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Abstract. The rebound attack was introduced by Mendel et al. at
FSE 2009 to fulfill a heavy middle round of a differential path for free,
utilizing the degree of freedom from states. The inbound phase was ex-
tended to 2 rounds by the Super-Sbox technique invented by Lamberger
et al. at ASIACRYPT 2009 and Gilbert and Peyrin at FSE 2010. In ASI-
ACRYPT 2010, Sasaki et al. further reduced the requirement of memory
by introducing the non-full-active Super-Sbox. In this paper, we further
develop this line of research by introducing Super-Inbound, which is able
to connect multiple 1-round or 2-round (non-full-active) Super-Sbox in-
bound phases by utilizing fully the degrees of freedom from both states
and key, yet without the use of large memory. This essentially extends
the inbound phase by up to 3 rounds. We applied this technique to find
classic or quantum collisions on several AES-like hash functions, and im-
proved the attacked round number by 1 to 5 in targets including AES-128
and SKINNY hashing modes, Saturnin-Hash, and Grøstl-512. To demon-
strate the correctness of our attacks, the semi-free-start collision on 6-
round AES-128-MMO/MP with estimated time complexity 224 in classical
setting was implemented and an example pair was found instantly on a
standard PC.

Keywords: Triangulating Rebound · Quantum Computation · Collision
Attacks · Rebound Attacks · Triangulation Algorithm · Super-Inbound

1 Introduction

Cryptographic hash function compresses a binary string of arbitrary length into
a short fixed-length digest. It is one of the most fundamental cryptographic
primitives that act as the underlying building blocks in various advanced cryp-
tographic protocols, including digital signatures, authenticated encryption, se-
cure multiparty computation and post-quantum public-key cryptography, etc.
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A cryptographic hash function must fulfill three basic security properties: col-
lision resistance, preimage resistance, and second-preimage resistance. Due to
the breakthroughs in collision attacks [76,77,74] on the hash functions MD5 and
SHA-1, the academic communities advanced new hashing designs, including the
best-known SHA-3 [10]. AES-like hashing, inspired by the elegant yet secure and
efficient design strategies of Advanced Encryption Standard (AES) [21], is another
new hashing design. It adopts block ciphers or permutations with similar features
to AES as the underlying building blocks, such as Whirlpool [6], Grøstl [33],
AES-MMO, Grindahl [52], ECHO [8], Haraka v2 [53], etc. These hash functions are
commonly known as AES-like hashing.

Rebound Attacks [62], introduced by Mendel, Rechberger, Schläffer, and
Thomsen at FSE 2009, is one of the most effective tools on the cryptanaly-
sis of AES-like hash functions. It can be applied to both block cipher based and
permutation based constructions. The idea of the rebound attack is to divide
an attack into two phases, an inbound and an outbound phase. In the inbound
phase, degrees of freedom are used to realize part of the differential characteristic
deterministically. The remainder of the characteristic in the outbound phase is
fulfilled in a probabilistic manner.

In order to penetrate more rounds, at ASIACRYPT 2009, Lamberger et
al. [56] proposed the multiple inbound phases and connected them by lever-
aging the degrees of freedom of the key. Later, Gilbert and Peyrin [34] and
Lamberger et al. [56] further extended the inbound phase by treating two con-
secutive AES-like rounds as the Super-Sbox [20]. At ASIACRYPT 2010, Sasaki
et al. [70] reduced the memory cost by exploiting the differential property of
non-full-active Super-Sboxes. At CRYPTO 2011, Naya-Plasencia [66] improved
the rebound attack by introducing advanced algorithms for merging large lists.
At CRYPTO 2012, Dinur et al. [26] further reduced the memory cost of the
rebound attack by proposing the dissection technique. The rebound attack has
since become a basic cryptanalysis tool to evaluate hash functions against colli-
sion attacks or distinguishing attacks [60,45,71,46,63,25,51,31,59]. Interestingly,
the idea of the rebound attack was in turn used to improve the Demirci-Selçuk
MITM attacks [24,32] and biclique attack [11].

Quantum Cryptanalysis attracts more and more attention due to Shor’s
quantum attacks [73] breaking the security of public-key crypto-systems RSA

and ECC. For symmetric ciphers, the community has also witnessed many impor-
tant quantum cryptanalysis results recently, such as quantum distinguisher on
3-round Feistel [54], key-recovery attack on Even-Mansour construction [55], key-
recovery attacks or forgeries on MACs and authenticated encryption schemes [47],
and more [57,13,27]. However, most attacks need to query the online quantum
oracles with superposition states, which is believed to be an impractical projec-
tion for quantum physics. Thereafter, the quantum attacks [12,14,48,19,35,67,38]
only using offline quantum computers are considered to be of more practical rel-
evance.



Triangulating Rebound Attack on AES-like Hashing 3

Since hash functions can be implemented in offline quantum circuit, the at-
tackers can freely make offline quantum superposition queries. There are several
quantum generic (multi-target) preimage attacks [2,19] and multicollision at-
tacks [42,41,58]. For generic quantum collision attacks, three quantum generic
algorithms exist under different assumptions of the availability of quantum and
classical memory resources:

– Condition 1: Exponentially large quantum random access memory (qRAM)
is available. Brassard, Høyer, and Tapp [15] introduced the generic quan-
tum collision attack (named as BHT algorithm) with 2n/3 quantum time
complexity and 2n/3 qRAM.

– Condition 2: Neither exponentially large qRAM nor classic RAM is available.
The quantum version of parallel rho’s algorithm [75,9,39] achieves a time-

space trade off of time 2n/2

S with S computers.
– Condition 3: Exponentially large qRAM is not available but large classical

RAM is. Chailloux, Naya-Plasencia, and Schrottenloher [19] introduced the
CNS algorithm to find collision in time 22n/5 with classical RAM of size 2n/5.

At EUROCRYPT 2020, Hosoyamada and Sasaki [39] introduced the first
quantum dedicated collision attacks by converting the classical rebound attacks
into quantum rebound attacks. This showed that, under their respective bounds
of generic algorithms, quantum attacks are able to penetrate more rounds than
classical attacks. At ASIACRYPT 2020, Dong et al. [29] reduced the requirement
of qRAM in the quantum rebound attack by exploiting non-full-active Super-
Sbox technique [70]. At CRYPTO 2021, Hosoyamada and Sasaki [40] introduced
the quantum collision attacks on reduced SHA-2. At ASIACRYPT 2021, Dong
et al. [30] studied the quantum free-start collision attacks.

1.1 Our Contributions

In order to extend the attacked round by the rebound attack, Lamberger et al.
[56] connected two local inbound phases by consuming the degree of freedom
in the key. Later, Super-Sbox [56,34] and non-full-active Super-Sbox [70] were
proposed. In this paper, we further generalize this idea by bridging multiple
inbound phases with available degrees of freedom both from the key and the
internal data path, to build the Super-Inbound. With the help of Khovratovich
et al.’s [50] triangulation algorithm, we identify truncated differential trails for
AES hashing modes with sound configurations on the positions of several local
inbound parts, as well as relatively low complexity to bridge the multiple local
inbound parts. We name this method as triangulating rebound attack. With this
advanced method in hand, we achieve the following results:

AES-MMO. The MMO-mode (shown in Figure 2) instantiated with AES [21] is a
popular AES-like hashing design, which is standardized by Zigbee [1] and also
suggested by ISO [43]. Many advanced cryptographic protocols, e.g., multi-party
computation [37,49], adopt AES-MMO due to its high efficiency when implemented
with AES-IN. The best classical collision attacks are for 6 rounds [34,56]. At EU-
ROCRYPT 2020, Hosoyamda and Sasaki [39] introduced two 7-round quantum
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collision attacks better than BHT algorithm [15] or parallel rho’s algorithm [75].
At ASIACRYPT 2020, Dong et al. [29] introduced 7-round quantum collison
better than CNS algorithm [19].

We extend the previous 2-round inbound phase into 3- or 4-round Super-
Inbound for AES-128. Thereby, we build the first 7-round semi-free-start colli-
sion attack on AES-128-MMO/MP in classical setting, while the previous classical
collision attack reaches 6 rounds [34,56]. In addition, a 6-round practical in-
stance of semi-free-start collision and an 8-round quantum semi-free-start colli-
sion attack are given. Moreover, the first 8-round quantum collision attack on
AES-128-MMO/MP is given, with time complexity better than parallel rho’s algo-
rithm [75,9,39].

Saturnin-Hash. It is the hash function among the post-quantum lightweight
cipher family Saturnin designed by Canteaut et al. [17]. It is one of the round
2 candidates of the NIST lightweight cryptography competition. The design-
ers of Saturnin introduced the 10-round related-key recovery attack on the
Saturnin block cipher [16]. At ASIACRYPT 2021, Dong et al. [30] proposed
several quantum and classical collision attacks on Saturnin-Hash and its com-
pression function, including a 7-round semi-free-start quantum collision attack
and an 8-round free-start quantum collision attack.

We extend the previous 2-round inbound phase to the 4-round Super-Inbound.
Finally, the time complexity of the 8-round free-start quantum collision attack
is significantly reduce from 2122.5 to 289.65. Further, the first 10-round free-start
quantum collision attack is derived with two more rounds than Dong et al.’s
result [30].

SKINNY-128-384-MMO. As SKINNY [7] is running for ISO standard, it is natu-
ral to build lightweight hash with the ISO suggested hashing mode MMO. At
ASIACRYPT 2021, Dong et al. [30] introduced the 16-round quantum free-start
collision attack on SKINNY-128-384-MMO. In this paper, by exploring the large
degrees of freedom of the key schedule for SKINNY-128-384-MMO, we extend
the previous 2-round inbound phase into a 5-round Super-Inbound, and finally
achieve 5 more rounds on the free-start quantum collision attack. In addition, a
19-round classical free start collision attack is given, which is even better than
previous quantum attack.

Grøstl. Grøstl is one of the five finalists of SHA-3. In this paper, by bridging
the differences with degrees of freedom from the states, we propose the memory-
less method to solve the 3-round non-full-active inbound part for Grøstl-512.
Thereafter, the improved semi-free-start collisions with one more round than
before for both Grøstl-512 and its predecessor are derived. The results are
summarized in Table 1.

1.2 Novelty and Comparison with Previous Works

Both rebound attack [62] and triangulation algorithm [50] are existing tech-
niques. However, combining these two techniques together as one cryptanalysis
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tool has not appeared before. When using these two techniques together, we can
exploit many more degrees of freedom (DoF) from the key schedule algorithm,
which greatly extends the inbound part of our rebound attack. Therefore, the
number of possible truncated differential trails for the rebound attack increases
significantly than before. In previous rebound attacks on AES-MMO (including
[39,29]), the authors place a 2-round full/non-full active Super-Sbox in the in-
bound phase, and extend it forwards and backwards in the outbound phases to
find a useful rebound-attack trail. However, in our attack, we have to use 3-/4-
round truncated differentials as the multiple inbound phases, which have many
more choices than a 2-round Super-Sbox before. Moreover, not all those 3-/4-
round inbound can be solved efficiently by triangulation algorithm (actually, it
is time consuming to compute a compatible pair for most 3-/4-round truncated
differentials), and we have to pick a good trail from many choices.

Therefore, as another contribution, we introduce a heuristic automatic tool
(CP-based) to identify good trails for our rebound attacks, which succeeds to
find the 7-/8-round collision attacks on AES-MMO and gains 1-round improvement.

We note that the multiple inbound phases technique was already introduced
and used many times before, see for instance the rebound attacks on the LANE

[59], ECHO [44], JH [68], etc. The additional degrees of freedom were in these
cases given by bigger states. The truncated differences affect both the num-
ber of rounds covered by the inbound phases, and the differential probabilities
of the outbound phases. In the previous works, the choices of these truncated
differences are made in ad hoc ways. In our paper, we introduce triangulation
algorithm into the rebound attack, as well as the automated search of configu-
ration for the rebound attack with multiple inbound phases, which is the main
novelty comparing to previous ad hoc ways.

2 Preliminaries

2.1 AES-like Hashing

AES [21] operates on a 4 × 4 column-major order array of bytes, whose round
function contains four major transformations as illustrated in Figure 1: SubBytes
(SB), ShiftRows (SR), MixColumns (MC), and AddRoundKey (AK). By making
changes to the numbers of rows and columns, the sizes of the cells, the order
of the transformations, one can produce new designs named as AES-like round
functions. Usually, the MixColumns is to multiply an MDS matrix to each column
of the state. An exception is SKINNY [7], which uses the non-MDS matrix.

By using (keyed) permutations with AES-like round functions in certain hash-
ing modes (like MD, MMO, and MP hashing modes [64, Section 9.4] in Figure 2), com-
pression functions (denoted as CF) can be constructed. Plugging such compres-
sion functions into the Merkle-Damg̊ard construction [65,22], one arrives at AES-
like hashings. Concrete designs include AES-128-MMO, AES-128-MP, Saturnin-Hash
[17], Whirlpool [6] Grøstl [33].
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Table 1: A summary of the results.

AES-128-MMO/MP

Target Attack Rounds Time C-Mem qRAM Setting Ref.

Hash
Collision

5/10 256 24 0 Classic [62]
6/10 256 232 0 Classic [34,56]
7/10 242.50 0 248 Quantum [39]
7/10 259.5 0 0 Quantum [39]
7/10 245.8 0 0 Quantum [29]
8/10 255.53 0 0 Quantum Sect. 4.3

Preimage
7/10 2125 28 -

Classic
[69]

7/10 2123 28 - [3]
8/10 2125 28 - [4]

Compression Semi-free 6/10 224 - - Classic Sect. 4.2
function Semi-free 7/10 256 216 - Classic Sect. 4.1

Semi-free 8/10 234 - - Quantum Sect. 4.2

any any 264 - - any [75,39,9]
any any 242.7 - 242.7 Quantum [15]
any any 251.2 225.6 - Quantum [19]

Saturnin-Hash

Hash
Collision

5/16 264 266 0 Classic [30]
7/16 2113.5 - - Quantum [30]

Preimage 7/16 2232 248 - Classic [28]

Compression
Free-start 6/16 280 266 - Classic [30]

function
Semi-free 7/16 290.1 - - Quantum [30]
Semi-free 7/16 286 - - Quantum Sect. D
Free-start 8/16 2122.5 - - Quantum [30]
Free-start 8/16 289.65 - - Quantum Sect. 5.1
Free-start 10/16 2127.2 - - Quantum Sect. 5.2

any any 2128 - - any [75,39,9]
any any 285.3 - 285.3 Quantum [15]
any any 2102.4 251.2 - Quantum [19]

Grøstl-512

Compression
Distinguisher

10/14 2392 264 - Classic [45]
function 11/14 272 256 - Classic [18]

Semi-free
6/14 2180 264 - Classic [72]
7/14 2214 - - Quantum Sect. G

Compression
Semi-free

7/14 2152 264 - Classic [61]

function v0
7/14 2152 256 - Classic [70]
8/14 2244 - - Quantum Sect. G

any any 2256 - - any [75,39,9]
any any 2170.7 - 2170.7 Quantum [15]
any any 2204.8 2102.4 - Quantum [19]

SKINNY-128-384-MMO/MP

Compression
Free-start

16/56 259.8 - Quantum [30]
function 19/56 251.2 - Classic Sect. 6.2

21/56 246.2 - Quantum Sect. 6.1

any any 264 - any [75,39,9]
any any 242.7 - 242.7 Quantum [15]
any any 251.2 225.6 - Quantum [19]
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Fig. 1: The round function of AES
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Fig. 2: Common Hashing Modes

2.2 The Rebound Attack

The rebound attack was first introduced by Mendel et al. in [62]. It consists
of an inbound phase and an outbound phase as shown in Figure 3, where F is
an internal block cipher or permutation which is split into three subparts, then
F = Ffw ◦ Fin ◦ Fbw.

– Inbound phase. In the inbound phase, the attackers efficiently fulfill the
low probability part in the middle of the differential trail with a meet-in-
the-middle technique. The degree of freedom is the number of matched pairs
in the inbound phase, which will act as the starting point for the outbound
phase.

– Outbound phase. In the outbound phase, the matched values of the in-
bound phase, i.e., starting points, are computed backward and forward through
Fbw and Ffw to obtain a pair of values which satisfy the outbound differential
trail in a bruteforce fashion.

Overall, the rebound attack is essentially a technique to efficiently generate a
message pair fulfilling the inbound phase, which utilizes a truncated differential
rather than a single differential characteristic. Suppose the probability of the
outbound phase is p, then we have to prepare 1/p starting points in the inbound
phase to expect one pair conforming to the differential trail of the outbound
phase. Hence, the degree of freedom should be larger than 1/p.

Fbw Fin Ffw

InboundOutbound Outbound

Fig. 3: The Rebound Attack
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2.3 The Super-Sbox Technique

The Super-Sbox technique proposed by Gilbert and Peyrin [34] and Lamberger et
al. [56] extends Mendel et al.’s [62] inbound part into 2 S-box layers by regarding
them as four Super-Sboxes as shown in Figure 4 (a). In [70], Sasaki et al. further
reduced the the memory complexity by considering non-full-active Super-Sboxes
as shown in Figure 4 (b). In both the two techniques, AK acts as a constant
addition operation and does not provide any degree of freedom.

xi

SB,SR

zi

MC

wi

AK,SB

yi+1

(a) Super-Sbox

xi

SB,SR

zi

MC

wi

AK,SB

yi+1

(b) Non-full-active Super-Sbox

Fig. 4: The Two-Round Differential

Super-Sbox Technique. For the jth Super-Sbox SSBj and given input differ-

ence ∆x
(j)
i (j = 0 in Figure 4 (a)), compute ∆y

(j)
i+1 = SSBj(x⊕∆x

(j)
i )⊕ SSBj(x)

for x ∈ F32. Store the pair (x, x ⊕ ∆x
(j)
i ) in a table L(j)[∆y

(j)
i+1]. Given ∆y

(j)
i+1,

we find a pair conforming the two-round differential with (∆x
(j)
i , ∆y

(j)
i+1) by

assessing L(j)[∆y
(j)
i+1]. The memory cost is about 232.

Non-full-active Super-Sbox. In Figure 4 (b), the Property 1 of MDS in MC

is used. Look at ∆wi = MC(∆zi), by guessing the differences of one active byte,
we can determine other differences according to Property 1. Then, for a fixed

input-output differences (∆x
(j)
i , ∆y

(j)
i+1) of SSBj , we deduce all the input-output

differences for the active cells of two S-box layers for each guess and then deduce
their values by accessing the differential distribution table (DDT) of the S-box.

Property 1. Suppose MC is an n × n MDS matrix and MC · (z[1], . . . , z[n])T =
(w[1], . . . , w[n])T , the knowledge of any n out of 2n bytes of (z, w) is necessary
and sufficient to determine the rest. (z, w) here can be either value or difference.

2.4 Triangulation Algorithm

At CT-RSA 2009, Khovratovich, Biryukov, and Nikolić [50] introduced the tri-
angulation algorithm tool, an efficient Gaussian-based-algorithm to solve system
of bijective equations, to automatically detect a way to solve the nonlinear sys-
tem. The algorithm models an AES-like block cipher as a system of key schedule
and round function equations, and the state bytes and key bytes as variables. At
first, the system is determined by n initial state bytes and k initial key bytes.
Therefore, when m bytes are fixed, the algorithm will return n + k − m “free
variables” to form a basis of the system. The algorithm can output exactly the
“free variables” when the system is deterministically solvable, and improve the
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guessing and checking the “free variables” when the system is probabilistically
solvable. The idea of triangulation algorithm is roughly described following.

1. Construct a system of equations whose variables are the bytes. The prede-
fined values are fixed to constants.

2. All variables and equations are marked as non-processed.
3. Mark the variable which is involved in only one non-processed equation as

processed. Also mark this equation as processed. If no such variable exist,
exit.

4. Return to Step 3 if still have non-processed equations.
5. Return all non-processed variables as “free variables”.

After the “free variables” are identified, we randomly assign values for them and
deduce a solution for the whole nonlinear system. For details, please refer to [50].

2.5 Collision Attacks and Its Variants

Given a hash function H, a standard collision message pair (m,m′) satisfies
H(IV,m) = H(IV,m′), where the initial vector IV is a fixed inital value. A
semi-free-start collision is to find a pair (u,m) and (u,m′), such that H(u,m) =
H(u,m′) (u ̸= IV ). A free-start collision is to find a pair (v,m) and (v′,m′),
so that H(v,m) = H(v′,m′) (v ̸= v′). When the hash function H is built by
iterating the compression function (CF) with Merkle-Damg̊ard construction, we
can similarly define the semi-free-start collision and free-start collision attack
on the compression function. Taking the MMO and MP hashing modes in Figure 2
as examples, when considering the semi-free-start or free-start collision attack,
the attackers can explore the degrees of freedom from the chaining value hi−1

through the key shedule algorithm, which may lead to better attacks such as
[56,71]. We would like to emphasize the importance of semi-free-start and free-
start collision attacks: The Merkle-Damg̊ard security reduction assumes that
any type of collision for the compression function should be intractable for the
attacker, including semi-free-start and free-start collisions.

3 Triangulating Rebound Attack

3.1 Solving Non-Full-Active Super-Sbox by Key Bytes

In previous collision attacks, both Super-Sbox [56,34] and non-full-active Super-
Sbox [70] techniques, the subkeys are prefixed in advance (as shown in Section
2.3). In other words, the degree of freedom of the subkeys was not be utilized. We
observe that, by carefully choosing the values of subkeys, state pairs conforming
the given differential can be obtained without additional computation only at
a cost of memory for storing the differential distribution table (DDT). This ob-
servation enables utilization of the degrees of freedom from the corresponding
subkeys and leads to collision attacks without the need of building large lists
of compatible pairs for Super-Sboxes. Here we describe this new Super-Sbox
technique through a concrete example in Figure 5.
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ki+1

•
•

xi

SB,SR

zi

MC
∆

wi

AK

xi+1
∆

SB

yi+1

Fig. 5: An example of Super-Sbox with degrees of freedom from the subkey

Given the pair of non-full difference of (∆xi, ∆yi+1) and zero difference in
key of an Super-Sbox (marked as red for the corresponding column), we are to
generate state pairs and corresponding subkey ki+1 conforming to that difference.
First, we randomly assign a difference ∆ compatible with ∆yi+1[0] to ∆xi+1[0]
and asset to DDT to get an actual value for xi+1[0] conforming the difference
(∆,∆yi+1[0]) . Since there is no difference in the subkey ki+1, the difference
∆wi[0] is equal to ∆ as well. We use a simple property of maximum distance
separable (MDS) matrix to determine all the rest bytes of ∆wi and ∆zi.

With the knowledge of 4 bytes of ∆zi and ∆wi (∆zi[0] = ∆wi[1, 3] = 0
and ∆wi[0] = ∆), all bytes of ∆zi and ∆wi are uniquely determined, and
so for the entire differential characteristic (∆xi, ∆zi, ∆wi, ∆xi+1, ∆yi+1) of the
Super-Sbox. By looking up DDT, the byte values before and after the active
Sboxes, e.g., xi[5, 10, 15], zi[1, 2, 3], xi+1[0, 2] and yi+1[0, 2], are determined as
well. Next, we randomly assign a value to ki+1[0], then wi[0] can be calculated
as wi[0] = xi+1[0]⊕ki+1[0]. Again, Property 1 allows to determine the remaining
bytes zi[0] and wi[1, 2, 3] since 4 bytes zi[1, 2, 3] and wi[0] are known. Finally,
the key byte ki+1[2] is determined as ki+1[2] = wi[2]⊕xi+1[2]. In summary, after
randomly assigning (compatible) values to ∆xi+1[0] and ki+1[0], all the values
and differences of the active bytes in the state as well as the subkey bytes cor-
responding to the active state bytes positions of AK are determined, with time
complexity 1.

3.2 Connecting Multiple Inbound Phases by Key Bytes

In this section, we present a 3-round inbound phase by extending the Super-
Sbox backward by one round. Since the Super-Sbox and the extended round are
not solved in two inbound phases, this technique is also referred to as “multiple
inbound phases”. These phases are connected by free bytes of the corresponding
subkeys, and so one has to ensure the value assignments to the subkeys from
different rounds are not over-defined through the key schedule algorithm. This
new technique is illustrated through an example of 3-round truncated differential
trail depicted in Figure 6.

ki+1

•
•ki •

•
•

xi−1

SB,SR

zi−1

MC

wi−1

AK

xi

SB,SR

Super-Sbox

zi

MC
∆

wi

AK

xi+1
∆

SB

yi+1

Fig. 6: An example of 3-round multiple inbound phases
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Given the differences ∆xi−1, ∆xi, ∆yi+1 and zero difference in key, we are
to generate state and key pairs conforming the differential path with low mem-
ory requirement by utilizing the degrees of freedom from subkeys ki and ki+1.
First, applying the Super-Sbox technique presented above to the given ∆xi and
∆yi+1, both value and difference of ∆xi[5, 10, 15] and value of ki+1[0, 2] will be
determined. Then, with fixed ∆xi−1 and ∆xi, standard inbound phase of the
original rebound attack can be applied, i.e., lookup DDT with input/output dif-
ferences (∆xi−1, SR

−1(∆zi−1 = MC−1(∆xi))), values of the last three columns
of zi−1 and so wi−1 are determined. Hence, ∆ki[5, 10, 15] can be calculated as
∆wi−1[5, 10, 15] ⊕ ∆xi[5, 10, 15]. Note, there is no direct implication between
any assignment of ki[5, 10, 15] and ki+1[0, 2] through the AES key schedule. The
whole process costs 17 DDT lookups and memory hosting the DDT lookup table.

3.3 The Triangulating Rebound Attack

Inbound Inbound Inbound

Key

Data ∆in ∆out

Fig. 7: Super-Inbound: bridging multiple local inbound parts

Generally speaking, the development of the rebound attack can be viewed
as a continuous process to find as many degrees of freedom (DoF) as possible,
to either reduce the overall inbound solving complexity, or to extend for more
rounds. As shown in Figure 7, the multiple local inbound parts form a Super-
Inbound. Given the input/output differences (∆in, ∆out) of the super inbound
phase, bridging the multiple local inbound parts is to find the conforming pair
for (∆in, ∆out), while the exact differentials and values of the internal rounds
are up to attacker’s control. Usually, (∆in, ∆out) are chosen from a truncated
differential in the rebound attack. In summary, the source of DoF for the whole
rebound attack can come from the choices of

S1 truncated differential of the internal rounds of the Super-Inbound,
S2 input/output differences and values of the active Sboxes of the state,
S3 values of the inactive Sboxes of the state,
S4 differences of key bytes,
S5 values of key bytes.

The differences and values of the active Sboxes of the state are listed together,
as once differences are fixed, values can be derived from DDT, and vice versa. This
is not the case for key bytes, as it is not necessarily for each of the key bytes to
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pass through Sbox depending on the key schedule algorithm. Then the Super-
Sbox technique can be viewed as a way to connect two 1-round inbound parts
by fully utilizing the DoF from S2, i.e., the output differences of first round and
input differences of the second round. Our techniques presented in Section 3.1,
3.2 is from (S2,S5), (S2,S5), respectively. Under this generic view, connecting
multiple inbound parts to form a Super-Inbound can be seen as a system of
nonlinear equations, where all DoF serve as variables and DoF from subkeys are
constrained by key schedule, and our goal is to find a procedure to solve this
system, efficiently. There are two main considerations.

I. The system of nonlinear equations must have solutions. In other words, the
system should not be over-defined. Hence, the number DoF should be larger
than the number of equations.

II. The system must be solvable efficiently, which for most of the time can
be translated into a procedure of consuming degrees of freedom by fixing
certain variables involved, and the final complexity is determined by the
number variables which can not be fixed and have to be brute-forced.

We adopt the triangulation algorithm [50] as shown in Section 2.4 to solve
the nonlinear system and bridge the multiple inbound parts. The algorithm can
output exactly the “free variables” when the system is deterministically solvable,
and improve the guessing and checking the “free variables” when the system is
probabilistically solvable. We name this method as triangulating rebound attack.

Heuristic Method to Determine a Trail. So far, we have not mentioned the
use of DoF from S1 and S4 yet. While S4 determines whether difference is allowed
in key hence resulting in semi-free-start or free-start collision for attacks against
hash functions, S1 directly determines the system of nonlinear equations, hence
the number of rounds covered by the Super-Inbound and complexity as well. For
collision attack on n-bit hash, the overall steps to identify a rebound attack trail
are as follows:

1. Find a truncated differential trail following the Constrained Programming
based search model from [5].

2. Choose certain consecutive rounds as the Super-Inbound (i.e., S1), which in-
cludes several local inbound parts. For example, in Figure 7 a Super-Inbound
includes three local inbound parts. Usually, 2 to 4 consecutive rounds are
chosen as possible Super-Inbound. Following this search, all the input/output
differences of the active Sboxes are fixed, and therefore corresponding values
are fixed.

3. Build equation system that connects the inbound parts and through key
schedule. Check if the system is solvable by triangulation algorithm.

Before checking the solvability of the system, a potential truncated trail must
satisfy the condition that the number of active Sboxes in the Super-Inbound does
not exceed the DoF from both key and state. This is because the system of state
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bytes and keys bytes are determined by the initial k key bytes and n plaintext
bytes, then for any set of fixed bytes in advance, the system is potentially solvable
if the number of fixed bytes is not larger than n+k. Our observation shows that
the ideal case is when the number of active bytes in the Super-Inbound equals
to n + k − 1 and only 1 free byte is left, since the scenario without free byte is
likely to form an over-defined system. Therefore, this constraint is also added to
our model. For classical collision attacks, after the Super-Inbound is fixed, the
probability of the outbound phase can be computed and denoted as Pr, which
should meet Pr > 2−n/2. For quantum collision attacks, let Pr5 > 2−n. Similarly
to previous models [39], for the attacks based on the truncated differentials, Pr is
the probability for the cancellation of MC operator in the backward and forward
trunks, as well as the cancellation for the feed-forward operator of hashing modes.
After checking the potential truncated trails satisfying the above conditions for
inbound and outbound phases, the triangulation algorithm is applied to detect
the free bytes left followed by the step to generate sufficient data pairs for the
outbound phase.

4 Improved Collision Attacks on AES-128-MMO

In this section, by applying the triangulating rebound, we introduce a 7-round
classical semi-free-start collision attack and an 8-round quantum semi-free-start
collision attack on AES-MMO. Moreover, we identify the first 8-round quantum
collision attack, which is better than parallel rho’s algorithm [75].

4.1 Semi-Free-Start Collision Attack on 7-Round AES-128

New 7-round AES-128 Truncated Differential Trail. We introduce here
our new differential trail in Figure 8. Our Super-Inbound phase covers 3 middle
rounds with 2 inbound phases (marked with red and blue dashed lines), which
consumes 31 bytes of degree of freedom for the fixed state bytes, i.e., 16 active
bytes in x3, 9 active bytes in x4, and 6 active bytes in x5. Since we have 32
bytes in total (16 bytes in key and 16 bytes in the state), only 1 free byte is
left. By triangulating algorithm, the 1 free byte is identified to be k5[12]. The
remaining outbound phase happens with probability pout = 2−56 including the
MC cancellation in round 1 and 4-byte cancellation for ∆P = ∆C.

The Super-Inbound Phase. As shown in Figure 8, the Super-Inbound phase
divides into 2 parts, the Inbound II marked with blue dashed line makes use of
k5 to link round 4 and round 5, and the Inbound I marked with red dashed line
connects with Inbound II via k4. To generate a data pair conforming a given
difference (∆z2, ∆w3, ∆w5), assuming ∆Z5 = MC−1(∆w5) keeps the truncated
differential in Figure 8, we perform the following steps:

5As shown in the introduction, we consider three quantum attack conditions. Pr >
2−2n/3 is to be better than the BHT algorithm, Pr > 2−n is to be better than quantum
time-space tradeoff, Pr > 2−4n/5 is to be better than CNS algorithm. So we let Pr >
2−n to keep all characteristics that may lead to possible attacks.
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Fig. 8: Semi-free-start collision attack on 7-round AES-128

– Perform the Inbound II:
1. Randomly assign a difference to ∆x5[4, 9, 12]. Then ∆w4[4, 9, 12] are

known accordingly, implies all the differences at these active cells of
z4 and the remaining active cells of w4 are determined as a result of the
Property 1. From ∆z4, we deduce ∆y4 = SR−1(∆z4).

2. Compute the difference ∆y5 = SR−1(MC−1(∆w5)). Next, we deduce the
values of the active cells at x4 and x5 by assessing to the DDT for each
cell of (∆x4, ∆y4) and (∆x5, ∆y5). The active byte values of y4 and y5
are determined respectively.

– Perform the Inbound I:
1. Compute ∆x3 = MC(∆z2) and ∆y3 = SR−1(MC−1(∆w3)).
2. Deduce full state values x3 and y3 by assessing the DDT. We compute the

full state values of w3 by the action w3 = MC(SR(y3)).

– Connect the phases by the subkeys:
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1. Since the full state of w3 and the active bytes of x4 are known, we obtain
k4[1, 3, 6, 7, 8, 9, 11, 13, 14] = x4[1, 3, 6, 7, 8, 9, 11, 13, 14]⊕w3[1, 3, 6, 7, 8, 9, 11, 13, 14]

(marked as black dots).
2. Add constrains on the related cells of k5 to the system of equations of the

subkeys. We solve the constrains on k4 and k5 by triangulation algorithm
and obtain a free byte k5[12].

3. The steps (shown in Figure 9) to recover k5 and compute a starting point
are shown as follows (equations are also given in Table 2) :
(a) As shown in Figure 9(1), all the differences marked by ‘D’ are known.

In Figure 9(2), by assessing the DDT, we know the values of x3[V ],
x4[V ], and x5[V ]. Then deduce k4[V ] = w3[V ]⊕ x4[V ].

(b) In Figure 9(3), randomly assign a value for k5[12] marked by ‘V’,
compute w4[12] = k5[12]⊕x5[12]. According to Property 1, deduce all
the bytes marked by ‘V’ in z4 and w4. Then, k5[14] = x5[14]⊕w4[14].
From z4[V ], we get x4[V ]. Then k4[V ] is deduced.

(c) In Figure 9(4), following the key schedule of AES-128, compute the
k5[V ]: k5[8] = k4[12] ⊕ k5[12], k5[10] = k4[14] ⊕ k5[14], k5[11] =
k4[11] ⊕ k5[7], k5[4] = k4[8] ⊕ k5[8], k5[7] = k5[3] ⊕ k4[7], k5[1] =
k4[1]⊕ SB(k4[14])⊕ rc, k5[3] = k4[3]⊕ SB(k4[12])⊕ rc.

(d) In Figure 9(5), deduce w4[4] = k5[4] ⊕ x5[4] and w4[11] = k5[11] ⊕
x5[11], then acorrding to Property 1, all the bytes in w4 and z4
marked by ‘V’ are deduced. Then, two bytes marked by ‘V’ in k5 are
deduced, i.e., k5[6] = w4[6]⊕x5[6] and k5[9] = w4[9]⊕x5[9]. Moreover,
compute two bytes marked by ‘V’ in k4, i.e., k4[2] = x4[2] ⊕ w3[2]
and k4[4] = x4[4]⊕ w3[4].

(e) In Figure 9(6), following the key schedule, deduce the bytes marked
by ‘V’ in k5, i.e., k5[0] = k4[4] ⊕ k5[4], k5[2] = k4[6] ⊕ k5[6], k5[5] =
k4[9] ⊕ k5[9], k5[13] = k4[13] ⊕ k5[9], k4[15] = SB−1(k4[2] ⊕ k5[2]),
k5[15] = k4[15]⊕ k5[11].

4. Finally, full state w3 and full subkey k5 are obtained by using 34 DDT

assesses.

Due to the probability of the outbound phase is 2−56, we need to check 256

starting points to find the collision. The final complexity is 256 and memory
needed is 216 for DDT storing.

Remark. In a rebound attack [62], we typically have a probability 1
2 to have a

solution for each active SBox, so that we have to repeat the attack with new dif-
ferences, but when the differences are compatible we obtain many solutions and
the amortized cost is close to 1. In our attack, when (∆x3, ∆y3), (∆x4, ∆y4) and
(∆x5, ∆y5) are fixed, we have 31 active Sboxes. Therefore, one compatible differ-
ential characteristic is found in roughly 231 time, which leads to 231 solutions for
the active bytes of (x3, x4, x5). Moreover, since we can randomly assign k5[12]
(Step 3 (b)), we totally have about 231+8 = 239 starting points, which is lower
than the final time 256. Briefly speaking, for a given (∆x3, ∆y3), (∆x4, ∆y4),
(∆x5, ∆y5) and k5[12], we find one starting point with time complexity of 1 on
average.
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Fig. 9: Steps to recover k5. The bytes marked by ‘D’ mean that the differences are
known. The bytes marked by ‘V’ mean that the values are known. In subfigures,
the bytes marked by ‘V’ are deduced from those marked by ‘V’.
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1. w4[12] = x5[12] ⊕ k5[12] 15. k5[7] = k5[3] ⊕ k4[7]

2. z4[12], w4[13, 14, 15] = MC(w4[12], z4[13, 14, 15]) 16. k5[11] = k4[11] ⊕ k5[7]

3. k5[14] = w4[14] ⊕ x5[14] 17. w4[11] = k5[11] ⊕ x5[11]

4. x4[12] = SB−1(z4[12]) 18. z4[10], w4[8, 9, 10] = MC(z4[8, 9, 11], w4[11])

5. k4[12] = w3[12] ⊕ x4[12] 19. k5[9] = w4[9] ⊕ x5[9]

6. k5[8] = k4[12] ⊕ k5[12] 20. k5[13] = k5[9] ⊕ k4[13]

7. k5[1] = k4[1] ⊕ SB(k4[14]) ⊕ rc 21. k5[5] = k4[9] ⊕ k5[9]

8. k5[10] = k4[14] ⊕ k5[14] 22. k4[5] = k5[1] ⊕ k5[5]

9. k5[4] = k4[8] ⊕ k5[8] 23. k4[4] = w3[4] ⊕ SB−1(z4[4])

10. w4[4] = k5[4] ⊕ x5[4] 24. k5[0] = k4[4] ⊕ k5[4]

11. z4[4], w4[5, 6, 7] = MC−1(w4[4], z4[5, 6, 7]) 25. x4[2] = SB−1(z4[10])

12. k5[6] = w4[6] ⊕ x5[6] 26. k4[2] = w3[2] ⊕ x4[2]

13. k5[2] = k4[6] ⊕ k5[6] 27. k4[15] = SB−1(k4[2] ⊕ k5[2])

14. k5[3] = k4[3] ⊕ SB(k4[12]) ⊕ rc 28. k5[15] = k5[11] ⊕ k4[15]

Table 2: Steps to recover the subkey k5 from known bytes

4.2 Semi-Free-Start Collision Attack on 8-Round AES-128-MMO

As shown in Figure 10, there are three inbound parts in the Super-Inbound
phase. For given fixed differences of ∆z1, ∆z2, ∆w4, and ∆w5, assuming ∆w1 =
MC(∆z1) and ∆z5 = MC−1(∆w5) keep the truncated differential of Figure 10,
we perform inbound part I, II, and III without the key information. Then, we
connect the three inbound part by determining certain key values and get the
starting point for the outbound phase. The probability of the outbound phase
is 2−64, including the condition ∆P = ∆C.

Given fixed differences of ∆z1, ∆z2, ∆w4, and ∆w5, the procedures to get
one starting point are as follows:

1. Deduce values (x5[0, 5, 10], x
′
5[0, 5, 10]) with ∆w4 and ∆z5 = MC−1(∆w5) by

accessing the DDT.
2. Deduce values (x2[0, 1, 2], x

′
2[0, 1, 2]) with ∆w1 = MC(∆z1) and ∆z2 by ac-

cessing the DDT. Then z2[0, 10, 13] are known as well.
3. For SSB(0) in Inbound III (marked in red), we compute ∆x3 = MC(∆z2) and

∆y4 = SR−1(MC−1(∆w4)).
4. Randomly choose ∆w3[0, 2] ∈ F8

2 × F8
2,

(a) Compute other active differences ∆z3[0, 2, 3] and ∆w3[3] by Property 1
(b) Deduce (z3[0, 2, 3], z

′
3[0, 2, 3]) and (x4[0, 2, 3], x

′
4[0, 2, 3]) by assessing DDT

5. Repeat Step 4 for random differences ∆w3[4, 5], ∆w3[8, 9], ∆w3[13, 14] to
compute all active bytes of x3 and x4. Next, we compute w4[0, 5, 10] =
MC(SR(SB(x4)))[0, 5, 10] and then k5[0, 5, 10] = w4[0, 5, 10]⊕ x5[0, 5, 10].

6. Assign random values to k3[6], k4[0], and k4[4]. We recover the full key k5
by the following steps in Table 3. There exists a filter of 2−8 in the step to
recover k3[3].

Since Step 6 has a filter of 2−8 to meet the condition “k3[3] = w2[3]⊕x3[3]
?
=

SB(k3[12])⊕ k4[3]⊕ rc ” in Table 3, the time complexity to find a starting point
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Fig. 10: Quantum semi-free-start collision attack on 8-round AES-128

(including a data pair and a key value conforming the inbound parts from ∆z1 to
∆w5) is 2

8. The probablity of the outbound phase is 2−64, we need 264 starting
points to find one collision. In other words, given 21 bytes of ∆z1, ∆z2, ∆w4,
∆w5, ∆w3[0, 2], ∆w3[4, 5], ∆w3[8, 9], ∆w3[13, 14] and k3[6] k4[0], k4[4], we get
one collision with probability of 2−72. Since 21× 8 = 168 > 72, we have enough
degrees of freedom to find one collision.

The Quantum Attack. Given input-output differences of the active Sbox, it
is expected to find one pair on average, e.g. (x, x′), satisfying the differences.
In inbound phase of the quantum rebound attacks, given a valid input-output
differences of l active Sboxes, we obtain about 2l/2 choices for starting points.
To indicate which starting point to choose among 2l/2 choices, Hosoyamda and
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1. w3[0] = k4[0] ⊕ x4[0] 23. k3[10] = k4[6] ⊕ k4[10]

2. w3[2, 3] = MC−1(w3[0], z3[0, 2, 3]) 24. k5[4] = k5[0] ⊕ k4[4]

3. k4[2, 3] = w3[2, 3] ⊕ x4[2, 3] 25. w3[10] = x4[10] ⊕ k4[10]

4. k4[13] = SB−1(k4[0] ⊕ k5[0] ⊕ rc) 26. w3[8, 9] = MC−1(w3[10], z3[8, 9, 10])

5. w3[13] = x4[13] ⊕ k4[13] 27. k4[8, 9] = w3[8, 9] ⊕ x4[8, 9]

6. w3[14, 15] = MC−1(w3[13], z3[12, 13, 15) 28. k3[9] = k4[5] ⊕ k4[9]

7. k4[14, 15] = w3[14, 15] ⊕ x4[14, 15] 29. k3[8] = k4[4] ⊕ k4[8]

8. k5[14] = k5[10] ⊕ k4[14] 30. w2[8, 9, 10] = x3[8, 9, 10] ⊕ k3[8, 9, 10]

9. k4[6] = k4[2] ⊕ k3[6] 31. w2[11] = MC−1(w2[8, 9, 10], z2[10])

10. w3[4] = x4[4] ⊕ k4[4] 32. k3[11] = w2[11] ⊕ x3[11]

11. w3[5, 7] = MC−1(w3[4], z3[5, 6, 7]) 33. k4[11] = k4[7] ⊕ k3[11]

12. k4[5, 7] = w3[5, 7] ⊕ x4[5, 7] 34. k3[13] = k4[9] ⊕ k4[13]

13. k3[4] = k4[0] ⊕ k4[4] 35. k3[15] = k4[11] ⊕ k4[15]

14. k3[7] = k4[3] ⊕ k4[7] 36. w2[13, 14, 15] = k3[13, 14, 15] ⊕ x3[13, 14, 15]

15. k5[1] = k4[5] ⊕ k5[5] 37. w2[12] = MC−1(w2[13, 14, 15], z2[13])

16. k4[1] = k5[1] ⊕ SB(k4[14]) ⊕ rc 38. k3[12] = x3[12] ⊕ w2[12]

17. k3[5] = k4[5] ⊕ k4[1] 39. k3[0] = SB(k3[13]) ⊕ k4[0] ⊕ rc

18. k5[2] = k4[2] ⊕ SB(k4[15]) ⊕ rc 40. k3[2] = SB(k3[15]) ⊕ k4[2] ⊕ rc

19. k5[6] = k5[2] ⊕ k4[6] 41. w2[0, 1, 2] = x3[0, 1, 2] ⊕ k3[0, 1, 2]

20. k4[10] = k5[6] ⊕ k5[10] 42. w2[3] = MC−1(w2[0, 1, 2], z2[0])

21. k3[14] = k4[10] ⊕ k4[14] 43. k3[3] = w2[3] ⊕ x3[3]
?
= SB(k3[12]) ⊕ k4[3] ⊕ rc

22. k3[1] = SB(k3[14]) ⊕ k4[1] ⊕ rc

Table 3: Steps to recover the subkey k3 from known bytes

Sasaki [39, Sect. 6.2, Page 22] introduce l − 1 auxiliary qubits. In Hosoyamda
and Sasaki’s attack, l is usually small, e.g. l = 4, then the increased time com-
plexity due to the l − 1 auxiliary qubits is marginal. However, in our 8-round
attack of Figure 10, we have to compute pairs for l = 3 + 3 + 12 + 12 = 30
active Sboxes with given input-output differences. If we follow Hosoyamda and
Sasaki’s idea [39], we have to introduce l − 1 = 29 auxiliary qubits, which can
not be ignored anymore. To deal with the problem, we introduce a trick in Sup-
plementary Material A, which introduces the auxiliary qubits nearly for free. By
our new trick, we perform the 8-round quantum semi-free-start collision attack.
According to Equation 5, we have l = 3 + 3 + 12 + 12 = 30, and choose 9 bytes
out of the 21 bytes to act as “|∆in|+ |∆out|” to find the collision with time com-
plexity roughly 30 · 272/2/128 ≈ 234 8-round AES, which is roughly the square
root of 272.

Practical Semi-Free-Start Collision Attack on 6-Round AES-128. To
prove the correctness of the 8-round semi-free-start collision, we give a 6-round
practical semi-free-start collision by cutting the differential characteristic de-
picted in Figure 10 to 6 rounds (round 1 to 6). The total complexity to find the
collision is 224, including 28 time for solving the Super-Inbound phase and 216

for the condition ∆x1 = ∆z6. We have verified the validity and complexity of
the attack by implementing the 6-round attack. One such example collision is
presented in Table 4 in Supplementary Material C.
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4.3 Quantum Collision Attack on 8-Round AES-128

m0 EK

IV h1

m1 EK h2

Fig. 11: Matyas-Meyer-Oseas (MMO) hashing mode with two blocks

Remove the Inbound I/II from Figure 10, we get the trail for 8-round collision
attack (also shown in Figure 15). The inbound phase covers states z2 to w4. The
probability of the outbound phase is 2−96. For a random given ∆z2, ∆w4 and
the master key, the steps to get one starting point are as follows:

1. Deduce ∆x3 and ∆y4 from ∆z2 and ∆w4.
2. For SSB(0) marked in red, randomly choose ∆w3[0, 2] ∈ F16

2 ,
(a) Compute other active differences ∆z3[0, 2, 3] and ∆w3[3] by Property 1
(b) Deduce the values for active bytes by accessing DDT to get (z3[0, 2, 3], z

′
3[0, 2, 3])

and (x4[0, 2, 3], x
′
4[0, 2, 3])

(c) Deduce (w4[0, 2, 3], w
′
4[0, 2, 3]) by XORing (x4[0, 2, 3], x

′
4[0, 2, 3]) with k4

(d) Check if MC(z3[0, 2, 3])
?
= w4[0, 2, 3], which is a 16-bit filter by Pro. 1

3. Repeat Step 2 in parallel for SSB(1), SSB(2), and SSB(3) to get one starting
point on average.

Hence, we need 216 time complexity to get one starting point for a random
given a random given ∆z2, ∆w4 and the master key. Since the probability of the
outbound phase is 2−96, we need 296 starting points to get one collision. Since
|∆z2| × |∆w4| = 248 < 296, we need two blocks as shown in Figure 11 to get
additional degrees of freedom from the first block. The overall time complexity of
the classical time is 2112. According to the quantum analysis by [39,29], we apply
Grover’s algorithm and get a quantum collision attack with roughly 256 quan-
tum time complexity. Supplementary Material B gives a very detailed quantum
collision attack on 8-round AES, whose time complexity is 255.53 8-round AES,
which is very close to the estimated 256.

5 Improved Quantum Attacks on Saturnin-Hash

Saturnin is a block cipher with a 256-bit state and 256-bit key that was designed
as the derivative of AES with efficient implementation by Canteaut et al. [17]. It
is among the round 2 candidates of the NIST lightweight cryptography compe-
tition. The composition of two consecutive rounds starting from even round is
called super-round, which is very similar to an AES round operating on 16-bit
words except that the SR is replaced by a transposition. Saturnin-Hash is built
on 16-super-round Saturnin block cipher with the MMO hashing mode.
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5.1 Improved 8-Round Quantum Free-Start Collision

The differential trail we use here was found in [30]. As shown in Figure 12,
our new method extends the inbound phase by covering round 0 to round 4 in
inbound phase, and the probability of the outbound phase becomes 2−135.8.
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Fig. 12: Free-start collision attack on 8-round Saturnin-Hash

Super-Inbound Phase. In Dong et al.’s [30] attack, the inbound phase covers
states from y0 to x3. However, our Super-Inbound covers two more rounds from
state y0 to x5. Hence, the probabilities Pr(∆x3 7→ ∆y3) = 2−12 and Pr(∆x4 7→
∆z4) = 2−59.8 in Dong et al.’s attack are removed in ours.

To perform the 4-round Super-Inbound phase, we first randomly assign ar-
bitrary differences for all unfixed differences in ∆z0 = MR(∆y0), ∆z1 and ∆z4.
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Together with the prefixed differences of ∆z2 and ∆z3, we do the following steps
to find a pair to confirm the given differences in the Super-Inbound phase.
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Fig. 13: Solving the inbound part for 8-round Saturnin-Hash

1. Deduce the differences of ∆y1, ∆y4. Compute all the active byte values of
(x1, y1), (x2, y2), (x3, y3) and (x4, y4) by assessing the DDT. Then z1 is known.
As shown in Figure 13, we pick out round 2 to round 4 to clarify the steps
to compute a conforming pair for the inbound part. As shown Figure 13 (2),
compute K[V ] = z1 ⊕ x2[V ]. Compute K ′[V ] = x3[V ] ⊕ z2[V ]. Similarly,
compute all other cells marked by “V” and “V”.

2. In Figure 13 (3), deduce “V” and “V” cells by the “V” cells. Guess z3[0] to
compute y3[V ] and z3[V ] by Property 1. Compute z2[V ] = K ′[V ] ⊕ x3[V ].
Guess z2[9, 10] to deduce z2[V ] and y2[V ] by Property 1. Then, compute
K[V ] = x2[V ]⊕ z1 and x3[V ] = z2[V ]⊕K ′[V ].

3. In Figure 13 (4), guess z2[0, 1, 2] to deduce y2[V ] and z2[V ]. Deduce K[V ]
and K ′[V ]. Compute K ′[V ] = x3[V ]⊕ z2[V ].
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4. In Figure 13 (5), guess z3[3] to deduce z3[V ] and y2[V ]. Compute K ′[V ] =
x3[V ]⊕ z2[V ] and z2[V ] = K ′[V ]⊕ x3[V ]. Compute x2[V ] = K[V ]⊕ z1.

5. In Figure 13 (6), compute z2[V ] and y2[V ]. Compute K[V ] = x2[V ] ⊕ z1.
Compute y3[V ], so that the 2nd column and 3rd column of y3 and z3 form
a filter of 2−32.

Totally, we guess 7-cell (z3[0, 3], z2[9, 10, 0, 1, 2]) to deduce the conforming
pair. In Step 5, there is a filter of 2−32, together with the outbound probability
2−135.8, we get a collision with total probability of 2−32−135.8 = 2167.8. We have
29×16 = 2144 choices for ∆z0 = MR(∆y0), ∆z1 and ∆z4. Together with the 7-cell
(z3[0, 3], z2[9, 10, 0, 1, 2]), the total degree of freedom is 2144+16×7 = 2256 > 2167.8.
Hence, we have enough degree of freedom to find the collision. Since we do not
have the quantum circuit for the DDT of Saturnin like AES, we have to use
Equation 4 to estimate the time complexity. With l = 27, the time is roughly
27 · 2167.8/2+16/2/(16× 8) = 289.65 8-round Saturnin-Hash.

5.2 Extend the Attack to 10-round Free-Start Collision

The 10-round differential trail is easily obtained by repeating the path of Figure
12 round 5 and round 6 one more time before entering round 7. The figure for
10-round Saturnin-Hash is given in Figure 17 in Supplementary Material E. By
this way, the probability of the outbound phase decreases by 2−16−59.8 = 2−75.8

while the Super-Inbound phase maintains the same probability 2−32. Finally,
we obtain the free-start collision attack with probability 2167.8−75.8 = 2−243.6.
Since the number of degrees of freedom 2256 is still larger than 2243.6, so that
we can find a collision. According to Equation 4, l = 27, the time is roughly
27 · 2243.6/2+16/2/(16 × 10) = 2127.2 10-round Saturnin-Hash. Additionally, we
present an improved 7-round quantum semi-free-start collision in Supplementary
Material D.

6 Quantum Collision Attack on SKINNY-128-384-MMO

SKINNY is a family of lightweight block ciphers designed by Beierle et al. [7]. In
this section, we focus on the hashing mode of SKINNY-128-384. Please find the
structure of SKINNY-n-3n in [7]. The MC operation is non-MDS:

MC


a
b
c
d

 =


a⊕ c⊕ d

a
b⊕ c
a⊕ c

 and MC
−1


α
β
γ
δ

 =


β

β ⊕ γ ⊕ δ
β ⊕ δ
α⊕ δ

 . (1)

6.1 21-Round Quantum Free-Start Collision Attack

In quantum setting, we derive the free-start collision attack on hashing modes
(MMO/MP) with 21-round SKINNY-128-384 using the differential characteristic
shown in Figure 18 in Supplementary Material F. The new differential trail is
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found by using the automatic tool in [23]. The 5-round Super-Inbound covers
from state w9 to x14. The outbound phase happens with probability 2−103.4.

We pick out the 5-round Super-Inbound phase from the whole rebound attack
trail of Figure 18 to get Figure 14 (a). To launch the rebound attack, we first
precompute a pair satisfying the 5-round inbound trail as shown in Figure 14 (b).
Then thanks to the large degrees of freedom from the tweakey, we get enough
starting points by changing the 384-bit tweakey.
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Fig. 14: 5-round Super-Inbound of SKINNY-128-384: (a) Differences, (b) Values.
The values of ki are the XOR of subkeys and constants of AC operator.

Precomputation in the Super-Inbound Phase. We build several steps to
compute the conforming data pairs for the Super-Inbound phase.

1. In Figure 14(a), focusing on states z10 to x11, the values in z10[8, 12] =
SR(x10[10, 13]) and all active bytes of w10 are deduced by assessing DDT with

fixed differences in Figure 14(a). In the 1st column z10 and w10, i.e., z
(0)
10

and w
(0)
10 , we have a condition “w10[4] ⊕ w10[12] = z10[8]” due to Equa-

tion 1, which is a filter of 2−8. In our trail, the differences are dedicatedly
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chosen, so that we have enough pairs to verify the filters for the given dif-
ferences. For example, in the condition “w10[4]⊕w10[12] = z10[8]”, we choose
(w10[4], w10[12], z10[8]) ∈ (DDT[b0x][80x]×DDT[21x][a0x]×DDT[2fx][91x]), where
DDT[b0x][80x] is the subset of DDT with input-output differences (b0x, 80x).
The size |DDT[b0x][80x]× DDT[21x][a0x]× DDT[2fx][91x]| = 48 · 25 · 23 > 28.

2. With the choice of w10[12], z11[15] is known as well. z11[8, 9, 10, 12] and all
active bytes of w11 are deduced by DDT. We have similar conditions to fulfill
for the 1st column of z11 and w11 with w11[0]⊕w11[12] = z11[12], which act
as a filter of 2−8.

3. Do similar steps from z10 to w13, we get a data and key pair as shown in
Figure 14(b) conforming the whole 5-round inbound trail.

An additional trick is used in our inbound phase. As only the first two rows
of x9 are XORed with k9, the last two rows of x9 and w8 are fully determined
by w9. Hence, in the inbound phase, we directly find the pair with ∆w8[8] =
04x, ∆w8[13] = 54x, and ∆w8[14] = 54x, which increases the probability of
the outbound phase from 2−103.4 to 2−92.4. The conforming pair for the Super-
Inbound is given in Figure 14(b), which is generated by the source code at
https://www.dropbox.com/s/2n4d9zwufkpigqt/Find_inbound.7z

Generating Starting Points for Outbound Phase. Now we have the values
of subkeys k10, k11, k12, k13. Since the key schedule is linear and by solving a linear
system on the 384-bit key with fixed values of subkeys k10, k11, k12, k13 in Figure
14 (b), we can derive at most 2128 starting points for the outbound phase. We
need only 292.4 starting points to get a collision. In quantum setting, the 292.4

starting points are traversed by Grover’s algorithm, which need roughly 246.2

time complexity to find the collision.

6.2 Classic Free-Start Collision Attack on 19-Round

The first classical free-start collision attack on 19-round SKINNY-128-384 hash
mode is also given with the trail in Figure 19 in Supplementary Material F. The
Super-Inbound covers 5 rounds from round 9 to round 13, and only one data
pair, shown in Figure 20 in Supplementary Material F, is needed to confirm the
inbound trail in the precomputation phase. Similar to the 21-round attack, the
pre-computed pair of the inbound phase also satisfies the differential of the last
two rows of x8 to w7. Since the outbound excluding the Sboxes in the last two
rows of x8 happens with probability 2−51.2, the final time complexity is 251.2.

7 Discussion and Conclusion

7.1 Possible Generalization of Triangulating Rebound

In Section 3, we have shown that the multiple inbound phases can be connected
by the key bytes. We may describe the idea in a more generalized way. In fact,
for active Sbox or Super-Sbox with fixed input/output differences, the values
are fixed. For active Sbox without fixed input/output differences, or inactive
Sbox, the values are not fixed and up to attacker’s control, which are the source

https://www.dropbox.com/s/2n4d9zwufkpigqt/Find_inbound.7z


26 X. Dong et al.

of the degree of freedom (DoF). In order to identify a data pair conforming the
truncated differential, we may consume the degree of freedom from the unfixed
Sbox to bridge several fixed values due to active Sboxes or Super-Sboxes with
fixed input/output differences. This intuitive idea implies that not only the key
bytes are useful to connect the differences, but also the internal states. In Sup-
plementary Material G, we give an example to connect the differences with DoF
from internal states and gain some improved collision attacks on Grøstl.

7.2 Conclusion

In this paper, we extended the number of attacked rounds by the rebound at-
tack by introducing triangulating rebound attack. The core idea is to take full
advantage of the available degrees of freedom from both the subkeys and the
state to greatly extend the number of rounds covered by the inbound phase,
which is named as Super-Inbound. As a consequence, multiple improved classic
or quantum collision attacks on AES-like hashing were presented. Possible future
works are to investigate more ciphers with our method, as well as to find more
applications such as distinguishing attacks based the improved rebound attacks.
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Supplementary Material

A Quantum Rebound Attack with Quantum Amplitude
Amplification

The quanutm oracle of a function f : Fm
2 7→ Fn

2 is the unitary operator Uf that
Uf |x⟩ |y⟩ = |x⟩ |y ⊕ f(x)⟩ with x ∈ Fm

2 and y ∈ Fn
2 .

Variations on Grover’s Algorithm. The task is to find a marked element
from a set X. We denote by M ⊂ X the subset of marked elements and assume
that we know the fraction ϵ = |M |/|X| of marked elements. A classical algorithm
to solve this problem is to repeat O(1/ϵ) times. The quantum algorithm can
therefore be expressed as a function of two parameters:

– The Setup operation, which is to sample a uniform element from X. Denote
the Setup cost (running time) as |Setup|RT .

– The Checking operation, which is to check if an element is marked. Denote
the Checking cost (running time) as |Checking|RT .

The cost of the quantum algorithm can be the time or the number of queries
to the input. It suffices to consider specifically one of those resources when quan-
tifying the Setup and Checking cost. Similarly, Grover’s algorithm [36] is a quan-
tum search procedure that finds a marked element, and whose complexity can
be written as a function of the quantum Setup cost |Setup|RT , which is the cost
of constructing a uniform superposition of all elements in X, and the quantum
Checking cost |Checking|RT , which is the cost of applying a controlled-phase
gate to the marked elements. Notice that a classical or a quantum algorithm
that checks membership to M can easily be modified to get a controlled-phase.
The time complexity of Grover’s algorithm is

√
1/ϵ·(|Setup|RT +|Checking|RT ).

Assuming that the Setup and Checking procedures are easy, Grover’s algorithm
can then find an element x ∈ M a cost

√
1/ϵ.

Grover’s algorithm can also be written as a special case of quantum ampli-
tude amplification (QAA), a quantum technique introduced by Brassard, Høyer
and Tapp in order to boost the success probability of quantum algorithms [15].
Intuitively, assume that a quantum algorithm A produces a superposition of
outputs in a good subspace G ⊂ X and outputs in a bad subspace B ⊂ X. Then
there exists a quantum algorithm that calls A as a subroutine to amplify the
amplitude of good outputs. Suppose A was a classical algorithm, repeating it
O(1/a) times to produce a good output, where a is the probability of producing
a good output. Just as Grover’s algorithm, the quantum amplitude amplification
(QAA) technique achieves the same result with a quadratic improvement. The
time complexity of QAA is about√

1/a · (|A|RT + |Checking|RT ). (2)
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Hosoyamda and Sasaki [39]’s Quantum Rebound Attack With Aux-
iliary Variables. At EUROCRYPT 2020, Hosoyamda and Sasaki [39] applied
Grover’s algorithm to the rebound attack. In the inbound phase, we are go-
ing to compute the pair (S, S′), i.e. the so-called starting point, for the active
Sboxes or Super-Sboxes that satisfying the inbound differential trail. Suppose
the state S consists of l active Sboxes (denoted as SB(i) with 1 ≤ i ≤ l) with

arbitrary non-zero input/output differences (δ
(i)
in , δ

(i)
out) (1 ≤ i ≤ l) in parallel. Let

∆in = δ
(1)
in ∥δ(2)in ∥ · · · ∥δ(l)in and∆out = δ

(1)
out∥δ

(2)
out∥ · · · ∥δ

(l)
out. Randomly given a value

for (∆in, ∆out) ∈ F|∆in|+|∆out|
2 (|∆in| is the bit length of ∆in), if there exists one

input-output pair (xi, x
′
i) and (yi, y

′
i) that satisfies the differential δ

(i)
in 7→ δ

(i)
out for

each SB(i) with 1 ≤ i ≤ l, there will be 2l/2 = 2l−1 choices to construct a whole
state S as a starting point for the outbound phase, e.g. S = x1∥x′

2∥x3∥ · · · ∥xl. To
indicate which state S to choose, Hosoyamda and Sasaki introduced (l − 1)-bit
α ∈ Fl−1

2 as the auxiliary variable to indicate the choice. They built a function
F (∆in, ∆out, α) and run Grover’s algorithm on F (·) to find collisions. Suppose
the probability of the outbound phase to find one collision is 2−(|∆in|+|∆out|), in
classical setting one has to traverse a domain of size 2|∆in|+|∆out| for one colli-
sion. In contrast, one has to traverse 2|∆in|+|∆out|+l−1 in the quantum setting.
Suppose the Sbox is of c-bit. The quantum time complexity will be√

2|∆in|+|∆out|+l−1 · (l · 2 c
2 ) ≈ l · 2

|∆in|+|∆out|+l+c

2 Sbox evaluations. (3)

The drawback of this approach is that if there are many active Sboxes to match,
the factor l ·2l/2 will have a non-negligible impact on the overall time complexity.

Our Improved Quantum Rebound Attack With QAA. Generally, as
shown by Lamberger et al. [56], for any permutation Q (to be more precise, for
any injective map) the expected number of solutions to Q(∆in⊕x)⊕Q(x) = ∆out

is always 1. Hence, given a random (∆in, ∆out), it is expected to find one input-
output pair as the starting point. Taking the Sbox of AES as an example, for ran-

dom given δ
(i)
in 7→ δ

(i)
out for SB

(i) with 1 ≤ i ≤ l, SB(i)(δ
(i)
in ⊕ xi)⊕ SB(i)(xi) = δ

(i)
out

has solution with probability about 1
2 , which means half of δ

(i)
in 7→ δ

(i)
out are im-

possible differentials. For a randomly given (∆in, ∆out), it is possible differential
with probability about ( 12 )

l. Hence, we have ( 12 )
l · 2l = 1 solution on average.

Therefore, one can use the filter ( 12 )
−l to first identify the valid (∆in, ∆out), then

traverse only those valid (∆in, ∆out) to generate the starting points.
Concretely, we propose to use quantum amplitude amplification (QAA) al-

gorithm for this stage. Define g : Fc
2 → F2 to be a Boolean function such that

g(δin, δout, β = 0;x) = 1 if and only if SB(x)⊕SB(x⊕δin) = δout and x ≤ x⊕δin,
and g(δin, δout, β = 1, x) = 1 if and only if SB(x) ⊕ SB(x ⊕ δin) = δout and

x > x ⊕ δin. Define f : F|∆in|+|∆out|
2 7→ F2, such that f(∆in, ∆out) = 1 with

(∆in, ∆out) ∈ F|∆in|+|∆out|
2 if and only if (∆in, ∆out) is a valid differential (not

impossible differential). The probability of f(∆in, ∆out) = 1 is 2−l. The imple-
mentation of Uf is in Algorithm 1. The time complexity of f is l · 2c/2 in the
worst case.
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Algorithm 1: Implementing Uf

Input: |∆in,∆out⟩ |y⟩
Output: |∆in,∆out⟩ |y ⊕ f(∆in,∆out)⟩

1 for i = 1, 2, ..., l do

2 Deduce the input-output difference for SB(i), i.e., (δ
(i)
in , δ

(i)
out)

3 Run Grover’s algorithm on gi(δ
(i)
in , δ

(j)
in , 0; ·) : Fc

2 7→ F2. Let xi be the output

4 if SB(i)(x⊕ δ
(i)
in )⊕ SB(i)(x) ̸= δ

(i)
out then

5 Return |∆in,∆out⟩ |y⟩

6 Return |∆in,∆out⟩ |y ⊕ 1⟩

Define the set X := {(∆in, ∆out) : (∆in, ∆out) ∈ F|∆in|+|∆out|
2 } and X ′ :=

{(∆in, ∆out) : (∆in, ∆out) is valid differential} ⊂ X. The size of X ′ is about
|X ′| = 2|∆in|+|∆out|−l. The Setup oracle A is to run Grover’s algorithm on f(·) :
F|∆in|+|∆out|
2 7→ F2 to get the superposition |ϕ⟩ =

∑
(∆in,∆out)∈X′ |∆in, ∆out⟩.

Among X ′, only one (∆in, ∆out) can produce the good starting points and leads
to the final collision. Hence, the probability of producing the good output when

measuring |ϕ⟩ is a = 2−(|∆in|+|∆out|−l). Then, |A|RT ≈ 2l/2 · l · 2c/2 = l · 2 l+c
2 .

Given (∆in, ∆out) ∈ X, define G : Fl−1
2 7→ F2 as G(∆in, ∆out;α) with

α ∈ Fl−1
2 . G(∆in, ∆out;α) = 1 if and only if (∆in, ∆out;α) leads to a colli-

sion. Only one (∆in, ∆out) ∈ X ′ together with the right α ∈ Fl−1
2 lead to a

collision. Hence, G(∆in, ∆out;α) = 1 with probability about 2−(|∆in|+|∆out|).
The implementation of UG is given in Algorithm 2 with time complexity of

l · 2c/2. Define the Check operator P : F|∆in|+|∆out|
2 7→ F2 as P(∆in, ∆out) with

(∆in, ∆out) ∈ X ′. P(∆in, ∆out) = 1 if and only if (∆in, ∆out) leads to a colli-
sion. The implementation of UP is given in Algorithm 3 with time complexity

|UP |RT = 2(l−1)/2 · l · 2c/2 = l · 2 l+c−1
2 . P(∆in, ∆out) = 1 with probability of

a = 1
|X′| = 2−(|∆in|+|∆out|−l). Hence, according to Equation 2, the total time

complexity is

√
1/a · (|A|RT + |UP |RT ) =

√
2|∆in|+|∆out|−l · (l · 2 l+c

2 + l · 2 l+c−1
2 )

≈ l · 2
|∆in|+|∆out|+c

2 Sbox evaluations.
(4)

Compared with [39] of complexity in Equation 3, our approach leads to a reduc-
tion of time complexity by a factor of roughly 2l/2, so that the number of active
Sboxes to be matched only has a linear rather than exponential impact.

A Case Study of AES. At ToSC 2019, Bonnetain, Naya-Plasencia, and Schrot-
tenloher [14] proposed the quantum circuit of DDT for AES’s Sbox.

Property 2 ([14]). There exists a quantum unitary for the DDT of AES Sbox that,
for a given (δin, δout), finds a solution x conforming the difference pair and out-
puts (x,OK) if such an x exists, and (0, none) otherwise. The circuit comes with
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Algorithm 2: Implementing UG

Input: |∆in,∆out;α⟩ |y⟩, α = (α1, α2, ..., αl−1) ∈ Fl−1
2

Output: |∆in,∆out;α⟩ |y ⊕G(∆in,∆out;α)⟩

1 for i = 1, 2, ..., l − 1 do

2 Deduce the input-output difference for SB(i), i.e., (δ
(i)
in , δ

(i)
out)

3 Run Grover’s algorithm on gi(δ
(i)
in , δ

(j)
in , αi; ·) : Fc

2 7→ F2. Let xi be the
output

4 Run Grover’s algorithm on gl(δ
(l)
in , δ

(l)
in , 0; ·) : F

c
2 7→ F2. Let xl be the output

5 Let x1∥x2, ..., ∥xl be the starting point
6 if x1∥x2, ..., ∥xl leads to a collision then
7 return |∆in,∆out;α⟩ |y ⊕ 1⟩
8 else
9 return |∆in,∆out;α⟩ |y⟩

Algorithm 3: Implementing UP : Checking if (∆in, ∆out) leads to a
collision
Input: |∆in,∆out⟩ |y⟩
Output: |∆in,∆out⟩ |y ⊕ P(∆in,∆out)⟩

1 Run Grover’s algorithm on G(∆in,∆out; ·) : Fl−1
2 7→ F2. Let α ∈ Fl−1

2 be the
output

2 /* If (∆in,∆out) leads to a collision, which happens with

probability of 1
|X′| = 2−(|∆in|+|∆out|−l), the right α will output in

Step 1; Else, a random α will output */

3 if G(∆in,∆out;α) = 1 then
4 return |∆in,∆out⟩ |y ⊕ 1⟩
5 else
6 return |∆in,∆out⟩ |y⟩

22 ancilla qubits and a time complexity equivalent with 2 SBox computations.
If the goal is only to decide whether a solution exists but not to find out it
explicitly, the cost drops to 1 SBox computation and 15 ancilla qubits.

According to Property 2, |A|RT = 2l/2 · l · 1 = l · 2l/2 and |UP |RT = 2(l−1)/2 ·
l · 2 = l · 2l+1. Then, Equation 4 becomes:√

|X ′| · (|A|RT + |UP |RT ) =
√
2|∆in|+|∆out|−l · (l · 2 l

2 + l · 2 l+1
2 )

≈ l · 2
|∆in|+|∆out|

2 Sbox evaluations.
(5)

B Detailed Quantum Collision Attack on 8-round AES-128

As shown in Figure 15, focusing on the first Super-Sbox SSB(0) marked by
red box, for the fixed chosen difference ∆x3, ∆y4 and a given k3, we apply
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Fig. 15: Quantum collision attack on 8-round AES-128

QAA algorithm to compute the conforming pair for the Super-Sbox SSB(0). De-

fine g0(∆x
(0)
3 , ∆y

(0)
4 ;∆w3[0, 2]) : F8+8

2 7→ F2, where (∆x
(0)
3 , ∆y

(0)
4 ) are marked

by red box and involved in SSB(0). It marks the valid ∆w3[0, 2] that makes

∆x
(0)
3 → ∆w3[0, 2] → y

(0)
4 a possible differential. The implementation of Ug0

is given in Algorithm 4 with time complexity of about 6 Sbox evaluations.

The probability of g0(∆x
(0)
3 , ∆y

(0)
4 ;∆w3[0, 2]) = 1 is about 2−6. Define set

S(∆x3,∆y4) := {∆w3[0, 2] : ∆x
(0)
3 → ∆w3[0, 2] → y

(0)
4 is a possible differential}.

The size |S(∆x3,∆y4)| = 216−6 = 210. The setup oracle A0 is to run Grover’s
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algorithm on g0(∆x
(0)
3 , ∆y

(0)
4 ; ·) : F16

2 7→ F2 to get the superposition |ϕ⟩ =∑
∆w3[0,2]∈S(∆x3,∆y4)

|∆w3[0, 2]⟩ with time complexity of π
4 ·

√
26 ·6 = 25.238 Sbox

evaluations.

Algorithm 4: Quantum Implementation of Ug0

Input: |∆x
(0)
3 ,∆y

(0)
4 ;∆w3[0, 2]⟩ |y⟩

Output: |∆x
(0)
3 ,∆y

(0)
4 ;∆w3[0, 2]⟩ |y ⊕ g0(∆x

(0)
3 ,∆y

(0)
4 ;∆w3[0, 2])⟩

1 Deduce ∆z3[0, 2, 3], ∆w3[3] with known differences ∆w3[0, 2] and
∆z3[1] = 0,∆w3[1] = 0 according to Property 1

2 For (δin, δout) of the Sbox, apply quantum circuit of DDT to check if (δin, δout)
is a valid differential. Define UDDT(δin, δout) = 1 if and only if (δin, δout) is a
valid differential

3 /* According to Property 2, the cost equals to 1 Sbox computation

with 15 ancilla qubits */

4 if UDDT(∆x3[0],∆y3[0]) = 0 then

5 return |∆x
(0)
3 ,∆y

(0)
4 ;∆w3[0, 2]⟩ |y⟩

6 if UDDT(∆x3[10],∆y3[10]) = 0 then

7 return |∆x
(0)
3 ,∆y

(0)
4 ;∆w3[0, 2]⟩ |y⟩

8
...

9 if UDDT(∆x4[3],∆y4[3]) = 0 then

10 return |∆x
(0)
3 ,∆y

(0)
4 ;∆w3[0, 2]⟩ |y⟩

11 /* Totally, six input-output differences are checked */

12 return |∆x
(0)
3 ,∆y

(0)
4 ;∆w3[0, 2]⟩ |y ⊕ 1⟩

For a given key k
(0)
4 ∈ F32

2 involved in SSB(0), define the projector P0 :

F16
2 7→ F2, where P0(k

(0)
4 , ∆x3, ∆y4;∆w3[0, 2]) = 1 if and only if there is a

pair conforming ∆x3 7→ ∆w3[0, 2] 7→ ∆y4 under k
(0)
4 . Before implement UP0

,

we define a new Uf0 : F6
2 7→ F2, where Uf0(k

(0)
4 , ∆x3, ∆y4, ∆w3[0, 2];α) = 1 if

and only if (k
(0)
4 , ∆x3, ∆y4, ∆w3[0, 2];α) outputs a valid pair for the differential

with α ∈ F6
2. The implementation of Uf0 is given in Algorithm 5 with time

complexity of 15 Sbox evalutions. The UP0 is implemented in Algorithm 6 with

time complexity of about π
4 ·

√
26 · 15 = 26.56 Sbox evalutions.

At last, given (k
(0)
4 , ∆x3, ∆y4) for SSB(0), by applying QAA algorithm (de-

fined as USSB(0)), we find the right ∆w3[0, 2] = USSB(0)(k
(0)
4 , ∆x3, ∆y4) with time

complexity π
4 ·

√
|S(∆x3,∆y4)| · (25.238 +26.56) = 211.7 Sbox evaluations according

to Equation 2.

Similarly, we define USSB(1) , USSB(2) , USSB(3) to compute ∆w3[4, 5], ∆w3[8, 9],
∆w3[13, 14] in parallel.
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We use two blocks to build the collision as shown in Figure 11. We define
G(m0, ∆z2, ∆w4, β), where ∆z2 ∈ F24

2 , ∆w4 ∈ F24
2 , and β = (β0, β1, β2) ∈ F3

2.
G(m0, ∆z2, ∆w4, β) = 1 if and only if (m0, ∆z2, ∆w4, β) leads to a collision.

Algorithm 5: Quantum Implementation of Uf0

Input: |k(0)
4 ,∆x3,∆y4,∆w3[0, 2];α⟩, α = (α0, α1, ..., α5) ∈ F6

2

Output: |k(0)
4 ,∆x3,∆y4,∆w3[0, 2];α⟩ |y ⊕ f0(k

(0)
4 ,∆x3,∆y4,∆w3[0, 2];α⟩

1 Deduce ∆z3[0, 2, 3], ∆w3[3] with known differences ∆w3[0, 2] and
∆z3[1] = 0,∆w3[1] = 0 according to Property 1.

2 For (δin, δout) of the Sbox, apply quantum circuit of DDT to output the
conforming value. Let U ′

DDT(δin, δout) = x, where SB(x⊕ δin)⊕ SB(x) = δout
3 /* According to Property 2, the cost equals to 2 Sbox computation

with 22 ancilla qubits */

4 if α0 = 1 then
5 x3[0] = U ′

DDT(∆x3[0],∆y3[0])
6 else
7 x3[0] = U ′

DDT(∆x3[0],∆y3[0])⊕∆x3[0]

8 if α1 = 1 then
9 x3[10] = U ′

DDT(∆x3[10],∆y3[10])
10 else
11 x3[0] = U ′

DDT(∆x3[10],∆y3[10])⊕∆x3[10]

12
...

13 if α5 = 1 then
14 x4[3] = U ′

DDT(∆x4[3],∆y4[3])
15 else
16 x4[3] = U ′

DDT(∆x4[3],∆y4[3])⊕∆x4[3]

17 Compute w3[0, 2, 3] = k4[0, 2, 3]⊕ x4[0, 2, 3] and z3[0, 2, 3] = SB(x3[0, 10, 15])
18 if w3[0, 2, 3] = MC(z3[0, 2, 3])/* According to Property 1, it holds with

probability of 2−16 */

19 then

20 |k(0)
4 ,∆x3,∆y4,∆w3[0, 2];α⟩ |y ⊕ 1⟩

21 else

22 |k(0)
4 ,∆x3,∆y4,∆w3[0, 2];α⟩ |y⟩

The complexity to implement UG in Algorithm 7 is bounded by Line 4
to 4, which is about 211.7 × 4 = 213.7 Sbox evaluations. Since the probabil-
ity of the outbound phase is 2−96, together with the three auxiliary qubits β,
G(m0, ∆z2, ∆w4, β) = 1 with probability of 2−99. We build UF in Algorithm 8
to finally obtain the collision, whose time complexity is bounded by Line 1 with
π
4 ·

√
299 · 213.7 = 262.85 Sbox evaluations. There are 160 Sboxes in an 8-round

AES. Hence, the total time complexity to get the collision (m0,m1,m
′
1) is about

262.85/160 = 255.53 8-round AES computations.
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Algorithm 6: Quantum Implementation of UP0

Input: |k(0)
4 ,∆x3,∆y4;∆w3[0, 2]⟩

Output: |k(0)
4 ,∆x3,∆y4;∆w3[0, 2]⟩ |y ⊕ f0(k

(0)
4 ,∆x3,∆y4;∆w3[0, 2]⟩

1 Run Grover’s algorithm on Uf0(k
(0)
4 ,∆x3,∆y4,∆w3[0, 2]; ·) : F6

2 7→ F2, let α as
output

2 Run Line to of Algorithm 5 with α to output w3[0, 2, 3] and z3[0, 2, 3]
3 if w3[0, 2, 3] = MC(z3[0, 2, 3]) then

4 |k(0)
4 ,∆x3,∆y4;∆w3[0, 2]⟩ |y ⊕ 1⟩

5 else

6 |k(0)
4 ,∆x3,∆y4;∆w3[0, 2]⟩ |y⟩

Algorithm 7: Quantum Implementation of UG

Input: |m0,∆z2,∆w4, β⟩, β = (β0, β1, β2) ∈ F3
2

Output: |m0,∆z2,∆w4, β⟩ |y ⊕G(m0,∆z2,∆w4, β)⟩

1 Comput k4 for the second block from m0

2 Deduce ∆x3, ∆y4 from ∆z2 and ∆y4
3 Compute x3[0, 10, 15] by accessing the quantum circuit of DDT with

input-output differences, then z3[0, 2, 3] are known

4 Compute ∆w3[0, 2] = USSB(0)(k
(0)
4 ,∆x3,∆y4)

5 Compute ∆w3[4, 5] = USSB(1)(k
(1)
4 ,∆x3,∆y4)

6 Compute ∆w3[8, 9] = USSB(2)(k
(2)
4 ,∆x3,∆y4)

7 Compute ∆w3[13, 14] = USSB(3)(k
(3)
4 ,∆x3,∆y4)

8 Run UP0 with ∆w3[0, 2], let w3[0, 2, 3] and z3[0, 2, 3]. Compute x4[0, 1, 2, 3]
from w3[0, 2, 3], z3[0, 2, 3] and k4. Let x4[0, 1, 2, 3] as starting point if β0 = 1,
else x4[0, 1, 2, 3]⊕∆x4[0, 1, 2, 3] as starting point

9 Run UP1 with ∆w3[4, 5], let w3[4, 5, 7] and z3[5, 6, 7]. Compute x4[4, 5, 6, 7]
from w3[4, 5, 7] and z3[5, 6, 7] and k4. Let x4[4, 5, 6, 7] be the starting point if
β1 = 1, else x4[4, 5, 6, 7]⊕∆x4[4, 5, 6, 7] be starting point

10 Run UP2 with ∆w3[8, 9], let w3[8, 9, 10] and z3[8, 9, 10]. Compute x4[8, 9, 10, 11]
from w3[8, 9, 10] and z3[8, 9, 10] and k4. Let x4[8, 9, 10, 11] be the starting
point if β2 = 1, else x4[8, 9, 10, 11]⊕∆x4[8, 9, 10, 11] be starting point

11 Run UP3 with ∆w3[13, 14], let w3[13, 14, 15] and z3[12, 13, 15]. Compute
x4[12, 13, 14, 15] from w3[13, 14, 15] and z3[12, 13, 15] and k4. Let
x4[12, 13, 14, 15] be the starting point

12 if Check if the starting point lead to a collision then
13 return |m0,∆z2,∆w4, β⟩ |y ⊕ 1⟩
14 else
15 return |m0,∆z2,∆w4, β⟩ |y⟩
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Algorithm 8: Quantum Implementation of UF

Output: m0,m1,m
′
1

1 Run Grover’s algorithm on G(·) : F128+24+24+3
2 7→ F2 and let

(m0,∆z2,∆w4, β) be the output
2 Run Line 1 to 11 of Algorithm 7 to get the x4

3 Compute x′
4 = x4 ⊕∆x4

4 Compute m1 from x4 and m0

5 Compute m′
1 from x′

4 and m0

6 return m0,m1,m
′
1

C Practical Semi-Free-Start Collision 6-round AES-128

Table 4 presents an example semi-free-start collision on 6-round AES. The code to
generate the collision is given at https://www.dropbox.com/s/2n4d9zwufkpigqt/
Find_inbound.7z

D Quantum 7-Round Semi-Free-Start Collision Attack
on Saturnin-Hash

We derive a semi-free-start collision attack on 7-round Saturnin by using the new
truncated differential trail shown in Figure 16. The inbound phase is separated
into 2 phases, while the outbound phase happens with probability 2−96 for the MC
cancellation at round 5. Combine with 4-byte cancellation feed-forward operator,
we obtain an collision attack with probability 2−160.

Inbound phase details. Given (∆y1, ∆w3, ∆w4) as 3 prefixed differences of
the inbound phase. Our following details describe an efficient way to generate
the data pairs and a key conforming the inbound path.

1. Compute∆x2 = MC(∆y1), ∆y3 = MC−1(∆w3), ∆y4 = MR−1(∆w4), and∆x4 =
∆w3.

2. Deduce the active bytes value of (x4, x
′
4) by assessing to the DDT.

3. Assign random values to first column of K, i.e. byte k0, k4, k8, k12, then
compute x3[0, 4, 8, 12] = SB−1(MC−1(x4[0, 4, 8, 12]⊕ k{0,4,8,12})) and the cor-
responding ∆x3[0, 4, 8, 12].

4. From ∆w2[0, 4, 8, 12] = ∆x3[0, 4, 8, 12] and Property 1, we know all the dif-
ferences of ∆y2 and ∆w2. The active byte values of x2 and y2 are determined
as well.

5. Since ∆x3 = ∆w2, we assess to the DDT to obtain the remaining active byte
values of x3 and y3. We also obtain the remaining byte values at second and
third column of w3.

6. Connect w3 and x4 by choosing k{1,5,9,13,2,6,10,14}, then the first and second
columns of K ′ are known as well.

https://www.dropbox.com/s/2n4d9zwufkpigqt/Find_inbound.7z
https://www.dropbox.com/s/2n4d9zwufkpigqt/Find_inbound.7z
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Plaintext
P 13622301 f4ad7096 c7cea69e e26646e5 K−1 6aa0c09f 92854210 9411daed 8db5f736

P
′

eb622301 f4ad7096 c7cedd9e e26646e5

After AK
X0 79c2e39e 66283286 53df7c73 6fd3b1d3

X
′
0 81c2e39e 66283286 53df0773 6fd3b1d3

After SB&SR
Z0 b6341066 339ec80b ed661144 a825238f

Z
′
0 0c34c566 339ec80b ed661144 a825238f

After MC
W0 5d880829 1c5c3b15 3e5665d3 880841e0 K0 bec8c5c2 2c4d87d2 b85c5d3f 35e9aa09

W
′
0 e7560329 1c5c3b15 3e5665d3 880841e0

After AK
X1 e340cdeb 3011bcc7 860a38ec bde1ebe9

X
′
1 599ec6eb 3011bcc7 860a38ec bde1ebe9

After SB&SR
Z1 1182071e 0467e9e9 44f8bdc6 7a0965ce

Z
′
1 cb82071e 0467e9e9 44f8b4c6 7a0b65ce

After MC
W1 a619bf8a a1038a4b e0b58c1e 4409f065 K1 a264c454 8e294386 36751eb9 039cb4b0

W
′
1 09c365ff a1038a4b e9ae9e17 420df267

After AK
X2 047d7bde 2f2ac9cd d6c092a7 479544d5

X
′
2 aba7a1ab 2f2ac9cd dfdb80ae 419146d7

After SB&SR
Z2 f2e54f03 15ba1b1d f62a21bd a0ffdd5c

Z
′
2 62e5cd0e 15b95a62 9e8132bd 835cdde4

After MC
W2 87f18ca1 f94abea4 157c426b c0651a61 K2 78e9232f f6c060a9 c0b57e10 c329caa0

W
′
2 33f11492 c2f0be18 306ca76b c0a349cc

After AK
X3 ff18af8e 0f8ade0d d5c93c7b 034cd0c1

X
′
3 4b1837bd 3430deb1 f0d9d97b 038a836c

After SB&SR
Z3 167eeb78 76dd7019 032979d7 7bad1d21

Z
′
3 b3043550 1835ec7a 8c7e9ac8 7bad1d21

After MC
W3 3db42d5f f95e6005 d30dbae0 263c8f7f K3 d59dc301 235da3a8 e3e8ddb8 20c11718

W
′
3 14b42d5f f9276005 d30d9ee0 263c8f7f

After AK
X4 e829ee5e da03c3ad 30e56758 06fd9867

X
′
4 c129ee5e da7ac3ad 30e54358 06fd9867

After SB&SR
Z4 9b7b8585 57d94658 04542895 6fa52e6a

Z
′
4 78da1a85 57d94658 04542895 6fa52e6a

After MC
W4 a07c6559 c06cead6 4941a441 6e2628ee K4 bd6d6eb6 9e30cd1e 7dd810a6 5d1907be

W
′
4 1a7c0259 c06cead6 4941a441 6e2628ee

After AK
X5 1d110bef 5e5c27c8 3499b4e7 333f2f50

X
′
5 a7116cef 5e5c27c8 3499b4e7 333f2f50

After SB&SR
Z5 a44a8d53 58ee15df 18752be8 c382cc94 K5 49a8c0fa d7980de4 aa401d42 f7591afc

Z
′
5 5c4a8d53 58ee15df 187550e8 c382cc94

Ciphertext
C ede24da9 8f76183b b23536aa 34dbd668

C
′

15e24da9 8f76183b b2354daa 34dbd668

Hash output after feedback
H fe806ea8 7bdb68ad 75fb9034 d6bd90cd

H
′

fe806ea8 7bdb68ad 75fb9034 d6bd90cd

Table 4: Pair found by semi-free-start collision attack on 6-round AES-128
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7. Compute the first two columns w2[0, 4, 8, 12, 1, 5, 9, 13] = x3[0, 4, 8, 12, 1, 5, 9, 13]⊕
k{5,9,13,1,6,10,14,2}.

8. With known values for the two active columns of y2 and two deduced columns
of w2 in Step 7, all the unknown values for states y2 and w2 are known
by Property 1. Then, we deduce the last unknown key cells: k{7,11,15,3} =
x3[2, 6, 10, 14]⊕ w2[2, 6, 10, 14].

The probability of the outbound phase is 2−160. According to Equation 4,
l = 8 + 12 + 12 = 32, the time complexity is 32 · 2160/2+16/2/(7 × 16) = 286

7-round Saturnin-Hash.
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Fig. 16: Semi-free-start collision attack on 7-round Saturnin
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E The 10-round Differential Characteristic of
Saturinin-Hash

The 10-round rebound-attack trail on Saturnin-Hash is given in Figure 17. The
probability of the outbound phase is 2−12−59.8−16−59.8−64 = 2−211.6. Together
with a filter of 2−32 in the inbound phase, the total probability is 2−211.6−32 =
2−243.6.

F Figures on the Quantum Collision Attack on
SKINNY-128-384

The 21-round SKINNY-128-384 using the differential characteristic shown in Fig-
ure 18 in quantum setting.

The classical free-start collision attack and a 5-round inbound data pair of
19-round SKINNY-128-384 hash mode which are shown in Figure 19 and Figure
20 respectively. The source code to generate the data of Figure 20 is at https:
//www.dropbox.com/s/2n4d9zwufkpigqt/Find_inbound.7z

G Quantum Collision Attacks on Reduced Grøstl

In this section, we describe an example technique to bridge the differences
with the degree of freedom from the internal states. At FSE 2011, Jean et al.
[45] considered the inbound phase covering three rounds on Grøstl-256 and
Grøstl-512. Given input and output differences, Jean et al. built several ta-
bles for Super-Sboxes, and connect them with a guess-and-determine approach.
At EUROCRYPT 2020, Hosoyamada and Sasaki [39] proposed a memoryless
method to solve the 3-round inbound phase for the case like Grøstl-256 and
Whirlpool, where the Sboxes in the 3-round inbound phase are all active. For
the case Grøstl-512, the 3-round inbound phase is non-full-active, which means
we may have many degrees of freedom from the internal states to link the dif-
ferences.

Denote ‘V’ as the byte with known value and difference, and ‘D’ as the
byte with known difference but no value. Denote S[V] as the bytes of state S
marked by ‘V’, and S[D] as the bytes marked by ‘D’. We explain our tech-
nique with the problem shown in Figure 21 (a) as a start: given input values
(S1[0], S

′
1[0]) and (S1[1], S

′
1[1]), output differences ∆S3[0], ∆S3[2] (marked by

blue) and ∆S3[1, 3] = 0, the goal is to find a pair that conforms to the truncated
differential. Formally, the pair finding is equivalent with solving the following
nonlinear equation system:

SB(2S1[0]⊕ 3S1[1]⊕ S1[2]⊕ S1[3])⊕ SB(2S′
1[0]⊕ 3S′

1[1]⊕ S′
1[2]⊕ S′

1[3]) = ∆S3[0],

SB(S1[0]⊕ 2S1[1]⊕ S1[2]⊕ 3S1[3])⊕ SB(S′
1[0]⊕ 2S′

1[1]⊕ 3S′
1[2]⊕ S′

1[3]) = 0,

SB(S1[0]⊕ S1[1]⊕ 2S1[2]⊕ 3S1[3])⊕ SB(S′
1[0]⊕ S′

1[1]⊕ 2S′
1[2]⊕ 3S′

1[3]) = ∆S3[2],

SB(3S1[0]⊕ S1[1]⊕ S1[2]⊕ 2S1[3])⊕ SB(3S′
1[0]⊕ S′

1[1]⊕ 2S′
1[2]⊕ S′

1[3]) = 0,

(6)

https://www.dropbox.com/s/2n4d9zwufkpigqt/Find_inbound.7z
https://www.dropbox.com/s/2n4d9zwufkpigqt/Find_inbound.7z
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Fig. 17: Free-start collision attack on 10-round Saturnin-Hash

where the blue bytes are known, i.e., the equation system has 4 variables (they
act as the degrees of freedom) and four equations. Hence, it is expected to have
one solution on average. However, solving the nonlinear system directly is not
easy. The trivial way is to traverse the 4-byte (S1[2], S1[3], S

′
1[2], S

′
1[3]) and check
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Fig. 20: 5-round inbound phase of 19-round SKINNY-128-384: (a) Differences,
(b) Values

if the equation system holds, which comes with a time complexity of 232. Here,
we give an efficient method to deduce the red bytes from blue bytes, and find
the solution with time complexity 1:

1. With difference ∆S1[0, 1] and 2 inactive bytes in S2, all other byte differences
in both S1 and S2 can be deduced according to Property 1,

2. With ∆S2[0], and ∆S3[0], one value solution of (S2[0], S
′
2[0]) on average can

be found by looking up DDT, and similarly for (S2[2], S
′
2[2]),

3. With S2[0, 2] and S1[0, 1], all byte values of S1 and S2, and hence S3 are
determined, again by Property 1.
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Fig. 21: Connecting differences with DoF from internal states
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Property 3. For the case in Figure 21 (b) with known values S0[0] and S′
0[0],

known difference ∆S3[0, 2], and zero difference in ∆S3[1, 3], 4 equations with
6-bytes degree of freedom can be established, hence 216 solutions are expected
on average. We randomly guess the byte value S2[0], then S′

2[0] can be computed
as SB−1(SB(S2[0])⊕∆S3[0]). Together with 2 zero-difference bytes ∆S2[1, 3] and
known ∆S1[0], all differences ∆S1 and ∆S2 can be deducted, and so the value
S2[2] by looking up DDT with (∆S2[2], ∆S3[2]). The overall time complexity is 1.

Property 4. For the case in Figure 21 (c) with known values S0[0, 1] and S′
0[0, 1],

known difference ∆S3[2], and zero difference in ∆S3[0, 1, 3], 4 equations with
4-byte degrees of freedom can be established, and one solution is expected on
average. Since there are 5 input/output bytes of MC with known differences,
i.e., ∆S1[0, 1] and ∆S2[0, 1, 3], the system is over-defined and has solution with
probability 2−8 due to Property 1. Then, both byte difference and value of S2[2]
are determined. For each value of S2[0], all the values of S2 are determined,
and there are 28 possibilities of S2[0] leading to 28 solution pairs. Hence, for a
random given S1[V] and S3[D], it is expected to find 2−8 × 28 = 1 solution on
average. The average time complexity is 1.

Property 5. For the case in Figure 21 (d) with known values S0[0, 1] and S′
0[0, 1],

known difference ∆S3[0, 1, 2], and zero difference in ∆S3[3], 4 equations with 4-
byte degrees of freedom can be established, and one solution is expected on
average. We first guess one byte S2[0], the S′

2[0] is deduced as SB−1(SB(S2[0])⊕
∆S3[0]), and all difference bytes of ∆S2 including ∆S2[1, 2] are determined due
to knowledge of ∆S1[0, 1] and ∆S2[0, 3] together with Property 1. By looking
up DDT with (∆S2[1, 2], ∆S3[1, 2]), values S2[1, 2] are deduced. However, for
MC between S1 and S2, 5 input/output bytes are known now, i.e., S1[0, 1] and
S2[0, 1, 2], the system is over-defined and consistent with probability 2−8. Hence,
28×2−8 = 1 solution is expected with time complexity 1 per solution on average.

It is important to note that, other cases can be solved following a similar
way from one of the 4 cases above. An application to Grøstl-512 hash function
solves a 3-round inbound phase without qRAM.

We describe the steps solving the 3-round inbound phase in a more detailed
way in Figure 22, 23 and 24. The first SH and last SH and MB are omitted. Let
S(i)[j] be the jth byte of the ith column for state S. For given ∆S1 and ∆S7,
as shown in Figure 22, in Step 1, we first guess the 32-byte (2256) values S6[V].
With ∆S7, deduce S

′
6[V]. We introduce Algorithm 9 to find the conforming pair.

Complexity. The time complexity of Algorithm 9 is about 28×32−3×8+9×8 =
2304. Given (∆S1, ∆S7), it is expected to find 2256−24+72−8×4−16×2−240 = 1
conforming pair with 216 memory cost to store DDT. At FSE 2012, Jean et al’s [45]
solved the 3-round inbound with time complexity 2280 and memory complexity
264. Our algorithm is very friendly to quantum implementation without qRAM
together with Property 2, since Grøstl adopts the same Sbox with AES.
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Algorithm 9: Deduing the conforming pair with given (∆S1, ∆S7)

1 for S6[V] ∈ F8×32
2 in Figure 22 (Step 1) do

2 Compute backward to S3.

3 if (∆S
(3)
2 ,∆S

(3)
3 ), (∆S

(4)
2 ,∆S

(4)
3 ), (∆S

(6)
2 ,∆S

(6)
3 ) satisfy Pro. 1 then

4 In Figure 22 (Step 1): Deduce S
(2)
3 [D] with 2-byte S

(2)
3 [V] and 6

nonactive bytes S
(2)
2 by Property 1. Together with ∆S1, deduce

S
(2)
2 [V]; Similarly, deduce S

(3,5,7)
2 [V], S

(3)
3 [D] and S

(5,7)
3 [V]

5 for (S
(4)
2 [0], S

(6)
2 [0], S

(3)
2 [0], S

(2)
2 [0], S

(1)
2 [0], S

(15)
6 [0], S

(0)
2 [0], S

(14)
6 [0],

S
(15)
2 [0]) ∈ F8×9

2 do

6 In Figure 22 (Step 1): Deduce S
(4,6)
3 [V] with guessed

(S
(4)
2 [0], S

(6)
2 [0]); Deduce S

(15)
5 [D], S

(15)
6 [D] with 2-byte S

(15)
5 [V]

and 6 inactive bytes in S
(15)
6 ; Deduce S

(0)
5 [D] and S

(0)
5 [V]

7 In Figure 22 (Step 2): Deduce S3[V] and S4[V] by DDT; Deduce

S
(0)
5 [V], S

(0)
6 [V] by Properyty 1; Deduce S

(1)
3 [D], S

(1)
2 [V] by

S
(1)
3 [0, 1] and 6 inactivey bytes in S

(1)
2

8 In Figure 22 (Step 3): Deduce S3[V], S4[V] by DDT; Deduce S2[V]

and S3[V] with guessed S
(3)
2 [0]; Deduce S5[D] and S6[V]

9 In Figure 22 (Step 4): Deduce S3[V] and S4[V]; Deduce S2[V],

S3[V] with guessed S
(2)
2 [0]; Deduce S5[D], S6[V]

10 In Figure 22 (Step 5): Deduce S3[V]; Deduce S2[V], S3[V] with

guessed S
(1)
2 [0]; Deduce S5[D], S6[V]

11 In Figure 22 (Step 6): Deduce S5[V], S6[V] with guessed S15
6 [0];

Deduce S2[V], S3[D]with guessed S
(0)
2 [0]

12 In Figure 23 (Step 7): Deduce S3[V], S4[V] with DDT; Deduce
S3[V] with MB;

13 In Figure 23 (Step 8): Deduce S5[V], S6[V] with gessed S
(14)
6 [0];

Deduce all the differences in ∆S
(15)
2 and ∆S

(15)
3 with known bytes

S
(15)
3 [0, 1, 7] and the guessed S

(15)
2 [0]; Deduce S

(15)
3 [2, 3] with

DDT; Deduce all values of this column with 5 known bytes
S

(15)
3 [0, 1, 2, 3, 7] and 4 known bytes S

(15)
2 [0, 1, 6, 7] (a filter of 2−8)

14 In Figure 23 (Step 9): The red bytes in S4 are deduced in Step 8;
With the red and blue bytes, deduce S5[V], S6[V]

15 In Figure 23 (Step 10 ): with 4-byte S
(14)
3 [V] and 5 inactive bytes

S
(14)
3 , we first deduce all the differences of the same column,

which is a filter of 2−8; Then, with deduced difference ∆S
(14)
3 [1]

and known ∆S
(14)
4 [1], get the value S

(14)
3 [1] by DDT; With values

S
(14)
3 [0, 1, 2, 3, 7] and S

(14)
2 [0, 1, 2], deduce bytes marked by red

16 In Figure 24 (Step 11): Deduce S5[V], S6[V]; Deduce S
(10)
5 [D] with

4 S
(10)
5 [V] and 5 inactive bytes in S

(10)
6 , which is also

a filter of 2−8; Deduce S2[V] and S3[V]
17 In Figure 24 (Step 12): Deduce S4[V] from S3, where the known

∆S
(13)
4 [3] acts as a filter of 2−8; Deduce S5[V] and S6[V]

18 In Figure 24 (Step 13): We deduce S4[V] from S5 of Step 12;
Deduce S2[V], S3[V] from the blue and red bytes (a filter of 2−16 )

19 In Figure 24 (Step 14): Deduce S5[V], S6[V] with Property 5;
Deduce S2[V], S3[V] (a filter of 2−16)

20 In Figure 24 (Step 15): Deduce S5[V], S6[V]; Deduce the last three

bytes S
(9)
3 [3], S

(10)
3 [4], S

(11)
3 [5]. Building similar equations to

Equation (6), we deduce the filter in this step is
2−16−16−48−48−48−64 = 2−240
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G.1 Finding the Conforming Pair in Quantum Way

Given (∆S1, ∆S7), we convert Algorithm 9 into a quantum one. We use the
quantum amplitude amplification algorithm. For Line 1 to Line 3 in Figure 22
(Step 1), we define g : F256

2 7→ F2 as g(∆S1, ∆S7;x), where x = S6[V] ∈ F256
2 .

g(∆S1, ∆S7;x) = 1 if and only if (∆S1, ∆S7;x) satisfy the condition in Line

3, i.e., check if the computed (∆S
(3)
2 , ∆S

(3)
3 ), (∆S

(4)
2 , ∆S

(4)
3 ) and (∆S

(6)
2 , ∆S

(6)
3 )

satisfy Property 1, where the probability is 2−24. Let T(∆S1,∆S7) := {x : x ∈
F256
2 , g(∆S1, ∆S2;x) = 1}, whose size is |T(∆S1,∆S7)| = 2256−24 = 2232. Then, A

is to apply Grover’s algorithm to g(∆S1, ∆S7; ·) to produce the superposition

state |ϕ⟩ =
∑

x∈T(∆S1,∆S7)
|x⟩. Hence, the time complexity |A|RT ≈

√
224 = 212.

The projector P is to identify the good state |x⟩, such that it leads to a good

pair conforming to (∆S1, ∆S7). Given |x⟩, we traverse (S
(4)
2 [0], S

(6)
2 [0], S

(3)
2 [0],

S
(2)
2 [0], S

(1)
2 [0], S

(15)
6 [0], S

(0)
2 [0], S

(14)
6 [0], S

(15)
2 [0]) ∈ F72

2 in Line 5 of Algorithm 9
to check if |x⟩ leads to the good pair. We define f : F72

2 7→ F2 as f(∆S1, ∆S7, x; y),

where y = (S
(4)
2 [0], S

(6)
2 [0], S

(3)
2 [0], S

(2)
2 [0], S

(1)
2 [0], S

(15)
6 [0], S

(0)
2 [0], S

(14)
6 [0], S

(15)
2 [0]) ∈

F72
2 . f(∆S1, ∆S7, x; y) = 1 if and only if (∆S1, ∆S7, x; y) leads to a good pair.

The quantum oracle UP of the projector P is to apply Grover’s algorithm to
f(∆S1, ∆S7, x; ·) to find the good one. The complexity |UP |RT ≈

√
272 = 236.

In the superpostion |ϕ⟩ =
∑

x∈T(∆S1,∆S2)
|x⟩ derived by applying A, the am-

plitude α of the good |x⟩ that leads to a good pair conforming (∆S1, ∆S2)
is 2−232. Hence, according to Equation (2), the totall complexity of is about√
2232 · (212 + 236) ≈ 2152.

If we convert Jean et al.’s method [45] into a quantum one, a 264 qRAM
will be needed with time complexity of 2140. In the Time × Space scenario, our
method reduces the overal complexity by 2140+64−152 = 252, which essentially
makes our quantum semi-free-start collision on 7-round Grøstl-512 possible.

G.2 7-round Quantum Semi-free Start Collision Attack

As shown in Figure 25, we perform the rebound attacks in both P and Q per-
mutations. In P permutation, the 3-round inbound phase covers P2 to P5. The
outbound phase includes P2 to P0 and P5 to P7, whose probability is 2−112.
Given (∆P2, ∆P5) ∈ F64+64

2 , let F : F128
2 7→ F2. FP (∆P2, ∆P5) = 1 if and

only if the pair generated by solving the 3-round inbound part with given
(∆P2, ∆P5) satisfies the outbound part. Applying Grover’s algorithm to FP (·),
we get the superposition |ρ⟩ =

∑
FP (∆P2,∆P5)=1 |∆P2, ∆P5⟩. The time com-

plexity is about
√
2112 · 2152 = 2208. Similarly, we define function FQ and get

|σ⟩ =
∑

FQ(∆Q2,∆Q5)=1 |∆Q2, ∆Q5⟩ with time 2208.

We perform the amplitude amplification algorithm. Let A send the |0⟩ to
|ρ⟩⊗ |σ⟩. With the above analysis, we know |A|RT ≈ 2208. The unitary operator
UP check if |∆P2, ∆P5⟩ ⊗ |∆Q2, ∆Q5⟩ produce a semi-free start collision, whose
probability is 2−16. |UP |RT ≈ 1. Hence, the total time is

√
16 · (2208 +1) ≈ 2214.
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G.3 Quantum Semi-free Start Collision Attack on 8-round
Grøstl-512 v0

Similarly, we build quantum semi-free start collision attack on 8-round Grøstl-
512 v0. As shown in Figure 26, the probability of the outbound phase is also
2−112. Hence, |A|RT is also 2208. However, after generating |ρ⟩ ⊗ |σ⟩, the prob-
ability of ∆Q0 = ∆P0 and ∆Q8 = ∆P8 is 2−72. Hence, the total complexity is√
272 · (2208 + 1) = 2244.
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