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Abstract. A theoretical framework of the bit security of cryptographic
primitives/games was first introduced in a pioneering work by Micciancio
and Walter (Eurocrypt 2018), and an alternative framework was intro-
duced by the authors (Asiacrypt 2021). First, we observe that quantita-
tive results in the latter framework are preserved even if adversaries are
allowed to output the failure symbol. With this slight modification, we
show that the notion of bit security in the latter framework is equivalent
to that in the former framework up to constant bits. Also, we demon-
strate that several existing notions of advantages can be captured in
a unified way. Based on this equivalence, we show that the reduction
algorithm of Hast (J. Cryptology, 2004) gives a tight reduction of the
Goldreich-Levin hard-core predicate to the hardness of one-way func-
tions. These two results resolved open problems that remained.
Furthermore, in the latter framework, we show that all games we need to
care about are decision games. Namely, for every search game G, there is
the corresponding decision game G′ such that G has λ-bit security if and
only if G′ has λ-bit security. The game G′ consists of the real and the
ideal games, where attacks in the ideal game are never approved. Such
games often appear in game-hopping security proofs. The result justifies
such security proofs because they lose no security. Finally, we provide a
distribution replacement theorem. Suppose a game using distribution Q
in a black-box manner is λ-bit secure, and two distributions P and Q are
computationally λ-bit secure indistinguishable. In that case, the game
where Q is replaced by P is also λ-bit secure.

Keywords: Bit security · operational approach · Goldreich-Levin theo-
rem.

1 Introduction

Quantifying the security levels of cryptographic primitives is a significant task
both for theoreticians and practitioners around information security and cryp-
tography. The evaluations directly affect using cryptographic primitives in our
daily lives. We usually say that primitive P has λ-bit security (or security level
λ) if we need 2λ operations to break P . Although the statement is simple, we
encounter difficulties formalizing such security levels exactly. In particular, the



difficulty is defining bit security for decision games, such as pseudorandom gen-
erators and encryption schemes. For search games, such as the security games of
one-way functions and signature schemes, the well-known expression of log2(T/ε)
can be justified for attacker A with computational cost T and winning probabil-
ity ε; If we run A in total N times, the probability that some adversary wins the
game is amplified to εN . Thus it is sufficient to choose N = 1/ε for winning the
game with a probability of almost one. Hence, the total cost is TN = 2log2(T/ε).

In decision games, the attacker tries to distinguish two possible cases (u =
0 and u = 1). Even the random-guessing attacker can correctly predict the
secret value u with probability 1/2. Thus, we usually define the advantage of the
attacker A as AdvA = 2|p − 1/2|, where p is the winning probability of A. We
need to evaluate the security level of the primitive by assuming the existence of
attacker A with advantage AdvA.

In order to clarify the subtlety, let us consider the following decision game
to distinguish between the pseudorandom number generator (PRG) and the
true random number generator (TRG): the outcome (y, z) of PRG consists of
the image y = f(x) of a one-way permutation f over {0, 1}n and its hard-core
predicate z = h(x); the outcome (y, z) of TRG consists of y = f(x) and a random
bit z = σ that is independent of the seed x. For this game, we can consider the
following two possible attacks:

1. Linear test attack: For a prescribed binary vector v of length n + 1, the
adversary computes the inner product of v and (y, z); if the outcome is 0,
the adversary outputs 0 (PRG); and outputs 1 (TRG) otherwise. For such
an attack, the output distribution Au of the adversary A given u ∈ {0, 1}
(u = 0 for PRG and u = 1 for TRG) are A0 = (1/2 + ε1, 1/2 − ε1) and
A1 = (1/2, 1/2) for some bias ε1, where Au = (p0, p1) means that Pr[A =
0 | u] = p0 and Pr[A = 1 | u] = p1. The (standard) advantage of this attack
is AdvA = ε1.

2. Inversion attack: First, the adversary tries to invert the one-way permuta-
tion, which will succeed with probability ε2. If the inversion is successful
and h(x) coincides with z, the adversary outputs 0 (PRG); otherwise (if the
inversion is unsuccessful or h(x) ̸= z), the adversary outputs 1 (TRG). For
such an attack, the output distribution of the adversary A given u ∈ {0, 1}
consists of A0 = (ε2, 1 − ε2) and A1 = (ε2/2, 1 − ε2/2). The (standard)
advantage of this attack is AdvA = ε2/2.

It is known that, for an appropriately chosen vector v, the advantage of
the linear test can be ε1 ≥ 2−n/2 (cf. [1,8]). When we use a random-guessing
inversion attack, where A chooses a random value x′, the inversion succeeds with
probability ε2 = 2−n. Does this imply that the linear test attack is exponentially
more sophisticated than the inversion attack? Or is this inner-product attack a
basic one, as is the inversion attack?

In order to circumvent the subtlety mentioned above in defining bit security
for decision games, Micciancio and Walter [16] introduced an alternative defi-
nition of advantage; when the random secret is U and the adversary’s output
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is A, their advantage is defined as the ratio AdvMW = I(U∧A)
H(U) between the mu-

tual information and the Shannon entropy. They showed that, under a certain
assumption, their advantage could be approximated by the conditional squared
(CS) advantage AdvCS to be explained later (see (8)). In fact, AdvMW was only
used to justify the CS advantage, and the bit security of specific results in [16] is
evaluated with respect to the CS advantage. They used minA{log2(TA/Adv

CS
A )}

as the definition of bit security, where TA is the computational cost of A. Even
though the results obtained by their definition match our intuition, the definition
lacks an operational meaning. The quantity of log2(TA/Adv

CS
A ) is just a combi-

nation of the two values TA and AdvCS
A . We cannot explain the meaning of this

quantity from its definition. A good example of the quantity with operational
meaning is the Shannon entropy H(X) of the information source X. When we
define the minimum average length of lossless compression functions f for X
as MinLen(X) := minf{E[|f(X)|]}, we can show that the Shannon entropy ap-
proximates it as H(X) ≤ MinLen(X) < H(X) + 1. Hence, we say that H(X) is
the length limit of lossless compression of X.

In [20], Watanabe and Yasunaga introduced a framework for evaluating the
security level of primitives with operational meanings. In their framework, there
are two types of adversaries attacking a security game G. The inner adversary A
plays a usual security gameG. The outer adversaryB invokesA sufficiently many
times to achieve a winning probability close to one. If the total computational
cost needed to achieve this task is 2λ, game G is said to be λ-bit secure. Notably,
they characterized their notion by advantages. They showed that the bit security
of game G is approximated by minA{log2(TA/AdvA)},3 where AdvA is equal to
the winning probability of A in G for search games and is the Rényi advantage of
A for decision games. The Rényi advantage was introduced in [20] and is defined
as the Rényi divergence of order 1/2 between the output distributions of two
cases in the decision game.

Several problems remained open in [20]. Regarding the Goldreich-Levin the-
orem [10,9], they proved that a λ-bit secure one-way function gives a λ-bit secure
hard-core predicate against balanced adversaries. The balanced adversaries are
restricted such that the probability of outputting each value (0 or 1) must be at
least constant. An example is a linear test attack described above; when u = 1
(TRG), the test (adversary) outputs 0 and 1 with probability 1/2, a constant.
Such adversaries, however, may not be typical in security proofs. The inversion
attack described above is typical in many security proofs. Since the success prob-
ability of inversion is usually small and close to zero, the attack is not balanced.
Removing the balanced-adversary condition in the Goldreich-Levin theorem has
been an open problem. The result was in contrast to the framework of Micciancio
and Walter [16], where they showed that the Goldreich-Levin reduction [10,9]
was indeed optimal.

Another open problem was the relationship between the two frame-
works [16,20]. Although finding similar features in the two definitions seems

3 More precisely, it should be expressed by minA{log2 TA + log2⌈1/AdvA⌉)} as AdvA
may take values greater than 1 for decision games.
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complicated, they mostly share the same quantitative results. The exception
was the Goldreich-Levin theorem, as described above. Clarifying the relation is
helpful for researchers analyzing and evaluating concrete cryptographic primi-
tives.

1.1 Our Results

In this work, we further study the framework of [20] and resolve open problems.
First, we observe that the results of [20] preserve even if inner adversaries for
decision games are allowed to output the failure symbol ⊥ as well as {0, 1}. See
Section 3 for the details. This slight modification reveals a relation between the
bit security notions of [20] and [16]. We show that the CS advantage of [16] for de-
cision games is bounded above by the Rényi advantage. In other words, the Rényi
advantage evaluates adversaries more pessimistically than the CS advantage. As
an extreme case, there is an attack that achieves Θ(δ) in the Rényi advantage
but has 0 in the CS advantage (see Table 1). The above relation implies that if
decision primitive P has λ-bit security in [20], P also has λ-bit security in [16].
Even though the converse is not necessarily true (see Section 1.3), we show that
the CS advantage can be increased to the same level as the Rényi advantage if
we appropriately modify the attack; essentially, the modified adversary relabels
the output of the original adversary. Thus, we can transform an adversary so
that the CS advantage is almost the same as the Rényi advantage. These two
directions of bounds imply that the two notions of bit security in [16] and [20]
are equivalent within constant bits. We compare the three advantages (standard
(TV), CS, and Rényi) for several attacks in Section 1.3.

Furthermore, we demonstrate that several existing notions of advan-
tages [15,13,16] can be captured in a unified way. Specifically, the three quantities
in [15,13,16] are the same except for a constant factor. Based on this equivalence,
we show that the reduction algorithm of Hast [13] gives a tight4 reduction of the
Goldreich-Levin hard-core predicate [10] to the hardness of one-way functions.
Namely, we resolved another open problem that remained in [20]. Although we
can derive a similar result from our general transformation described above to-
gether with the tightness result of the Goldreich-Levin theorem in [16], we give
proof through the reduction of Hast [13]. An advantage of this route is that we
can obtain an explainable algorithm (namely, Hast’s algorithm) for improving
the Goldreich-Levin algorithm. Although the transformation enables the adver-
sary to have the Rényi advantage at the same level as the CS advantage, it may
not be easy to understand the factor for improvement. We believe Hast’s im-
proved algorithm can be a hint for designing algorithms/reductions that attain
high Rényi advantages.

In addition to the above, we give several results regarding the framework
of [20]. We show that every search game can be replaced by a specific decision
game, named a canonical game. Specifically, we show that a search game has
4 We say a reduction is tight if it can be used to show that λ-bit security implies
(λ− o(λ))-bit security.
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λ-bit security if and only if the corresponding canonical game has λ-bit security.
In canonical games, while the adversary plays as usual in the real game, attacks
by the adversary will never be approved in the ideal game. This treatment of
adversaries often appears in game-hopping security proofs [18,4]; e.g., the adver-
sary may play a game where every forgery of the signature cannot be approved.
Our result may justify such a treatment in security proofs because such game-
hopping loses no security. We also provide a distribution replacement theorem.
Suppose that game GQ using black-box access to distribution Q is λ-bit secure
and two distributions P and Q are λ-bit secure indistinguishable. The theorem
asserts that game GP , where distribution Q is replaced by P , is also λ-bit secure.
This result is a generalization of [20, Theorem 9], where the sufficient condition
is that distributions P and Q are information-theoretically close enough in the
Hellinger distance. Our result relaxed the requirement into the computational
one. It guarantees that λ-bit secure indistinguishability is sufficient for preserving
the λ-bit security of games. As an instance, we apply the theorem to the leftover
hash lemma (LHL) [6,14] and show that the seed of a λ-bit secure randomness
extractor using universal hash functions can be safely replaced by the output of
a λ-bit secure PRG. As a side result (and maybe implicit from [20]), we show
that the entropy loss in the LHL to preserve λ-bit security in the framework
of [20] is λ.

1.2 Related Work

Micciancio and Walter [16] initiated the theoretical study of quantifying the
security level of cryptographic primitives. They proposed a framework for evalu-
ating the bit security based on the Shannon entropy and the mutual information.
A key novelty of their framework was allowing the adversary to output the fail-
ure symbol ⊥ in security games. They showed that their notion of bit security
could be characterized by the advantage introduced by Levin [15]. Levin’s no-
tion appeared in evaluating the security of the hard-core predicate of Goldreich
and Levin [10]. Hast [13] studied efficient reduction algorithms for improving the
Goldreich-Levin theorem against nearly one-sided adversaries.

Watanabe and Yasunaga [20] introduced another framework for quantifying
the bit security of games with an operational meaning. One of their contributions
was characterizing the bit security using the Rényi advantage.5 The standard
5 In the classic result of the Bayesian hypothesis testing [7], the error probability is

characterized by the Chernoff information asymptotically; the asymptotic charac-
terization has been used in the context of cryptography [2]. In the derivation of
Chernoff’s characterization, while the upper bound on the error probability is non-
asymptotic, the lower bound involves a cumbersome reminder term. For this reason,
instead of using Chernoff’s characterization, the authors of [20] used a slightly weaker
(but non-asymptotic) lower bound on the error probability in terms of the Rényi di-
vergence of order 1/2; it is weaker in the sense that the coefficient in the exponent
is twice as large as that of the upper bound. Such a weaker lower bound is rarely
used in the context of statistics, but it is useful in the context of cryptography since
it only affects 1 bit in the bit security.
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advantage of 2|p − 1/2| for the winning probability p in decision games may
behave differently from the Rényi advantage, according to the discussion in [20].
Our study mainly relies on their framework to evaluate bit security. A small but
crucial difference is that we allow the adversary to output the failure symbol
in the game. The modification enables us to unify several existing notions of
advantages [15,13,16], reveal the relation to the framework of [16], and give an
optimal reduction algorithm for the Goldreich-Levin theorem.

The entropy loss of randomness extractors is inevitable [17]. The LHL-based
extractors achieve an optimal entropy loss of 2 log(1/ε) for closeness ε to the
uniform distribution in the total variation distance. Barak et al. [3] studied the
possibilities of reducing the loss to log(1/ε) for several primitives. It is shown
in [21] that the same reduction of the entropy loss can be achieved for all prim-
itives when using the bit security framework of [16]. In other words, a λ-bit
entropy loss in LHL is sufficient to preserve λ-bit security in bit security of [16].
In this work, we explicitly state that the same thing also holds in the framework
of [20].

1.3 Comparing Two Frameworks of Bit Security

Sensitivity to Attacks. We show the equivalence of the two notions of
bit security in [16] and [20] up to a constant. The first one is given by
minA{log2(TA/Adv

CS
A )}, and the second one is characterized by minA{log2 TA+

log2⌈1/Adv
Renyi
A ⌉}, where AdvCS

A and AdvRenyi
A are the CS and the Rényi advan-

tages of adversary A, respectively. We stress that the two quantities coincide
only when we optimize over adversaries. In fact, AdvRenyi

A is always bounded be-
low by AdvCS

A for any adversary A, but AdvCS
A can be significantly smaller than

AdvRenyi
A . In this sense, there may be a risk of underestimating the potential

impact of attacks when evaluating the bit security with AdvCS
A . This is caused

by the fact that AdvCS
A is sensitive to the labeling of the output of the adversary.

While the failure symbol has a special role in AdvCS
A , it is just one of the symbols

in AdvRenyi
A , and thus relabeling of symbols has no impact on AdvRenyi

A .
The above concern can be illustrated by comparing the advantages of the

following four types of attacks, summarized in Table 1. The first one, a bal-
anced attack without ⊥, is a type of attack such as the linear test attack men-
tioned above. The second one, an unbalanced attack with ⊥, is an attack such
as the inversion attack for PRG mentioned above. The third one, an unbalanced
attack without ⊥, is a type of attack that may occur in an attack against a
decisional Diffie-Hellman (DDH) problem using an oracle for a computational
Diffie-Hellman (CDH) problem. The CDH is a typical example of the so-called
privately-verifiable search problem [11]. This type of attack naturally occurs
when the privately-verifiable search oracle is available. The final attack, a bal-
anced 0/1-unbalanced ⊥ attack, is introduced for comparison. This attack can
be realized by modifying the second attack for PRG; the adversary outputs ⊥
when the inversion attack succeeded; otherwise, it outputs a random bit.
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Table 1. Comparison of advantages for four types of attacks

Attacks AdvTV AdvCS AdvRenyi

Balanced attack without ⊥
A0 = (1/2 + δ, 1/2− δ)
A1 = (1/2, 1/2)

e.g.) Linear test attack for PRG

δ δ2 Θ(δ2)

Unbalanced attack with ⊥
A0 = (δ, 0, 1− δ)
A1 = (δ/2, δ/2, 1− δ)

e.g.) Inversion attack for PRG

δ/2 δ/2 Θ(δ)

Unbalanced attack without ⊥
A0 = (δ, 1− δ)
A1 = (δ/p, 1− δ/p)

e.g.) CDH oracle attack for DDH

(1− 1/p)δ (1− 1/p)2δ2 Θ(δ)

Balanced 0/1-unbalanced ⊥ attack
A0 = (1/2− δ/2, 1/2− δ/2, δ)
A1 = (1/2− δ/4, 1/2− δ/4, δ/2)

e.g.) Inversion attack using ⊥

δ/2 0 Θ(δ)

For the first two attacks, the advantages of AdvCS and AdvRenyi do not make
a difference. However, while AdvRenyi = Θ(δ) for the third and the fourth at-
tacks, AdvCS varies much for these cases. Namely, the CS advantage is inherently
sensitive to attacks. For more detail on the comparison, see Section 4.2.

Flexible Use of Two Advantages. By comparing the two notions of bit secu-
rity in [16] and [20], although these two quantities almost match when optimizing
attacks, they have different benefits. Thus, we can flexibly use the two notions
depending on the situation. First, the CS advantage is useful for developing
and analyzing algorithms/reductions that effectively use the failure symbol (or
erasure in the context of decoding). This usefulness has been exploited in past
work [15,16] and this work (Section 5 and [13]). Second, when we want to avoid
underestimating the adversary’s ability, it is safer to use the Rényi advantage for
evaluation since the CS advantage may have sensitivity to attacks, as discussed
above. Finally, the CS advantage has an advantage for the ease of computation;
the Rényi advantage may need a complicated calculus. Several inequalities ((2),
Lemma 1, Lemma 2, and Theorem 1) in this paper may help it.

1.4 Paper Organization

We review the framework of [20] in Section 3. In Section 4, we compare the
two notions of advantages, the CS advantage of [16] and the Rényi advantage
of [20], where the former can be seen as a unified notion as it is equivalent to
other notions in the literature [15,13]. As a result, we show that two notions of
bit security in [16] and [20] are equivalent within constant bits. We show a tight
reduction of the Goldreich-Levin theorem in Section 5. In Section 6, we show a
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canonical decision game such that every search game preserves its bit security
in the corresponding canonical game. We prove the distribution replacement
theorem in Section 7. We conclude the paper in Section 8.

2 Preliminaries

In this section, we present several basic notions and their properties to be used
in proofs of the main results.

Let P andQ be probability distributions over a finite set Ω. For a distribution
P over Ω and A ⊆ Ω, we denote by P (A) the probability of event A, which is
equal to

∑
x∈A P (x).

The total variation distance between P and Q is

dTV(P,Q) = max
A⊆Ω

|P (A)−Q(A)| = 1

2

∑
x∈Ω

|P (x)−Q(x)|.

The Hellinger distance between P and Q is

dHD(P,Q) =

√
1

2

∑
x∈Ω

(√
P (x)−

√
Q(x)

)2
=

√
1−

∑
x∈Ω

√
P (x) ·Q(x),

which takes values in [0, 1]. The Rényi divergence of order 1/2 is defined by 6

D1/2(P∥Q) = −2 ln
∑
x∈Ω

√
P (x)Q(x).

The Hellinger distance and the total variation distance can be related as
follows:

dHD(P,Q)2 ≤ dTV(P,Q) ≤
√
2 · dHD(P,Q). (1)

On the other hand, by noting 1 − 1/t ≤ ln t ≤ t − 1 for t > 0, the Hellinger
distance and the Rényi divergence of order 1/2 can be related as follows:7

dHD(P,Q)2 ≤ 1

2
·D1/2(P∥Q) ≤ dHD(P,Q)2

1− dHD(P,Q)2
≤ 2 · dHD(P,Q)2, (2)

where the last inequality holds if dHD(P,Q)2 ≤ 1/2.
We present a few technical lemmas used in the paper.

Lemma 1. For given distributions P and Q with P ≪ Q,8 we have

D1/2(P∥Q) ≤ D(P∥Q) ≤
∑

x∈X+

(P (x)−Q(x))2

Q(x)
≤ 2β−1

Q dTV(P,Q)2,

where βQ = minx∈X+ Q(x), X+ = {x : Q(x) > 0}, and D(P∥Q) =∑
x∈Σ P (x) log(P (x)/Q(x)) is the Kullback–Leibler (KL) divergence.

6 When P and Q have disjoint support, we set D1/2(P∥Q) = ∞.
7 The second inequality holds as long as D1/2(P∥Q) < ∞.
8 Here, P ≪ Q indicates that {x : P (x) > 0} ⊆ {x : Q(x) > 0}.
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Proof. The first inequality follows from the fact that the Rényi diver-
gence is monotonically non-decreasing with respect to α and D(P∥Q) =
limα→1Dα(P∥Q). For the last inequality, see [12, Lemma 4.1]; the second in-
equality appears in the middle of the proof of [12, Lemma 4.1]. ⊓⊔

Lemma 2. Let A0 and A1 be distributions over {0, 1,⊥} such that A0 = (δ, 1−
δ, 0) and A1 = (qδ, 1− qδ, 0), where 0 ≤ δ ≤ 1/32 and 0 ≤ qδ ≤ 1. Then,

D1/2(A0∥A1) ≥ ϕ(q) · δ

for ϕ(q) = (1 − √q)2 − q/16. The same conclusion holds when A0 = (1/2 −
δ/2, 1/2−δ/2, δ) and A1 = (1/2−qδ/2, 1/2−qδ/2, qδ). In particular, ϕ(q) > 1/2
for q ≤ 1/16.

Proof. The first claim is the same as [20, Lemma 8]. The second one follows
from the fact that the value

∑
x∈{0,1,⊥}

√
A0(x)A1(x) is the same as the first

case. ⊓⊔

3 Bit Security Framework of [20]

An n-bit game G = (X,R, {Oθ}θ), played by an inner adversary A and an outer
adversary B, consists of an algorithm X, a Boolean function R, and oracles
{Oθ}θ. The success probability of A is

εA = Pr
[
u

R←− {0, 1}n;x← X(u); a← A{Oθ(·)}θ (x) : R(u, x, a) = 1
]
.

We consider two types of games: decision games (n = 1) and search games
(n≫ 1). The success probability of the pair (A,B) is defined depending on the
game type. For decision games, the success probability of (A,B) is

εdecnA,B = Pr
[
u

R←− {0, 1}; b← BOdecn
A : b = u

]
, (3)

where Odecn
A is the oracle that, given the ith query, computes xi ← X(u) and

replies with ai ← A
{Oθ(·)}θ

i (xi). For search games, the success probability of
(A,B) is

εsrchA,B = Pr
[
{(j, aj)}j ← BOsrch

A : ∃i, (i, ai) ∈ b ∧R(ui, xi, ai) = 1
]
, (4)

where Osrch
A is the oracle that, given the ith query, chooses ui ∈ {0, 1}n uniformly

at random, computes xi ← X(ui), and replies with ai ← A
{Oθ(·)}θ

i (xi).
Let TA denote the computational complexity for running the experiment[

u
R←− {0, 1}n;x← X(u); a← A{Oθ(·)}θ (x)

]
.

For simplicity, we call TA the computational complexity (or cost) of A. We can
employ various computational complexity measures, such as time complexity
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and circuit complexity, as TA. The only restriction is that an N -times use of the
same algorithm of cost T can be done with cost NT . The bit security of an n-bit
game G = (X,R, {Oθ}θ) for error probability µ is defined to be

BSµG := min
A,B
{log2(NA,B · TA) : εA,B ≥ 1− µ}

= min
A

{
log2 TA + log2 min

B
{NA,B : εA,B ≥ 1− µ}

}
,

where NA,B is the number of invocations to A made by the outer adversary B
and εA,B is εdecnA,B for n = 1, and is εsrchA,B for n≫ 1. We say G has λ-bit security
if BSµG ≥ λ.

Roughly speaking, the bit security of the game is at least λ if the computa-
tional complexity of the adversary for achieving the success probability 1− µ is
at least 2λ. The bit security is defined without taking into account the computa-
tional complexity of B. The reason is that the complexity of B can be relatively
small compared to the total computational complexity; See [20] for details.

In [20], the authors showed that the bit security of decision games could be
characterized as9

BSµG = min
A

{
log2 TA + log2

⌈
1

AdvRenyi
G,A

⌉}
+O(1). (5)

where the Rényi advantage is defined as

AdvRenyi
G,A := D1/2(A0∥A1),

where Au is the output distribution of A in the game G under the condition that
u ∈ {0, 1} is chosen in the game. For the case of search games, the bit security
is characterized by the winning probability of A as usual. See Appendix A for
the detailed statements. When we want to emphasize that Au is the conditional
distribution of the output of A given secret value U = u, we denote PA|U (·|u).
We use Au and PA|U (·|u) interchangeably in the rest of the paper. For simplicity,
we may write AdvRenyi

A for AdvRenyi
G,A .

In [20], the bit security was defined based on a game in which an inner
adversary outputs a ∈ {0, 1}n. However, the general results in [20, Section 3],
where (5) and the theorems in Appendix A were derived, do not depend on
the fact that a ∈ {0, 1}n. Thus, for the convenience of relating the bit security
defined in [20] with another one in [16], we allow an inner adversary to output
the failure symbol ⊥.

For an adversary A for a decision game, we write Au = (Au(0), Au(1), Au(⊥))
for u ∈ {0, 1}. We may simply write Au = (Au(0), Au(1)) if A never outputs ⊥.

4 Rényi Advantage and Conditional Squared Advantage

This section discusses the connection between the Rényi advantage and the ad-
vantage used in [16], which we term the conditional squared (CS) advantage. The
9 The ceiling function appears since the inner adversary must be invoked at least once

even if the Rényi advantage is larger than 1.
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former was used in [20] to characterize their notion of bit security for decision
games; on the other hand, the latter was used in [16] to characterize their notion
of bit security for decision games.

Let ψ : {0, 1,⊥} → {1, 0,−1} be the function given by ψ(0) = 1, ψ(1) = −1,
and ψ(⊥) = 0. Then, we define (see also Appendix B)

AdvCS
A := E

[
ψ(A)√
E[ψ(A)2]

ψ(U)

]2
(6)

=

4

(
Pr(A = U)− 1

2 Pr(A ̸= ⊥)
)2

Pr(A ̸= ⊥)
(7)

= Pr(A ̸= ⊥)
(
2Pr(A = U |A ̸= ⊥)− 1

)2
. (8)

It can be verified that 0 ≤ AdvCS
A ≤ 1. Historically speaking, the expression

(6) was introduced by Levin in [15]; the expression (7) was introduced (up to
the constant factor of 4) by Hast in [13, Theorem 3] to characterize the success
probability of the modified Goldreich-Levin algorithm; Micciancio and Walter
introduced the expression (8) in [16, Theorem 1, Definition 10], and they initi-
ated the use of this quantity as an advantage to characterize their notion of bit
security.

Although the two notions of advantages AdvRenyi
A and AdvCS

A appear to be
different quantities, in fact, they are closely related quantitatively. We first show
that AdvCS

A can be upper bounded by AdvRenyi
A up to a constant.

Theorem 1. For an arbitrary adversary A for decision games, it holds that

AdvCS
A ≤ 4AdvRenyi

A . (9)

Proof. First, by noting that

Pr(A ̸= ⊥) = 1

2
(A0(0) + A1(0) + A0(1) + A1(1))

and

2Pr(A = U)− Pr(A ̸= ⊥) = 1

2
(A0(0)−A1(0) +A1(1)−A0(1)) ,

we can bound AdvCS
A as

AdvCS
A =

(A0(0)−A1(0) +A1(1)−A0(1))
2

2(A0(0) + A1(0) +A0(1) +A1(1))

≤ (|A0(0)−A1(0)|+ |A1(1)−A0(1)|)2

2(A0(0) +A1(0) +A0(1) +A1(1))

≤ max
a∈{0,1}

4(A0(a)−A1(a))
2

2(A0(0) + A1(0) +A0(1) +A1(1))

≤ max
a∈{0,1}

2(A0(a)−A1(a))
2

A0(a) +A1(a)
. (10)
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Next, by noting that the inequality

(s− t)2 = ((
√
s−
√
t)(
√
s+
√
t))2 ≤ 2(

√
s−
√
t)2

holds for any 0 ≤ s, t ≤ 1 satisfying s+ t = 1, we have

2(A0(a)−A1(a))
2

A0(a) +A1(a)
= 2(A0(a) +A1(a))

(
A0(a)

A0(a) +A1(a)
− A1(a)

A0(a) +A1(a)

)2

≤ 4(A0(a) +A1(a))

(√
A0(a)

A0(a) +A1(a)
−

√
A1(a)

A0(a) +A1(a)

)2

= 4
(√

A0(a)−
√
A1(a)

)2
≤ 4

∑
a′∈{0,1,⊥}

(√
A0(a′)−

√
A1(a′)

)2
= 8dHD(A0, A1)

2 (11)

for every a ∈ {0, 1}. Thus, by combining (10) and (11), and by using the left
inequality of (2), we have (9). ⊓⊔

Theorem 1 implies that, up to constant bits, if a decision game is λ bit secure
in [20], then it is also λ bit secure in the sense of [16].

In general, it is not possible to derive an upper bound on AdvRenyi
A in

terms of AdvCS
A . For instance, for the inversion attack mentioned in Section 1,

AdvRenyi
A = Θ(ε) while AdvCS

A = ε2. However, for a given adversary A, we can
always construct an adversary Ã having the same cost and AdvCS

Ã
is as large as

AdvRenyi
A .

Theorem 2. For an adversary A of a decision game satisfying AdvRenyi
A ≤ 1,

there exists an adversary Ã having the same cost as A, and it satisfies

AdvRenyi
A ≤ 12AdvCS

Ã
.

Proof. To prove Theorem 2, we use the following lemma from [16, Lemma 1].
Since the proof was absent in [16], we also give a proof for completeness.

Lemma 3 ([16]). For a given adversary A of a decision game and for each
symbol z ∈ {0, 1,⊥}, let Ãz be an adversary defined as follows: first Ãz run A;
if the output a of A satisfies a = z and A0(z) ≥ A1(z), then Ãz outputs 0; if the
output a of A satisfies a = z and A0(z) < A1(z), then Ãz outputs 1; otherwise
(i.e., a ̸= z), Ãz outputs ⊥.10 Then, Ãz has the same cost as A and satisfies

AdvCS
Ãz =

1

2

(A0(z)−A1(z))
2

(A0(z) +A1(z))
. (12)

10 Note that Ãz outputs only one of 0 or 1 and ⊥ with positive probability.
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Proof. The probability that Ãz does not output ⊥ is Pr(Ãz ̸= ⊥) = A0(z)+A1(z)
2 ,

and the probability that Ãz outputs the correct value is Pr(Ãz = U) = A0(z)
2 if

A0(z) ≥ A1(z) and Pr(Ãz = U) = A1(z)
2 if A0(z) < A1(z). Thus, by substituting

these probabilities into (7), we have (12). ⊓⊔

Now, we are ready to prove Theorem 2. Under the assumption AdvRenyi
A ≤ 1,

(2) implies

AdvRenyi
A = D1/2(A0∥A1)

≤ 4dHD(A0, A1)
2

= 2
∑

a∈{0,1,⊥}

(
√
A0(a)−

√
A1(a))

2

≤ 6 max
a∈{0,1,⊥}

(
√
A0(a)−

√
A1(a))

2

= 6 max
a∈{0,1,⊥}

(A0(a)−A1(a))
2

(
√
A0(a) +

√
A1(a))2

≤ 6 max
a∈{0,1,⊥}

(A0(a)−A1(a))
2

(A0(a) +A1(a))
.

Thus, by Lemma 3, we can construct an adversary Ã satisfying the claim of the
theorem. ⊓⊔

Since AdvRenyi
A can be unbounded while AdvCS

Ã
≤ 1, the assumption

AdvRenyi
A ≤ 1 in Theorem 2 is crucial. Even though AdvRenyi

A can be larger than
1 in general, by using Theorem 2 together with an additional argument, we can
show that λ bit security in the sense of [16] implies λ bit security in the sense
of [20] up to constant bits as follows. To prove the contraposition, suppose that
there exists an adversary A such that log TA+log⌈1/AdvRenyi

A ⌉ is smaller than λ
(i.e., not λ bit secure in the sense of [20]). If AdvRenyi

A ≤ 1, we can directly apply
Theorem 2 and conclude that the game is not λ bit secure in the sense of [16] as
well. When AdvRenyi

A > 1, for a parameter 0 ≤ θ ≤ 1, let us consider the following
adversary Aθ. First, Aθ flips a coin C that takes 1 with probability θ and 0 with
probability 1−θ; when C = 1, Aθ runs A and outputs A’s outcome; when C = 0,
Aθ always outputs ⊥. Then, the cost of this adversary is TAθ = TA + O(1),11
and the distributions of outcomes can be written as Aθ

u = θAu + (1 − θ)Atriv,
where Atriv(⊥) = 1. By the joint convexity of the Rényi divergence of order 1/2
[19, Theorem 11], we can verify that the Rényi advantage of Aθ given by

AdvRenyi
Aθ = D1/2(θA0 + (1− θ)Atriv∥θA1 + (1− θ)Atriv)

11 We assume that the cost is evaluated with respect to the worst case, such as the
circuit size. If the cost is evaluated on average, TAθ is as small as θTA + O(1).
However, we only use the fact that TAθ is smaller than TA + O(1) in the following
argument.
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is a convex (and thus continuous) function of 0 ≤ θ ≤ 1, and AdvRenyi
A0 = 0 and

AdvRenyi
A1 = AdvRenyi

A . Thus, there exists θ′ such that AdvRenyi

Aθ′ = 1. Since log TAθ′

is smaller than λ+O(1), by applying Theorem 2, we can show the existence of
an adversary Ãθ′

such that log TÃθ′ + log(1/AdvCS
Ãθ′ ) is smaller than λ up to a

constant, which implies that the game is not λ bit secure in the sense of [16].

4.1 A Sufficient Condition that AdvRenyi
A ≤ 1

We observe that the Rényi advantage must be at most 1 for some class of decision
games, although it is generally unbounded by definition. Intuitively, the class
consists of games such that the game for u = 0 is identical to the game for u = 1
with some probability.

Let G be a decision game. We write G = (G0, G1), where Gu is the game
when the secret is u ∈ {0, 1}. We say game G is identical to game G′ with
probability p if G is equal to G′ with probability p and is equal to some game
G′′ with probability 1− p.

Proposition 1. Let G = (G0, G1) be a decision game. If Gu is identical to
G1−u with probability at least 1/e for some u ∈ {0, 1}, then AdvRenyi

A ≤ 1 for
any adversary A.

Proof. Without loss of generality, we assume that G0 is identical to G1 with
probability γ ≥ 1/e. For an adversary A for game G, suppose that the output
distribution when u = 0 is A0 = (p0, p1, p⊥), where p0 + p1 + p⊥ = 1. Let
A1 = (p′0, p

′
1, p

′
⊥) be the output distribution when u = 1. By assumption, we

have p′a ≥ γ · pa for every a ∈ {0, 1,⊥}. Thus,∑
a∈{0,1,⊥}

√
A0(a)A1(a) =

∑
a∈{0,1,⊥}

√
pa · p′a ≥

√
γ ≥

√
1/e.

Hence, we have

AdvRenyi
A = −2 ln

∑
a∈{0,1,⊥}

√
A0(a)A1(a) ≤ −2 ln(

√
1/e) = 1.

⊓⊔

The hard-core predicate distinguishing game described in Section 5.1 satisfies
the condition in the proposition. In this game, the adversary receives (f(x), h(x))
for random input x when u = 0, and (f(x), σ) for random bit σ when u =
1, where f is a one-way function and h is its hard-core predicate. Since the
probability distribution of (f(x), σ) is equal to the distribution 1

2 (f(x), h(x)) +
1
2 (f(x), 1 − h(x)), the game for u = 1 is identical to the game for u = 0 with
probability 1/2, which is at least 1/e.

Note also that the Rényi advantage of an adversary cannot be larger than
the Rényi advantage achieved by computationally unbounded adversaries. In the
case of the above-mentioned hard-core predicate, we can verify that the Rényi
divergence between the distributions of (f(x), h(x)) and (f(x), σ) is bounded by
1.
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4.2 Comparison

Even though Theorem 1 and Theorem 2 imply that the two notions of bit security
in [16] and [20] are equivalent within a constant, we stress that two quantities
coincide only when we optimize over adversaries. In this section, we illustrate
the difference between the two notions of bit security for a typical attack that
may occur in the privately-verifiable primitives.

Difference in Privately-Verifiable Primitives. Let us consider an attack
against a decision Diffie-Hellman (DDH) problem using an oracle for a com-
putational Diffie-Hellman (CDH) problem. Let G be a polynomial-time group-
generation algorithm that outputs a description of a cyclic group G of prime
order p and a generator g ∈ G. The CDH problem is to compute gxy from
(gx, gy) for random x, y ∈ Zp. The success probability of an adversary A′ for the
CDH game of G is defined by

εcdhA′ = Pr
[
(G, p, g)← G;x, y

R←− Zp; a← A(G, p, g, gx, gy) : a = gxy
]

The DDH problem is to distinguish (gx, gy, gz) from (gx, gy, gxy) for random
x, y, z ∈ Zp. The success probability of A for the DDH game of G is defined by

εddhA = Pr

[
u

R←− {0, 1}; (G, p, g)← G;

x, y, z
R←− Zp; (g0, g1) = (gxy, gz)

: u← A(G, p, g, gx, gy, gu)

]
.

Let us consider the following adversary A for DDH invoking A′ as an oracle for
CDH. Given (gx, gy, gu), the adversary A invokes A′ with input (gx, gy) to obtain
a candidate w of gxy. Then, if w = gu, A outputs a = 0; otherwise, A outputs
a = 1. For this adversary, the output distribution Au of A given u is A0 =
(εcdhA′ , 1 − εcdhA′ ) and A1 = (εcdhA′ /p, 1 − εcdhA′ /p). Note that, for adversary A that
does not output ⊥, the CS advantage coincides with the square of the standard
advantage (total variation distance). Thus, we have AdvCS

A = (1− 1/p)2(εcdhA′ )2.
On the other hand, using Lemma 2, we can verify that the Rényi advantage is
AdvRenyi

A = Ω(εcdhA′ ). When εcdhA′ ≃ 2−λ, this attack implies that the bit security
of [16] must be at most 2λ, while that of [20] is reduced to λ.

Comparing Three Advantages. In Table 1 of Section 1.3, the standard ad-
vantage using the total variation distance AdvTV, the CS advantage AdvCS, and
the Rényi advantage AdvRenyi are compared for four types of attacks: (1) bal-
anced attack without ⊥; (2) unbalanced attack with ⊥; (3) unbalanced attack
without ⊥; and (4) balanced 0/1-unbalanced ⊥ attack.

The first two attacks already appeared in Section 1 as the linear test attack
and the inversion attack for PRG. The third attack appeared just above as
the DDH attack using the CDH oracle. For comparison, we introduce another
unusual attack for PRG as the fourth attack. Recall the situation in Section 1
where the adversary A, given (f(x), z), tries to distinguish whether z = h(x) or z
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is a random bit, where f is a one-way permutation, x is a random input, and h is
a hard-core predicate. We consider adversary A such that A tries to invert f(x)
and outputs ⊥ if the inversion succeeded and h(x) = z. Otherwise, A outputs a
random bit. The output distribution of A consists of A0 = (1/2−δ/2, 1/2−δ/2, δ)
and A1 = (1/2 − δ/4, 1/2 − δ/4, δ/2), where δ is the success probability of the
inversion attack. Note that the CS advantage of this adversary is 0 since it
outputs 0 and 1 with the same probabilities in either case of u ∈ {0, 1}.

For all types of attacks, the standard advantage is roughly δ. The values of
AdvTV and AdvCS are computed by a straightforward calculation; the values of
AdvRenyi can be derived by Lemma 1, Lemma 2, and Theorem 1. Note that the
bit security of [16] is roughly log 1

AdvCS and that of [20] is roughly log 1
AdvRenyi .

From the table, we can find that the two notions of bit security coincide for
the first two attacks; however, there are discrepancies for the last two attacks. As
discussed above, the CS advantage can be a square of the Rényi advantage for
the privately-verifiable problems. Furthermore, the fourth attack demonstrates
the CS advantage may take 0 even if the other advantages take Θ(δ). Although
AdvCS can be increased to the same level as AdvRenyi by using the transformation
of Theorem 2, it is possible to underestimate the adversary’s ability when using
AdvCS as evaluation. In this sense, it seems that AdvRenyi is preferable to AdvCS

when evaluating the impact of attacks.

5 Hard-Core Predicate Game

5.1 Distinguisher and Predictor

For a one-way function f : {0, 1}n → {0, 1}m, a function h : {0, 1}n → {0, 1} is
termed a hard-core predicate if the value of h(x) cannot be predicted from the
function output f(x). When we discuss the security of the hard-core predicate,
there are two types of formulations: the prediction game and the distinguishing
game. Even though it is more common to define the security of the hard-core
predicate in terms of the prediction game, since the distinguishing game is more
suitable for the formulation of bit security in [20], we first introduce the distin-
guishing game and later discuss the connection between the two formulations.

In the distinguishing game of hard-core predicate, when u = 0, an inner
adversary A observes (f(x), h(x)) for random x ∈ {0, 1}n; when u = 1, the inner
adversary A observes (f(x), σ), where σ is a random bit that is independent of
x. Based on the observation, the inner adversary A outputs an estimate a of u or
⊥. Then, the outer adversary B invokes the inner adversary NA,B times so that
the success probability εA,B of estimating u is at least 1−µ. The bit security of
the hard-core predicate is defined as the minimum of log2(NA,B · TA) under the
constraint εA,B ≥ 1− µ, where TA is the cost of the inner adversary.

On the other hand, in the prediction game of hard-core predicate, a predictor
P observes f(x), and outputs an estimate of h(x) or⊥. Following the terminology
in [13], a predictor P is said to be an (ε, δ)-predictor if the rate is

δ = Pr(P(f(x)) ̸= ⊥)
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and the advantage is

ε = Pr(P(f(x)) = h(x))− 1

2
Pr(P(f(x)) ̸= ⊥).

In other words, (ε, δ)-predictor P has CS advantage AdvCS
P = 4ε2

δ .
The following theorem connects the Rényi advantage of the distinguishing

game and the CS advantage of the prediction game.

Theorem 3. For a given one-way function f with hard-core predicate h, let A
be an inner adversary for the hard-core predicate distinguishing game. Then,
there exists a predictor P of the hard-core predicate that invokes A once and12

AdvCS
P ≥ 1

3
AdvRenyi

A . (13)

Proof. Using adversary A, similarly to [13, Section 6], we construct a predictor
as follows. Let PA|U (·|u) be the distribution of the output of A given u, i.e.,

PA|U (a|0) = Pr(A(f(x), h(x)) = a),

PA|U (a|1) = Pr(A(f(x), σ) = a).

Note the support of (f(x), h(x)) is included in the support of (f(x), σ).13 Thus, if
the adversary A outputs a symbol a with positive probability under u = 0, then
A must output a with positive probability under u = 1 as well, i.e., PA|U (·|0)≪
PA|U (·|1).

Let a⋆ ∈ {0, 1,⊥} be such that PA|U (a
⋆|1) > 0 and

max
a∈{0,1,⊥}:

PA|U (a|1)>0

(PA|U (a|0)− PA|U (a|1))2

PA|U (a|1)
=

(PA|U (a
⋆|0)− PA|U (a

⋆|1))2

PA|U (a⋆|1)
.

Then, by Lemma 1, we have

D1/2(PA|U (·|0)∥PA|U (·|1)) ≤ 3
(PA|U (a

⋆|0)− PA|U (a
⋆|1))2

PA|U (a⋆|1)
. (14)

We consider two cases separately.

When PA|U (a
⋆|0) ≥ PA|U (a

⋆|1) : In this case, we consider the following predictor
P. First, we sample the uniform random bit σ. Second,

– If A(f(x), σ) = a⋆, then P outputs σ;
– If A(f(x), σ) ̸= a⋆, then P outputs ⊥.

12 As we can find from the proof, the output alphabet of A being {0, 1,⊥} is not crucial;
the same argument goes through for any output alphabet A if replace the factor of
1
3

by 1
|A| in (13).

13 Here, the support is the set of realizations that occur with positive probability.
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The rate of this predictor is

δ = Pr(P(f(x)) ̸= ⊥)
= Pr(A(f(x), σ) = a⋆)

= PA|U (a
⋆|1).

On the other hand, the success probability of the predictor is

Pr(P(f(x)) = h(x)) = Pr(σ = h(x)) Pr(A(f(x), σ) = a⋆|σ = h(x))

= Pr(σ = h(x)) Pr(A(f(x), h(x)) = a⋆)

=
PA|U (a

⋆|0)
2

.

Thus, the advantage of this predictor is

ε = Pr(P(f(x)) = h(x))− 1

2
Pr(P(f(x)) ̸= ⊥)

=
PA|U (a

⋆|0)− PA|U (a
⋆|1)

2
.

Then, by using (14), we have

ε2

δ
=

(PA|U (a
⋆|0)− PA|U (a

⋆|1))2

4PA|U (a⋆|1)

≥ 1

12
D1/2(PA|U (·|0)∥PA|U (·|1)),

which implies (13).

When PA|U (a
⋆|0) < PA|U (a

⋆|1) : In this case, we consider the following predic-
tor. First, we sample the uniform random bit σ. Second,

– If A(f(x), σ) = a⋆, then P outputs σ ⊕ 1;
– If A(f(x), σ) ̸= a⋆, then P outputs ⊥.

The rate of this predictor is

δ = Pr(P(f(x)) ̸= ⊥)
= Pr(A(f(x), σ) = a⋆)

= PA|U (a
⋆|1).

On the other hand, the success probability of this predictor is

Pr(P(f(x)) = h(x)) = Pr(σ = h(x)⊕ 1, A(f(x), σ) = a⋆)

= Pr(A(f(x), σ) = a⋆)− Pr(σ = h(x), A(f(x), σ) = a⋆)

= PA|U (a
⋆|1)− Pr(σ = h(x)) Pr(A(f(x), σ) = a⋆|σ = h(x))

= PA|U (a
⋆|1)− Pr(σ = h(x)) Pr(A(f(x), h(x)) = a⋆)

= PA|U (a
⋆|1)−

PA|U (a
⋆|0)

2
.
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Thus, the advantage of this predictor is

ε = Pr(P(f(x)) = h(x))− 1

2
Pr(P(f(x)) ̸= ⊥)

=
PA|U (a

⋆|1)− PA|U (a
⋆|0)

2
.

Then, by using (14), we have

ε2

δ
=

(PA|U (a
⋆|1)− PA|U (a

⋆|0))2

4PA|U (a⋆|1)

≥ 1

12
D1/2(PA|U (·|0)∥PA|U (·|1)),

which implies (13). ⊓⊔

As a corollary of Theorem 3, we show that the CS advantage of the adversary
for the hard-core predicate (distinguishing) game can be bounded below by the
Rényi advantage (divided by twelve).

Corollary 1. For a given one-way function f with hard-core predicate h, let
A be an inner adversary for the distinguishing game. Then, there exists an ad-
versary A′ of the hard-core predicate distinguishing game that invokes A once
and

AdvCS
A′ ≥

1

12
AdvRenyi

A .

Proof. By Theorem 3, there exists an (ε, δ)-predictor P that invokes A once
and ε2

δ ≥
1
12Adv

Renyi
A . Let A′ be an adversary defined as follows for given input

(f(x), z):

– If P(f(x)) = z, then A′ outputs 0;
– If P(f(x)) = z ⊕ 1, then A′ outputs 1;
– If P(f(x)) = ⊥, then A′ outputs ⊥.

Obviously, the rate of this adversary is

Pr(A′(f(x), z)) ̸= ⊥) = Pr(P(f(x)) ̸= ⊥) = δ.

Furthermore, the advantage of this adversary is

Pr(A′(f(x), z) = U)− 1

2
Pr(A′(f(x), z) ̸= ⊥)

=
1

2
Pr(P(f(x)) = h(x)) +

1

2
Pr(P(f(x)) = σ ⊕ 1)− 1

2
Pr(A′(f(x), z) ̸= ⊥)

=
1

2
Pr(P(f(x)) = h(x)) +

1

2
Pr(P(f(x)) ̸= ⊥) · 1

2
− 1

2
Pr(A′(f(x), z) ̸= ⊥)

=
1

2
ε.

Thus, the CS advantage of this adversary is AdvCS
A′ = ε2

δ ≥
1
12Adv

Renyi
A . ⊓⊔
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5.2 Reduction by Goldreich-Levin Algorithm

For a given one-way function f(x), let g(x, r) = (f(x), r) be a function from
{0, 1}n×{0, 1}n to {0, 1}m×{0, 1}n. Then, it is known that h(x, r) = x · r plays
a role in the hard-core predicate. This section aims to connect the bit security
of g(x, r) and the bit security of the hard-core predicate h(x, r). To that end,
we consider the reduction algorithm, the so-called Goldreich-Levin algorithm.
In order to evaluate the efficiency of the Goldreich-Levin algorithm, we use the
following result by Hast [13].
Theorem 4 ([13]). Let P be a predictor of the hard-core h(x, r) = x · r with
cost TP . Define t = log(4/AdvCS

P ). Then, there exists an algorithm Inv that runs
in cost (expected time) (TP + t log n) · t · O(n2) and satisfies

Pr
x∈R{0,1}n

(
f(Inv(f(x)) = f(x)

)
= Ω

(
AdvCS

P

)
.

By combining Theorem 4 and Theorem 3, we have the following estimate
of the efficiency of the Goldreich-Levin algorithm in terms of the bit security,
which is a generalization of [20, Theorem 4] for adversaries without β-balanced
assumption.
Theorem 5. Let f : {0, 1}n → {0, 1}m be a λ-bit secure one-way function.
Then, for a function g(x, r) = (f(x), r), the function h(x, r) = x · r is a (λ−α)-
bit secure hard-core predicate for g, where α = log

(
((λ + 2) log n) · (λ + 2) ·

O(n2)
)
+ log ln(1/µ) +O(1).

Proof. Assume for contradiction that h is not (λ − α)-bit secure hard-core for
g. Then, by Theorem 9, there exists an inner adversary A (for the distinguish-
ing game of the hard-core predicate) such that the cost is TA and the Rényi
advantage is

AdvRenyi
A >

TA
2(λ−α)

· ln(1/4µ).

By Theorem 3, there exists a predictor P of the hard-core predicate h with cost
TA such that

AdvCS
P >

TA
2(λ−α)+1

ln(1/4µ).

Then, by Theorem 4, there exists an inner adversary A′ of the OWF game that
run in cost TA′ = (TA + t log n) · t · O(n2) with success probability εA′ = Ω(TA ·
2−(λ−α)), where t = log(4/AdvCS

P ) ≤ λ+2. It follows from Theorem 8 that the bit
security of OWF game is bounded above by log TA′+log(1/εA′)+log ln(1/µ)+1,
which is at most14

λ− α+ log
(
((λ+ 2) log n) · (λ+ 2) · O(n2)

)
+ log ln(1/µ) +O(1).

By choosing α = log
(
((λ + 2) log n) · (λ + 2) · O(n2)

)
+ log ln(1/µ) + O(1), f

is not a λ bit secure one-way function, a contradiction. Hence, the statement
follows. ⊓⊔
14 We assume TA ≥ 1.
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6 Search Games as Decision Games

We show that every λ-bit secure search game can be formalized as a decision
game with (almost) λ-bit security. The search game is usually defined such that
the adversary’s success probability is small enough. Hence, it seems natural to
define the decision game where the adversary tries to distinguish the following
two cases of real and ideal games. While the real game is almost the same as
the original search game, the ideal game is an idealized one where the adver-
sary’s solution will never be approved. For example, the unforgeability game of
the signature scheme is usually defined as a search game. We may define the
corresponding ideal game such that the adversary cannot forge the signature.
Such games often appear in game-hopping security proofs. When a party gen-
erates a secure signature of a message in a security game, we usually consider
another game in which the forgery of the message is never approved. We realize
the approval of the solution of the search game by adding an oracle in a decision
game.

For an n-bit search game G = (X,R, {Oθ}θ), we define the canonical decision
game G′ of G such that G′ = (X,R′, O′) is a 1-bit game where the success
probability of an inner adversary A is

εA = Pr

[
u′

R←− {0, 1};u R←− {0, 1}n;

x← X(u); a′ ← AO′
(x)

: a′ = u′

]
,

where O′ = {Oθ}θ ∪Oaprv and Oaprv is an oracle that can be accessed only once
and is defined as

Oaprv(a) =

{
1 (R(u, x, a) = 1) ∧ (u′ = 0)

0 otherwise
.

The additional oracle Oaprv answers whether the given value a satisfies the re-
lation R only when u′ = 0. In the ideal game, where u = 1, the oracle always
answers 0, meaning that every valid solution a is never approved.

We show that the canonical game preserves the bit security of the underlying
search game. The result implies no bit-security loss in transforming original
games into such idealized games. It also justifies that every search game can be
defined as a decision game.

Theorem 6. If a search game G satisfies

BSµG ≥ λ+ log2
ln(1/µ)

ln(1/4µ)
+ 2,

then the corresponding canonical decision game G′ satisfies BSµG′ ≥ λ. Con-
versely, if G′ satisfies

BSµG′ ≥ λ+ log2
ln(1/2µ)

1− µ
+ 2,

then G satisfies BSµG ≥ λ.
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Proof. Suppose that BSµG′ < λ. It follows from Theorem 9 that there is an inner
adversary A with computational complexity TA for game G′ that satisfies

dHD(A0, A1)
2 >

TA · ln(1/4µ)
2λ+1

for λ ≥ log2 ln(1/4µ). By (1), we have

dTV(A0, A1) >
TA · ln(1/4µ)

2λ+1
.

Since the only way that A obtains the information on u′ is to make queries to
Oaprv, the above inequality implies that A queries a value a to Oaprv satisfying
R(u, x, a) = 1 with probability more than TA · ln(1/4µ)/2λ+1. Hence, A can be
used as an inner adversary of the search game G. Namely, the inner adversary
simulates A and monitors the oracle queries of A. If A queries a to the oracle
Oaprv, the adversary outputs a. It follows from Theorem 8 that

BSµG < log2 TA + λ+ 1− log2(TA · ln(1/4µ)) + log2 ln(1/µ) + 1

= λ+ log2
ln(1/µ)

ln(1/4µ)
+ 2,

a contradiction.
For the other direction, suppose that BSµG < λ. Theorem 2 of [20] implies

that there is an inner adversary A with computational complexity TA for game
G that satisfies the success probability

εA >
TA(1− µ)

2λ
.

Consider an inner adversary A′ of game G′ that simulates a← A and queries a
to Oaprv. Finally, A′ outputs 0 if the answer from Oaprv is 1, and 1 otherwise.
The computational complexity of A′ is TA. Let A′

u′ be the output distribution
of A′ when u′ ∈ {0, 1} is chosen as a secret. Then, Pr[A′

0 = 0] > TA(1− µ)/2λ
and Pr[A′

1 = 0] = 0. By using [20, Lemma 8] with q = 0, we have

D1/2(A
′
0∥A′

1) >
TA(1− µ)

2λ
.

Theorem 1 of [20] implies that

BSµG′ < log2 TA + λ− log2(TA(1− µ)) + log2 ln(1/2µ) + 2

= λ+ log2
ln(1/2µ)

1− µ
+ 2,

a contradiction. ⊓⊔

Theorem 6 implies that all the security games we need to consider are decision
games if a constant difference of bit security can be ignored.
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7 Distribution Replacement Theorem

Let G = (X,R, {Oi}i) be an n-bit security game. Suppose that G uses a prob-
ability distribution Q in a black-box manner. Namely, whenever some player
makes a query to Q, the player will receive a sample according to Q. We denote
the game by GQ for clarity. Let P be another distribution that is supposed to
be (computationally) close to Q. The question is, when GQ is λ-bit secure, to
what extent does Q need to be indistinguishable from P to preserve that GP is
λ-bit secure? We prove a natural reduction showing that λ-bit secure indistin-
guishability is sufficient to replace the ideal distribution Q.

Before proving the theorem, we formally define the distribution indistin-
guishability game. For two distributions P and Q, let Gind

P,Q = (X,R,O) be a
1-bit security game such that X is empty, the oracle O outputs a sample from
P when u = 0, and Q otherwise, and R(u, x, a) = 1 ⇔ u = a. Namely, the
game is to discriminate between P and Q by oracle queries. For example, if
D1/2(P∥Q) ≤ 2−λ, the number of samples needed to distinguish P from Q must
be Ω(2λ), which is a standard result of the Bayesian hypothesis testing. Since
the number of samples is a lower bound of the computational complexity for the
discrimination with high probability, the bit security must be at least λ−O(1).

Due to Theorem 6, it is sufficient to prove the theorem for decision games.

Theorem 7. Let GQ be a 1-bit security game with black-box access to distri-
bution Q. Let P be a probability distribution such that game Gind

P,Q has λ-bit
security. If game GQ has λ-bit security, then game GP has (λ− α)-bit security
for α = 3 + log2(ln(1/2µ)/ ln(1/4µ)).

Proof. Suppose that GP is not (λ − α)-bit secure. By Theorem 9, there is an
inner adversary A for game GP with computational complexity TA such that

dHD(A
P
0 , A

P
1 ) >

√
TA · ln(1/4µ)

2λ−α+1
(15)

for λ ≥ log2 ln(1/4µ), where AP
u is the output distribution of A when u ∈ {0, 1}

is chosen in GP . We define AQ
0 and AQ

1 for the game GQ similarly.
For a 1-bit game G, we write G := (G0, G1), where Gu is the game G in

which the secret bit u ∈ {0, 1} is chosen. In other words, G is the game where a
secret bit u ∈ {0, 1} is randomly chosen and plays game Gu.

By following the above notation, we write GD = (GD
0 , G

D
1 ) for D ∈ {P,Q}.

Also, we define a new game GP,Q
u := (GP

u , G
Q
u ). Consider an inner adversary

A for the game GD. For u ∈ {0, 1} and D ∈ {P,Q}, let AD
u be the output

distribution of A in GD when u is chosen as the secret bit. Then, by definition,
we have

AdvRenyi
GD,A

= D1/2(A
D
0 ∥AD

1 ) and AdvRenyi

GP,Q
u ,A

= D1/2(A
P
u ∥AQ

u )

for u ∈ {0, 1} and D ∈ {P,Q}.
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We show that the Rényi advantage of A in game GP,Q
u is bounded by that in

Gind
P,Q. We construct an inner adversary Ã for the game Gind

P,Q by using A. The
adversary Ã runs the game GP,Q

u in which A plays. Whenever the game makes
an oracle query, Ã replies with an answer obtained by querying to the oracle O.
By definition of Gind

P,Q, each answer from O is an independent sample according
to P if the secret bit ũ of Gind

P,Q is 0, and Q otherwise. Thus, Ã correctly simulates
A in the game GP

u when ũ = 0, and GQ
u otherwise. Finally, Ã outputs the same

value as those of A in GP,Q
u . Note that Ã is an inner adversary of Gind

P,Q and its
computational complexity is TA. Since Gind

P,Q has λ-bit security, it follows from
Theorem 8 that

λ ≤ BSµ
Gind

P,Q

≤ log2

TA · ln(1/2µ)
AdvRenyi

Gind
P,Q,Ã

 , (16)

where AdvRenyi

Gind
P,Q,Ã

= D1/2(Ã
P ∥ÃQ), and ÃD is the output distribution of Ã in

game Gind
P,Q when the oracle outputs a sample according to D. Since Ã correctly

simulates A in the game GP,Q
u , we have

AdvRenyi

Gind
P,Q,Ã

= AdvRenyi

GP,Q
u ,A

= D1/2(A
P
u ∥AQ

u ). (17)

Thus, by (2), (16), and (17),

dHD(A
P
u , A

Q
u ) ≤

√
1

2
·D1/2(AP

u ∥A
Q
u ) ≤

√
TA · ln(1/2µ)

2λ+1
(18)

for u ∈ {0, 1}.
The triangle inequality of dHD and (18) implies that

dHD(A
P
0 , A

P
1 ) ≤ dHD(AP

0 , A
Q
0 ) + dHD(A

Q
0 , A

Q
1 ) + dHD(A

Q
1 , A

P
1 )

≤ dHD(AQ
0 , A

Q
1 ) +

√
TA · ln(1/2µ)

2λ−1
. (19)

It follows from (15) and (19) that

dHD(A
Q
0 , A

Q
1 ) >

√
TA · ln(1/4µ)

2λ−α+1
−
√
TA · ln(1/2µ)

2λ−1

≥
√

2TA · ln(1/2µ)
2λ

by assumption on α. Then, we have

AdvRenyi
A,GQ = D1/2(A

Q
0 ∥A

Q
1 ) ≥ 2dHD(A

Q
0 , A

Q
1 )

2 >
4TA · ln(1/2µ)

2λ
.

By Theorem 8, the bit security of GQ is at most

log2 TA + log2

(
1

AdvRenyi
A,GQ

)
+ log2 ln(1/2µ) + 2 < λ,
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a contradiction. Therefore, we have shown that GP is (λ− α)-bit secure. ⊓⊔

Theorem 7 is a generalization of [20, Theorem 9], where the condition is that
dHD(P,Q) ≤ 2−λ/2. The above theorem only requires a computational condition
that Gind

P,Q has λ-bit security.

7.1 Application to Randomness Extraction

A randomness extractor is a procedure that converts a min-entropy source to
an almost uniform distribution. The min-entropy of distribution X over {0, 1}n
is defined as Hmin(X) = − log2 maxx∈{0,1}n PX(x). Here, we define a seeded
extractor through a 1-bit security game.

Definition 1. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is said to be a
(k, λ)-extractor if for every distribution X over {0, 1}n with Hmin(X) ≥ k, a
1-bit security game Gext

Ext,X := Gind
P,Q has λ-bit security for P = (Ext(X,S), S)

and Q = Um+d, where S = Ud.

The above is a definition of a computational extractor. We can define an
information-theoretic extractor as usual. Although the total variation distance
is usually used for the definition, the Rényi divergence of order 1/2 is a natural
choice for cryptographic purposes, as we have seen so far. We say Ext is a (k, ε)-
it-extractor if for every distribution X with Hmin(X) ≥ k,

D1/2((Ext(X,S), S)∥Um+d) ≤ ε.

We can see that if Ext is a (k, 2−λ)-it-extractor, then Ext is a (k, λ)-extractor.
It is well-known that a family of universal hash functions gives an

information-theoretic extractor. The claim is also known as the leftover hash
lemma (LHL) [6,14]. Although the lemma usually says that the extractor’s out-
put is close to the uniform distribution in the total variation distance, we need the
closeness in the Rényi divergence of order 1/2. We have the following strength-
ened version of the leftover hash lemma.

Lemma 4 (LHL for Rényi Divergence). Let H = {H : {0, 1}n → {0, 1}m}
be a universal family of hash functions; Namely, for any distinct x, x′ ∈ {0, 1}n,
PrH∼H(H(x) = H(x′)) ≤ 2−m. Suppose that |H| = 2d and m = k − λ − 1.
Then, function Ext : {0, 1}n × {0, 1}d → {0, 1}m defined by Ext(x,H) = H(x) is
a (k, 2−λ)-it-extractor.

Proof. It is shown in [21, Theorem 3] that the construction of Ext gives an
extractor for the Hellinger distance15. Namely, for the defined parameters, we
have that

dHD((Ext(X,S), S), Um+d) ≤ 2−(λ+2)/2.

15 The claim can also be recovered by combining the leftover hash lemma of [5] for the
KL divergence D and the relation that dHD(P,Q)2 ≤ D1/2(P∥Q) ≤ D(P∥Q).
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By (2), it holds that

D1/2((Ext(X,S), S)∥Um+d) ≤ 4 · dHD((Ext(X,S), S), Um+d)
2 ≤ 2−λ.

Hence, the statement follows. ⊓⊔

We apply Theorem 7 to the LHL. We consider replacing the seed of the
extractor with the output of a pseudorandom generator (PRG). Suppose that g :
{0, 1}d′ → {0, 1}d is a λ-bit secure PRG. In other words, the game Gind

g(Ud′ ),Ud
has

λ-bit security. Since the extractor of Lemma 4 is a (k, λ)-extractor, Theorem 7
guarantees that the seed of the LHL can be replaced by the output of g. Namely,
the distribution (H(X), g(S′)) is λ-bit secure indistinguishable from the uniform
distribution Um+d, where X is a source with Hmin(X) ≥ k, S′ = Ud′ , and H is
randomly chosen from a family of universal hash functions using the seed g(S′).16

Entropy Loss in LHL. The entropy loss of (k, ε)-it-extractors Ext : {0, 1}n ×
{0, 1}d → {0, 1}m is defined as k − m, which is the amount of entropy lost
for extracting randomness from entropy sources. It is proved in [17] that the
entropy loss of 2 log(1/ε) is necessary for constructing a (k, ε)-it-extractor where
the closeness ε is measured in the total variation distance. Large entropy loss is
critical for applications where the amount of entropy is limited, such as biometric
information. Barak et al. [3] showed that the loss could be reduced to log(1/ε) for
some applications, including several decision primitives and all search primitives.
It is shown in [21] that the same entropy loss can be achieved in the framework
of [16]. The entropy loss for preserving λ-bit security in the above lemma is λ+1.
Thus, the framework of [20] could reduce the entropy loss in LHL by half, as
similarly shown in [3,21].

8 Future Perspective

This paper has shown that the two notions of bit security in [16] and [20] are
equivalent by proving that the CS and the Rényi advantages can be related.
Thus, in future research on bit security, we can flexibly use these two advantages
depending on the situation. For instance, as seen in Section 5, the CS advantage
might be useful in the context of reduction via decoding with erasure (cf. [13]).
On the other hand, we might use nice properties of the Rényi divergence, such as
the convexity, to evaluate the Rényi advantage for certain types of randomized
adversaries.

16 Barak et al. [3] studied a similar but different problem. In [3, Section 4], they con-
sidered the problem trying to achieve that (Ext(X, g(S′)), S′) is close to the uniform
distribution. Namely, the seed S′ of the PRG g is revealed. In our case, g(S′) is
revealed but not S′.
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A Characterization of Bit Security of [20]

The following theorems are the characterization proved in [20].

Theorem 8. [20, Theorem 1] Let G be an n-bit security game, and A be its
inner adversary with success probability εA > 0, computational complexity TA,
and Rényi advantage AdvRenyi

A > 0. Then, we have

BSµG ≤


log2 TA + log2

(
1
εA

)
+ log2 ln(1/µ) + 1 n > 1

log2 TA + 2 log2

(
1

2(εA−1/2)

)
+ log2 ln(1/2µ) + 2 n = 1

log2 TA + log2

(
1

AdvRenyi
A

)
+ log2 ln(1/2µ) + 2 n = 1

.

Theorem 9. [20, Theorem 2] If an n-bit game G is not λ-bit secure, i.e.,
BSµG < λ, then there exists an inner adversary A for the game such that A
has computational complexity TA and satisfies

εA >
TA
2λ

(1− µ)

for the search-type game n > 1; and

AdvRenyi
A = D1/2(PA|U (·|0)∥PA|U (·|1)) >

TA
2λ
· ln (1/4µ)

and

dHD(PA|U (·|0), PA|U (·|1)) > min

{
1√
2
,

√
TA
2λ+1

· ln (1/4µ)

}
.

for the decision-type game n = 1.

B Equivalence of (6)-(8)

Note that

E[ψ(A)2] = Pr(A ̸= ⊥) (20)

and

E[ψ(A)ψ(U)] = Pr(A = U)− Pr(A ̸= ⊥, A ̸= U)

= Pr(A = U)−
(
Pr(A ̸= ⊥)− Pr(A ̸= ⊥, A = U)

)
= 2Pr(A = U)− Pr(A ̸= ⊥), (21)

where we used

Pr(A = U) = Pr(A ̸= ⊥, A = U) (22)

in the third equality. By substituting (20) and (21) into (6), we have (7). By
noting (22), (8) follows from (7).
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