anonymous Multi Hop Locks (AMHL)
	Signature Scheme and Adaptor Signature Scheme

	Generalized Consecutive Adaptor Signature
	Verifiable Consecutive One-way Function
	Generalized Consecutive Adaptor Signature
	2-Party Consecutive Linkable Ring Adaptor Signature

	Description of MoNet
	Overview
	Security Properties
	Main Construction

	Security Model and Analysis of MoNet
	Security Model
	Ideal Functionality

	Performance
	Evaluation

	References
	Appendix

