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Abstract

The performance of Side-Channel Attacks (SCAs) decays rapidly when considering
more sub-keys, making the full-key recovery a very challenging problem. Limited to inde-
pendent collision information utilization, collision attacks establish the relationship among
sub-keys but do not significantly slow down this trend. To solve it, we first exploit the sam-
ples from the previously attacked S-boxes to assist attacks on the targeted S-box under an
assumption that similar leakage occurs in program loop or code reuse scenarios. The later
considered S-boxes are easier to be recovered since more samples participate in this assist
attack, which results in the “snowball” effect. We name this scheme as Snowball, which
significantly slows down the attenuation rate of attack performance. We further introduce
confusion coefficient into the collision attack to construct collision confusion coefficient, and
deduce its relationship with correlation coefficient. Based on this relationship, we give two
optimizations on our Snowball exploiting the “values” information and “rankings” infor-
mation of collision correlation coefficients named Least Deviation from Pearson correlation
coefficient (PLD) and Least Deviation from confusion coefficient (CLD). Experiments show
that the above optimizations significantly improve the performance of our Snowball.
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1 Introduction

Secret information will unintentionally leak through side-channels such as execution time [13],
power consumption [16,26], electromagnetic radiation [8] and cache patterns [17–19] when cryp-
tographic algorithms are executed on devices. By collecting these side-channel informations and
performing SCAs, many cryptographic systems in real world have been successfully conquered,
which makes SCAs attract wide attentions. Power side-channel attacks are the most popular
one of them in these years, and they can be launched in two models: divide-and-conquer (e.g.,
Correlation Power Analysis (CPA) [4] and Template Attack (TA) [6]) and analytical (e.g., col-
lision attacks [20]). For the former, they divide the full key into small blocks (e.g., sub-keys in
AES-128) and conquer them one by one, then exploit key enumeration tools [11,15,22] to enu-
merate the full-key candidates from the most possible one to the least possible one. However,
they are still limited by the computing power of the attacker, and can only be exploited in the
scenarios that cryptographic implementations are “practically insecure” (for which the leakage
allows for key enumeration).

In this paper, we aim at side-channel full-key recovery and we are interested in the analytical
collision attacks [14] considering all sub-keys simultaneously by solving a system of equations,
since they exploit more leaky information and are more efficient than divide-and-conquer attack-
s. However, they are also more complex and the probability of successful attack (i.e., Success
Rate [25]) will be significantly pulled down when attacking more sub-keys simultaneously. Re-
lated works will be introduced in the next subsection before introducing our contributions on
solving the above problems.

1.1 Related Works

Benefiting from the repeated operations (e.g., program loop and code reuse) in the crypto-
graphic implementations, the hardware generates very similar side-channel leakages. Unlike
the divide-and-conquer attacks exploiting direct leakages, side-channel collision attacks exploit
these collision leakages and achieve a higher performance. This advantage was firstly taken
in [24] on DES and then taken in [23] on AES to identify the same inputs of S-boxes in the
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same encryption or decryption by comparing the similarity of leakage samples. Therefore, side-
channel collision attacks circumvent the modeling issue, i.e., they are non-profiled attacks. To
exploit more leakage information, Bogdanov et al. extended this to different encryptions or
decryptions in [1, 2].

Although taking advantage of non-profiled attacks and circumventing the modeling issue,
the above mentioned side-channel collision attacks cannot be exploited in the protected imple-
mentations like masking, since the intermediate values are masked and their correlation with
the leakages is hidden in this case. However, for some flawed masking implementation like
the flawed first-order Rotated S-boxes Masking (RSM) [21] scheme implemented by the DPA
contest v4.11, first-order leakage still exists. Moradi et al. extracted the leakage samples for
each possible plaintext byte value, then averaged them to estimate their mean moments to
de-noise in [20]. They then performed Correlation-Enhanced Collision Attack (abbreviated as
CECA here) using Pearson correlation coefficient on the XORed value of each two sub-keys,
and successfully detected the leakage. Although the original target of CECA is to detect flawed
masking implementations, its performance is still limited by its inefficient use of leakage infor-
mation and could be further improved.

Bruneau et al. combined the flavours of stochastic and collision attacks and provided the
stochastic collision attack in [5], which exploited scalar product scores to measure the similarity
of leakages and extended this to multi-collision cases. Cezary et al. proposed a strategy named
optimal collision attack based on the maximum likelihood principle [10], and combined an
additional key searching algorithm. Wiemers et al. also exploited a key searching algorithm
after the classic CECA to enhance the full-key recovery in [27]. They extracted a part of the
best collision candidates and discarded the remaining most combinations unsatisfying the given
collision conditions, thus making the key recovery easier. However, if we only consider the
performance of key recovery from distinguishers (i.e., without consideration on the combined
key searching algorithms), the above two collision attacks achieve a close performance but lower
than stochastic collision attack.

It’s obviously that the above works have made great efforts and gained remarkable progress
on side-channel collision attacks. However, their performance may still be insufficient when
facing with very huge candidate space in full-key recovery. More efficient collision-based full-
key recovery schemes are worth studying.

1.2 Our Contributions

Most of the existing side-channel full-key recovery schemes ignore the information reusability of
samples corresponding to different S-boxes due to the repeated operations (e.g., program loop
and code reuse) in the cryptographic implementations, which causes the attack performance
to decay rapidly when considering more sub-keys and attracts wide attentions. We focus on
CECA in this paper and our main contributions on this issue are as follows:

(i) Unlike exploiting leakage samples only once in the previous attacks, we exploit the samples
from the previously attacked S-boxes to assist attacks on the targeted S-box under an
assumption that similar leakage occurs in the program loop or code reuse scenarios. The
later an sub-key is considered, the more gentle the attenuation trend of attack performance
on it, and the “snowball” effect happens in this case. We name this full-key recovery
scheme as Snowball.

1DPA Contest. http://www.dpacontest.org/home/

3



Snowball Jiangshan Long et al.

(ii) We introduce the confusion coefficient into side-channel collision attacks to analyse their
mathematical properties, and build the collision confusion coefficient suitable for collision
attacks.

(iii) We deduce the relationship between collision confusion coefficient and collision correlation
coefficient, and propose two optimizations to improve our Snowball. Our first optimization
named PLD exploits all collision correlation coefficients to identify their “values” deviation
caused by noise rather than only one or several best candidates of them in the previous
attacks, and restores their “false” descending order in the noise scenarios to the one
without noise. Our second optimization named CLD exploits the “rankings” deviation of
collision correlation coefficients rather than “values” deviation to analyze the similarity of
the correlation coefficient with or without noise.

Our Snowball is very simple, and it brings us a new road for efficient full-key recovery. Our
experimental results fully illustrate its superiority.

1.3 Organization

The rest of this paper is organized as follows: side-channel leakage, collision attack, CECA and
optimal collision attack are introduced in Section 2. Our Snowball including its collision model,
principle and algorithm description are detailed in Section 3. Collision confusion coefficient and
its relationship with collision (Pearson) correlation coefficient are given in Section 4. Based on
this, our two optimizations PLD and CLD exploiting the “values” information and “rankings”
information of collision correlation coefficients are further detailed in Section 5. Experiments
on simulated samples and an ATmega328p micro-controller are presented in Section 6 to illus-
trate the superiority of our Snowball and its optimizations. Finally, we conclude this paper in
Section 7.

2 Preliminaries

2.1 Side-Channel Leakage

Let n denote the input size of the S-box (e.g. n = 8 for AES-128), L denote the number of
S-boxes in each round (e.g. L = 16 for AES-128), k∗(l) denote the l-th sub-key, k(l) denote
the corresponding guessing value (l = 1, 2, . . . , L), Q denote the number of plaintexts totally

encrypted, t
(l)
q denote the l-th block of the q-th encrypted plaintext and x

(l)
q denote the cor-

responding leakage (q = 1, 2, . . . , Q). Here an identical leakage model can be expressed as:

x(l)
q = ψ

(
t(l)q ⊕ k∗(l)

)
+ N(l)

q , (1)

and abbreviated to:
x(l)
q = ψ

t
(l)
q ,k∗(l)

+ N(l)
q . (2)

Here N(l)
q is the additive and independent noise component on the q-th trace with zero mean(

E
{
N

(l)
q

}
= 0
)

but not necessarily follows Gaussian distribution. ψ is a deterministic unknown

leakage function corresponding to the look-up table operation of S-boxes. x(·) is the matrix

with the q-th row corresponding to the L-variate leakage x
(1)
q , x

(2)
q , . . . , x

(L)
q . Both N(l)

q and ψ
are specific to physical characteristics of the underlying implementation of S-boxes. Therefore,
we do not make any particular assumption here, thus making our attack scenario general.
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2.2 Collision Attack

S-boxes are designed to be bijective and identical in the most cases (e.g. AES-128), and the
same input always generates the corresponding same output in this case. As a result, a collision
happens if two identical S-boxes encounter the same input:

t(l1)
q1 ⊕ k

∗(l1) = t(l2)
q2 ⊕ k

∗(l2), (3)

and we obtain the collision value:

δ∗(l1,l2) = k∗(l1) ⊕ k∗(l2)

= t(l1)
q1 ⊕ t

(l2)
q2

(4)

in this case (as shown in Figure 1). This collision causes very similar effect (e.g. power con-
sumption, electromagnetic radiation).

l

qt
l

k
l

qt
l

k

Figure 1: A collision happens if two S-boxes accept the same input and generate the same
output.

Collision attack judges collisions by comparing the similarity of leakages [3]. The classic
side-channel collision attack only exploits the collisions happening in the same encryption as
described in [5] (see Equation (11) given in [5]), which can be expressed as:

Dcoll = arg min
δ(l1,l2)∈F8

2

∑
q/t

(l1)
q ⊕t(l2)

q =δ(l1,l2)

(
x

(l1)
q − x(l2)

q

)2

∑
q/t

(l1)
q ⊕t(l2)

q =δ(l1,l2) 1
(5)

under a hypothesis δ(l1,l2) = t
(l1)
q ⊕ t(l2)

q = k(l1) ⊕ k(l2) (q = 1, 2, . . . , Q).

2.3 Correlation-Enhanced Collision Attack

Correlation-Enhanced Collision Attack (CECA) divides the leakage x
(l)
q (q = 1 . . . Q, l = 1 . . . L)

of each S-box according to plaintext byte values t
(l)
q , then averages them as:

τ (l)
u =

∑
q/t

(l)
q =u

x
(l)
q∑

q/t
(l)
q =u

1
(6)

according to their input values u-s. x(·) becomes a matrix of real numbers of dimension 2n×L
after performing average, where the q-th row corresponds to the leakage of the plaintext byte
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value q−1. CECA then correlates the l1-th S-box with the l2-th S-box under a guessing collision
value δ(l1,l2) and obtains:

Dcorr.coll = arg max
δ(l1,l2)∈F8

2

ρ
{(
τ

(l1)

u∈F8
2
, τ

(l2)

u⊕δ(l1,l2)

)}
. (7)

Here ρ {·} denotes the correlation coefficient computation. Wiemers et al. gave an ad-hoc
evaluation function on CECA as:

Dcorr.coll = arg max
δ∈(F8

2)L−1

∑
l1<l2

ρ
{(
τ

(l1)

u∈F8
2
, τ

(l2)

u⊕δ(l1,l2)

)}
(8)

in [27] for the full-key recovery.

2.4 Optimal Collision Attack

Cezary et al. gave a new attack named optimal collision attack as:

Dopt.coll = arg max
δ∈F8

2

∑
u∈F8

2

τ (l1)
u × τ (l2)

u⊕δ (9)

with strict theory proof in [10], which follows the maximum likelihood principle. Actually,∑
u∈F8

2
τ

(l1)
u × τ (l2)

u⊕δ is the cross multiplication term of two columns of the averaged power con-

sumptions according to plaintext byte values in CECA, which fully illustrates the relationship
between the optimal collision attack and CECA.

3 Our Snowball

3.1 Targeted Collision Sequence

There are 16∗15
2 = 120 different δ∗(l1,l2) (1 ≤ l1, l2 ≤ 16) for AES-128, but 15 collision values

such as δ∗(1,2), δ∗(2,3), . . ., δ∗(15,16) can provide us with all remaining δ∗-s. Since any δ∗(l1,l3)

can be deduced from δ∗(l1,l2)⊕ δ∗(l2,l3). We only need to enumerate a sub-key after determining
such a collision sequence, and the key entropy eventually reduces from 128 bits to 8 bits, which
can easily be enumerated and verified. Here the targeted collision sequence in our Snowball
can be δ∗(1,2), δ∗(1,3), . . ., δ∗(1,16), and the same analysis can be directly applied to any other
possible targeted sequences (e.g., δ∗(1,2), δ∗(2,3), . . ., δ∗(15,16)) in a straightforward way.

3.2 Core Idea

In previous works, collision attacks targeting at different δ∗(l1,l2) are conducted independent-
ly. In other words, the targeted collision sequence can be determined in an arbitrary order.
For simplicity, we suggest that collision attacks should be conducted on the targeted collision
sequence sequentially. The candidates of collision values δ∗(1,2), δ∗(1,3), . . ., δ∗(1,l−1) may be
known in attack since the previous attacks have already finished. Unfortunately, the samples
corresponding to these candidates of δ∗(1,2), δ∗(1,3), . . ., δ∗(1,l−1) are just left aside, and they
make no contribution to the current attack on the l-th S-box. On the other hand, if more than
one candidate are considered after each collision attack, how to combine them to recover the
full-key becomes another difficulty.
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S-boxes in AES-128 are designed and implemented to be identical and even share the same
implementation (e.g., code reuse) in some cases. Samples derived from different S-boxes follow
the same (or very similar) distribution in this case. Base on this assumption, we exploit the
samples from the previously attacked S-boxes to assist attacks on the targeted S-box, which
virtually increases the samples of the targeted S-box currently under attack, thus significantly
improving the attack performance. Moreover, the later an S-box is considered, the more obvious
this advantage is, since the errors happening on a very small part of the previous collision
values will not have a significant impact on its attack performance. Therefore, the performance
of the full-key recovery will not decrease significantly with more sub-keys being taken into
consideration, but maintain a high probability of successful key recovery and become more and
more gentle. Obviously, the “snowball” effect occurs in this case, and we name this full-key
recovery strategy as “Snowball”.

3.3 Algorithm Description

Let num denote the number of combinations we maintain in the window after attacks performed

on each S-box, Γ
lj
l1

denote the corresponding combinations containing collision candidates from

the l1-th to the lj-th sub-keys, Thr denote the number of candidates of δ∗(1,l) under consid-
eration and δ∗(1;2···l−1) denote a combination of (δ∗(1,2), . . . , δ∗(1,l−1)) including l − 2 δ-s. To

attack the δ∗(1,l) from the extracted num optimal candidates Γl−1
1 = ( δ

(1;2···l−1)
1 , δ

(1;2···l−1)
2 ,

. . ., δ
(1;2···l−1)
num ) within window. Our Snowball is given in Algorithm 1.

Algorithm 1: Snowball algorithm

Input: Averaged samples τ =
(
τ1, . . . , τ16

)
, the thresholds num and Thr, and Γ2

1 = Γ3
1

= . . . = Γ16
1 = φ.

Output: The full-key candidates Γ16
1 .

1 for δ(1,2) in Corr(τ (1), τ (2),Thr) do
2 Add δ(1,2) to Γ2

1;
3 end
4 Γ2

1=Top(Γ2
1, num);

5 for l from 3 to 16 do

6 for δ(1;2···l−1) in Γl−1
1 do

7 for u from 0 to 255 do

8 Compute τ δ
(1;2···l−1)

u ;
9 end

10 for δ(1,l) in Corr(τ δ
(1;2···l−1)

, τ (l),Thr) do
11 Add (δ(1;2···l−1), δ(1,l)) to Γl1;
12 end

13 end

14 Γl1=Top(Γl1, num);

15 end

To optimize the brute force, we can exploit CECA to obtain the rank of collision candidates
and the remaining Snowball only considers the best Thr collision candidates for each δ∗(1,l).
We first perform this to extract a total of Thr best candidates from δ∗(1,2) (Steps 1 ∼ 4), then
extract the best combinations in the window with a size of num and save them to Γ2

1 (Step 4).

7
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The thresholds Thr and num are very different in this case.

We further exploit the samples from the previously attacked S-boxes to assist attacks on the
targeted S-box, and virtually increase the samples in attacks. In other words, we reuse samples
of the prior S-boxes based on combinations in Γl−1

1 to deduce candidates of the targeted δ∗(1,l).
Specifically, we stack the samples of the first 2 · · · l− 1 S-boxes into the first S-box according to
the δ(1;2···l−1) in Γl−1

1 and calculate the mean according to their plaintext byte values as follows:

τ δ
(1;2···l−1)

u =

∑
q/t

(1)
q =u

x
(1)
q +

∑l−1
i=2

∑
q/t

(i)
q =u⊕δ(1,i) x

(i)
q∑

q/t
(1)
q =u

1 +
∑l−1
i=2

∑
q/t

(i)
q =u⊕δ(1,i) 1

(10)

(Steps 7 ∼ 9). These means can more accurately reflect the power consumptions of the same
inputs of S-box and become more referential if the guessing δ(1;2···l−1) is correct.

We then use τ δ
(1;2···l−1)

u to replace τ
(1)
u , perform the CECA on the δ∗(1,l) and save the new

combinations (δ(1;2···l−1), δ(1,l)) to Γl1 (Steps 10 ∼ 12). This assisted attack makes the new τ
(1)
u

better resistance to noise and the correlation coefficient corresponding to δ∗(1,l) more obvious
compared to the others. It is noteworthy that this reference will be no significant change if
errors happen on a very small part of δ-s, thus our Snowball is robust in this case.

Finally, we extract the optimal num combined candidates δ(1;2···l) from Γl1, update the
window and begin the next iteration. Obviously, more and more samples will participate
in the following assistance attacks, thus significantly facilitating the effectiveness. Benefiting
from this “snowball” effect, the later an S-box is considered, the higher attack performance it
achieves, and the more gentle the global performance is in this case. Therefore, our Snowball
usually maintains a high attack performance. Experiment results in Section 6 will show these
advantages in more details.

4 Collision Confusion Coefficient in Collision Attacks

4.1 Confusion Coefficient

Mathematical properties and physical implementation of an S-box determine its SCA-related
properties. Confusion coefficient given by Fei et al. in [9] quantifies correlation between different
sub-key values statistically and characterizes SCA-related properties of an S-box in theory. Let
k1 and k2 denote two candidates of an sub-key, the confusion coefficient between them can be
expressed as:

κ (k1, k2) = E
{

(ψk1,t − ψk2,t)
2
}
. (11)

Confusion coefficients are originally used in divide-and-conquer attacks (e.g. CPA) where each
S-box is attacked independently. A small confusion coefficient illustrates that two candidates
of an sub-key are ’close’ to each other, and they would perform similarly in attacks. In other
words, this makes it difficult to distinguish them in side-channel attacks.

4.2 Collision Confusion Coefficient

The mathematical properties of side-channel collision attacks were seldom discussed in the
previous works, here we extend the confusion coefficient to collision attacks, propose collision
confusion coefficient and try to fill this vacancy. Since t(l1) = t(l2) ⊕ δ will collide if δ = δ∗, the

8
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input of another S-box is extended to:

t(l2) ⊕ k∗(l2) =
(
k∗(l1) ⊕ δ∗

)
⊕
(
t(l1) ⊕ δ

)
=
(
k∗(l1) ⊕ t(l1)

)
⊕ (δ∗ ⊕ δ) .

(12)

Let ∆ ∈ F8
2 denote δ ⊕ δ∗. This deviation ∆ determines the effectiveness of the collision

attacks, thus we treat ∆ as the only parameter and extend the confusion coefficient to collision
confusion coefficient as:

κ (∆) =
1

256

∑
t(l1),t(l2)∈F8

2

(
ψk∗(l1),t(l1) − ψk∗(l2),t(l2)

)2
=

1

256

∑
t∈F8

2

(
ψk∗(l1),t − ψk∗(l1),t⊕∆

)2
.

(13)

Here we further use θ = k∗(l1) ⊕ t to simplify the Equation (13) as:

κ (∆) =
1

256

∑
θ∈F8

2

(ψ (θ)− ψ (θ ⊕∆))
2
. (14)

The above Equation (14) indicates that we can only consider ∆ instead of two sub-keys k∗(l1)

and k∗(l2). Here ∆ totally depends on the targeted δ∗ and guessing δ. From this perspective,
we believe our extension is much more suitable for side-channel collision attacks. It inspires
analyzing the mathematical properties of S-box from another aspect, which we will introduce
in detail in the next sub-section.

4.3 Relationship between Collision Correlation Coefficient and Colli-
sion Confusion Coefficient

In this section, we analyse the relationship between collision correlation coefficient and collision
confusion coefficient in theory, thus laying the theoretical foundation for our optimizations in
Section 5. For AES-128, for simplicity and without loss of generality, we regard ψ as the widely
used Hamming weights of the outputs of an S-box. In this case, ψ follows Bernoulli distribution:
ψ (θ) ∼ B

(
8, 1

2

)
. We extend Equation (14) as:

κ (∆) =E
[
ψ2 (θ)

]
+ E

[
ψ2 (θ ⊕∆)

]
− 2 ∗ E [ψ (θ)ψ (θ ⊕∆)] .

(15)

Here “E(·)” denotes the expectation operator. We obtain:

E
[
ψ2 (θ)

]
= E

[
ψ2 (θ ⊕∆)

]
= 18, (16)

and get:

E [ψ (θ)ψ (θ ⊕∆)] = 18− κ (∆)

2
. (17)

9
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Obviously, the relationship between correlation coefficient ρ and the deviation ∆ can be given
as:

ρ = 1− κ (∆)

4
. (18)

We can generate a bijective ∆-to-κ (∆) mapping table from Equation (18). This mapping is
determined by the mathematical properties of the S-box and is completely independent of the
specifical implementation. The larger collision correlation coefficients imply their corresponding
candidates being the δ∗-s with a larger probability. It’s noteworthy that ascending κ (∆) is
equivalent to descending correlation coefficients according to Equation (18). Therefore, we can
sort the ∆-to-κ (∆) mapping table by ascending κ (∆), and finally obtain a constant sequence
∆-s denoted as ∆ = (∆1, ∆2, . . ., ∆256) (as shown in Table 1). For better display, this sorted
∆-to-κ (∆) mapping table is also given in Figure 2.

∆ ∆1 ∆2 ∆3 ∆4 ∆5 · · · ∆255 ∆256

Value 0 62 202 22 184 · · · 63 245

Table 1: Constant sequence ∆ for AES-128.

1 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(
)

Figure 2: ∆-to-κ (∆) mapping table.

We can derive a sequence of candidates corresponding to the descending sequence of corre-
lation coefficients from ∆ in theory, and denote it as:

δ∗ = δ∗ ⊕
(
∆1,∆2, . . . ,∆256

)
.

The descending sequence of correlation coefficients ρ-s in theory (without noise) can be ex-
pressed as:

ρδ∗ = (ρδ∗⊕∆1 , ρδ∗⊕∆2 , . . . , ρδ∗⊕∆256)

=

(
1−

κ
(
∆1
)

4
, 1−

κ
(
∆2
)

4
, . . . , 1−

κ
(
∆256

)
4

)
,

10
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which is also a constant sequence as shown in Figure 3. Here we draw a conclusion on AES-
128 that collision confusion coefficients κ (∆) all fall between 3.25 and 4.92 with mean 4 and
variance 0.174 except κ

(
∆1
)

= 0 (i.e., δ = δ∗). Small variance implies relatively high security,
since it brings almost the same difficulty when attempting to distinguish the correct δ∗ from
any other candidates.

*  1 *  50 *  100 *  150 *  200 *  250

Sequence *

-1

-0.5

0
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1
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eq
u
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ce

 
*

Figure 3: Relationship between sequences ρδ∗ and δ∗.

5 Optimizations on Snowball

Noise will disturb the sequences ρδ∗ and δ∗ we introduced in Section 4. Let δ# =(
δ1, δ2, . . . , δ256

)
and their corresponding Pearson correlation coefficients ρδ# = (ρδ1 , ρδ2 , . . . , ρδ256)

denote the corresponding disordered sequences observed in noise scenarios. It becomes a chal-
lenging task to recover the unknown sequence δ∗ from its disordered version (i.e., sequence δ#).
However, δ∗ is determined once we successfully recover it, since sequence ∆ is constant and
known. To solve this, the previous works exploited a very straightforward strategy by directly
regarding the first element δ1 as δ∗. This wastes the information contained in other elements of
δ# and results in a relatively low performance. To compensate this, we give two novel optimiza-
tions named Least Deviation from Pearson correlation coefficient (PLD) and Least Deviation
from confusion coefficient (CLD) to overcome noise and make the recovery of the sequence δ∗

in our Snowball more efficiently.

5.1 Deviation from Sequence ρδ∗-s in PLD

The location of δ∗ (i.e., δ∗⊕∆1) in δ# in a collision attack is somewhat blurry in noise scenarios.
To address this, we search the sequence δ# from the beginning to end. It’s noteworthy that
one can balance the depth of search and time consumption according to his computing power.
We construct a new sequence δn with δn as its first element, and compare it with the δ∗

in noiseless scenario in Table 2. Obviously, δn is an re-ordered sequence of δ#. We can
turn it to collision correlation coefficients ρ-s, and re-sort the descending sequence ρδ# to

11
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ρδn = (ρδn⊕∆1 , ρδn⊕∆2 , . . . , ρδn⊕∆256) according to sequence δn. Our first optimization named
Least Deviation from Pearson correlation coefficient (PLD) aims to exploit the least deviation
between ρδ∗ and ρδn , which indicates the correct collision value.

δ∗ δ∗ ⊕∆1 δ∗ ⊕∆2 δ∗ ⊕∆3 · · · δ∗ ⊕∆256

δn δn ⊕∆1 δn ⊕∆2 δn ⊕∆3 · · · δn ⊕∆256

Table 2: Sequences δ∗ and δn.

In principle, deviations in our PLD between sequence δn and sequence δ∗ consist of two
parts:

(i) Deviation from noise. This is reflected in correlation coefficients thrashing around 1− κ(∆)
4

randomly, and is inevitable.

(ii) Deviation from assumption error. This additional part comes from the truth that δn 6= δ∗,
and ρδn we constructed is not the descending sequence ρδ∗ in noiseless scenario. This
second part of deviations provides valuable information for judgment.

In summary, if δn = δ∗ in our PLD, there only exists noise-induced deviation and we can infer
that the overall deviation is likely to be relatively small. Thus, we can distinguish δ∗ from other
candidates. Here we quantify the deviations as:

Φδn =

256∑
m=1

(ρδn⊕∆m − ρδ∗⊕∆m)
2

=

256∑
m=1

(
ρδn⊕∆m −

(
1− κ (∆m)

4

))2

,

(19)

and regard the δn corresponding to the minimum Φδn as the collision value δ∗.
For intuitive feeling of the noise-induced deviations in our PLD, we compare the sequence ρδ∗

under different noise levels with the constant sequence ρδ∗ in theory (i.e., noiseless scenarios)
in Figure 4. Here Q = 2000 samples are randomly generated from Equation (1), the orange line
represents sequence ρδ∗ in noisy scenarios and the blue line represents ρδ∗ in theory. Obviously,
the descending tendency of sequence ρδ∗ gradually disappears when the standard deviation σ
of noise is from 2 to 10, and ρδ∗ (ρδ∗⊕∆1) under σ = 8 and σ = 10 is even not the highest. In
spite of this, Φδ∗ is still almost smaller than others in these cases.

For the second part of deviations in our PLD from assumption error, we can accurately
quantify it. Specifically, let λ denote the deviation δ∗ ⊕ δn, it can be quantified as following:

Φλ =

256∑
m=1

((
1− κ (∆m ⊕ λ)

4

)
−
(

1− κ (∆m)

4

))2

. (20)

The smaller Φλ is, the less confidence we have on δn = δ∗. Here we generate a λ-to-Φλ mapping
table, and get another constant sequence λ =

(
λ1, λ2, . . . , λ256

)
after sorting Φλ in ascending

order. Based on this, puzzled candidate sequence is written as δp = δ∗ ⊕
(
λ1, λ2, . . . , λ256

)
.

Here δ∗⊕ λ1 equals to δ∗, δ∗⊕ λ2 is the most puzzled candidate, δ∗⊕ λ3 is the next and so on.
A part of the constant sequence λ is given in Table 3, and the sorted λ-to-Φλ mapping table

12
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Figure 4: Sequence ρδ∗ under different noise levels.

is given in Figure 5. Obviously, all Φλ-s fall between 3.2764 and 7.8094 with mean µ = 5.5557
and variance σ2 = 0.8824 except Φλ1 corresponding to the correct assumption.

λ λ1 λ2 λ3 λ4 λ5 · · · λ255 λ256

Value 0 62 156 184 202 · · · 167 245

Table 3: Constant sequence λ for AES-128.

The sequence ∆ and sequence λ look similar. To illustrate their difference, we use sequence
λ to subtract sequence ∆, and a simple comparison of them is shown in Figure 6. It is obvious
that the difference rolls up and down around 0 randomly. Actually, these two sequences have
very different meanings and are suitable for different cases.

5.2 Deviation from Sequence ∆-s in CLD

The deviation in our PLD given in Section 5.1 exploits different ∆ in a specific order (of sequence
∆). Therefore, instead of relying on the specific order observed in noiseless scenario, one can
investigate in which exact order different ∆-s actually appear in noisy scenario. Similarly, we
can derive the following sequence ∆n =

(
∆1
n,∆

2
n, . . . ,∆

256
n

)
= δn⊕

(
δ1, δ2, . . . , δ256

)
under the

assumption that δn is the δ∗. In this case, sequence ∆n will be similar to sequence ∆ to some
extent if δn is actually the δ∗. To better quantify this similarity, we turn to their equivalent
sequences κ (∆) and κ (∆n). It is indisputable that sequence κ (∆n) is a reordered version of
sequence κ (∆). However, unlike the above sequences δn and δ∗, both sequences ∆ and ∆n

are known. Thus, our second optimization named CLD exploits the deviation between ∆n and
∆ to detect the collision value.
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Figure 5: λ-to-Φλ mapping table in our PLD.
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Figure 6: The difference of sequence λ subtracting sequence ∆.

Deviations in our CLD consist of two parts as well. The first part is inevitable and closely
associated with the deviation given in Section 5.1, for they both are noise-induced. The differ-
ence is that, instead of concerning exact thrashed value of every correlation coefficient in δ∗,
noise-induced deviations in this method concern thrashed order of δ∗(e.g. order of sequence
δ#), since each value of κ (∆) stays constant. The second part of deviations in our CLD is
caused by the assumption error that δn = δ∗. Both sequences ∆n we construct in noisy sce-
nario and the constant sequence ∆ are shown in Table 4. Noise-induced deviations in this
Table reflect as whether δm = δ∗ ⊕∆m (m = 1, 2, . . . , 256) (i.e., δ∗ discussed above in noiseless
scenario) in each column, and the second part reflects as whether δn = δ∗.

Figure 7 compares sequence κ (∆n) in different noise scenarios with the constant sequence
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∆ δ∗ ⊕
(
δ∗ ⊕∆1

)
δ∗ ⊕

(
δ∗ ⊕∆2

)
. . . δ∗ ⊕

(
δ∗ ⊕∆256

)
∆n δn ⊕ δ1 δn ⊕ δ2 . . . δn ⊕ δ256

Table 4: Sequences ∆ and ∆n.
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Figure 7: Sequence ∆n under different noise levels.

κ (∆) in noiseless scenario. Here the orange line represents sequence κ (∆n) and the blue
line represents sequence κ (∆). For ∆a (a = 1, 2, . . ., 256), deviations are caused by another
different ∆b (b = 1, 2, . . ., 256, and b 6= a) taking its position a and thus playing a role of ∆a

n in
sequence ∆n. The position of ∆1 is thrashed to 5 and 15 when σ = 8 and σ = 10, respectively.
We draw a conclusion that correlation coefficients thrash slightly in low noise scenarios and
their corresponding positions thrash in a small range as well. These positions thrash violently
in a larger range under large noise and enlarge deviations on the whole.

Following the above analysis, deviations from sequence ∆ in our CLD can be quantified by:

Pδn =

256∑
m=1

(κ (∆m)− κ (δn ⊕ δm))
2
. (21)

δm = δ∗ ⊕∆m is always satisfied in the noiseless cases. Hence, the second part of deviations is
quantified as:

Pλ =

256∑
m=1

(κ (∆m)− κ (λ⊕∆m))
2 (22)

This equation is essentially the same as Equation (20).
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6 Experimental Results

6.1 Simulated Experiments

Our first experiment is performed on the simulated samples of AES-128 generated from the
Equation (1), the standard deviation of noise σ is set to 7, 8 and 9, thus the corresponding
signal-to-noise ratio is about from 0.025 to 0.041, respectively. We exploit 2000 samples in each
repetition and perform a total of 500 repetitions in our experiment. The window num , which
indicates how many combinations of candidates we decide to keep after attack performed on
each sub-key, is set to 1 and 5. The corresponding results of the ad-hoc evaluation function
on CECA given by Wiemers et al. in [27], the optimal collision attack given by Cezary et
al. in [10], our original Snowball, PLD and CLD-optimized Snowball (labelled as SUM, OPT,
Sb ORI, Sb PLD and Sb CLD, respectively) are shown in Figure 8.
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Figure 8: Success rate under different noise levels and different window sizes num.

Key recovery in all side-channel attacks including collision attacks means that the combina-
tion of all sub-keys must be within the window currently under consideration. In other words,
the key recovery fails if any of them falls outside this window. Similarly, collision attacks tar-
geting at δ∗(1,l) are considered successful only if they derive the correct δ∗(1,n) from the correct
combination of candidates δ∗(1;2···l) =

(
δ∗(1,2), δ∗(1,3), . . . , δ∗(1,l−1)

)
given by the previous at-

tacks. Therefore, once an attack fails, all of its following attacks can be considered failures
at once. Since the combined candidates δ∗(1;2···16) =

(
δ∗(1,2), δ∗(1,3), . . . , δ∗(1,16)

)
is already

impossible to be within the window num under consideration.
Firstly, we take the single collision value δ∗(1,2) between the first two sub-keys as an

example, and compare the five attacks on a to illustrate the superiority of our Snowball and
its two optimizations PLD and CLD. The success rates of the ad-hoc evaluation function on
CECA given by Wiemers et al., the optimal collision attack and our Snowball shown in Figure 8
are always the same when attacking this collision δ∗(1,2), for they are all actually the original
CECA in this case. However, our Snowball optimized by CLD and PLD achieves the highest
success rates for attacks on this first collision value in all noisy scenarios. This experimental
result sufficiently verifies our previous analysis that the strategies of directly maintaining can-
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didates with the highest collision correlation coefficients are highly inefficient and inaccurate.
By applying our optimizations PLD and CLD on collision correlation coefficients computation,
we make use of information on all of them. The collision value δ∗(1,2) can be extracted out
with a significantly higher probability, resulting in the corresponding success rates climbing up
significantly.

We then compare the five attacks in full-key recovery to illustrate the superiority of our
Snowball and its two optimizations PLD and CLD. The descending tendencies of success rates
of our snowball and its two optimizations PLD and CLD become more and more gentle when
taking more sub-keys into consideration. This implicitly illustrates the significantly improved
accuracy due to the “snowball” effect we design when concentrating the samples of the previous
S-boxes to assist attacks on the targeted S-box. It is noteworthy that the optimal collision attack
always achieves the same performance as our original Snowball scheme under different scenarios
and windows, implying the “optimization” as well. However, the success rates of the ad-hoc
evaluation function on CECA given by Wiemers et al. are significantly lower than our Snowball
and its two optimizations PLD and CLD after the second collision value δ∗(1,3). Moreover, it
decays sharply. We draw a conclusion that the “snowball” effect makes our schemes more
advantageous.

6.2 Experiments on an ATmega328p Micro-controller

Our second experiment is performed on an ATmega328p micro-controller with a clock operating
frequency of 16 MHz. We implemented an AES-128 algorithm with the same S-box operations
(due to code reuse). We randomly encrypt 80, 000 plaintexts and use a WaveRunner 8104
oscilloscope to sample the power traces. The sampling rate is set to 1 GS/s. The leakages
of S-boxes are well aligned in this implementation. We perform CPA to extract a Point-Of-
Interest (POI) [7] for the first S-box with a correlation coefficient about 0.29. The samples of
the remaining 15 S-boxes are well aligned to this first one. We randomly extract 1000 power
traces, then compare the ad-hoc evaluation function on CECA given by Wiemers et al. in [27],
the optimal collision attack given by Cezary et al. in [10], our original Snowball, PLD and CLD-
optimized Snowball (labelled as SUM, OPT, Sb ORI, Sb PLD and Sb CLD, respectively) when
the window num is set to 1, 3, 5, 7, 9 and 11, respectively. We run a total of 500 repetitions
for each experiment, and the corresponding results are shown in Figure 9.

We take the single collision value δ∗(1,2) as an example and compare the five attacks,
conclusions similar to those given in Section 6.1 can be drawn. The success rates of the ad-hoc
evaluation function on CECA given by Wiemers et al., the optimal collision attack and our
Snowball in Figure 9 are the same since they all come from the original CECA. However, our
Snowball optimized by CLD and PLD achieves the success rates higher than the other attacks.
Moreover, PLD exploiting the “values” information are more precise than the “rankings” infor-
mation exploited in CLD, thus its performance is significantly better. Similar conclusions can
be drawn from Section 6.1. This fully illustrates the superiority of our Snowball and its two
optimizations PLD and CLD.

We then compare the five attacks in the full-key recovery scenarios. The experimental
results given in Figure 9 fully illustrate that it is far from enough for the ad-hoc evaluation
function on CECA given by Wiemers et al. and the optimal collision attack to accumulate
collision correlation coefficients and break the independence between sub-keys. Moreover, these
strategies result in a waste of valuable information from samples. To maintain the success
rates in full-key recovery when attacking the targeted S-box, we must exploit the samples
of the previous S-boxes to assist this attack. The descending tendencies of success rates of
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Figure 9: Success rate under different window sizes num.

our Snowball and its two optimizations PLD and CLD become more and more gentle when
considering more sub-keys. This fully illustrates the superiority of the “snowball” effect in
them.

It’s noteworthy that the optimal collision attack is the one most vulnerable to the window
num, which usually puts the correct candidates in a position to be considered with a high
priority. Therefore, its success rate increases significantly with window num. Our Snowball
and its optimization CLD usually push the collision values to the top, so their performance
growth is not so obvious when enlarging the window num. Our Snowball optimized by PLD
captures more detailed information from “values” of collision correlation coefficients, and its
performance is always the best.

7 Conclusions

To improve the performance of the existing side-channel full-key recovery schemes, we consid-
ered the similarity of samples of different S-boxes in the code reuse scenarios, exploited the
samples from the previously attacked S-boxes to assist attacks on the targeted S-box. This
brought us the “snowball” effect, and our Snowball achieved more gentle attenuation trend
performance when more S-boxes were under consideration. To further optimize our Snowball,
we extended confusion coefficient to collision confusion coefficient, and deduced its relationship
with collision correlation coefficient in CECA. Based on this theoretical relationship, We gave
two optimizations PLD and CLD exploiting the “values” and “rankings” information of colli-
sion correlation coefficients and collision confusion coefficients, respectively. Our experimental
results fully illustrated their superiority.

Our Snowball is very simple with strict theoretical proof, and we believe it brings us a new
road for efficient full-key recovery. Snowball has strong robustness, and one or several incor-
rectly guessed collision values will not significantly reduce its performance in full-key recovery.
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To further optimize it, we will first introduce a recognition mechanism in our future work to
theoretically analyze the impact of wrong collision values on Snowball and identify them. Sec-
ondly, we will design the corresponding fault-tolerant strategies so that they can enhance the
ability of our schemes to resist such errors. Thirdly, our Snowball’s security boundary is also
interesting, and we will explore it further and look forward to the “surprises” brought by it. Fi-
nally, our Snowball only depends on the confusion coefficient of distinguishers, and the authors
in [12] have provided the confusion coefficient expressions of many side-channel distinguishers,
this facilitates our attempt to extend snowball to them.
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