
1

Deciding and reconstructing linear equivalence of
uniformly distributed functions

Ivana Ivkovic and Nikolay Kaleyski

Department of Informatics, University of Bergen
(ivana.ivkovic@student.uib.no, nikolay.kaleyski@uib.no)

Abstract

We describe an efficient algorithm for testing and recovering linear equivalence between a pair of k-to-1 discrete functions
with a specific structure. In particular, for k = 3 this applies to many APN functions over fields of even characteristic, and for
k = 2 this applies to all known planar functions over fields of odd characteristic. Our approach is significantly faster than all
known methods for testing equivalence, and allows linear equivalence to be tested in practice for dimensions much higher than
what has been possible before (for instance, we can efficiently test equivalence for n = 12 or n = 14 in the case of 3-to-1
APN functions over F2n , and for n = 8 or n = 9 in the case of 2-to-1 planar functions over F3n within a few minutes even
in the worst case). We also develop supplementary algorithms allowing our approach to be extended to the more general case
of EA-equivalence. Classifying 3-to-1 APN functions over F2n for dimensions as high as n = 14 up to EA-equivalence can be
performed in a matter of minutes using the developed framework.

We introduce the notion of left and right self-equivalence orbits, explain how it can be used to reduce the computation time for
testing equivalence even further, and provide an algorithm for efficiently partitioning the finite field Fpn into orbit representatives
with respect to a given function. We observe that this approach is most useful in the case of 2-to-1 planar functions, and compute
the orbit partitions for representatives from all known CCZ-classes of 2-to-1 planar functions over F3n for n ≤ 6. We also
demonstrate that the orbit structure induced by a given function is invariant under linear equivalence, and that it can be used as
an invariant to distinguish inequivalent planar functions over F3n more efficiently than all other known invariants.

Using the developed algorithms, we classify all known 3-to-1 quadratic APN functions over F212 up to CCZ-equivalence.
Such a classification was only known for F2n with n ≤ 10 before, since it was impossible to test functions over F212 for
equivalence using the existing methods. Based on the computations needed to perform this classification, we provide a summary
of the observed running times, showing that our approach is significantly more efficient than all previously known methods.

I. INTRODUCTION

Let p be a prime number and n be a positive integer; we denote by Fpn the finite field with pn elements. An (n,m, p)-
function, or discrete function, is a mapping from the vector space Fnp to the vector space Fmp , where n and m are positive
integers. Since the vector space Fnp can be identified with the finite field Fpn , we can also see (n,m, p)-functions as mappings
from the finite field Fpn to the finite field Fpm .

In the particular case when p = 2, we refer to (n,m, 2)-functions simply as (n,m)-functions, or as vectorial Boolean
functions. When, in addition, m = 1, (n, 1)-functions are called Boolean functions. Since any element of Fn2 or, equivalently,
F2n , can be seen as a binary string on n bits, any operation on any kind of data can be represented as an (n,m)-function
for an appropriate choice of n and m. This is why vectorial Boolean functions naturally appear in many contexts within
computer science, applied mathematics, and related areas. In particular, vectorial Boolean functions are used extensively in
symmetric cryptography: virtually all modern block ciphers, for instance, incorporate vectorial Boolean functions (under the
name S-boxes) as fundamental building blocks in their design, and the security and efficiency of the resulting algorithm directly
depends on the properties of the underlying functions. Classes of cryptographically optimal functions (such as APN functions
or AB functions) also correspond to important objects in other areas of mathematics and computer science (e.g. linear codes or
combinatorial designs). The study of cryptographically strong (n,m)-functions is thus not only of practical importance for the
construction of secure and reliable cryptosystems, but is also of interest from the point of view of other areas and disciplines.
For more details on vectorial Boolean functions and their applications in cryptography and other areas, we refer the reader to
the recent monograph [13].

In the case of odd characteristic, (n,m, p)-functions are also of significant practical and theoretical interest, although their
connection to cryptography is perhaps somewhat less known than in the case of Boolean functions. The connections to other
structures and objects is, on the contrary, more clearly evinced in the case of (n,m, p)-functions, where the correspondence
between cryptographically optimal planar functions and commutative semifields was utilized in [9] to construct the first infinite
family of commutative semifields over Fpn for any odd characteristic p since the early 50’s. We refer the reader to the survey
[26] for more details on planar functions.

We remark that one of the most important and well-studied cases of (n,m, p)-functions is when n = m, i.e. when the
domain and codomain of the functions are the same. For one, this is due to the fact that replacing a sequence of digits with
another sequence of the same length is arguably the most natural case in the context of cryptography; for another, in the
case when n = m, the (n,m, p)-functions have a very convenient representation as polynomials over Fpn that can be used to
understand their properties and obtain mathematical and computational constructions of such functions.

2

The above considerations have resulted in a pronounced interest in finding new instances of cryptographically strong discrete
functions and investigating their properties. A significant issue in these investigations is the very large number of discrete
functions: it is easy to see that there are (pm)p

n

(n,m, p)-functions, and even for relatively small values of n, m, and p this
number becomes prohibitively large. For this reason, (n,m, p)-functions are considered up to some appropriate equivalence
relation that preserves the properties of interest. For instance, the class of APN functions is typically studied up to a relation
called CCZ-equivalence, since CCZ-equivalence leaves the property of being APN invariant, i.e. if F and G are CCZ-equivalent
discrete functions, then F is APN if and only if G is APN.

While the approach of considering discrete functions up to equivalence significantly reduces the number of instances that
have to be considered and makes their study and classification manageable, it introduces other problems; namely, the issue
of deciding whether two given functions are equivalent. For instance, a newly discovered APN function is only considered
to be genuinely new if it is not CCZ-equivalent to any of the currently known ones. Thus, showing that two functions are
inequivalent is a crucial part of any new construction of discrete functions. Conversely, equivalence relations can be used
constructively to obtain simpler representations of functions, or functions possessing other desirable properties; perhaps most
famously, CCZ-equivalence was used in this way to construct the only known instance of an APN permutation on an even
number of bits [5]. Similarly, constructions or properties that are difficult to observe for some particular function may be more
tractable for a different function that is equivalent to it. For this reason, it is often useful not only to decide whether two
functions are equivalent or not, but to reconstruct the exact form of this equivalence.

Unfortunately, while the definitions of most equivalence relations used in practice are simple, testing the equivalence between
two given functions turns out to be a very difficult computational problem. At the moment, the only known way of efficiently
testing CCZ-equivalence for an arbitrary pair of functions F,G is via the equivalence of linear codes [19]. This approach has
many disadvantages, including a high time and memory complexity, and the possibility to get false negatives.

In the case of certain classes of functions, CCZ-equivalence reduces to simpler equivalence relations, such as EA-equivalence,
affine equivalence and linear equivalence. This is the case for e.g. quadratic APN functions (where it is enough to consider
EA-equivalence), planar functions (where it is enough to consider affine equivalence), and quadratic planar functions (where
it suffices to consider linear equivalence). Unfortunately, no efficient algorithms (besides a similar approach based on linear
codes, which has the same shortcomings as the one for CCZ-equivalence) are known for testing these relations in the general
case either. At present, we know of one algorithm for testing EA-equivalence between quadratic (n,m)-functions [12], and
one algorithm for testing EA-equivalence between any pair of (n,m)-functions (regardless of their degree), which however is
not efficient for some particular classes of functions (such as permutations and AB functions). Computational approaches for
resolving some particular cases of EA-equivalence have been considered [11], [25] but these assume that we already have some
information about the tentative equivalence between the given functions, or that we can restrict the form of this equivalence.
Similarly, there is an algorithm for testing affine equivalence and linear equivalence [3] between permutations, but to the best
of our knowledge there is no efficient way of doing this for non-bijective functions.

Recall that an (n, n, p)-function F is called k-to-1 if every non-zero element in its image set has precisely k pre-images.
In this paper, we consider a subclass of k-to-1 functions that obey a particular structural property, namely that there is set of
elements U ⊆ F∗pn such that F (ux) = F (u′x) for any u, u′ ∈ U and any x ∈ Fpn . We will refer to such functions as uniformly
distributed. We can readily observe that many important classes of cryptographically optimal functions have this property: in
particular, most of the known infinite families of quadratic APN functions are 3-to-1 with U = F∗22 ; and all known planar
functions, are 2-to-1 functions with U = {±1}. Being able to efficiently decide equivalence for these two specific cases is a
matter of significant practical importance.

We present an efficient algorithm for testing and reconstructing the linear equivalence between a pair of uniformly distributed
functions F and G. In a certain sense, this approach can be seen as a generalization of the method from [3] for testing linear
and affine equivalence between 1-to-1 functions. Our approach is significantly faster than all existing methods, and can be
easily implemented in any general purpose programming language since it does not require anything more complicated than
basic arithmetic. The memory consumption is negligible, which allows it to be used with (n, n, p)-functions with values of n
much higher than what has been possible before. We also provide auxiliary algorithms that can be used to extend the test of
linear equivalence to a test of affine equivalence and EA-equivalence, and that allow to check whether a given (n, n)-function
that is not 3-to-1 is EA-equivalent to a 3-to-1 function. Together with the ortho-derivatives from [12] used as an invariant, this
becomes the fastest method known to date for deciding and recovering EA-equivalence for quadratic 3-to-1 APN functions,
and for quadratic planar functions.

The paper is organized as follows. In Section II, we present the background and preliminaries for the following discussion.
In Section III, we present our main algorithm for testing linear equivalence between a given pair of uniformly distributed k-to-1
functions. In Section IV, we describe the auxiliary algorithms allowing us to extend Algorithm 1 to a test for EA-equivalence in
the case when one of the function is not necessarily uniformly distributed, or not necessarily 3-to-1. In Section V, we introduce
the notion of “orbits” corresponding to a given function, and describe how partitioning the finite field into orbits can be used
to speed up equivalence tests, especially in the negative case (when the tested functions are inequivalent). We demonstrate that
the structure of the orbits is invariant under linear equivalence, and can be used to distinguish between CCZ-inequivalent planar
functions more efficiently than the currently known invariants. We also describe a procedure for computing the orbits, and list

3

orbit representatives for instances from the CCZ-classes of all known planar functions over F3n for 3 ≤ n ≤ 6. In Section VI,
we describe some technical details of our implementation, and give some sample running times illustrating the efficiency of
our algorithms. As an application, in Section VII, we classify all known uniformly distributed quadratic 3-to-1 APN functions
over F212 up to CCZ-equivalence; without Algorithm 1, this would have been impossible to do since the previously known
methods for testing equivalence are not efficient enough in terms of time and memory. Finally, in Section VIII, we give some
concluding remarks and discuss possible directions for future work.

II. PRELIMINARIES

Let N = {1, 2, . . . } be the set of natural numbers, Z = {. . . ,−2,−1, 0, 1, 2, . . . } be the set of all integers, and C be the
field of complex numbers. Let p be a prime, and n ∈ N be a positive integer. We denote by Fpn the finite field with pn

elements, and by Fnp the vector space of degree n over the prime field Fp. The multiplicative group of Fpn is denoted by F∗pn .
More generally, given a set S, we will denote by S∗ the subset of non-zero elements S∗ = S \ {0}.

For any prime p and m,n ∈ N with m | n, we denote the trace from Fpn onto Fpm by

Trnm(x) =

n/m−1∑
i=0

xp
mi

;

we will write Trn as shorthand for the absolute trace Trn1 , and sometimes simply Tr if the dimension is understood from the
context.

For any set S, we denote by #S the cardinality of S, while |s| will be used for the absolute value of a number s. In
addition to sets, we will consider multisets which, intuitively, are sets whose elements can appear multiple times (in contrast
to the ordinary notion of a set, which either contains some given element or does not). The multiplicity of an element s in a
multiset M is the number of times that s occurs in M . We note that a multiset can formally be defined as a pair (S, µ) of
a set S and a map µ : S → N giving the multiplicity of each element in S, but we do not consider it necessary to take this
more formal approach here. When expressing multisets, we will write them in square brackets in order to differentiate them
from ordinary sets; for instance, [a, b, a, a, c] denotes the multiset containing the element a three times, the element b once
and the element c once. We will also sometimes write [a3, b, c] as shorthand for this multiset (giving the multiplicities of the
elements in superscript).

A. Vectorial functions and their representations

Let n and m be natural numbers. Any mapping from Fnp to Fmp is called an (n,m,p)-function, or a discrete function.
When p = 2, we call a mapping from F2n to F2m an (n,m)-function, or a vectorial Boolean function. When, in addition,
m = 1, we refer to (n, 1)-functions as Boolean functions. Note that any (n,m, p)-function F can be represented as a vector
F = (f1, f2, . . . , fm) of m (n, 1, p)-functions f1, f2, . . . , fm : Fnp → Fp; the functions f1, f2, . . . , fn are then called the
coordinate functions of F . The non-zero linear combinations of the coordinate functions are called the component functions
of F . Thus, every coordinate function is a component function but not vice-versa.

The image set of an (n,m, p)-function F is the set Im(F) = {F (x) : x ∈ Fnp}. The preimage set of y ∈ Im(F) is the set
F−1(y) = {x ∈ Fnp : F (x) = y}. We say that F is a k-to-1 function if F (0) = 0 and #F−1(y) = k for every 0 6= y ∈ Im(F).
We say that an (n, n, p)-function F is a permutation of Fnp if #Im(F) = 2n, i.e. if F is a 1-to-1 function.

Discrete functions are most often represented by truth tables, polynomials in n variables or univariate polynomials. The truth
table (TT), or look-up table (LUT), is the simplest possible representation: the TT is simply a list of all the values F (x)
for all possible inputs x ∈ Fnp . This representation is very easy to implement, and evaluating the function (that is, computing
F (x) given x ∈ Fpn) amounts to simply indexing the array representing the TT, which is a very fast operation. The TT does
have some drawbacks, however, such as a memory consumption that grows very quickly with n and m, and the difficulty of
observing structural properties and patterns directly from the TT. For this reason, polynomial representations such as the ANF
or the univariate representation are frequently used in the literature in lieu of the TT.

The algebraic normal form (ANF) of an (n,m, p)-function F is the polynomial in n variables over Fmp

F (x1, x2, . . . , xn) =
∑

I⊆P({1,2,...,n})

aI
∏
i∈I

xi,

where P({1, 2, . . . , n}) is the power set of {1, 2, . . . , n}, and aI ∈ Fmp for all I ⊆ P({1, 2, . . . , n}). The ANF of any (n,m, p)-
function always exists, and is uniquely defined. While the ANF can have up to pn non-zero coefficients, and so does not have
to be more compact than the TT in general, it does allow many (n,m, p)-functions to be represented in a more concise way
when the majority of the coefficients are equal to zero (and so do not have to be explicitly written). This comes at the cost of
performance, since computing F (x) for some given x ∈ Fnp now requires a series of arithmetic operations to be performed.
Nonetheless, this trade-off is usually desirable, especially in the case of (n,m, p)-functions for large values of n and m, where
storing the entire TT of the function in memory would be problematic. Perhaps more importantly, the ANF allows us to define

4

structural properties such as the algebraic degree. The algebraic degree deg(F) of a function F is defined as the degree of
the ANF of F as a multivariate polynomial. The algebraic degree is significant both in the cryptographic sense, as a property
indicating resilience to higher-order differential attacks [18], [23], as well as a structural property defining classes of discrete
functions. In particular, we define the affine functions as the (n,m, p)-functions F with deg(F) ≤ 1. The linear functions are
those affine functions F for which F (0) = 0, i.e. that have a zero constant term. Much as the name suggests, an affine function
A satisfies A(x+y+z) = A(x)+A(y)+A(z) for any x, y, z ∈ Fnp , while a linear function L satisfies L(x+y) = L(x)+L(y)
for any x, y ∈ Fnp . Other important classes of functions include the quadratic and cubic functions that are defined as those or
which deg(F) = 2 and deg(F) = 3, respectively.

When n = m, it is possible to represent (n,m, p)-functions as polynomials over Fpn . The univariate representation of
F : Fpn → Fpn is the polynomial

F (x) =

pn−1∑
i=0

cix
i,

where ci ∈ Fpn for i = 1, 2, . . . , 2n−1. Any (n, n, p)-function has a unique univariate representation. We note that the univariate
representation can be generalized to (n,m, p)-functions with m | n, although in this case some additional restrictions need to
be imposed on the polynomial in order to guarantee uniqueness.

There are also other representations of discrete functions, especially vectorial Boolean functions [29], [31], [32], [28] that
are of limited interest to the present study. We refer the reader to [13] for a detailed discussion.

B. Derivatives of vectorial Boolean functions
The derivative of an (n,m, p)-function F in direction a ∈ Fpn is the function DaF (x) = F (a + x) − F (a). A related

function is ∆aF (x) = F (a + x) − F (x) − F (a) + F (0), which is referred to as a symplectic form when F is quadratic.
Cryptographic properties such as the differential uniformity of F , as well as it being APN or planar, can be equivalently
defined using DaF and ∆aF . The latter is sometimes more convenient since it always has zero constant term, and since it is
symmetric in a and x. In particular, if F is quadratic (which is by far the most frequently encountered case in the study of
i.a. planar and APN functions), then ∆aF is linear.

Let δF (a, b) denote the number of solutions x ∈ Fnp to the equation DaF (x) = b for some a ∈ Fn2 , b ∈ Fm2 , i.e.

δF (a, b) = #{x ∈ Fnp : DaF (x) = b}.
The differential uniformity of F is then defined as

δF = max{δF (a, b) : 0 6= a ∈ Fnp , b ∈ Fnp}.
The multiset [δF (a, b) : a, b ∈ Fpn , a 6= 0] of all values of δF (a, b) is called the differential spectrum of F .

The larger the value of δF , the more vulnerable F is to differential cryptanalysis [2], which is one of the most efficient
cryptanalytic attacks known to date against block ciphers. Cryptographically strong functions should therefore have a value
of δF that is as low as possible. The functions possessing the optimal value δF = 1 are called perfect nonlinear (PN), or
planar. Unfortunately, PN functions exist only in the case of odd p since when p = 2 we have DaF (x) = DaF (a+x) for any
a, x ∈ F2n , and so the differential uniformity is always even. If δF = 2, we say that F is almost perfect nonlinear (APN),
which is the optimal case for even characteristic.

The differential set HaF of an (n,m)-function F in direction a ∈ Fn2 is simply the image set of the derivative DaF , that
is

HaF = Im(DaF) = {DaF (x) : x ∈ Fnp}.
We can easily see that F is PN if and only if HaF = Fpn for every a ∈ F∗pn ; and that F is APN if and only if #HaF = 2n−1

for every a ∈ F∗2n . In particular, a function is PN if and only if all of its derivatives DaF for a ∈ F∗pn are permutations.

C. The Walsh transform
The Walsh transform of an (n,m, p)-function F is the function WF : Fnp × Fmp → C defined by

WF (a, b) =
∑
x∈Fn

2

ζb·F (x)+a·x,

where “·” is a scalar product1 on Fmp and Fnp , respectively (the dimension being understood from the context), and ζ ∈ C is a
p-th root of unity. When n = m, the Walsh transform WF : F2

pn → C of an (n, n, p)-function F can equivalently be written
as

WF (a, b) =
∑
x∈F2n

χ(bF (x) + ax),

1A scalar product on Fn
p is a symmetric bivariate function on Fn

p such that x 7→ a ·x is a non-zero linear form for any 0 6= a ∈ Fn
p . Using the identification

of the vector space Fn
p with the finite field Fpn , this is typically defined as x · y = Tr(xy), with the product xy being computed in the finite field Fpn , and

then mapped to Fp via the absolute trace function.

5

where χ : Fpn → C is the canonical additive character of Fpn defined by χ(x) = ζTr(x). The values of the Walsh transform
WF are called the Walsh coefficients of F . The multiset of all Walsh coefficients is called the Walsh spectrum of F ; and
the multiset of their absolute values is called the extended Walsh spectrum of F and denoted by WF ; symbolically:

WF = [|WF (a, b)| : a ∈ Fnp , b ∈ Fmp].

The Walsh transform is known to be invertible, i.e. knowing the values WF (a, b) for all a and b allows us to uniquely
reconstruct the function F . In this way, WF can be seen as yet another possible representation of (n,m, p)-functions.
Furthermore, many important properties of discrete functions, including their differential uniformity, can be characterized using
the values of their Walsh transform. The extended Walsh spectrum is also a well-known invariant under CCZ-equivalence, and
can be used to distinguish between inequivalent functions; the approach of computing the differential spectra of two quadratic
APN functions has been shown to be particularly effective for demonstrating their inequivalence [12].

D. Equivalence relations

CCZ-equivalence [14], or Carlet-Charpin-Zinoviev equivalence, is the most general known equivalence relation that preserves
the differential uniformity. For this reason, APN functions and planar functions, among others, are classified up to CCZ-
equivalence.

The graph ΓF of an (n,m, p)-function F is the set ΓF = {(x, F (x)) : x ∈ Fnp} ⊆ Fnp ×Fmp . Note that the set Fnp ×Fmp can
be naturally identified with Fn+mp , and so the set of pairs ΓF can be seen as a set of elements from Fn+mp . If F and G are
two (n,m, p)-functions, we say that they are CCZ-equivalent if there exists an affine permutation A of Fn+mp mapping ΓF
to ΓG, i.e. such that A(ΓF) = ΓG.

Two (n,m, p)-functions F and G are called EA-equivalent if there exist affine permutations A1 and A2 of Fmp and Fnp ,
respectively, and an affine (n,m, p)-function A, such that

A1 ◦ F ◦A2 +A = G. (1)

Any two functions that are EA-equivalent are also CCZ-equivalent. CCZ-equivalence, however, is strictly more general than
EA-equivalence and taking inverses of permutations [7]. On the other hand, if two quadratic APN functions are CCZ-equivalent,
then they are also necessarily EA-equivalent [30]; and the same is true for planar functions [9] (in fact, for planar functions,
CCZ-equivalence coincides with even less general equivalence relations; we discuss this in more detail below). We also stress
that the vast majority of the known planar and APN functions are quadratic, and so in practice the case of testing CCZ-
equivalence more often than not reduces to that of the testing EA-equivalence.

Further equivalence relations can be obtained by imposing additional constraints on the functions A1, A2 and A from the
definition of EA-equivalence. We say that F and G are affine equivalent if A = 0 in (1); and we say that F and G are
linear equivalent if A = 0 and A1 and A2 are linear. We note that two planar functions are CCZ-equivalent if and only
if they are affine equivalent; and that two quadratic planar functions are CCZ-equivalent if and only if they are linearly
equivalent) [9]. Testing linear and affine equivalence, while seemingly more specialized, is at the core of our approach to
testing EA-equivalence.

One more notion of equivalence that we will need is the special case of EA-equivalence when both A1 and A2 are identity
permutations, in which case (1) becomes simply F + A = G. This very specialized equivalence relation has, to the best of
our knowledge, no common name in the literature; we will call it additive equivalence, and will then say that F and G are
additive equivalent.

In the case of quadratic planar functions, there is a further equivalence relation that is strictly more general than CCZ-
equivalence in some cases. This is known as “isotopic equivalence”, and is defined in terms of structures called commutative
semifields that can be associated with quadratic planar functions. We only mention this for the sake of completeness, but do
not go into further details on this relation since it is not relevant to our study. We refer the reader to e.g. [16] for more details.

E. Uniformly distributed functions

A function F is called k-to-1 for some k ∈ N if for any y ∈ Im(F)∗, the preimage F−1(y) has size k. In particular,
permutations of Fpn are 1-to-1 functions, and the derivatives of APN functions are 2-to-1 functions. We note that functions of
this form are of independent interest, especially in the case of permutations, and have been studied extensively in the literature;
we refer the reader to [20] for a survey on permutation polynomials, and to e.g. [24], [10], [21] for examples of studies of
2-to-1 and 3-to-1 functions.

Our main interest in functions with uniform preimage sets stems from their relation to the cryptographically optimal APN
and PN functions. It is known that any quadratic 3-to-1 function over F2n is APN, and that any quadratic 2-to-1 function over
Fpn for odd p is PN. Furthermore, we can easily see that, all of the known PN functions are (or are equivalent to) 2-to-1
functions (see e.g. [26] for a summary of all known planar functions). In the case of APN functions, the situation is a bit more
varied, since there are many examples of APN functions that are not 3-to-1 (even up to equivalence). However, the majority of

6

the functions originating from the known infinite families of APN functions are 3-to-1 (see [10] for a detailed survey) and thus
constitute an important subclass of APN functions. Furthermore, searching for e.g. quadratic 3-to-1 functions is significantly
faster than searching for quadratic APN functions in general, since verifying that a given function F : F2n → F2n is APN is a
quadratic operation in 2n, while verifying that it is 3-to-1 is merely linear; this allows computational searches to be conducted
much faster and for larger dimensions n than in the general case. It would thus be natural to expect many new instances of
2-to-1 and 3-to-1 functions to be found via computer searches, and having an efficient and reliable way of classifying them
up to CCZ-equivalence is then an important practical consideration.

We will mostly concentrate on a subclass of k-to-1 functions whose outputs are distributed in a particularly well structured
way. More precisely, we will say that an (n,m, p)-function F is uniformly distributed if there exists a set of elements
U ⊆ F∗pn such that for any x ∈ Fpn we have F (xu) = F (xu′) for any u, u′ ∈ U . Such a function is then k-to-1 for k = #U .
We will call the set U the multiplicative kernel of F . As we have observed in [10], many of the known infinite families of
APN functions are (or are equivalent to) uniformly distributed 3-to-1 functions with U = F∗22 ; functions of this form are called
canonical 3-to-1 functions in [10] to differentiate them from 3-to-1 functions that are not necessarily uniformly distributed.
Similarly, all of the known planar functions are uniformly distributed 2-to-1 functions with U = {±1} (see e.g. [26] for a
survey of the known planar functions).

In fact, U = F∗22 , resp. U = {±1} are the only possible choices of U in the case of 3-to-1, resp. 2-to-1 uniformly
distributed functions over F2n , resp. Fpn for p odd. Indeed, suppose that F : F2n → F2n is 3-to-1, U = {u, v, w} and
F (ux) = F (vx) = F (wx) for every x ∈ F2n . By substituting u for x, we get F (u2) = F (uv) = F (wu); by substituting
v for x, we get F (uv) = F (v2) = F (vw), and hence F (uv) = F (v2) = F (vw) = F (u2) = F (wu). Since F is 3-to-1,
and assuming that all 3 elements of U are distinct, we must have v2 = wu, and hence v3 = uvw. Similarly, we can derive
u3 = v3 = w3 = uvw. Thus (u/v)3 = 1, implying that 2 | n and (u/v) ∈ F4 \ F2. Thus, the triple (u, v, w) is of the form
(u, βu, β2u) where β is a primitive element of F4. If U = {u, v, w} is a triple such that F (ux) = F (vx) = F (wx) for every
x ∈ F2n , then the same is true for U = {cu, cv, cw} for any c ∈ F∗2n ; by multiplying U with the inverse of u, we obtain that
U has the form (1, β, β2) up to multiplication by a non-zero constant.

In the case of U = {a, b} for 2-to-1 functions over Fpn , the proof is even simpler: we obtain a2 = b2 due to F (a2) =
F (ab) = F (b2), which leads to (a/b)2 = 1 and hence a/b = −1, assuming a 6= b. Multiplying with the inverse of a then
yields U = {−1, 1}.

It is easy to find other instances of uniformly distributed functions; for instance, taking U to be the multiplicative group of
any subfield F2m of F2n , we can obtain (2m − 1)-to-1 (n, n)-functions that are uniformly distributed. We note that using an
approach similar to the above, we can conclude that U is always a multiplicative group of order k up to multiplication by a
non-zero constant. Indeed, we can assume 1 ∈ U as outlined above (otherwise, we multiply all elements of U by a constant),
and if U = {1, u2, u3, . . . , uk}, then we have e.g. F (u2u3) = F (u23) = F (u3) = F (u) for any u ∈ U , so that u2u3 ∈ U ;
therefore, U is closed under multiplication, and hence forms a multiplicative subgroup of F∗pn . We formulate our algorithm
for testing linear equivalence between k-to-1 functions (which is at the core of the equivalence test proposed in our paper) in
the case of general k; however, in the sequel we mostly concentrate on the specific cases k = 2 and k = 3 which are by far
the most significant cases in practice.

In [10], it is observed that the pre-image sets of a 3-to-1 uniformly distributed function F have the “summation property”
(as it is referred to there); that is, if {x1, x2, x3} and {y1, y2, y3} are two pre-images of F (in other words, cosets of U = F∗22),
then either {x1 + y1, x2 + y2, x3 + y3} or {x1 + y1, x2 + y3, x3 + y2} is a pre-image set; and either {x1 + y2, x2 + y1, x3 + y3}
or {x1 + y2, x2 + y3, x3 + y1} is a pre-image set; and either {x1 + y3, x2 + y2, x3 + y1} or {x1 + y3, x2 + y1, x3 + y2} is a
pre-image set. It is also observed in the same paper that this property is preserved under linear equivalence. Generalizing this
to the case of k-to-1 functions with arbitrary k, we say that a k-to-1 function F has the pre-image summation property if
for any two pre-image sets F−1(x) = {a1, a2, . . . , ak} and F−1(y) = {b1, b2, . . . , bk} of F , there exists some permutation π
of the indices 1, 2, . . . , k such that {a1 + bπ(1), a2 + bπ(2), . . . , ak + bπ(k)} is a pre-image set of F as well. The fact that the
pre-image summation property is invariant under linear equivalence can be easily seen in the same way as in [10].

III. TESTING LINEAR EQUIVALENCE OF UNIFORMLY DISTRIBUTED FUNCTIONS

Suppose that F and G are uniformly distributed with multiplicative kernel U . Suppose that they are linear-equivalent via
L1 ◦F ◦L2 = G and we wish to reconstruct L1 and L2. The basic idea of the algorithm is to iteratively guess values of L1 and
L2 on a fixed basis of Fpn until a contradiction is encountered (in which case we backtrack to a previous guess) or all values of
L1 and L2 on the basis are known (in which case one possible equivalence between F and G has been recovered). Knowledge
of a value of L2 can be used to derive information about L1, and vice-versa. The principle is somewhat similar to the one
developed for bijective F and G in [3], except that in our more general setting, some additional guesses and deductions have to
be made due to the pre-images under F and G having a more complicated structure. An important structural observation that
underlies the strategy of the algorithm is that L2 maps cosets of U to cosets of U ; that is, if L2(x) = y for some x, y ∈ Fpn ,
then for any u1 ∈ U there exists a u2 ∈ U such that L2(u1x) = u2y; more succinctly, we can express this as L2(Ux) = Uy.

The following general types of derivation are possible:

7

• Knowledge of values of L2 allows us to deduce values of L1. For example, suppose that we have guessed L2(1) = c.
Since we know F and G, we obtain L1(F (c)) = G(1), and so we can deduce that the value of L1 on F (c) must be
precisely G(1). This can lead to contradiction (if L1(F (c)) has been assigned some other value previously).

• Knowledge of values of L1 allows us to restrict the values of L2. For example, suppose that we know that L1(A) = B. If
A ∈ Im(F) but B /∈ Im(G) or A /∈ Im(F) and B ∈ Im(G); then we can immediately derive a contradiction. Otherwise,
if A ∈ Im(F) and B ∈ Im(G), we must have F (L2(x)) = A and G(x) = B, so that for any x ∈ G−1(B), we have
L2(x) ∈ F−1(A). As discussed above, L2 maps cosets of U to cosets of U .

• The linearity of L1 and L2 allows us to derive further values of L1 and L2 (for instance, knowing L1(A) and L1(B)
allows us to derive L1(A+B)); these values can lead to a contradiction (as described above), and can otherwise be used
to derive further values of L1 and L2 in turn.

While knowing values of L2 immediately allows us to deduce the corresponding values of L1, knowing values of L1 only
restricts the values of L2 since we get L2(x) ∈ F−1(A) for all x ∈ G−1(B). In other words, we have L2(G−1(B)) = F−1(A);
that is, knowing values of L1 allows us to recover values of L2 only “up to cosets” of U . This makes it necessary to guess
how exactly L2 maps G−1(B) to F−1(A). Let G−1(B) = Ua and F−1(A) = Ub for some a, b ∈ F2n . In total, there are
#U ! mappings between aU and bU , although in reality we have to check much less than that due to L2 being linear. We
will refer to each such mapping of Ua onto Ub as a configuration, and to the process of guessing the form of the mapping
as configuring the preimages Ua and Ub. In our current design, we simply try all possible configurations, and expect that if
a wrong guess is made, it will lead to a contradiction and the search will backtrack sooner rather than later. We recall that
the most important use cases of the algorithm are for 3-to-1 APN functions (with U = F∗22) and for 2-to-1 planar functions
(with U = {−1,+1}). Even when brute-forcing the configurations, the number of possible guesses is very small (3! = 6 in
the case of APN functions, and 2! = 2 in the case of planar functions) and does not significantly increase the running time of
the algorithm. As we observe in our computational results, the running times are very fast even in high dimensions, and so
we do not consider further optimizations to be necessary at present. In the case of uniform functions with a much larger set
U , it may be beneficial to investigate more sophisticated ways of configuring the preimages; however, since we are currently
not aware of any practically relevant use cases for larger values of k, we leave this as a potential problem for future work.

A “chain” of derivations can be started by first guessing either a value of L1 or a value of L2. In our implementation for 3-
to-1 APN functions, we begin by guessing a value of L1, and then guessing the configurations of the corresponding preimages.
In principle, a variation of the algorithm in which a value of L2 is guessed first could have been implemented, although we do
not expect that there would be any significant differences in the computational efficiency. In the case of our implementation
for testing equivalence of 2-to-1 functions, we guess a value of L2 first in order to further speed up the computation using the
orbit partitions from Table I as described in Section V.

The different phases of guesses and derivations used in Algorithm 1 are visualized in Figure III. Pseudocode describing the
general algorithm is given under Algorithm 1. At any given moment of its execution, we will have guessed some values of L1

and L2, while others will still be unknown; we denote by Dom(Li) the partial domain of Li, i.e. the elements x ∈ Fpn for
which we currently know Li(x); and, similarly, the partial image Im(Li) of Li is the set Im(Li) = {Li(x) : x ∈ Dom(Li)}
of all currently known images of Li.

Fig. 1. General operation of Algorithm 1

As indicated above, the search begins by guessing a single value of say L1, e.g. guessing that L1(x) is equal to y for some
x, y ∈ F2n . Every such guess leads to a “chain reaction” of derivations: further values of L1 can be derived by linearity, and
may potentially lead to a contradiction, indicating that one of the previously made guesses is wrong. If no contradiction is
encountered, the chain of derivations can stop for two reasons: either the values of L1 and L2 on all basis elements are already
known (in which case an equivalence between F and G has been successfully found), or additional guesses are needed (in
which case we guess another value of L1 and start another “chain reaction”). According to our observations, very few guesses
need to be made in practice, and the search will find an equivalence between F and G extremely quickly if one exists.

We remark that in the case of quadratic 2-to-1 planar functions over fields Fpn of odd characteristic p, Algorithm 1 is
sufficient to decide CCZ-equivalence since the latter coincides with linear equivalence [8]. Since it is hypothetically possible

8

Algorithm 1: Testing linear equivalence of two uniformly distributed functions
Data: Two uniformly distributed (n, n)-functions F,G with multiplicative kernel U
Result: A pair of linear (n, n)-permutations L1, L2 such that L1 ◦ F ◦ L2 = G, or failure

1 begin
2 # list of pairs (x, y) representing input-output pairs of L1 that can still be used to derive new values by linearity
3 UnProcessed ← ∅
4 # list of pairs (x, y) representing input-output pairs of L1 that can still be used to derive new configurations of L2

5 UnConfigured ← ∅
6 # initiates a recursive chain of guesses and derivations which returns either the reconstructed L1 or failure
7 L1 ← Guess New Value()
8 if L1 6= failure then
9 reconstruct L2 via G = L1 ◦ F ◦ L2

10 return L1, L2

11 return failure

12 Function Guess_New_Value():
13 if all values of L1 are defined then
14 return L1

15 # otherwise make a new guess
16 x← first x from the basis for which L1 is undefined
17 for y ∈ Im(G) \ Im(L1) do
18 L1(x)← y
19 push (x, y) to UnProcessed
20 backup L1, L2, UnProcessed, UnConfigured
21 # We now derive all possible information from this new guess; if no contradiction is encountered, we recursively

call Guess New Value() which will either reconstruct L1, or make more guesses if needed
22 if Process L1() 6= contradiction then
23 Res← Guess New Value()
24 if Res 6= failure then
25 return Res

26 else
27 restore L1, L2, UnProcessed, UnConfigured

28 return failure

29 ...

that two 3-to-1 APN functions over a field F2n of even characteristic are EA-equivalent but not linear-equivalent, it could be
necessary to check whether a given uniformly distributed 3-to-1 function is additively equivalent to another 3-to-1 function.
According to our experimental results however, this is never necessary in practice, and computing the differential spectrum
of the ortho-derivatives combined with Algorithm 1 is always sufficient to decide the EA-equivalence between any pair of
quadratic 3-to-1 APN functions. More precisely, in all cases where the differential spectra of the orthoderivatives of two
uniformly distributed 3-to-1 functions matched, we were able to verify that they are linearly equivalent using Algorithm 1.

IV. AUXILIARY ALGORITHMS

In the following, we formulate some auxiliary algorithms that can be used to extend Algorithm 1 to the general case of
EA-equivalence, to k-to-1 functions that are not necessarily uniformly distributed, and to functions that are EA-equivalent to
k-to-1 functions but are not k-to-1 themselves. Note that in the case of quadratic 2-to-1 planar functions, CCZ-equivalence
coincides with linear-equivalence [8], so such an extension is unnecessary; while k-to-1 functions with k > 3 do not appear to
be of immediate interest from the point of view of cryptography; and so we restrict ourselves to the case of quadratic 3-to-1
APN functions for the sake of simplicity. Nonetheless, most of the principles naturally generalize to the case of k > 3.

A visual summary of how Algorithm 1 and the auxiliary algorithms can be used to test equivalence of a given quadratic
APN function F to a 3-to-1 function is given in Figure 2. If F is not 3-to-1, we first try to find a 3-to-1 function equivalent to
it via Algorithms 3 and 4; if F is 3-to-1 but not uniformly distributed, we find a uniformly distributed function equivalent to
it via Algorithm 2; finally, we use Algorithm 1 to compare a uniformly distributed 3-to-1 F for equivalence against all known
uniformly distributed 3-to-1 representatives.

9

Algorithm 1: Testing linear equivalence of two uniformly distributed functions (continued)

27 # Derives further values of L1 by linearity
28 Function Process_L1():
29 while UnProcessed 6= ∅ do
30 pop (x, y) from UnProcessed
31 for x′ ∈ Dom(L1) do
32 y′ ← L1(x′)
33 new x← x+ x′

34 new y ← y + y′

35 if (new x ∈ Im(F) and new y /∈ Im(G)) or (new x /∈ Im(F) and new y ∈ Im(G)) then
36 return contradiction

37 L1(new x)← new y
38 push (new x, new y) onto UnConfigured
39 # We immediately try to guess the configuration of L2 following from the new value of L1 since it can

already lead to contradiction even before further values of L1 are derived
40 if Configure() == contradiction then
41 return contradiction

42 return success

43 # Guesses the configuration corresponding to L1(A) = B and derives values of L2 from the guess
44 Function Configure():
45 while UnConfigured 6= ∅ do
46 pop (A,B) from UnConfigured
47 x1, x2, . . . , xk ← F−1(A)
48 y1, y2, . . . , yk ← G−1(B)
49 # here Sym({1, 2, . . . , k}) is the symmetric group on {1, 2, . . . , k}
50 for all possible configurations π ∈ Sym({1, 2, . . . , k}) do
51 # if e.g. π(1) = 2, then L2(x1) = yπ(1) = y2 etc.
52 for x′ ∈ Dom(L2) do
53 y′ ← L2(x′)
54 new x← x′ + x1
55 new y ← y′ + yπ(1)
56 L2(new x)← new y
57 # we know L1(F (L2(new x))) = L1(F (new y)) = G(new x)
58 new l1 x← F (L2(new x))
59 new l1 y ← G(new x)
60 L1(new l1 x)← new l1 y
61 push (new l1 x, new l1 y) onto UnProcessed
62 # We proceed to derive further information from the knowledge of L1(new l1 x) = new l1 y
63 if Process L1() == contradiction then
64 return contradiction

65 return success

A. Testing whether a 3-to-1 function is linear-equivalent to a uniformly distributed 3-to-1 function

Our main algorithm, i.e. Algorithm 1, can only be applied to two (n, n, p)-functions F and G if both of them are uniformly
distributed; for instance, if both F and G are 3-to-1 APN functions with U = F∗22 . As observed in [10], some of the known
families of APN functions contain quadratic functions that are 3-to-1 but not uniformly distributed; however, they are linear-
equivalent to uniformly distributed 3-to-1 functions. Indeed, the existence of quadratic 3-to-1 APN functions EA-inequivalent
to uniformly distributed ones is left as an open problem in [10].

Suppose that we have a concrete 3-to-1 function T , and we want to check whether it is linear-equivalent to a uniformly
distributed 3-to-1 function C. We can observe that any composition L1 ◦ C = C ′ of a uniformly distributed C with a linear
permutation L1 results in a uniformly distributed C ′. Thus, to decide the linear equivalence of a given 3-to-1 function T to a
uniformly distributed 3-to-1 function C, it suffices to find a linear permutation L2 such that T ◦ L2 = C. Observing that the

10

Fig. 2. Testing EA-equivalence of a given quadratic APN function F to a uniformly distributed 3-to-1 function using the algorithms in this paper

linear permutation L2 maps pre-images of C to pre-images of T without affecting the image set (so that Im(C) = Im(T)),
Algorithm 2 seeks to find such a function L2 by first guessing pairs of triples mapping to the same image, and subsequently
guessing their configurations. Once we know (or have guessed) the pairing of two triples and their configurations under L2,
e.g. L2 : (c11, c12, c13) 7→ (t11, t12, t13) and L2 : (c21, c22, c23) 7→ (t21, t22, t23), we can derive more information using the
linearity of L2. More precisely, we can see that e.g. L2(c11) + L2(c21) = L2(c11 + c21).

Recall that the pre-image summation property is invariant under linear equivalence, and that any uniformly distributed 3-to-1
function has this property. This means that if T is linear-equivalent to a uniformly distributed 3-to-1 function, then it also
has the pre-image summation property; we use this in Algorithm 2 in the Combine() and Check() functions to arrive at
possible contradictions. More precisely, we know that if {ai, bi, ci} and {aj , bj , cj} are two pre-image sets of T , then by the
triple summation property e.g. one of {ai+aj , bi+bj , ci+cj} or {ai+aj , bi+cj , ci+bj} must be a pre-image set as well. Note
that the pre-image summation property by itself only requires that one of {ai+aj , bi+ bj , ci+ cj} or {ai+aj , bi+ cj , cj + bi}
be a pre-image set; however, since we know that ai, bi, ci are the images of three elements of the form x, βx, β2x (where β is
primitive in F22) for some x, and aj , bj , cj are the images of y, βy, β2y for some y, it is clear that the second option cannot
possibly happen. For this reason, in Combine(), we only test three combinations instead of six.

Further algorithm details are implementation specific, but for the sake of clarity, we will briefly mention the most important
points. Algorithm 2 is organized as a recursive function with the root of the recursion starting with the first guess; in this case,
what we try to guess is which pre-image set of T has the same image as a pre-image set of C (recall that we must necessarily
have Im(T) = Im(C)). After the first guess is made, the recursive function Configure() is called to guess the configuration
of the elements in the pre-image sets. If the chosen configuration does not lead to a contradiction when calling Combine()
and Check(), the algorithm proceeds with another guess; otherwise, the next configuration is tested. The Configure()
function backtracks if no configuration is viable, and successfully terminates when it has made enough guesses to derive all
the values of L2 via linear combinations. New guesses are taken from the set of pre-images that have not yet been used or
derived via the pre-image summation property.

In the algorithm on line 4, we need to order the pre-images of C is some way, and so we consider some arbitrary order on
the elements of F2n ; this can be, for example, the lexicographic order of their coordinate vectors with respect to the standard
basis (or any other well-defined order on F2n); the concrete choice affects neither the correctness of the algorithm, nor its
running time.

In the Check() function, the notion of linear span is generalized to pre-image sets, so that Span(BT) = Span(
⋃
BT)

for any set of pre-images BT . This generalisation is used to verify that BT is one of the sets with the minimum number of
elements whose union contains a basis of Dom(T). This property is then used for reconstructing the linear function L2 by
mapping the basis contained in BC to the one contained in BT .

B. Testing EA-equivalence to a k-to-1 function

In the prequel, we have assumed that we are working with k-to-1 functions (either uniformly distributed, or not). While
this is by far the most significant case in practice (for instance, computational searches exploiting the structure of 2-to-1 or
3-to-1 functions are typically designed in such a way that they only produce uniformly distributed k-to-1 functions), it is
clearly possible to find examples of functions that are EA-equivalent to, but are not themselves, k-to-1. It might thus be useful
in certain situations to check whether a given (n,m, p)-function F is EA-equivalent to a k-to-1 function. If this is so, then
Algorithm 2 can then be used to find a uniformly distributed function that is linearly equivalent to the k-to-1 function. We make
use of this procedure when classifying the functions from family C3 in Section VII, since these functions are EA-equivalent
to 3-to-1 functions while not being 3-to-1 themselves. In order to apply Algorithms 1 and 2 to them, we thus first need to find
a 3-to-1 representation.

Affine equivalence clearly preserves the property of a function being k-to-1. Thus, if F is EA-equivalent to a k-to-1 function
T (but not k-to-1 itself), then there must exist an affine (n, n)-function L such that F +L = T . Since T (0) = 0 by definition,
we can assume that F (0) = L(0) as well without loss of generality, so that F and T are additive equivalent (otherwise we

11

Algorithm 2: Testing linear equivalence of a 3-to-1 function to a uniformly distributed 3-to-1 function
Data: A 3-to-1 function T : F2n → F2n

Result: A linear (n, n)-function L2 and a uniformly distributed 3-to-1 function C : F2n → F2n such that T ◦ L2 = C, or
failure

1 begin
2 # find the pre-image sets corresponding to T and to C
3 AT ← {{t1, t2, t3} : t1, t2, t3 ∈ F2n , T (t1) = T (t2) = T (t3) and t1 + t2 + t3 = 0}
4 AC ← {(c1, c2, c3) : c1, c2, c3 ∈ F2n , c2 = βc1, c3 = β2c1, c1 < c2, c1 < c3} # β is primitive in F22

5 let BC be a minimal set of pre-image sets from AC such that
⋃
BC contains a basis of Dom(C)

6 let BT ← ∅ be a set of ordered pre-image sets from AT
7 for all {t1, t2, t3} ∈ AT do
8 if Configure({t1, t2, t3}) 6= ∅ then
9 reconstruct L2 using elements of basis contained in BC and BT

10 reconstruct C = T ◦ L2

11 return L2, C

12 return failure

13 Function Configure({b1, b2, b3}):
14 for all possible configurations π ∈ Sym({1, 2, 3}) do
15 # e.g. π(1) = 2, π(2) = 3, π(3) = 1
16 BT ← BT ∪ {(bπ(1), bπ(2), bπ(3))}
17 if Combine(BT)=True then
18 # if it is possible to reconstruct the whole function L2

19 if #BT = #BC then
20 return BT
21 # otherwise make a new guess
22 for all {t1, t2, t3} ∈ AT not already guessed or derived by linear combinations do
23 backup BT
24 BT ← Configure({t1, t2, t3})
25 if BT 6= ∅ then
26 return BT
27 restore BT

28 BT ← BT \ {(bπ(1), bπ(2), bπ(3))}
29 return ∅
30 ...

must have L(0) = F (0), and so we can replace L by L′ = L + L(0) and F by F ′ = F + L(0)). For a given function F ,
we thus want to find all k-to-1 functions that are additive equivalent to it. We note that this approach can also be applied to a
function that is already k-to-1 since, it is hypothetically possible that two k-to-1 functions F and G are EA-equivalent but not
linear-equivalent; resolving the EA-equivalence between F and G then reduces to applying the test for linear equivalence to
F ′ and G for each k-to-1 function F ′ that is additively equivalent to F . As already remarked above, in all our computations
and experiments on quadratic 3-to-1 functions, we have never encountered this case in practice, and whether EA-equivalence
of k-to-1 functions implies linear equivalence in general is an open problem.

Algorithm 1 in [10] allows one to test whether a given (n, n)-function F is additive-equivalent to a triplicate function T ;
we note that triplicate functions were defined in [10] as a generalization of 3-to-1 functions2. In particular, if F is additive-
equivalent to a 3-to-1 function, this algorithm can be used to find this equivalence. Unfortunately, the time complexity of the
procedure grows exponentially with the dimension n, and it is not usable for values of n beyond n = 10. This is not surprising,
as that algorithm handles a much more general problem (equivalence to a triplicate function) and does not exploit the specific
structural properties of 3-to-1 functions.

In this section, we propose a significantly more efficient approach for testing equivalence of a given (n, n)-function F to
a 3-to-1 function T . Somewhat similarly to Algorithm 1 of [10], the basic idea consists of guessing the values of the linear
function L on a basis B = {b1, b2, . . . , bn} of F2n , and backtracking upon discovery of a violation. In this case, we assume
that the function T is 3-to-1, so that every non-zero element in the image of T has precisely 3 pre-images. In addition, we

2More precisely, a triplicate function is any function F such that for any y ∈ Im(F), the size of the pre-image F−1(y) is a multiple of 3

12

Algorithm 2: Testing linear equivalence of a 3-to-1 function to a uniformly distributed 3-to-1 function (continued)

30 Function Combine(BT):
31 # linearly combine elements of BT
32 for all i, j between 1 and #BT with i 6= j do
33 (ai, bi, ci)← xi ∈ BT
34 (aj , bj , cj)← xj ∈ BT
35 if Check({ai + aj , bi + bj , ci + cj}, xj)=False then
36 return False

37 if Check({ai + bj , bi + cj , ci + aj}, xj)=False then
38 return False

39 if Check({ai + cj , bi + aj , ci + bj}, xj)=False then
40 return False

41 return true

42 Function Check({t1, t2, t3}, x):
43 # check conditions for contradiction
44 S ← Span(BT \ x)
45 # check that t1, t2, t3 have the zero-sum property
46 if (t1 + t2 + t3 6= 0) then
47 return False

48 # check that t1, t2, t3 belong to a triple
49 if {t1, t2, t3} /∈ AT then
50 return False

51 # check that t1, t2, t3 triple is unique
52 if t1 ∈ S or t2 ∈ S or t3 ∈ S then
53 return False

54 return True

assume that any pre-image set of T adds up to 0; we note that this is true for any quadratic uniformly distributed 3-to-1
function, and for any function that is affine equivalent to one; the existence of 3-to-1 APN functions that do not satisfy this
“zero-sum property” is left as an open problem in [10], where it is observed that all the known 3-to-1 APN functions have
it. A violation can thus occur, for instance, if we end up with more than 3 elements x mapping to the same image via the
partially reconstructed T ; or if the size of the image set of T exceeds (2n − 1)/3 + 1 elements.

We can observe that for any two (n, n)-functions F and G, and for any linear (n, n)-function L such that F = L+G, we
have

F (x) + F (y) + F (x+ y) = G(x) +G(y) +G(x+ y)

since L vanishes on {x, y, x+ y}; more generally, this is true for the sum of F and G on any set of elements that add up to 0.
Assuming that the function G is known, this means that knowledge of the values F (x) and F (y) of F at some two elements
x, y ∈ F2n is sufficient to derive its value F (x+ y) at x+ y. In this way, knowledge of the values of F on a set of elements
S ⊆ F2n allows us to uniquely reconstruct its values on the linear span of S.

Furthermore, given a function F that is additive-equivalent to a 3-to-1 function T with the zero-sum property, we can predict
the exact image set of T by the multiplicities of the multiset MF = [F (x) + F (y) + F (x+ y) : x, y ∈ F2n] which is shown
to be invariant under additive equivalence in Corollary 4 of [10]. According to the latter, for a quadratic 3-to-1 function T ,
the non-zero elements in Im(T) can be distinguished from those in F∗2n \ Im(T) according to their multiplicities in MT ; and
since MT is invariant under additive equivalence, we can assume that we know the image set of T a priori. If we want to test
equivalence to a 3-to-1 function that is not necessarily quadratic, we can modify the algorithm by replacing this derivation
of Im(T) with a condition that backtracks if the image set of the partially constructed function T exceeds (2n − 1)/3 + 1
elements. Since by far the most important use case at the moment involves quadratic APN functions, we do not discuss this
modification in further detail, and assume that MF = MT .

In practice, this means that if the multiplicities of MF do not split F∗2n into precisely two sets of size, respectively, (2n−1)/3
and 2(2n − 1)/3, then F can not be additive-equivalent to a 3-to-1 function. Otherwise, we know the exact image set of any
3-to-1 function T that is additive equivalent to F , and there is no need to keep track of the size of the image set of T in the
algorithm; instead, it suffices to verify that every value T (x) of T for any x ∈ F∗2n that we guess or derive in the course of the

13

search belongs to Im(T). This simplifies the implementation of the algorithm, and improves its running time since it allows
for more incorrect branches of the search tree to be eliminated.

This correspondence between the image sets of the two tested functions allows us to obtain some conditions on which
pairs of elements x, y ∈ F2n can satisfy T (x) = T (y). To be more precise, we know that if T (x) = T (y), then also
T (x) = T (y) = T (x + y) by the zero-sum property; and so T (x) = T (y) = T (x + y) = F (x) + F (y) + F (x + y). If
F (x) + F (y) + F (x+ y) /∈ Im(T), then x and y (as well as x and x+ y, and y and x+ y) cannot belong to the same triple.
We can thus define a set

AF = {{x, y} ⊆ F∗2n : F (x) + F (y) + F (x+ y) ∈ Im(T)}

of admissible pairs {x, y}. If at any point in the computation we obtain T (x) = T (y) for some pair {x, y} that is not in AF ,
then we can immediately backtrack.

In fact, this suggests another useful trick, which is that instead of trying to guess the values of T (or, equivalently, L) on B,
we can instead try to guess which elements belong to the same triples. For instance, in the first iteration of the search procedure,
we would consider e.g. b1 ∈ B, and attempt to guess for which element y we have F (b1) = F (y). We know that we can restrict
the guesses to only the elements from the set {y ∈ F2n : {b1, y} ∈ AF }; and, once we have guessed y, we know that the
remaining element from the triple is b1+y, and so we can recover T (b1) = T (y) = T (b1+y) = F (b1)+F (y)+F (b1+y). We
would then try to guess which element y′ belongs to the same triple as b2 (provided, of course, that b2 /∈ {y, b1+y}; otherwise,
we would take some other “indeterminate” element instead of b2), and derive the values of T at b2, y′, and b2 + y′. We would
then derive the values of T on the linear span of {b1, b2, y, y′}; at every step, we would check whether any conditions have
been violated, and backtrack if so.

A pseudocode description of the procedure is given under Algorithm 3. While our C implementation follows the same
conceptual ideas, the pseudocode omits a few technical details that a real implementation would have to take into account.
For instance, one would have to maintain data structures representing the pre-images of T and the set of admissible pairs;
the iterative guesses would most likely be represented by a recursive function rather than a while loop; the aforementioned
structures would have to be copied before a recursive call, and then restored to their previous state before backtracking; and so
forth. Such details are bound to be language- and implementation-specific, and do not affect the principal logic of the algorithm,
so we omit discussing them here; in addition, such a discussion would be overly technical, and we believe it would distract
from, rather than clarify, the principles underlying the algorithm. Furthermore, we note that some of the conditions, such as the
test on line 36 of whether some element is assigned more than 3 pre-images, can be performed already during the derivation
of values on line 26; in this way, one would be able to backtrack immediately upon encountering such a contradiction, instead
of having to wait until all possible new values of T have been derived. We have chosen to separate this condition into a
stand-alone function since in the next subsection we discuss a modified version of this algorithm, in which the only difference
is that we expand the CheckConditions() function by adding additional conditions.

As before, we denote by Dom(T) and Im(T) the partial domain and partial image set of T ; indeterminate entries are denoted
by a star symbol “*”.

As observed in [10], besides the zero-sum property, any quadratic 3-to-1 function has the pre-image summation property. If
we want to check whether a given function F is additive-equivalent to a 3-to-1 function T having the pre-image summation
property, we can modify Algorithm 3 by adding more conditions that must be checked after every derivation. While this does
not allow us to derive any further values of T and L as compared to Algorithm 3 (since as soon as we know e.g. T (x) and
T (u), we can immediately derive T (x+ u) as T (x+ u) = T (x) + T (u) + F (x) + F (u) + F (x+ u)), it does introduce one
more condition that might be violated and allow us to backtrack early. This algorithm is essentially the same as Algorithm 3,
except that the CheckConditions() function is modified by having it check that any two pre-image sets {x1, x2, x3} and
{z1, z2, z3} such that T (x1) = T (x2) = T (x3) and T (z1) = T (z2) = T (z3) can be “summed” to obtain another pre-image
set under T . Note that as soon as we know the values of T on xi and zi for i = 1, 2, 3, we can uniquely reconstruct its values
on all elements of the form xi + zj for i, j = 1, 2, 3, and so the condition can always be verified. Another consideration that
we need to take into account is that we do not know in what order the elements of the two pre-image sets have to be summed
together in order to produce a third pre-image set. For this reason, we explicitly check three cases in the algorithm.

A pseudocode description of this expanded version of the CheckConditions() function is given in Algorithm 4. In
it, we keep a list of all pre-image sets {x1, x2, x3} that we currently know of for which T (x1) = T (x2) = T (x3). These
are stored in the set P . Upon processing a new pre-image set of this form (and verifying that x1 + x2 + x3 = 0 so that it
satisfies the zero-sum property), we check whether it is compatible (in the sense of the pre-image summation property) with
every other pre-image set that we have already observed. Once again, the approach given in Algorithm 4 describes the main
idea, and we do not claim that it is the optimal way for implementing the function in practice; one could, for instance, keep a
constantly updated list of known pre-images, and then only verify the conditions starting on line 10 of Algorithm 4 for those
triples for which they have not already been verified. This improves the running times of the algorithm, as can be seen from
the computational results in Table II.

14

Algorithm 3: Testing additive-equivalence to a quadratic 3-to-1 function with the zero-sum property
Data: A function F : F2n → F2n with F (0) = 0
Result: A linear (n, n)-function L such that F + L is a 3-to-1 function with the zero-sum property, or failure

1 begin
2 # Compute the multiset MF and predict the image set I of T
3 MF ← [F (x) + F (y) + F (x+ y) : x, y ∈ F2n]
4 partition the elements of F∗2n = C1 ∪ C2 ∪ · · · ∪ Cl according to their multiplicities in MF

5 if l 6= 2 or (2n − 1)/3 /∈ {#C1,#C2} then
6 return failure

7 I ← Ci with i ∈ {1, 2} such that #Ci = (2n − 1)/3
8 # Compute the set of admissible pairs
9 AF ← {{x, y} : x, y ∈ F2n , F (x) + F (y) + F (x+ y) ∈ I}

10 # Initialize a partial truth table for T , with T (0) = 0 as the only determinate element
11 T (0)← 0, T (x)← ∗ for x ∈ F∗2n
12 while #Dom(T) < 2n do
13 # Get an element x that has not been assigned to a triple yet
14 find x ∈ F2n such that T−1(x) ≤ 1
15 # Guess another element in the triple containing x
16 for y ∈ {y ∈ F2n : {x, y}, {x, y + x} ∈ AF } do
17 v ← F (x) + F (y) + F (x+ y)
18 if v /∈ I then
19 go to next y

20 T (x), T (y), T (x+ y)← v
21 # Derive new values of T
22 for z ∈ {x, y, x+ y}, x′ ∈ Dom(T) \ {x, y, x+ y} do
23 v′ ← F (x′) + F (z) + F (z + x′) + T (z) + T (x′)
24 if v′ /∈ I or z + x′ ∈ Dom(T), T (z + x′) 6= v′ then
25 go to next y

26 T (z + x′)← v′

27 if CheckConditions(T) = false then
28 go to next y

29 # If no conditions are violated, but there are still indeterminate positions in T , we proceed to make another guess
in the following iteration of the while loop

30 if #Dom(T) = 2n then
31 return T
32 else
33 return failure

34 Function CheckConditions(T):
35 for y ∈ Im(T) do
36 if #T−1(y) > 3 or #T−1(y) = 3,

∑
T−1(y) 6= 0 then

37 return false

38 return true

V. PRE-COMPUTATION OF SELF-EQUIVALENCE ORBITS

The core concept at the heart of Algorithm 1 for reconstructing the linear equivalence (L1, L2) in L1 ◦ F ◦ L2 = G for
some given uniformly distributed F and G is the simple idea of guessing a value of L1 (or, alternatively, of L2), and then
deriving as many other values as possible based on this guess. The complexity of the algorithm clearly depends on the number
of guesses that we have to make, and on the number of possibilities that we have for each guess. For the very first guess that
we make in the algorithm, we have practically no information about the values that L1 and L2 can take, and so we have to
try out all possible non-zero elements of Fpn for this first value.g. L1.

There is a way to significantly restrict the number of choices for this first guess if we perform some pre-computation on the
function F . Suppose without loss of generality that we begin the search by guessing a value of L2, and that this first value is

15

Algorithm 4: Testing conditions for EA-equivalence to a quadratic 3-to-1 function with the pre-image summation property

1 begin
2 Function CheckConditions2(T):
3 # Keep a list of processed elements y with a complete pre-image set
4 P ← ∅
5 for y ∈ Im(T) do
6 if #T−1(y) > 3 then
7 return false

8 if #T−1(y) = 3 then
9 let T−1 = {x1, x2, x3}

10 if x1 + x2 + x3 6= 0 then
11 return false

12 for {z1, z2, z3} ∈ P do
13 if (T (x1 + z1) 6= T (x2 + z2) or T (x1 + z1) 6= T (x3 + z3)) and (T (x1 + z1) 6= T (x2 + z3) or

T (x1 + z1) 6= T (x3 + z2) then
14 return false

15 if (T (x1 + z2) 6= T (x2 + z1) or T (x1 + z2) 6= T (x3 + z3)) and (T (x1 + z2) 6= T (x2 + z3) or
T (x1 + z2) 6= T (x3 + z1) then

16 return false

17 if (T (x1 + z3) 6= T (x2 + z1) or T (x1 + z3) 6= T (x3 + z2)) and (T (x1 + z3) 6= T (x2 + z2) or
T (x1 + z3) 6= T (x3 + z1) then

18 return false

19 P ← P ∪ {{x1, x2, x3}}

20 return true

L2(1). In this section, we will show how the elements of F∗pn can be divided into “orbits” according to the self-equivalences
of F : Fpn → Fpn so that when guessing the value v of L2(1), we only have to consider one element v from each orbit.

Recall that a linear self-equivalence for a function F : Fpn → Fpn is a pair of linear permutations (L1, L2) of Fpn such
that L1 ◦ F ◦ L2 = F ; in other words, a linear equivalence of the function F “with itself”. To simplify notation, let

EQ(F,G) = {(L1, L2) : L1, L2 : Fpn → Fpn bijective, L1 ◦ F ◦ L2 = G}

be the set of all linear equivalences between two given functions F and G. The self-equivalences EQ(F, F) clearly form a
group under the composition (L1, L2)◦(L3, L4) = (L1◦L3, L4◦L2). Furthermore, we can see that EQ(F,G) is a coset (under
composition) of EQ(F, F), and so if we know the group of self-equivalences of F , and manage to reconstruct at least one
linear equivalence (L1, L2) between F and G (for instance, using Algorithm 1), we can obtain all possible linear equivalences
between F and G by composing (L1, L2) with all the self-equivalences in EQ(F, F). The set of all linear self-equivalences
of a given F can be computed using Algorithm 1 by taking G = F , and letting the algorithm run until it has exhausted all
possibilities (instead of terminating the search as soon as the first self-equivalence is found). While this process can be somehat
lengthy since the entire search tree has to be traversed, this is a precomputation that only needs to be performed once per
function. Nonetheless, we will show that in order to compute the “orbits” that we allude to above, it is not necessary to know
the group EQ(F, F) of self-equivalences, and a much less laborious computation suffices. Furthermore, since the group of
self-equivalences of a function is of interest in its own right, it is possible that in practice it has already been computed for a
given function, and so no further computations are needed.

Consider a function F , and a self-equivalence (L1, L2) ∈ EQ(F, F). If L1(x) = y for some x, y ∈ Fpn , we say that x and
y lie on the same orbit (with respect to L1). More precisely, we will define the left orbit of x ∈ Fpn under F as the set

{y ∈ Fpn : (∃(L1, L2) ∈ EQ(F, F))L1(x) = y}.

Similarly, the right orbit of x under F is

{y ∈ Fpn : (∃(L1, L2) ∈ EQ(F, F))L2(x) = y}.

We now argue that when using Algorithm 1, it is enough to consider a single element from each right orbit when guessing the
value of L2(1). Indeed, suppose that we are testing F,G : Fpn → Fpn for equivalence. Suppose that we have guessed L2(1) = v

16

for some v ∈ Fpn , and that v′ lies on the same right orbit as v. Then there exists a self-equivalence (L3, L4) ∈ EQ(F, F)
such that L4(v) = v′; and so, if F and G are linear-equivalent via L1 ◦ F ◦ L2 = G with L2(1) = v, then substituting the
self-equivalence into L1 ◦ F ◦ L2 = G yields

(L1 ◦ L3) ◦ F ◦ (L4 ◦ L2) = G,

with (L4 ◦ L2)(1) = L4(v) = v′. Thus, there is a linear equivalence (L1, L2) of F and G with L2(1) = v if and only if
there is a linear equivalence (L′1, L

′
2) between F and G with L′2(1) = v′. Consequently, when guessing the value of L2(1) in

Algorithm 1, only one of these two values has to be considered.
In the case of the left orbits, the situation is a bit more complicated. Suppose once again that F and G are linearly equivalent

via L1 ◦ F ◦ L2 = G, and that (L3, L4) ∈ EQ(F, F). Substituting L3 ◦ F ◦ L4 for F in the linear equivalence of F and G,
we have (L1 ◦ L3) ◦ F ◦ (L4 ◦ L2) = G as before. If, say, L3(1) = v so that 1 and v lie on the same left orbit under F , then
we have (L1 ◦L3)(1) = L1(v). In this way, the left orbits allow us to change the input to L1 (in other words, if we had fixed
L1(1) = c, we would not need to consider the case L1(v) = c) but not the outputs like in the case of the right orbits. Since
in our implementation of Algorithm 1 we guess values of L1 or L2 for a fixed set of inputs (namely, a basis of Fpn over Fp),
it does not seem like the left orbits can be immediately applied to improve the efficiency of our approach. For this reason, in
the following we mostly concentrate on the case of the right orbits.

Furthermore, we can show that the number and sizes of the left and right orbits are invariant under linear equivalence. This
follows in a fairly straightforward way by observing that there is a one-to-one correspondence between the self-equivalence
groups EQ(F, F) and EQ(G,G) of any two linearly equivalent discrete functions F and G. The latter fact has already been
observe in e.g. [1]; for the sake of clarity, we give a self-contained proof in the following proposition. Furthermore, we give
the exact form the correspondence between EQ(F, F) and EQ(G,G), and use it to show that the structure of the left and
right orbits of F and G is the same.

Proposition 1. Let F and G be linearly equivalent (n,m, p)-functions via L1 ◦ F ◦ L2 = G. Then:
1) there is a one-to-one correspondence ϕ between the groups EQ(F, F) and EQ(G,G) given by

ϕ : (L3, L4) 7→ (L1 ◦ L3 ◦ L−11 , L−12 ◦ L4 ◦ L2);

2) if x, y ∈ Fpn lie on the same right orbit under F , then L−12 (x) and L−12 (y) lie on the same right orbit under G; in
particular, there is a one-to-one correspondence between the right orbits of F and the right orbits of G;

3) similarly, if x and y belong to the same left orbit under F , then L1(x) and L1(y) belong to the same left orbit under G,
inducing an analogical one-to-one correspondence between the left orbits of F and the left orbits of G.

Proof. Suppose (L3, L4) ∈ EQ(F, F) so that L3 ◦F ◦L4 = G. Composing L1 ◦F ◦L2 = G with the inverses of L1 and L2,
we get F = L−11 ◦G ◦ L

−1
2 . Substituting this for F in the self-equivalence with L3 and L4, we get

L3 ◦ L−11 ◦G ◦ L
−1
2 ◦ L4 = L−11 ◦G ◦ L

−1
2 .

Composing both sides of the above with L1 and L2, we finally get

(L1 ◦ L3 ◦ L−11) ◦G ◦ (L−12 ◦ L4 ◦ L2) = G,

so that (L1 ◦ L3 ◦ L−11 , L−12 ◦ L4 ◦ L2) ∈ EQ(G,G). Since this transformation is clearly invertible, we obtain the one-to-one
correspondence described in the first item of the hypothesis.

Suppose now that we have two elements x, y that lie on the same right orbit with respect to F , i.e. there exists some
(L3, L4) ∈ EQ(F, F) such that L4(x) = y. Let a = L−12 (x) and b = L−12 (y) be the pre-images of x and y under L2. Then
we have that

(L−12 ◦ L4 ◦ L2)(a) = (L−12 ◦ L4)(x) = L−12 (y) = b,

and since L−12 ◦ L4 ◦ L2 ∈ EQ(G,G) as shown above, we have that a and b belong to the same right orbit under G.
The proof in the case of the left orbits is similar and we omit it here for the sake of brevity.

To the best of our knowledge, the only two useful invariants for distinguishing between CCZ-inequivalent planar functions
are the sizes of their nuclei [16] and the size of the automorphism group of an associated linear code [27]. Since the exact
definitions of these invariants are not immediately relevant to our work, we omit their definitions here; details can be found in
the aforementioned articles. Computing the rank of the automorphism group appears to only be feasible over F3n for n ≤ 6;
for higher dimensions, the memory is insufficient. The nuclei, on the other hand, can be computed for dimensions greater than
6, but it is easy to see that the number of right orbits (used as an invariant) is strictly more discriminating than the sizes of the
nuclei. For instance, it can be easily verified that all known quadratic planar functions over F35 have the same nuclei, while
in Table I, we can clearly see that there are three distinct cases for the number of right orbits. Although we do not have a
classification for dimensions higher than 6 at the moment, we can observe that e.g. over F38 , the sporadic planar instance

α3608x1458 + α3608x738 + α3810x486 + α3810x246 + α3413x162 + α3413x82 + α3608x18 + α3810x6 + α2565x2

17

from [17], and the planar instance

α3608x1458 + α3608x738 + α3810x486 + α3810x246 + α3413x162

from the family defined in [15] (where α is a primitive element of F38) have the same nuclei, but the former has 410 right
orbits, while the latter has only 12 right orbits. In this way, we can immediately establish their CCZ-inequivalence.

This leaves us with the question of how to compute the left and right orbits of the elements in Fpn under a given function
F . Clearly, if we have computed the entire group EQ(F, F), we can simply go through all (L1, L2) ∈ EQ(F, F) and compute
the orbit of any x ∈ Fpn from the definition. However, if we only need to compute the orbits, this is not necessary. We are
able to test whether two given elements x, y ∈ Fpn belong to the same orbit much faster as follows.

Suppose x, y ∈ Fpn are given, and we want to check whether there exists a self-equivalence (L1, L2) ∈ EQ(F, F) such that
L2(x) = y, i.e. such that x and y belong to the same right orbit. In order to do this, we run Algorithm 1 for G = F , but fix
L2(x) = y as the first guess for L2. If the algorithm terminates with success (that is, if it finds at least one pair (L1, L2)), we
can conclude that x and y do belong to the same orbit. Conversely, if Algorithm 1 terminates with failure, then x and y must
belong to different orbits.

The partitioning of Fpn into orbits can be further simplified as follows. If at any point we have determined that some
elements x, y belong to the same orbit, then we must have found a self-equivalence (L1, L2) ∈ EQ(F, F) mapping x to y as
described above. We can then apply the L2 from this self-equivalence to all elements of Fpn (not just x) in order to deduce
further pairs of elements that belong to a common orbit. If we keep track of L2 from all self-equivalences (L1, L2) that we
have encountered so far, we can also consider compositions of these L2; that is, if we have encountered L2 and L′2, we can
also take e.g. L2 ◦ L′2, L′2 ◦ L2, L2 ◦ L2 and L′2 ◦ L′2 (which must be the right-hand part of some self-equivalence since
EQ(F, F) is a group under functional composition as described above), and we can apply these functions to the elements of
Fpn to deduce further information about the orbits. Finally, since belonging to a given orbit is clearly an equivalence relation,
if we know that e.g. S1 ⊆ Fpn and S2 ⊆ Fpn are sets of elements such that all elements in S1 belong to the same orbit, and
all elements in S2 belong to the same orbit, then we only need to test whether s1, s2 belong to the same orbit for one pair of
elements s1, s2 such that s1 ∈ S1, s2 ∈ S2; the orbits containing S1 and S2 are either the same, or completely disjoint.

Pseudocode for partitioning Fpn into orbits with respect to a given function F is given below in Algorithm 5. In this
procedure, we gradually “build up” the orbits of Fpn by initializing every element to belong to its own orbit in the beginning,
and then merging orbits whenever we discover that two elements lie on the same orbit.

We keep track of the set L of all linear permutations L2 that we have discovered that are part of self-equivalences. By
Span(L), we refer to the set of all linear permutations that can be obtained by composing two or more permutations from
L (with repetitions allowed). This “compositional span” is, in fact, the set of all linear permutations that we know belong
to the group of self-equivalences at any given moment. Every time we discover a new L2, we add it to L, and attempt to
merge as many of the existing orbits as possible using the new linear permutations “spanned” by L and L2. This is done
using the Merge() auxiliary function. The latter simply goes through all permutations L in Span(L), and for each L, keeps
merging orbits (O1, O2) until no more mergers are possible. At this point, it proceeds to the next L ∈ Span(L). Once all liner
permutations in the “span” of L have been exhausted, Merge() returns control to the main procedure.

Every time the main procedure manages to merge two (or more, thanks to Merge()) orbits, it goes to the beginning of
the while loop on line 8. Eventually, an orbit O will be selected on line 9 that cannot be merged with anything more; at this
point, lines 23-24 remove this orbit from the list Orbits, and add it to Complete. Once all orbits have been transferred to
Complete, the algorithm terminates.

The intention of this method is to pre-compute the orbit representatives with respect to F for a list of known functions F that
need to be tested for equivalence against others, and then use these orbit representatives to restrict the number of guesses that
need to be performed by Algorithm 1. In some cases, it is not even necessary to pre-compute the orbit representatives, since
the orbits of the function can be determined mathematically. This is the case, for instance, when working with monomials.
As we see in the following proposition, for a monomial function F (x), all the non-zero elements of Fpn lie on a single right
orbit.

Proposition 2. Let F (x) = xd be an (n, n, p)-function for some natural numbers n, p, d with p prime. Then for any a, b ∈ F∗pn
there exists a pair of linear (n, n, p)-permutations (L1, L2) such that L1 ◦ F ◦ L2 = F and L2(a) = b. Consequently, all the
non-zero elements of Fpn lie on the same right orbit.

Proof. Let L2(x) = x ba and L1(x) = xa
d

bd
. Then L1 ◦ F ◦ L2 = F , and L2(a) = b.

Besides monomials, another case where we have some a priori information about the orbits, are functions over Fpn represented
by polynomials F (x) =

∑
cix

i with all coefficients ci belonging to some subfield Fpm of Fpn . Then we can observe that
by taking L1(x) = xp

km

and L2(x) = xp
n−km

for any k, we have L1 ◦ F ◦ L2 = F since cp
km

i = ci for all coefficients ci.
Consequently, we have the following observation. We note that many of the known 3-to-1 APN functions have coefficients in
the subfield F22 , and almost all of the known planar functions over F3n have coefficients in the prime field F3. In this way,

18

Algorithm 5: Partitioning Fpn into right orbits with respect to a given F : Fpn → Fpn
Data: An (n,m, p) function F
Result: A partition of the finite field Fpn into right orbits with respect to F

1 begin
2 # Initially, place every element x in its own orbit {x}
3 Orbits← {{x} : x ∈ Fpn}
4 # A list of orbits that are complete (cannot be merged with anything more)
5 Complete← ∅
6 # A list of L2 we have found so far
7 L ← ∅
8 while Orbits 6= ∅ do
9 O ← Random(Orbits)

10 for O′ ∈ Random(Orbits), O′ 6= O do
11 o← Random(O)
12 o′ ← Random(O′)
13 Use Algorithm 1 to search for (L1, L2) ∈ EQ(F, F) with L2(o) = o′

14 if such (L1, L2) exists then
15 # Replace O with the union of O and O′

16 Orbits← Orbits \ {O,O′}
17 O ← O ∪O′
18 Orbits← Orbits ∪ {O}
19 if L2 /∈ Span(L) then
20 L ← L ∪ {L2}
21 Merge(Orbits,L)

22 continue while loop

23 # If O cannot be merged with any other orbit, then it is complete
24 Orbits← Orbits \ {O}
25 Complete← Complete ∪ {O}

26 Merge(Orbits,L):
27 # Merge as many orbits as possible using the given set of functions
28 for L ∈ Span(L) do
29 Change← false
30 for O1 ∈ Orbits do
31 o1 ← Random(O1)
32 o2 ← L(o1)
33 let O2 ∈ Orbits be such that o2 ∈ O2

34 if O1 6= O2 then
35 Orbits← Orbits \ {O1, O2} ∪ {O1 ∪O2}
36 Change← true

37 if Change = true then
38 repeat for loop with the same L

Observation 1 simplifies the partitioning of Fpn into orbits further, since we already know that many combinations of elements
belong to the same orbit.

Furthermore, if U is the multiplicative kernel of F , then we can see that F ◦ L2 = F for any L2(x) = ux with u ∈ U . In
the case of 3-to-1 uniformly distributed functions, this means that any triple {x, βx, β2x} of elements (where β is primitive
in F22) lies on the same orbit; while in the case of uniformly distributed 2-to-1 functions over fields of odd characteristic, it
means that x and −x always belong to the same orbit. As we will observe later from the computational results in Table I,
these observations cannot be extended further, since there exist functions with coefficients from the prime field whose right
orbits are precisely all sets of the form {uxpk : 0 ≤ k ≤ n − 1}; for example, the planar trinomials x10 ± x6 − x2 over F35

and F37 (and, quite likely, all odd dimensions n) are examples of functions having this kind of “minimal” right orbit partition.

Observation 1. Let F (x) =
∑pn−1
i=0 cix

i represent an (n, n, p)-function with multiplicative kernel U for some natural number

19

TABLE I
RIGHT ORBITS FOR ALL KNOWN PLANAR FUNCTIONS OVER F3n UP TO CCZ-EQUIVALENCE WITH 3 ≤ n ≤ 6

n ID F (x) # orbits Orbit representatives

3 3-1 x2 1 1
3-2 x4 1 1

4
4-1 x2 1 1
4-2 x4 + x10 − x36 2 1, α
4-3 x14 1 1

5

5-1 x2 1 1
5-2 x4 1 1
5-3 x10 1 1
5-4 x10 + x6 − x2 25 1, α, α2, α4, α5, α7, α8, α10, α11, α13, α16, α17, α19, α20,

α22, α25, α26, α31, α34, α35, α38, α40, α61, α67, α76

5-5 x10 − x6 − x2 25 (same as 5-4)
5-6 x2 + x90 3 1, a, a2

5-7 x14 1 1
5-8 x162 + x108 − x84 + x2 25 (same as 5-4)

6

6-1 x2 1 1
6-2 x10 1 1
6-3 x162 + x84 + α58x54 + α58x28 + x6 + α531x2 7 1, α, α2, α3, α6, α7, α44

6-4 α205x82 + α75x30 + 2x28 3 1, α, α2

6-5 2x270 + x246 + 2x90 + x82 + x54 + 2x30 + x10 + x2 4 1, α, α2, α7

6-6 x270 + 2x244 + α449x162 + α449x84 + α534x54 + 2x36 12 1, α, α2, α3, α4, α5, α6, α8, α10, α15, α17, α20

6-7 x486 + x252 + α561x162 + α561x84 + α183x54 + α183x28 33 1, α, α2, α3, α4, α5, α6, α7, α8, α9, α10, α12, α13, α16,
α17, α19, α22, α23, α31, α34, α35, α36, α38, α39, α44,
α45, α47, α48, α50, α54, α66, α72, α90

6-8 x122 1 1
6-9 - 7 1, α, α2, α6, α8, α13, α15

n and some prime number p, and suppose that all coefficients ci belong to the subfield Fpm for some m | n. Let k be any
natural number. Then any two elements x, y ∈ Fpn with x = yp

mk

belong to the same left orbit under F ; and any two elements
x, y ∈ Fpn with x = uyp

n−mk

for some u ∈ U belong to the same right orbit under F .

According to our computational results, the benefit of restricting the first guess for L1 or L2 to left or right orbit represen-
tatives, respectively, is most pronounced in the case when the tested functions are not equivalent. If the functions F and G
are equivalent, we can intuitively see why this is so, particularly in the extremal case when all the elemnets of F∗pn fall into
one orbit under F . In this case, any guess of the value of L2(1) leads to an equivalence (L1, L2) between F and G, and so
restricting this first guess through the orbit representatives essentially has no effect. On the other hand, if F and G are not
equivalent, then we would only have to consider one guess for the value of L2(1) instead of pn−1 guesses. A similar situation
occurs for functions that partition Fpn into a small number of orbits.

Consequently, computing the orbits is mostly useful in practice when dealing with planar, as opposed to APN, functions:
in the case of APN functions, we can use the differential and extended Walsh spectra of the ortho-derivatives to distinguish
between EA-inequivalent quadratic APN functions; Algorithm 1 only has to be applied when the orthoderivatives of the
functions F and G under consideration have the same differential spectrum, in which case F and G are practically guaranteed
to be EA-equivalent. In the case of planar functions, however, we are not aware of any efficient invariants that can be used
to distinguish distinct EA-equivalence classes, and Algorithm 1 appears to be the most efficient method at the moment for
deciding both the positive and the negative case.

For this reason, we have computed the orbits for all known planar functions (up to CCZ-equivalence) over F3n for n ≤ 6.
A list of CCZ-inequivalent representatives of the known planar functions is given in [27]. For each representative, we compute
the right orbits, and give the results in Table I. The functions are indexed according to the order given in [27], e.g. function
“5-3” in Table I is the same as function “3” in Table 4 of [27]. The only exception two exceptions are the function designated
“5-8” corresponding to a sporadic instance from [17], and the function 6-9 originating from the Zhou-Pott family [33]. These
functions were not yet published at the time of writing of [27] which is why they were not included in their classification.
Since the univariate represenation of the latter is rather complicated, we do not list in the table; it is

α438x486 + α180x324 + α458x270 + α672x252 + α622x246 + α94x244 + α650x162 + α441x108 + α50x90 + x84 + α77x82+

a328x36 + a583x30 + a407x28 + a178x18 + a492x12 + a692x10 + a78x6 + a219x4 + a69x2,

where α is a primitive element of F36 .
A natural question that arises from the above discussion is whether the self-equivalence of F can be used to restrict more

than one value of L2, e.g. whether it is possible to restrict both L2(1) and L2(α) (for some 0, 1 6= α ∈ Fpn) at the same
time. This would involve extending the concept of orbits to pairs of elements; in other words, we would say that two pairs of
elements (x1, x2) and (y1, y2) belong to the same e.g. right orbit if there exists (L1, L2) ∈ EQ(F, F) such that L2(x1) = y1

20

and L2(x2) = y2. Then only one pair from each orbit would have to be considered when guessing the images of the first two
basis elements under L1. According to our preliminary observations, very few pairs can be eliminated in this way, and so this
approach is likely not worth the effort for precomputation. We leave the closer investigation of these “orbits of pairs” as a
potential problem for future work.

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We have implemented Algorithm 1 for two of the most important classes of cryptographically optimal functions, i.e. for
3-to-1 functions over F2n , and for 2-to-1 functions over F3n . The implementation of the former is done in C since the elements
of F2n can be represented as sequences of bits, and C allows these to be manipulated very efficiently. In the case of the latter,
there is no natural way to represent the elements of F3n in C, and so we have implemented the algorithm in the Magma
algebra system instead [4]. We have also implemented the auxiliary algorithms for the case of 3-to-1 functions over F2n in C.

To show the efficiency of the discussed algorithms in the case of 3-to-1 functions, we present the average running times
from the classification and computational experiments in dimensions 10, 12 and 14 in Table II. For lower dimensions, both
Algorithm 1 and Algorithm 2 provide practically instantaneous results; the average running time is below the measurable
threshold. The running times for Algorithm 4 come from the classification of the C3 infinite family in dimension 12 described
in Section VII. The running times in Table II are given for the positive case only (that is, when the tested F and G are
linear-equivalent). In the case when the functions are not linear-equivalent, this can virtually always be shown in practice by
computing the differential spectra of their ortho-derivatives, which has a running time comparable to that of Algorithm 1. We
stress that in all cases that we encountered in our experiments and classifications where two functions had the same differential
spectrum of the orthoderivative, they ended up being linear equivalent.

TABLE II
SAMPLE RUNNING TIMES (IN SECONDS) FOR THE 3-TO-1 ALGORITHMS DESCRIBED IN THIS PAPER

n 6 8 10 12 14
Algorithm 1 - - 0.039 71.008 88.999
Algorithm 2 - - - 0.011 ?
Algorithm 3 - - 1.241 ? ?
Algorithm 4 - - 0.946 45.644 ?

In order to compare the efficiency and running times of Algorithm 1 with other known algorithms for testing equivalence,
we perform the following experiment: for a given function F (APN in the case of the 3-to-1 implementation, and planar
in the case of the 2-to-1 implementation), we generate a function G equivalent to it at random (for instance, in the case of
linear equivalence we pick L1 and L2 at random and set G = L1 ◦ F ◦ L2), and then run the corresponding algorithm on F
and G in order to recover the equivalence. We repeat this experiment several times, and give the average running time of all
experiments. Table III gives a comparison of the running times necessary to verify and reconstruct linear equivalence between
x3 and randomly generated equivalent 3-to-1 functions as described above using various algorithms from the literature. The
code isomorphism approach described in [19] does not work for dimensions 12 and above due to insufficient memory (this
was tested on our department server with around 500 GB of memory available). The algorithm of Kaleyski from [22] was
only tested for dimensions up to 10 since the results make it clear that the running time becomes prohibitively long for larger
dimensions. In addition, there is an algorithm due to Canteaut et al. [12] for which we could not measure the running time since
we do not have an implementation available. In the original paper [12], it is indicated that testing equivalence for functions
equivalent to x3 in dimension 8 takes around 89 seconds; we take this as a good indication that the running times of Algorithm
1 will be significantly faster than those of [12] as well.

Figure 3 presents a detailed breakdown of the running times of Algorithm 1 that we have observed throughout all of our
computational experiments and classifications for dimensions n = 10, 12, 14. The bars visualize the proportion of functions
that we have observed for which the running time is not greater than a certain bound; for instance, the first bar (labeled “<
0,01”) gives the percentage of functions for which the running time is less that one hundredth of a second, while the last
column (labeled “< 1000”) gives the percentage of functions for which the running time is less than 1000 seconds. As we
can see, there are some “outliers” for which the running time can be longer than in the average case, but for the majority of
functions, the computation time is quite short, even in higher dimensions like n = 14.

In the case of quadratic planar functions over F3n , we perform a similar experiment using our Magma implementation.
We consider the planar monomial F (x) = x2, and construct a random G(x) linear-equivalent to it via G = L1 ◦ F ◦ L2

for randomly selected linear permutations L1 and L2. Note that in the case of quadratic 2-to-1 planar functions, G is always
uniformly distributed whenever F is, due to L(−x) = −L(x) for any x ∈ Fpn and any linear (n, n, p)-function L. To the best
of our knowledge, the only algorithm for testing linear equivalence between planar functions is the code isomorphism test of
[19]. The observed running times are given in Table IV. The code isomorphism test cannot be used in F3n with n > 7 due to
insufficient memory (even with over 500 GB available on our server). Thus, Algorithm 1 is currently the only known approach
for testing CCZ-equivalence between quadratic planar functions in dimensions greater than 7.

21

Fig. 3. Comparison of running times for Algorithm 1 for 3-to-1 uniformly distributed APN functions for dimensions n = 10, 12, 14

TABLE III
COMPARISON OF RUNNING TIMES (IN SECONDS) FOR 3-TO-1 APN FUNCTIONS

n 6 8 10 12 14 16 18
Algorithm 1 0 0 0 0.7 0.425 1.85 27.26

Kaleyski 0.07 9.26 17225.140 ? ? ? ?
Code isomorphism 0.01 0.18 14.96 550.680 N/A N/A N/A

VII. CLASSIFICATION OF 3-TO-1 APN FUNCTIONS OVER FOR DIMENSION 12

As an application, we compute a classification of all known quadratic 3-to-1 APN functions over F212 up to CCZ-equivalence.
We note that a classification of these functions has already been given in [10] but up to the differential spectrum of the
orthoderivative. We recall that the differential spectrum of the orthoderivative is an invariant under CCZ-equivalence in the
case of quadratic APN functions; and while it can be used to show that two functions are inequivalent if they have distinct values
of this differential spectrum, it does not give us any information about their equivalence or inequivalence in the case when the
differential spectrum is the same. It is thus possible that a classification up to the differential spectra of the orthoderivatives
is incomplete in the sense that two functions belonging to the same class (having the same differential spectrum of the
orthoderivative) are, in fact, CCZ-inequivalent. The classifications for n ≤ 10 given in [10] have been verified to be complete
in this sense, since the code isomorphism test can be used to verify that the functions within every class are equivalent to each
other. The classification given in Table V of [10] however, could not be previously verified, since the code isomorphism test
requires too much memory and can not be used in dimensions higher than 10.

The function with index 15 in Table V does not originate from an infinite family, but rather, from a series of computational
searches that we carried out over F212 using the principle of “polynomial expansion”, as described for instance in [10]. In
total, we found 16 polynomials with the orthoderivative differential spectrum given in the table for function 15. Since this
spectrum was distinct from those of representatives from all known infinite families and known instances, we could conclude
that these 16 functions represent at least one new CCZ-equivalence class. Using Algorithm 1, we verified that all of these 16
functions are pairwise equivalent, and so they represent precisely one CCZ-equivalence class. Function 15 in Table V is thus
currently the only known sporadic APN instance over F212 .

Out of all the known infinite families of APN functions, family C3 is by far the most problematic to classify due to the
large number of functions that it contains. This family is given by the formula

C(x) = sxq+1 + x2
i+1 + xq(2

i+1) + cx2
iq+1 + cqx2

i+q, (2)

TABLE IV
COMPARISON OF RUNNING TIMES (IN SECONDS) FOR 2-TO-1 PLANAR FUNCTIONS

n 4 5 6 7 8
Algorithm 1 0.06 0.06 5.551 53.792 585.26

Code isomorphism 0.09 4.8 108.427 10812.63 N/A

22

where n = 2m, q = 2m, gcd(i,m) = 1, c ∈ F2n and s ∈ F2n \ Fq such that x2
i+1 + cx2

i

+ cqx+ 1 has no solution x such
that xq+1 = 1 [6]. A distinct function can be obtained for any choice of c and s, where c can be any element of F2n , and s
can be almost any element of F2n (with only the elements in the subfield Fq excluded). Even with the added restriction of
x2

i+1 + cx2
i

+ cqx+ 1 not having solutions with xq+1 = 1, this leaves us with approximately (2n)2 = 22n functions, which
is a very large number as soon as n > 6. In fact, just generating the list of all these functions for n = 8 takes close to an
hour, and for n > 8 it is unrealistic to generate all functions, let alone classify them up to equivalence.

In order to reduce the number of functions that we need to work with, we can apply some simple tricks in order to eliminate
functions that we a priori know will be equivalent to others. For instance, let v ∈ F∗q , and consider the function C(vx)/v2

i+1

which is clearly linear-equivalent to C(x). We have

C(vx) = sv2xq+1 + v2
i+1x2

i+1 + v2
i+1xq(2

i+1) + cv2
i+1x2

iq+1 + cqv2
i+1x2

i+q,

and so
C(vx)/v2

i+1 = sv1−2
i

+ x2
i+1 + xq(2

i+1) + cx2
iq+1 + cqx2

i+q,

which is also a function of the form (2), except that the coefficient s has been replaced by sv1−2
i

. Since gcd(i,m) = 1 by
assumption, we have that x 7→ x1−

i

permutes F∗q . Thus, replacing the coefficient s in a function of the form (2) with sw for
any w ∈ F∗q yields a function EA-equivalent to the original function. Thus, it is enough to consider one coefficient s from
each coset of F∗q .

Similarly, consider the function

C(x2
n−1

)2 = s2xq+1 + x2
i+1 + xq(2

i+1) + c2x2
iq+1 + (c2)qx2

i+q.

Again, this function is linearly equivalent to C(x), with the only difference being that the coefficients (c, s) are replaced with
(c2, s2). Provided we consider the functions (2) for all choices of s, it is thus enough to consider one c from every cyclotomic
coset {c2k : k} in order to generate all functions up to EA-equivalence.

In conclusion, if we denote by Cs,c(x) the function from (2) parametrized by s and c, then for any s′ ∈ {(sw)2
k

: k ∈
{0, 1, . . . , n − 1}, w ∈ F∗q}, there exists a c′ ∈ F2n such that Cs,c is EA-equivalent to Cs′,c′ . Consequently, we only need to
consider one representative s from every set of the form {(sw)2

k

: k,w}. This significantly reduces the number of functions
that we have to consider, and makes classification possible for n = 12.

Since the functions from C3 are not 3-to-1 functions as defined in (2), we use Algorithms 2 and 4 to find equivalent 3-to-1
uniformly distributed representations, and then classify them using Algorithm 1.

Using Algorithm 1, we verify that the classes given in Table V of [10] cannot be “broken down” further, i.e. any two
known 3-to-1 quadratic APN functions over F212 having the same differential spectrum of the orthoderivative are, in fact,
CCZ-equivalent. For the convenience of the reader, we give the table with the resulting classification below.

TABLE V
CLASSIFICATION OF ALL KNOWN QUADRATIC 3-TO-1 FUNCTIONS OVER F212 UP TO EA-EQUIVALENCE

ID Families Representative Ortho-derivative differential spectrum

1 Gold x3 09832095, 26220305, 6716625, 84095

2 Gold x33 010077795, 25225220, 41253070, 6212940, 84095

3 C1 x3 + a15x528 010118010, 25186790, 41238265, 6200130, 826775, 103150

4 C1 x33 + a15x768 010149615, 25124105, 41267560, 6201285, 829295, 101260

5 C2 x3 + a7x528 010241910, 25003460, 41263465, 6219555, 834335, 105670, 123150, 14945, 20630

6 C2 x33 + a7x768 010171350, 25118120, 41234485, 6211050, 830555, 104410, 121890, 14630, 20630

7 C3, C10 a1031x256 + x192 + ax130 + ax129 +
a515x128+a64x66+x65+a401x4+x3+
a200x2

010278072, 24954194, 41252503, 6237384, 842462, 107938, 20567

8 C4 x3 +Tr(x9) 010137531, 25156403, 41240776, 6208725, 826694, 102466, 12360, 14156, 169

9 C4 x3 + a−1Tr(a3x9) 010146186, 25159556, 41213488, 6219798, 830204, 103537, 12324, 1427

10 C5 x3 +Tr123 (x9 + x18) 010171467, 25096757, 41259532, 6215145, 826904, 102664, 12396, 14144, 1663, 1836, 2612

11 C5 x3 + a−1Tr123 (a3x9 + a6x18) 010164375, 25105754, 41262763, 6209601, 827261, 102835, 12459, 1472

12 C6 x3 +Tr123 (x18 + x36) 010156995, 25113977, 41268280, 6203805, 826442, 103060, 12432, 14120, 249

13 C6 x3 + a−1Tr123 (a6x18 + a12x36) 010173339, 25094351, 41259388, 6215262, 827090, 102943, 12657, 1490

14 C10, C12 a833x768+a581x516+a329x264+x192+
x129 + a65x128 + x66 + a2211x65 +
a77x12 + x3 + a2x2

010120950, 25169087, 41263276, 6191835, 825452, 102268, 12189, 3663

15 sporadic [10] x3 + δ42x66 + δ21x129 + δ14x1536 010231011, 25093109, 41162917, 6228501, 842462, 102268, 126615, 161134, 203969, 221134

We note that we only had to apply Algorithm 1 in order to verify that any pair of tested functions is EA-equivalent. In
particular, it was never necessary to search for uniformly distributed 3-to-1 functions additively equivalent to other uniformly
distributed 3-to-1 functions.

As a further illustration of the efficiency of our algorithm, Table VI gives the number of functions that we had to classify
in each case, and the average running time for verifying the equivalence per function.

23

TABLE VI
RUNNING TIMES (IN SECONDS) FOR VERIFYING THE CLASSIFICATION OF THE KNOWN QUADRATIC 3-TO-1 APN FUNCTIONS IN F212

ID Number Average Minimum Maximum
1 1 - - -
2 1 - - -
3 2 0.46 0.46 0.46
4 2 0.89 0.89 0.89
5 2 0.77 0.77 0.77
6 2 0.90 0.90 0.90
7 32256 7.20 0.01 65.43
8 1365 64.46 0.03 358.22
9 2730 113.53 0.03 575.23
10 1365 122.82 0.03 700.07
11 2730 213.79 0.03 1103.44
12 1365 71.90 0.03 399.20
13 2730 204.20 0.02 1006.48
14 168 0.03 0.02 0.04
15 16 0.36 0.01 0.66

VIII. CONCLUSION AND FUTURE WORK

We have developed and implemented an algorithm for efficiently testing linear equivalence between k-to-1 functions with
a particular multiplicative structure, and have demonstrated that many of the known APN and planar functions exhibit this
structure and can therefore be classified up to linear equivalence using this algorithm. In the case of planar functions, linear
equivalence coincides with the more general notion of CCZ-equivalence, under which such functions are typically classified.
In the case of 3-to-1 APN functions, we describe several auxiliary algorithms that can be used to extend the test of linear
equivalence to one of EA-equivalence; for quadratic 3-to-1 APN functions (which are by far the most frequently encountered
case), EA-equivalence coincides with CCZ-equivalence, and so we can classify them up to this more general equivalence
relation using the framework developed in our paper as well.

We have introduced the notion of left and right self-equivalence orbits, provided an algorithm for partitioning the finite field
Fpn into orbits with respect to a given function, and explained how these orbits can be used to reduce the computation time for
testing equivalence even further. We show that the number and sizes of the orbits are invariant under linear equivalence, and can
be used to distinguish between CCZ-inequivalent planar functions more efficiently than using the previously known invariants.
We give tables of the orbit representatives for all known planar functions over F3n with n ≤ 6, and give some observations
on the structure of the orbits of particular classes of functions (monomials, and functions whose univariate representation only
has coefficients in a subfield).

We use the developed algorithms to classify all known quadratic 3-to-1 APN functions over F212 , and present detailed
running times illustrating the efficiency of our approach.

A straightforward direction for future work would be to run computational searches for e.g. 2-to-1 planar functions and
3-to-1 APN functions in high dimensions (where classification has not been possible before) and use the proposed suite of
algorithms for classifying them up to equivalence. This could provide us with new sporadic instances of functions that may
lead to new infinite families and constructions.

Another aspect to consider would be whether a similar approach can be used to test equivalence between functions that
are not necessarily uniformly distributed, or even k-to-1, or whether the proposed methods can be adapted to other notions
of equivalence, such as CCZ-equivalence. We note that for quadratic planar and APN functions, CCZ-equivalence coincides
with linear equivalence and EA-equivalence, respectively, and so can be tested using the proposed methods. For functions that
are not necessarily planar or APN, or for planar and APN functions of higher algebraic degree, EA-equivalence can be less
general than CCZ-equivalence, and so adapting the approach to the more general case of CCZ-equivalence would be beneficial.
At the moment, non-quadratic planar and APN instances are quite rare, but constructing such functions is an important open
problem, and we might expect to see more of them in the future.

It would be interesting to identify other classes of uniformly distributed functions (besides 2-to-1 planar and 3-to-1 APN
functions) that are of interest, and to test the efficiency of the proposed algorithms for deciding their equivalence. If such
functions are k-to-1 for large enough k, finding an efficient way to guess the “configurations” of k-tuples (as described in the
commentary on Algorithm 1) would be interesting.

Finally, mathematically computing the left and right orbits of various classes of functions would be an interesting exercise,
and prove useful especially for classifying planar functions in higher dimensions, where the computation of the orbits may
take a very long time.

ACKNOWLEDGMENTS

This research is partly sponsored by the Trond Monh foundation.

24

REFERENCES

[1] Christof Beierle, Marcus Brinkmann, and Gregor Leander. Linearly self-equivalent APN permutations in small dimension. IEEE Transactions on
Information Theory, 2021.

[2] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology, 4(1):3–72, Jan 1991.
[3] Alex Biryukov, Christophe De Canniere, An Braeken, and Bart Preneel. A toolbox for cryptanalysis: Linear and affine equivalence algorithms. In

International conference on the theory and applications of cryptographic techniques, pages 33–50. Springer, 2003.
[4] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system I: The user language. Journal of Symbolic Computation, 24(3-4):235–265,

1997.
[5] KA Browning, JF Dillon, MT McQuistan, and AJ Wolfe. An APN permutation in dimension six. Finite Fields: theory and applications, 518:33–42,

2010.
[6] Lilya Budaghyan and Claude Carlet. Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Transactions on Information

Theory, 54(5):2354–2357, 2008.
[7] Lilya Budaghyan, Claude Carlet, and Alexander Pott. New classes of almost bent and almost perfect nonlinear polynomials. IEEE Transactions on

Information Theory, 52(3):1141–1152, 2006.
[8] Lilya Budaghyan and Tor Helleseth. New perfect nonlinear multinomials over Fp2k for any odd prime p. In International Conference on Sequences

and Their Applications, pages 403–414. Springer, 2008.
[9] Lilya Budaghyan and Tor Helleseth. New commutative semifields defined by new pn multinomials. Cryptography and communications, 3(1):1–16, 2011.

[10] Lilya Budaghyan, Ivana Ivkovic, and Nikolay Kaleyski. Triplicate functions. arXiv preprint arXiv:2021/1387, 2021.
[11] Lilya Budaghyan and Oleksandr Kazymyrov. Verification of restricted EA-equivalence for vectorial boolean functions. In International Workshop on

the Arithmetic of Finite Fields, pages 108–118. Springer, 2012.
[12] Anne Canteaut, Alain Couvreur, and Léo Perrin. Recovering or testing extended-affine equivalence. arXiv preprint arXiv:2103.00078, 2021.
[13] Claude Carlet. Boolean functions for cryptography and coding theory. Cambridge University Press, 2021.
[14] Claude Carlet, Pascale Charpin, and Victor A. Zinoviev. Codes, bent functions and permutations suitable for DES-like cryptosystems. Designs, Codes

and Cryptography, 15(2):125–156, 1998.
[15] Stephen D Cohen and Michael J Ganley. Commutative semifields, two dimensional over their middle nuclei. Journal of Algebra, 75(2):373–385, 1982.
[16] Robert S Coulter and Marie Henderson. Commutative presemifields and semifields. Advances in Mathematics, 217(1):282–304, 2008.
[17] Robert S Coulter and Pamela Kosick. Commutative semifields of order 243 and 3125. Finite Fields: Theory and Applications, in: Contemp. Math,

518:129–136, 2010.
[18] Itai Dinur and Adi Shamir. Breaking Grain-128 with dynamic cube attacks. In International Workshop on Fast Software Encryption, pages 167–187.

Springer, 2011.
[19] Daniel Edel and Alexander Pott. On the equivalence of nonlinear functions. In Enhancing Cryptographic Primitives with Techniques from Error

Correcting Codes, volume 23, pages 87–103. IOS Press, 2009.
[20] Xiang-dong Hou. Permutation polynomials over finite fieldsa survey of recent advances. Finite Fields and Their Applications, 32:82–119, 2015.
[21] Valeriya Idrisova. On an algorithm generating 2-to-1 apn functions and its applications to the big apn problem. Cryptography and Communications,

11(1):21–39, 2019.
[22] Nikolay Kaleyski. Deciding ea-equivalence via invariants. Cryptography and Communications, 14(2):271–290, 2022.
[23] Lars R Knudsen. Truncated and higher order differentials. In International Workshop on Fast Software Encryption, pages 196–211. Springer, 1994.
[24] Sihem Mesnager and Longjiang Qu. On two-to-one mappings over finite fields. IEEE Transactions on Information Theory, 65(12):7884–7895, 2019.
[25] Ferruh Özbudak, Ahmet Sınak, and Oğuz Yayla. On verification of restricted extended affine equivalence of vectorial boolean functions. In International

Workshop on the Arithmetic of Finite Fields, pages 137–154. Springer, 2014.
[26] Alexander Pott. Almost perfect and planar functions. Designs, Codes and Cryptography, 78(1):141–195, 2016.
[27] Alexander Pott and Yue Zhou. Switching construction of planar functions on finite fields. In International Workshop on the Arithmetic of Finite Fields,

pages 135–150. Springer, 2010.
[28] Ana Salagean. Discrete antiderivatives for functions over fpn. 2019.
[29] Guobiao Weng, Yin Tan, and Guang Gong. On quadratic almost perfect nonlinear functions and their related algebraic object. In Workshop on Coding

and Cryptography, pages 57–68. Citeseer, 2013.
[30] Satoshi Yoshiara. Equivalences of quadratic APN functions. Journal of Algebraic Combinatorics, 35(3):461–475, 2012.
[31] Yuyin Yu, Mingsheng Wang, and Yongqiang Li. A matrix approach for constructing quadratic APN functions.
[32] Yuyin Yu, Mingsheng Wang, and Yongqiang Li. A matrix approach for constructing quadratic APN functions. Designs, codes and cryptography,

73(2):587–600, 2014.
[33] Yue Zhou and Alexander Pott. A new family of semifields with 2 parameters. Advances in Mathematics, 234:43–60, 2013.

	Introduction
	Preliminaries
	Vectorial functions and their representations
	Derivatives of vectorial Boolean functions
	The Walsh transform
	Equivalence relations
	Uniformly distributed functions

	Testing linear equivalence of uniformly distributed functions
	Auxiliary algorithms
	Testing whether a 3-to-1 function is linear-equivalent to a uniformly distributed 3-to-1 function
	Testing EA-equivalence to a k-to-1 function

	Pre-computation of self-equivalence orbits
	Implementation and experimental results
	Classification of 3-to-1 APN functions over for dimension 12
	Conclusion and future work
	References

