
A Post-Quantum Four-Party Outsourced
Authentication

Reza Ghasemi
Bu-Ali Sina University

Hamedan, Iran
Email: r.ghasemi@basu.ac.ir

Alptekin Küpçü
Koç University
İstanbul, Turkey

Email: akupcu@ku.edu.tr

Abstract—In this paper, for the first time, we consider a four-
party scenario, where a customer holding a smart card wants to
authenticate herself to a server, which employs a cloud database
to verify the customer. The customers initially register with the
manager. The manager outsources the processed registration data
to a cloud database. Then, the customer only interacts with the
server for authentication purposes. The server employs the help
of the cloud database during authentication. In addition to the
security of the authentication, privacy is another goal, where the
cloud should not learn which customer is interacting with which
server. We consider several different threat models and provide
secure and efficient generic solutions as well as a post-quantum
secure solution.

I. INTRODUCTION

Motivation: In the standard two-party authentication sce-
nario, there is a customer and a server that execute all parts
of registration and authentication. In this scenario, a customer
first registers with the server, then, at a later time, (s)he can
authenticate with the server through an authentication protocol.
This scenario should be repeated for any server that a user
wants to authenticate themselves. This incurs a high demand
for a local storage to store authentication parameters. Take
typical password-based authentication schemes as an example.
In these schemes, we need to store a password with regard
to any server, ends up with a long list of passwords whose
management would be hard. Not only do servers need a
large local storage to keep registered passwords, but also
customers should memorize their passwords with different
servers. Hence, management issue happens in both sides.

Quantum algorithms provide attackers with new means so
that some cryptosystems cannot resist against quantum attacks.
Therefore, not only should we be cautious of using current
authentication protocols, but also we should develop new
quantum resistant authentication protocols.

A naive solution to mentioned problems is a centralized
database that stores authentication parameters which are used
in the authentication stage. This can address management
problem but privacy concern arises. The privacy of users in
typical authentication protocols usually is violated since in
authentication process, it will be understood who is trying to
authenticate him/herself.

Above summary inclined us to propose a privacy-preserving
centralized password manager that can handle users authenti-
cation parameters and it is quantum resistance ensuring us

that the advent of quantum computers does not jeopardize the
stored password’s security.

Scenario: Consider a high security bank with multiple
branches. Customers can authenticate with any branch to reach
their accounts or bank safes. Essentially, we are considering
the offline case, where the customer is physically present,
trying to access the bank account or safe deposit box, and
hence the performance requirement is not real-time as in the
online case. The authentication procedure may be performed
while the customer is waiting for the teller to announce their
turn. To enable such access, the trivial solution would be to
employ two-party solutions. In that case, each branch needs
to keep a copy of the customer’s data and play the role
of the server in the authentication protocol. Unfortunately,
this solution has several shortcomings. Firstly, this imposes
high maintenance and security costs to a bank with many
branches. Secondly, this increases the attack surface. Thirdly,
if a branch updates a record, consistency issues should be
handled. Moreover, consider the case that the customers are
not just authenticating against several branches of a bank,
but against multiple rival banks using a government-regulated
customer database. Then, further privacy issues arise, such as
hiding “when which customer visits which bank”.

Three- and Four-Party Authentication: In this paper,
we consider three- and four-party scenarios. As in the two-
party case, the customer wants to authenticate with the server.
But, there is a third party, a cloud database, employed by
the server to facilitate authentication. In the bank branches
scenario above, the bank may create a cloud database such
that each branch has access to it. This cloud database enables
each branch to act as the server in the authentication protocol
with help from the cloud. Moreover, as in the multiple banks
scenario above, it is possible that there is a forth party, the
manager, who carries the duty of registering customers. In
the example above, the manager would be the government who
regulates the database. The three-party scenario was previously
partially studied (see below), whereas the four-party scenario
is introduced anew in this paper.

Privacy: Considering outsourcing authentication, the three-
party scenario was considered before, where previous works
proposed using a centralized database [1, 2, 3, 4]. The
identification and authentication processes are outsourced to
a centralized entity enjoying high computational power and

storage. Generally in these schemes, the extracted biometric or
genomic traits are passed to the centralized database. The main
issue related to such methods is that the database may infer
some information about the customers. Hence, this scenario is
only applicable when the database is fully trusted. Even when
the customer data is kept confidential, each time the customer
wants to authenticate, the database would be contacted, and
this may breach the privacy of the user, since the database
would learn when which customer uses which service(s). Con-
sider, for example, a high-ranking military officer obtaining
access. By simply obtaining the database logs from the cloud,
the enemy may infer the behavioral patterns of the high-
ranking officer and plan out their attack accordingly.

In our model, the database can be operated by a cloud
provider that offers databases with large storage and high com-
putational power at reduced costs, as well as high availability
and reliability. These companies are not thoroughly trusted.
Therefore, they cannot take on the role of the database in the
previous three-party authentication or identification solutions.
In this paper, we consider several threat models within our
three- and four-party model, where the cloud database is
not fully trusted, and provide both general and post-quantum
secure solutions protecting the privacy of the customers and
servers, as well as the security of the authentication.

A. Detailed Problem Statement

Our objective is to create a protocol (or rather, a framework
of protocols), where the authentication parameters of the cus-
tomers are accumulated securely in a cloud database in such
way that these confidential data are used for authentication
purposes. In other words, the customers, whose registration
information have been stored in the cloud database, can prove
to the servers that they belong to this dataset. The main
structure and the entities involved are illustrated in Figure 1.

Customer

Server

Cloud

Manager

Fig. 1: Proposed four-party structure consisting of four entities
Manager, Customer(s), Server(s) and Cloud.

In our four-party model, we have four different entities:
Cloud Database, Servers, Customers and a trusted Manager.
nolistsep,noitemsep

• Cloud: All data used in the authentication phase are
stored in a (shared) database during registration. The
stored data are confidential, and even the database itself
should not have direct access to the underlying data.
Moreover, customers’ and servers’ privacy against the

Server

Cloud

Manager

(a) Registration
Customer

Server
Cloud

(b) Authentication

Fig. 2: Entities’ communication in Authentication and Regis-
tration stages.

cloud should be protected so that the cloud does not learn
which customer gets service from which server when.

• Server(s): These are the entities that the customers want
to authenticate with so that they can get service. In a regu-
lar two-party authentication scenario, the database would
have been under the full control and trust of the server.
In our four-party model, the database is on the cloud,
and the server is a separate entity. During authentication,
the servers are allowed to contact the cloud database,
but we assume they do not have a full copy of the
database at hand, due to various reasons underlined in the
introduction (e.g., cost, central management, government
intervention).

• Customer(s): They are the end users who want to employ
the servers’ services. Therefore, they need to prove their
access rights to the servers. In our post-quantum secure
construction, we assume that the customers carry a smart
card to use during the authentication process. Therefore,
they can carry out some computation as well.

• Manager: As a trusted entity, the manager performs
the registration of the customers, and delivers the cor-
responding registration data to the cloud. Furthermore,
the manager provides the servers with the latest digest of
the stored records in the cloud. This is for preventing
the untrusted cloud from adding unauthorized records
or removing or modifying existing ones. The manager
needs to be trusted, since also in the existing (two-party)
authentication solutions, the registration phase must be
trusted [5]. Otherwise, any malicious user may already be
registered to the database, and hence discussing security
in the setting where the manager is adversarial becomes
obsolete.

Our model is comprised of two main stages: i) Registration,
and ii) Authentication (Figure 2). In the registration stage,
the customers register their information by interacting with
the manager. After processing the data, the database will
outsourced to the cloud, and the servers will be informed of the
digest by the manager. As in the previous works, it is assumed
that the registration is performed honestly [5, 6], since if a
malicious user manages to register, then there is no way to
prevent their login. The second stage is the authentication
process, where a customer tries to convince a server of its
authenticity. As illustrated, the manager is not involved, and
the customer only contacts the server, who gets help from

the cloud. This is because of efficiency and ease of use.
Eventually, the server is able to validate the claim of the
underlying customer (whether or not the customer belongs to
the cloud database).

Our four-party model also encompasses a three-party
model, where there is no manager, and hence the registration
goes through the server (or the cloud) instead. There is still
the cloud database for outsourcing purposes, and we still
have the same security and privacy requirements regarding the
cloud database. Similar three-party settings were previously
considered by several related works in the password-based
setting [5, 7, 6, 8].

Goals: For security and privacy, the solution should provide
the following protection (for game-based formalization of
these properties, see Section VI): nolistsep,noitemsep

• Completeness: Authorized customers (those registered to
the database) should be able to convince an honest server.

• Soundness: Unauthorized customers (those who are not
registered to the database) should not be able to convince
an honest server.

• Confidentiality: Confidential customer information must
be securely outsourced to the cloud database such that
even the cloud cannot obtain the underlying data.

• Hack-Resistance: If the database is stolen and the ad-
versary has a copy of the stored data, the attacker should
still not be able to impersonate a customer. Note that
confidentiality property above protects the customer data
against hackers, but it does not necessarily imply hack-
resistance.

• Non-impersonation: The servers must not be able to
impersonate a customer against other servers after in-
teracting with her. Note that in the standard two-party
setting, usually the servers are trusted. For example, in
the traditional password-based authentication, the servers
obtain a copy of the customer’s password. When the
same password is used elsewhere, such impersonation is
possible [9]. In our new model, we require this property
to protect the customer further.

• Privacy: The cloud should not be able to figure out
which customer tries to authenticate. Observe that since
we consider the authentication scenario, the server needs
to know which customer is authenticating. But, for the
sake of privacy of the customer, we would like to hide
this information from the cloud, as it does not “need
to know”. Privacy usually includes Unlinkability, which
says that the cloud should not be able to distinguish
multiple authentications by the same customer from that
of different customers.

• Non-replication: The servers should ideally not be able
to obtain a full copy of the database after interacting with
multiple customers (and the cloud). Ideally, the only thing
that the servers will understand is whether a customer is
an authorized person or not.

We point that not all of these properties may be neces-
sary in every scenario. Yet, we keep both our definitions

and framework as general and secure as possible so that it
can address as many scenarios as possible. Later on, when
we discuss our constructions’ details, we emphasize which
construction satisfies which security and privacy goals, and
sometimes even suggest modifications to our protocols such
that they can provide more (or fewer) goals with less (or better)
efficiency.

Adversarial Model: We consider different threat models
where parties can be semi-honest (they exactly follow the
protocol but try to infer additional information beyond what
has been defined in the protocol) or some of them can be fully
malicious. Since we consider an authentication scenario, we
assume that the customer is malicious and the server is semi-
honest during authentication (as otherwise a malicious server
can simply accept any authentication attempt). Moreover, as
the manager is only involved during the registration and the
registration needs to be trusted, the manager is assumed to be
honest. The cloud is semi-honest in the authentication stage,
but it collaborates with the malicious customers in the sense
that malicious customers can read the whole stored data and
possibly try adding unauthorized customers’ information to the
database. We leave handling a fully malicious cloud as future
work.

While we allow the adversary to also control the com-
munication channels, we do require that the server and the
cloud obtain the authentic values from the manager during
registration (via an authenticated channel or using digital
signatures). Moreover, when a customer contacts a server, we
assume a secure and server-authenticated channel (e.g., TLS)
is employed.

B. Contributions

In this paper, noitemsep,nolistsep

• we define three- and four-party authentication models,
where the three-party model was previously used by [5,
10, 11, 2, 12, 7, 13, 14, 3, 6, 15, 8, 16, 1, 17] with
limitations or under different settings, and the four-party
model is novel.

• we show how to convert any two-party authentication
solution to work under the three- or four-party model
generically with the help of oblivious transfer, preserving
the underlying security properties, and achieving even
further security goals such as privacy.

• we provide a lattice-based post-quantum secure specific
construction that achieves all our security goals against
a malicious customer, semi-honest server, and a semi-
honest cloud. In the proposed lattice based construction,
there is no need to use oblivious transfer to meet the ob-
jectives. We also experimentally evaluate the performance
of this solution.

• we provide game-based security definitions and reduction
proofs for our security goals (soundness, confidentiality,
hack-resistance, non-impersonation, and privacy), and
briefly discuss completeness and non-replication goals
that are obviously achieved by our construction.

II. RELATED WORKS

Password-based Authentication and Key Exchange: Pass-
words are the most commonly employed form of authenti-
cation. Unfortunately, in the two-party setting, they are vul-
nerable to many attacks, including offline dictionary attacks,
man-in-the-middle attacks, phishing, and honeypots [5]. In the
three-party setting, where the customer employs the help of a
cloud or a mobile device, solutions providing provable security
were proposed first by [5], and then improved to the multi-
party setting by [6]. In the related scenario, passwords may
be employed to create a shared key between the client and the
server [18, 19, 20]. This password-authenticated key exchange
setting was also analyzed in multi-party settings [7, 8].

Outsourced Authentication: Many existing schemes just
employ a trusted outsourcing scenario, where the query about
a customer is sent to the cloud, and the cloud decides on the
authentication result [12, 16, 10, 15, 14, 11]. These schemes
do not provide security or privacy guarantees against the cloud,
since it is assumed to be trusted, which is in contrast to our
case.

More privacy-aware solutions were also proposed. Some
solutions [2, 13, 17] employ fully- or somewhat-homomorphic
encryption schemes or secure multi-party computation tech-
niques [1]. Thus, they achieve good security but with large
cost. Another interesting idea is to employ tokens extracted
from the users’ traits [3]. It is possible that the tokens are
computed by the servers or the customers. But, even when
the customers generate the tokens, they are deterministic, and
hence the cloud would learn which user tries to authenticate
when, and therefore privacy cannot be provided.

III. PRELIMINARIES

Notation: 0l is used to depict a sequence of l concatenated
zeros and || denotes concatenation. Notice that for the sake of
simplicity, all vectors in this paper are vertical and transpose
notation is omitted.

Accumulators: An accumulator contains k items sum-
marized in a digest, and the holder of the digest can ask
(non-)membership queries [21, 22]. In return, a (constant
size) witness would be provided, and hence the answer of
the query is verifiable. Dynamic accumulators enable adding
or removing new items, while updating the digest and the
witnesses of the other items accordingly [23, 24].

For our purposes, an AccuGen(1λ, k) → (apk , ask) algo-
rithm generates the public-secret key-pair of the accumulator
with capacity k, where λ is a security parameter provided in
unary as input. Then, AccuAdd(apk , µ, itemtoadd)→ µ′ and
AccuDelete(apk , µ, itemtoremove)→ µ′ functions take the
public key and the current accumulator with its digest µ, add
or delete some item, and output the new digest, as well as
the updated witnesses for all the items (for our purposes, the
witnesses are part of the internal state and we do not explicitly
show in the AccuAdd and AccuDelete notation). Note that
the witnesses may be updated without the secret key. Finally,
an AccuV erify(apk , µ, item,wit) → 0/1 algorithm takes
the public key and the digest of the accumulator, the item

that is queried, and the witness wit , and outputs rejection or
acceptance.

Oblivious Transfer (OT): An oblivious transfer is a two-
party protocol, where there is a sender and a receiver [25, 26].
The sender holds s items, and the receiver usually has an
index 1 ≤ i ≤ s such that once the protocol is over, the
sender learns nothing about i, whereas the receiver learns item
i and nothing else. In particular, multiple executions of an
OT protocol are unlinkable; even when the same index i is
employed multiple times, the sender cannot detect this. Some
OT protocols allow i values to be any bit string (rather than
just consecutive integers) [27]. The important property is that
the i values are unique.

Secret Sharing: Secret sharing is a method to distribute
a confidential value among several participants by assigning
each party a share such that a predetermined authorized subset
of the participants are able to recover the original value
using their shares [28, 29]. One advantage of these schemes
is that they decrease data loss probability (when used with
proper parameters). In addition, the allotted shares do not leak
any information about the shared value, which prevents the
engaged parties from gaining meaningful information about
the shared value unless they constitute an authorized set
of participants. For our purposes, we will denote t-out-of-
n threshold secret sharing, where any t-size subset of the
n participants can reconstruct the original secret, with the
notation Share(secret, rand, t, n) → (share1, . . . , sharen).
A simple 2-out-of-2 secret sharing may be obtained easily as
share1 = rand and share2 = secret⊕ share1.

Lattice Based Identification: Lattice based cryptography
was introduced by Ajtai [30] in his seminal work. Proto-
cols that are based on hard Lattice problems resist quantum
attacks due to the fact that there is no known polynomial-
time quantum algorithm to break them, whereas factoring and
discrete logarithm problems are easy to break using quantum
computers [31].

Roughly speaking, a lattice of dimension n is an additive
subgroup of Rn. An important hard problem in a lattice
is the Shortest Independent Vectors Problem (SIVP), which
is currently intractable even by quantum computers. This
problem is defined as follows:

Definition 1. [32] Given a lattice L of dimension n, find n
shortest linearly independent vectors that constitute a basis
for the lattice.

Another problem, based on which we construct our
schemes, is the Small Integer Solution (SIS) problem below.

Definition 2. [33] SIS(A): Given a matrix A ∈ Zn×m
p , find two

different vectors z ̸= z′ ∈ Zm such that Az = Az′ mod p
and ∥z∥, ∥z′∥ ≤ 10m1.5.

Although the SIS problem is not a lattice problem, there is
a connection between the hardness of solving the SIS problem
and that of the SIVP problem:

Theorem 1. [33] For integer m = [4n log n] and some integer

p = Θ̃(n3), if there is a polynomial algorithm that can
solve the SIS problem for a given uniformly random matrix
A ∈ Zn×m

p , then the SIVP problem can be solved within a
polynomial factor of Õ(n2).

In other words, if appropriate parameters are chosen, then
solving the SIS problem is infeasible as long as there is no
polynomial solution for the SIVP problem.

Lyubashevsky proposed an identification protocol that is
secure under active attacks based on the SIS problem [33].
In his scheme, a party that holds a binary vector ω̃ can prove
that (s)he has access to ω̃ without leaking information about
ω̃, while the verifier just knows some matrix A and the vector
ω = Aω̃. Since we employ this protocol in our solutions, we
present Lyubashevsky’s scheme briefly in Appendix A.

IV. GENERIC OUTSOURCED AUTHENTICATION
SOLUTIONS

In this section, we show how to generically convert any
two-party authentication scheme to a three- or four-party
authentication scheme that meets our security objectives.

A. Three-Party Generic Construction

Remember that in the standard two-party authentication
setting, there is a customer and a server. During the registration
phase, the server learns some registration information about
the customer. During the authentication phase, the customer
proves that (s)he is a registered customer, which is verified
against the registration information previously recorded.

In our model, we want to provide three- and four-party
authentication. The third party is the cloud database, who
is now supposed to keep the registration information on
behalf of the server. The forth party is the manager, who is
trusted to register the customers. When there is no manager,
the registration should go through the server. For simplicity,
we first consider the three-party scenario without a trusted
manager. This may be useful, for example, when the database
is not shared, but the cloud is used for outsourcing purposes
(e.g., for computational efficiency or decreasing storage costs).

In the case where the servers and the cloud are considered
semi-honest, one may transform any secure two-party authen-
tication solution to the three-party case as follows:

1) The customer and the server run the registration protocol
of the two-party authentication technique. Assume that
the customer has an identifier number i (which can
be thought of as the unique username) and the server
obtains the registration information infoi. The server
then outsources the registration information infoi to the
cloud.1

2) When customer i wants to authenticate with the server,
the customer sends i to the server.

3) The server and the cloud run an oblivious transfer
protocol, where the server’s input is i and output is the
registration information infoi regarding the customer i.

1It is also possible that the customer registers with the cloud directly,
depending on the use case.

4) Now that the server knows the registration information
infoi of the customer i, the customer and the server run
the regular two-party authentication phase.

Security properties immediately follow from the security
of the underlying two-party authentication protocol. Thus,
this generic construction would have the same level of se-
curity as the underlying two-party solution. Specifically, com-
pleteness and soundness follows from the completeness and
soundness of the two-party solution. If the underlying two-
party protocol provides confidentiality, hack-resistance, and
non-impersonation, so does our three-party protocol. Finally,
privacy against the cloud during authentication immediately
follows from the oblivious transfer protocol. Therefore, we do
not provide a separate proof for this generic construction.

However, this scheme does not satisfy all of our aims. The
first point that needs to be considered is that in this solution,
the servers can obtain a copy of the database (thus non-
replication is not achieved). Moreover, in the case that a mali-
cious customer is able to insert fake records into the database,
the server would be easily fooled into accepting unauthorized
users. Thus, this solution only achieves soundness when the
customer and the cloud does not collude. These reasons give
us an incentive to create an advanced scheme that mitigates
the presented concerns.

B. Four-Party Generic Construction

We assumed both the cloud and the server are semi-honest
(while the customer is malicious) in the scenario above. Yet,
since we consider an outsourcing scenario, it is possible that
the cloud and the customer collude, and unauthorized customer
records may be added to the database. In that case, we need
to extend our generic construction as follows (see also Figure
3).

1) The customer registers through the manager in the four-
party setting. The manager updates the cloud database
with the registration information infoi of customer i.
We also keep an accumulator over the customer regis-
tration database, and the accumulator digest µ is updated
accordingly using the AccuAdd algorithm with each
new registration. The manager provides the server(s)
with the latest digest µ and the accumulator public key
apk .

2) As in the three-party construction, when customer i
wants to authenticate with the server, the customer first
sends i to the server.

3) The server and the cloud run an oblivious transfer
protocol as before. But in the extended version, for
the value i, the server learns not only the regis-
tration information infoi regarding the customer i,
but also the witness wit i associated with that infor-
mation. Upon receiving, the server immediately runs
AccuV erify(apk , µ, infoi,wit i) and continues to the
next step only when the verification succeeds. This
ensures that the registration information at the database
was not tampered with, and belongs to a legitimately
registered user.

a) Registration.

b) Authentication.

Fig. 3: Authentication and Registration stages of our Generic Construction. The registration goes through the manager in the
four-party setting, and the server in the three-party setting.

4) The customer and the server run the two-party authen-
tication phase.

At a high level, we require the cloud to keep an accumulator
over the registration information of each customer, where the
digest is known by the server(s). The reason we pick the accu-
mulator is that each witness in an accumulator is independent
of each other, and hence can be provided by the sender as
an additional value during the oblivious transfer. Thus, the
cloud database provides (infoi,wit i) pairs as input to the
oblivious transfer protocol, and the ith such pair would be
learned by the server (who acts as the receiver in the oblivious
transfer). Figure 3 visualizes the details of the registration and
authentication phases. Finally, note that a customer may de-
register (e.g., account deletion), in which case the manager
runs the AccuDelete function updating the cloud database,
and the server obtains the updated digest.

Discussion: Notice that, regarding the requirements that we
described in Section I-A, there are potential improvements that
one can obtain employing a tailored construction. The servers
(or the cloud database) must not be able to impersonate a
customer against other servers (non-impersonation). Moreover,
the proposed protocol must protect stored data, even when the

database is stolen (confidentiality and hack-resistance). Again,
these should be provided by the underlying protocol (e.g., [5]).

When the government sets up the shared database as the
trusted manager, the servers obtain the latest digest from the
government. Verifying the customer registration information
against the trusted digest ensures the provided information
by the cloud is authenticated. Together with the security of
the underlying two-party authentication protocol, this enables
completeness and soundness of our solution, even when a
malicious customer colludes with the semi-honest cloud and
tries to add unauthorized customer information to the database.
Oblivious transfer provides the privacy goal, including unlink-
ability.

Another goal is non-replication: The servers should not be
able to obtain a full copy of the database. This can be achieved
via several methods. One technique is to use keyword-based
oblivious transfer [27] and thus employ random customer
identifier numbers i (and limit servers’ attempts in trying to
guess the customer identifier numbers). For this to work, it is
assumed that the servers do not learn the customer identifiers
during registration (i.e., the registration either is performed
directly between the customer and the cloud database, or

through the trusted manager such as the government). Thus,
depending on the underlying two-party authentication protocol
employed, our generic four-party construction can achieve all
the security and privacy properties we aimed at.

A better method for non-replication that we employ in our
lattice-based construction is to retrieve a randomized response
from the cloud, such that different randomness is used for each
authentication attempt to prevent attacks. This way, one still
needs access to the cloud database in the four-party scenario,
and the cloud database is protected against replication by the
servers. The details are provided in the following section.

Efficiency: It is possible to improve the efficiency of both
of our generic constructions if the underlying application
scenario does not require privacy. Essentially, the schemes use
oblivious transfer for obtaining the privacy goal (including
unlinkability) to prevent the cloud from identifying which user
tries to authenticate herself/himself to a server. Therefore, in
the use case if the cloud is trusted or leaking which customer
performs the authentication is not important, the oblivious
transfer part can be omitted and the server can directly ask
the cloud for the stored data corresponding to customer i.
This will result in a significant increase in the efficiency of
the scheme, both at the server and the cloud.

V. LATTICE-BASED CONSTRUCTION

We present a lattice-based post-quantum secure construction
to prevent the servers from obtaining a copy of the whole
database, achieving non-replication in addition to all our other
security and privacy goals. This is done by ensuring that the
cloud sends randomized responses that prevent duplication
of the items in the database, and those responses cannot
be re-used securely for authentication purposes. Therefore,
servers cannot obtain the stored records and at the same time
the cloud will not identify which user is going through the
authentication process. In contrast to our generic four-party
construction, in this scheme, oblivious transfer is not required,
improving efficiency. In addition, the accumulator concept is
leveraged to make sure that an attacking cloud fails to add or
modify records in the database and play the role of a customer
to convince the server. These two aims seem contradictory
because the cloud provides the servers with randomized data
used in the authentication process, and, at the same time, it
should ensure the server of the soundness of the provided data.
We achieve these objectives by utilizing novel lattice concepts.

a) Setup.: We require a one-time trusted setup (i.e., run
by the manager).

Setup(1λ): gets security parameter 1λ and chooses a public
random matrix A of order n×m, where m = [4n log n] and
n = λ. Furthermore, a collision-resistant hash function H :
{0, 1}l×{0, 1}l → {0, 1}l is selected where l is equal to m/2.
In addition, it runs AccuGen(1λ, k) to obtain (apk , ask),
where k is an upper bound on the number of customers. The
manager published A,n,m, l, λ,H, apk publicly.

b) Registration.: Figure 4 summarizes the registration
stage.

Register(1λ, Gi): Suppose that the authentication informa-
tion regarding the ith customer is Gi. Assume that Share is
an algorithm which takes Gi ∈ {0, 1}l and creates a 2-out-of-
2 sharing of it outputting two binary vectors G′

i, G
′′
i ∈ {0, 1}l.

Consequently, neither G′
i nor G′′

i individually leaks informa-
tion about Gi. A simple algorithm for Share is,

Share(Gi,Ki, 2, 2)→ (G′
i, G

′′
i) = (Gi ⊕Ki,Ki)

where Ki is a random binary vector and will be stored in the
customers smart card. The value wit i is a witness generated
through the AccuAdd(apk , µ,A[0l||G′′

i]) → µ′ algorithm of
an accumulator scheme during the registration phase by the
manager. Then, the value SGi = (G′

i, A[0
l||G′′

i],wit i) is
passed to the cloud for storing in its database. The updated
digest µ′ is sent to the servers by the manager. Notice that
using this witness, the cloud is able to prove that A[0l||G′′

i]
belongs to the database.

The value of Ki is kept inside the smart card of the ith

customer so that each time the customer provides a sample Gi

for authentication, the same secret sharing can be re-performed
using Ki.The smart card also holds the system parameters
output by the Setup, namely A,n,m, l, λ,H , and is capable
of performing some computation on these values.

c) Authentication.: In this phase, a customer attempts
to prove that (s)he is a valid (registered) user. First, the
server retrieves some randomized information from the cloud
regarding the customer claiming (s)he is an authenticated
entity. Second, an interactive authentication protocol between
the server and the customer is executed to validate the claim.
Figure 5 summarizes the authentication stage.

For clarity of the presentation, assume that the ith cus-
tomer tries to interact with the server. At this stage, the
server retrieves information required for authenticating the ith

customer. But, one of our objectives is to prevent the server
from replicating the database. Therefore, the following steps
are executed by the three involved entities (see Figure 5 for
details):

1) The customer sends i to the server.
2) All entities jointly choose at random a binary vector Rd

[34, 35, 36].
3) For each record (G′

j , A[0
l||G′′

j],witj), the cloud com-
putes A[H(G′

j , Rd)||0l].
4) For each record, using Lyubashevsky’s protocol [33], the

cloud computes a non-interactive proof of knowledge
proofj that it has access to the H(G′

j , Rd)||0l.
5) Cloud sends all modified records

A[H(G′
j , Rd)||0l], A[0l||G′′

j],witj , proofj to the
server.

6) The server verifies that wit i is a valid
witness for A[0l||G′′

i] (verified via
AccuV erify(apk , µ,A[0l||G′′

i],wit i) using the latest
digest received from the manager). If valid, the server
also verifies the proof proofi that the cloud knows
H(G′

i, Rd)||0l corresponding to A[H(G′
i, Rd)||0l].

7) The customer proves its identity by demonstrating that
(s)he has H(G′

i, Rd)||G′′
i through the Lyubashevsky’s

Fig. 4: Registration stage of our Lattice-based Construction.

authentication protocol (Table III in Appendix A). No-
tice that the server has A[H(G′

i, Rd)||G′′
i] since

A[H(G′
i, Rd)||G′′

j] = A[H(G′
i, Rd)||0l] +A[0l||G′′

i].

Remark: Because Lyubashevsky’s authentication protocol
is a sigma protocol [37], it can be converted to a non-
interactive zero knowledge proof of knowledge protocol using
the Fiat Shamir heuristic [38] in the random oracle or com-
mon reference string models. The benefit of leveraging non-
interactive proofs in our scheme is two-fold. First, since the
cloud should not learn i, the cloud must add a non-interactive
proof that it has access to H(G′

i, Rd)||0l to each record. The
proof is then learned by the server without revealing i. Second,
in addition, the customer is able to prove its authenticity
through a non-interactive protocol. Consequently, using this
technique, we are able to decrease the required number of
transmission rounds, as seen in Figure 5, where the customer
sends the non-interactive proof together with its identifier i.
Therefore, as far as the customer is concerned, this results
in a non-interactive authentication protocol (similar to simply
sending the username and password). Thus, in the offline bank
verification scenario, the customer provides this information
to the teller via the smart card, and waits for the teller to
announce her turn. The authentication protocol runs in the
background while the customer is waiting. Finally, while it
may be possible to employ other lattice-based proofs, our
solution using the Lyubashevsky’s protocol is not black box:
we modify the solution to fit our needs employing secret
sharing over Gi.

Losing the smart card: The role of the smart card is storing
randomly generated numbers used in sharing phase within reg-
istration process. These numbers carry no information about
customers’ sensitive data. Consequently, losing smart card
does not endanger the security or privacy of the customers.
However, without smart cards, the customers cannot prove
their identity to the servers and have to go through registration
process and receive a new and valid smart card.

Modular Architecture: The proposed scheme is composed
of different parts that can be adjusted to increase efficiency
based on the requirements of the application that is considered.

Essentially, if privacy against the cloud is not a concern
in the use case, instead of preparing and sending proofs for
all the customers, the server can simply tell the value i to
the cloud, and the cloud can simply send the information
A[H(G′

i, Rd)||0l], A[0l||G′′
i] (together with the witness wit i

and the proof proofi) to the server. This will result in a
significant increase in the efficiency of the scheme, both at
the server and the cloud, and both in terms of communication
and computation. Communication is greatly reduced since only
one customer’s information would need to be sent between the
cloud and the server. Computation is also greatly reduced since
the cloud does not need to prepare one randomized record
and proof per customer, but only prepare them for a single
customer instead.

Moreover, if non-replication is not an important goal for
the considered application, then there is no need to compute
A[H(G′

i, Rd)||0l] for each record during the authentication
stage, which leads to another significant reduction in the
computational overhead of the cloud. This comes from the
fact that the cloud does not need to randomize the information
that is sent to the server to prevent the server from obtaining
a copy of the stored records.

Hence, if privacy and non-replication are not important
goals for the use case, then our protocol becomes an O(1)
solution instead of O(k), where k denotes the number of
registered customers in the database.

VI. SECURITY

We modify existing game-based security definitions (e.g.,
[5]) for the four-party setting and prove security of our lattice-
based construction via a formal reduction.

In developing a four-party outsourced authentication, we
considered the goals in Section I-A. Out of those, we refrain
from delving deep into completeness and non-replication, as
those are immediately obvious. Completeness is achieved via
the completeness of the Lyubashevsky’s protocol [33]. Non-
replication is easily achieved by the randomization of the
values, as Rd will be different at each authentication attempt,
and the A[H(G′

j , Rd)||0l] value cannot be re-used.
For the other properties, namely soundness, confidentiality,

hack-resistance, non-impersonation, and privacy, we provide
two games that cover these goals.

Fig. 5: Authentication stage of our Lattice-based Construction. Note that the proof can be sent by the customer immediately
once Rd is agreed upon, but its verification will be done the last by the server.

The first security game is Out AutAS,C,HR,NI(1
λ) dealing

with soundness, confidentiality, hack-resistance, and non-
impersonation features of a scheme. In this game, the
challenger plays the roles of the honest customers, an honest
server, and the trusted manager, whereas the adversary plays
the roles of the cloud, dishonest servers, and an unauthorized
customer.

Out AutAS,C,HR,NI(1
λ): nolistsep

1) The challenger runs Setup(1λ) as the manager and
shares the public output with the adversary.

2) The challenger registers k honest customers to the
database DB by running Register(1λ, G1, . . . , Gk) and
sends the database DB to the adversary.

3) Acting as a dishonest server, the adversary may ask the
challenger to authenticate with him as any honest user,
polynomially-many times.

4) The adversary tries to authenticate with the honest
server, controlled by the challenger.

5) The output of the experiment is “1” if the adversary
succeeds, and “0” otherwise.

The advantage of the adversary A in winning the game is,

AdvOut AutAS,C,HR,NI (1λ) = Pr[Out AutAS,C,HR,NI(1
λ) = 1].

Definition 3. A four-party authentication protocol pro-
vides soundness, confidentiality, hack-resistance and non-
impersonation if for every probabilistic polynomial time (PPT)
adversary A, there is a negligible function negl(.) such that,

AdvOut AutAS,C,HR,NI (1λ) ≤ negl(λ)

Observe that this single game covers soundness, confiden-
tiality, hack-resistance, and non-impersonation aspects of the
protocol, since it ensures that an unauthorized customer cannot
authenticate with an honest server, even when the cloud is

also dishonest and helping the customer. Moreover, it also
ensures that no one can impersonate an honest customer even
with access to the cloud database or access to dishonest
servers. Consider, for example, if the confidentiality was not
provided. Then, with access to the underlying authentication
data of a customer, the adversary could have authenticated
with the server, thereby winning the game with non-negligible
advantage. Similarly, if hack-resistance was not provided by
the protocol, the adversary could have authenticated with
the server, thereby winning the game with non-negligible
advantage. With access to the authentication attempts of
honest users against dishonest servers, if non-impersonation
was not provided by the protocol, the adversary could have
authenticated with the server, thereby winning the game with
non-negligible advantage. Lastly, soundness is also covered
since the adversary cannot authenticate with an honest server
as an unauthorized customer. Therefore, this single definition
is enough to cover all these security goals.

The second game Out AutAP (1
λ) is related to privacy

(including unlinkability), which determines whether the
cloud is able to understand (or link) which user is trying to
authenticate. In this game, the challenger plays the roles of
the trusted manager, two honest customers, and an honest
server, whereas the adversary plays the role of the cloud.
Observe that since the server needs to know which customer
is accessing its services, once the server and the cloud are
both under the control of the adversary, no privacy can be
provided. Therefore, in this game, the adversary only controls
the cloud but not the server.

Out AutAP (1
λ): nolistsep

1) The challenger runs Setup(1λ) as the trusted manager
and shares the public output with the adversary.

2) The challenger registers two customers at the database

DB by running Register(1λ, G0, G1) and gives the
DB to the adversary.

3) The adversary may specify any customers and ask
the challenger to authenticate as that customers,
polynomially-many times. While the challenger inter-
nally simulates both the customer and the server, when-
ever the server needs data from the cloud, the challenger
interacts with the adversary.

4) The challenger randomly chooses a bit b ← {0, 1}
and simulates the authentication of customer b with
the honest server. Again, during this authentication,
whenever the server needs data from the cloud, the
challenger communicates with the adversary.

5) Finally, the adversary outputs its guess b′.
6) The output of the experiment is “1” if b = b′, and “0”

otherwise.
The advantage of the adversary in winning the game is,

AdvOut AutAP (1λ) = Pr[Out AutAP (1
λ) = 1]− 1

2
.

Definition 4. A four-party authentication protocol provides
privacy if for every probabilistic polynomial time (PPT) ad-
versary A, there is a negligible function negl(.) such that,

AdvOut AutAP (1λ) ≤ negl(λ)

We provide formal proofs that our lattice-based scheme
satisfies both definitions (and hence all the desired security
properties) in Appendix B.

VII. IMPLEMENTATION

We have implemented our lattice-based scheme via the
Python 3.7 programming language and measured its efficiency.
Multiprocess (0.70.12.2) and Numpy (1.19.0) are the main
libraries which were employed in the implementation. The test
machine had 48GB RAM and 2.1 GHz CPU with 30 cores.

In the implementation, security parameter is assumed to
be λ = 192 hence the parameters are n = λ = 192 and
m = [4nlog(n)] = 1753. We employed the Fiat–Shamir
heuristic and used non-interactive proofs. All records are
synthesized with binary vectors of 192 bits (n = 192).
The implementation is done with different database sizes and
varying number of available CPUs for all engaged entities.
Running time is evaluated based on 10 executions to get
average running time and avoid possible noises.

According to the obtained results, the server and the cus-
tomer do not play a major role in overall running time and their
running time is constant regardless of the number of records.
It is observed that the customer and the server sides require
only 0.3 and 0.5 seconds at most, respectively.

Database size, completeness error, and computational ca-
pacity are three factors that affect the running time of the
cloud. Figure 6 depicts the total running time for the cloud
during the authentication phase for different completeness
error parameters and varying database sizes (between 2000
and 8000 customers).

As expected, there is a linear association between the re-
quired time for processing an authentication and the number of
records in the cloud. However, it can be seen that as the num-
ber of CPU cores increases, the running time decreases. This
is because the actions (randomization and preparing the proof)
can be simply parallelized. With 30 CPU cores, the cloud
requires one minute for 8K records. Although this running
time might be high at first, it is satisfactory because of three
main reasons. First, clouds normally enjoy high performance
computers with more and faster CPUs compared to our system,
and hence running time can be further dropped. Second, post-
quantum secure cryptosystems incur higher running time in
general. Therefore, this increase in running time, compared
to typical classically-secure schemes, was expected. Finally,
if one can accept privacy risks, (s)he can reduce the running
time significantly because privacy incurs high computation and
communication. To see the relation between running time and
privacy, we have implemented the scheme in two cases (full
privacy and no privacy) with different database sizes on a
system enjoying only one CPU core. The results in Figure
7 prove that achieving privacy has great impact on running
time.

This observation led us to define a tuning parameter β
to make a balance between security and running time. This
parameter is chosen from the following interval,

1

|DB|
≤ β ≤ 1.

Where |DB| represents the database size (the number of
stored records). β determines the portion of records that the
server should request during the authentication from the cloud.
β = 1 means all modified records are passed to the server and
we have complete privacy because the cloud will not find out
which user is trying to authenticate. As β approaches 1/|DB|,
we have less privacy because the cloud can observe a smaller
subset of registered customers whose registration information
is requested by the server, and can conclude that one of those
customers is authenticating with the server. Our algorithm
is implemented for different values of β to investigate its
impact on running time and the result is exhibited in the
Figure 8. Notice that β makes a trade-off between privacy
and efficiency. As we mention in our modular architecture,
without the privacy requirement (hiding which customer is
authenticating from the cloud), the running time would be
independent of the number of registered users, and hence
would be constant.

We also investigate the communication cost in Table I. This
table represents the number of elements that are transmitted.
This elements belong to the chosen field over which compu-
tations are done. As it can be seen in the table, the volume of
transmitted data is less than number of records multiplied by
a polynomial of security parameter.

In the calculation of communication costs (Table I) con-
stants are omitted. Note that in this table wit, R and c. err.
represent the witness produced by accumulator algorithm,
the number of records in the database and completeness

1

10

100

1000

2k 4k 6k 8k

Cloud

10 Cores 20 Cores 30 Cores

4
2

.3

8
5

.3
4

1
2

6
.5

5

1
7

2
.6

7

2
4

.3
1 4

7
.9

1 7
3

.3
5 9

7

1
7

.4
7 3
3

.9
9 5
1

.2
9 7

2
.9

4

2K 4K 6K 8K

R
U

N
IN

G
 T

IM
E

(S
EC

.)

NUMBER OF RECORDS

0
.0

4

0
.0

4

0
.0

4

0
.0

4
0

0
0

0
2

0
.0

4

0
.0

4

0
.0

4

0
.0

4

0
.0

4

0
.0

4

0
.0

4

0
.0

4

2K 4K 6K 8K

SERVER

𝟐−𝟏𝟎 𝐂𝐨𝐦𝐩𝐥𝐞𝐭𝐞𝐧𝐞𝐬𝐬 𝐞𝐫𝐫.

6
2

1
2

5

1
8

6

2
5

0

3
7

6
7

1
0

4

1
3

8

2
8

5
3

8
1

1
1

1

2K 4K 6K 8K

R
U

N
IN

G
 T

IM
E

(S
EC

.)

NUMBER OF RECORDS

𝟐−𝟐𝟎 𝐂𝐨𝐦𝐩𝐥𝐞𝐭𝐞𝐧𝐞𝐬𝐬 𝐞𝐫𝐫.

Fig. 6: The results of the implementation of lattice based scheme over four synthetic databases with 2k, 4k, 6k and 8k records
with 2−10 and 2−20 completeness error. X-Axis represents the database’s size stored in the cloud and the Y-Axis shows
running in seconds. Furthermore, the implementation is done with a different number of assigned CPUs to detect its influence
on running time.

TABLE I: Communication overhead of the proposed scheme.

2−10 c. err. 2−20 c. err.
Reg. R(o(n2) + wit) R(o(n2) + wit)
Auth. 1200n logn+ βR(1208n logn+ wit) 2400n logn+ βR(2408n logn+ wit)

No Privacy

1

10

100

1000

10000

2k 4k 6k 8k

R
u

n
n

in
g

Ti
m

e
(S

ec
.)

Number of Records

One Core No Privacy One Core With Privacy

Fig. 7: Measuring the impact of privacy on running time.
Only one CPU is leveraged and implementation is done over
databases with different number of records. X-Axis represents
the number of registered persons and Y-Axis shows the run-
ning time of authentication process.

0

20

40

60

80

100

1 0.8 0.6 0.4 0.2 … 0.0001

R
u

n
n

in
g

Ti
m

e
(S

ec
.)

Beta Parameter

20 Cores 30 Cores

No Privacy

Complete Privacy

Fig. 8: Cloud running time with a database of size 10k for
different values of β and Completeness error equals to 2−10.
X-axis and Y-axis indicate β and running time, respectively.

error, respectively. Cost wit varies according to the adopted
accumulator algorithm. It, however, is a polynomial factor.
As it can be seen in the table during registration stage what
is transmitted depends on n and the database size has no

impact. In the authentication stage, the transmitted volume is
determined by completeness error, n, β and the number of the
records. In the proposed scheme, β can be chosen according
to the user’s policies to reduce computation overhead at the
cost of increasing privacy risk.

Table ?? provides an example of the volume of transmitted
messages required for the authentication process in three
databases with different sizes. The registration is excluded
because it only depends on the security parameter but not the
number of records. The security parameter is equal to 128.
Furthermore, a lattice-based accumulator in [22] is used.

To the best of our knowledge, there is no paper that has a
similar four-party authentication model. Therefore, we decided
to include [39] to benchmark the proposed scheme with it in
view of communication costs. Note that, their scheme does not
support privacy. Hence, we added the communication costs in
our scheme when privacy is not preserved (β = 1/|DB|).
However, it can be seen that there is a slight difference,
which comes from the fact that in our scheme authentication
data is outsourced and servers get randomized authentication
data which means “one-time registration but multiple servers
authentication” in contrast to Li et al. [39].

VIII. CONCLUSION AND FUTURE WORK

Authentication models are changing with the advent of
cloud. In this paper, we define three- and four-party authen-
tication scenarios, where the customer database is not at the
login server but at the cloud, and hence novel approaches are
required.

We provided generic methods to convert existing secure
two-party authentication protocols to the three- and four-
party model. We defined several threat models and security
objectives, including completeness, soundness, confidentiality,

TABLE II: Communication overhead in a real examples. In this table security parameter
is 128 except for no privacy versions (gray rows) where the security parameter is 752.
The derived values are in megabytes (MB). The errors e1 and e2 denote 2−10 and 2−20

completeness errors, respectively.

2k 4k 6k

e1 e2 e1 e2 e1 e2

β = 0.1 146.845 292.724 292.966 583.998 585.206 1166.545
β = 0.05 73.785 147.088 146.845 292.724 292.966 583.998
β = 0.01 15.337 30.578 29.949 59.706 59.173 117.960
No Privacy 10.122 20.206 10.122 20.206 10.122 20.206
Li etal. [39] 8.535 8.535 8.535 8.535 8.535 8.535

hack-resistance, non-impersonation, privacy (including unlink-
ability), and non-replication, and discussed how to achieve
them under different settings. Moreover, we provided a spe-
cial lattice-based post-quantum secure construction with full
details and security proof in the four-party model. We leave
achieving security against a malicious cloud provider as future
work.

The data that support the findings of this study are not
openly available because the database is generated randomly
and might not be useful for the readers. However, it is available
from the corresponding author upon reasonable request.

REFERENCES

[1] P. Peer, J. Bule, J. Ž. Gros, and V. Štruc, “Building cloud-
based biometric services,” Informatica, vol. 37, no. 2,
2013.

[2] H. Chun, Y. Elmehdwi, F. Li, P. Bhattacharya, and
W. Jiang, “Outsourceable two-party privacy-preserving
biometric authentication,” in ACM CCS. ACM, 2014,
pp. 401–412.

[3] M. Haghighat, S. Zonouz, and M. Abdel-Mottaleb,
“Cloudid: Trustworthy cloud-based and cross-enterprise
biometric identification,” Expert Systems with Applica-
tions, vol. 42, no. 21, pp. 7905–7916, 2015.

[4] C. Hahn and J. Hur, “Efficient and privacy-preserving
biometric identification in cloud,” ICT Express, vol. 2,
no. 3, pp. 135–139, 2016.

[5] T. Acar, M. Belenkiy, and A. Küpçü, “Single password
authentication,” Computer Networks, vol. 57, no. 13, pp.
2597–2614, 2013.

[6] D. İşler and A. Küpçü, “Threshold single password
authentication,” in ESORICS DPM. Springer, 2017, pp.
143–162.

[7] W. Ford and J. Burton S. Kaliski, “Server-assisted gen-
eration of a strong secret from a password,” in WETICE,
2000.

[8] P. D. MacKenzie, T. Shrimpton, and M. Jakobsson,
“Threshold password-authenticated key exchange,” in
CRYPTO, 2002.

[9] D. Florencio and C. Herley, “A large-scale study of web
password habits,” in WWW. ACM, 2007, pp. 657–666.

[10] M. Blanton and P. Gasti, “Secure and efficient proto-
cols for iris and fingerprint identification,” in ESORICS.
Springer, 2011, pp. 190–209.

[11] J. Bringer, H. Chabanne, and B. Kindarji, “Identification
with encrypted biometric data,” Security and Communi-
cation Networks, vol. 4, no. 5, pp. 548–562, 2011.

[12] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. La-
gendijk, and T. Toft, “Privacy-preserving face recogni-
tion,” in PETS. Springer, 2009, pp. 235–253.

[13] H. Gao, Y. Zhang, S. Liang, and D. Li, “A new chaotic
algorithm for image encryption,” Chaos, Solitons &
Fractals, vol. 29, no. 2, pp. 393–399, 2006.

[14] E.-J. Goh, “Secure indexes.” IACR Cryptology ePrint
Archive, vol. 2003, p. 216, 2003.

[15] A. K. Jain, A. Ross, and U. Uludag, “Biometric template
security: Challenges and solutions,” in EUSIPCO. IEEE,
2005, pp. 1–4.

[16] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich,
“Scifi-a system for secure face identification,” in IEEE
Symposium on Security and Privacy. IEEE, 2010, pp.
239–254.

[17] M. Upmanyu, A. M. Namboodiri, K. Srinathan, and
C. Jawahar, “Blind authentication: a secure crypto-
biometric verification protocol,” IEEE Transactions on
Information Forensics and Security, vol. 5, no. 2, pp.
255–268, 2010.

[18] S. M. Bellovin and M. Merritt, “Encrypted key exchange:
Password-based protocols secure against dictionary at-
tacks,” in IEEE Symposium on Security and Privacy,
1992.

[19] ——, “Augmented encrypted key exchange: A password-
based protocol secure against dictionary attacks and
password file compromise,” in ACM CCS, 1993.

[20] X. Boyen, “Hpake: Password authentication secure
against cross-site user impersonation,” in CANS, 2009.

[21] J. Benaloh and M. De Mare, “One-way accumulators: A
decentralized alternative to digital signatures,” in EURO-
CRYPT. Springer, 1993, pp. 274–285.

[22] J. Li, N. Li, and R. Xue, “Universal accumulators with
efficient nonmembership proofs,” in ACNS. Springer,
2007, pp. 253–269.

[23] J. Camenisch and A. Lysyanskaya, “Dynamic accumula-
tors and application to efficient revocation of anonymous
credentials,” in CRYPTO. Springer, 2002, pp. 61–76.

[24] L. Nguyen, “Accumulators from bilinear pairings and
applications,” in CT-RSA. Springer, 2005, pp. 275–292.

[25] M. O. Rabin, “How to exchange secrets with oblivious
transfer.” IACR Cryptology ePrint Archive, vol. 2005, p.
187, 2005.

[26] C. Crépeau, “Equivalence between two flavours of obliv-
ious transfers,” in CRYPTO. Springer, 1987, pp. 350–
354.

[27] W. Ogata and K. Kurosawa, “Oblivious keyword search,”
Journal of Complexity, vol. 20, no. 2-3, pp. 356–371,
2004.

[28] A. Shamir, “How to share a secret,” Communications of
the ACM, vol. 22, no. 11, pp. 612–613, 1979.

[29] G. R. Blakley, “Safeguarding cryptographic keys,” in
International Workshop on Managing Requirements
Knowledge. IEEE Computer Society, 1979, pp. 313–
313.

[30] M. Ajtai, “Generating hard instances of lattice problems,”
in ACM STOC. ACM, 1996, pp. 99–108.

[31] P. W. Shor, “Algorithms for quantum computation: Dis-
crete logarithms and factoring,” in IEEE FOCS. IEEE,
1994, pp. 124–134.

[32] D. Micciancio and S. Goldwasser, Complexity of lattice
problems: a cryptographic perspective. Springer Science
& Business Media, 2012, vol. 671.

[33] V. Lyubashevsky, “Lattice-based identification schemes
secure under active attacks,” in PKC. Springer, 2008,
pp. 162–179.

[34] M. Blum, “Coin flipping by telephone a protocol for solv-
ing impossible problems,” ACM SIGACT News, vol. 15,
no. 1, pp. 23–27, 1983.

[35] B. Alon and E. Omri, “Almost-optimally fair multiparty
coin-tossing with nearly three-quarters malicious,” in
TCC. Springer, 2016, pp. 307–335.

[36] I. Haitner, N. Makriyannis, and E. Omri, “On the com-
plexity of fair coin flipping,” in TCC. Springer, 2018,
pp. 539–562.

[37] I. Damgård, “On sigma protocols,”
http://www.daimi.au.dk/ ivan/Sigma.pdf.

[38] A. Fiat and A. Shamir, “How to prove yourself: Practical
solutions to identification and signature problems,” in
CRYPTO. Springer, 1986, pp. 186–194.

[39] Z. Li, D. Wang, and E. Morais, “Quantum-safe round-
optimal password authentication for mobile devices,”
IEEE Transactions on Dependable and Secure Comput-
ing, 2020.

APPENDIX

A. Lyubashevsky’s lattice based authentication scheme

Lyubashevsky proved that if we repeat the protocol in the
table t = ω(log(n)) times in parallel, then the completeness
error is less than 2−

t
14 . The following theorem indicates the

connection between the identification protocol’s robustness
and solving the SIS problem.

Theorem 2. [33] If there is a probabilistic polynomial time
(PPT) adversary which can break the above identification
protocol with probability adv in the active attack model, then
there exists a polynomial algorithm that can solve the SIS(A)
problem with success probability ω((adv)2−2.2−

t
18) when A

is chosen uniformly at random.

B. Security Proofs

In this section we prove that our lattice-based construction
meets the considered aims.

Theorem 3. If the SIVP problem is hard, then no PPT
adversary can win the Out AutS,C,HR,NI game with non-
negligible advantage.

Proof. We prove this theorem by showing that the SIVP can be
solved with a polynomial factor given a PPT adversary who
wins the Out AutAS,C,HR,NI(1

λ) game with non-negligible
advantage ϵ(λ).

Assume that there exists a PPT adversary A who wins the
game with non-negligible advantage ϵ(λ). Then, we show a
PPT algorithm B that can be built based on A such that B
solves the SIS problem for randomly chosen matrix A ∈
Zn×m
p where m = [4n log n] and n = λ.
For the security reduction, the algorithm B gets a random

matrix A ∈ GL(n,m) and must produce two vectors z and z′

with norms less than 10m1.5 such that Az = Az′.
Given the random matrix A, the algorithm B works as

follows,

1) B needs to simulate Setup(1λ) as the manager. B uses
the given matrix A, and picks a collision-resistant hash
function H .

2) B chooses k ∈ poly(λ) binary vectors G1, . . . , Gk ∈
{0, 1}m randomly and, with the Register algorithm,
acting as the challenger in Out AutAS,C,HR,NI(1

λ),
builds a database DB in which its rows are
(G′

i, A[0
l||G′′

i],wit i). In addition to the DB, the ac-
cumulator keys (apk , ask) and the digest µ of these
records are generated just as the honest challenger would
have done.

3) B shares the public values H , DB, A, apk , and µ with
the adversary A. Note that the adversary, as the cloud,
needs to know H , DB, A, and the adversary, as the
dishonest servers, needs to know apk and µ.

4) Upon request of the adversary A, B runs the authenti-
cation protocol with dishonest servers just as an honest
challenger would have.

Prover Verifier

Private key: ω̃ ∈ {0, 1}m
Public key: A,ω = Aω̃ mod p

for i = 1 to t

ỹi
$←− {0, . . . , 5m− 1}m
yi ← Aỹi mod p

y1,y2,...,yt−−−−−−−−→

for i = 1 to t

ci
$←− {0, 1}

c1,...,ct←−−−−−

for i = 1 to t
if ci = 1 and ỹi + w̃ /∈ SAFE

zi ←⊥
else

z ← ỹi + ciw̃
z1,...,zt−−−−−→

for i = 1 to t
if ∥zi∥ ≤ 5m1.5 and Azi = ciw + yi

di ← 1
else

di ← 0
sum = d1 + · · ·+ dt

if sum ≥ 0.65t then ACCEPT
else REJECT

TABLE III: One round of the identification protocol of [33]. In this scheme p is an integer of order Õ(n3), m = [4n log n],
and SAFE = {1, . . . , 5m− 1}m.

5) B plays the role of server and interacts with the adver-
sary. In this stage, the adversary acting as the customer
specifies iadv and sends it to B.

6) B interacts with the cloud, which is
controlled by the adversary and receives
Aω,A[0l||G′′

iadv
],wit iadv

, proofiadv
. For the adversary

to be successful, the witness should be valid according
to AccuV erify(apk , µ, A[0l||G′′

iadv
],wit iadv

) and the
proof proofiadv

must verify.
7) Then, the adversary, acting as the customer, should prove

that it knows a binary vector ω′ such that,

Aω′ = A[ω + 0l||G′′
iadv

] (1)

Thus, there are two proofs that the adversary must perform
successfully: one as the cloud, and one as the customer.

We have AdvOut AutAS,C,HR,NI (1λ) = ϵ(λ). In addition, we
have:

AdvOut AutAS,C,HR,NI (1λ) =

Pr[Suc|ω,¬ω′]Pr[ω,¬ω′] + Pr[Suc|¬ω,¬ω′]Pr[¬ω,¬ω′]

+ Pr[Suc|¬ω, ω′]Pr[¬ω, ω′] + Pr[Suc|ω, ω′]Pr[ω, ω′]

≤ Pr[Suc|ω,¬ω′] + Pr[Suc|¬ω,¬ω′] + Pr[Suc|¬ω, ω′]

+ Pr[ω, ω′]

where, for instance, Pr[Suc|¬ω, ω′] means the success prob-
ability of the adversary in proving the two statements while
it knows ω′ but does not know ω, and Pr[¬ω, ω′] is the

probability that the adversary knows ω′ but does not know
ω. The other terms are defined similarly. To bound this
probability, simply realize that each probability is between
zero and one.

It can be demonstrated that Pr[Suc|ω,¬ω′],
Pr[Suc|¬ω, ω′] and Pr[Suc|¬ω,¬ω′] are negligible.
For example, Pr[Suc|ω,¬ω′] is the success probability of
the adversary passing both proof verifications having access
to only ω but not ω′. As mentioned earlier, the adversary
should prove the two statements. In the second one, it needs
to prove that it has access to a binary sequence ω′ such that
Aω′ = A[ω + 0l||G′′

iadv
]. Due to the fact that the soundness

probability of Lyubashevsky’s scheme is negligible, the
probability that the adversary can convince B while it does
not have ω′ is negligible. Accordingly, it can be deducted
that Pr[ω, ω′] is non-negligible because,

Pr[ω, ω′] ≥ AdvOut AutAS,C,HR,NI (1λ)

− (Pr[Suc|ω,¬ω′] + Pr[Suc|¬ω,¬ω′] + Pr[Suc|¬ω, ω′])

≥ ϵ(λ)− negligible(λ)

This implies that with a non-negligible probability, when-
ever the adversary wins the game, it has access to the binary
values ω′ and ω. Hence, B is able to extract these values
from the proofs using the knowledge extractor, in probabilistic
polynomial time. In addition, ω′−ω ∈ {−1, 0, 1}m and A(ω′−
ω) = A[0l||G′′

iadv
]. Furthermore, ∥ω′ − ω∥, ∥(0l||G′′

iadv
)∥ ≤

m ≤ 10m1.5 because their components belong to {−1, 0, 1}.
Therefore, z = ω′ − ω and z′ = 0l||G′′

iadv
are a solution

for SIS(A). Finally, according to Theorem 1, the ability to
solve the SIS problem leads to solving SIV P . Consequently,
breaking the proposed scheme with non-negligible advantage
leads to a PPT algorithm which can solve SIV P with a
polynomial approximation factor.

Theorem 4. No PPT adversary can win the Out AutP game
with non-negligible advantage.

Proof. In order to prove that any PPT adversary cannot guess
better than a random guess, we will show that the information
the cloud gets regarding both customers are computationally
indistinguishable. The adversarial cloud is only involved in
two steps. First, in choosing the random value Rd, which
is completely independent of stored records in the database.
Secondly, when the server tries to retrieve required information
used in the authentication process, it requests all customers’
records, and hence this again does not lead to a guess
noticeably better than a random guess.

As discussed before, completeness is achieved via the
completeness of the Lyubashevsky’s protocol [33]. Non-
replication is achieved by the randomization of the values,
as Rd will be different at each authentication attempt, and
the A[H(G′

j , Rd)||0l] value cannot be re-used. Picking a
random Rd each time also helps achieving non-impersonation,
as it was already covered in Theorem 3. Note that at each
authentication attempt, at least one participant is honest and
contributes to the randomness. When the adversary is a ma-
licious customer and a semi-honest cloud, then the server is
honest. When the adversary is a semi-honest server and the
semi-honest cloud, then the customer is honest.

