
NOVA, a Noncommutative-ring Based
Unbalanced Oil and Vinegar Signature

Scheme with Key-randomness Alignment

Lih-Chung Wang ∗† Po-En Tseng ‡ Yen-Liang Kuan §

Chun-Yen Chou ¶

Abstract

In this paper, we propose a noncommutative-ring based unbalanced oil and
vinegar signature scheme with key-randomness alignment: NOVA (Noncommuta-
tive Oil and Vinegar with Alignment). Instead of fields or even commutative rings,
we show that noncommutative rings can be used for algebraic cryptosystems. At
the same or better level of security requirement, NOVA has a much smaller pub-
lic key than UOV (Unbalanced Oil and Vinegar), which makes NOVA practical
in most situations. We use Magma to actually implement and give a detailed
security analysis against known major attacks. 1

1 Introduction

All known multivariate cryptosystems are systems of nonlinear polynomial equations in
several variables over a finite field. The security of these multivariate schemes is based
on the MQ problem: for m quadratic polynomials p1(x1, . . . , xn), p2(x1, . . . , xn), . . . ,
pm(x1, . . . , xn) in n variables x1, x2, . . . , xn over a finite field Fq of order q, to find a vector
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(a1, a2, . . . , an) ∈ Fn
q such that p1(a1, . . . , an) = p2(a1, . . . , an) = · · · = pm(a1, . . . , an) =

0. The MQ problem is proven to be NP-hard [19]. The private key of a usual multi-
variate scheme consists of three maps: S : Fm

q → Fm
q , F : Fm

q → Fn
q , T : Fn

q → Fn
q where

F is a plausibly invertible polynomial map (called the central map) and S, T are easily
invertible maps (usually linear maps) to hide the structure of the central map F . The
public key is the composite map S ◦F ◦T . Since 1988, many multivariate schemes such
as C∗ [26], HFE [31], MFE [22], UOV [23], Rainbow [12], TRMS [41], TRMC [40], ABC
[37] and other applications [15, 36] are presented.

However, why the polynomials used in multivariate cryptosystems must be over fields
or even over commutative rings? If we can overcome difficulties in computation over
noncommutative rings, we end up with cryptosystems of the same or better security.
Well-known noncommutative rings include matrix rings, group rings and quoternion
rings. Note that a finite group ring can be viewed as a subring of some matrix ring,
and a finite quoternion ring can be viewed as a quotient ring of some subring of a
matrix ring. In this paper, we choose the noncommutative matrix ring R of l × l
matrices over Fq to be the coefficient ring. We construct a UOV-like scheme with
coefficients in R and overcome difficulties in computation and thus show that we can
have multivariate cryptosystems of nonlinear polynomial equations in several variables
over a noncommutative ring.

For cryptanalysis, because of the noncommutative structure of the coefficient ring R,
it will be very difficult for the attacker to directly attack the system at the ring level
due to the lack of commutativity, hence powerful computation tools such as F4 [16], F5

[17] and XL variants [10, 42] as in the case of fields. On the other hand, it is possible
to attack the system at the level of the field Fq since R is the matrix ring of l × l
matrices over Fq. However, since each element in R consists of l2 elements in Fq, thus
m equations with n variables in R will result in l2 ·m equations with l2 · n variables in
Fq, thus making the corresponding attack at the field level computationally infeasible.
And, from this point of view, we see that the reduction of key-size is tremendous at the
same or even better security level by using the noncommutative ring.

Also, multivariate cryptosystems are now getting more attention as number theory
based cryptosystems losing ground under the attack of quantum computing power that
executing Shor’s algorithm [35]. However, straightforward multivariate cryptosystems
suffer from huge key sizes as the private key keeping the records of random choices and
the public key keeping the records of all coefficients in all polynomials in the public
key. A known way to downsize the private key is to use a seed and a pseudo random
number generator (PRNG). That is, use the randomness of the seed to generate the
randomness of the private key while reducing the key size. Ironically, for the purpose
of practical use of public key cryptosystems, the focus of downsizing keys should be on
the public key rather than the private key since it is the public key should be known
and transmitted over public channels.

In [32, 33], Petzoldt et al. proposed a new technique that realign the randomness of
the central map F to a part of the public key, and then downsizing of the public key is

2



possible without sacrificing the randomness of the composite map. That is, to realign
part of the source of randomness from the private key to a part of the public key.
Note that this randomness alignment technique is applicable to UOV-alike systems. In
[11], they apply this technique on Rainbow scheme. We will also use this technique
to help reducing the public key size. Thus we name our noncommutative-ring based
unbalanced oil and vinegar signature schemes with key-randomness alignment: NOVA
(Noncommutative Oil and Vinegar with Alignment).

In Section 2, we first briefly introduce the notations used in this paper and the con-
struction of usual multivariate signature schemes. We then describe UOV in details,
including original key generation and key generation with key-randomness alignment
in Section 3.

In Section 4, we give a full introduction of our signature scheme NOVA, first using
key generation without key-randomness alignment, then using key generation with key-
randomness alignment.

A detailed security analysis of NOVA is given in Section 5. After briefly introducing
NIST levels I, III, and V, we thoroughly discuss known major attacks including Direct
attack, Min-Rank alike attacks, K-S attack (UOV attack), Intersection attack, and
algebraic attack for matrix [T−1] we called equivalent key attack.

We carefully pick several sets of parameters for NOVA so that it meets the requirements
of National Institute for Standards and Technology (NIST) level I, III, and V in its
PQC standardization project [28], respectively. An actual comparison with NIST final
candidates is given in the analysis below.

Section 6 gives our proposed parameter settings for actual implementation of NOVA
using Magma, including tables showing complexity in log2(♯gates) and key-sizes and
lengths of the signature with these proposed parameter settings.

A conclusion is given in Section 7. A brief introduction of a variant of NOVA scheme
is given in Appendix using whipping technique proposed by Beullens [5].
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2 Preliminaries

2.1 Notation Used in The Paper

Symbol Description

Fq finite field of order q

R noncommutative ring

v number of vinegar variables

o number of oil variables

s symmetric matrix used in NOVA

n = v + o number of variables

m = o number of equations

F = [F1 · · ·Fm] central map of the signature scheme

[Fi] matrix corresponding to Fi in F

T invertible linear map in signature scheme

[T ] matrix corresponding to T

[T−1] matrix corresponding to the map T−1

P = [P1 · · ·Pm] public key of the signature scheme

D document to be signed

Hash(D) hash value of the document D

O oil space of the central map F

T−1(O) oil space of the public key P

MQ(N,M, q) complexity of solving MQ system of M equations in N variables

Transpose of a matrix. Let A ∈ R be a l × l matrix. If we write

A =

a11 · · · a1l
...

. . .
...

al1 · · · all

 ,

then the transpose of A is the matrix

At =

a11 · · · al1
...

. . .
...

a1l · · · all

 .
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Moreover, for a matrix [T ] ∈ Matn(R), that is

[T ] =

t11 · · · t1l
...

. . .
...

tl1 · · · tll


where tij ∈ R then its transpose is the matrix

[T ]t =

(t11)
t · · · (tl1)

t

...
. . .

...
(t1l)

t · · · (tll)
t

 .

2.2 Construction of Multivariate Quadratic (MQ) Signature

Usual multivariate signature schemes are constructed as follows. Let Fq denote the
finite field of order q. Let n and m are two positive integers. A usual multivariate
signature scheme consists of three maps, S, F, T where F = [F1, · · · , Fm] : Fn

q → Fm
q is

an easily invertible quadratic map (trapdoor map) called the central map, T : Fn
q → Fn

q

and S : Fm
q → Fm

q are two invertible linear maps randomly chosen in order to hide the
specific structure of F .

Public key. The public key of the multivariate signature scheme is the multivariate
polynomial map P = S ◦ F ◦ T : Fn

q → Fm
q .

Secret key. The three maps S, F and T .

Signature. Let z = Hash(D) ∈ Fm
q be the hash value of the document to be signed.

Compute y = S−1(z) and then solve x = F−1(y). Therefore, the signature of document
D is u = T−1(x).

Verification. Accept the signature u ∈ Fn
q if P (u) = Hash(D), and reject it otherwise.

3 Unbalanced Oil and Vinegar Signature Scheme

The Oil and Vinegar (OV) digital signature scheme, proposed by Patarin [30], is a MQ
digital signature scheme. The central map of OV is an MQ-based trapdoor function
with n = 2m. The K-S attack, also called the UOV attack, given by Kipnis and Shamir
[24] reveals that OV scheme is insecure. However, with slight modification in the setting
of OV scheme, i.e., to set n > 2m, then it can resist the attack in [24]. This modified
version of OV is known as Unbalanced Oil and Vinegar (UOV) signature scheme [23].

Being an MQ signature scheme, in practical aspect, UOV scheme still face the problem:
to meet the security requirement proposed by NIST level I, III, and V, the size of the
public key is too large if nothing is done.
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A UOV signature scheme is associated with a triple of positive integers (v, o, q) with
v > o so that the number of variables n = v + o, the number of equations m = o, and
q is the order of the finite field Fq.

Central map. We described the central map of UOV scheme F : Fn
q → Fm

q as below.

F =


F1
...
Fi
...

Fm

 =



v∑
j=1

n∑
k=j

f1,jkxjxk

...
v∑

j=1

n∑
k=j

fi,jkxjxk

...
v∑

j=1

n∑
k=j

fm,jkxjxk


where fi,jk’s are the coefficients chosen randomly from Fq. Thus F consists of m
homogeneous quadratic polynomials in n variables over Fq and Fi = xt [Fi]x with
x = (x1, · · · , xn)

t. Note that, for j, k = v + 1, · · · , n, each Fi does not contain xjxk

terms. This kind of phenomenon is analogous to that oil and vinegar won’t mix com-
pletely and this enables us to invert F easily.

We called the variables x1, · · · , xv the vinegar variables, and xv+1, · · · , xn the oil vari-
ables. It is also required that v > o in order to resist the K-S attack. This is the reason
why the scheme is called Unbalanced Oil and Vinegar (UOV).

Private key. The design of UOV chooses S in the usual private key (S, F, T ) to be
the identity map. Thus, for UOV, the private key is only the pair (F, T ) where F is
the central map above, and T : Fn

q → Fn
q is an invertible linear map which is randomly

chosen.

Public key. The composite map P = F ◦ T : Fn
q → Fm

q consisting of m homogeneous
quadratic polynomials in n variables over Fq is the public key. Note that the i-th
public polynomial Pi can be written in a quadratic form, that is, Pi = ut [Pi]u where
u = (u1, · · · , un)

t and [Pi] = [T ]t [Fi] [T ] where [T ] is the matrix corresponding to T .

Oil space of the public key. By the construction of UOV scheme, we know that P
vanishes on a subspace of Fn

q denoted by T−1(O) with O = {(x1, · · ·xn)
t ∈ Fn

q : x1 =
· · · = xv = 0}, which is called the oil space of public key P . In other words, P (õ) = 0
for all õ ∈ T−1(O).

Signature. Let D be the document to be signed. We first solve x = (x1, · · · , xn)
t ∈ Fn

q

such that F (x) = Hash(D) ∈ Fm
q where Hash(D) is the hash value of D. The strategy

is to randomly assign values to vinegar variables x1, · · · , xv, then the resulting system
becomes linear in oil variables xv+1, · · · , xn only since there is no xjxk where j, k =
v + 1, · · · , n, in each Fi. Hence, with a very high probability, it can be solved, e.g.,
using Gaussian elimination. If the resulting linear system cannot be solved uniquely,
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we simply randomly assign another set of values to vinegar variables x1, · · · , xv. The
signature of UOV scheme is u = T−1(x) ∈ Fn

q .

Verification. First, we compute the hash value Hash(D). Secondly, we verify whether
P (u) = Hash(D) or not. If so then the signature is accepted, otherwise rejected.

Public key generation. Choose all coefficients in (F, T ) randomly and then compute
the composite map P = F ◦ T .

3.1 Original Key Generation of UOV

Notice that according to the congruence relation [Pi] = [T ]t [Fi] [T ] we can do the
following to speed up the generation of the public key of UOV scheme without sacrificing
security.

1. The matrix representation [T ] of the invertible linear map T can be chosen in the
form (see [32]).

[T ] =

[
I11 T 12

0 I22

]
where I11, I22 are identity matrices of size v × v and o × o, respectively, and T 12 is a
v × o matrix over Fq. We also denote

[
T−1

]
=

[
I11 (T−1)12

0 I22

]
.

2. We can represent the map F as a set of n× n matrices [Fi] for i = 1, · · · ,m. By the
design of F , we can write these [Fi] in the form

[Fi] =

[
F 11
i F 12

i

0 0

]
,

where F 11
i is a v × v upper triangular matrix and F 12

i is a v × o matrix.

3. The map P can be represented as a set of n× n upper triangular matrices [Pi].

Now we can go through the following steps to obtain public key [Pi] for i = 1, · · · ,m.

First Step: Generate the private key (F, T ) from a seed.

First, choose a seed sprivate and use pseudo random number generator(PRNG) to gen-
erate the coefficients of the invertible linear map T and the coefficients of central map
F , namely the matrix T 12 and the components of the matrices [Fi]’s.

Second Step: Compute the matrices [Pi]’s corresponding to the public key P .
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Since the public key P = F ◦ T , it follows that each matrix

[Pi] = Upper
(
[T ]t [Fi] [T ]

)
= Upper

([
F 11
i F 11

i T 12 + F 12
i

(T 12)tF 11
i (T 12)tF 11

i T 12 + (T 12)tF 12
i

])
=

[
Upper(F 11

i ) (F 11
i + (F 11

i )t)T 12 + F 12
i

0 Upper ((T 12)tF 11
i T 12 + (T 12)tF 12

i )

]
=

[
P 11
i P 12

i

0 P 22
i

]

where Upper(·) is the map that expresses how the public key of UOV assembles its
terms. Hence Upper(·) sends a matrix to its equivalent upper triangular matrix in the
sense when applying as a quadratic form. That is, in the case of UOV, for a matrix
Â = [aij], Upper(Â) = [ãij] with

ãij =


aij + aji , i < j

aij , i = j
0 , otherwise.

Remark 3.1. The use of a seed sprivate is to save the cost of storing the private key
(F, T ). One may choose not to record the coefficients in the generated private key
(F, T ), but only the seed sprivate. It can be regarded as a trade off of increasing the
cost of time in exchange for the cost of key size. However, the private key is only stored
in the private device of the user. Thus the cost of the private key size is acceptable.
Although such saving is not extremely necessary, the idea of only recording the seed to
reduce size is still valuable. In combinations of other ideas as in [32] and [11], it is
used to solve the problem that the public key size of a multivariate cryptosystem is too
large as below.

3.2 Key Generation of UOV with Key-Randomness Alignment

A. Petzoldt [32] and Rainbow [11] of the third-round of NIST proposal indicate that the
number of coefficients in the original randomly generated private key can be regarded
as the degree of freedom for determining the coefficients in the key generation process.
Part of the degree of freedom of the private key can be transferred to the public key by
another seed (key-randomness alignment) and thus reducing the public key size. Thus
it solves the essential problem of the public key of original UOV being too large.

First Step: Generate a part of the public key P and the private key T from two seeds
respectively.

First, [32] use a seed sprivate and PRNG to generate a component of the private key
T 12. Use another seed spublic to generate the coefficients of part of the public key P :
P 11
i , P 12

i for i = 1, · · · ,m.

Second Step: Compute the matrices Fi’s corresponding to the central map F .
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From the relation [Pi] = Upper([T ]t [Fi] [T ]) and [T ] is an invertible matrix, it follows
that the matrix

[Fi] = ([T ]t)−1 [Pi] [T ]
−1 =

[
T−1

]t
[Pi]

[
T−1

]
and hence we have that

F 11
i = P 11

i ,

F 12
i = (P 11

i + (P 11
i )t)(T−1)12 + P 12

i .

Third Step: Compute the remaining parts of the public key P :

P 22
i = Upper

(
(T 12)tF 11

i T 12 + (T 12)tF 12
i

)
.

4 Noncommutative Oil and Vinegar with Alignment

In this section, we introduce our signature scheme over a noncommutative ring, NOVA.
The core idea behind our scheme is to use noncommutative structure to resist attacks
with fewer ring variables at or above the same level of security requirement, thereby
reducing the size of the public key.

4.1 Description

Let v, o be positive integers with v > o and q a power of a prime. For implementation,
we choose our noncommutative ring R be the ring consisting of l× l matrices over the
finite field Fq. A NOVA signature scheme is associated with a quadruple of positive
integers (v, o, q, l). Let n = v + o and m = o.

The space Fq[s]. First, we randomly choose an l× l symmetric matrix with irreducible
characteristic polynomial over Fq, say s. Let Fq[s] = {a0 + a1s + · · · + al−1s

l−1 :
a0, a1, · · · , al−1 ∈ Fq}. Note that the elements in Fq[s] are symmetric and commute
with each others.

Central map. The central map of NOVA scheme F = [F1, · · · , Fm] : Rn → Rm is
constructed as below. Let Ω = {(j, k) : 1 ≤ j, k ≤ n} and Ω̃ = {(j, k) : v+1 ≤ j, k ≤ n}
For i = 1, · · · ,m, Fi is of the form

Fi =
l2∑

α=1

∑
Ω\Ω̃

Aα1 · xt
j(Qα1Fi,jkQ

−1
α1 −Qα2(Fi,kj)

tQ−1
α2 )xk · Aα2

where Fi,jk’s, Aα1 and Aα2 are the elements chosen randomly from R, and Qα1, Qα2

are invertible matrices chosen randomly from Fq[s].
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The matrix over R corresponding to Fi is

[Fi] =

[
F 11
i F 12

i

F 21
i 0

]
,

where F 11
i , F 12

i and F 21
i are matrices over R of size v× v, v× o and o× v, respectively.

We can see that the central map of NOVA keep the spirit of UOV, that is, Fi does not
contain the terms Aα1 ·xt

j(Qα1Fi,jkQ
−1
α1 −Qα2(Fi,kj)

tQ−1
α2 )xk ·Aα2 for j, k = v+1, · · · , n.

It follows that NOVA generalize the notion of oil and vinegar variables from Fq to R.
That is, NOVA scheme behaves like a UOV scheme over a noncommutative ring.

Remark 4.1. The key formulation in matrices and the technique using key randomness
alignment in the key generation process of UOV are also applicable to NOVA.

Ivertible linear map. Let T : Rn → Rn be the map corresponding to the matrix

[T ] =

[
I11 T 12

0 I22

]
,

where T 12 is a v × o matrix consisting of nonzero elements tij we choose randomly
from Fq[s]. Note that elements in Fq[s] can commute with each other. I11, I22 are the
diagonal matrices with all diagonal entries being the unity in R (i.e. identity matrix).
Thus, [T ] is invertible and hence T .

The map F̃ . Let F̃ = F ◦ T . For i = 1, 2, . . . ,m, each component map F̃i is the
composition of Fi and T , that is, F̃i = Fi ◦ T . According to the relation F̃i = Fi ◦ T
and x = [T ] · u we get

F̃i(u) = Fi(T (u)) =
l2∑

α=1

n∑
dj=1

n∑
dk=1

Aα1 · ut
dj
(Qα1F̃i,djdkQ

−1
α1 −Qα2(F̃i,dkdj)

tQ−1
α2 )udk · Aα2

where
F̃i,djdk =

∑
Ω\Ω̃

tj,djFi,jktk,dk ,

(F̃i,dkdj)
t = (

∑
Ω\Ω̃

(tk,dk)
tFi,kjtj,dj)

t =
∑
Ω\Ω̃

tj,dj(Fi,kj)
ttk,dk

and u = (u1, · · · , un). Note that tij commutes with Qα1 and Qα2 since they all are in
Fq[s].

Perturbation on the map F̃i. Different from the original UOV map P = F ◦ T ,
we introduce a technique we called perturbation to the map F̃i to form the public
key of NOVA scheme. First, we randomly choose εi,djdk ∈ Fq[s] and we require that
εi,djdk = εi,dkdj . We denote the matrix corresponding to perturbations εi,djdk by [εi].

Secondly, we let Pi,djdk = F̃i,djdk + εi,djdk and (Pi,dkdj)
t = (F̃i,dkdj)

t + εi,dkdj . Therefore,
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we have

Pi(u) =
l2∑

α=1

n∑
dj=1

n∑
dk=1

Aα1 · ut
dj

(
Qα1

(
Pi,djdk

)
Q−1

α1 −Qα2

(
(Pi,dkdj)

t
)
Q−1

α2

)
udk · Aα2

= F̃i(u).

Note that P can not be regarded as a UOV over R. Therefore, this will make it more
difficult for the attacker to attack NOVA, in general. The matrix over R corresponding
to Pi has the form of

[Pi] =

[
P 11
i P 12

i

P 21
i P 22

i

]
.

Public key. The public key are the map P : Rn → Rm, i.e., the corresponding
matrices [Pi] for i = 1, · · · ,m, and the matrices Aαk and Qαk for k = 1, 2. Note that,
without key-randomness alignment, the verifier will receive matrices [Pi] and a seed
spublic which is used to generate Aαk and Qαk for k = 1, 2. On the other hand, with
alignment technique, the signer distributes the part of [Pi], namely P 22

i , for i = 1, · · · ,m
and a seed spublic that is used to generate P 11

i , P 12
i , P 21

i , Aαk and Qαk. In other words,
the matrices do not incur any additional costs on public key size with using randomness-
alignment.

Private key. The private key of NOVA is (F, T ), i.e., the matrices [T ] and the matrices
[Fi].

Structure of NOVA. According to the perturbation on P in NOVA scheme, there
does not exist an oil space of P of NOVA scheme over R similar to the space T−1(O)
as in the case of UOV. However, an equation over R gives l× l equations over Fq which
means a NOVA scheme can not only be regarded as a UOV scheme in R variables,
but also a UOV scheme in Fq variables. Therefore, a (v, o, q, l) NOVA over R scheme
can be regard as an (l2v, l2o, q) UOV scheme over Fq. In fact, they are the same when
considered as only over Fq. However, the noncommutativity of R and the perturbation
on P still create differences between NOVA and UOV when NOVA is also considered
over R. These differences are also reasons that NOVA can resist the attacks against
UOV.

Signature. Note that for the signer it is unaffected by the perturbation, that is, the
process of signing is the same as for UOV. Let Hash(D) = (y1, · · · , ym) ∈ Rm be the
hash value of document D. First, we solve x = (x1, · · · , xn) ∈ Rn such that Fi(x) = yi
for i = 1, · · · ,m. For this, we assign values to vinegar variables x1, · · · , xv randomly and
then, as mentioned above, we can regard the resulting system as a linear system over
Fq. Hence with a high probability, we can solve the system using Gaussian elimination
over Fq. Therefore, the signature is u = T−1(x) ∈ Rn.

Verification. Similarly, the verification of a signature is not affected by perturbation.
Let u = (u1, · · · , un) ∈ Rn be the signature to be verified. We compute the hash value
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Hash(D) of the document and the value P (u). If Hash(D) = P (u) then the signature
is accepted, otherwise rejected.

Remark 4.2. Due to the structure of Pi and that R is noncommutative, it is impossible
to write the public key in quadratic form over R, namely Pi(u) = ut [Pi]u. However,
it is possible to write the public key in quadratic form over Fq, i.e. regards NOVA as
a UOV scheme over Fq, but with the explosion of the number of equations and the
number of variables.

4.2 Key Generation without Key-Randomness Alignment

We can obtain the public key [Pi] of NOVA by following steps.

First Step: Generate the private key [T ], [Fi] and [εi] from a seed.

We use PRNG to generate [T ], [Fi] and [εi] from a seed sprivate .

Second Step: Compute matrices
[
F̃i

]
by the formulas above.

Since for ring variables x = (x1, · · · , xn) we have x = T (u), we write

xj =
n∑

dj=1

tj,djudj , j = 1, · · ·n.

Since F̃ = F ◦ T and tij commutes with Qα1 and Qα2 we have

F̃i(u) =
l2∑

α=1

n∑
dj=1

n∑
dk=1

Aα1 · ut
dj
(Qα1F̃i,djdkQ

−1
α1 −Qα2(F̃i,dkdj)

tQ−1
α2 )udk · Aα2.

Therefore, the matrices corresponding to F̃i are obtained by

[
F̃i

]
=

[
F̃i

11
F̃i

12

F̃i
21

F̃i
22

]
= [T ]t [Fi] [T ]

=

[
F 11
i F 11

i T 12 + F 12
i

(T 12)tF 11
i + F 21

i (T 12)tF 11
i T 12 + F 21

i T 12 + (T 12)tF 12
i

]
.

Third Step: Compute the public key of NOVA, i.e., matrices [Pi].

To obtain the matrix [Pi], for each component in [Pi], we let Pi,djdk = F̃i,djdk + εi,djdk
and (Pi,dkdj)

t = (F̃i,dkdj)
t + εi,dkdj for dj, dk = 1, · · · , n, i.e., apply the perturbation on

12



F̃i. Therefore, public key

[Pi] =
[
F̃i

]
+ [εi]

=

[
F̃i

11
+ ε11i F̃i

12
+ ε12i

F̃i
21
+ ε21i F̃i

22
+ ε22i

]

where [εi] =

[
ε11i ε12i
ε21i ε22i

]
∈ Matn(Fq[s]).

Key size of the public key: The key size of the public key is

Sizepk = m · n2 · l2

field elements of Fq.

4.3 Key Generation with Key-Randomness Alignment

First Step: Generate P 11
i , P 12

i and P 21
i for i = 1, · · · ,m, and [T ] from two seeds

spublic and sprivate respectively. Moreover, we also generate [εi] from sprivate.

Second Step: Compute the matrices F̃i
11
, F̃i

12
and F̃i

21
corresponding to the map F̃i.

From the formulas above, we see that once we generate P 11
i , P 12

i and P 21
i , then F̃i

11
,

F̃i
12

and F̃i
21

can be solved. Note that F̃i
11

= P 11
i − ε11i and so on.

Third Step: Compute matrices F 11
i , F 12

i and F 21
i

Note that [
T−1

]
=

[
I11 −T 12

0 I22

]
,

where T 12 is the top right corner submatrix of [T ].

From the relation

[Fi] =
(
[T ]t

)−1
[
F̃i

]
[T ]−1 =

(
[T ]−1)t [F̃i

]
[T ]−1 ,

we can obtain F 11
i , F 12

i and F 21
i as in the key generation process of UOV. Namely,we

13



have

[Fi] =

[
F 11
i F 12

i

F 21
i 0

]
=

(
[T ]−1)t [F̃i

]
[T ]−1

=

[
F̃i

11
(
F̃i

11
(−T 12) + F̃i

12
)

(−T 12)tF̃i
11
+ F̃i

21
(T 12)tF̃i

11
(T 12) + F̃i

21
(−T 12) + (−T 12)tF̃i

12
+ F̃i

22

]

Fourth Step: Compute the remaining part of
[
F̃i

]
’s, that is, F̃i

22
.

From the last step, F 11
i , F 12

i and F 21
i are obtained. Thus we can compute

F̃i
22

= (T 12)tF 11
i T 12 + F 21

i T 12 + (T 12)tF 12
i .

Final Step: Compute the remaining part of public key P 22
i by

P 22
i = F̃i

22
+ ε22i .

Reduced size of the public key. The reduced size of the public key of NOVA using
alignment is

Sizerpk = m ·m2 · l2

field elements of Fq.

5 Security Analysis

In this section, we first introduce several currently known attacks against UOV scheme
and then discuss their corresponding complexity analysis and consider the situation of
these attacks against our NOVA scheme. Notice that since NOVA is a signature scheme
over the matrix ring R with entries in Fq and it can be regarded as a UOV over Fq. We
will analyze the complexity from two different aspects, i.e., over the ring R and over
the field Fq.

5.1 Complexity and NIST Security Level

Given a homogeneous multivariate quadratic map P : FN
q → FM

q , we use MQ(N,M, q)
to denote the complexity of finding a non-trivial solution u such that P (u) = 0 if that
such a solution exists. There are several algorithms to solve a quadratic system of
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M equations in N variables over finite fields such as F4 [16], F5 [17] and XL variants
[10, 42].

In this paper, our complexity estimation follows from [3, 7]. The complexity of solving
M homogeneous quadratic equations in N variables can be estimated by

3 ·
(
N − 1 + dreg

dreg

)2

·
(
N + 1

2

)
field multiplications where dreg is the degree of regularity of a semi-regular polynomial
system and it is equal to the degree of the first non-positive term in the series generated
by

(1− t2)M

(1− t)N
.

The hybrid approach [2], which randomly guesses a small amount of variables, say k
variables, before solving the system with the Gröbner basis techniques. The complexity
of using this approach can be estimated by qk ·MQ(N − k,M, q) field multiplications
for the classical case and qk/2 · MQ(N − k,M, q) field multiplications when applying
Grover’s algorithm [20] for the quantum case.

Methods solving underdetermined MQ. Recently, Thomae and Wolf [39], Furue,
Nakamura and Takagi [18], Hashimoto [21] provide several methods to solve an under-
determined multivariate quadratic system P of M equations in N variables over a finite
field, that is, N is larger than M . The main idea of these methods is to find a particular
invertible linear map S converting the first αk equations into a special form where k is
the number of guessing in the hybrid approach. We can then remove (N−M)+αk vari-
ables and αk equations from system P . Therefore, an underdetermined MQ(N, M, q)
problem is reduced to an MQ(M − k − αk, M − αk, q) problem and hence can by
solved using the hybrid approach [2]. Note that different methods obtain different opti-
mal values αk due to how they convert P into different forms. Therefore, the formulas
for estimation of complexity of [39, 18, 21] are the same but with different optimal
values αk. We denote the optimal values αk of [39, 18] by αTW, αF, respectively and
αHMa, αHMb corresponding to two algorithms in [21] respectively. Therefore, the main
term of complexity of NOVA under this technique is given by, take the classical case
for example,

min
k

qk ·MQ(M − k − αk, M − αk, q)

field multiplications with different optimal values αk corresponding to different methods.
They are given by αTW = ⌊N

M
⌋ − 1, αF = ⌊N−k

M−k
⌋ − 1, αHMa = ⌊ N

M−k
⌋ − 1 and αHMb is

the optimal value such that N ≥ M − (αk + k−M)αk holds. So far, the attack in [21]
would be the sharpest among [39, 18, 21].

Algorithms for super-underdetermined MQ. There are also several algorithms
indicating that if the number of variables N is sufficiently larger than the number of
equations M in a MQ problem then it can be solved in polynomial time. Please refer to
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[24, 9, 27, 8] for more information. Note that these four algorithms are not applicable
to the parameter settings of NOVA.

Generally speaking, a scheme can be attacked in several ways. The different attacks will
construct different MQ systems and then solve them. Therefore, each attack will have a
corresponding complexity which is the difficulty of executing the attack. To enable the
system satisfies the required level of security means that to choose parameter settings so
that the lowest complexity among all known attacks is beyond the security requirement.
There are five security levels in the NIST PQC project [28].

NIST security level. Herein, We focus on level I, III, and V. Security levels I, III
and V aim that a classical attacker needs 2143, 2207 and 2272 classical gates to break the
scheme, and 274, 2137 and 2202 quantum gates for a quantum attacker, respectively.

Note that the formulas in this section give complexity estimations of attacks in terms
of field multiplications. And the number of gates required for an attack against digital
signature scheme can be computed by

♯gates = ♯field multiplication · (2 · (log2 q)2 + log2 q)

with the assumption that one field multiplication in the field Fq needs about (log2 q)
2

bit multiplications and same for bit additions. On the other hand, for each field multi-
plication in the process of the attack, it also needs an addition of field elements, each
takes log2 q bit additions.

5.2 Direct Attack

Given a quadratic multivariate polynomial system P consisting of m equations in n
variables over Fq and y ∈ Fm

q . The direct attack here is the straightforward method to
attack a scheme that trying to solve the solution u of the system P (u) = y algebraically
as explained below. In the case of UOV, the system is underdetermined, that is, the
number of variables n is larger than the number of equationsm. Therefore we can assign
the values to n−m variables in the system P (u) = y randomly and then the resulting
system consisting of m equations of m variables can be solved in high probability.

Note that the public key of UOV is considered to be a semi-regular system [1]. There-
fore, the complexity of direct attack can estimated by

CompDirect; ClassicalUOV = min
k

qk ·MQ(m− k + 1, m, q)

field multiplications and the complexity of the quantum direct attack is given by

CompDirect; QuantumUOV = min
k

qk/2 ·MQ(m− k + 1, m, q)

field multiplications when applying Grover’s algorithm [20].
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In the case of NOVA, if the attacker wants to solve a quadratic system over the ring
R directly then he will face a fundamental problem, that is, there is no efficient algo-
rithm like F4, F5 and XL to compute the solution u of the system P (u) = y over the
noncommutative ring R.

However, the main idea of the direct attack still works and it can be done by solving
the system over a finite field Fq instead of over the ring R. For the sake of brevity, as
mentioned before, we setR to be the ring of l×l matrix over Fq, thus each equation over
R gives us l2 equations over Fq corresponding to the l2 components of ring variables.
Therefore, the resulting system can be viewed as a quadratic system of l2m equations
in l2m field variables. Our experiment shows that, see table below, in the case of small
size parameter sets such a quadratic system constructed from NOVA that consisting
of l2 · m equations induced by l2 components of m equations in m variables over R
behaves like a random systems of l2 ·m equations in l2 ·m variables over a Fq but with
the reduction of degree of regularity at most one with high probability.

For security purposes, we will use dNOVA = dreg − 1 in our complexity estimations of
NOVA and the corresponding complexity is denoted byMQNOVA(N,M, q) when solving
the multivariate quadratic system of M equations in N variables constructed by public
polynomials of NOVA. Note that we can see this downward trend disappears as the
parameters get larger enough.

Hence we can estimate the complexity of the direct attack against NOVA from the
discussion above. The complexity of classical direct attack is then given by

CompDirect; classicalNOVA = min
k

qk ·MQNOVA(l
2m− k + 1, l2m, q)

field multiplications, and the complexity of the quantum direct attack is given by

CompDirect; quantumNOVA = min
k

qk/2 ·MQNOVA(l
2m− k + 1, l2m, q)

field multiplications.

The complexity of classical direct attack using technique in [39, 18, 21] is

CompTWFH; classicalNOVA = min
k

qk ·MQNOVA(l
2m− k − αk + 1, l2m− αk, q)

field multiplications, and the complexity of the quantum direct attack is given by

CompTWFH; quantumNOVA = min
k

qk/2 ·MQNOVA(l
2m− k − αk + 1, l2m− αk, q)

field multiplications.

The following table gives comparison of the degree at the first step degree falls or goes
flat using F4 algorithm [16], which is strongly connected to the degree of regularity
[13], in Magma algebra system [6] that starts to go either down or flat among all step
degrees of the quadratic system obtained by NOVA and a random quadratic system
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respectively. The experimental results on NOVA sometimes gives two numbers. We
show the less frequent one in parenthesis.

Table 1: Table of comparison of the degree at the first step degree falls or goes flat
between NOVA and random systems.

(v, o, q, l, k) NOVA system random system

(6, 1, 16, 2, 1) 3 (2) 3

(6, 2, 16, 2, 1) 4 5
(6, 2, 16, 2, 2) 4 4
(6, 2, 16, 2, 3) 3 3

(6, 3, 16, 2, 1) 6 (5) 7
(6, 3, 16, 2, 2) 5 6
(6, 3, 16, 2, 3) 4 5

(6, 4, 16, 2, 2) 7 7
(6, 4, 16, 2, 3) 5 6

5.3 MinRank Alike Attacks

Reconciliation Attack. The reconciliation attack proposed by [14] against UOV tries
to solve the system P (õ) = 0 by finding a vector õ ∈ T−1(O) and hence the basis of
T−1(O) where O = {(x1, · · · , xn) : x1 = · · · = xv = 0}. This implies that P (õ) = 0 is
a quadratic system that having a solution space of dimension m. To expect a unique
solution, we can imposem linear constraints with respect to the components of õ. Hence
the complexity of this attack is mainly given by that of solving the quadratic system of
m equations in v variables.

However, as an attack on UOV, where v > o = m, the complexity of reconciliation
attack usually will be greater than the complexity of direct attack which tries to solve
m quadratic equations in m variables. In other words, the performance of reconciliation
attack usually is not better than that of direct attack. In the case of NOVA, the
execution of Reconciliation Attack against NOVA as over ring even suffers from the
fact that there is no efficient algorithm to complete the attack over R.

Note that using the MinRank alike attacks for UOV systems to attack NOVA will also
suffer very high computing complexity by the same reasoning.

New MinRank attacks. In [3, 4], Beullens proposed Rectangular MinRank attack,
Simple attack and Combine attack that are new attacks against Rainbow signature
scheme. These attacks are based on the multi-layer structure of Rainbow. Therefore,
these attacks have no security implications on our scheme since NOVA has no multi-
layer structure.
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MinRank attack against NC-Rainbow. In 2012, [45] proposed a variant of Rainbow
based on Quaternion ring over a finite field Fq of characteristic 2. However, [38] shows
that if an attacker regards an NC-Rainbow scheme as a Rainbow scheme over Fq, then
the rank of the corresponding matrix to the central map of NC-Rainbow will be lower
than original Rainbow. The key point is, by doing so, the corresponding matrices will be
of a particular form and such a form is sparse. The MinRank attack of [38] is based on
the multi-layer structure of NC-Rainbow and the particular structure of multiplication
of Quaternion ring together with the sparsity mentioned above. Note that NOVA has
neither that sparsity nor a special form in its matrix representation. On the other hand,
NOVA has no multi-layer structure in the central map F . As a result, the MinRank in
[38] is not applicable to NOVA.

5.4 K-S Attack (UOV Attack)

The goal of the K-S attack [24] is to find an equivalent private key by finding an
equivalent invertible linear map T and hence the corresponding matrix [T ]. Once we
have an equivalent [T ], we can recover [Fi] by the relation [Fi] = [T−1]

t
[Pi] [T

−1]. To
do this, [24] shows that T−1(O), the oil subspace of the public key P of UOV, induces
an equivalent key.

Note that T−1(O) is an invariant subspace of [Pi]
−1 [Pj], where [Pi] and [Pj] are any two

public key matrices. The K-S attack tries to find a vector in T−1(O). Once one such
vector is found, then we expect that the space T−1(O) can be recovered with qn−2m

attempts. Note that if there are [Pi]’s not invertible, then we can replace [Pi] with
invertible linear combinations of [Pi]’s randomly chosen and the cryptanalysis of K-S
attack remains the same. Therefore the complexities of K-S attack and quantum K-S
attack are estimated by

CompK-S; classicalUOV = qn−2m−1 ·m4

field multiplications and

CompK-S; quantumUOV = q(n−2m−1)/2 ·m4

field multiplications, respectively.

From the design of central map F of NOVA and the noncommutativity of R, there does
not exist the notion of oil space of F over R analogous to the space O of UOV and
hence the notion of T−1(O) in the sense that regarding T−1(O) as a left-module or a
right-module over R. Such a requirement is necessary for K-S attack, since to execute
K-S attack over R, the consistency of multiplication over R given by a left-module
or a right-module over R is needed. Therefore, K-S attack is not applicable to NOVA
over R. [30] also proposes two methods to find an invariant subspace: the Linearization
method and the Characteristic Polynomial method. These two methods become invalid
over R since they still suffer from the noncommutativity of R.
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However, based on the same reason we mentioned before, an attacker may treat a
(v, o, q, l) NOVA scheme over R as an (l2v, l2o, q) UOV system over Fq and follows the
cryptanalysis of Direct attack to carry out K-S attack against NOVA over Fq.

In such a case, we have

CompK-S; classicalNOVA = ql
2n−2l2m−1 · (l2m)4

field multiplications for classical attack and

CompK-S; quantumNOVA = q(l
2n−2l2m−1)/2 · (l2m)4

field multiplications for quantum attack.

5.5 Intersection Attack

In [4], Beullens proposed a new attack against UOV scheme called the intersection
attack. The main idea of the intersection attack is to use the polar form of the public
key P , that is, P ′ = [P ′

1, · · · , P ′
m] with P ′

i (u1, u2) = (u1)
tM̂iu2 where M̂i = [Pi] + [Pi]

t.

The goal of the intersection attack is to seek a vector y in the intersection M̂i(T
−1(O))∩

M̂j(T
−1(O)) where M̂i, M̂j are invertible, and then to obtain an equivalent key by

recovering the subspace T−1(O) as in K-S attack. Because M̂−1
i y, M̂−1

j y ∈ T−1(O), we
obtain the following system. 

P (M̂−1
i y) = 0

P (M̂−1
j y) = 0

P ′(M̂−1
i y, M̂−1

j y) = 0

If 2.5m < n < 3m, the dimension of the solution space corresponding to the system is
3m − n. To obtain a unique solution with high probability, we can add 3m − n linear
random equations. Hence the complexity of solving the system is equivalent to that of
solving quadratic system with M = 3m equations and N = n − (3m − n) = 2n − 3m
variables.

If n < 2.5m, the attack can become more powerful by seeking a vector y in the inter-
section of k subspaces M̂i(T

−1(O)) with k ≥ 2. The complexity of this case is equal to
the complexity of that solving the quadratic system with M =

(
k+1
2

)
m−2

(
k
2

)
equations

and N = nk − (2k − 1)m variables.

Therefore, when n < 2.5m, we have N = nk − (2k − 1)m, M =
(
k+1
2

)
m− 2

(
k
2

)
, and

CompIntersectionUOV = MQ(N + 1, M, q)

field multiplications, and in the case 2.5m < n < 3m, N = 2n− 3m, M = 3m, and

CompIntersectionUOV = MQ(N + 1, M, q)
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field multiplications.

In case of intersection attack against NOVA, due to our construction, we can not write
the public polynomial Pi of NOVA in quadratic form, namely (u1)

t [Pi]u2, when con-
sidered as over R. Thus, the implementation of intersection attack still face the same
problem as in direct attack, that is, there is no efficient algorithm like F4, F5 and XL
to compute. Hence to implement intersection attack against NOVA, we need to regard
NOVA as a UOV system over Fq and then solve a system over Fq. Therefore, the
complexity is estimated by the following.

If n < 2.5m, we have N = (l2n)k − (2k − 1)(l2m), M =
(
k+1
2

)
(l2m)− 2

(
k
2

)
, and

CompIntersectionNOVA = MQ(N + 1, M, q)

field multiplications, and in the case 2.5m < n < 3m, N = 2(l2n)−3(l2m), M = 3(l2m),
and

CompIntersectionNOVA = MQ(N + 1, M, q)

field multiplications.

If n ≥ 3m, then there is no guarantee that the space M̂i(T
−1(O)) ∩ M̂j(T

−1(O)) will
exist. Therefore, the intersection attack becomes a probabilistic attack against NOVA.
In this case, we estimate the complexity by obtain a lower bound of it as shown in the
table of complexity.

5.6 Equivalent Key Attack

According to the core idea of our design, an attacker may try to find the submatrix
(T−1)12 of matrix [T−1] in the top right corner by algebraic attacks. Once the matrix
[T−1] is found, the central map F can be recovered. This can be done by considering
the system P (T−1(x)) = F (x) and solve for [T−1] by comparing both sides of equation
at ring level. Therefore, this induces m ·m2 · l2 quadratic equations in lvo variables and
then can be solved by F4, F5 and XL. Therefore, the complexity is

Comp[T−1] attack; ClassicalNOVA = min
k

qk ·MQ(lvo+ 1− k, m3l2, q)

field multiplications and the complexity of the quantum direct attack is given by

Comp[T−1] attack; QuantumNOVA = min
k

qk/2 ·MQ(lvo+ 1− k, m3l2, q)

field multiplications with applying Grover’s algorithm.

Based on the above reason, we take this attack into account in our proposed parameter
settings. We would like to mention that the multivariate quadratic system constructed
by [T−1] attack is overdetermined hence [23, 9, 27, 8, 39, 18, 21] are not applicable.

On the other hand, one may consider that executes [T−1] attack that regards a (v, o, q, l)
NOVA as an (l2v, l2o, q) UOV then induces a quadratic system of M = (l2m) · (l2m) ·
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(l2m+1)
2

equations in l · vo variables over Fq. However, this does not increase the number
of independent equations compared to the above formulations.

6 Implementation and Parameter Settings

In this section, to begin with, we propose our parameter settings for three security levels
in the NIST PQC project levels I, III and V, respectively. Secondly, we estimate the
complexity of attacks against NOVA with parameter settings we proposed.

6.1 To attain EUF-CMA Security

For practical considerations, we use a random binary vector, called salt, in NOVA
scheme in order to achieve Existential Unforgeability under Chosen Message Attack
(EUF-CMA) Security [29]. The modifications are listed in the following.

Signature. To sign a signature for the document D, we randomly choose salt and
then generate a signature for the hash value y = Hash(Hash(D)||salt). Therefore,
the corresponding signature is of the form σ = (u||salt) where u is the signature of
y generated by the NOVA signer. The length of salt is chosen to be 16 Bytes under
the assumption of up to 264 signatures being generated with the system and hence the
consideration that we want almost no salt is used for more than one signature.

Verification. If P (u) = Hash(Hash(D)||salt), the signature is accepted, otherwise
rejected.

6.2 Proposed Parameter Settings

In this section, we give our proposed parameter settings and therefore their size of
public key and signature respectively. Finally, the comparison table of NOVA with
NIST finalists [12, 34, 25] and MAYO [5] is given.

The following table shows that the complexity of attacks against our parameter set-
tings. Here, ”Dir.”, ”TWFH.”, ”K-S.”, ”Int.” and ”[T−1].” denote the direct attack,
direct attack using technique in [39, 18, 21], K-S attack [24], intersection attack [4] and
[T−1] attack mentioned in Sec. 5, respectively. In any pair of complexity the left one
denotes the complexity in classical gates and the right one denotes in quantum gates,
respectively. The lowest complexity is marked in bold fonts.
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Table 2: Table of complexity in log2(♯gates).

SL (v, o, q, l) Dir. TWFH. K-S. Int. [T−1].

I
(23, 15, 16, 2) 154/113 150/106 153/91 207 158/158
(17, 7, 16, 3) 161/118 154/108 385/207 ≥378 149/149
(14, 4, 16, 4) 163/119 154/102 665/347 ≥315 152/152

III
(38, 23, 16, 2) 223/163 219/157 267/149 362 242/242
(26, 10, 16, 3) 219/160 213/151 603/317 ≥570 222/222
(21, 6, 16, 4) 232/169 223/156 988/510 ≥524 213/213

V
(54, 32, 16, 2) 299/218 295/212 381/207 519 332/332
(35, 14, 16, 3) 295/215 289/207 785/409 ≥831 288/288
(28, 8, 16, 4) 299/218 291/208 1309/671 ≥745 285/285

The next table shows the key-sizes and lengths of the signature of NOVA, respectively.
Here the notation Sizerpk denotes the reduced public key size and Sizesig is for the
signature size.

Table 3: Table of key-sizes and lengths of the signature of NOVA parameter settings.

Security Level (v, o, q, l) Sizerpk (KBytes) Sizesig (Bytes)

I
(23, 15, 16, 2) 6.6 76(+16)
(17, 7, 16, 3) 1.5 108(+16)
(14, 4, 16, 4) 0.5 144(+16)

III
(38, 23, 16, 2) 23.8 122(+16)
(26, 10, 16, 3) 4.4 162(+16)
(21, 6, 16, 4) 1.7 216(+16)

V
(54, 32, 16, 2) 64 172(+16)
(35, 14, 16, 3) 12.1 220.5(+16)
(28, 8, 16, 4) 4 288(+16)

The last table gives the comparison of NOVA with the parameter settings that aim at
the security level I of the NISTPQC signature finalists and MAYO. Based on the public
key sizes and signature sizes of NOVA, we consider NOVA to be a competitive signature
system. Note that the 16 Bytes salt is included in the size of NOVA signature.
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Table 4: A comparison table of NOVA with the NISTPQC signature finalists and
MAYO aims at NIST security level I.

Signature Scheme Size of public key (KBytes) Size of signature (Bytes)

Dilithium-2 1.312 2420
Falcon-512 0.897 666
MAYO-I, leaky 0.614 392
MAYO-I, tight 0.835 459
NOVA(14, 4, 16, 4) 0.5 160
NOVA(17, 7, 16, 3) 1.5 124
NOVA(23, 15, 16, 2) 6.6 92
Rainbow-Ia 58.8 66

In [43, 44], they both pointed out that TLS, which we used to protect our web browsing,
is no longer secure due to the impact of the quantum computer. Making TLS post-
quantum is an important task, but such a fundamental change could take years and be
quite costly if we do not have a quantum-resistant signature that is relatively compatible
well with the existing framework. Note that [44] gives the corresponding condition: six
times signature size and two times of public key size fit in 9KB. According to the
specification of NOVA, NOVA could be a more practical general-purpose signature
scheme.

7 Conclusion

The NOVA scheme was cooked up to the best of our knowledge. It assures that secure
multivariate signature schemes over noncommutative rings are possible. And such tech-
nique could be beneficial to security and key size reduction. According to the result of
our security analysis, the NOVA scheme is capable of resisting all known attacks for mul-
tivariate cryptosystems. By comparison with other post-quantum signature schemes,
it seems that we have found a practical secure signature scheme which is relatively
efficient in public key size and signature size both.
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without reduction to zero (F5). In Proceedings of the 2002 international sym-
posium on Symbolic and algebraic computation, pages 75–83, 2002.

[18] Furue, H., Nakamura, S., Takagi, T.: Improving Thomae-Wolf algorithm for
solving underdetermined multivariate quadratic polynomial problem. In
PQC’21, LNCS 12841 (2021), pp.65–78.

[19] Garey, M.-R., Johnson, D.-S.: Computers and intractability: a guide to the
theory of NP-completeness. W. H. Freeman (1979).

[20] Grover, L.-K.: A fast quantum mechanical algorithm for database search.
In STOC 1996, pp. 212–219. ACM (1996).

[21] Hashimoto, Y.: Minor improvements of algorithm to solve under-defined
systems of multivariate quadratic equations. Available at https://eprint.
iacr.org/2021/1045.pdf.

[22] Hu, Y.H., Wang, L.C., Yang, B.Y.: ”A “Medium-Field” Multivariate Public-
Key Encryption Scheme.” Proc. 7th Cryptographer’s Track RSA Conference,
volume 3860, Lecture Notes in Computer Science, pages 132-149, 2006.

[23] Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature
schemes. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages
206–222. Springer, Heidelberg, May 1999.

26

https://doi.org/10.1007/978-3-642-42001-6_4
https://doi.org/10.1007/978-3-642-42001-6_4
https://doi.org/10.1007/978-3-540-79499-8_28
https://eprint.iacr.org/2021/1045.pdf
https://eprint.iacr.org/2021/1045.pdf


[24] Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature
scheme. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages
257–266. Springer, Heidelberg, August 1998.

[25] Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G., Stehlè,
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Appendix: A Variant of NOVA Scheme

Whipping NOVA: In [5], Beullens proposed a new technique called Whipping UOV
map and used this technique to construct a new signature scheme, MAYO. A whipping
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UOV map is a multivariate quadratic map P ∗ : Fkn
q → Fm

q where n = v + o. To
construct the map P ∗, [5] uses a public key P constructed by a (v, o, q) UOV scheme
but with dim(T−1(O)) = o < m which is different from the usual UOV map (m = o).
Namely, the whipping UOV map P ∗ : Fkn

q → Fm
q is constructed by

P ∗(u1, · · · , uk) =
∑

1≤i≤j≤k

Ei,j(P (ui + uj))

where Ei,j are m×m invertible linear matrices over Fq and k is a positive integer such
that ko ≥ m.

Together with the technique in [11] and [32], a large part of public key can be pseudo-
randomly generated. Therefore, the overall public key size can be reduced toO(mo2 log q).

Note that a (v, o, q, l) NOVA scheme can be viewed as a (l2v, l2o, q) UOV scheme. That
is, in this sense, we see that whipping technique can be applied to NOVA. In conclusion,
if the scheme with whipping technique is confirmed to be secure, then the public key
size of NOVA can be further reduced.
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