
Error Leakage using Timing Channel in FHE
Ciphertexts from TFHE Library

Bhuvnesh Chaturvedi1, Anirban Chakraborty1, Ayantika Chatterjee2, and
Debdeep Mukhopadhyay1

1 Department of Computer Science and Engineering, Indian Institute of Technology,
Kharagpur

{bhuvneshchaturvedi2512, ch.anirban00727, debdeep.mukhopadhyay}@gmail.com
2 Advanced Technology Development Centre, Indian Institute of Technology,

Kharagpur
cayantika@gmail.com

Abstract. Timing attack is a class of side-channel attacks that aims to
leak secret information based on the time it takes to perform different
operations. The biggest advantage of a timing attack is that it does
not require sophisticated or expensive equipment to be carried out. Side
Channels on FHE schemes have been reported on the client side which
has the secret key. But the present project aims to delve into the counter
intuitive question, can an analysis be performed on the server end which
ideally has no information of the secret key. In this report, we investigate
when homomorphic operations are performed on the ciphertexts stored
in the server, can timing reveal information of the error used to mask
the ciphertexts? Finally, can this be utilized to determine the secret key
of the ciphering technique?

Keywords: FHE · LWE · Timing Attack · Error Reduction · Post Quan-
tum Cryptography

1 Introduction

The current scenario of data driven applications has given rise to the issue of
storing and processing bulk amount of data in bounded time, so that the results
can be used to gain competitive advantage. The advent of cloud computing has
brought a revolution in this field, with individuals and organizations offloading
their storage and processing requirements to third-party servers. One of the
major drawbacks of doing so is the lack of trust of clients on the server provider
to respect the confidentiality of their data. This lack of trust is due to both
external attackers as well as malicious insiders who want to get hold of this data
for their own personal gains.

An effective solution to this problem is to encrypt the data before offloading
it to the cloud server. However any standard symmetric or asymmetric encryp-
tion schemes, like AES, RSA, ECC, etc. cannot be used to encrypt the data
as it does not allow computation directly on encrypted data and it needs to



2 B. Chaturvedi, A. Chakraborty, A. Chatterjee and D. Mukhopadhyay

be decrypted first. Moreover, these standard schemes will not be secure in a
post quantum world as their security relies on underlying hard problems such
as integer factorization, discrete logarithm and elliptic curve discrete logarithm
problems all of which can be solved in polynomial time by a quantum computer
running Shor’s algorithm [7].

A plausible answer to the above question is based on the idea of Homomor-
phic Encryption or HE. A Homomorphic Encryption scheme can be defined as
one which allows evaluation of arbitrary functions (or circuits) on encrypted
data with the result in encrypted form as well. The security of these schemes are
based on worst-case lattice-based hard problems such as Learning With Errors
(LWE) [6] or its ring variant, Ring-LWE [5]. These schemes are based on the
idea of noise, a small value that is added to the ciphertext. The problem with
this introduction of noise is that it increases as computations are performed on
ciphertext, either slowly (when additions are performed) or rapidly (when mul-
tiplications are performed). Once this noise crosses a pre-determined threshold
level, decryption can no longer be performed as the original message becomes
unrecoverable. Thus once the noise level reaches or is about to reach the thresh-
old, a refreshing operation needs to be performed to reduce the level of noise
back to an acceptable limit.

Gentry proposed a breakthrough result in 2009 [4] called Bootstrapping,
where refreshing operation was performed homomorphically using the encryp-
tion of the secret key called the bootstrapping key. It resulted in encryption of
the original message under a different key with a decreased noise level. This re-
sulted in development of a new class of HE schemes called Fully Homomorphic
Schemes or FHE as it allows evaluation of any arbitrary function with no limit
on depth of the circuit used to implement the same. The efficiency of any FHE
scheme depends on how efficiently bootstrapping can be performed. While the
original approaches resulted in computation time in minutes, further improve-
ment brought down this time to milliseconds.

The current fastest scheme in terms of bootstrapping is Torus FHE (TFHE)
[2] introduced by Chillotti et. al. in 2016 which computes a homomorphic logic
gate in single-core time of about 13 milliseconds. The CPU-based library [1] is
open source and is currently being used in various open source projects.

We are looking into the possibility of recovering the error by performing a
timing attack on the gate evaluation stage. The intuition behind the idea is
that the time required to evaluate a gate is dependent on the complexity of the
underlying operation, which in turn decides the level of noise in the computed
ciphertext. While we are currently focusing on the TFHE library, similar attacks
can be performed on any HE scheme based on the LWE problem.

2 Preliminaries and Notations

In this section, we introduce the idea of LWE problem. We begin with a brief
introduction of Torus, the mathematical structure on which the TFHE scheme is



Title Suppressed Due to Excessive Length 3

based on. This is followed by the LWE ciphertext used to encrypt the plaintext
message. Finally we show how the logic gates are performed homomorphically.

2.1 Torus

Torus is defined as a set of real numbers modulo 1, or real values lying between
0 and 1. It is denoted as T = R/Z = R mod 1. This set T along with two
operators, namely addition ‘+’ and external product ‘·’, forms a Z-module. It
means that addition is defined over two torus elements which results in a torus
element. Also external product is defined as a product between an integer and
a torus element which results in a torus element. Product between two torus
elements is not defined.

2.2 Learning With Error problem

Let n ≥ 1 be an integer and s be a secret sampled uniformly from some set
S ∈ Zn. An LWE sample is denoted by a tuple (a, b) ∈ Tn × T, where a ∈ Tn is
chosen uniformly and b = a · s+ e. Here e is an error sampled uniformly from a
Gaussian distribution with parameter α ∈ R+. LWE problem has the following
two variations:

– Search problem: having access to polynomially many LWE samples, find
s ∈ S.

– Decision problem: distinguish between LWE samples and uniformly random
samples from Tn × T.

2.3 LWE Ciphertexts

In TFHE, the secret key is defined as a binary vector of length n, i.e. s ∈ Bn,
where B ∈ {0, 1}. The value of n depends on the required bit security. A random
mask a′ is generated as a vector of torus elements of length n, i.e. a′ ∈ Tn. The
pair (a′, b), where b′ = a′ · s + e, acts as a public key which can be used by
anyone for encryption. Here e ∈ T is a random error sampled uniformly from a
Gaussian distribution.

To encrypt a message µ ∈ T, a mask of all zeroes with length n, i.e., 0n,
is generated and the plaintext pair (0, µ) is added to the public key (a′, b) to
obtain the final ciphertext message as c = (a, b). Here a = a′ + 0n and b =
b′ + µ. The operations defined over LWE ciphertexts are ciphertext addition,
which adds the underlying plaintext messages, and multiplication of ciphertext
with an integer constant, which multiplies the underlying plaintext message with
the constant. Multiplication between two LWE ciphertexts is not defined as it
involves multiplication between torus elements which itself is not defined.



4 B. Chaturvedi, A. Chakraborty, A. Chatterjee and D. Mukhopadhyay

2.4 Gate evaluation

To evaluate a gate homomorphically, TFHE library performs multiplication of
input ciphertext with a constant. It then adds (or subtracts) these new ci-
phertexts to (or from) the gate constant, which is defined for each particu-
lar gate. This results in the addition (or subtraction) of the random masks
as well as the errors. For example, given two ciphertexts c1 = (a1, b1) and
c2 = (a2, b2) where b1 = a1 · s + µ1 + e1 and b2 = a2 · s + µ2 + e2, their
addition will result in a new ciphertext c = (a, b) where a = a1 + a2 and
b = a1 · s + a2 · s + µ1 + µ2 + e1 + e2 = a · s + µ + e. Based on the gate
that is being evaluated, one can predict whether µ = 0 or µ = 1. For example,
in case of AND gate Pr[µ = 0] = 3

4 and Pr[µ = 1] = 1
4 while in case of OR

gate Pr[µ = 0] = 1
4 and Pr[µ = 1] = 3

4 . Once the message is removed, we will
be left with a set of LWE samples. If we can somehow remove the errors from
these LWE samples, we will be left with a system of equation of type b = a · s.
Solving this system of equations will reveal the secret key s.

3 Motivation

The security of all cryptographic schemes based on the LWE problem relies upon
the error that is added to the ciphertext. If this error can be removed, then the
system of equations reduces from A · s ≈ b to A · s = b, which is then trivial
to solve. Here A is a matrix of dimension m × n of known coefficients that are
part of the ciphertext, and b is a vector of length m containing encryptions of
underlying plaintext messages. The motivation of our research is to reduce the
range of possible errors by observing the timing values of the gate operations
generating them. Once the range is small enough, the system of equations can
be solved by brute forcing all the possible error values to recover the secret key.

4 Methodology

Our method involves generating a template with a chosen plaintext pair and
secret key. We generated 100, 000 ciphertext pairs of the same plaintext pair
using the same secret key. Once obtained, we executed all the ten homomorphic
gates on each ciphertext pair and recorded the time it took to evaluate the result
along with the final error of the ciphertext. We computed these gates 20 times for
each ciphertext pairs, which resulted in different timing values but the same final
error value. We averaged out these 20 timing values to obtain the final value for
our template. This was done just to smooth out any noise in the timing values.

Since we already knew the values of µ1 and µ2, we could easily infer the
value of µ based on the logic gate being evaluated. Also, since we knew the value
of the secret key and the value of a from the final ciphertext, we were able to
compute the final error value as e = b − a · s − µ. Once the timing and error
value pairs were obtained for each ciphertext pair, we clustered the error values
based on their corresponding timing values. For example, all error values were



Title Suppressed Due to Excessive Length 5

Fig. 1. Plot of difference between maximum and minimum error values for the timing
buckets corresponding to 100 different ciphertexts

clustered into one bucket whose timing values lied in the range t1 to t2, where
t = t2 − t1 denotes the bucket size. These clusters form our template based on
which we tried to estimate the error values of new ciphertext results computed
from some other ciphertext pairs.

The error estimation was performed by noting the timing value of the known
gate evaluation of new ciphertext pairs and then finding out the cluster in which
this timing value lies. Since we already know the error values that lies in this
bucket, we can estimate the new value by exhaustively considering all error
values belonging to this cluster or which are nearest to them.

To reduce the range of possible errors, we made some observations. First we
tried to identify pairs of gates which followed a similar pattern in terms of range
of errors. One such pair we observed was that of ANDNY and ORYN gates. The
first observation we made was that the difference between the highest and the
lowest errors for these gates were no more than 221. In other words, even if we
have to brute force all the possible errors, then for these two gates we only need
to check for 221 combinations instead of 232. This reduced our search space by
a factor of 211. Another observation that we made was that the timing ranges
of these gates were same and the errors in these buckets also followed similar
ranges.



6 B. Chaturvedi, A. Chakraborty, A. Chatterjee and D. Mukhopadhyay

Fig. 2. Plot of gates with count of occurrence of error in same bucket vs different
bucket. The size of buckets is 400. Key used to generate these ciphertexts is same as
the one used to generate ciphertexts for template data.

Fig. 3. Plot of gates with count of occurrence of error in same bucket vs different
bucket. The size of buckets is 400. Key used to generate these ciphertexts is different
from the one used to generate ciphertexts for template data.

5 Experiment and Results

Once the template was generated as described in the above section, we generated
two sets of 1000 fresh ciphertexts of the same plaintext message pair using the
same and a different, independent secret key. Once obtained, we ran all the
10 homomorphic gates on the new ciphertext pairs and recorded their timing
and error values. Next we checked whether the corresponding error value lies
in the cluster of its corresponding timing value or some other cluster. This was



Title Suppressed Due to Excessive Length 7

performed by comparing the error value with values in all clusters, finding the
error value which is closest to this value, and then checking that in which cluster
this value lies in. If it is the same cluster defined by its timing value, then we
say that error has occurred in same bucket, otherwise not.

Table 1 shows the template of 10 ciphertexts, obtained using a different key,
computed using ORYN gate. This is to simulate our attack where template is
generated using known key and is being matched for unknown key. From the
table we can observe that for this particular gate, the size of final range is
lowered from 232 to 221.

Sl. No. Error Timing Bucket Min Error Max Error Difference Bits

1 1073896025 3570 3200 to 3599 1072956736 1074502919 1546183 21

2 1073935127 3716 3600 to 3999 1072988505 1074586560 1598055 21

3 1073967179 3762 3600 to 3999 1072988505 1074586560 1598055 21

4 1073716585 3804 3600 to 3999 1072988505 1074586560 1598055 21

5 1073771144 3836 3600 to 3999 1072988505 1074586560 1598055 21

6 1073663589 3866 3600 to 3999 1072988505 1074586560 1598055 21

7 1074081963 3899 3600 to 3999 1072988505 1074586560 1598055 21

8 1073889558 3938 3600 to 3999 1072988505 1074586560 1598055 21

9 1073756479 3989 3600 to 3999 1072988505 1074586560 1598055 21

10 1073625776 4077 4000 tot 4399 1073206314 1074336274 1129960 21

Table 1. Shows error of 10 ciphertexts along with the range of errors in their corre-
sponding bucket and the number of bits required to represent this range

Figure 1 shows the difference between maximum and minimum error values
for the timing buckets corresponding to 100 different ciphertexts. These values
lies between 220 = 1048576, represented by the horizontal red line, to 221 =
2097152, represented by the horizontal green line. From table 1 and figure 1 we
can observe that for this particular gate, the size of final range is lowered from
232 to 221.

Figure 2 shows the count of occurrence in same bucket and in different for all
the ten gates for bucket size of 400 when the key used to generate these cipher-
texts is same as the one used to generate ciphertexts for template data. Figure 3
shows the count of occurrence in same bucket and in different for all the ten gates
for bucket size of 400 when the key used to generate these ciphertexts is different
and independent from the one used to generate ciphertexts for template data. In
the figures, the blue bar represents the number of ciphertexts out of 1000 whose
error lies in the correct bucket defined by the timing value of the corresponding
gate operation. The orange bar represents the number of ciphertexts out of 1000
whose error lies in some other bucket. From the two figures, we can observe that
the count of occurrence of error in same bucket is highest for AND gate while it
is lowest for ANDNY gate in both the cases.



8 B. Chaturvedi, A. Chakraborty, A. Chatterjee and D. Mukhopadhyay

Fig. 4. Plot of gates with count of occurrence of error in same bucket two different
sets of ciphertexts, one using same key and the other using different key. The size of
buckets is 400.

Fig. 5. Plot of gates with count of occurrence of error in different bucket two different
sets of ciphertexts, one using same key and the other using different key. The size of
buckets is 400.

6 Key Observation

Figure 4 shows the count of occurrence in same buckets for all the ten gates for
the two sets of ciphertexts. Similarly figure 5 shows the count of occurrence in
different buckets for all the ten gates for the two sets of ciphertexts. from the
two figures we can observe that, except for XOR and XNOR, all the gates have
similar results for the two sets of ciphertexts in both the cases.



Title Suppressed Due to Excessive Length 9

The reason for the above observation is that the errors are generated inde-
pendently of the secret key. Also while the secret key is generated only once, the
errors are generated for each encryption operation. This observation provides a
strong support to our template based attack for error recovery. The template
can be created using any random key and it will work for other keys as well.
Another thing to note from this argument is that creating multiple templates
using different keys will not provide much benefits as the results will be similar
for each template.

We also observed that for the two gates, i.e. ANDNY and ORYN, the range of
errors after gate computation is remaining same even if the error distribution of
the input ciphertexts is changing. In other words, when we changed the standard
deviation of the error distribution from 2−15 as defined in TFHE library for
λ = 128−bit security to some other value, say 2−30, while the error distribution
for the ciphertexts generated after LWE encryption changed, the range of errors
after computation of the above two gates based on such ciphertexts remained
same. This was not the case for other gates. Thus we can focus on these two
gates only and leave out the rest.

7 Conclusion and Future Directions

In this report, we have shown a novel timing analysis technique of estimating the
error value of the final ciphertext obtained after computation of a homomorphic
gate and before the bootstrapping procedure. The proposed attack model takes
advantage of the timing channel to infer about the possible range in which the
error of the final ciphertext after gate computation may lie in. Since our scheme
does not rely on the bootstrapping procedure, this method can also be extended
to target LHE schemes where bootstrapping is not used.

An obvious future direction could be to figure out whether this reduction
in error ranges can be exploited to recover the secret key. Dachman-Soled et.
al. [3] proposed an analysis based on side channel “hints”. While the authors
have proposed four types of hints, this reduction in error range does not directly
fall under those categories. So this can be an interesting future direction in the
theoretical sense to look for possible methods of solving LWE problem with
reduced error ranges.

References

1. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homomor-
phic encryption library (August 2016), https://tfhe.github.io/tfhe/

2. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homo-
morphic encryption: Bootstrapping in less than 0.1 seconds. In: ASIACRYPT
(1). pp. 3–33. Springer (2016). https://doi.org/10.1007/978-3-662-53887-6˙1,
https://eprint.iacr.org/2016/870

3. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: Lwe with side information:
Attacks and concrete security estimation. In: Advances in Cryptology – CRYPTO



10 B. Chaturvedi, A. Chakraborty, A. Chatterjee and D. Mukhopadhyay

2020: 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Bar-
bara, CA, USA, August 17–21, 2020, Proceedings, Part II. p. 329–358. Springer-
Verlag, Berlin, Heidelberg (2020). https://doi.org/10.1007/978-3-030-56880-1“˙12,
https://doi.org/10.1007/978-3-030-56880-1 12

4. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Pro-
ceedings of the Forty-First Annual ACM Symposium on Theory of Com-
puting. p. 169–178. STOC ’09, Association for Computing Machinery,
New York, NY, USA (2009). https://doi.org/10.1145/1536414.1536440,
https://doi.org/10.1145/1536414.1536440

5. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) Advances in Cryptology – EUROCRYPT 2010. pp.
1–23. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

6. Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on
Theory of Computing. p. 84–93. STOC ’05, Association for Computing Ma-
chinery, New York, NY, USA (2005). https://doi.org/10.1145/1060590.1060603,
https://doi.org/10.1145/1060590.1060603

7. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Review 41(2), 303–332 (1999),
http://www.jstor.org/stable/2653075


