
Authentication in the Bounded Storage Model

Yevgeniy Dodis∗

NYU
Willy Quach†

Northeastern
Daniel Wichs‡

Northeastern and NTT Research.

May 31, 2022

Abstract

We consider the streaming variant of the Bounded Storage Model (BSM), where the honest parties
can stream large amounts of data to each other, while only maintaining a small memory of size n. The
adversary also operates as a streaming algorithm, but has a much larger memory size m � n. The goal
is to construct unconditionally secure cryptographic schemes in the BSM, and prior works did so for
symmetric-key encryption, key agreement, oblivious transfer and multiparty computation. In this work,
we construct message authentication and signatures in the BSM.

First, we consider the symmetric-key setting, where Alice and Bob share a small secret key stored.
Alice can authenticate arbitrarily many messages to Bob by streaming long authentication tags of size
k > m, while ensuring that the tags can be generated and verified using only n bits of memory. We show
a solution using local extractors (Vadhan; JoC ’04), which allows for up to exponentially large adversarial
memory m = 2O(n), and has tags of size k = O(m).

Second, we consider the same setting as above, but now additionally require each individual tag to
be small, of size k ≤ n. We show a solution is still possible when the adversary’s memory is m = O(n2),
which is optimal. Our solution relies on a space lower bound for leaning parities (Raz; FOCS ’16).

Third, we consider the public-key signature setting. A signer Alice initially streams a long verification
key over an authentic channel, while only keeping a short signing key in her memory. A verifier Bob
receives the streamed verification key and generates a short verification digest that he keeps in his memory.
Later, Alice can sign arbitrarily many messages using her signing key by streaming large signatures to
Bob, who can verify them using his verification digest. We show a solution for m = O(n2), which we
show to be optimal. Our solution relies on a novel entropy lemma, of independent interest. We show
that, if a sequence of blocks has sufficiently high min-entropy, then a large fraction of individual blocks
must have high min-entropy. Naive versions of this lemma are false, but we show how to patch it to
make it hold.

∗E-mail:dodis@cs.nyu.edu. Partially supported by gifts from VMware Labs and Google, and NSF48 grants 1815546 and
2055578.

†E-mail:quach.w@northeastern.edu
‡E-mail:wichs@ccs.neu.edu. Daniel Wichs is partially supported by NSF grants CNS-1750795, CNS-2055510 and the Alfred

P. Sloan Research Fellowship.

Contents

1 Introduction 1
1.1 Our Results . 3
1.2 Our Techniques . 4

2 Preliminaries 8
2.1 Information Theory . 8

3 Definitions 10
3.1 Message Authentication Codes . 10
3.2 Signatures . 12

4 Block Entropy Lemma 13

5 MAC with Long Tags 16
5.1 Construction . 16

6 MAC with Short Tags 20
6.1 Hardness of Learning Parities . 20
6.2 Construction without Verification Queries . 21
6.3 Domain Extension for MACs . 23
6.4 Efficiently Recognizing Prior Tagging Queries . 24
6.5 Upgrading to Security with Verification Queries . 28

7 Public-Key Signatures 30
7.1 Set Key-Agreement Protocol . 30
7.2 From Set Key Agreement to Signatures . 34
7.3 Lower Bound for Signatures . 36

i

1 Introduction

It is well known that there are strong restrictions on what cryptography can achieve without imposing any
limits on the adversary’s resources. In particular, Shannon showed that Alice and Bob cannot communicate
secretly over an insecure channel, unless they share a secret key that is at least as large as the total size of the
messages exchanged. Similarly, Alice and Bob cannot ensure the authenticity of their communication over
an insecure channel, unless they share a secret key that is at least as large as the total number of messages
exchanged. In either case, no security is possible in the public-key setting, when Alice and Bob have no
shared secrets to begin with. Traditionally, cryptography has focused on overcoming the above limitations
by restricting the adversary Eve to run in polynomial time. Unfortunately, the security of such schemes
relies on unproven computational hardness assumptions, and at the very least, requires that P 6= NP .

The Bounded Storage Model (BSM) [Mau92] offers an alternative by bounding the attacker’s space
instead of her run time. The goal is to construct unconditionally secure cryptographic schemes in the
BSM, without relying on any unproven assumptions. A long series of prior works [CM97, CCM98, Din01,
HCR02, ADR02, DM02, Lu02, Vad04, DHRS07, Raz16, KRT17, Raz17, GRT18, GZ19, DQW21] showed
how to achieve symmetric-key encryption, key agreement, oblivious transfer and multiparty computation in
the BSM. In this work, we show how to achieve (symmetric-key) message authentication and (public-key)
signatures in the BSM. We first begin by describing the BSM and survey what was done in prior work. We
then turn to the problem of authentication in the BSM, and describe our results.

The Bounded Storage Model (BSM). In the bounded storage model (BSM), we restrict the storage
capacity rather than the run-time of the adversary. Two distinct variants of the BSM exist in the literature,
and we follow the terminology of [DQW21] to distinguish between them.

The default variant for this work will be the streaming BSM [Raz16, GZ19, DQW21]. In the streaming
BSM, parties are modeled as streaming processes, that can send and receive large amounts of data between
them by processing it one bit at a time, while only maintaining a small amount of memory. We denote the
memory bound for the honest parties by n and the memory bound for the adversary by m. Typically, we
assume the adversary has much higher resources than the honest parties, namely m � n. Although the
honest parties only have a small amount of memory, they can stream large amounts of communication k > m,
so as to overwhelm the memory capacity of the adversary and prevent it from storing the communication
between them in its entirety. Still, the honest parties are restricted to remembering even less about the
exchanged communication than the adversary can remember! Surprisingly, as we will see, this suffices to
construct many powerful cryptographic primitives in the BSM.

We contrast the streaming BSM with an earlier variant, referred to as the traditional BSM [Mau92]. In
the traditional BSM, a trusted third party (potentially, some natural process) broadcasts a long uniformly
random string X ∈ {0, 1}k referred to as a randomizer string. The honest parties can store a subset of n
physical locations of X, while the adversary can store any m bis of information about X. After that, the
string X disappears, and the adversary gets unrestricted additional memory.

Most cryptographic schemes in the traditional BSM naturally translate to the streaming BSM by having
one of the parties generate and stream the randomizer string X. However, looking forward, this will not be
the case when it comes to authentication. The traditional BSM guarantees that the honest parties all get
access to the same trusted randomizer string X, while in the streaming model, the adversary can tamper with
any value X sent by one honest party to another. This makes the authentication problem in the streaming
BSM more natural, but potentially harder than in the traditional BSM, since the latter already implicitly
assumes a mechanism for authenticating X.

On the other hand, the traditional BSM has additional features that we don’t require in the streaming
BSM: (a) in the traditional BSM, there is only one long randomizer string X used in each cryptographic
operation, whereas in the streaming BSM, the parties can stream many long messages, (b) in the traditional
BSM, the long string X is uniformly random, while in the streaming BSM, the streamed messages can
have arbitrary structure, (c) in the traditional BSM, the honest parties can only access a small subset of
locations in X, while in the streaming BSM, the parties read the entire communication while maintaining

1

small local memory, (d) in the traditional BSM, the adversary is only limited to remembering m bits of
information about X and gets unlimited memory otherwise, while in the streaming BSM, the adversary
observes communication in a streaming manner and is limited to m bits of memory overall. While some of
our schemes do achieve some of these additional features, we view this as being of secondary importance and
will only mention this in passing; our focus will be on the streaming BSM as our default model.

Prior Work in the BSM. The seminal work of Maurer [Mau92] introduced the traditional BSM. A series
of papers [Mau92, DR02, ADR02, DM02, Lu02, Vad04] showed how to achieve symmetric-key encryption in
the traditional BSM, where the honest parties share a short secret key that they can use to encrypt arbitrarily
many messages (i.e., CPA security). Each encryption relies on a fresh randomizer string X. The main
technical tool in all these works was nicely abstracted in the work of Vadhan [Vad04] as a locally computable
(seeded) extractor, which can extract randomness from a long string X by only reading a few locations of
X. Overall, these works show that symmetric-key encryption is possible even if the adversarial memory
m = 2O(n) can be up to exponentially larger than honest user memory n, as long as the ciphertext size (in
which we include the size of the randomizer string) can be sufficiently large k = O(m).1 In particular, if we
also want the ciphertext size to be polynomial, then we have to restrict the adversarial memory m = poly(n)
to be some arbitrarily large polynomial.

The works of [CM97, CCM98, Din01, HCR02, DHRS07] showed that it is also possible to achieve public
key agreement, oblivious transfer, and general multi-party computation with arbitrary corruptions thresholds
in the traditional BSM when m = O(n2), and this was shown to be optimal by [DM04].

All of the above results in the traditional BSM also carry over to the streaming BSM, by having one of
the honest parties generate the randomizer string X. However, it turns out that one can often do better in
the streaming BSM. The work of Raz [Raz16] proved memory lower bounds for learning parity, and used
these to construct novel symmetric-key encryption in the streaming BSM with small ciphertexts of size < n,
and with m = O(n2), which is tight. In particular, each individual ciphertext is small enough that it can
even fully fit in honest user memory, but the adversary does not have enough memory to remember too
many ciphertexts. Follow-up works [KRT17, Raz17, GRT18] generalized this result and showed that, for up
to exponentially large m = 2O(n), one can achieve ciphertext size O(m/n), improving by a factor of n over
the prior results in the traditional BSM.2 The work of [GZ19] studied key agreement and oblivious transfer
in the streaming BSM, and showed how to use Raz’s lower-bound to construct new protocols that improve
over the prior works in the traditional BSM by removing any correctness error and mildly reducing the
number of rounds and the communication cost, while still requiring that the adversarial memory is bounded
by m = O(n2). The recent work of [DQW21] noticed that the lower bound of m = O(n2) from [DM04] does
not hold in the streaming BSM, and showed how to achieve key agreement, oblivious transfer, and general
multiparty computation in the streaming BSM, even when the adversarial memory m = 2O(n) can be up
to exponentially larger than honest user memory n, at the cost of growing the round and communication
complexities polynomially with m.

The work of [DR02] also considered symmetric-key authentication in the traditional BSM, where parties
have a short shared secret key and can use it to authenticate a large number of messages, by using a fresh
(authentic) randomizer string X to authenticate each message. The construction is very simple – it uses a
local extractor to extract a fresh secret key for a one-time message-authentication code (1-time MAC) from
X, and then uses the 1-time MAC with this key to authenticate the message. Unfortunately, unlike all the
previous results in the traditional BSM, this solution cannot immediately be ported to the streaming BSM:
if one of the parties generates X and streams it, then the adversary can tamper with it. Indeed, this would
result in a completely insecure scheme in the streaming BSM.

1Throughout the introduction, we ignore polynomial factors in the security parameter.
2The above bound is for 1-bit messages and is optimal; if the adversary can store > n ciphertexts under an n-bit key, then

she can learn something about the encrypted messages via the Shannon lower bound.

2

1.1 Our Results

In this work, we study the problem of message authentication and signatures in the streaming BSM. We
study three variants of the problem, as outlined below.

Symmetric-Key Authentication. We start with the symmetric-key setting, where Alice and Bob share
a short secret key sk, that they store in their n-bit memory. To authenticate a message µ, Alice streams a
long authentication tag σ to Bob who verifies the stream and either accepts or rejects.3 Even though the
tag size k = |σ| can be very large, namely k > m, we ensure that generating and verifying the tag can be
done in a streaming manner using only n bits of memory. Our goal is to achieve unconditional security,
where Alice and Bob can authenticate an arbitrarily large polynomial (or even sub-exponential) number of
messages in this manner using their short secret key. We consider a streaming attacker Eve with m bits of
memory. Eve sits on the channel between Alice and Bob, and can observe and modify all communication
between them, subject only to keeping at most m bits of memory throughout this process. She performs a
chosen-message attack, where she can adaptively choose many messages and observe the authentication tags
honestly sent from Alice to Bob. Moreover, she can modify each of the messages and tags in transit and
can observe whether Bob accepts or rejects. (We view the process of receiving and modifying the tags as
a streaming algorithm, where Eve receives each tag as an input stream and produces a modified tag as an
output stream. The streams need not be synchronized and Eve can wait to receive many/all of the bits of
the input stream before outputting the first bit in the output stream.) Eve wins if she causes Bob to accept
some arbitrary message that Alice did not authenticate.

We show how to solve this problem with up to exponentially large adversarial memory m = 2O(n) and
tags of size k = O(m). In particular, this means that if we also want the scheme to also be polynomially
efficient (i.e., have polynomial-size tags), then we have to restrict the adversarial memory m = poly(n) to
be some arbitrarily large polynomial. We refer to Theorem 5.1 for a formal statement with parameters.

Symmetric-Key Authentication with Short Tags. Next, we consider the same problem as previously,
but now also require that each individual tag σ is “short”, of size k < n. Moreover, each tag can be fully
generated, stored and verified by the honest parties in n bits of memory, without needing to operate in
the streaming model. We show how to solve this problem when the adversarial memory is m = O(n2),
which is optimal.4 This result relies on Raz’s space lower bounds for learning parity [Raz16]. We refer to
Theorem 6.1 for a formal statement with parameters.

Public-Key Signatures. Lastly, we consider the public-key signature setting, where the honest parties
do not have any shared secrets to begin with. As in the standard signature setting, we have an initialization
stage where Alice generates a public verification key vk and a secret signing key sk, and she broadcasts her
verification key vk to other honest users over a public but authentic channel. In the BSM, we allow the
verification key vk to be large, of size > m, and Alice generates and broadcasts vk in a streaming manner
while maintaining n bits of memory, which also bounds the size of the secret signing key sk that remains
in Alice’s memory at the end of the initialization stage. A verifier Bob receives and processes the streamed
verification key vk using n bits of memory, and derives a short verification digest vd, which he keeps in his
memory at the end of the initialization stage. Later, Alice can use her signing key sk to sign arbitrarily
many messages by streaming large signatures over a fully malicious channel. Bob can verify the streamed
signatures using his verification digest vd. The adversary Eve miantains m bits of memory throughout the
entire process. During the initialization stage, Eve can observe (but not modify) the streamed verification
key vk. Afterwards, Eve performs a chosen-message attack, where she can adaptively choose many messages
and observe the streamed signatures sent from Alice to Bob. Moreover, she can modify each of the messages

3We typically think of the messages µ as small relative to n,m. However, all of our results also extend to support long
messages that Alice and Bob receive in a streaming manner.

4Optimality follows from the standard authentication lower bound; if an adversary has enough memory to store n tags
(generated using an n bit key) then it has enough information to forge tags of new messages.

3

and signatures in transit and can observe whether Bob accepts or rejects. Eve wins if she can cause Bob to
accept some arbitrary message that Alice did not sign.

We give a solution to the above problem when m = O(n2), which we show to be optimal. The size of
the verification key and each of the signatures is O(m). Our proof of security relies on a new “block entropy
lemma”, which we view as a result of independent interest, and discuss below.

Block Entropy Lemma. Consider a random variable X = (X1, . . . , Xk) ∈ ({0, 1}b)k consisting of k blocks
of b bits each. Assume that X has a high min-entropy rate with H∞(X) ≥ α ·(kb) for some parameter α. We
would intuitively like to say that this must imply that a large α1-fraction of the blocks Xi must individually
have a high min-entropy rates H∞(Xi) ≥ α2 · b. For example, if α = Ω(1), then we may intuitively hope
that the above should hold with some α1 = α2 = Ω(1).

Indeed, if we were to consider Shannon entropy instead of min-entropy, then H(X) ≤
∑
i H(Xi), and

therefore the above holds with (e.g.,) α1 = α2 = α/2. Unfortunately, when it comes to min-entropy,
such statements are false for any reasonable parameters. As an example, consider the distribution on X
where we choose a random index i∗ ← [k], set Xi∗ = 0b, and for all other indices i 6= i∗ we choose
Xi ← {0, 1}b uniformly at random. Then H∞(X) ≥ (k− 1) · b, but for each individual index i ∈ [k], we have
H∞(Xi) ≤ log(k) since Pr[Xi = 0b] ≥ 1/k.

While the above example shows that the statement is false in its basic form, it also highlights a potential
way to augment the statement to make it hold while preserving its intuitive meaning. The example shows
that for every fixed index i chosen a-priori, Xi may have low min-entropy. However, we may be able to find
a large set of good indices i after seeing X (e.g., to avoid i = i∗ in the previous example), such that each
such Xi has high min-entropy even if we reveal that i is in this good set. We formalize this by showing that
for any α1 ≈ α2 ≈ α/2, with overwhelming probability over x ← X there is a large set of “good’ indices
I(x) of size |I(x)| ≥ α1 · k, such that the min-entropy of the i’th block is high if we condition on i ∈ I(X)
being a good index: H∞(Xi|i ∈ I(X)) ≥ α2 · k.

Our block-entropy lemma is somewhat related to previous lemmas of [NZ96, Vad04] showing that, if we
(pseudo-)randomly sample a sufficiently large subset of locations S ⊆ [k], then XS = {Xi : i ∈ S} has a
high entropy rate, close to the entropy rate of X. However, these previous lemmas do not allow us to say
anything about the entropy rates of individual blocks Xi. Our lemma is also somewhat related to a lemma of
[DQW21], which shows that many individual bits of X have some non-trivial entropy. However, that lemma
does not give good parameters when extended to blocks, and indeed, the natural attempt at extending it
leads to a false statement as discussed above.

1.2 Our Techniques

We now discuss the high-level technical ideas behind each of our results. To avoid getting bogged down with
detailed parameter choices, we will informally use the terms “short/small” to denote values of size < n that
can fit in honest user memory, and “long/big” to denote values of size > m that cannot even fit in adversary
memory.

Symmetric-Key Authentication. Our basic result for symmetric-key authentication is fairly simple.
We rely on two building blocks:

• A (strong) local extractor Ext that takes as input a long source x and a short random seed, and produces
a short output Ext(x; seed) by only reading a small subset of the locations in x, where the locations
are determined by seed [Vad04]. In particular, it can be computed by reading x in a streaming manner
using small memory. The extracted output is statistically close to uniform even given seed, as long as
x has sufficiently high entropy.

• A streaming one-time message-authentication code σ = MACsk(µ) that allows us to authenticate a single
long message µ using a small secret key sk, by reading µ in a streaming manner. The authentication
tag is also small. This can be constructed easily using polynomial evaluation.

4

We use these building blocks to construct a symmetric-key authentication scheme in the BSM.

• The small shared secret key sk = (ŝk, seed) consists of key ŝk for the streaming one-time MAC and seed
for an extractor.

• To authenticate a message µ, Alice then streams a long random string x to Bob, and as she does so,
also computes r = Ext(x; seed) and σ̂ = MAC(ŝk, (x‖µ)) in a streaming manner using small memory.
She then appends the short value ψ = r ⊕ σ̂ as the final component of the long tag σ = (x, ψ)

• To verify the tag σ = (x, ψ) for message µ, Bob computes r = Ext(x; seed) and σ̂ = MAC(ŝk, (x, µ))
in a streaming manner using small memory. He then checks if ψ = r ⊕ σ̂ and, if so, accepts if σ̂ is a
valid tag for message (x‖µ) under MAC (using secret ŝk, and where the verification procedure is also
performed in a streaming manner), and rejects otherwise.

In essence, Alice is “encrypting” the one-time MAC tags using a symmetric-key encryption in the BSM, and
then uses a one-time MAC to also authenticate the BSM encryption randomness. Intuitively, the encryption
ensures that even if the adversary sees many encrypted tags, she doesn’t learn much about the secret key of
the one-time MAC. However, formalizing this is somewhat subtle.

Consider an adversary Eve to first passively observes q honestly generated tags σ1, . . . , σq from Alice in a
streaming manner, while maintaining m bits of memory. Then Eve gets unlimited memory and observes an
additional (q+1)’st tag σ and outputs σ′. She wins if Bob accepts σ′ and σ′ 6= σ. In our proof, we first switch
the values ψi inside the q tags σi to uniformly random. We rely on the security of the strong local extractor
to argue that the change is indistinguishable, even if we later reveal the entire secret key sk = (seed, ŝk) and

can therefore check if the adversary wins the game. Once we make this change, the one-time MAC key ŝk
is only used to generate the (q + 1)’st tag σ = (x, ψ) for message µ and verify σ′ = (x′, ψ′) for message µ′.
Therefore, we can rely on the security of the one-time MAC to argue that if (µ′, σ′) 6= (µ, σ) then Bob rejects
with overwhelming probability. The above argument easily generalizes to the case where Eve makes many
verification queries, where she modifies tags from Alice and sees whether Bob accepts, as long as they are
synchronous: each streamed verification query to Bob coincides with at most one streamed authentication
query from Alice. Dealing with the general asynchronous case, where Eve’s verification queries can be
arbitrarily overlapped with her authentication queries, requires more care. Nevertheless, we do manage to
give a proof for the general asynchronous case, by relying on the basic argument outlined above and carefully
partitioning the queries made by Eve.

We remark that, on a quick glance, it may seem that we could have applied the one-time MAC to just µ
instead of the pair (x, µ), and still argued that Eve cannot cause Bob to accept any σ′ = (µ′, x′, ψ′) where
µ′ 6= µ, which should suffice. However, this turns out to be false and the scheme would be completely
insecure with this modification. In particular, Eve would be able to learn something about the secret key
by modifying the tags from Alice to Bob while keeping the message intact and seeing whether or not he
accepts. For example, each time Alice generates a tag σi = (µi, xi, ψi), Eve could flip a bit of xi and see if
Bob accepts or rejects. This would eventually reveal the set of locations in x read by Ext(x; seed). Once Eve
learns this set, extractor security is lost, and indeed Eve can fully recover sk and break the scheme. In our
proof, by showing that Eve cannot cause Bob to accept any σ′ 6= σ, even for the same message µ, we ensure
that verification queries are useless. Our formal argument is more involved, and requires to carefully answer
verification queries using low memory: our reduction cannot even store an entire tag.

Overall, we can get security against adversaries with memory of size m where honest users only need
memory of size n = O(logm) and where tags are of size O(m). We refer to Section 5 for more details.

Symmetric-Key Authentication with Short Tags. Next, we turn to the same problem as in the pre-
vious paragraph, but additionally require that the authentication tags are small, of size k < n. Furthermore,
they can be fully generated, stored, and verified inside honest user memory, without relying on the stream-
ing model. Since the secret key is also small, of size < n, if an adversary can simultaneously remember n
tags, then it can break security via the classical authentication lower bound. Therefore, the above setting
necessitates bounding the adversary’s memory to m = O(n2).

5

Constructing this type of authentication scheme implies some sort of space lower bound on learning. In
particular, the adversary observes many outputs of the (potentially randomized) authentication function with
a secret key sk, but if its memory is bounded, it does not learn the function sufficiently well to authenticate
new messages. Unlike the previous setting where each function output individually was long and could not
be stored in memory, in this setting each output is short, but the adversary cannot store too many outputs.
Lower bounds in this setting are highly non-trivial, and the first lower bound of this form was shown only
recently in the celebrated work of Raz [Raz16], and subsequently extended by [KRT17, Raz17, GRT18].
In particular, Raz proved a space lower bound for learning random parities. Here, we choose a uniformly
random x ← Fn2 . The adversary can get many samples (ai, bi) where ai ← Fn2 and bi = 〈x,ai〉. If the
adversary has > n2 bits of memory and can remember > n samples in full, then it can perform Gaussian
elimination and recover x. The work of Raz shows that, if the adversary’s memory is sufficiently smaller
than n2 (and the number of samples is smaller than exponential), then the adversary cannot recover x or
even distinguish the samples from uniformly random values.

Abstracting the above, we can think of Raz’s result as showing that the inner-product function fx(a) =
〈x,a〉 is a “weak pseudorandom function” (weak PRF) in the BSM, in the sense that an adversary with
sufficiently small memory cannot distinguish the outputs of the function on random inputs ai from uniformly
random values. Unfortunately, it is not a-priori clear how to use a weak PRF in the BSM to solve the message
authentication problem in the BSM. Indeed, even in the computational setting, we do not know of any “nice”
construction of computational message authentication codes from a generic weak PRF (beyond just using
the weak PRF to construct a PRG and applying [GGM84] to go from a PRG to a PRF, but this approach
does not translate to the BSM). Instead, we rely on the specifics of the inner product function, rather
than just generically relying on it being a weak PRF in the BSM. Notice that the inner-product function
is essentially the same as Learning Parity with Noise (LPN), just without noise! Moreover, there is a long
body of work tying to construct simple/efficient message authentication schemes from LPN [HB01, JW05,
KPC+11, DKPW12]. In particular, the work of [DKPW12] abstracts out many of these ideas and shows
how to construct message-authentication directly from any key-homomorphic weak PRF.

We rely on the fact that the inner-product function is essentially a key-homomorphic weak PRF in
the BSM via Raz’s lower bound, and show how to adapt the ideas of [DKPW12] to construct a message-
authentication scheme in the BSM with the desired parameters. Interestingly, we crucially rely on the
linearity of the inner-product function in this construction, and do not know how to adapt subsequent
space lower bounds for other functions (e.g., low-degree polynomials [GRT18]) to get analogous results using
them. Still, adapting the work of [DKPW12] to the BSM requires a great deal of care to ensure that all the
reductions use small memory. It is notably even non-trivial for the (low-memory) reduction to remember
which tags have been previously issued by the tagging oracle during the unforgeability experiment so as to
ensure that verification queries with these tags are correctly accepted. We develop new ticks to deal with
this and other issues. We refer to Section 6 for more details.

Public-Key Signatures. In the public-key setting, we start with an initialization stage during which
Alice streams a long verification key vk over an authentic channel. At the end of the initialization stage,
Alice keeps a short signing key sk, while a verifier Bob keeps a short verification digest vd.

We first observe that if Alice and Bob could interact back-and-forth with each other during the initial-
ization stage, we could solve the problem trivially by having them run a key-agreement protocol in the BSM
[CM97, GZ19, DQW21], at the end of which they would have a shared secret key. Later, they could use
the secret key to authenticate messages via a symmetric-key authentication schemes in the BSM that we
constructed earlier. However, all such key-agreement protocols require at least two back-and-forth rounds
of interaction, while in our case we only allow one-way communication from Alice to Bob.5 Unfortunately,
it is easy to see that key agreement in one round is impossible, since nothing differentiates an honest Bob
from the attacker Eve – if Bob knows Alice’s key, so can Eve.

5We view this as a crucial component of our model. Alice can broadcast her verification key to the world, obliviously of
who is listening and who will want to very her signed messages in the future. There may potentially even be a large number of
different verifiers and Alice should not need to know about them or interact with them.

6

Nevertheless, we show that a variant of key agreement that we call set key agreement is possible in one
round! In a set key agreement scheme, Alice streams a long message vk and outputs a small set of keys
sk = (sk1, . . . , skq), while Bob observes the stream and outputs some subset of Alice’s keys vd = (T, (ski)i∈T)
for T ⊆ [q]. Security requires that there is some shared key skt for t ∈ T , meaning that the key is known to
both Alice and Bob, such that skt looks uniformly random even given Eve’s view of the protocol and all the
other keys skj for j ∈ [q], j 6= t. The index t of this “good” shared key is a random variable that depends
on the entire protocol execution and on Eve’s view, and it is therefore not known to Alice or Bob.

We construct such set key agreement when the adversarial memory is sufficiently small m = O(n2), as
follows. Alice streams a random string x = (x1, . . . , xk) consisting of k blocks xi ∈ {0, 1}b, where b is very
small (depending only on the security parameter). Alice chooses a small random subset SA ⊆ [k] of size
|SA| = q and remember the blocks xi : i ∈ SA. Similarly, Bob chooses a small random subset SB ⊆ [k]
of size |SB | = q and remember the blocks xi : i ∈ SB . We choose k = O(m) and q = O(

√
m) carefully

to ensure that Alice/Bob only use n = Õ(
√
m) bits of memory and that with high probability their sets

have non-trivial intersection |SA ∩ SB | of roughly security parameter size. After Alice finishes streaming x,
she then also streams her set SA = {i1, . . . , iq} along with q extractor seeds seedj , and sets her keys to be
the extracted values skj = Ext(xij , seedj) for j ∈ [q]. Bob computes the set T = {j : ij ∈ SB} and sets
skj = Ext(xij ; seedj) for j ∈ T . We argue that security holds as long as Eve’s memory is ≤ k/2. Eve needs
to decide what to remember about x before she learns anything about SA, SB . We will use our new block
entropy lemma to argue that there is a large fraction of locations i, such that the individual blocks xi have
high min-entropy conditioned on what Eve remembered about x, and therefore it is likely that some such
location i∗ = it appears in SA∩SB . The corresponding key skt = Ext(xit ; seedt) will then be the “good key”
which looks uniform given Eve’s view. As discussed in our description of the block entropy lemma, the set
of locations i such that xi has high min-entropy is not fixed, but rather a random variable that depends on
x and on Eve’s view. Therefore, also the index t of the “good key” is such a random variable.

Once we have a set key agreement protocol, it is easy to build a signature scheme on top of it. To sign
each message µ, Alice uses each of the secret keys ski for i ∈ [q] as a key for a symmetric-key authentication
scheme in the BSM (from our first result), and sequentially authenticate the message µ using each of the
q keys individually. The verifier Bob verifies the authentication tags corresponding to the indices j ∈ T .
To argue security, we rely on the security of the symmetric-key authentication scheme in the location t
corresponding to the “good” secret key. Note that, in the set key agreement protocol, we needed to choose
q = O(

√
m) large to ensure that that SA and SB have a large overlap. This means that each of the keys

ski needs to be very small, since Alice’s storage is n = q|ski|. However, this is not a problem since the
symmetric-key authentication scheme in the BSM allowed us to make the keys as small as O(logm).6

We also give a lower bound to show that this type of public-key signatures in the BSM are impossible
when m > n2. We rely on a technical lemma due to Dziembowski and Maurer [DM04]. Translated to our
context, the lemma addresses the scenario where Alice streams a long verification key vk to Bob, after which
she stores some n bit state sk and Bob stores some n bit state vd. The lemma says that there is some small
value E(vk) of size m < n2 that Eve can store about vk, such that, conditioned on E(vk), the values sk
and vd are statistically close to being independent. In particular, this means that if Eve samples a fresh sk′

conditioned on E(vk), then she can sign messages using sk′ and Bob will accept the signatures with high
probability. We refer to Section 7 for more details.

Block Entropy Lemma. Lastly, we give some intuition behind our block entropy lemma. We show
that, for every fixed x ∈ ({0, 1}b)k there is some set I(x) such that, if X has sufficiently high entropy
H∞(X) ≥ α · (bk), then:

• With overwhelming probability over x← X, we have |I(x)| ≥ α1 · k

• For all x and i ∈ I(x): H∞(Xi|X1 = x1, . . . , Xi−1 = xi−1, i ∈ I(X)) ≥ α2 · b.
6This is also why we need to rely on the symmetric-key authentication scheme with long tags from our first result, rather

than the one with short tags from our second result – in the latter, the secret keys would be of size O(
√
m) and hence Alice/Bob

would need memory of size O(m) exceeding that of Eve.

7

where the above holds for any α1 and α2 = α−α1− λ/b, where λ is the security parameter (see Lemma 4.1
for a formal statement). We start by observing that the definition of min-entropy guarantees that for any x:

2−αkb ≥ Pr[X = x] =

k∏
i=1

Pr[Xi = xi|X1 = x1, . . . , Xi−1 = xi−1]︸ ︷︷ ︸
2−ei

= 2−
∑k
i=1 ei .

By a simple averaging argument, there is an α1 fraction of “good” indices i ∈ I(x) ⊆ [k] for which ei ≥
(α − α1) · b. But the fact that Pr[Xi = xi|X1 = x1, . . . , Xi−1 = xi−1] is small does not guarantee that
H∞(Xi|X1 = x1, . . . , Xi−1 = xi−1) is large, since the concrete outcome xi that we got may not have been
the maximally likely one. However, let us additionally condition on the event that i ∈ I(X) is a good index.
We show that, for each i, either (I) the conditional min-entropy is high H∞(Xi | X1 = x1, . . . , Xi−1 =
xi−1, i ∈ I(X)) ≥ α − α1 − λ/b or (II) the probability Pr[i ∈ I(X)|X1 = x1, . . . , Xi−1 = xi−1] ≤ 2−λ is
low. By removing indices i for which (II) holds from I(x), we get our lemma. For a random x ← X, the
probability that any index was removed is negligible.

2 Preliminaries

Notation. When X is a distribution, or a random variable following this distribution, we let x← X denote
the process of sampling x according to the distribution X. If X is a set, we let x ← X denote sampling x
uniformly at random from X. We use the notation [k] = {1, . . . , k}. If x ∈ {0, 1}k and i ∈ [k] then we let
x[i] denote the i’th bit of x. If s ⊆ [k], we let x[s] denote the list of values x[i] for i ∈ s.

2.1 Information Theory

Statistical Distance. Let X,Y be random variables with supports SX , SY , respectively. We define their
statistical difference as

SD(X,Y) =
1

2

∑
u∈SX∪SY

|Pr[X = u]− Pr[Y = u]| .

We write X ≈ε Y to denote SD(X,Y) ≤ ε.

Predictability and Entropy. The predictability of a random variable X is Pred(X)
def
= maxx Pr[X = x].

The min-entropy of a random variable X is H∞(X) = − log(Pred(X)). Following Dodis et al. [DORS08],

we define the conditional predictability of X given Y as Pred(X|Y)
def
= Ey←Y [Pred(X|Y = y)] and the

(average) conditional min-entropy of X given Y as: H∞(X|Y) = − log (Pred(x|Y)) . Note that Pred(X|Y)
is the success probability of the optimal strategy for guessing X given Y .

Lemma 2.1 ([DORS08]). For any random variables X,Y, Z where Y is supported over a set of size T we
have H∞(X|Y,Z) ≤ H∞(X|Z)− log T .

Lemma 2.2 ([DORS08]). For any random variables X,Y ,for every ε > 0 we have

Pr
y←Y

[H∞(X|Y = y) ≥ H∞(X|Y)− log(1/ε)] ≥ 1− ε.

Lemma 2.3. If X and Y are independent conditioned on Z then H∞(X|Y) ≥ H∞(X|Y,Z) ≥ H∞(X|Z).

Lemma 2.4. If X and Y are independent conditioned on Z then H∞(X,Y |Z) ≥ H∞(X|Z) + H∞(Y |Z).

8

Extractors. We review the notion of randomness extractors and known parameters.

Definition 2.5 ((Strong, Average-Case) Seeded Extractor [NZ96]). We say that an efficient function
Ext : {0, 1}n × {0, 1}d → {0, 1}` is an (α, ε)-extractor if for all random variables (X,Z) such that X
is supported over {0, 1}n and H∞(X|Z) ≥ α we have SD((Z, S,Ext(X;S)) , (Z, S, U`)) ≤ ε where S,U` are
uniformly random and independent bit-strings of length d, ` respectively.

Theorem 2.6 ([ILL89]). There exist (α, ε)-extractors with input length n and output length ` as long as
α ≥ `+ 2 log(1/ε). Furthermore, such an extractor can be computed in O(n) time and space.

Definition 2.7 (BSM Extractor [Vad04]). We say that an efficient function BSMExt : {0, 1}k ×{0, 1}d →
{0, 1}` is an (n,m, ε)-BSM extractor if:

• Given seed ∈ {0, 1}d initially stored in memory, it is possible to compute BSMExt(x; seed) given stream-
ing access to x ∈ {0, 1}k using at most n bits of total memory. Moreover, it can be done while only
accessing at most n locations (chosen non-adaptively) in the string x.

• BSMExt is an (α, ε)-extractor (Definition 2.5) for α = k −m.

Note that a BSM Extractor gives a simple one-round protocol (n,m)-BSM protocol where Alice and
Bob start with a uniformly random shared key key0 of some small size d and derive a new shared key
key1 ∈ {0, 1}` of a larger size ` > d. Alice just streams a random x ∈ {0, 1}k to Bob and both parties
compute key1 = BSMExt(x; key0). Security holds since the adversary can only store m-bits of information
about x so it has α ≥ k−m bits of entropy conditioned on the adversary’s view, and key0 acts as a random
seed which is a-priori unknown to the adversary. Therefore key1 = BSMExt(x; key0) is ε-close to uniform
given the adversary’s view of the protocol.

Theorem 2.8 ([Vad04]). For any m ≥ `,λ, there is a (n,m, ε)-BSM extractor BSMExt : {0, 1}k×{0, 1}d →
{0, 1}` with n = O(`+ λ+ logm), ε = 2−Ω(λ), k = O(m+ λ log(λ)), d = O(logm+ λ).

KL Divergence and Mutual Information. We recall the notions of KL divergence and (conditional)
mutual information.

Definition 2.9 (KL Divergence). For two discrete probability distributions P , Q with the same support
Supp(P), we define the KL divergence as

DKL(P‖Q) =
∑

x∈Supp(P)

P (x) log

(
P (x)

Q(x)

)
.

Definition 2.10 ((Conditional) Mutual Information). If (X,Y, Z) denotes a triple of (potentially correlated)
random variables with joint distribution P(X,Y,Z), we define the mutual information of X and Y conditioned
on Z as:

I(X;Y |Z) = E
Z
DKL(P(X,Y)|Z‖PX|Z × PY |Z),

where P(X,Y)|Z denotes the conditional distribution of (X,Y) given Z, and PX|Z and PY |Z respectively denote
the marginal distributions of X and Y given Z.

Lemma 2.11 (Pinsker’s Inequality). Let X, Y be random variables with distributions PX , PY with the same
support Supp(X). We have:

SD(X,Y) ≤
√

1

2
DKL(PX‖PY).

Lemma 2.12 (Generalized Chernoff Bound). Let Y1, . . . , Yk be random variables such that Yi ∈ {0, 1} and
for all y1, . . . , yi−1 it holds that Pr[Yi = 1 | Y1 = y1, . . . , Yi−1 = yi−1] ≤ γ. Then , for any δ ∈ [0, 1], we have

Pr[
∑
i Yi ≥ (1 + δ)γ · k] ≤ exp(− δ

2

3 γk).

9

We will use the following lemma (see e.g. [Hoe63] or [Din01, Corollary 3]).

Lemma 2.13. Let k be an integer, and SA, SB ⊂ [k] be two uniformly and independently sampled subset of
[k] of size q where q ≥ 2

√
λ · k. Then

Pr[|SA ∩ SB | < λ] < e−λ/4.

3 Definitions

In this section, we define message authentication codes (MACs) in Section 3.1 and signatures in Section 3.2
in the BSM. We discuss how we model honest parties and adversaries in these settings.

3.1 Message Authentication Codes

A message-authentication code (MAC) over a message spaceM is a tuple of algorithms (KeyGen,MAC,Verify)
with the following syntax:

• KeyGen(1λ)→ sk: on input a security parameter λ, output a key sk.

• MAC(sk, µ): on input a key sk and a message µ ∈M, output a tag σ.

• Verify(sk, µ, σ): on input a key sk, a message µ ∈M and a tag σ, output a bit b.

We define the following properties.

Definition 3.1 (Correctness). We say that a MAC is correct if for all message µ ∈M:

Pr[Verify(sk, µ, σ) = 1 : sk← KeyGen(1λ), σ ← MAC(sk, µ)] ≥ 1− negl(λ).

Definition 3.2 (Streaming MAC). For an integer n, we say that a MAC is a streaming MAC with memory
n if MAC and Verify can respectively be computed by streaming algorithms with memory n, given streaming
access to µ and (µ, σ) respectively, and if KeyGen can be computed (in place) with memory n. In particular,
MAC keys sk have size at most n.

Definition 3.3 ((Selective) unforgeability under chosen message (and verification) attacks). For an algo-
rithm Adv, consider the following experiment:

Experiment Expuf-cmva(1λ,Adv):

1. Sample sk← KeyGen(1λ).

2. Compute (µ∗, σ∗)← AdvMAC(sk,·),Verify(sk,·,·).

3. Output 1 if Verify(sk, µ∗, σ∗) = 1 output 0 otherwise.

We say that an adversary Adv is admissible if Adv did not query MAC(sk, ·) on input µ∗. In the following,
all the adversaries are assumed admissible.

We say that a MAC is (ε,A)-unforgeable under chosen message and chosen verification queries attacks
(uf-cmva) against a class A of adversaries, if for all adversary Adv ∈ A:

Pr[Expuf-cmva(1λ,Adv) = 1] ≤ ε.

We simply say that a MAC is A-uf-cmva-secure if it is (ε,A)-uf-cmva-secure for some ε = negl(λ).
We alternatively say that a MAC is (ε,A)-selectively unforgeable under chosen message and chosen

verification queries attack (suf-cmva) if any adversary Adv ∈ A that declare µ∗ before the beginning of
experiment makes the associated experiment output 1 with probability at most ε.

10

Next, we say that a MAC is (ε,A)-(selectively) unforgeable under chosen message attacks ((s)uf-cma) if
any adversary Adv ∈ A that only make tagging queries MAC(sk, ·) makes the associated experiment output 1
with probability at most ε.

Last, we say that a MAC is A-((s)uf-cm(v)a) if it is (ε,A)-((s)uf-cm(v)a) for some ε = negl(λ).

Definition 3.4 (Indistinguishability under chosen message attacks). We say that a MAC satisfies (ε,A)-
indistinguishability under chosen-message attacks (ind-cma) if for all Adv ∈ A:∣∣∣Pr[AdvMAC(sk,·) = 1]− Pr[AdvMAC(sk,0) = 1]

∣∣∣ ≤ ε
where the probabilities are over the randomness of sk← KeyGen(1λ).

We say that a MAC is A-ind-cma if it is (ε,A)-ind-cma for some ε = negl(λ).

Next, we define the class of adversaries we consider in this work.

Definition 3.5 (Streaming Adversaries for MACs). We say that an adversary Adv in any of the security
experiments above is streaming with memory m if it is a streaming algorithm that accesses oracles MAC and
Verify (whenever applicable) in a streaming manner using total memory at most m. Namely, it provides the
inputs to oracles MAC and Verify as streams of bits and receives the outputs of MAC as streams. The calls to
MAC and Verify are not required to be synchronous: for instance Adv can start a oracle call to Verify while
streaming the input to MAC or receiving a tag in a streaming manner.

We restrict adversaries to have at most one concurrent call to MAC at any time, and at most one
concurrent call to Verify at any time during the experiment. In other words, the calls to MAC are done in a
sequential manner, and similarly for Verify.

We will usually refer to Q (resp. QT , QV) as the number of total (resp. tagging, verification) queries
made by Adv.

The class of adversaries above notably covers man-in-the-middle adversaries who have the ability alter a
tag being currently streamed, and observe either the output of the verifier, or use it as a final forgery.

We argue that the restriction to the concurrency of oracle calls above is reasonable. Notably, in a setting
where an authenticator streams tags to a single verifier and where a man-in-the-middle possibly tampers the
communication between them, we believe it is reasonable to assume that the authenticator certifies messages
one message at a time, and the verifier only verifies one streamed tag at a time. In such a setting, adversaries
would satisfy the conditions of Definition 3.5.

Remark 3.6 (Adversaries with Unbounded Temporary Memory). In the traditional BSM, adversaries have
access to unbounded temporary memory, but have to eventually compress that memory to a state of size at
most m. We can similarly define a class of adversaries stronger than Definition 3.5, who, given a streamed
tag output by MAC(sk, ·), can process any single streamed bit using unbounded temporary memory, as long
as they compress their state down to some m-bit state before the next bit is streamed. In particular, such
adversaries can compute bounded-size non-uniform advice on their own.

We will use the following MAC secure against unbounded adversaries, as long as only one tag is given
out.

Claim 3.7 (One-Time Information-Theoretic MACs). Let A be the set of (potentially unbounded) algorithm
that make at most 1 tagging query and at most QV verification queries. Then for all integer k and constant
c > 0, there exists a streaming MAC with memory n = O(λ + log k) and message space {0, 1}k which is
(k ·QV /2cλ,A)-uf-cmva-secure. Furthermore, the MAC produces tags of size n.

Proof. This follows as noting that polynomial evaluation acts as an approximate universal hash function,
and therefore induces a MAC. In more details:

MAC(a, µ) :=
∑
i∈k

µia
i

11

where the sum is over a field F of size at least 2cλ+dlog ke, and we are interpreting the bits of µ as field
elements, and the secret key is a← F. Given µ as a streamed input, MAC can be computed in a streaming
manner using memory O(λ+ dlog ke) = O(|F|).

Security follows as for any µ, µ∗ ∈ {0, 1}k, µ 6= µ∗ and any x ∈ F,

Pµ,µ∗(a) :=
∑
i≤k

(µi − µ∗i)ai = x

with probability at most k/|F| over the randomness of a← F: this is because P is of degree k and can only
take a given value at most d times. In particular, for all µ 6= µ∗ ∈ {0, 1}k, and σ, σ′ ∈ F:

Pr
a

[MAC(a, µ) = σ ∧MAC(a, µ∗) = σ′] ≤ k

|F|
,

that is, {MAC(a, ·) : {0, 1}k → F}a∈F is a k/|F|-universal hash function. Therefore the probability that any
adversary Adv which makes at most 1 tagging query and at most QV verification queries succeeds in the
uf-cmva experiment is at most kQV

2cλ
.

3.2 Signatures

A streaming signature scheme over a message space M is a tuple of algorithms (KeyGen,Sign,Verify) with
the following syntax:

• KeyGen(1λ)→ (vk, sk): on input a security parameter λ, stream a verification key vk and store signing
key sk.

• KeyReceive(1λ, vk): on input a security parameter λ and a streamed verification key vk, output a
verification state vd.

• Sign(sk, µ): on input a signing key sk and a (potentially streamed) message µ ∈ M, output a (poten-
tially streamed) signature σ.

• Verify(vd, µ, σ): on input a verification state vd, a (potentially streamed) message µ ∈ M and a
(potentially streamed) signature σ, output a bit b ∈ {0, 1}.

Definition 3.8 (Correctness). We say that a signature scheme is correct if for all message µ ∈M:

Pr[Verify(vd, µ, σ) = 1 : sk← KeyGen(1λ), vd← KeyReceive(1λ, vk), σ ← Sign(sk, µ)] ≥ 1− negl(λ).

Definition 3.9 (Streaming Signature). For an integer n, we say that a streaming signature scheme has
memory n if KeyGen, KeyReceive, Sign and Verify can respectively be computed by streaming algorithms with
memory n, given streaming access to µ and (µ, z) respectively. We additionally require that sk and vd have
size at most n.

Definition 3.10 (Unforgeability under chosen message attacks). For an algorithm Adv, consider the fol-
lowing experiment:

Experiment Expuf-cmva(1λ,Adv):

1. Sample (vk, sk)← KeyGen(1λ), vd← KeyReceive(1λ, vk), and compute viewAdv ← Adv(vk).

2. Compute (µ∗, σ∗)← AdvSign(sk,·),Verify(vd,·,·)(viewAdv).

3. Output 1 if Verify(vd, µ∗, σ∗) = 1 output 0 otherwise.

12

We say that an adversary Adv is admissible if Adv did not query Sign(sk, ·) on input µ∗. In the following,
all the adversaries are assumed admissible.

We say that a signature scheme is (ε,A)-unforgeable under chosen message attacks (uf-cma) against a
class A of adversaries, if for all adversary Adv ∈ A:

Pr[Expuf-cmva(1λ,Adv) = 1] ≤ ε.

We simply say that a signature scheme is A-uf-cma-secure if it is (ε,A)-uf-cmva-secure for some ε = negl(λ).
We define variants of unforgeability, namely selective and/or without verification queries (((s)uf-cm(v)a)-

security), in a similar way than in Section 3.1.

We consider a similar class of streaming adversaries for signatures, as in Definition 3.5.

Definition 3.11 (Streaming Adversaries for Signatures). We say that an adversary Adv in any of the
security experiments above is streaming with memory m if it is a streaming algorithm that accesses oracles
KeyGen, MAC and Verify (whenever applicable) in a streaming manner using memory at most m. Namely,
such adversaries first observe the stream vk produced by KeyGen (but not sk). Then, it provides the inputs to
oracles Sign and Verify as streams of bits and receives the outputs of Sign as streams. The calls to Sign and
Verify are not required to be synchronous: for instance Adv can start a oracle call to Verify while streaming
an input to Sign or receiving a tag in a streaming manner. We add the restriction that there are at most
one concurrent call to Sign at any time, and at most one concurrent call to Verify at any time during the
experiment.

We will refer to Q (resp. QS , QV) as the number of total (resp. signing, verification) queries made by
Adv.

As in Remark 3.6, one can consider adversaries with temporary unbounded memory for signatures.

4 Block Entropy Lemma

In this section, we describe and prove our block entropy lemma (Lemma 4.1), which we will use to build
signature schemes in the streaming BSM Section 7. We also present an alternative form of the lemma in
Corollary 4.2.

Lemma 4.1. Let X = (X1, . . . , Xk) ∈ {0, 1}kb be a random variable with blocks Xi ∈ {0, 1}b, such that
H∞(X) ≥ α · (kb) for some α > 0. Then, there are some parameters α1, α2, ε instantiated below and some
set BAD ⊆ {0, 1}kb such that the following holds:

1. Pr[X ∈ BAD] ≤ ε.

2. For all x = (x1, . . . , xk) there is a set I(x) ⊆ [k] such that:

(a) if x 6∈ BAD then |I(x)| ≥ α1 · k,

(b) for all i ∈ I(x): H∞(Xi | X1 = x1, . . . , Xi−1 = xi−1, i ∈ I(X)) ≥ α2 · b.

Furthermore, the values x1, . . . , xi fully determine whether or not i ∈ I(x).

The parameters α1, α2, ε can be set according to either of the following two options:

(i) For any α1 > 0, γ > 0, we can set α2 = (α− α1 − log(1/γ)/b), ε = k · γ.
For example, for any ρ > 0, we can set α1 = α2 = α/2− ρ and ε = k · 2−2ρb.

(ii) For any β > 0, γ > 0, δ ∈ [0, 1], we can set: α1 = β − (1 + δ)γ, α2 = (α − β − log(1/γ)/b), ε =

exp
(
− δ

2

3 γk
)
. For example, for any ρ > 0 such that b ≥ log(1/(2ρ))/(2ρ), we can set:

α1 = α2 = α/2− ρ and ε = e−
2
3ρk.

13

Proof. Fix any x = (x1, . . . , xk). Then, by the definition of min-entropy, we have:

2−α·(kb) ≥ Pr[X = x] =

k∏
i=1

Pr[Xi = xi|X1 = x1, . . . , Xi−1 = xi−1]︸ ︷︷ ︸
def
=2−ei

= 2−
∑k
i=1 ei .

Let β > 0 be some parameter and define the setH(x) ⊆ [k] viaH(x) := {i : ei ≥ (α−β)b}. Intuitively, these
are the indices i where the i’th block takes on a low probability value xi conditioned on previous blocks, and
therefore the indices where we should expect to find entropy. Note that x1, . . . , xi fully determines whether
i ∈ H(x). By an averaging argument, it must be the case that |H(x)| ≥ β · k.

Now, let us consider the random variable H(X). We claim that for every i ∈ [k] and every γ > 0, at least
one of the following two conditions must hold:

(I) Either Pr[i ∈ H(X) | X1 = x1, . . . , Xi−1 = xi−1] ≤ γ,

(II) or H∞(Xi | X1 = x1, . . . , Xi−1 = xi−1, i ∈ H(X)) ≥ (α− β) · b− log(γ).

Intuitively, the above says that if we condition on any choice of the first i − 1 blocks then either (I) it is
unlikely for the i’th block to take on any value whose a-priori probability is too small, or (II) the i’th block
has high entropy even if we condition on it taking some such value. In particular, if (I) does not hold, then

max
z

Pr[Xi = z|X1 = x1, . . . , Xi−1 = xi−1, i ∈ H(X)]

= max
z

Pr[Xi = z ∧ i ∈ H(X)|X1 = x1, . . . , Xi−1 = xi−1]

Pr[i ∈ H(x)|X1 = x1, . . . , Xi−1 = xi−1]

≤ max
z∈Zi(x)

Pr[Xi = z|X1 = x1, . . . , Xi−1 = xi−1]

γ

where Zi(x) = {z : Pr[Xi = z|X1 = x1, . . . , Xi−1 = xi−1] ≤ 2−(α−β)·b}

≤ 2−(α−β)·b

γ

The second inequality follows by noting that i ∈ H(X)⇔ Xi ∈ Zi(x) whenever X1 = x1, . . . , Xi−1 = xi−1.
Now define A(x) = {i : Pr[i ∈ H(X) | X1 = x1, . . . , Xi−1 = xi−1] ≤ γ}, which corresponds to the

indices i for which case (I) holds. Let I(x) = H(x) \A(x), which corresponds to the set of indices for which
case (II) holds and they are in H(x). Then, for any i ∈ I(x):

H∞(Xi |X1 = x1, . . . , Xi−1 = xi−1, i ∈ I(X)) = H∞(Xi |X1 = x1, . . . , Xi−1 = xi−1, i ∈ H(X)) ≥ (α−β)b−log(1/γ),

where the second first equality follows from the fact that x1, . . . , xi−1 fully determine whether i ∈ A(x), and
the second inequality follows from the definition of condition (II). This proves part 2.(b) of the lemma with
α2 = (α− β − log(1/γ)/b).

We first prove the lemma for the first parameter choice (i). Define BAD = {x : |I(x)| < β · k}. Clearly
this ensures that part 2.(a) of the lemma is satisfied with α1 = β. Therefore, we are left to prove part 1
of the lemma. Note that I(X) = H(X) \ A(X) and |H(x)| ≥ βk. Intuitively, the only way we can have
X ∈ BAD is if there is some index i where the i’th block Xi was unlikely to take on any low-probability
value conditioned on the prior blocks, but it did so anyway, and this is unlikely to occur. Formally

Pr[X ∈ BAD] = Pr[|I(X)| < βk]

≤ Pr[|H(X) ∩ A(X)| ≥ 1]]

≤
∑
i

Pr[i ∈ H(X) ∩ A(X)]

≤
∑
i

max
{(x1,...,xi−1) :i∈A(x)}

Pr[i ∈ H(X) | X1 = x1, . . . , Xi−1 = xi−1] ≤ k · γ.

14

The second line follows from the fact that I(X) = H(X) \ A(X) and |H(x)| ≥ βk fopr all x. The second to
last inequality follows by noting that (x1, . . . , xi−1) fully determine whether i ∈ A(x), and the last inequality
follows by noting that the definition of A(x) guarantees that for any x1, . . . , xi−1 for which i ∈ A(x) we have
Pr[i ∈ H(X) : X1 = x1, . . . , Xi−1 = xi−1] ≤ γ. Therefore this proves part 1 of the lemma with ε = k · γ.

We now modify the above to get parameter choice (ii). Pick any δ > 0 and define BAD = {x : |I(x)| ≤
(β − (1 + δ)γ)k}. Clearly this ensures that part 2.(a) of the lemma is satisfied with α1 = β − (1 + δ)γ.
Therefore, we are left to prove part 1. Note that I(X) = H(X) \ A(X) and |H(x)| ≥ βk. Intuitively, the
only way we can have X ∈ BAD is if there are many indices i where the i’th block Xi was unlikely to take
on any low-probability value conditioned on the prior blocks, but it did so anyway, and this is unlikely to
occur too many times via a Chernoff bound. Formally:

Pr[X ∈ BAD] = Pr[|I(x)| ≤ (β − (1 + δ)γ)k]

≤ Pr[|H(X) ∩ A(X)| ≥ (1 + δ)γk]]

= Pr[
∑
i

Yi ≥ (1 + δ)γ · k]

≤ exp

(
−δ

2

3
γk

)
where Yi = 1 if i ∈ H(X) ∩ A(X). Note that, if we condition on any choice of X1 = x1, . . . , Xi−1 = xi−1,
then the values of Y1, . . . , Yi−1 are fully determined, and also whether or not i ∈ A(X) is fully determined. If
i 6∈ A(X) then Pr[Yi = 1 | X1 = x1, . . . , Xi−1 = xi−1] = 0. If i ∈ A(X) then Pr[Yi = 1 | X1 = x1, . . . , Xi−1 =
xi−1] = Pr[i ∈ H(X) : X1 = x1, . . . , Xi−1 = xi−1] ≤ γ, by the definition of A(X). In particular, this shows
that for any choice of y1, . . . , yi−1 we have

Pr[Yi = 1|Y1 = y1, . . . , Yi−1 = yi−1] ≤ max
(x1,...,xi−1)

Pr[Yi = 1|X1 = x1, . . . , Xi−1 = xi−1] ≤ γ.

Therefore, the last inequality follows via the (generalized) Chernoff bound (Lemma 2.12).

We also show the following corollary, which may prove to be a useful form of the above lemma of
independent interest. However, in our work, we end up only relying on the above lemma without needing
this corollary. The corollary says that we can think of the set of good indices I = I(X) as a random variable
correlated with X.

Corollary 4.2. Let X = (X1, . . . , Xk) be a random variable with blocks Xi ∈ {0, 1}b, such that H∞(X) ≥
α · (kb) for some α > 0. Then, for any α1, α2, ε satisfying the conditions of Lemma 4.1, there are some
random variables X ′ and I such that:

• SD((X, I), (X ′, I)) ≤ ε.

• I = {I1 < I2 < · · · < I`} ⊆ [k] for ` = dα1 · ke.

• For all j ∈ [`]: H∞(X ′Ij) ≥ H∞(X ′Ij |Ij) ≥ H∞(X ′Ij |X
′
1, . . . , X

′
Ij−1, Ij) ≥ α2 · b− 1.

Proof. Given X, we define random variable X ′, I as follows:

• If X 6∈ BAD then X ′ = X, I = Î(X), where Î(x) consists of the first ` elements of I(x).

• Else if X ∈ BAD then X ′ = Ukb, I = {1, . . . , `}, where Ukb is uniformly random over {0, 1}kb.

It is easy to see that SD((X, I), (X ′, I)) ≤ Pr[X ∈ BAD] ≤ ε and that |I| = `.

15

To prove the last part of the lemma, define B to be the event that X ∈ BAD. Then:

Pred(X ′Ij | X
′
1, . . . , X

′
Ij−1, Ij) = max

A
Pr[A(X ′1, . . . , X

′
Ij−1, Ij) = X ′Ij]

≤ max
A

Pr[A(X ′1, . . . , X
′
j−1, j) = X ′j ∧B] + max

A
Pr[A(X ′1, . . . , X

′
Ij−1, Ij) = X ′Ij ∧ ¬B]

≤ 2−b · ε+ max
A

Pr[A(X1, . . . , XIj−1, Ij) = XIj ∧ Ij ∈ I(X)]

≤ 2−b · ε+ max
(i,x1,...,xi)

Pr[Xi = xi|X1 = x1, . . . , Xi−1 = xi−1, i ∈ I(X)]

≤ 2−b · ε+ 2−α2·b

≤ 2−α2·b+1.

Therefore H∞(X ′Ij |X
′
1, . . . , X

′
Ij−1, Ij) = − log(Pred(X ′Ij | X

′
1, . . . , X

′
Ij−1, Ij)) ≥ α2 · b− 1.

5 MAC with Long Tags

In this section, we build a streaming MAC in the streaming BSM where the size of tags grow with the
memory bound of the adversary. More precisely, we prove the following theorem:

Theorem 5.1. For all integers m,λ, there exists a streaming MAC with memory n = O(λ+polylog(m,λ)))
(Definition 3.2) which can authenticate messages of length up to 2λ, and which is (2−λ,A)-uf-cmva-secure
(Definition 3.3), where A is the set of streaming adversaries with memory m that make a total number of
at most Q = 2λ oracle queries in the unforgeability experiment (Definition 3.5). Furthermore the (streamed)
tags are of size O(m+ λ log λ).

5.1 Construction

Construction. Let |µ| be a parameter. Let m be an integer.
Let n = O(λ + polylog(m,λ, µ)), k = Θ(m + λ log λ) and ` ≤ max(m,O(λ + log(k + |µ|)). Let Ext :

{0, 1}k × {0, 1}d → {0, 1}` be a (n,m, 2−Ω(λ))-BSM extractor (Definition 2.7 and Theorem 2.8),
Let c ≥ 3 be a constant. Let (KeyGen,MAC,Verify) be a one-time, information-theoretic MAC with

message space {0, 1}k+|µ| that can be evaluated in a streaming manner using memory O(λ + log(k + |µ|))
and tag size at most `, which is (k+|µ|)QV

2cλ
-secure against adversaries that make at most one tagging query

and QV verification queries (which exists by Claim 3.7).
We define the following algorithms:

• KeyGen(1λ): Sample a seed seed← {0, 1}d for Ext and a key sk for the one-time MAC. Output:

sk = (sk, seed).

• MAC(sk, µ): On input µ← {0, 1}|µ| and sk = (sk, seed), sample x← {0, 1}k and output:

σ = (x, Ext(x, seed)⊕MAC(sk, (x‖µ))).

We consider here that x is generated and output in a streaming manner, while Ext(x; seed) and
MAC(sk, (x‖µ)) are computed in a streaming manner.

• Verify(µ, sk, σ): on a streamed input (µ, σ = (x, ψ)), compute

σ := ψ ⊕ Ext(x; seed),

and output Verify(sk, σ).

Claim 5.2 (Correctness). Suppose (KeyGen,MAC,Verify) is correct. Then (KeyGen,MAC,Verify) is correct.

16

Claim 5.3 (Efficiency). KeyGen can be computed (in place) with memory O(n), and MAC and Verify can be
computed in a streaming manner using memory O(n).

Proof. Computing KeyGen, as well as the size of sk follow directly by Theorem 2.8 and Claim 3.7, which
gives a (one-time, information-theoretic) MAC with tag size O(λ+ log(k + |µ|)) where keys can be sampled
efficiently. Instantiating Ext with k = O(m+λ log λ) and n ≥ Ω(λ+ log(k+ |µ|)) = Ω(λ+ polylog(m,λ, |µ|))
gives the claim.

As for computing MAC and Verify in a streaming manner, given seed and sk, one can sample and output x
in a streaming manner. Then one can compute both Ext(x, seed) and MAC(sk, (x, µ)) given x as a streaming
input, using memory O(n).

Theorem 5.4 (Security). Suppose Ext is an (n,m, 2−Ω(λ))-BSM extractor (Definition 2.7 and Theorem 2.8)
where 4m ≥ 2λ, and that (KeyGen,MAC,Verify) is a (k+ |µ|)/2cλ one-time information-theoretic MAC (over
messages of length k + |µ|).

Let A be the set of streaming adversaries running in space m/4 and that make at most QT tagging and QV
verification queries in the uf-cmva experiment (Definition 3.5). Let ε ≤ 1

2λ
+QT ·2−Ω(λ) +QV · (k+ |µ|)/2cλ.

Then (KeyGen,MAC,Verify) is (ε,A)-uf-cmva-secure.
In particular, there exists a constant c′ such that if QT , QV ≤ 2c

′λ, then (KeyGen,MAC,Verify) is
(2−Ω(λ),A)-uf-cmva-secure.

Proof. Let Adv be a streaming adversary against the uf-cmva-experiment for (KeyGen,MAC,Verify) with
advantage ε. Without loss of generality, we assume that Adv queries its final forgery to the verification
oracle during the experiment. Let QT (resp. QV) be the number of tagging queries (resp. verification
queries) it makes.

For j ∈ [QT], consider the jth tagging query, which on input message µj , outputs a stream σj = (xj , ψj).
Define the jth tagging epoch as the part of the uf-cmva experiment taking place while the part of response
to the jth tagging query xj ∈ {0, 1}k is being streamed to the adversary. Note that by assumption on Adv,
who makes sequential calls to the tagging oracle, these epochs are disjoint (Definition 3.5).

For i ∈ [QV] and j ∈ [QT], we say that the ith verification query is dominated by the jth tagging query
if the two following conditions hold:

(1) Denoting the input to the ith verification query (µ′i, σ
′
i) where σ′i = (x′i, ψ

′
i), at least k −m/2 + 1 bits

of x′i ∈ {0, 1}k are streamed during the jth tagging epoch;

(2) The output of the ith verification query is given after the output of the jth tagging query has been
fully streamed to the adversary.

We will use the following properties:

• Because of condition (1) and k ≥ m, any given verification query is dominated by at most one tagging
query. Similarly, because of condition (2), a tagging query can only dominate the ongoing verification
query at the time the vector xj finishes being streamed to the adversary (if such a verification query
exists).

• One can decide whether the ith verification query is dominated by the jth tagging query in a streaming
manner during the experiment: this can be done by counting the number of input bits streamed by
the adversary to the verification oracle while the output of the jth tagging is being streamed.

We consider the following hybrid experiments for 0 ≤ i ≤ QV . Hybrid H0 is defined as the uf-cmva
experiment for (KeyGen,MAC,Verify).

Let i where 1 ≤ i ≤ QV . Let j(i) be the last tagging epoch that ends before the ith verification query
output (with the convention j(i) = 0 if no such tagging epoch exists, and j(QV + 1) = QT + 1).

17

Hybrid Hi. We modify how certain verification queries and tagging queries are handled.
We change how the ith verification query is handled.

• If the ith verification query is dominated by the jth tagging query for some j ∈ [QT], let σj = (xj , ψj)
denote the response issued to the jth tagging query on input message µj . The verification query accepts
if it is called on input (µj , σj), and rejects otherwise. Note that this process is well-defined thanks to
the properties of domination listed above.

• Otherwise (namely, if the ith verification query is not dominated by any tagging query), reject the
query regardless of the input.

We additionally change how the tagging queries with indices j ≤ j(i) are handled. If the jth tagging query
is not dominating the ith verification query, answer the query instead with σ = (xj , ψj) where xj ← {0, 1}k
and ψj ← {0, 1}` are sampled uniformly at random.

Note that hybrid H0 corresponds to the uf-cmva experiment, and hybrid HQV corresponds to a hybrid
where only trivial queries are accepted (namely, ones corresponding to the outputs of dominating tagging
queries), so that Adv never succeeds in the uf-cmva experiment in that hybrid (recall that, without loss of
generality, Adv calls the verification oracle on its final forgery).

To prove that, for 0 ≤ i ≤ QV − 1, the output of Adv in hybrid Hi is indistinguishable from its output in
Hi+1, we consider the following sub-hybrids indexed by j, where j(i) + 1 ≤ j ≤ j(i+ 1), with the convention
Hi = H0,1

i (we don’t consider any sub-hybrids if j(i) + 1 > j(i+ 1)).

Hybrid Hj,0
i . We change how verification queries are handled, if the jth tagging query is not dominating

any verification query. The experiment samples ahead of time x∗j ← {0, 1}k. It replies to the jth tagging
query for message µj with σj = (x∗j , ψj), where ψj = Ext(x∗j ; seed)⊕MAC(sk, (x∗j‖µj)). On any verification
query that is not dominated by the jth tagging query, with input (µ, (x∗j , ψ)) for any µ, ψ, the experiment
aborts. Verification queries are otherwise handled as in hybrid Hi.

Hybrid Hj,1
i . We change how the jth tagging query is handled. Namely, if the jth tagging query is not

dominating the (i+1)st verification query, answer the jth tagging query with input message µj with (xj , ψj)
where xj ← {0, 1}k and ψj ← {0, 1}`.

Note that the answers to tagging queries only differ between hybrids Hj,0
i and Hj,1

i when either j is
dominating the ith query, or when j(i) + 1 ≤ j ≤ j(i+ 1). Verification queries are handled as in hybrid Hi.

Claim 5.5. Suppose QVQT ≤ 2m/4−λ. Then for all i, j where 0 ≤ i ≤ QV −1 and j(i)+1 ≤ j ≤ j(i+1)−1,
the outputs of hybrids Hj−1,1

i and Hj,0
i are within statistical distance 1

QT ·2λ .

Proof. We argue that the aborting condition only occurs with small probability. Let (x∗j , ψj) be the output of
the jth tagging query. Fix any verification query, with input (µ, σ = (x, ψ)), that is not dominated by the jth
tagging query. Let xstream denote the part of x being streamed as an input to the verification during the jth
tagging epoch (which can potentially be an empty string). By definition of domination |xstream| ≤ k−m/2+1.
Furthermore, denoting by stateAdv,j the internal state of the adversary at the end of the jth tagging epoch,
we have |stateAdv,j | = m/4. Thus, H∞(x∗j |x) ≥ H∞(x∗j |xstream, stateAdv,j) ≥ m/4 − 1, so that x = x∗j with

probability at most 2−m/4+1 over the randomness of x∗j alone.7 An union bound over the QV verification
queries concludes.

Claim 5.6. Suppose Ext is a (n,m, δ)-BSM extractor. Then, for all i, j where 0 ≤ i ≤ QV − 1 and
j(i) + 1 ≤ j ≤ j(i+ 1), the outputs of the experiment with Adv in hybrids Hj,0

i and Hj,1
i are within statistical

distance δ.

7For verification queries such that x finishes being streamed before the end of the jth tagging epoch, we actually have
H∞(x∗j |x) ≥ m/2− 1, as stateAdv,j doesn’t influence the input x.

18

Proof. Fix j, where j(i) + 1 ≤ j ≤ j(i+ 1). Denote the output of the jth tagging query σj = (xj , ψj), where
xj ∈ {0, 1}k. We suppose that the jth tagging query is not dominating the (i + 1)th verification query;

otherwise hybrids Hj
i and Hj+1

i are identical. Observe that, in both hybrids, the outputs of verification
queries of index i′ < i are computed as equality tests to its associated dominating query, if such a dominating
query exists, and always rejects otherwise. In particular, the experiment up to xj being fully streamed can
be computed without any knowledge of sk nor seed.

Consider the state of the experiment stateExp at the moment xj has finished being streamed to the
adversary, but no bit of ψj has been streamed yet. stateExp can fully be described by (i) the internal state of
the adversary, of size at most m/4; (ii) the state of the ongoing verification query (if it exists).

We distinguish two cases, according to whether jth tagging query dominates the ith verification query.
Suppose the jth tagging query does not dominate any query. By construction of the hybrids, the ongoing

verification does not keep any information about xj , as it just checks equality with its dominated tagging
query. Therefore H∞(xj |stateExp) ≥ k −m/4.

Suppose the jth tagging query dominates the ith verification query. We claim that by definition of
domination, the state of the ongoing verification query at that moment can be described using (at most)
m/2 bits. This is because at least k−m/2 + 1 input bits of x have already been streamed to the dominated
verification query during the jth epoch. Therefore, the state of the verification query can be described using
(i) one bit, representing whether the first k−m/2 + 1 input bits to the verification query match xj , and (ii)
the remaining last bits of xj that the further input bits to the verification query needs to match; there are
at most m/2− 1 of them. We obtain: H∞(xj |state) ≥ k −m/2−m/4 ≥ k −m.

In any case, observing that no extractor seed is needed to execute the experiment up to that point, it
can be sampled independently of xj and state then, so that using BSM-extractor security (Definition 2.7),
we obtain:

(Ext(xj ; seed), state, seed) ≈δ (u, state, seed)

where u← {0, 1}` is uniformly random, independent of state and seed.

Claim 5.7. Suppose (KeyGen,MAC,Verify) is a εMAC-secure one-time information-theoretic MAC. Then for

all i where 0 ≤ i ≤ QV −1, the outputs of the experiments with Adv in hybrids H
j(i+1),1
i and Hi+1 are within

statistical distance εMAC.

Proof. The only difference between the two hybrids is how the (i + 1)th verification query is answered.
In both hybrids, the responses (xj , ψj) to all tagging queries made before the response to the (i + 1)th
verification query is given are uniformly random, except for at most one tagging query, the one dominating
the (i + 1)th verification query (if it exists), which outputs tag σ = (x, ψ) where x ← {0, 1}k and ψ =
Ext(x; seed)⊕MAC(sk, (x‖µ)).

In particular, if ∣∣∣Pr
[
Expuf-cmva

H
j(i+1),1
i

(1λ,Adv) = 1
]
− Pr

[
Expuf-cmva

Hi+1
(1λ,Adv) = 1

]∣∣∣ = ε

then Adv makes the (i+ 1)th verification query accept H
j(i+1),1
i , but reject in Hi+1, with probability ε. This

corresponds to an accepting input different from the dominating tagging query (if it exists). We show that
this leads to an attack on the one-time security of (KeyGen,MAC,Verify) with success probability ε.

The reduction generates seed itself. On a tagging query with input µ, it samples x← {0, 1}k and streams
it to the adversary, and stores x in full. When x finishes being streamed, it determines whether the tagging
query was dominating the (i + 1)th verification query. If not, it samples and streams to Adv a uniform
ψ. If the tagging query dominates the (i + 1)th verification query, the reduction calls its MAC oracle with
input (x‖µ), receives MAC(sk, (x‖µ)), computes Ext(x; seed) itself, and streams to Adv the end of the tag

ψ = Ext(x; seed)⊕MAC(sk, (x‖µ). Verification queries prior to the (i+1)th are handled as in hybrid H
(j+1),1
i .

The reduction outputs as a forgery the input to the (i+1)th verification query from Adv. This corresponds,

with probability ε, to an accepting input in H
j(i+1),1
i but a rejecting input in Hi+1, that is, an input different

19

from the output of the MAC oracle (if such a MAC oracle query is made). In other words, this constitutes
a forgery on the MAC. Last, there exists at most one dominating tagging query for the (i+ 1)th verification
query, and therefore the reduction makes at most one MAC call.

Wrapping up, in hybrid HQV , only inputs corresponding to dominating tagging queries are accepted by
the verification queries, and therefore no adversary produces forgeries in this hybrid. Combining Claim 5.5,
Claim 5.6 and Claim 5.7, we obtain∣∣∣Pr

[
Expuf-cmva

HQV
(1λ,Adv) = 1

]
− Pr

[
Expuf-cmva

H0
(1λ,Adv) = 1

]∣∣∣ ≤ 1

2λ
+QT · δ +QV εMAC.

6 MAC with Short Tags

In this section, we build a streaming MAC in the streaming BSM where the size of tags does not grow with
the memory bound of the adversary. In particular, honest parties can store entire tags. More precisely, we
prove the following theorem:

Theorem 6.1 (MAC with Short Tags). For all m,λ there exists a streaming MAC with memory n =
O(λ
√
m + λ2) (Definition 3.2) which can authenticate messages of length up to 2O(n), which is (2−λ,A)-

uf-cmva-secure (Definition 3.3), where A is the set of streaming adversaries with memory m that make at
most Q = 2λ oracle queries in the unforgeability experiment (Definition 3.5). Furthermore the resulting
MAC has tags of size O(n).

To do so, we first present the main hardness result from [Raz16] in Section 6.1. We present a construction
with small message space and no verification queries in Section 6.2. We show how to modify the construction
how to handle larger messages in Section 6.3, and how to efficiently detect whether a tag has been previously
issued by the tagging oracle in Section 6.4. Then we show how to ensure security against adversaries that
have access to verification queries in Section 6.5.

6.1 Hardness of Learning Parities

We recall here the main theorem from [Raz16], which will be the core component of our constructions in this
section.

Theorem 6.2 ([Raz16]). Let k ≥ 1 be an integer. There exist constants C,α > 0 such that the following
holds. Let Adv be an algorithm which takes as input a stream (a1, b1), . . . , (aQ, bQ), where ai ∈ {0, 1}k,
s← {0, 1}k and bi = 〈ai, s〉 ∈ Z2 and Q ≤ 2αk, and outputs a vector s′ ∈ Zk2 . Suppose that Adv uses at most
Ck2 memory. Then Pr[s′ = s] ≤ O(2−αk).

Futhermore the same conclusion holds if Adv is given access to unbounded temporary memory between
receiving elements (a, b), as long as its state is compressed down to Ck2 bits whenever an element (a, b) is
received. We refer to such adversaries as adversaries with memory Ck2 and unbounded temporary memory
(Remark 3.6).

In this paper we only consider adversaries that have to compress their state down between every bit
streamed, even though Theorem 6.2 more generally holds even against adversaries that can process whole
samples (ai, bi) ∈ Zk2×Z2 using unbounded memory. Looking ahead, Theorem 6.2 holding against adversaries
with unbounded temporary memory will be crucial in the transformation of Section 6.4.

Using that the inner product is a strong extractor, we obtain the following.

20

Lemma 6.3 (Pseudorandomness of parities (1)). Suppose α · k ≥ 3λ. Let Os be an oracle which, given
s ∈ {0, 1}k, samples a ∈ {0, 1}k and outputs (a, 〈a, s〉). Then for any adversary Adv with memory at most
Ck2, using unbounded temporary memory, and making at most 2αk oracle calls:∣∣∣∣ Pr

s←{0,1}k

[
AdvOs(·)(A,As) = 1

]
− Pr

s←{0,1}k

[
AdvOs(·)(A,b) = 1

]∣∣∣∣ ≤ 2−2λ,

where A← {0, 1}λ×k and b← {0, 1}λ.

Last, a standard hybrid argument proves the following.

Corollary 6.4 (Pseudorandomness of parities (2)). Suppose α · k ≥ 3λ. Let OS be an oracle which, given
S ∈ {0, 1}k×`, samples a ∈ {0, 1}k and outputs (a,aTS) ∈ {0, 1}k × {0, 1}1×` ; and let OR be an oracle
which samples (a,B) ← {0, 1}k × {0, 1}1×`. Then for any adversary Adv with memory at most Ck2, using
unbounded temporary memory, and making at most Q ≤ 2αk oracle calls:∣∣∣∣ Pr

s←{0,1}k

[
AdvOS(·)(1λ) = 1

]
− Pr

s←{0,1}k

[
AdvOR(·)(1λ) = 1

]∣∣∣∣ ≤ `Q/22λ.

6.2 Construction without Verification Queries

We start with a construction of MAC with short tags that is unforgeable given access to tagging queries,
but not to verification queries.

Construction. Let k = Θ(λ) be an integer.

• KeyGen(1λ): Sample K1 ← {0, 1}k×λ, K2 ← {0, 1}k. Output K = (K1,K2).

• MAC(K, µ): on input µ ∈ {0, 1}λ, compute Kµ = (K1 · µ) + K2 ∈ {0, 1}k. Sample X ← {0, 1}λ×k.
Output:

σ = (X,X ·Kµ) ∈ {0, 1}λ×k × {0, 1}λ.

• Verify(K, µ, σ = (X,Y)): Check that rank(X) = λ, otherwise reject. Compute Kµ = (K1 · µ) + K2,
and accept if and only if Y = X ·Kµ.

Claim 6.5 (Correctness). Suppose k ≥ Cλ for a large enough constant C. Then (KeyGen,MAC,Verify) is
correct.

Proof. This follows as k ≥ λ+O(log λ) so that PrX[rank(X) 6= λ] ≤ negl(λ).

Claim 6.6 (Efficiency). MAC and Verify can be implemented by streaming algorithms with memory O(λk).
Furthermore KeyGen can be computed (in place) with memory O(λk), and the size of the keys and tags are
also O(λk).

Theorem 6.7 (Security). Let A = A(O(k2), Q) be any class of streaming adversaries such that there exists a
constant C ′ such that algorithms in A run with memory at most C ′k2, using unbounded temporary memory,
and that make at most Q ≤ 2αk/λ oracle calls (Definition 3.5, and where α is defined in Theorem 6.2).

(KeyGen,MAC,Verify) is (λQ+1
2λ

,A)-unforgeable against tagging queries (uf-cma, Definition 3.3) and (λQ
22λ ,A)-

message-hiding (ind-cma, Definition 3.4).

Proof. We first prove that the construction satisfies selective unforgeability (suf-cma). Let µ∗ ∈ {0, 1}λ be
the message the adversary is commiting to forge a MAC on.

We consider the following hybrid experiments:
Hybrid H0. This is the suf-cma experiment (Definition 3.3).
Hybrid H1. The tagging queries in the suf-cma experiment are instead answered by sampling (X,Y)←

{0, 1}λ×k × {0, 1}λ.

21

Lemma 6.8. for any adversary Adv with memory at most Ck2 and unbounded temporary memory which
makes at most Q ≤ 2αk/λ tagging queries, we have∣∣∣Pr

[
Expsuf-cma

H0
(1λ,Adv) = 1

]
− Pr

[
Expsuf-cma

H1
(1λ,Adv) = 1

]∣∣∣ ≤ λQ/22λ,

where Expsuf-cma
Hb

refers to the suf-cma experiment in Hybrid b, and C denotes the constant in Corollary 6.4.

Proof. For any Adv for Expsuf -cma with memory Ck2, unbounded temporary memory, and at most Q ≤ 2αk

tagging queries such that∣∣∣Pr
[
Expsuf-cma

H0
(1λ,Adv) = 1

]
− Pr

[
Expsuf-cma

H1
(1λ,Adv) = 1

]∣∣∣ = ε

we build a distinguisher between OS and OR (defined in Corollary 6.4 with ` = λ), that runs with memory
O(Ck2), uses unbounded temporary memory, calls the oracle O λQ times and has advantage ε.

Our reduction samples Kµ∗ ← {0, 1}k. For every tagging query from Adv with message µ 6= µ∗ (where
µ∗ is the message for the forgery declared in advance by Adv in the suf-cma experiment), the reduction
queries its oracle λ times and obtains (X,Y) ∈ {0, 1}λ×k × {0, 1}λ, where either Y = XK1 ∈ {0, 1}λ×λ
and K1 ← {0, 1}k×λ, or Y ← {0, 1}λ×λ. It replies to the tagging query with (X,XKµ∗ + Y · (µ − µ∗)) ∈
{0, 1}λ×k×{0, 1}λ. Upon receiving a forgery (µ∗, (X∗,Y∗)) from the adversary, the reduction checks whether

the forgery is valid by testing Y∗
?
= X∗ ·Kµ∗ . It outputs 1 if the forgery is valid, and 0 otherwise.

First, note that the distinguisher makes at most λQ oracle queries to O, and runs in memory Ck2 +
O(λk+λ2) = C ′k2 for some constant C ′ (independent of Adv, and not accounting for unbounded temporary
memory), as αk ≥ 2λ.

If the oracle outputs are such that Y = XK1, then the view of Adv corresponds to the original suf-cma
experiment from H0, noting that even given K1, Kµ∗ is uniformly random over the random choice of K2

alone.
If Y ← {0, 1}λ×λ, then for all µ 6= µ∗, Y · (µ− µ∗) is uniformly random in over the choice of Y alone, so

that XKµ∗ + Y · (µ− µ∗) is uniform. Therefore the view of Adv corresponds to hybrid H1.
Corollary 6.4 implies that the advantage of the reduction is at most λQ/22λ and therefore so is the

distinguishing advantage ε of Adv.

We now claim that the probability of outputting a valid forgery in H1 is negligible, even for an unbounded
adversary. This is because the view of the adversary is now completely independent of Kµ∗ . Now, given
any full-rank X, XKµ∗ is uniformly random over the choice of Kµ∗ alone (where we use λ ≤ k), so that the
probability of outputting (X,X ·Kµ∗) is at most 2−λ over the randomness of Kµ∗ .

Overall, this shows that for any adversary with memory at most O(k2) (and unbounded temporary
memory), which makes at most Q ≤ 2αk/λ tagging queries, its advantage is at most

Pr
[
Expsuf-cma(1λ,Adv)

]
≤ λQ+ 1

22λ
.

Next, we claim that (KeyGen,MAC,Verify) is in fact uf-cma-secure, namely adaptively secure::

Pr
[
Expuf-cma(1λ,Adv)

]
≤ λQ+ 1

2λ
.

This follows from a simple guessing argument: a reduction to the suf-cma security of the construction guesses
µ∗ in advance, and succeeds only if the guess is correct, which incurs an advantage loss of 2λ.

Moving on to message-hiding, we argue that the MAC is ind-cma against any adversary with memory
O(k2), unbounded temporary memory, that makes at most Q ≤ 2αk/λ tagging queries. This follows from
a similar argument as suf-cma security, using Corollary 6.4 with secret S = K2, which gives that the view
of any such adversary is λQ/22λ-close to one where all tagging queries are answered with uniformly random
tags.

22

6.3 Domain Extension for MACs

Next, we show how to extend the message space of any MAC, which preserves uf-cma and ind-cma security,
as well as efficiency. The transformation is very similar to [DKPW12, Section 3.2], with the main difference
being that the reductions are adapted to the low memory regime. In particular, our reductions, even given
unbounded temporary memory, cannot afford to record all the tagging queries made by the adversary.

Construction. Let n,m, ` be integers such that λ + log ` = O(m). Let A = A(O(m), Q) be any class of
streaming adversaries such that there exists a constant C ′ such that algorithms in A run with memory at
most C ′m making at most Q oracle calls (Definition 3.5). Let (KeyGen,MAC,Verify) be a MAC with message
space {0, 1}λ satisfying:

• (ε,A)-uf-cma-security (Definition 3.3);

• (ε,A)-ind-cma-security (Definition 3.4);

• (KeyGen,MAC,Verify) is a streaming MAC with memory O(n) (Definition 3.2), with tags of size n.

Let H = {h : {0, 1}` → {0, 1}λ} be a family 2−λ-universal hash function for some integer `. Let m be an

integer such that O(λ + log `) = O(m). We define the following MAC (K̃eyGen, M̃AC, Ṽerify) with message
space {0, 1}`.

• K̃eyGen(1λ): Sample sk← KeyGen and h from the family of universal hash functions, and output

s̃k = (sk, h).

• M̃AC(s̃k, µ): On input µ ∈ {0, 1}` and s̃k = (sk, h), output

σ̃ = MAC(sk, h(µ)).

• Ṽerify(s̃k, µ, σ̃): Parsing s̃k = (sk, h), output:

Verify(sk, h(µ), σ̃).

Claim 6.9 (Correctness). Suppose (KeyGen,MAC,Verify) is correct. Then (K̃eyGen, M̃AC, Ṽerify) is correct.

Claim 6.10 (Efficiency). Suppose (KeyGen,MAC,Verify) is a streaming MAC with memory O(n) (Defini-

tion 3.2), with tags of size n. Then (K̃eyGen, M̃AC, Ṽerify) is a streaming MAC with memory O(n+λ+log `)

Furthermore M̃AC produces tags of size n.

Proof. Taking as the universal hash function the function ha(·) = MAC(a, ·) from Claim 3.7 with F =
{0, 1}λ+dlog `e, we have that the description size of h is O(λ+ log `) and h can be computed in a streaming
manner with memory O(λ+ log `), and that the resulting universal hash function is 2−λ-universal.

Theorem 6.11 (Security). Let H = {h : {0, 1}` → {0, 1}λ} be a 2−λ-universal hash function, and suppose
λ + log ` = O(m). Let A = A(O(m), Q) be any class of streaming adversaries such that there exists a
constant C ′ such that algorithms in A run with memory at most C ′m, using unbounded temporary memory,
and make at most Q oracle calls (Definition 3.5). Suppose (KeyGen,MAC,Verify) is (ε,A)-uf-cma-secure
(Definition 3.3) and (ε,A)-ind-cma-secure (Definition 3.4).

Then (K̃eyGen, M̃AC, Ṽerify) is (O(Q(ε+ 2−λ)) , A)-uf-cma-secure and (2ε,A)-ind-cma-secure.

23

Proof. We first prove that (K̃eyGen, M̃AC, Ṽerify) is (2ε+Q/2λ,A)-uf-cma-secure. Let Adv be a streaming ad-

versary with memorym and unbounded temporary memory against the uf-cma security of (K̃eyGen, M̃AC, Ṽerify),
which makes at most Q queries, and with advantage ε′. Let µ1, · · · , µQ ∈ {0, 1}` be the messages queried
by Adv to the tagging oracle, and let µ∗ /∈ {µ1, · · · , µQ} be the message associated to its forgery.

Let us denote by BAD the event that there exists some i ∈ [Q] such that h(µ∗) = h(µi). Let us prove that
Pr[BAD] ≤ Q(ε+2−λ). To do so, we build an adversary against the ind-cma-security of (KeyGen,MAC,Verify)
with success probability Pr[BAD]/Q− 2−λ. The reduction samples h← H, and answers tagging queries for
message µi by relaying the output of the ind-cma tagging oracle on input h(µi). It additionally chooses a
random query i∗ ∈ [Q], and outputs 1 if h(µ∗) = h(µi∗), and 0 otherwise. Note that the reduction runs in
memory (m + O(λ + log `)) (and unbounded temporary memory). If the reduction is given a real tagging
oracle MAC(sk, ·), then the reduction outputs 1 with probability at least Pr[BAD]/Q, over the random choice
of his guess i∗. If the reduction is given oracle access to MAC(sk, 0), then the reduction succeeds with
probability 2−λ by universality of h. Overall, this gives

Pr[BAD] ≤ Q(ε+ 2−λ).

Conditioned on ¬BAD, we claim that there exists a memory m+O(λ+log `) attack on the uf-cma-security of
(KeyGen,MAC,Verify) (that uses unbounded memory if Adv does). A reduction samples h← H, answers the
tagging queries from Adv for message µi by first computing h(µi) and querying MAC(sk, ·) on message h(µi).
Given the final forgery (µ∗, σ) of Adv, the reduction outputs (h(µ∗), σ) as a forgery for (KeyGen,MAC,Verify).
Conditioned on ¬BAD, the reduction is an admissible adversary with memory m+O(λ+log `) for the uf-cma
experiment, which succeeds whenever Adv succeeds. By (ε,A)-uf-cma-security of (KeyGen,MAC,Verify), the
probability that the reduction succeeds is at most ε, so that

ε′ ≤ ε+Q(ε+ 2λ).

Next, we prove that (K̃eyGen, M̃AC, Ṽerify) is (2ε,A)-ind-cma-secure. Let Adv be a streaming adversary

with memory m against the ind-cma-security of (K̃eyGen, M̃AC, Ṽerify), which uses unbounded temporary
memory, makes at most Q queries, and which has advantage ε′. We claim that:∣∣∣Pr[AdvMAC(sk,·) = 1]− Pr[AdvMAC(sk,0) = 1]

∣∣∣ ≤ ε.
This follows by (ε,A)-ind-cma security of (KeyGen,MAC,Verify), where a reduction with memory m+O(λ+
log `) (and uses unbounded temporary memory if Adv does) samples h← H and computes on every tagging
query h(µ) in a streaming manner using O(λ+ log `) memory. Similarly, we have:∣∣∣Pr[AdvMAC(sk,g(0)) = 1]− Pr[AdvMAC(sk,0) = 1]

∣∣∣ ≤ ε,
and therefore ε ≤ 2ε′, where we use that O(λ+ log `) = O(m).

6.4 Efficiently Recognizing Prior Tagging Queries

In this section, we show how to efficiently recognize tags previously issued by tagging queries. In particular,
we wish to do so without having to store all the previously issued tags, as our reductions have limited
memory. Looking ahead, this will be crucial in Section 6.5 in order to answer trivially accepting verification
queries only using small memory. In terms of techniques, this is the only step where we require that our
reductions can run using unbounded temporary memory.

We first define variants of both unforgeability under chosen message attacks (uf-cma) and message-
hiding (ind-cma), where the adversary is given the additional ability to check whether a message-tag pair
has previously been issued by the tagging oracle during the respective experiments. Note that these are
stronger security notions than standard uf-cma and ind-cma in our setting, as our adversaries don’t have
enough memory to store all previously issued message-tag pairs in general.

Definition 6.12 (Special Unforgeability under Chosen Message Attacks). For an algorithm Adv, consider
the following experiment:

24

Experiment Expuf-cmva−special(1λ,Adv):

1. Sample sk← KeyGen(1λ).

2. Compute (µ∗, σ∗)← AdvMAC(sk,·),isSame(·,·).

3. Output 1 if Verify(sk, µ∗, σ∗) = 1 output 0 otherwise,

where the oracle isSame keeps track of all prior oracle queries made by Adv to the tagging oracle MAC(sk, µ)→
σ, and isSame(µ, σ) outputs 1 if (µ, σ) corresponds to such a prior query, and 0 otherwise.

We say that a MAC satisfies (ε,A)-special unforgeability under chosen message attacks against a class
A of adversaries, if for all adversary Adv ∈ A:

Pr[Expuf-cmva−special(1λ,Adv) = 1] ≤ ε.

Definition 6.13 (Special Indistinguishability under Chosen Message Attacks). We say that a MAC satisfies
(ε,A) special indistinguishability under chosen-message attacks if for all Adv ∈ A:∣∣∣Pr[AdvMAC(sk,·),isSame(·,·) = 1]− Pr[AdvMAC(sk,0),isSame(·,·) = 1]

∣∣∣ ≤ ε,
where the oracle isSame keeps track of all prior oracle queries made by Adv to the tagging oracle MAC(sk, µ)→
σ, and isSame(µ, σ) outputs 1 if (µ, σ) corresponds to such a prior query, and 0 otherwise, and where the
probabilities are over the randomness of sk← KeyGen(1λ).

Next, we show that any MAC secure against adversaries with unbounded temporary memory8 remains
secure given access an isSame oracle, up to some minor change in the construction.

Construction. Let n,m be integers, C > 6 be a constant, and (KeyGen,MAC,Verify) be a MAC with
message space {0, 1}`+Cn satisfying:

• (ε,A)-uf-cma-security (Definition 3.3);

• (ε,A)-ind-cma-security (Definition 3.4);

• (KeyGen,MAC,Verify) is a streaming MAC with memory O(n) (Definition 3.2), with tags of size n.

Consider the following MAC (K̃eyGen, M̃AC, Ṽerify):

• K̃eyGen(1λ): Sample sk← KeyGen and output s̃k = sk.

• M̃AC(s̃k, µ): On input µ ∈ {0, 1}` and s̃k = sk, sample r ← {0, 1}Cn, and output

σ̃ = (r,MAC(sk, (µ‖r))).

• Ṽerify(s̃k, µ, σ̃): Parsing σ̃ = (r, σ), output:

Verify(sk, (µ‖r), σ).

One can check that (K̃eyGen, M̃AC, Ṽerify) directly inherits correctness and security of (KeyGen,MAC,Verify).

Furthermore, if (KeyGen,MAC,Verify) is a streaming MAC with memory n, then (K̃eyGen, M̃AC, Ṽerify) is a
streaming MAC with memory (C + 1)n.

Next, we show that the construction above further achieves the special versions of security (Defini-
tions 6.12 and 6.13).

8Recall these correspond to adversaries that have access to unbounded temporary memory to treat the stream it receives,
as long as their internal state is compressed to some bounded-size state between every bit sent.

25

Claim 6.14. Suppose (KeyGen,MAC,Verify) is a streaming MAC satisfying uf-cma-security against adver-
saries with memory m′, using unbounded temporary memory, making at most QT ≤ 2n/3 tagging queries,

and such that m′ ≥ n. Then (K̃eyGen, M̃AC, Ṽerify) satisfies special unforgeability under chosen message
attacks (Definition 6.12) against adversaries with memory m = m′/3 , using unbounded temporary memory,
and making at most QT tagging queries and QO ≤ 2n queries to the isSame oracle.

Suppose (KeyGen,MAC,Verify) is ind-cma-secure against adversaries with memory m which use unbounded

temporary memory. Then (K̃eyGen, M̃AC, Ṽerify) satisfies special indistinguishability under chosen message
attacks (Definition 6.13) against adversaries with memory m′ = m/3, using unbounded temporary memory,
and making at most QO ≤ 2n queries to the isSame oracle.

Proof. Let Adv be an adversary with memory m (using unbounded temporary memory) against the special

unforgeability of (K̃eyGen, M̃AC, Ṽerify). We build an adversary Adv′, which uses unbounded temporary

memory, for the plain uf-cma unforgeability experiment of (K̃eyGen, M̃AC, Ṽerify) as follows.
Adv′ keeps track of a set S of message-tag pairs, which is initialized to an empty set at the beginning of

the experiment. On a tagging oracle query MAC(sk, µ) from Adv, Adv′ does the following:

1. It queries its own tagging oracle MAC(sk, ·) (from the uf-cma experiment) on input µ, receives a tag σ,
and relays σ to Adv. Let state be the internal state of Adv after that query: note that bitlength(state) ≤
m by assumption on Adv.

2. It adds (µ, σ) to the set S.

3. It updates the set S as follows, using unbounded temporary memory. For all secret keys sk′ ∈ {0, 1}n,
Adv′ emulates 2n independent continuations of the special uf-cma experiment (from Definition 6.12),
with adversary Adv which is initialized with state and using signing key sk′ (using some independent
randomness coins to run these continuations). In particular Adv′ answers tagging queries from Adv
using its knowledge of sk′. If any element (µ, σ) in S has not been queried as input to the isSame oracle
in any of these 2n · 2n = 22n continuations of the experiment, then Adv′ removes (µ, σ) from S.

The remaining elements of S are then compressed in the following manner: Adv′ stores the internal
memory state of Adv following the (µ, σ) query, and, for every remaining element in S, stores the
execution and the query where Adv queried the element to isSame. This consists of the corresponding
secret sk′ ∈ {0, 1}n, the index of the continuation ι ∈ [2n], along with the index of the isSame query
q ∈ [QO] from Adv (but not counting the randomness used coins).

On a special oracle query isSame(µ, σ) from Adv, Adv′ answers to Adv 1 if (µ, σ) ∈ S, and 0 otherwise.

Lemma 6.15. Suppose Adv wins the special uf-cma experiment with probability ε, and QT ≤ 2n/3. Then
Adv′ wins the uf-cma experiment with probability ε− 2−Ω(n).

Proof. We consider hybrids experiments, indexed by i ∈ {0, · · · , QT } where QT denotes the number of
tagging queries made by Adv.

Hybrid 0 corresponds to the special unforgeability experiment (Definition 6.12), where the oracle isSame
keeps track of all the tagging queries made by Adv so far.

In Hybrid i ∈ [QT], we change how the queries with index j ≤ i are handled. Namely, instead of keeping
track of all tagging queries, the hybrid adversary now sets up a set S and updates S for all tagging queries
of index j ≤ i as specified in Steps 1-3 from the description of Adv′ above. The reduction fully stores the
tagging queries (µ, σ) of index j > i. An oracle call to isSame(µ, σ) is answered with 1 if (µ, σ) belongs either
to S or to the calls stored by the hybrid isSame oracle (which keeps track of tagging queries with indices
j > i).

The outputs of Hybrids i and i + 1 differ only if there exists some isSame query on input (µ, σ) corre-
sponding to tagging query j ≤ i + 1, but (µ, σ) has been removed from the set S maintained by Adv′ after
the (i+ 1)th tagging query.

26

Given a state of Adv state, denote by ρ = ρ(sk, state, µ, σ) the probability that Adv makes some isSame
query on input (µ, σ) in a fresh continuation of the game while initialized with state and using signing key
sk.

The probability that Adv′ removes (µ, σ) from S while Adv makes some isSame query on (µ, σ) is (1 −
ρ)2n ·ρ. An union bound over the at most i ≤ QT prior tagging queries therefore shows that the probabilities
of winning in Hybrids i and i+ 1 differ by at most i(1− ρ)2n · ρ ≤ QT (1− ρ)2n · ρ.

Overall, the advantage of Adv′ is at least ε−Q2
T (1− ρ)2n · ρ ≥ ε− 2Ω(n).

Next, we prove that Adv′ runs in low memory, and more specifically, that S remains relatively small
throughout its execution. We will use the following lemma:

Lemma 6.16. Let X be a random variable with min-entropy at least k. Let A = (A1, A2) be a potentially
unbounded and randomized stateful adversary. Consider the following experiment.

1. Sample independently x1, · · · , xQ ← X.

2. Compute state′ = A1(x1, · · · , xQ; coins), where coins denotes the internal randomness of A. Let m′ :=

bitlength(state′), that is, state′ ∈ {0, 1}m′ .

3. A2(state; r) outputs (x′1, · · · , x′`).

We say that A wins if there exists an injection f : [`]→ [Q] such that x′i = xf(i) for all i ∈ [`].

Then the probability that A wins is at most 2m
′ · (Q · 2−k)`.

Proof. Fix any value state ∈ {0, 1}m. Then for any internal randomness coins and index i ∈ [`], the
probability that the value x′i output by A2(state; coins) matches any of the xj sampled in Step 1 is at most
Q · 2−k over the randomness of x1, · · · , xQ ← X alone. Therefore the probability that A2(state; coins) wins
is at most (Q · 2−k)`, again over the randomness of x1, · · · , xQ ← X alone. By union bound over the 2m

possible values of state, the probability that A wins the experiment is at most 2m · (Q · 2−k)`.

Lemma 6.17. The algorithm Adv′ uses memory at most m′ = m+(m/n)·(2n+logQO) except with negligible
probability, where QO denotes the number of isSame oracle calls from Adv.

Proof. Fix any tagging query i ∈ [QT]. Let ` denote the number of elements in S after resolution of the ith

tagging query. Given all the previous tagging queries xj = M̃AC(µj), j ≤ i, that have min-entropy at least
Cn (by construction, over the randomness of r ← {0, 1}Cn), and the internal state of Adv′ (along with some
independent randomness coins used to run the continuations of the experiment) represents the ` elements of
S using a state of size m′ = m+ `(2n+ logQO) using the representation from Step 3, which by Lemma 6.16
happens with probability at most

2m
′
· (i · 2−k)` ≤ 2m

′
· (QT · 2−k)` = 2m−`·(C−4)n,

where we use QO, QT ≤ 2n Therefore, the probability that Adv′ stores in S more than ` ≥ m/n elements
is at most 2−(C−5)m which is negligible. Using that m ≥ n and an union bound over the number of tagging
queries QT ≤ 2n, the probability that Adv′ stores at any point more than ` = m/n elements in S is at most
2−(C−6)m, which concludes.

The analysis for the ind-cma setting is identical.

27

6.5 Upgrading to Security with Verification Queries

We now show how to build, starting with a MAC satisfying both special uf-cma-security (Definition 6.12,
namely security without verification queries but with isSame queries) and special ind-cma-security (i.e. the
MAC is message-hiding with isSame queries), a MAC satisfying uf-cmva-security (that is, security with both
tagging and verification queries). The transformation is very similar to [DKPW12, Section 3.1], with the
difference that our reductions are adapted to the low-memory setting.

We will use a family of pairwise independent hash functions which can be efficiently evaluated in a
streaming manner.

Lemma 6.18 (Efficient Pairwise Independent Hash Functions). Let n, λ be integers. There exists a family
of pairwise independent hash functions H = {h : {0, 1}n → {0, 1}λ} where functions have description size
O(n+ λ), and can be evaluated in a streaming manner using O(n+ λ) bits of memory.

Proof. We take as the family of pairwise independent hash functions the family of affine function over
F = Fmax(2n,2λ), that is {ha,b : x → ax + b}a,b∈F (and truncating the output if n > λ, and padding x if
λ > n), its keys have size max(n, λ) + λ = O(n+ λ) bits. Furthermore, ha,b can be computed with memory
O(n+ λ), as being a multiplication and an addition over Fmax(2n,2λ).

Construction. Let n,m be integers such that λ ≤ O(m), and n an integer such that n ≤ O(k2). Let A =
A(O(m), Q) be any class of streaming adversaries such that there exists a constant C ′ such that algorithms in
A run with memory at most C ′m making at most Q oracle calls (Definition 3.5). Let (KeyGen,MAC,Verify)
be a MAC with message space M = {0, 1}|µ|+λ that satisfies:

• (ε,A)- special uf-cma-security (Definition 6.12);

• (ε,A) special ind-cma-security (Definition 6.13);

• (KeyGen,MAC,Verify) is a streaming MAC with memory O(n) (Definition 3.2), with tags of size n.

Let H = {h : {0, 1}n → {0, 1}λ} be a family of pairwise independent hash functions from Lemma 6.18.
Consider the following MAC (KeyGen,MAC,Verify).

• KeyGen(1λ): Sample sk ← KeyGen, and sample h : {0, 1}n → {0, 1}λ from a family of pairwise
independent hash functions. Output

sk = (sk, h)

• MAC(sk, µ): Parse sk = (sk, h). Sample r ← {0, 1}λ and compute σ = MAC(sk, (µ‖r)). Output

σ = (σ, h(σ)⊕ r)

• Verify(sk,m, σ = (σ, t)): Parse sk = (sk, h). Compute r = t⊕ h(σ). Output Verify(sk, (σ‖r), z).

Claim 6.19 (Correctness). Suppose (KeyGen,MAC,Verify) is correct. Then (KeyGen,MAC,Verify) is correct.

Claim 6.20 (Efficiency). Suppose (KeyGen,MAC,Verify) is a streaming MAC with memory O(n) (Defini-
tion 3.2), with tags of size n. Then (KeyGen,MAC,Verify) is a streaming MAC with memory O(n + λ)

Furthermore M̃AC produces tags of size n+ λ.

Proof. Taking the pairwise independent hash function as a random affine function over Fmax(2n,2λ) (and
truncating the output if n ≥ λ), its keys have size max(n, λ) +λ = O(n+λ) bits, and can be computed with
memory O(n + λ), as being a multiplication and an addition over Fmax(2n,2λ). This makes the key and tag
size, as well as the memory cost of MAC and Verify O(n+ λ).

28

Theorem 6.21 (Security). Suppose that λ, n ≤ O(m). Let A = A(O(m), Q) be any class of streaming adver-
saries such that there exists a constant C ′ such that algorithms in A run with memory at most C ′m making
at most Q oracle calls (Definition 3.5), and that do not query the verification oracle on an input provided
by the tagging oracle. Suppose that (KeyGen,MAC,Verify) is (ε,A)-special-uf-cma-secure (Definition 6.12)
and (ε,A)-special-ind-cma-secure (Definition 6.13). Then (KeyGen,MAC,Verify) is (2QTQV

(
ε+ 1

2λ

)
, A)-

uf-cmva-secure (Definition 3.3) where QT and QV respectively denote the number of tagging and verification
queries made by adversaries.

Proof. Let Adv be an adversary in the uf-cmva experiment for (KeyGen,MAC,Verify), running in memory
O(m) and having success probability ε′. Respectively denoting by QT and QV the number of tagging and
verification queries made by Adv, we either build:

• an adversary with memory O(m) for the special-uf-cma experiment, with success probability ε′

2QTQV
;

or

• an adversary with memory O(m) for the special- ind-cma experiment, with success prob ε′

2QTQV
− 1

2λ
.

Without loss of generality, we assume Adv makes a verification query corresponding to its forgery.
Our reduction guesses the first verification query i∗ ∈ [QV] submitted by Adv that verifies but was not

produced by a tagging query. Note that conditioned on this guess i∗ being correct, all previous verification
queries i < i∗ can be answered as follows, using the isSame oracle: accept the verification query on input
(µ, σ) if and only if isSame(µ, σ) outputs 1 (which indicates that (µ, σ) has been previously queried during
the experiment). If Adv makes QV verification queries, then with probability ε′/QV such a verification query
is a valid tag that has not previously been queried to the tagging oracle.

Let such a verification query be (µ∗, σ∗, t∗). Let r∗ = t∗ ⊕ h(σ∗). We consider two cases.

• Case 1: r∗ has not been used for any previous tagging queries (where, for all tagging queries, r is defined
as r := t⊕ h(σ)). Let εFF denote the probability that Case 1 occurs conditioned on the guess i∗ being
correct. Then any such query provides a forgery for the underlying MAC in the uf-cma experiment,
with message (µ∗‖r∗), with a straightforward reduction that outputs the guessed verification query as
its forgery. This gives an attack on the special-uf-cma experiment with success probability εFF /QV
(where we use the isSame oracle to answer prior verification queries). Furthermore, if Adv runs with
memory O(m), then so does our reduction by assumption on n, λ and k, and uses the same number of
tagging queries as Adv.

• Case 2: r∗ has been used for a previous tagging query. Let εC denote the probability that Case 2
occurs conditioned on the guess i∗ being correct. We show that this induces an attack on the ind-cma
security of the original MAC.

Our reduction to the special ind-cma security of (KeyGen,MAC,Verify) samples a pairwise independent
hash function h. By Lemma 6.18 this can be done in memory O(n + λ). It answers tagging queries
µ from Adv by sampling r ← {0, 1}λ, querying the tagging oracle provided by the ind-cma oracle
on (µ‖r), obtaining a tag σ and outputting (σ, h(σ) ⊕ r), and answers the verification queries before
i∗ using the isSame oracle. It picks a random tagging query j∗ ∈ [QT]; denote it by (µj∗ , σj∗ , tj∗).
It checks that (1) the tagging query j∗ is made before the verification query i∗, and (2) we have
r∗ = t∗ ⊕ h(σ∗) = rj∗ = tj∗ ⊕ h(σj∗). It outputs 1 if these two conditions hold, and 0 otherwise.

Note that if Adv runs with memory O(m), our reduction runs in memory O(m) by assumption on n, λ
and k and uses the same number of tagging queries as Adv.

If our reduction to the special ind-cma experiment is given oracle access to MAC(sk, ·), the i∗th query
of Adv is a collision on r∗ with some tagging query with probability at least εC/QV , and therefore our
reduction outputs 1 with probability at least εC/(QTQV).

If our reduction to the special ind-cma experiment is given oracle access to MAC(sk, 0), the view of Adv
is identical to receiving as answers to tagging queries for µ:

(σ ← MAC(sk, 0), t← {0, 1}λ),

29

notably without sampling r nor explicitly sampling the pairwise independent hash function h.

Instead, the choice of the pairwise independent hash function implicitly defines r = t⊕ h(σ), and the
adversary manages to produce a valid verification query only if t∗ ⊕ h(σ∗) = t⊕ h(σ), which, over the
random choice of h← H, happens with probability at most 1/2λ. In particular, the reduction outputs
1 with probability at most 1/2λ.

Overall, the advantage of our reduction is at least εC
QTQV

− 1
2λ

.

Last, observe that εFF + εC = ε′, so that either εFF ≥ ε′/2 or εC ≥ ε′/2. In particular, if εFF ≥ ε′/2
then εFF /QV ≥ 2QT

(
ε+ 1/2λ

)
≥ ε, and if εC ≥ ε′/2 then εC

QTQV
− 1

2λ
≥ ε, which concludes the proof.

Combining the constructions and transformations from Sections 6.2 and 6.3 with k = O(
√

(m)), n =
O(λ
√
m+m), ` = |µ| = O(kλ), we obtain Theorem 6.1.

Remark 6.22 (Security against Adversaries with Temporary Unbounded Memory). Our resulting MAC of
Theorem 6.1 also inherits security against adversaries with unbounded temporary memory. In particular
security holds even given non-uniform advice of size m.

7 Public-Key Signatures

In this section, we show how to build signature schemes in the streaming BSM. More precisely, we prove the
following:

Theorem 7.1. For all m,λ, there exists a streaming signature scheme with memory n = Õ(λ3 +
√
mλ)

(Definition 3.9) which can authenticate messages of length up to 2λ, and which is (2−Ω(λ),A)-uf-cmva-secure
(Definition 3.10) where A is the set of streaming adversaries with memory m that make a total number of
at most Q = 2λ oracle queries in the unforgeability experiment (Definition 3.11). Furthermore, (streamed)

signatures have size Õ(m+ λ3/2).

To do so, we first present a set key-agreeement protocol in Section 7.1, using our block entropy lemma
Lemma 4.1 as our main technical tool. Then we show how to upgrade such a protocol to a signature scheme
in Section 7.2. Last, we show that the quadratic gap between the adversary’s memory bound and the honest
users is optimal (up to poly(λ) factors), in Section 7.3 (Theorem 7.11).

7.1 Set Key-Agreement Protocol

Given any parameters m,λ and `, we define additional parameters: b = 8λ(`+2), k = max(d4m/be+4, 64λ),
q = d2

√
kλe, which guarantees k ≥ 2m/b + 2q. Let Ext : {0, 1}b × {0, 1}d → {0, 1}` be a (` + 2λ, 2−λ)-

seeded extractor with some seed-length d, that can be computed using O(b) space , as guaranteed by
Theorem 2.6. Consider the following “set key agreement” protocol between Alice and Bob, with one round
of communication from Alice to Bob.

• KeyGen: Alice stream a value vk = (x = (x1, . . . , xk),SA, (seed1, . . . , seedq)) generated as follows.

– She chooses a uniformly random subset SA ⊆ [k] of size |SA| = q and stores it in memory as an
ordered tuple SA = (iA1 , . . . , i

A
q).

– She streams a uniformly random value x = (x1, . . . , xk) ← ({0, 1}b)k and additionally stores the
values xSA = (xiA1 , . . . , xiAq) in memory.

– She streams her set SA.

– She chooses q random extractor seeds seedj ← {0, 1}d and computes skj = Ext(x[iAj]; seedj) for
j ∈ [q]. She sends (seed1, . . . , seedq) and stores sk = (sk1, . . . , skq) in memory.

Her final outputs consists of the secret key sk = (sk1, . . . , skq) ∈ ({0, 1}`)q stored in memory.

30

• KeyReceive: Bob processes the stream vk = (x = (x1, . . . , xk),SA, (seed1, . . . , seedq)) as follows:

– He chooses a uniformly random subset SB ⊆ [k] of size |SB | = q and stores it in memory.

– As he receives the stream x, he additionally stores xSB in memory.

– When he receives SA = (iA1 , . . . , i
A
q) he stores it in memory.

– When he receives (seed1, . . . , seedq) he computes T = {j ∈ [q] : iAj ∈ SB}. For each j ∈ T he
computes skj = Ext(xiAj ; seedj). He stores the value (T , skT = (skj)j∈T) in memory.

Bob’s final outputs consists of vd = (T , skT = (skj)j∈T) stored in memory.

Lemma 7.2. The procedures KeyGen and KeyReceive can be computed by streaming algorithms with memory
Õ(bq) = Õ(λ2`+ λ

√
` · λ). Furthermore sk and vd have size Õ(q · `) = Õ(

√
m`+ λ`).

Lemma 7.3 (Set Key-Agreement Lemma). Let Eve be a streaming attacker with m bits of memory, who
observes the stream vk and outputs viewEve in the above protocol. Let sk = (sk1, . . . , skq) be Alice’s output
and let vd = (T , skT) be Bob’s output in the protocol. Then there is some index t ∈ T ∪ {⊥} defined as a
random variable depending on the entire protocol execution and the view of Eve, and some ε = 2−Ω(λ) such
that:

(viewEve, T , t, sk−t = (skj : j ∈ [q] \ {t}), skt) ≈ε (viewEve, T , t, sk−t = (skj : j ∈ [q] \ {t}), u)

where u← {0, 1}` is random and independent of all other values, and we define skt := ⊥ if t = ⊥.

Proof. At the end of the protocol execution, we select the index t as follows:

1. If |SA ∩ SB | < λ then set t = ⊥. (We refer to this event as ⊥0.)

2. Choose a uniformly random V ⊆ SA ∩ SB such that |V| = λ. Let W = SA \ V.

3. Let view0
Eve denote the view of Eve immediately after processing the x component of the stream but

before receiving SA.

4. Let aux = (view0
Eve,W, xW), and let AUX be a random variable corresponding to aux. Let X =

(Ukb|AUX = aux) be the random variable corresponding to choosing x ← ({0, 1}b)k from the uniform
distribution, conditioned on AUX = aux. If, for the given value of aux, we have H∞(X) < kb/2 then
set t = ⊥. (We refer to this event as ⊥1.)

5. Let the sets BAD ⊆ ({0, 1}b)k and I(x) ⊆ [k] be the sets from Lemma 4.1 defined with respect to the
distribution X with α = 1/2, α1 = α2 = 1/8. Let x be the value sent during the protocol execution.
If I(x) ∩ V = ∅ then set t = ⊥. (We refer to this event as ⊥2.)

6. Let i∗ be the smallest value in I(x) ∩ V ⊆ SA = {iA1 , . . . , iAq } and let t∗ be the value such iAt∗ = i∗. Set
t = t∗.

We show a sequence of hybrid distributions that are statistically close.

Hybrid 0. This is the distribution on the left-hand side of the Lemma

(viewEve, T , t, sk−t = (skj : j ∈ [q] \ {t}), skt)

31

Hybrid 1. We now change how we select the sets SA,SB ,V,W.
In hybrid 0, SA,SB ⊆ [k] are chosen uniformly at random with |SA| = |SB | = q. Then, if |SA ∩ SB | > λ,

we choose V ⊆ SA ∩ SB of size |V| = λ uniformly at random and define W = SA \ V.
In hybrid 1, we instead choose W ⊆ [k] of size |W| = q − λ uniformly at random. Then we select

V ⊆ [k] \ W of size |V| = λ uniformly at random. We define SA = V ∪W. Then we choose SB ⊆ [k] of size
|SB | = q uniformly at randomly subject to V ⊆ [k].

Note that the above change ensures that, in hybrid 1, V ⊆ SA ∩SB with |V| = λ, and therefore the event
⊥0 never occurs.

Hybrids 1 is distributed identically to hybrid 0 if we condition on ⊥0 not occurring in hybrid 0. Therefore
the statistical distance between the hybrids is bounded by the probability that ⊥0 occurs, meaning that
|SA ∩ SB | < λ, in hybrid 0. This is bounded by ε1 ≤ 2−λ/4 = 2−Ω(λ) by Lemma 2.13 as q ≥ 2

√
kλ.

Hybrid 2. In hybrid 1, if the event ⊥1 occurs (i.e., aux is such hat H∞(X) < kb/2) then we set t = ⊥ and
skt = ⊥. In hybrid 2, if ⊥1 occurs then we set t = ⊥ and choose skt ← {0, 1}` uniformly at random.

Hybrids 1 and 2 are distributed identically as long as ⊥1 does not occur, and so the statisticaly distance
between them is bounded by the probability that H∞(X) < kb/2. Note that X = (Ukb|AUX = aux).
Furthermore, we have:

H∞(Ukb|AUX) ≥ H∞(Ukb|W)−m− (q − λ) · b ≥ kb−m− (q − λ) · b ≥ kb/2 + λ,

where the first inequality follows from Lemma 2.1 since aux = (view0
Eve,W, xW) where |view0

Eve| = m and
|xW | = (q − λ) · b, and the second inequality follows since W is chosen independently of x← Ukb and hence
does not reduce entropy. Therefore, by Lemma 2.2:

Pr
aux←AUX

[H∞(Ukb|AUX = aux)︸ ︷︷ ︸
H∞(X)

< kb/2] ≤ 2−λ,

and so the statistical distance between the hybrids is ε2 ≤ 2−λ.

Hybrid 3. In hybrid 3, if ⊥1 does not occur and x ∈ BAD, then we define t = ⊥ and choose skt ← {0, 1}`
uniformly at random. We refer to this event as ⊥1.5.

Hybrids 1 and 2 are distributed identically unless: ⊥1 does not occur and x ∈ BAD. But, if we fix
any aux for which ⊥1 does not occur, then by Lemma 4.1 we can bound the probability that x ∈ BAD by
k · 2−b/4 = 2−Ω(λ). Therefore, the statistical distance between the hybrids is ε3 ≤ 2−Ω(λ).

Hybrid 4. In hybrid 3, if ⊥1 and ⊥1.5 don’t occur but |I(x) ∩ V| = ∅ then we set t = ⊥ and skt = ⊥.
In hybrid 4, if ⊥1 and ⊥1.5 don’t occur but |I(x) ∩ V| = ∅, then we set t = ⊥ and choose skt ← {0, 1}`
uniformly at random.

Hybrids 3 and 4 are distributed identically unless: ⊥1 and ⊥1.5 don’t occur but |I(x) ∩ V| = ∅. Let us
fix any aux, x such that ⊥1,⊥1.5 do not occur. This also fixes I(x). Furthermore, by Lemma 4.1, we have
|I(x)| ≥ k/8. Moreover, I(x) ⊆ [k]\W since, for i ∈ W, the values Xi are completely fixed by aux and hence
have entropy 0. On the other hand V is uniformly random over [k] \ W with |V| = λ, and independent of
I(x). Therefore the probability that V ∩ I(x) = ∅ is bounded by ε4 ≤ (7/8)λ = 2−Ω(λ), which also bounds
the statistical distance between these hybrids.

Hybrid 5. We undo the change introduced in hybrid 3. That is, we no longer check if x ∈ BAD and take
any special action if it is.

Hybrids 4 and 5 are statistically close for the same reason hybrids 2 and 3 are statistically close, with
distance ε5 ≤ 2−Ω(λ).

32

Hybrid 6. In hybrid 6, we now always choose skt ← {0, 1}` uniformly random.
We argue that hybrids 5 and 6 are statistically close by the security of the extractor. Let us fix and

condition on any choice of values

(aux = (view0
Eve,W, xW),V,SB , i∗, x1, . . . , xi∗−1, (seedj)j∈[q]\t∗)

chosen during the experiment, subject to ⊥1,⊥2 not occurring. We define i∗ as being the smallest value in
V ∩ I(x) and t∗ is defined as the value such iAt∗ = i∗, which is fixed once i∗ and SA = V ∪W = {iA1 , . . . , iAq }
are fixed. The above values also fix skW := (skj = Ext(xiAj ; seedj)iAj ∈W .

If either ⊥1 occurs or ⊥2 occurs then the hybrids are identical, and therefore it suffices to only show that
they are statistically close for any fixed choice of the values as above for which ⊥1,⊥2 do not occur.

Note that, by Lemma 4.1, fixing x1, . . . , xi∗−1 also fixes whether i ∈ I(x) for all i ≤ i∗ and therefore,
once we fix all of the above, conditioning on i∗ being the smallest value in V ∩ I(x) is equivalent to just
conditioning on i∗ ∈ I(x). Therefore, the distribution of Xi∗ (i.e., the i∗ block of x) conditioned on the
above is equivalent to (Xi∗ |X1 = x1, . . . , Xi∗−1 = xi∗1 , i

∗ ∈ I(x)), and By Lemma 4.1, it has min-entropy
H∞(Xi∗) ≥ b/8.9

Let SKV− := (SKj = Ext(XiAj
; seedj)ijA∈V\{i∗}

. Then

H∞(Xi∗ |SK−V) ≥ H∞(Xi∗)− (λ− 1) · ` ≥ b/8− (λ− 1) · ` ≥ `+ 2λ.

Let SEEDt∗ to be a random variable for seedt∗ . Then

(SKt∗ = Ext(Xi∗ ;SEEDt∗),SEEDt∗ ,SKV−) ≈ε6 (U`,SEEDt∗ ,SKV−)

where ε6 ≤ 2−λ, by the security of the extractor.
Now observe that, conditioned on the fixed values, the outputs of hybrid 5 and 6 are completely defined

given the additional values SEEDt∗ ,SKV− and either SKt∗ = Ext(Xi∗ ;SEEDt∗) in hybrid 5 or U` in hybrid 6.
In particular, everything else in the hybrid is defines as follows:

• T , t are completely determined by the fixed values SA = V ∪W = {iA1 , . . . , iAq },SB , i∗.

• viewEve is defined in terms of view0
Eve,SA,SB , (seedj)j∈[q]\t∗ ,SEEDt∗ .

• sk−t consists of SKV− and skW := (skj = Ext(xiAj , seedj)iAj ∈W , where the latter only depends on the

fixed values W, xW , (seedj)j∈[q]\t∗ .

• And the last component in the hybrid is SKt∗ in hybrid 5 and U` in hybrid 6.

Therefore, the statistical distance between the hybrids is bounded by ε6 ≤ 2−λ.

Hybrid 7. Undo the change from Hybrid 1 and select SA,SB ,V,W as in Hybrid 0.
Hybrids 6 and 7 are statistically close for the same reason hybrids 0 and 1 are statistically close, with

distance ε7 ≤ 2−Ω(λ).
This hybrid is equivalent to the right-hand side distribution of the Lemma.

(viewEve, T , t, sk−t = (skj : j ∈ [q] \ {t}), u)

where u← {0, 1}` is random and independent of all other values.

Combining the above hybrids, the Lemma holds with ε ≤
∑7
i=1 εi = 2−Ω(λ).

9For the rest, of the argument we will condition on all the fixed values implicitly and will not write this conditioning explicitly.

33

7.2 From Set Key Agreement to Signatures

Construction. Let `,m, |µ| be parameters. Let A = A(O(m), Q) be any class of non-uniform streaming
algorithms such that there exists a constant C ′ such that algorithms in A run with memory at most C ′m
making at most Q oracle calls (Definition 3.5). Let (KeyGen,MAC,Verify) be a streaming MAC with memory
` and message space {0, 1}|µ| satisfying (ε,A)-uf-cmva-security (Definition 3.3) for some ε > 0, such that
signing keys (of size at most `) are uniformly random.

Let b, k, q, be the parameters instantiated in Section 7.1, and let Ext : {0, 1}b × {0, 1}d → {0, 1}` be a
(`+ 2λ, 2−λ)-seeded extractor.

We define a streaming signature scheme (KeyGen,KeyReceive,Sign,Verify) as follows.

• KeyGen(1λ): stream vk and store sk = (sk1, . . . , skq), as defined in Section 7.1.

• KeyReceive(1λ, vk): on input a streamed verification key vk, store vd = (T , skT = (skj)j∈T) as specified
in Section 7.1.

• Sign(sk, µ): on input a (potentially streamed) message µ, compute and output (potentially in a stream-
ing manner):

σ = {σj = MAC(skj , µ)}j∈[q].

• Verify(vd, µ, σ): on input vd = (T , {skj}j∈T), a (potentially streamed) message µ, and a (potentially
streamed) signature σ = {σj}j∈T , output∧

i∈T
Verify(skj , µ, σj),

with the convention that it outputs 1 if T = ∅.

Claim 7.4 (Correctness). Suppose (KeyGen,MAC,Verify) is correct. Then (KeyGen,MAC,Verify) is correct.

Claim 7.5 (Efficiency). Suppose (KeyGen,MAC,Verify) be a streaming MAC with memory ` (Definition 3.2).

Then KeyGen and KeyReceive can be computed by streaming algorithms with memory Õ(λ2`+ λ
√
` · λ), and

sk and vd have size Õ(
√
m` + λ`). Sign and Verify can be computed by streaming algorithms with memory

O(
√
m`+ λ`).

Theorem 7.6 (Security). Let AMAC = A(O(m), Q) be any class of non-uniform10 streaming algorithms
such that there exists a constant C ′ such that algorithms in AMAC run with memory at most C ′m making
at most Q oracle calls (Definition 3.5), and ASig be its signature counterpart (Definition 3.11). Suppose
(KeyGen,MAC,Verify) is (ε,AMAC)-uf-cmva-secure (Definition 3.3). Then (KeyGen,KeyReceive,Sign,Verify)
is (2ε,ASig)-uf-cmva-secure (Definition 3.10).

Proof. Let Adv ∈ AMAC be a streaming adversary with memorym for the uf-cmva experiment for (KeyGen,MAC,Verify).
Consider the following hybrid experiments.

Hybrid H0. This corresponds to the uf-cmva experiment Expuf-cmva(1λ,Adv).

Hybrid H1. We change how KeyReceive in Step 1 of Expuf-cmva(1λ,Adv) is computed. vd is now computed
as (T , sk−t, u) where u← {0, 1}`. In other words, the secret key skt is replaced by uniformly random, where
t is given by Lemma 7.3.

Lemma 7.7. Suppose b, k, q are instantiated as in Section 7.1. Then the advantage of Adv decreases by at
most ε between H0 and H1:∣∣∣Pr

[
Expuf-cmva

H1
(1λ,Adv) = 1

]
− Pr

[
Expuf-cmva

H0
(1λ,Adv) = 1

]∣∣∣ ≤ ε,
where, for b ∈ {0, 1}, Expuf-cmva

Hb
denotes the uf-cmva experiment in Hybrid Hb.

10Looking ahead, this will not affect our final result, because our base MAC is secure against non-uniform adversaries.

34

Proof. Denote by viewEve the state of Adv after Step 1 of Expuf-cmva(1λ,Adv). Let sk = (skj)j∈[q] and let

vd = (T , (skj)T) be the respective outputs of KeyGen and KeyReceive in Step 1.

The lemma follows as the output of Expuf-cmva(1λ,Adv) can be computed using (viewEve, T , t, sk−t = (skj)j 6=t, skt)
alone (with the convention that Verify(⊥, µ, σ) = 1 for all µ, σ.). Namely, run Adv starting from Step 2 with
state viewEve. Signing queries are answered using the knowledge of sk−t, skt and t. Verification queries as
well as the final forgery are answered using the knowledge of skT \{t}, T , skt and t.

By Lemma 7.3:

(viewEve, T , t, sk−t = (skj)j 6=t, skt) ≈ε (viewEve, T , t, sk−t = (skj)j 6=t, u).

Now, computing the output of Expuf-cmva(1λ,Adv) using (viewEve, T , t, sk−t = (skj)j 6=t, skt) corresponds to

Expuf-cmva
H0

(1λ,Adv), and using (viewEve, T , t, sk−t = (skj)j 6=t, u) corresponds to Expuf-cmva
H1

(1λ,Adv), and the
lemma follows.

Lemma 7.8. Suppose (KeyGen,MAC,Verify) is (ε,A)-uf-cmva-secure. Then

Pr[Expuf-cmva
H1

(1λ,Adv) = 1] ≤ ε.

Proof. Let Adv be an adversary for (KeyGen,KeyReceive,Sign,Verify) with memory m having advantage ε′ in
Expuf-cmva

H1
. We build a (non-uniform) adversary against the uf-cmva-security of (KeyGen,MAC,Verify) with

memory m+O(q`) and advantage ε′ as follows.
Our reduction computes KeyGen, streams vk to Adv and stores a secret key (ski)i∈[q]. It computes

vd = (T , skT). It receives the (inefficiently computable) index t defined in Lemma 7.3 as non-uniform
advice: note that t only depends on the execution of the set key agreement and the resulting view of the
adversary, and is therefore independent of the unforgeability experiment for (KeyGen,MAC,Verify).

To answer signing queries on message µ, the reduction computes for all j ∈ [q], j 6= t: σj = Sign(skj , µ),
and makes a signing query µ to the MAC oracle (which implicitly uses MAC.sk = skt), thus obtaining σt. It
forwards (σj)j∈[q] to Adv (using its knowledge of t).

To answer verification queries with message µ and signature σ = (σj)j∈[q], the reduction computes for
all j ∈ T , j 6= t: bj ← Verify(skj , µ, σj) and makes a verification query with input (µ, σj) to Verify oracle,
obtaining a bit bt. It outputs

∧
j∈T bj . The final output of the experiment is computed identically.

Our reduction runs in memory m+ q`, makes the same number of queries Q as Adv, and succeeds if Adv
successfully produces a forgery. Therefore its advantage is at least ε′ which is at most ε by uf-cmva-security
of (KeyGen,KeyReceive,Sign,Verify).

Overall, the advantage of Adv in the uf-cmva experiment for (KeyGen,MAC,Verify) is at most

Pr[Expuf-cmva
H0

(1λ,Adv) = 1] ≤ 2ε.

We instantiate (KeyGen,MAC,Verify) with our construction in Section 5, which has uniformly random
MAC keys, using |µ| = 2λ. Recall that this construction is secure against non-uniform adversaries (and
in fact, adversaries with unbounded temporary memory, see ??). Setting ` = O(λ + polylog(m,λ)), gives

n = Õ(λ3 +
√
mλ). Combined with the following observation with τ = m, we obtain Theorem 7.1.

Remark 7.9 (Optimizing the Communication Cost). The signatures for our scheme consist of [q] independent
copies of MAC(skj , µ), j ∈ [q], where MAC is our base MAC. Using our scheme from Section 5, and noting
that (1) security only relies on security of a single of the copies, and (2) tags of the form (x, ψ) can be
computed given x and sk, we can instead compute our signatures as (x, (ψj)j∈[q]), namely reusing the x
part across the different copies of the base MAC, while preserving correctness and security. This makes our
signatures of size Õ(τ + qλ), where τ is the size of the tags from MAC.

35

Remark 7.10 (Weaker Notions of Security). Our construction constructs a uf-cmva-secure signature scheme
starting from any uf-cmva-secure MAC. We note that this extends to weaker notions of security, namely
starting from a (selectively)-unforgeable MAC with signing (and verification) queries, one obtains a signature
scheme satisfying the same notion of security.

7.3 Lower Bound for Signatures

We show here that any streaming signature with memory n, namely, where all the procedures can be run
in a streaming manner with memory n, can only be secure against streaming adversaries with memory
m = O(n2).

Theorem 7.11. Suppose (KeyGen,KeyReceive,Sign,Verify) is a streaming signature with memory n (Defi-
nition 3.9). Let A = A(m) be the set of streaming adversaries running with memory m (Definition 3.11).
Suppose that (KeyGen,KeyReceive,Sign,Verify) is (ε,A)-suf-cma-secure (Definition 3.10). Then m = O(n2).

Proof. We consider the following adversary Adv with memory m. Let q = m/2n, and i ∈ [q] be an index to
be determined later.

0 It declares an arbitrary message µ ∈M for its forgery.

1. On input vk, it executes i copies of KeyReceive, obtaining vd1, . . . , vdi, which it stores.

1’ It samples a secret key s̃k as follows. It runs KeyGen(1λ), and processes the stream vk with q copies

of KeyReceive. If the i outputs of KeyReceive are equal to vd1, . . . , vdi, it stores the key s̃k output by
KeyGen, and repeats the whole step otherwise.

2. It outputs as a forgery (µ,Sign(s̃k, µ)).

First, note that such an adversary is streaming, and uses memory m. This is because Step 1 can be
computed in a streaming manner using memory in ≤ qn = m/2, and Step 2 uses an additional qn = m/2
memory. Step 3 uses memory n, but Adv does not need to store (vd1, . . . , vdi) at this point. So the total
memory cost of Adv is max(m,n) = m. Note also that Adv does not query any of the oracles in the suf-cma
game.

We now argue that such an adversary has high success probability.

Claim 7.12. We have:

Pr
[
Expsuf-cma(1λ,Adv) = 1

]
≥ 1−

√
n

2(q + 1)
− negl(λ).

In particular if q = Ω(n), then Adv has a constant probability of outputting a forgery, so that Claim 7.12
imples Theorem 7.11.

To prove the claim, our central tool is the following lemma, previously used in [DQW21].

Lemma 7.13. Let SK and VD denote random variables corresponding to the secret key and states respectively
output by KeyGen and KeyReceive stored by the challenger in Step 1 of the suf-cma experiment, and VDj,

j ≤ i and S̃K denote the quantities vdj and s̃k computed by Adv in Step 1 and 1’, respectively. Then there
exists some i ∈ [q] such that

SD
(

(SK,VD,VD1, . . . ,VDi) , (S̃K,VD,VD1, . . . ,VDi)
)
≤
√

n

q + 1
.

Proof. This follows from the proofs from [DM04, DQW21]. We recall it for completeness.

36

Let VD,VD1, . . . ,VDq denote independent random variables denoting the outputs of (q+ 1) independent
executions of KeyReceive on input vk← KeyGen, which outputs SK. The random variables VD,VD1, . . . ,VDq
are symmetric ([DM04]) with respect to the random variable SK, namely

Pr
SK,VDi1 ,...,VDiw

(SK = x,VDi1 = z1, . . . ,VDiw = zw) = Pr
SK,VDi′1

,...,VDi′w

(SK = x,VDi′1 = z1, . . . ,VDi′w = zw)

for all w ≤ q, and all sets of distinct indices (i1, . . . , iw) and (i′1, . . . , i
′
w). Combined with the chain rule,

there exists i ∈ [q] such that:

I(SK;VD|VD1, · · · ,VDi) ≤
I(SK;VD0, · · · ,VDq)

q + 1
≤ H(SK)

q + 1
≤ n

q + 1
, (1)

as SK has size at most n. This gives:

SD
(
SK,VD, {VDj}j≤i), (S̃K,VD, {VDj}j≤i)

)
≤ E
{VDj}

SD
(

((SK,VD)|{VDj}j≤i), (S̃K,VD)|{VDj}j≤i)
)

≤ E
{VDj}

√
1

2
·DKL

(
P(SK,VD0)|{VDj}j≤i‖PS̃K|{VDj}j≤i

× PVD0|{VDj}j≤i

)
≤
√

1

2
· E
{VDj}

DKL

(
P(SK,VD0)|{VDj}j≤i‖PS̃K|{VDj}j≤i

× PVD0|{VDj}j≤i

)
=

√
1

2
· I(SK;VD0|VD1, · · · ,VDi)

≤
√

n

2(q + 1)
,

where PX denotes the distribution associated to X, and where the second inequality follows by Pinsker’s
inequality (Lemma 2.11), the third by concavity of the square root function, the equality by Definition 2.10,
and the last inequality by Eq. (1).

We set i ≤ q to be the index from Lemma 7.13. Note that it is not clear whether the index i ∈ [q] can
be computed with memory m; instead, we provide it to Adv as non-uniform advice.

Last, to prove Claim 7.12, we note that the output of Expsuf-cma(1λ,Adv) can be computed as a function

of (s̃k, vd, vd1, . . . , vdi). But on input (sk, vd, vd1, . . . , vdi), where sk ← KeyGen is the key stored by the
challenger in Step 1, the probability that the resulting experiment outputs 1 is 1− negl(λ) by correctness of

(KeyGen,KeyReceive,Sign,Verify). Now these two differ by at most
√

n
2(q+1) by Lemma 7.13, which concludes

the proof.

Remark 7.14 (Non-uniformity of the Lower Bound). Theorem 7.11 rules out signatures that are secure
against non-uniform adversaries with bounded memory. We observe here that the result extends to rule out
uniform adversaries as follows: we define an adversary Adv′ identical to Adv except that it guesses the index
i ∈ [q] from Lemma 7.13 instead of receiving it as non-uniform advice. The experiment Expsuf-cma(1λ,Adv)
outputs 1 at least when the guess for i is correct, and therefore Adv′ has success probability at least

Pr
[
Expsuf-cma(1λ,Adv′) = 1

]
≥ 1

q
·
(

1−
√

n

q + 1
− negl(λ)

)
which is non-negligible as long as q = Ω(n) and 1/q is non-negligible. This for instance applies to n = poly(λ)
and q = Θ(n).

37

References

[ADR02] Y. Aumann, Yan Zong Ding, and M.O. Rabin. Everlasting security in the bounded storage
model. IEEE Transactions on Information Theory, 48(6):1668–1680, 2002.

[CCM98] Christian Cachin, Claude Crépeau, and Julien Marcil. Oblivious transfer with a memory-
bounded receiver. In 39th FOCS, pages 493–502. IEEE Computer Society Press, November
1998.

[CM97] Christian Cachin and Ueli M. Maurer. Unconditional security against memory-bounded adver-
saries. In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 292–306.
Springer, Heidelberg, August 1997.

[DHRS07] Yan Zong Ding, Danny Harnik, Alon Rosen, and Ronen Shaltiel. Constant-round oblivious
transfer in the bounded storage model. Journal of Cryptology, 20(2):165–202, April 2007.

[Din01] Yan Zong Ding. Oblivious transfer in the bounded storage model. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 155–170. Springer, Heidelberg, August 2001.

[DKPW12] Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, and Daniel Wichs. Message authentication,
revisited. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 355–374. Springer, Heidelberg, April 2012.

[DM02] Stefan Dziembowski and Ueli M. Maurer. Tight security proofs for the bounded-storage model.
In 34th ACM STOC, pages 341–350. ACM Press, May 2002.

[DM04] Stefan Dziembowski and Ueli M. Maurer. On generating the initial key in the bounded-storage
model. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of
LNCS, pages 126–137. Springer, Heidelberg, May 2004.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. SIAM J. Comput., 38(1):97–139,
2008.

[DQW21] Yevgeniy Dodis, Willy Quach, and Daniel Wichs. Speak much, remember little: Cryptography
in the bounded storage model, revisited. Cryptology ePrint Archive, Report 2021/1270, 2021.
https://ia.cr/2021/1270.

[DR02] Yan Zong Ding and Michael O. Rabin. Hyper-encryption and everlasting security. In Proceedings
of the 19th Annual Symposium on Theoretical Aspects of Computer Science, STACS ’02, page
1–26, Berlin, Heidelberg, 2002. Springer-Verlag.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic applications of
random functions. In G. R. Blakley and David Chaum, editors, CRYPTO’84, volume 196 of
LNCS, pages 276–288. Springer, Heidelberg, August 1984.

[GRT18] Sumegha Garg, Ran Raz, and Avishay Tal. Extractor-based time-space lower bounds for learn-
ing. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, 50th ACM STOC,
pages 990–1002. ACM Press, June 2018.

[GZ19] Jiaxin Guan and Mark Zhandary. Simple schemes in the bounded storage model. In Yuval
Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages
500–524. Springer, Heidelberg, May 2019.

[HB01] Nicholas J. Hopper and Manuel Blum. Secure human identification protocols. In Colin Boyd,
editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 52–66. Springer, Heidelberg, December
2001.

38

https://ia.cr/2021/1270

[HCR02] Dowon Hong, Ku-Young Chang, and Heuisu Ryu. Efficient oblivious transfer in the bounded-
storage model. In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages
143–159. Springer, Heidelberg, December 2002.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American statistical association, 58(301):13–30, 1963.

[ILL89] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way functions.
In Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, STOC
’89, page 12–24, New York, NY, USA, 1989. Association for Computing Machinery.

[JW05] Ari Juels and Stephen A. Weis. Authenticating pervasive devices with human protocols. In Victor
Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 293–308. Springer, Heidelberg,
August 2005.

[KPC+11] Eike Kiltz, Krzysztof Pietrzak, David Cash, Abhishek Jain, and Daniele Venturi. Efficient au-
thentication from hard learning problems. In Kenneth G. Paterson, editor, EUROCRYPT 2011,
volume 6632 of LNCS, pages 7–26. Springer, Heidelberg, May 2011.

[KRT17] Gillat Kol, Ran Raz, and Avishay Tal. Time-space hardness of learning sparse parities. In Hamed
Hatami, Pierre McKenzie, and Valerie King, editors, 49th ACM STOC, pages 1067–1080. ACM
Press, June 2017.

[Lu02] Chi-Jen Lu. Hyper-encryption against space-bounded adversaries from on-line strong extrac-
tors. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 257–271. Springer,
Heidelberg, August 2002.

[Mau92] Ueli M. Maurer. Conditionally-perfect secrecy and a provably-secure randomized cipher. Journal
of Cryptology, 5(1):53–66, January 1992.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. Syst. Sci.,
52(1):43–52, 1996.

[Raz16] Ran Raz. Fast learning requires good memory: A time-space lower bound for parity learning.
In Irit Dinur, editor, 57th FOCS, pages 266–275. IEEE Computer Society Press, October 2016.

[Raz17] Ran Raz. A time-space lower bound for a large class of learning problems. In Chris Umans,
editor, 58th FOCS, pages 732–742. IEEE Computer Society Press, October 2017.

[Vad04] Salil P. Vadhan. Constructing locally computable extractors and cryptosystems in the bounded-
storage model. Journal of Cryptology, 17(1):43–77, January 2004.

39

	Introduction
	Our Results
	Our Techniques

	Preliminaries
	Information Theory

	Definitions
	Message Authentication Codes
	Signatures

	Block Entropy Lemma
	MAC with Long Tags
	Construction

	MAC with Short Tags
	Hardness of Learning Parities
	Construction without Verification Queries
	Domain Extension for MACs
	Efficiently Recognizing Prior Tagging Queries
	Upgrading to Security with Verification Queries

	Public-Key Signatures
	Set Key-Agreement Protocol
	From Set Key Agreement to Signatures
	Lower Bound for Signatures

