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Abstract—We propose a novel obfuscation technique that
can be used to outsource hard satisfiability (SAT) formulas
to the cloud. Servers with large computational power are
typically used to solve SAT instances that model real-life
problems in task scheduling, AI planning, circuit verification
and more. However, outsourcing data to the cloud may
lead to privacy and information breaches since satisfying
assignments may reveal considerable information about the
underlying problem modeled by SAT.

In this work, we develop CENSOR, a SAT obfuscation
framework that resembles Indistinguishability Obfuscation.
At the core of the framework lies a mechanism that trans-
forms any formula to a random one with the same number of
satisfying assignments. As a result, obfuscated formulas are
indistinguishable from each other thus preserving the input-
output privacy of the original SAT instance. Contrary to
prior solutions that are rather adhoc in nature, we formally
prove the security of our scheme. Additionally, we show that
obfuscated formulas are within a polynomial factor of the
original ones thus achieving polynomial slowdown. Finally,
the whole process is efficient in practice, allowing solutions
to original instances to be easily recovered from obfuscated
ones. A byproduct of our method is that all NP problems can
be potentially outsourced to the cloud by means of reducing
to SAT.

Index Terms—SATisfiability, Obfuscation, Cloud comput-
ing/outsourcing, Verifiability, Privacy preservation, Random
walks/Mixing time

1. Introduction

Cloud computing delivers computing services
(e.g. storage, servers, databases, etc.) to consumers and
businesses alike, allowing them to run applications and
store large amounts of data in cloud servers across
the internet. Computational tasks that would otherwise
require a huge amount of processing power and pose
a huge burden on a client’s infrastructure can now be
outsourced to the cloud, offering an attractive alternative
to buying or maintaining in-house servers. Cloud
providers on the other hand are financially motivated to
share their computational resources as meeting client
demands is typically associated with a service fee. For
instance, Amazon Web Services, Microsoft Azure or
Google Cloud provide on-demand delivery of computing
power as described above.

However, the main obstacle to outsourcing computa-
tions is privacy assurance and protection. Outsourced data
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may contain valuable or confidential information that can
put a client’s security at risk. As the cloud provider is not
necessarily trustworthy, additional measures are needed
to protect the confidentiality of user data. Furthermore,
even if the cloud provider is trusted by the client, external
attackers may gain illegitimate access to cloud servers
and the data residing in them. Hence, clients need to
ensure that their data remain secure before, during and
after outsourcing. This problem led researchers to consider
various operation- and application-oriented approaches to
securing outsourced computations.

One of the main approaches to secure computation
outsourcing is the use of Fully Homomorphic Encryption
(FHE) [1] which aims to achieve both data confidentiality
and result integrity. FHE allows the support of multiple
operations on encrypted data, however this general mech-
anism is far from being practical. More efficient vari-
ants (however of reduced functionality) include Partially
Homomorphic Encryption (PHE) (a typical example is
Paillier’s cryptosystem [2]) and Somewhat Homomorphic
Encryption (SWHE) techniques [3]. PHE supports only
one type of operation (either addition or multiplication but
not both) on encrypted data while typical SWHE schemes
can perform additions and a limited number of multi-
plications on ciphertexts, which allows handling more
advanced computations compared to PHE-based schemes.
Gentry et al. [4] contributed a more efficient scheme to
carry homomorphic operations while Brakerski et al. [5]
introduced a more efficient FHE scheme.

While FHE mechanisms can be used to protect any
function that can be expressed as a Boolean circuit, they
typically have large overhead that makes them unsuit-
able for large-scale computational tasks. This motivated
researchers to look for solutions that, despite being less
general and only applicable to certain types of compu-
tations, are more efficient for outsourcing specific tasks.
Examples include scalar and set operations such as union,
intersection and difference [6].

Another important application category involves ma-
trix computations which can be realized as vector op-
erations. For example, the works in [7], [8] emphasize
in confidentiality and verifiability of algebraic and ma-
trix computations. Other operations on matrices involve
inversions [9] and solving systems of linear equations
[10]. Most of these techniques rely on transforming or
hiding the original instance by multiplying it with random
matrices. Similarly, Wang et al. [11] were the first to
provide practical mechanisms for securely outsourcing
Linear Programs to the cloud.

Despite the wide applicability of these techniques even
in advanced applications such as Machine Learning and
Data Mining (for more details the reader is referred to [6]
and [12]), the domain of outsourcing Boolean formulas to
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the cloud has remained rather unexplored. In this respect,
the present work aims to address this shortcoming.

Contributions. We investigate the security and feasibil-
ity of outsourcing large Boolean formulas to the cloud.
Boolean Satisfiability (SAT) is a decision problem that
asks whether a given formula can be made satisfiable
under appropriate assignments to the variables of the
formula. SAT has numerous applications in software test-
ing and verification, circuit design, AI planning, task
scheduling, and more [13]. However, despite the success
of modern SAT solvers [14], even small sized formulas
consisting of thousands of variables cannot easily be
managed by them. Hence outsourcing to the cloud seems
like the only workable mechanism to handle large satisfi-
ability instances and the financial incentives for providing
competitive cloud solvers are obvious.

While cloud outsourcing can be cost-effective, the
whole process may suffer from privacy leaks as the
structure of the formulas or the values of the solutions
may reveal considerable information about the underlying
problem modeled by the SAT instance. For example, many
applications (AI planning, FPGA routing, circuit design,
etc.) encode domain specific constraints into Boolean for-
mulas which can then be easily extracted, as demonstrated
in a number of works [15]–[18]. The solution to this is to
obfuscate the SAT instance prior to outsourcing it to the
cloud. However, existing techniques for obfuscating SAT
formulas are rather adhoc and have been proven insecure
(Section 2).

In this work, we develop CENSOR, an obfuscation
framework which preserves the input-output privacy of
outsourced SAT formulas. Our obfuscator deviates from
traditional approaches which try to embed random “noise”
in formulas. The novelty of our approach lies in the use
of an algebraic substitution mechanism that turns any
SAT instance into another instance with exactly the same
number of satisfying assignments using a random walk
with good mixing properties in the space of solutions.

Our first contribution is to formally describe this ob-
fuscation mechanism by developing a framework which
is similar to Indistinguishability Obfuscation (iO) [19]
with the exception of functionality preservation; if f and
obf(f) agree on all assignments x as in traditional iO, this
would leak information about the original formula. Hence
a new notion of functionality preservation is required that
essentially turns the scheme into trapdoor iO and makes
it suitable for outsourcing.

Our second contribution is a basic obfuscation pro-
cess which is very efficient in practice. Although the
setting is not the same as in [20], we show how to
obfuscate formulas with hundreds or even thousands of
variables and clauses very efficiently as opposed to 64-
bit conjunctions which require a very large computation
overhead [21]. This happens because we don’t rely on
heavy cryptographic primitives and assumptions but on
simple logical operations that result in a total running
time of O(m2 logm), where m is the number of clauses
in the outsourced formula. Furthermore, the size of the
obfuscated formula obf(f) is within a factor of m of the
original SAT formula, thus achieving polynomial slow-
down, while recovering the solution of f from the solution

of obf(f) is a simple and straightforward process, thus
reducing the overall impact of SAT outsourcing.

We also develop a more advanced scheme that offers
stronger guarantees about the distribution of the satisfying
assignments of the obfuscated formula. In particular, we
prove that any k assignments remain uniformly distributed
in the space of solutions. The running time of this scheme
is Õ((m + k2)2). In practice, however, dependency on
k can be eliminated since, typically, hard outsourced
formulas can only have few assignments discovered in
polynomial time (for more on this see Sections 6.4 and
6.5).

Finally, an obvious byproduct of our method is that
it is directly applicable to outsourcing other NP problems
by way of reducing to SAT.

Organization. In the next section we provide a survey of
works on obfuscating Boolean formulas and circuits. In
Section 3, we discuss the threat model, we define our ob-
fuscation framework and we review preliminary material.
In Section 4, we define the substitution algebra that is at
the heart of the obfuscation scheme which is described
in Section 5. In Section 6, we prove the correctness and
soundness of the obfuscator as well as the mixing time
required to achieve indistinguishability of SAT formulas.
The performance of the various obfuscation components
is verified experimentally in Section 7. Section 8 offers
a comparison with Virtual Black Box (VBB) techniques
on obfuscating conjunctions [20]. Finally, Section 9 con-
cludes this work.

2. Related Work

In this section, we review past work on SAT obfusca-
tion. However, the majority of these works focus mostly
on hiding circuit structures for intellectual property (IP)
protection at the hardware level.

Logic locking [22] is a technique attempting to lock
the logical functionality of a circuit unless a certain key
input is provided along with the input parameters. This
works by adding special ‘key’ gates to the paths of the
circuit gates. If the correct inputs to these gates are pro-
vided, the circuit produces the correct output; otherwise,
the design produces a wrong result. SLL (Strong Logic
Locking) [23] attempts to overcome the weaknesses of
basic logic locking. However, this and similar schemes
fall prey to SAT-based attacks [24] which target specific
vulnerabilities of the target logic encryption technique.

Subramanyan et al. [24] implemented an algorithm
to unlock locked circuits using a SAT solver to brute-
force the secret key. Given a locked logic circuit C and a
working, unlocked circuit c (used as an oracle), the goal is
to find the locking sequence k to unlock C. The algorithm
works by generating many ⟨input, key, output⟩ tuples,
then use them to produce a circuit of constraints that will
be satisfiable if the key used is the encryption key k.

The SARLock scheme [25] was developed to enhance
the circuit lock schemes which were easy targets for the
SAT-based attacks implemented in [24]. However, Shamsi
et al. [26] introduced an enhanced version of the SAT at-
tack to counter the anti-SAT obfuscation schemes (such as
SARlock). Existing encryption schemes assumed unique-
ness of outputs for every key combination which makes
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them susceptible to the approximation attacks introduced
in [24] and [26].

The previous schemes focus on hiding the functional-
ity of a circuit, however the described attacks (for more the
reader is referred to [27]) demonstrate the difficulty of this
goal. Unfortunately, there is also very little work on hiding
the structure of SAT formulas when outsourced to a cloud
solver. Brun et al. [28] distributed the computation of a
SAT formula on multiple machines so that every machine
gets a different part of the formula to evaluate. Each evalu-
ation is then passed to a neighbouring machine. However,
the trust model is very limited as nothing prevents the
servers from colluding in order to recover the hidden
formula. Qin et al. [29] introduced an obfuscation scheme
that first generates a formula based on a prime factoriza-
tion circuit, then blends it with the original formula to
achieve obfuscation. Although the idea seems interesting,
the obfuscated formula has an exploitable structure which
can be targeted by an XORing attack as demonstrated in
[30].

This overview shows that the success of ad hoc tech-
niques is rather doubtful and might not work well in
practice as these methods rely mostly on “security via
obscurity”, contradicting the basic assumption that an
adversary knows the details of the underlying system.
Hence more formal frameworks should be used instead.
Our work aims to fill this gap.

On Program Obfuscation and SAT Outsourcing. Pro-
gram obfuscation is a transformation that aims to make
a program unintelligible without, however, affecting its
functionality or revealing anything about its description.
Essentially this means that the program should work as a
virtual black box (VBB).

Barak et al. [19] were the first to study the impossi-
bility of general-purpose VBB obfuscation and suggested
instead the seemingly weaker notion of indistinguisha-
bility obfuscation (iO) in which two different descrip-
tions of the same program, having the same size and
the same functionality (input-output behavior), should be
indistinguishable from each other. The breakthrough result
of Garg et al. [31] and subsequent work by Sahai and
Waters [32] gave rise to a plethora of applications (for an
overview see [33]) which demonstrated the huge potential
of the iO paradigm.

One may be tempted therefore to build upon previous
works on obfuscating conjunctions [20] to develop an
algorithm that can be used to outsource SAT formulas to
the cloud. However, by definition, such obfuscator would
create obfuscated formulas that agree with the original
formula on all assignments x, thus violating the sought
for input-output privacy for the underlying SAT instance
(recall the attacks in [15]–[18]).

Hence a new notion of functionality preservation is
required that is better suited for outsourcing formulas to
the cloud, one that is not yet captured by the existing
model of VBB and iO security. Essentially, this new
obfuscation framework should be used to not only hide the
structure of the original formula (its description) but also
the relationship of the assignments between the obfuscated
and the original SAT instances. We consider this another
important contribution of this work, one we formalize in
the next section.

3. Threat model and assumptions

We consider a user U who is in possession of a
difficult to solve SAT formula f . Due to the lack of
computing power and resources, U wishes to outsource
the formula to a cloud solver CS which has the capacity
to solve computation-demanding problems for a fee.

Despite the obvious benefits for outsourcing the prob-
lem to the cloud, the formula may have been used to
capture sensitive information since SAT has broad applica-
tions in circuit and software verification, task scheduling,
etc. [13], hence it cannot be directly given to CS. As CS
is not trusted by U , f has to be obfuscated prior to out-
sourcing in order to provide assurance that no information
leakage occurs (Figure 1).

Figure 1: Flow of information between the user U and
Cloud Solver CS

3.1. Security and performance requirements

Our threat model includes a CS which may be inter-
ested in analyzing the obfuscated formula or the solution
produced in order to recover sensitive information about
the original function. To enable secure outsourcing of
SAT expressions, the following security and performance
requirements are envisioned:

1) Correctness: Any honest CS that manages to
solve the obfuscated instance obf(f) should be
able to produce a solution that can be de-
obfuscated by U and lead to a solution of f .

2) Verifiability: No malicious CS should be able
to produce a wrong solution that can be de-
obfuscated and verified successfully by U .

3) Privacy: No sensitive information about the orig-
inal formula should leak, other than already
known, a priori information about f .

4) Polynomial slowdown: The size of obf(f) should
be within a polynomial of the size of f .

5) Solver efficiency. As there can be no guarantee on
the time to solve hard SAT instances due to the
NP-completeness of the Satisfiability problem,
the burden on the cloud solver to solve obf(f)
should not be prohibitive. Ideally, it should be
comparable to solving the original instance f .

6) User efficiency. The time to create obf(f) and
recover the solution of the original instance from
sol(obf(f)) should be considerably less than lo-
cally solving f . In particular, it should be a poly-
nomial on the number of variables and clauses of
f , thus making solution recovery independent of
the hardness of the original SAT instance.
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3.2. Obfuscation framework

Our obfuscation scheme consists of the following op-
erations.

• KeyGen(1λ) → key. This is a key generation
algorithm that takes as input a security parameter
λ and returns a secret key that is used in the
obfuscation of the original formula. The key can
be thought as the seed or the randomness required
during obfuscation.

• Obfuscate(key, f, n,m) → obf(f). This algo-
rithm obfuscates the input formula f using key,
where n is the number of variables and m the
number of clauses of f , respectively. obf(f) is
also a SAT formula which is outsourced to the
cloud solver.

• De-Obfuscate(key, sol(obf(f)) → {sol(f),⊥}.
This algorithm produces a solution for f based on
the solution sol(obf(f)) of the obfuscated formula
returned by CS. The algorithm returns ⊥ if the
validation of sol(obf(f)) fails or if the cloud
solver returns no solution to the SAT instance.

3.3. Definition of privacy

Our definition resembles the notion of Indistinguisha-
bility Obfuscation [19]. A Probabilistic Polynomial Time
(PPT) algorithm iO is said to be an indistinguishability
obfuscator for a class of circuits C, if it satisfies function-
ality preservation and indistinguishability. Functionality
preservation in this case means that for all circuits c ∈ C,
the obfuscated circuit iO(c) should match c on all inputs
x, i.e. iO(c, 1λ)(x) = c(x).

Unfortunately this notion cannot be directly applied
in our setting since the obfuscated formula obf(f) should
not necessarily agree with f on assignments x. Hence, we
re-define functionality preservation to mean SATisfiability
preservation. In particular,

Definition 1 (Functionality preservation for Boolean for-
mulas).

1) For any satisfying assignment s such that
obf(f)(s) = True, there is a unique assignment
x such that f(x) = True and vice versa.

2) If s ̸= ⊥ then x = obf−1(key, s), where obf−1

denotes the de-obfuscation algorithm.

Part 1 in the definition means that there is a one-to-
one correspondence between truth assignments of f and
obf(f). Hence f is satisfiable iff obf(f) is satisfiable. Part
2 ensures that a satisfying assignment for f can easily be
recovered from an assignment s of obf(f) with the help
of the trapdoor key.

This deviation from the traditional definition of iO
functionality is necessitated by the fact that the output of
a typical iO obfuscator on x matches the value of f on x.
However, in the case of SAT this may result in a serious
breach on privacy since the value of the assignment x may
reveal information about the underlying problem modeled
using f . In the following, the term #SAT-equivalent will
refer to two functions with the same number of satisfying
assignments.

Definition 2 (Indistinguishability for Boolean formulas).
For any polynomial-size distinguisher D = {Dλ}λ∈N ,
there exists a negligible function µ(λ) such that for any
two #SAT-equivalent Boolean functions f0, f1 of the same
size1:

|Pr[D(obf(f0, 1
λ))]− Pr[D(obf(f1, 1

λ))]| < µ(λ),

where the probability is over the random bits of obf .

3.4. Notation

Let X = {x1, x2 . . . , xn} be a set of propositional
variables. A literal, is a variable that can be in comple-
mented (x̄) or uncomplemented form (x). The notation ẋ
will be used to refer to a literal (x or x̄) pertaining to
a variable x without specifying its form (complemented
or not). In this work, we will be working with formulas
in Conjunctive Normal Form (CNF), i.e. conjunctions of
one or more clauses C1 · . . . ·Cm, where each clause is a
disjunction of literals (l1 + . . .+ lk).

The satisfiability (SAT) problem asks for an assign-
ment of True/False (or 0/1) values to the variables of a
given CNF formula f such that f evaluates to True (or 1).
If there is no assignment satisfying all clauses, the formula
is said to be unsatisfiable. Without loss of generality, we
will be working with 3-SAT instances in which all clauses
consist of exactly 3 literals as it is known that any formula
can be converted to 3-CNF form. However, our methods
can be applied directly to more general formulas as well.
The number of variables and clauses in the formula will
be denoted by n and m, respectively.

For a Boolean function of n variables, a minterm is the
logical product (AND) of the n variables in either com-
plemented or uncomplemented form. The kth minterm
(often denoted by mk) is the minterm for which the i-th
variable is negated if the i-th bit in the binary expansion
of k is 0. Any function can be expressed as the sum of
all minterms corresponding to the rows of its truth table
where the function value is one. The truth table of a
Boolean function on n variables is a tabular representation
of the function’s value on all possible assignments of the
input variables. The last column is referred to as the output
and corresponds to the formula captured by the truth table.
For simplicity, we will use fi or f(i) to refer to the value
of f in the ith row of its output column.

4. Substitution Algebra

Definition 3. A substitution of x by h in f (denoted by
f |x←h) is the Boolean formula resulting by replacing any
occurrence of x in f by the expression h.

We will use substitutions to transform any function
f into a function g with an equal number of satisfying
assignments. Thus, substitutions will be the core method
to transform/obfuscate a given Boolean function. Next,
we define our equivalence classes with respect to the total
number of True values (1’s) in the output column of a
formula.

1. As we will be working with formulas in d-CNF form (Section
3.4), the size of a formula on n variables is defined as the number of
its clauses m.
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Definition 4. Denote by #(f) the number of satisfying as-
signments of a Boolean function f , i.e. #(f) =

∑2n−1
i=0 fi,

where n is the number of variables of f and fi ∈ {0, 1}.
Proposition 1. Let f and g be two formulas. We will
write f ≡ g iff #(f) = #(g). Then ≡ is an equivalence
relation.

Proof. For the proof one has to show that the relation
is reflexive, symmetric and transitive. However, this is
straightforward and omitted as the number of 1’s in the
output column of a function is maintained under all these
operations. Hence ≡ is an equivalence relation. ■

Thus, ≡ can be used to partition the problem space
(set of all formulas) into equivalent classes [f ], where
each class contains all functions with the same number
of satisfying assignments.

In the sequel, we will be working with substitutions
of the form w ← w ⊕ a1a2 · · · aj (i.e. w will be sub-
stituted with w ⊕ a1a2 · · · aj), where the ai’s are single
literals different than w and ‘⊕’ is the XOR operator
(s.t. x ⊕ y = xȳ + x̄y). When j = 1, we call these
unit-substitutions. Substitutions are very powerful as they
maintain the number of satisfying assignments (Theorem
3). To prove this we need the following intermediate
result.

Lemma 2. Consider a substitution w ← w⊕ a1a2 · · · aj ,
where the ai’s are literals of the formula. Then minterms
of the form m = ẇa1a2 · · · ajB, where B is the con-
junction of the remaining n− j − 1 literals, will have ẇ
complemented, while all others (not containing the exact
form of a1a2 · · · aj) will remain unchanged.

Proof. For the proof, we first consider the case where
m = ẇa1a2 · · · ajB and compute the value of m′ =
m|w←w⊕a1a2···aj

. Thus,

m′ = (ẇ ⊕ a1a2 · · · aj)a1a2 · · · ajB
= ( ¯̇wa1a2 · · · aj + ẇa1a2 · · · aj)a1a2 · · · ajB
= ¯̇wa1a2 · · · ajB (ẇ is flipped)

Now consider the case where m =
ẇā1ā2 · · · āiai+1 · · · ajB, i.e. (wlog) the first 1 ≤ i ≤ j
literals appear complemented in the minterm. Then

m′ = (ẇ ⊕ a1a2 · · · aj)ā1ā2 · · · āiai+1 · · · ajB
= ( ¯̇wa1a2 · · · aj + ẇa1a2 · · · aj)ā1ā2 · · · āiai+1 · · · ajB
= ẇ(ā1 + · · ·+ āj)ā1ā2 · · · āiai+1 · · · ajB
= ẇā1ā2 · · · āiai+1 · · · ajB
= m (ẇ is unchanged)

Hence only the minterms that have a matching a1a2 · · · aj
will have the ẇ literal flipped as the lemma suggests. ■

We can now prove the following important theorem:

Theorem 3. Substitutions maintain the number of satis-
fying assignments of a Boolean function.

Proof. Let f be a Boolean function on n variables, and
#(f) be the number of satisfying assignments of f . f can
be represented using minterm notation as

f = mk1
+mk2

+ · · ·+mkL
,

where each minterm mkl
= (u̇1u̇2 · · · u̇n) is the conjuc-

tion of n literals corresponding to the ones of the function,
and L = #(f). Thus, a substitution f |wi←wi⊕a1a2···aj

on
f will be given by

mk1 |wi←wi⊕a1a2···aj + · · ·+mkL
|wi←wi⊕a1a2···aj .

Now consider the substitution effect on some minterm
mkl

. There are two cases to consider for a1a2 · · · aj .
Either a1a2 · · · aj appears in the exact same form in the
minterm or not. By Lemma 2, if a1a2 · · · aj appears in
the minterm, ẇi will be complemented. Thus the original
minterm mkl

will be swapped with another one that
contains ˙̄wi. On the other hand, if some of the literals in
a1a2 · · · aj appear complemented in mkl

, this will leave
the minterm unchanged.

As the total number of minterms is maintained, we
have that #(f |wi←wi⊕a1a2···aj

) = #(f). Thus, substitu-
tions maintain the number of satisfying assignments of the
formula. ■

This will be the basis for our obfuscation method. By
applying an appropriate number of random substitutions
on an input function f ∈ [f ], f will be transformed into
a random function g ∈ [f ] which has the same number
of satisfying assignments as f . Since all functions in [f ]
will be indistinguishable from each other (by selecting
the number of random substitutions appropriately), the
security of the obfuscation process will follow.

5. Obfuscation Scheme

Overview: Substitutions will be used to obfuscate a
given function f by turning it into a function g with
exactly the same (yet unknown to the user) number of
satisfying assignments. Hence g can be safely outsourced
to the cloud solver without fear of leaking information
about the original function f .

In the sequel we will describe a basic scheme that uses
only unit-substitutions of the form w ← w ⊕ a, where a
is some literal different than w. This will guarantee that
two #SAT-equivalent formulas are structurally indistin-
guishable (at the syntax level) but cannot fully guarantee
that satisfying assignments of their obfuscated versions
are uniformly distributed in the space of solutions. For this
reason, in the proof of Theorem 11 (Section 6.4), we will
add an extra phase that uses general type substitutions and
achieves the desired result. However, in Section 6.5, we
argue that the extra phase might not really be necessary in
real life applications. The description of the basic scheme
follows.

5.1. Obfuscation using unit-substitutions

Algorithm 1 details the basic obfuscation scheme.
The algorithm applies a sequence S of N random unit
substitutions to the “flattened” input formula, where N
will be defined later. The concepts of flattening and Tseitin
encoding will be described in the sequel.

We begin the analysis of the algorithm by a lemma that
attempts to capture the structure of clauses after a series of
unit-substitutions. In particular, the lemma shows that the
size of each clause in the final obfuscated formula does
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Algorithm 1: Basic Obfuscation
Input: A 3-CNF formula f
Output: obf(f)
Set f ′ ← flatten(f)
Let S = [⟨wi, ai⟩]Ni=1 be a list of random
unit-substitutions

foreach pair ⟨w, a⟩ ∈ S do
f ′ ← f ′|w←w⊕a

end
Set f ′ = Tseitin(f ′) (Optional)
return f ’

not depend on the number of unit substitutions applied.
Then, we argue about the running time of the algorithm.

Lemma 4. Let n be the number of variables in the
formula and let c = (u + v + w) be a 3-SAT clause.
Then, irrespective of the number of substitutions, the final
clause will have the form

( ˙u1 ⊕ . . .⊕ up + ˙v1 ⊕ . . .⊕ vq + ˙w1 ⊕ . . .⊕ wr),

where the dot (˙) indicates a possible complement,
ui, vj , wk are variables of the formula and p, q, r ≤ n.

Proof. The proof is by induction on the number N of
substitutions. When p, q, r are equal to 1, the XOR de-
generates to a single variable hence when N = 1 we
have the original clause. So, assume that during the κth

substitution the clause has the form

( ˙u1 ⊕ . . .⊕ uα + ˙v1 ⊕ . . .⊕ vβ + ˙w1 ⊕ . . .⊕ wγ),

for some α, β, γ ≤ n. Now consider the next unit-
substitution x→ x⊕ ẏ, for some variable x and literal ẏ.
Assume x appears in some XOR group (if not, no substi-
tution will take place) and in particular ˙u1 ⊕ . . .⊕ uα (the
other groups are handled similarly). Further assume that
x = u1 after re-arranging the literals. Then the substitution
will create the new group

(x⊕ ẏ) ˙⊕ . . .⊕ uα.

Its exact form depends on whether variable y is present
in the group and in which form (complemented or not).
Here we consider the four cases:

• ẏ = y and y is equal to some variable ui in the
group. Then since y⊕y = 0, y will disappear and
the 0 will not affect the remaining variables in the
group since u⊕ 0 = u. Hence the group size will
decrease by one.

• ẏ = ȳ and y is equal to some ui in the group. The
complement in y will move on top of the entire
group since u⊕ v ⊕ w = u ⊕ v ⊕ w = u ⊕ v ⊕
w = u ⊕ v ⊕ w. As before y will disappear and
the group size will decrease by one. However, the
group will have an extra complement on top of it
which may be cancelled if there was already one
in the beginning.

• ẏ = y and y does not appear in the group. Then
the group size will increase by one.

• ẏ = ȳ and y does not appear in the group.
Then the group size will increase by one and the
complement on y will move on top of the group

which may be cancelled if there was already one
in the beginning.

Hence the group will retain its form with the possible
addition or elimination of one variable, and the addition or
cancellation of the group’s complement. Notice also that
the group size can never exceed the number of variables
n (as redundant variables will be cancelled), so its size
is independent of the number of substitutions and always
bounded by n. ■

Since each clause consists of 3 such XOR groups
and there are m clauses overall, the method achieves
polynomial expansion. We conclude that

Theorem 5. The size of the obfuscated formula is
bounded by O(mn), where m is the number of clauses
and n the number of variables in the original formula.

Lemma 4 also leads to a very efficient algorithm to
handle substitutions. As before, a clause will consist of 3
XOR groups (connected with OR), hence we will concen-
trate on just one of them. In particular, we associate with
every XOR group a vector of size (n+1), where n is the
number of variables in the formula. The ith, i = 1, . . . , n,
position in the vector is an indicator of whether variable i
exists in the group while the 0th position is an indicator for
the complement (shown as ’∼’). For example, the vector

∼ x1 x2 x3 x4 x5

1 1 0 0 1 1

corresponds to the group x1 ⊕ x4 ⊕ x5 since there is a
complement and x1, x4, x5 are present. Thus to perform
the substitution xi ← xi ⊕ ẋj , we first have to check
whether xi is present and then flip the value of xj . If
ẋj = x̄j then we also flip the value of the 0th position in
the array. It should be clear that each substitution takes
O(1) time per clause and requires space O(n). Hence the
algorithm is very efficient in practice. Thus,

Theorem 6. For a formula f with m clauses and n
variables, each unit-substitution into f takes time O(m)
while the total space required is O(mn).

Remark 1. As the existence of complement on a substi-
tuted variable is equivalent to complementing the entire
group of variables (recall XOR Property u⊕ v ⊕ w =
u ⊕ v ⊕ w = u ⊕ v ⊕ w = u ⊕ v ⊕ w), it is sufficient
to consider substitutions xi → xi ⊕ xj that consist of un-
complemented variables only. Then, once the substitution
is made, we just have to flip the complement bit in the
group’s vector with probability 1/2.

5.2. Flattening

Ideally, we would like to show that when we apply the
obfuscation process on two functions f0, f1 on n variables
which are #SAT-equivalent and have the same size, then
obf(f0) cannot be distinguished from obf(f1). Although
unit-substitutions are powerful enough to generate random
looking XOR groups, an extra step is needed to ensure
indistinguishablity. This is explained below by way of an
example. Consider the formula

f = (x1 + x2 + x3)(x2 + x4)(x1 + x5)
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and a sequence of substitutions x1 ← x1 ⊕ x2, x1 ←
x1⊕ x4, x1 ← x1⊕ x5 on variable x1 applied to f . This
will create a new formula in which all occurrences of x1

will be replaced by the same group (shown underlined
below):

f = (x1 ⊕ x2 ⊕ x4 ⊕ x5 + x2 + x3)(x2 + x4)(x1 ⊕ x2 ⊕ x4 ⊕ x5 + x5)

More generally, all occurrences of variable xi will be
replaced by some XOR group gi after applying a sequence
of random substitutions. Thus, our function f will be
transformed to

obf(f) = (g1 + g2 + g3)(g2 + g4)(g1 + g5).

Hence a simple remapping of the groups ⟨g1, ..., gn⟩ to
some arbitrary variables ⟨y1, ..., yn⟩ will be enough to
reveal the original structure of the formula.

The previous discussion demonstrates that XOR
groups originating from the same variable stay the same,
hence the structure of the formula can be recovered. In the
following, we describe a method (flattening) that ensures
that all groups (even those that originate from the same
variable) stay different. The intuition of this method relies
on the following two lemmas.

Definition 5. Let g1, g2 be any two XOR groups. Denote
by ∆(g1, g2) the size of the symmetric difference (number
of variables they differ) of the two groups.

Lemma 7. Consider two different XOR groups g1, g2 such
that ∆(g1, g2) ̸= 0. Then after the application of any unit
substitution, ∆ cannot become zero.

Proof. Consider a substitution w ← w ⊕ a. Clearly, if
w belongs to one of the groups, the groups will still be
different after the substitution. The same will be true if w
belongs to both, but the target variable a to one of them.
Finally, if both w and a belong to both groups, a will be
removed from both and ∆ will not change. Hence in all
cases, the symmetric difference cannot become zero. ■

The above lemma suggests that XOR groups that start
different, stay different. The next lemma shows that not
only these groups will be different, but their expected
difference will be n/2 after applying random unit sub-
stitutions.

Lemma 8. The expected difference ∆ of any two XOR
groups in the end of the random walk is n/2.

Proof. This is a consequence of the stationary distribution
of the random walk (Equation 6, Appendix A). This is
binomial, hence the expected number of variables in any
group will be equal to n/2. Additionally, it is a simple
exercise to verify that the expected difference of two
random groups will be n/2 since the probability that a
literal appears in a group is 1/2. This important lemma
has also been verified experimentally; Figure 4 in Section
7 shows the distribution of ∆ for various values of n. ■

Lemmas 7, 8 suggest that all we need to prevent
the previous de-obfuscation attempt is to make sure that
initially all XOR groups are different. We will do so
by simply introducing new variables and clauses that
will achieve the desired result. Thus at the end of the
random walk, all these groups will be pairwise different

and contain about n′/2 variables each, where n′ is the
new number of variables. Before we apply this procedure
(which we call flattening), the following pre-processing
step is executed to reduce the extra variables introduced.

5.2.1. Pre-processing. A simple (greedy) way to make
initial groups different is to start with the most frequent
variable xi, generate an XOR group gi consisting of all
literals in clauses where xi appears, replace xi with xi ←
xi⊕gi, simplify using the properties P1 : u⊕v+v = u+v
and P2 : u ⊕ v + v = u + v, and repeat this process
for the remaining variables until no more groups can be
created. As an example, let’s apply this process to the
same function as before

f = (x1 + x2 + x3)(x2 + x4)(x1 + x5).

We start with x1 and generate g1 = x2 ⊕ x3 ⊕ x5.
Then we substitute it into x1 (i.e. x1 ← x1⊕g1) to obtain
f1 = fx1←x1⊕g1 ,

f1 = (x1 ⊕ x2 ⊕ x3 ⊕ x5 + x2 + x3)(x2 + x4)

(x1 ⊕ x2 ⊕ x3 ⊕ x5 + x5)

After applying property P1 the formula is simplified to:

f1 = (x1 ⊕ x5 + x2 + x3)(x2 + x4)(x1 ⊕ x2 ⊕ x3 + x5).

Observe that, while initially all occurrences of x1 were
equal to x1 ⊕ g1, after simplification these give rise to
two different groups in f1: g11 = x1 ⊕ x5 and g12 =
x1 ⊕ x2 ⊕ x3. Thus, during obfuscation, subsequent unit-
substitutions will also produce different groups for these
occurrences (recall Lemmas 7, 8).

Then we pick x2 (second most frequent variable) and
generate the group g2 = x1⊕x3⊕x4 (the group is created
based on the original function). After substitution into x2
(i.e. x2 ← x2 ⊕ g2), we obtain f2 = f1,x2←x2⊕g2 :

f2 = (x1 ⊕ x5 + x2 ⊕ g2 + x3)(x2 ⊕ g2 + x4)

(x1 ⊕ x2 ⊕ g2 ⊕ x3 + x5)

= (x1 ⊕ x5 + x2 ⊕ x1 ⊕ x3 ⊕ x4 + x3)(x2 ⊕ x1 ⊕ x3 ⊕ x4 + x4)

(x1 ⊕ x2 ⊕ x1 ⊕ x3 ⊕ x4 ⊕ x3 + x5)

Finally, after applying P1 again, we obtain

f2 = (x1 ⊕ x5 + x2 ⊕ x1 ⊕ x4 + x3)(x2 ⊕ x1 ⊕ x3 + x4)

(x2 ⊕ x4 + x5),

in which all the groups differ in at least one literal. The
process described above will be applied to all variables
in the formula in an effort to make all initial groups look
different.

Although promising, this procedure does not fully
achieve its goal. We verified experimentally (see Figure
5) that about half of the groups will still be the same.
However, we can now apply the flattening procedure
described next to make all of them different. A better
procedure to reduce the initial number of similar groups
is left as future work.

5.2.2. Flattening a formula. After pre-processing2, let
g = li1 ⊕ li2 ⊕ li3 ⊕ · · · ⊕ lik be some repeating group
(two occurrences of g are shown below)

f = (g + . . .+ . . .) . . . (g + . . .+ . . .).

2. Pre-processing is optional – if no pre-processing is performed then
flattening is applied to all initial groups which consist of single literals.
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We consider the first occurrence of g and we create a
new variable which is set equal to a random subset of the
group literals. For example, we can replace li1 ⊕ li3 by
u1 in g and add the clause (u1 ⇔ li1 ⊕ li3), which is the
same as (ū1 ⊕ li1 ⊕ li3) in f . Thus the formula becomes

f = (u1 ⊕ li2 ⊕ li4 · · · ⊕ lik + . . .+ . . .) . . . (g + . . .+ . . .)

(ū1 ⊕ li1 ⊕ li3)

Then we pick another subset of literals in g (which
might involve the added variable), and set it equal to a
new variable. For example, we may choose u1 ⊕ li5 ⊕ li8
and set it equal to u2. Then the formula becomes

f = (li2 ⊕ li4 ⊕ u2 · · · ⊕ lik + . . .+ . . .) . . . (g + . . .+ . . .)

(ū1 ⊕ li1 ⊕ li3)(ū2 ⊕ u1 ⊕ li5 ⊕ li8),

where the initial group and the added clauses are shown
underlined. We repeat this procedure L times (L being
a parameter that will be defined shortly), introducing L
new variables and extra clauses for the first occurrence
of the group g. Then we do the same for the second
occurrence of the group, introducing another L variables
v1, v2, · · · , vL and set them equal to random subsets of
the second occurrence of g, and so on.

For a 3-SAT formula with m clauses, there can be a
maximum of 3m repeating groups, and a total of 3mL
new variables and clauses introduced (L for each group).
To reverse engineer an attacker would have to guess the
group positions. In particular, the attacker would have to
choose L clauses and XOR them together in the hope to
reconstruct the first occurrence of group g (observe how
XORing the underlined groups produces g), compare it
against the second occurrence of g (which also had to be
reconstructed in the same manner), and so on. The amount
of work required would be at least

(
3mL
L

)2 ≥ ( 3mL
L )2L =

(3m)2L. Thus, setting L = log n would make flattening
secure against any polynomial-time adversary,3

The impact of flattening on the running time and
resources of the obfuscation algorithm is small. After
flattening, the number of variables in a 3-SAT formula
becomes n′ = 3m, while the number of clauses is
bounded by m′ = 4m log n. Applying Theorem 5 to the
flattened formula, we see that polynomial slowdown is
still maintained.

5.3. Obfuscation tool

The basic obfuscation tool will apply the results of the
previous sections to obfuscate a given 3-CNF function
f (see Algorithm 1). Through a series of random unit-
substitutions, f will be mapped to a function in the same
equivalence class, thus maintaining its original satisfiabil-
ity.

In more detail, KeyGen(1λ) will produce a key which
can be used as a seed to a cryptographically secure random
number generator to generate a sequence S = [⟨wi, ai⟩],
i = 1 . . . N , of unit substitutions wi → wi ⊕ ai of
length N . Alternatively, we can think of the key as the
set S of random substitutions. The value of N depends
on the number of variables of the formula and will be
determined in Theorem 9 to guarantee indistinguishability
and security.

3. Initially we have chosen L = 1, which led to a relatively easy
de-obfuscation attack as pointed to us by an astute anonymous reviewer.

To recover the solution of the original
function given the solution of obf(f) algorithm
De-Obfuscate(key, Sol(obf(f)) is used. First, the
algorithm checks the validity of the solution, i.e. whether
it satisfies obf(f). If not, ⊥ is returned. Otherwise,
using the series of substitutions but in reverse order,
the algorithm recovers the values of each variable, thus
reverting the effect of the substitutions.

The Tseitin encoding [34] mentioned in Algorithm 1
is used to convert the final formula (currently consisting
of XOR groups) into an appropriate 3-SAT form. This
increases the formula size by a factor of O(n), however,
this step is optional. Notice that the Tseitin transform does
not add to the security of the scheme as it can easily be
reverse-engineered. It is merely used to produce a formula
in 3-SAT form. We may as well outsource the XOR groups
to the cloud solver. In fact, this is exactly what we do in
the experimental section using CryptoMiniSat, a state-of-
the art solver that directly works with XOR groups.

6. Security Analysis

In this section we analyze the security properties of
our scheme. We start by considering the number of unit
substitutions required in order to obtain a random XOR
group starting from any such one. This will help us later
prove the indistinguishability properties of the obfuscator.
We also argue about correctness and functionality preser-
vation.

6.1. Mixing time

The proof of the following result can be found in
Appendix A.

Theorem 9. The number of substitutions required in order
to obtain a random XOR group is bounded by 3

2n log n+
O(n), where n is the number of variables in the formula.

6.2. Correctness and Soundness

Theorem 10. Our scheme is a correct and verifiable 3-
SAT obfuscation scheme.

Proof. For any formula f and its obfuscated version
obf(f), a satisfying assignment s = sol(obf(f)) com-
puted by an honest cloud server can always be verified
successfully by the user.

Next, we show that a correctly verified assignment
s always corresponds to a satisfying assignment x =
obf−1(s) of the original formula f . By way of contradic-
tion, assume this is not the case. Then there is some clause
c = (u+v+w) of f which is not satisfied under x. Now,
apply to c the same series of substitutions S = [(xi, ai)],
i = 1, . . . , N , that led to the creation of obf(f). Ignor-
ing the Tseitin encoding, c will be transformed into the
following three groups of XORs connected together with
OR:

( ˙u1 ⊕ . . .⊕ up + ˙v1 ⊕ . . .⊕ vq + ˙w1 ⊕ . . .⊕ wr).

As this is part of obf(f), it will be satisfied by s. Hence at
least one of the groups, say ˙u1 ⊕ . . .⊕ up, will be equal
to 1. Now consider the subsequence Tu of S that, starting
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from u, ends up in ˙u1 ⊕ . . .⊕ up. Collecting all target
variables and substitutions in T , we obtain the combined
substitution u← ˙u1 ⊕ . . .⊕ up. Since ˙u1 ⊕ . . .⊕ up is 1
in obf(f), u will also be 1. Hence clause c should be
satisfied as well. ■

6.3. Maintaining functionality

We have defined functionality as SATisfiability of the
boolean function. Using Theorem 3, the functionality of
the original function is preserved as both f and obf(f)
have the same number of satisfying assignments. Ad-
ditionally, as we showed in the previous theorem, an
assignment x for f can be derived from an assignment
s of obf(f).

Polynomial slowdown is also achieved since by The-
orem 5 and the impact of flattening (Section 5.2), the size
of the obfuscated formula is Õ(m2). Finally, combining
Theorems 6 and 9 along with the new variables and
clauses introduced in flattening, the total running time of
the algorithm is also Õ(m2).

6.4. Indistinguishability

To prove indistinguishability we need to argue that
the obfuscated formula produced is a random one in the
space of all formulas with the same number of satisfying
assignments. The result in Theorem 9 gives the number
of substitutions required to create a random XOR group
when starting even in a single variable. This result will
be leveraged below to show that the resulting formula is
also random.

Theorem 11. For any two #SAT-equivalent Boolean func-
tions f0, f1 of the same size, obf(f0) is indistinguishable
from obf(f1).

Proof. For the proof we will consider two #SAT-
equivalent functions f0 and f1 on n variables and m
clauses and show that the probability of distinguishing
their obfuscated versions is zero.

First notice that after flattening, both functions will
consist of exactly n′ = dm variables and m′ = (d +
1)m log n clauses (case for d-CNF formulas). As all initial
XOR groups in each clause are different, at the end of the
random walk, Lemmas 7, 8 will ensure that the resulting
groups in the clauses will remain different and on average
will consist of n′/2 random literals each. Furthermore, at
the end of the substitution process, both functions obf(f0)
and obf(f1) will be members of the same equivalence
class [f0] (Theorem 3). We now have to argue that the
resulting formulas are randomly distributed in [f0]. This
is needed because the assignments of a formula f may
reveal considerable information about f , as explained in
the introduction and the definition of privacy. Hence the
assignments of obf(f) must be uniformly distributed in
the space of solutions. (For ease of exposition, in the
remaining section we use n instead of n′.)

Define the n-dimensional hypercube where each node
corresponds to a minterm and two nodes are connected by
an edge if they differ in a single bit. Thus the hypercube
consists of all 2n minterms. Now consider a minterm
m that corresponds to a ‘1’ in the output column of

the truth table of the function (a satisfying assignment).
By Lemma 2, a unit substitution w ← w ⊕ a will flip
variable w in m, if m contains the exact form of literal
a. Since the substitution is random and a is a random
literal, w will be flipped with probability 1/2. Thus the
‘1’ corresponding to m will be moved to a neighboring
minterm in the hypercube. We can visualize this by having
a particle (‘1’) placed on a node of the hypercube and
moving this particle in random locations as dictated by
the substitutions. Essentially this corresponds to a lazy
random walk, where the particle is moved to a neighboring
location with probability 1/2. The mixing time of this
walk is bounded by 1

2nlogn + O(n) (see for example
Theorem 18.3 in [35]). Since this is less than the number
of random substitutions (and hence moves) performed by
the obfuscation algorithm, the ‘1’ particle will be moved
to a random location in the n-dimensional hypercube.

One may be tempted to argue that all particles (i.e. all
satisfying assignments of the formula) are randomly dis-
tributed in the hypercube as these particles move in par-
allel with each other. However, this analysis does not
exclude the possibility that particles “move in sync”, thus
they depend on each other.

6.4.1. 2-wise Independence. In the following, we argue
that for any two such particles their symmetric difference
(number of bits they differ) will be binomially distributed.
Hence any two of them will end up in random locations
in the hypercube. For a proof let ∆ be their symmetric
difference and w → w⊕ a a random substitution. Denote
by D the set of positions where these particles are different
(hence |D| = ∆) and by I the positions which are
identical. If a ∈ I then no matter what w is, ∆ will not
change. However, if a ∈ D then with probability ∆−1

n−1 , w
also be in D and ∆ will decrease by 1. Otherwise, with
probability n−∆

n−1 , w will be in I and ∆ will increase by
1. Hence the effect on ∆ is captured by the following
transition probabilities:

P (∆, j) =

 ∆(n−∆)/n(n− 1) if j = ∆+ 1,
∆(∆− 1)/n(n− 1) if j = ∆− 1,
1−∆/n if j = ∆.

(1)
This is exactly the urn experiment described in the proof
of Theorem 9 and ∆ will be binomially distributed (Equa-
tion 6, Appendix A).

Hence the resulting locations of any two parti-
cles/satisfying assignments will be random. Typically, this
would be sufficient for any real life SAT instance as
assignments are hard to find, thus it would be difficult
to show dependency of solutions and break the indis-
tinguishability game. However, it is conceivable that in
artificial examples this might be possible. Hence in the
next section, we describe a more advanced obfuscation
scheme that can be applied to achieve complete k-wise
independence of assignments using a phase of more gen-
eral substitutions.

6.4.2. From 2-wise to k-wise independence. Consider an
input formula whose assignments are located in arbitrary
nodes of the hypercube. We would like to ensure that these
assignments are close to being k-wise independent after
a sufficient number of substitutions. The question is how
many and what type of substitutions are needed.

9



This is equivalent to asking what is the mixing rate
of a random walk on the graph whose nodes consist of
k tuples of distinct n-bit strings, and whose edges are
induced by substitution operations (see also [36] for a
similar approach). We define the δ-closeness of the walk
to be the total variation distance between the distribution
of k-tuples obtained by the random walk as opposed to the
uniform distribution on random k-tuples (see Definition
6). Our main result is given below

Theorem 12. The number of random substitutions re-
quired to make assignments δ-close to k-wise indepen-
dence, where δ ≤ 1, is

O(n log n(log
k2

δ
)).

To determine the mixing rate and show k-wise inde-
pendence, we leverage 2-way independence as in [36].
We denote by T (n, k, δ) the mixing time (number of
steps/substitutions) required to achieve δ-closeness to k-
wise independence. It is known (see for example [35])
that the mixing time satisfies

T (n, k, δ) ≤ log(
1

δ
)T (n, k,

1

4
) (2)

To prove Theorem 12, we will consider three phases of
substitutions. Phase 1 of the obfuscation process consists
of a series of unit-substitutions of length T (n, 2, δ/2k2),
for δ ≤ 1. Hence any two assignments of the obfuscated
formula will be δ

2k2 -close to pairwise independence. Us-
ing Equation (2) and Theorem 9, O(n log n log k2

δ ) unit-
substitutions are sufficient for this. Next, we consider how
we can make any k assignments resulting from Phase 1,
k-wise independent.

Let a = log(2k2/δ) and consider the first a bits of
each assignment. The probability that there exists a pair
of assignments whose first a bits are identical is bounded
by (

k

2

)
· (2−a + δ

2k2
) ≤ k2

2
· ( δ

2k2
+

δ

2k2
) ≤ δ/2.

Hence with probability at least 1 − δ/2, all these k
assignments will differ in their first a bits.

We now begin Phase 2 by performing the following
substitutions:

for i = a+ 1 to n do
Set xi ← xi ⊕mα1

⊕mα2
⊕ · · · ⊕mαt

(3)

where each mαj
is a minterm on the first a variables

appearing with probability 1/2, so on average there are
2a/2 = k2/δ of them in (3). The crucial point is that
since the first a bits of all assignments are different by
Phase 1, the last n− a bits of each assignment will have
uniform distribution. To see why, consider the i-th bit
of an assignment whose first a bits are equal to some
α ∈ {0, 1}n. When we apply the substitution, this bit will
be flipped only if minterm mα appears in (3) (by Lemma
2 the other terms will have no effect on the bit). Since this
happens with probability 1/2, every such bit will assume
a random value independently of all the others.

We end the obfuscation by Phase 3 shown below:
for i = 1 to a do

Set xi ← xi ⊕m′α1
⊕m′α2

⊕ · · · ⊕m′αt
(4)

where again each m′αj
is a minterm on the last a variables

appearing with probability 1/2, so on average there are
2a/2 = k2/δ of them in (4).

As the last n−a bits of each assignment are uniformly
distributed by Phase 2, the probability that the last a bits
are not distinct is bounded by

(
k
2

)
2−a ≤ k2

2
δ

2k2 ≤ δ
4 .

Hence with probability at least 1− δ/2− δ/4 > 1− δ and
using the properties of substitutions as before, the first
a bits will also have a uniform distribution. Thus any k
assignments of the obfuscated function will be δ-close to
be uniformly distributed in [f ]. ■

The algorithm described above has to include a last
flattening (recall Section 5.2) and random walk phase
(Phase 4) as the variables appearing in Equations 3 and
4 have a very special structure and can easily be recov-
ered. However, unless this is done carefully, the resulting
formula size will increase by a factor of Ω(k4 log2 k). To
this end, the following additional transformations need to
be considered.

• In Equation 3, we set xi ← xi ⊕ wi, where each
wi is a new variable equal to yα1

⊕ yα2
⊕ · · · ⊕

yαt
and each yαj

is equal to the corresponding
minterm on the first a variables. Thus at this point,
the obfuscated formula is expanded with n − a
clauses of the form (wi⇐⇒ yα1

⊕yα2
⊕· · ·⊕yαt

)
and another 2a clauses of the form (yαj

⇐⇒mαj
).

• Similarly, in Equation 4, we set xi ← xi ⊕ vi,
where each vi is a new variable equal to y′α1

⊕
y′α2
⊕ · · · ⊕ y′αt

and each y′αj
is equal to the cor-

responding minterm on the last a variables. Thus
the obfuscated formula is expanded with a more
clauses of the form (vi⇐⇒ y′α1

⊕y′α2
⊕· · ·⊕y′αt

)
and another 2a clauses of the form (y′αj

⇐⇒m′αj
).

This results in a formula with C = O(m + k2 log k)
clauses and V = O(m + k2 log k) variables. When flat-
tening and the final set of O(V logV ) unit substitutions
is performed (Phase 4), the size of the formula becomes
O(CV ) due to the creation of XOR groups of size O(V )
each. Hence the running time of the advanced algorithm
becomes O(CV logV ), compared to O(m2logm) of the
basic scheme.

An interesting research question here is whether a
substitution mechanism exists that can eliminate this de-
pendency on k. This would result in an obfuscator that
uniformly distributes the assignments of a formula, irre-
spective of their number.

6.5. Discussion

The results of the previous section suggest that if a
formula f has k assignments, obf(f) will be a random
formula in [f ]. Hence if k is polynomial, the algorithm
remains polynomial as well. At the same time, ensuring
k-wise independence imposes an overhead on the running
time and length of the obfuscated formulas, so one might
ask, what are the benefits of using the more advanced
scheme in practical situations?

Arguably, the benefits are not that many. Outsourcing
a formula f to the cloud makes sense when f is hard,
hence finding even a single satisfying assignment is very
difficult, let alone finding a large number of them in order
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to study dependency of solutions – in this case the expo-
nential behavior of the problem would definitely show up.
Hence, for all real life applications the basic scheme can
be used. Alternatively k can be selected to be constant,
or larger than the expected number of assignments that
can be found by the solver within a reasonable (polyno-
mial) amount of time since enumerating all assignments
is a #P-complete problem and hence intractable. For a
concrete example, consider Alice who wants to factor an
RSA modulus and models this as a SAT instance to be
outsourced. As this instance has only two solutions (the
primes ⟨p, q⟩ or ⟨q, p⟩ that make up N ), the basic scheme
can be used. In conclusion, although other interesting
problems modelled by SAT may not necessarily have a
small total number of satisfying assignments, they can
only have a small number of assignments discovered by
a polynomial time solver.

In the next section, we study the performance of the
basic scheme.

7. Performance

In this section we study the various stages of the obfus-
cation process (Algorithm 1). The validation of theoretical
parameters (length of random walk, symmetric differences
of groups, etc.) can be found in Appendix B. All ex-
periments were performed on an Intel core i7-6700HQ
CPU @ 2.60GHz with 16GB of memory. CryptoMiniSat
[37] was used to compare the solving time between the
obfuscated formula and the original one for the formulas
contained in the SATlib benchmark [38].

Figure 2: Flow of the algorithm

7.1. Time analysis of various stages

In this section we measure the time needed for each
stage of the algorithm to complete. The stages include:
i) pre-processing, ii) flattening, and iii) application of
random unit substitutions. We have used the Satlib bench-
mark [38] which contains the following types of formulas:
(i) Uniform Random (uf ) SAT which consists of 3700
hard satisfiable instances of uniformly generated 3-CNF
formulas with clauses-to-variables ratio near the phase
transition (m/n = 4.25), (ii) Large random (LRAN)
which consists of large uniformly generated formulas at
the phase transition, and (iii) Logistics Planning which
contains instances generated from encoding logistics prob-
lems (scheduling the delivery of packages between loca-
tions without exceeding some cost L) into SAT. Table
1 presents our findings along with the sizes (n,m) and
(n′,m′) of the original and obfuscated formulas, respec-
tively. As it can be seen, formulas with thousands of

variables can be obfuscated. The dominant factor is the
number of unit substitutions which depends on the number
of extra variables introduced due to flattening. Hence a
better method to ensure dissimilarity of initial groups will
have a strong positive impact in the obfuscation process.

7.2. User efficiency

In this section we consider the time required to solve
an obfuscated formula vs. the original formula f . We also
study the time needed to recover the solution to f from
the solution of obf(f).

Here we used CryptoMiniSAT [37], a SAT solver that
is specialized in solving cryptographic problems. It can
accept SAT formulas in ordinary CNF but also formulas
containing XOR relations (which are typical of stream
ciphers – hence its use in breaking cryprographic algo-
rithms). This characteristic of CryptoMiniSAT makes it
ideal in our case as ordinary SAT solvers break down (take
considerable more time) when trying to solve them.4

Table 2 shows a comparison between the time (in ms)
to solve original instances contained in the SAT bench-
mark [38] as opposed to the time needed to solve their
obfuscated variants. We first solved all the instances in
each uf category (each containing hundreds of formulas)
and found the median formula fm to reduce variability
of solving times. Then we obfuscated fm many times
and we depicted the average solving time. The table also
shows the ratio between the two times. There are no
safe conclusions that can be drawn from this as we are
dealing with random formulas and the hardness of both the
original and the obfuscated formulas can clearly influence
solution times. However, we believe that cloud solvers
with lots of computational power can easily handle the
obfuscation times shown. Furthermore, this variability in
solving times is basically caused by the increased number
of clauses and variables in the obfuscated instance. Hence
a better flattening/preprocessing procedure can reduce this
number and thus improve solution time even further. We
leave this as an important future research direction.

Remark 2. Comparing the total time for obfuscation
(preprocessing + flattening + unit subs) in Table 1 with
the time to solve the original formula in Table 2, one
may conclude that the burden on the users for obfuscation
is higher than solving the formulas themselves. Hence
outsourcing seems pointless. However, this conclusion is
erroneous because obfuscation time (and hence outsourc-
ing) is always bounded by a polynomial while solving a

4. Typically, there are two traditional SAT-solving paradigms: i) the
portfolio, and ii) the Divide & Conquer approach. In the portfolio
approach. a collection of SAT solvers is applied in the same instance.
All solvers run in parallel, terminating when one finds a satisfying
assignment. Typical solvers in this category include ManySAT [39],
CryptoMiniSAT, HordeSAT [40], to name a few. D&C solvers on the
other hand, solve an instance by partitioning the search space or by
reducing the original formula into several sub-formulas which then try
to solve in parallel. Example solvers in this category include Cube &
Conquer [41], Paracooba [42], ggSAT [43], etc.

A cloud solver may have developed its own software to solve SAT
instances or use one or more of the techniques mentioned above.
Affording massive parallelism and computing resources may offer an
increased speedup in solving obfuscated instances [14]. Here we are
using CryptoMiniSAT in a single machine with moderate capabilities
which may have an impact on the number of variables (and time) we
can handle to solve obfuscated instances.
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TABLE 1: Problem size and stages analysis (time in ms)

Problem set Preprocessing Flattening Unit subs n m n′ m′ Recovery Verification
uf20 7 0 134 20 91 180 251 2 ≈ 0
uf50 59 1 681 50 218 387 555 13 ≈ 0
uf75 160 2 1308 75 325 556 806 29 ≈ 0
uf100 365 3 2455 100 430 716 1046 60 ≈ 0
uf125 618 4 3882 125 538 885 1298 121 1
uf150 1064 6 5871 150 645 1045 1540 210 1
uf175 1641 9 8544 175 753 1211 1789 317 2
uf200 2486 12 11751 200 860 1368 2028 388 2
uf225 3388 13 15601 225 960 1514 2249 632 3
uf250 4317 15 20800 250 1065 1671 2486 911 4
LRAN-f600 45983 56 105040 600 2550 3773 5723 802 18
LRAN-f1000 215368 219 450880 1000 4250 6164 9414 3774 53
LRAN-f2000 1526537 546 2543397 2000 8500 12116 18616 28699 202
logistics.a 104450 233 2222166 828 6718 12119 18009 12357 55
logistics.b 106509 343 2592536 843 7301 12987 19445 13166 64
logistics.c 407769 491 5999134 1141 10719 19263 28841 39374 146
logistics.d 587699 2327 17564516 4713 21991 34249 51527 551891 977

TABLE 2: Comparison between original and obfuscated
solving times (time in ms)

Problem set Original Obfuscated Ratio
uf20 ≈ 0 72 -
uf50 ≈ 0 531.5 -
uf75 ≈ 0 1134.5 -
uf100 ≈ 0 2388 -
uf125 12 4440 370
uf150 49 8126.5 166
uf175 216.5 13826.5 64
uf200 259.5 17051.5 66
uf225 2905 57885.5 20
uf250 1356.5 753723 556

SAT formula depends on the hardness of the particular
instance and may require exponential time in the worst
case. Furthermore, the obfuscation time can be dropped
using a better prepossessing or flattening phase, thus
reducing considerably the number of random substitutions
required.

Next, we consider the time needed to completely
recover the solutions of the original formulas from the
solutions of the obfuscated ones (De-obfuscation). The
time is broken down into the following parts:

• Recovery, which denotes the time needed to re-
cover the values of the original variables. This
is done by reversing the unit substitution steps
and expressing each variable as the XOR of the
obfuscated ones.

• Solution verification, which denotes the time
needed to verify the validity of the recovered
solution.

The time needed for each part is presented in the
last two columns of Table 1, measured in milliseconds.
Recovery time is bounded by O(n2) as each variable is the
XOR of O(n) other variables while that for verification is
O(m). We should stress here that both recovery time and
solution verification are independent of the hardness of
the formula, they require polynomial time in the number
of variables and clauses, and thus can easily be handled

by user machines. This further shows the practicality of
our approach.

8. Comparison with VBB Obfuscation [20]

We conclude this work by attempting a comparison
with the framework developed by Bartusek et al. [20] for
obfuscating conjunctions. A conjunction is any Boolean
function f(x1, . . . , xn) =

∧
i∈S li, for some S ⊆ [n],

where each li can be xi or x̄i. This is similar to looking
for an input string x ∈ {0, 1}n that matches a pattern
pat ∈ {0, 1, ⋆}n in all non-wildcard positions (⋆ denotes
a wild-card). For example x = 1010 matches pat = ⋆01⋆
but not pat = 1⋆⋆1. This problem has interesting appli-
cations in hiding secrets inside programs and the authors
were able to guarantee distributional virtual black-box ob-
fuscation (VBB). However, as was demonstrated in [21],
implementation under Entropic Ring LWE of the work
in [44] is not straightforward. Securely obfuscating 64-bit
conjunction programs required major design and system-
level advances and many hours of processing, resulting in
obfuscated program sizes of about 750GB.

Unfortunately, conjunction obfuscation is not inter-
esting from an outsourcing/satisfiability point of view
which is the focus of this work. Given a function
f(x1, . . . , xn) =

∧
i∈S li, it is straightforward to find a

satisfying assignment, hence there is no need for out-
sourcing f to a cloud solver. Furthermore, it would not be
secure for the reasons explained in Section 3.3. However,
for the purpose of exposition we will describe how con-
junctions can be outsourced in a way that the underlying
pattern can only be discovered with negligible probability.
Hence, in this case we will consider obfuscation to be
broken if the indices of the literals or the positions of the
wildcards are discovered by an attacker.

In the following, we will adapt the mechanisms (unit
substitutions and flattening) we developed for general 3-
SAT formulas for the case of simple conjunctions. So,
let f = xi1 . . . xik , where k is the number of variables
appearing in the conjunction (wlog assume these are not
negated) and n − k is the number of wildcards. Let’s
consider first the extreme case where f = xi1 .
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After applying unit substitutions, f will be obfuscated
to a single XOR group g, which hides the original variable.
Unfortunately, this is not enough as we can just guess the
index of the original variable with probability 1/n. This
improves if the number k of variables appearing in the
conjunction increases, however our goal is to make this
independent of k. Another source of leakage is the number
of satisfying assignments. As our framework maintains the
number of assignments between the original formula and
the obfuscated one, a solver that discovers all assignments
can immediately deduce the number of wildcards in the
conjunction.

Now consider the general case f = xi1 . . . xik . We will
show how to obfuscate this by a series of transformations
as follows:

f = xi1 ...xik

= (xi1 + xi1)...(xik + xik)(xj1 + x̄j1)...(xjn−k
+ x̄jn−k

)

where in the second step we substituted each xil with
a clause (xil + xil) and introduced extra clauses for the
missing variables xij . Now we can apply flattening to
rename the second occurrence of each variable. Thus f
becomes

f = (xi1 + ui1)...(xik + uik)(xj1 + ūj1)...(xjn−k
+ ūjn−k

)

(x1 ⊕ ū1)...(xn ⊕ ūn)

Once we apply unit substitutions, all groups will be
different (recall Lemma 8) and will be binomially dis-
tributed irrespective of the starting variable. Furthermore,
the obfuscated formula will consist of 2n clauses, n of
which are single groups and another n are clauses of
two groups ORed together. Thus no information can be
deduced from the structure of f about the indices of the
original variables. Notice, however, that the number of
assignments is still 2n−k (despite the addition of new
variables). Assuming that a malicious solver can discover
all of them in time significantly less than O(2n−k), the
probability of deducing the original variables becomes
1/
(
n
k

)
.

The final corrective step is to add some extra clauses
on new variables so that the number of assignments is
independent of k. The clauses to be added will be equal
to

yj1 . . . yjn−k
(yi1 + ȳi1) . . . (yik + ȳik),

thus the number of satisfying assignments will be multi-
plied by 2k, for a total of 2n. Flattening the new variables,
we obtain the final obfuscated formula:

(xi1 + ui1) . . . (xik + uik)(xj1 + ūj1) . . . (xjn−k
+ ūjn−k

)

(yj1 + vj1) . . . (yjn−k
+ vjn−k

)(yi1 + v̄i1) . . . (yik + v̄ik)

(x1 ⊕ ū1)...(xn ⊕ ūn)

(y1 ⊕ v̄1) . . . (yn ⊕ ȳn)

Once we apply unit substitutions, all groups will be
different and randomly distributed, the obfuscated formula
will consist of 4n clauses (2n single groups and another
2n groups of two), and the total number of assignments
will be 2n. As there is no dependency on k any more,
the probability of guessing the indices of the original
variables is the same as picking a random subset out of

n elements (but not the empty set). Thus the probability
of a successful attack is

1

(2n − 1)
.

This analysis shows that our conjunction obfuscation
does not require the pattern to have high entropy to be
secure as is the case for the VBB obfuscators.

9. Conclusions

Outsourcing SAT computations to cloud solvers is
necessary in order to deal with the complexity of real
world problems modeled by large SAT formulas. How-
ever, naive outsourcing may leak sensitive information and
put the user’s data at risk. Existing techniques based on
program obfuscation primitives [44] have an extremely
large overhead hence they are not considered practical.
Furthermore they are not suitable for outsourcing (see also
previous discussion).

In this work we presented a formal framework to
obfuscate SAT formulas prior to outsourcing them to the
cloud. At the heart of our approach lies a random walk in
the space of solutions which is implemented with simple
logical operations on Boolean formulas. The rapid mixing
of the random walk ensures the polynomial character of
our framework and the creation of obfuscated formulas
that are within a factor m of the original ones. Most
importantly, our framework, which resembles Indistin-
guishability Obfuscation, maintains satisfiability and guar-
antees that obfuscated formulas remain indistinguishable
and secure against de-obfuscation attacks without relying
on any hard problem or cryptographic assumption.

Experimental evaluation shows that the overhead
added by our SAT obfuscator is within the practical
abilities of cloud solvers while recovering the original
solution from the obfuscated one is a very simple and
straightforward process. An important consequence of our
work is that all problems in NP can be outsourced to the
cloud by way of reducing to SAT. This further ensures the
usefulness and wide applicability of our approach.
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Appendix A.
Proof of mixing time – Theorem 9

Recall that each group inside a clause can be rep-
resented with a (n + 1)-bit vector, where a single bit
corresponds to a complement operation while the rest
correspond to the n variables of the formula. As the
complement bit can be set independently in the end of
the substitution process, here we will concentrate on the
n remaining bits.

The substitution procedure can be thought as a walk
in a n-dimensional hypercube whose nodes are tuples in
{0, 1}n. Two such nodes are connected by an edge if they
differ in exactly one coordinate. A substitution x← x⊕a,
where both x, a are single variables, moves from a node
{x1, . . . , xj , . . . , xn} to {x1, . . . , 1 − xj , . . . , xn}, iff the
bit corresponding to x is already set and xj = a (this is
equivalent to testing if x is present in the group and then
flipping the bit corresponding to a). Our goal next is to
analyze such a walk. In particular, we want to answer the
question: how many steps (substitutions) are needed in
order to end up in a random node (XOR group) starting
from any initial node (XOR group) in the hypercube?

We now consider a process (a variant of the Ehrenfest
urn) which appears quite different from the above walk.
Suppose n numbered balls are distributed between two
urns, 1 and 0, where Urn 1 is never allowed to become
empty. At each move, a ball is selected uniformly at
random. If the ball belongs to Urn 1 then we pick one of
the remaining n− 1 balls and transfer it from its current
urn to the other urn. If Wt is the number of balls in Urn
1 at time t, then the (single step) transition probability
matrix for Wt is given by

PW (i, j) =

i(n− i)/n(n− 1) if j = i+ 1,
i(i− 1)/n(n− 1) if j = i− 1,
1− i/n if j = i.

(5)

This process captures the mechanics of substitutions. Con-
sider for example a node in the hypercube consisting of i
ones (i.e. i of the variables have been set). A random
substitution x ← x ⊕ a will force a move to a node
with i + 1 ones if x is one of the i variables already set
(probability i/n) and a is one of the remaining variables
(probability (n− i)/(n− 1)). Similarly, a move to a node
with i−1 ones will take place if a is one of i−1 variables
that have already been set (x is excluded because the
substitution x ← x ⊕ a, for a = x, is not allowed as
this would eliminate variables in a clause).

Thus Wt is a Markov chain with state space
{1, 2, . . . , n} that either moves by ±1 or stays put ac-
cording to probabilities PW (i, j). The distribution of balls
after t moves, where t → ∞, is called the stationary
distribution πW and satisfies the equation πW = πWP .

As it turns out, the stationary distribution for the above
chain is binomial and is given by the expression

πW (i) =

(
n
i

)
2n − 1

. (6)

The urn chain is essentially a projection of the hypercube
random walk on the numbers {1, 2, . . . , n}. This is un-
surprising given the standard bijection between {0, 1}n
and subsets of a set with n elements. The term 2n − 1 in
the denominator simply accounts for the fact that we are
never allowed to visit node {0, 0, . . . , 0} in the hypercube
as this would result in an empty group.

Checking whether Equation 6 satisfies πW = πWP is
cumbersome, however it is enough to verify whether πW

satisfies the detailed balance equations

πW (i)PW (i, j) = πW (j)PW (j, i), ∀i, j ∈ {1, 2 . . . , n}

as it is known that any distribution satisfying the balance
equations is stationary for PW (see for example Proposi-
tion 1.20 from [35]). This is clearly the case here hence
πW is stationary.

Our goal in the following would be to quantify exactly
the number of steps t required for the hypercube random
walk to converge to its stationary distribution. It turns out
that all we have to do is study the same question for the
Wt Markov chain. If Xt = {xt

1, . . . , x
t
n} is the position

of the random walk in the hypercube at time t then set
Wt =

∑n
i=1 x

t
i equal to the Hamming weight W (Xt) of

the vector Xt. Clearly, this is the Markov chain defined
on the urns. The bijection between numbered balls and
n-bit vectors allows us to reduce the study of Xt to the
study of Wt. Hence bounding the maximal distance d(t)
between the t-step probability distribution P t

W and πW

(the stationary distribution of Wt) is our primary objective.

Definition 6. The total variation distance between two
distributions µ, ν on space X is given by

||µ− ν||TV =
1

2

∑
x∈X

|µ(x)− ν(x)| (7)

We define d(t) = ||P t
W−πW ||TV as the total variation

distance between the two distributions on the urn, and the
mixing time tmix as

τmix := mint{d(t) < ϵ}, (8)

for some constant ϵ (typically ϵ = 1/4). The following
lemma explains why the study of the hypercube walk
can be reduced to the study of the urn chain: the t-step
distributions of both have the same variation distance.

Lemma 13. Let Xt = {xt
1, . . . , x

t
n} be the position of the

random walk in the hypercube at time t, and let Wt =∑n
i=1 x

t
i. Then

||P t
H,1 − πH ||TV = ||P t

W,n − πW ||TV ,

where P t
H,1 denotes the t-step distribution the hypercube

starting from a vertex with all ones, and P t
W,n denotes the

t-step distribution of the urn chain starting with all the
balls in Urn 1.
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Proof.

||P t
H,1 − πH ||TV =

1

2

∑
x

|P t
H,1(x)− πH(x)|

=
1

2

∑
w

∑
x

W (x)=w

|P t
H,1(x)− πH(x)|

=
1

2

∑
w

∣∣∣∣∣∣∣
∑
x

W (x)=w

P t
H,1(x)− πH(x)

∣∣∣∣∣∣∣
=

1

2

∑
w

|P t
W,n(w)− πW |

= ||P t
W,n − πW ||TV

■

In a recent result, Ben-Hamu and Peres [45] have
studied a different walk on the hypercube whose transition
probability exhibits the same behavior as W (t). They
were able to show that the chain Wt exhibits a sharp
cutoff at 3

2nlogn with a window of O(n). This means
that τmix is bounded by 3

2nlogn+O(n). Combining this
with Lemma 13, we conclude that the hypercube walk
converges to stationarity equally fast. Hence, the number
of unit-substitutions required in order to obtain a random
group is bounded by 3

2nlogn+O(n).
Experimental validation of this theoretical result is

demonstrated in Appendix B.

Appendix B.
Experimental validation of theoretical pa-
rameters

In Theorem 9, we have established that the number of
substitutions required is 3

2nlogn + O(n). In this section,
we start by first validating the length of the random walk
then we study the effects of flattening and preprocessing
as applied to SAT formulas of [38].

B.1. Length of random walk

An alternative characterization of the mixing time in
a hypercube is the first time when all coordinates have
been updated. In our case this translates to starting with
a group of size 1 and performing N unit substitutions
until all group positions have been updated. Our goal is to
show that N matches the theoretical value 3

2nlogn+O(n)
determined in Theorem 9.

This is depicted in Figure 3. For all values of n =
1000 to 30000, we started with a group of size 1 and
we marked the first time all group positions have been
updated through a unit substitution. This corresponds to
a strong stationary time which constitutes a bound on the
mixing time of the random walk [35]. As it can be seen
in the figure, the result of the experiment matches the
theoretical result 3

2nlogn + O(n) found in Theorem 9.
The value of the constant hidden in the linear term was
also found experimentally to be approximately equal to
11. Hence, in all experiments, the length of the random
walk was set to 3

2nlogn+11n, where n is the number of
variables in the formula.

Figure 3: Validating length of random walk.

Figure 4: Distribution of symmetric differences

B.2. Expected difference of random groups

In this experiment we used the value N determined
in the previous experiment and computed the symmetric
difference at the end of the random walk. The results
validate the conclusions drawn in Lemma 8 and can be
seen in Figure 4.

For each value of n = 100, 200, . . . , 500, we generated
two random groups with ∆ = 1 and applied 3

2nlogn+11n
random unit substitutions. Each experiment was repeated
1000 times to increase the confidence of the results. The
horizontal axis shows the symmetric difference at the end
of the random walk, while the vertical axis shows the
count of pairs with the same symmetric difference. As it
can be seen in the figure, the distribution of the symmetric
difference follows a binomial distribution with mean n/2
which matches the result of Lemma 8.

B.3. Pre-processing to reduce number of extra
variables and clauses

In this experiment we ran the pre-processing method
described in Section 5.2.1. Recall that the goal of pre-
processing is to create as many as possible initial groups
that are different in order to minimize the number of extra
variables used in flattening. As a benchmark, we used the
set of satisfiable uniform random (uf) 3-SAT instances
found in [38]. The results are displayed in Figure 5. Recall
that the total number of groups that can be generated in
a 3-CNF formula is at most 3m, where m is the number
of clauses in the formula.

Figure 5 shows that the total number of variables is
reduced by an average of 55% if the pre-processing stage
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Figure 5: Variables added in random formulas after apply-
ing the flattening stage with and without pre-processing.

is applied. If not (i.e only flattening is used), the number
of variables is maximized to 3m.
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