New method for combining Matsui's bounding conditions with sequential encoding method

Senpeng Wang ${ }^{1,2}{ }^{(1)} \cdot$ Dengguo $^{\text {Feng }}{ }^{1} \cdot \operatorname{Bin} \mathrm{Hu}^{2} \cdot$ Jie Guan ${ }^{2} \cdot$ Kai Zhang $^{2} \cdot$ Tairong Shi ${ }^{2}$

Received: 29 January 2023 / Revised: 29 May 2023 / Accepted: 31 May 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

As the first generic method for finding the optimal differentialand linear characteristics, Matsui's branch and bound search algorithm has played an important role in evaluating the security of symmetric ciphers. By combining Matsui's bounding conditions with automatic search models, search efficiency can be improved. In this paper, by studying the properties of Matsui's bounding conditions, we give the general form of bounding conditions that can eliminate all the impossible solutions determined by Matsui's bounding conditions. Then, a new method of combining bounding conditions with sequential encoding method is proposed. With the help of some small size Mixed Integer Linear Programming (MILP) models, we can use fewer variables and clauses to build Satisfiability Problem (SAT) models. As applications, we use our new method to search for the optimal differential and linear characteristics of some SPN, Feistel, and ARX block ciphers. The number of variables and clauses and the solving time of the SAT models are decreased significantly. In addition, we find some new differential and linear characteristics covering more rounds.

Keywords Automatic search • SAT model • Matsui's bounding condition • Differential cryptanalysis • Linear cryptanalysis

Mathematics Subject Classification 94A60 • 65C10

1 Introduction

Differential cryptanalysis [5] and linear cryptanalysis [18] are two powerful methods which have been widely used in the security analysis of many symmetric ciphers. The core idea of

[^0]these methods is to identify the differential or linear characteristics with high probabilities or correlations. However, searching for the optimal differences or linear masks is not an easy work. At EUROCRYPT 1994, Matsui [19] proposed a branch and bound search algorithm which could be used to identify the optimal differences and linear masks. Matsui's algorithm is one of the most powerful and efficient search tools. In a work concurrent to ours (after we submit this document to IACR Cryptol. ePrint Arch.), Kim et al. [12] accelerated Matsui's search algorithm to search for the optimal differences and linear masks of AES-like ciphers. Matsui's algorithm is powerful in searching distinguishers. However, the skills of controlling memory and selecting searching nodes are required when implementing Matsui's algorithm. By contrast, automatic search methods use solvers to deal with these problems which are easier to implement. In order to meet the demands of security analysis of ciphers, many automatic search methods have been proposed and widely used in the search for numerous distinguishers.

Mixed Integer Linear Programming (MILP) is a kind of optimization or feasibility program whose objective function and constraints are linear, and the variables are restricted to be integers or real numbers. MILP problem can be solved automatically with MILP solvers such as Gurobi [11]. In [21, 36], the first automatic search method based on MILP was proposed to evaluate the security of word-oriented block ciphers against differential and linear cryptanalysis. Later, Sun et al. [26,27] proposed methods for generating inequalities to describe the bit-wise differential or linear characteristics for S-box. Therefore, their models can be used to obtain the minimum number of active S-boxes and search for the best differential and linear characteristics for bit-oriented block ciphers. However, the above methods only work on small size S-boxes (e.g. 4-bit). At FSE 2017, Abdelkhalek et al. [1] put forward the first MILP model for large S-boxes (e.g. 8-bit). Then, some efficient methods were proposed to generate inequalities of large S-boxes (e.g. [7, 34]). For ARX ciphers, Fu et al. [10] built the MILP models for the differential and linear characteristics of modular addition and applied them to search for the best differential and linear characteristics for SPECK. Moreover, as a powerful automatic search tool, MILP has been also widely used in other attacks, such as integral attacks [35, 38], cube attacks [33], impossible differential attacks [23], and zero-correlation linear attacks [8].

The Boolean Satisfiability Problem (SAT) is a problem which considers the satisfiability of a given boolean formula. And there are also many SAT solvers, such as CaDiCal [4]. The first automatic search method based on SAT is introduced by Mouha and Preneel [20]. Then, at CRYPTO 2015, Kölbl et al. [13] used the SAT/SMT solver to find the optimal differential and linear characteristics for SIMON. And at ACNS 2016, Liu et al. [16] extended the SAT based automatic search algorithm to search for the linear characteristics for ARX ciphers. At FSE 2018, Sun et al. [30] built the SAT-based models for differential characteristics and got more accurate differential probability for LED64 and Midori64. Moreover, SAT can be used in the search for impossible differential trails [15] and integral distinguishers [29].

Automatic search tools bring great convenience to the security evaluation of ciphers. However, when the number of variables or constraints in the model is large, solvers may not return the result within a reasonable time. Therefore, it is of great importance to improve the efficiency of automatic search methods. And a lot of works have been done on this issue. We divide them into three main categories.

Reducing the Variables and Constraints in the Model. Although Sasaki and Todo [22] point out that the number of inequalities can not strictly determine the efficiency of solving model, it still has an important impact on the solving time. And a lot of methods have been proposed to reduce the variables and constraints modeling S-box or linear layers [1, 7, 14, 34].

Divide and Conquer Approach. In order to obtain the result of a large model in reasonable time, we can divide it into appropriate parts. In [27], Sun et al. split r-rounds cipher into two parts (the first r_{0} and the last ($r-r_{0}$) rounds). Then, they combine them after solving the models of the two parts respectively. At FSE 2019, Zhou et al. [41] proposed a divide-andconquer approach which divided the whole search space according to the number of active S-boxes at a certain round. At FSE 2022, Erlacher et al. [9] proposed a new search strategy of dividing the search space into a large number of subproblems based on girdle patterns.

Combining Matsui's Bounding Conditions into the Model. Matsui's bounding conditions may reduce the feasible region of the original model. The first method of combining Matsui's branch and bound search algorithm with the MILP based search model is proposed by Zhang et al. [39]. Later, Sun et al. [31] put forward a new encoding method to convert Matsui's bounding conditions into boolean formulas of SAT model. Both methods are realized by adding the constraints derived from Matsui's bounding conditions into the original model.

From the perspective of application effect, the SAT model combining with Matsui's bounding conditions proposed by Sun et al. [31] is one of the best choices at present. This method can obtain the complete bounds (full rounds) on the number of active S-boxes, the differential probabilities and linear correlations for many block ciphers for the first time. The efficiency of automatic search has been greatly improved. Just like the MILP models of combining Matsui's bounding conditions, according to the experiment results in [31], adding more Matsui's bounding conditions may not necessarily improve the efficiency. This may be because that all the previous methods realize the bounding conditions by adding a set of constraints. And some added constraints increase the search complexity of models. Regrettably, there is no relevant theory for us to identify the constraints which have negative effects. By doing a considerable amount of experiments, Sun et al. [31] put forward a strategy on how to organise the sets of bounding conditions that potentially achieve better performance. Because this strategy is experimental and lacks sufficient theoretical guidance, we cannot really know its performance until completing its application. Therefore, it is meaningful to research a better way of combining Matsui's bounding conditions with the automatic search models and improve the search efficiency.

1.1 Our contributions

The efficiency of Matsui's bounding conditions comes from the fact that they can eliminate some impossible solutions and reduce the search space. When building SAT models, we have to convert Matsui's bounding conditions into other form of formulas. By studying the properties of Matsui's bounding conditions, we give the general form of inequality constraints that can eliminate all the impossible solutions determined by Matsui's bounding conditions. Then, we propose a new method of combining bounding conditions with sequential encoding method. With the help of some small size MILP models, we can use fewer variables and clauses to build SAT models. This will decrease the solving complexity of models. As applications, we use our new method to search for the optimal differential and linear characteristics for SPN, Feistel and ARX block ciphers. Compared with the previous method, the number of variables and clauses and the solving time of the SAT models are decreased significantly which can be seen in Table 2. For the block ciphers PRESENT, RECTANGLE, GIFT64, LBlock, TWINE, SPECK32, SPECK64, the optimal differential and linear characteristics of the full rounds are obtained which are consistent with the results in [31]. For SPECK48, SPECK96, SPECK128 and GIFT128, we find some new differential

Table 1 The comparison of the maximum length of optimal characteristics

Trail	GIFT128	SPECK48	SPECK96	SPECK128	Ref
Differential	*29	-	-	-	[12]
	*40	-	-	-	[12]
	-	12	8	8	[17]
	29	18	10	9	[31]
	40 (Full)	20	11	10	Sect. 4
Linear	*22	-	-	-	[12]
	*40	-	-	-	[12]
	-	13	9	9	[17]
	25	23 (Full)	14	10	[31]
	40 (Full)	23 (Full)	16	11	Sect. 4

\star The results were published after we submitted this work to IACR Cryptol. ePrint Arch. And their method is not based on automatic search solver and works only for AES-like ciphers
and linear characteristics covering more rounds. And a comparison of the maximum length of optimal differential and linear trails with previous results is provided in Table 1. For all the above ciphers, our results reach the maximum length of optimal differential and linear characteristics at present.

1.2 Outline

This paper is organized as follows: Sect. 2 provides the background of automatic search method based on SAT. In Sect. 3, by studying the properties of Matsui's bounding conditions and sequential encoding method, we propose a new SAT model of combining bounding conditions with sequential encoding method. In Sect. 4, we use the new method to search for the optimal differential and linear characteristics for block ciphers. In Sect. 5, we conclude the paper. And some auxiliary materials are supplied in Appendix.

2 Automatic search method based on SAT

2.1 Boolean satisfiability problem

For a formula, if it only consists of boolean variables, operators AND (\wedge), OR (\vee), NOT (${ }^{\bullet}$) and parentheses, we call it boolean formula. And SAT is the boolean satisfiability problem which considers whether there is a valid assignment to boolean variables such that the formula equals one. If such an assignment exists, the SAT problem is said satisfiable. This problem is NP-complete [25]. However, many problems with millions of variables can be solved by modern SAT solvers, such as CaDiCal [4].

For any boolean formula, we can convert it into Conjunctive Normal Form (CNF) denoted as $\bigwedge_{i=0}^{m}\left(\bigvee_{j=0}^{n_{i}} c_{i, j}\right)$, where $c_{i, j}$ is a boolean variable or constant or the NOT of a boolean variable. And each disjunction $\bigvee_{j=0}^{n_{i}} c_{i, j}$ is called a clause. CNF is a standard input format of SAT solvers. If we want to use SAT to solve a problem, we should translate it into a model consisted of boolean variables and clauses.

2.2 SAT models for some basic operations

When we use SAT to search for differential or linear characteristics, we should translate the search problem into a series of clauses. And the clauses should describe the propagation properties of differential or linear characteristics through the cipher. We call a pair of differences (linear masks) is valid when its differential probability (linear correlation) is nonzero. Here, we will briefly introduce the SAT models for some basic operations which will be used in this paper. For more information, please refer to [16, 31]. And in the following, we use x_{0} to denote the most significant bit of the n-bit vector $x=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in \mathbb{F}_{2}^{n}$.
Differential Model 1 (Branching) [31]. Let $y=f(x)$ be a branching function, where $x \in \mathbb{F}_{2}$ is the input variable, and the output variables $y=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right) \in \mathbb{F}_{2}^{n}$ is calculated as $y_{0}=y_{1}=\cdots=y_{n-1}=x$. Then, $\left(\alpha, \beta_{0}, \beta_{1}, \ldots, \beta_{n-1}\right)$ is a valid differential of f if and only if it satisfies all the equations in the following:

$$
\left.\begin{array}{l}
\alpha \vee \overline{\beta_{i}}=1 \\
\bar{\alpha} \vee \beta_{i}=1
\end{array}\right\}, 0 \leq i \leq n-1 .
$$

Differential Model 2 (Xor) [31]. Let $y=f(x)$ be an Xor function, where $x=$ $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in \mathbb{F}_{2}^{n}$ are the input variables, and the output variable $y \in \mathbb{F}_{2}$ is calculated as $y=x_{0} \oplus x_{1} \oplus \cdots \oplus x_{n-1}$.

When $n=2,\left(\alpha_{0}, \alpha_{1}, \beta\right)$ is a valid differential of f if and only if it satisfies all the equations in the following:

$$
\left.\begin{array}{l}
\alpha_{0} \vee \alpha_{1} \vee \bar{\beta}=1 \\
\alpha_{0} \vee \overline{\alpha_{1}} \vee \beta=1 \\
\overline{\alpha_{0}} \vee \alpha_{1} \vee \beta=1 \\
\overline{\alpha_{0}} \vee \overline{\alpha_{1}} \vee \bar{\beta}=1
\end{array}\right\} .
$$

When $n \geq 3$, we can decompose the n-input Xor operation into $(n-1)$ 2-input Xor operations by introducing auxiliary boolean variables. After applying 2-input Xor model to the $(n-1)$-input Xor operations one by one, the model of n-input Xor operation can be expressed with $4 \times(n-1)$ clauses.

According to [28], the linear masks propagation model for branching (resp. Xor) operation is the same as the differences propagation model for Xor (resp. branching) operation. Thus, we do not introduce the SAT models for linear masks propagation through branching and Xor operations.
Differential Model 3 (Modular Addition) [16, 31]. Let $z=f(x, y)$ be a n-bit modular addition operation. Then, $(\alpha, \beta, \gamma) \in \mathbb{F}_{2}^{3 \times n}$ is a valid differential if and only if it satisfies all the following equations:

$$
\left.\begin{array}{l}
\alpha_{n-1} \oplus \beta_{n-1} \oplus \gamma_{n-1}=0 ; \\
\alpha_{i} \vee \beta_{i} \vee \overline{\gamma_{i}} \vee \alpha_{i+1} \vee \beta_{i+1} \vee \gamma_{i+1}=1 \\
\alpha_{i} \vee \overline{\beta_{i}} \vee \gamma_{i} \vee \alpha_{i+1} \vee \beta_{i+1} \vee \gamma_{i+1}=1 \\
\overline{\alpha_{i}} \vee \beta_{i} \vee \gamma_{i} \vee \alpha_{i+1} \vee \beta_{i+1} \vee \gamma_{i+1}=1 \\
\overline{\alpha_{i}} \vee \frac{\beta_{i}}{\beta_{i}} \vee \overline{\gamma_{i}} \vee \alpha_{i+1} \vee \frac{\beta_{i+1}}{\gamma_{i+1}}=1 \\
\alpha_{i} \vee \beta_{i} \vee \gamma_{i} \vee \overline{\alpha_{i+1}} \vee \overline{\beta_{i+1}} \vee \overline{\gamma_{i+1}}=1 \\
\alpha_{i} \vee \overline{\beta_{i}} \vee \overline{\gamma_{i}} \vee \overline{\alpha_{i+1}} \vee \overline{\beta_{i+1}} \vee \overline{\gamma_{i+1}}=1 \\
\overline{\alpha_{i}} \vee \beta_{i} \vee \overline{\gamma_{i}} \vee \overline{\alpha_{i+1}} \vee \frac{\beta_{i+1}}{\beta_{i+1}} \vee \frac{\gamma_{i+1}}{\gamma_{i}}=1 \\
\overline{\alpha_{i}} \vee \frac{\beta_{i}}{\beta_{i}} \vee \gamma_{i} \vee \overline{\alpha_{i+1}} \vee \overline{\beta_{i+1}} \vee \overline{\gamma_{i+1}}=1
\end{array}\right\} 0 \leq i \leq n-2,
$$

where the Xor operation denoted by \oplus is symbolic representation which can be converted into CNF formulas with the method in Differential Model 2 (Xor). In order to model the different probability, we will introduce $(n-1)$ binary variables denoted as $w_{0}, w_{1}, \ldots, w_{n-2}$. When they satisfy the following equations:

$$
\left.\begin{array}{l}
\alpha_{i+1} \vee \gamma_{i+1} \vee w_{i}=1 \\
\beta_{i+1} \vee \overline{\gamma_{i+1}} \vee w_{i}=1 \\
\alpha_{i+1} \vee \overline{\beta_{i+1}} \vee w_{i}=1 \\
\alpha_{i+1} \vee \beta_{i+1} \vee \gamma_{i+1} \vee \overline{w_{i}}=1 \\
\overline{\alpha_{i+1}} \vee \overline{\beta_{i+1}} \vee \overline{\gamma_{i+1}} \vee \overline{w_{i}}=1
\end{array}\right\} 0 \leq i \leq n-2,
$$

the differential probability can be computed as $p(\alpha, \beta, \gamma)=2^{-\sum_{i=0}^{n-2} w_{i}}$.
The papers $[16,31]$ have showed the model for the linear correlations through modular addition. Because the most significant bit of modular addition is a constant value, we can omit this variable. So we give a new linear model for modular addition which is a little different from the previous.
Linear Model 1 (Modular Addition). For an n-bit modular addition operation $z=f(x, y)$, we denote the two input linear masks as α and β and the output mask as γ. And in order to model the correlation, $(n-1)$ binary variables denoted as $w=\left(w_{0}, w_{1}, \ldots, w_{n-2}\right)$ are introduced. Then, the correlation of the linear approximation $(\alpha, \beta, \gamma) \in \mathbb{F}_{2}^{3 \times n}$ is nonzero if and only if $(\alpha, \beta, \gamma, w)$ satisfies all the following equations:

$$
\left.\begin{array}{l}
\alpha_{0} \oplus \beta_{0} \oplus \gamma_{0} \oplus w_{0}=0 ; \\
\alpha_{j+1} \oplus \beta_{j+1} \oplus \gamma_{j+1} \oplus w_{j} \oplus w_{j+1}=0,0 \leq j \leq n-3 ; \\
\alpha_{0}=\beta_{0}=\gamma_{0} ; \\
\alpha_{i} \vee \overline{\gamma_{i}} \vee w_{i-1}=1 \\
\overline{\alpha_{i}} \vee \gamma_{i} \vee w_{i-1}=1 \\
\beta_{i} \vee \overline{\gamma_{i}} \vee w_{i-1}=1 \\
\overline{\beta_{i}} \vee \gamma_{i} \vee w_{i-1}=1
\end{array}\right\} 1 \leq i \leq n-1 .
$$

Then, the linear correlation is computed as $p(\alpha, \beta, \gamma)=2^{-\sum_{i=0}^{n-2} w_{i}}$.
For S-box, the paper [30] showed an example of building the differential SAT model of 4 -bit S-box. Then, the paper [31] proposed the SAT model of active n-bit S-box. Based on the above two methods, we will show a general method for building SAT model of S-box.
Differential Model 4 (S-box). For an S-box $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$, the differential probability is denoted as $p(\alpha, \beta)$, where $\alpha \in \mathbb{F}_{2}^{n}$ is the input difference and $\beta \in \mathbb{F}_{2}^{m}$ is the output difference. If the minimal non-zero differential probability of S-box is 2^{-s}, we introduce s auxiliary variables $w=\left(w_{0}, w_{1}, \ldots, w_{s-1}\right)$ satisfying $w_{i+1} \leq w_{i}, 0 \leq i \leq s-2$ to calculate the non-zero differential probability. In order to build the differential SAT model of S-box, we introduce a boolean function as follows:

$$
g(\alpha, \beta, w)=\left\{\begin{array}{l}
1, \text { if } p(\alpha, \beta)=2^{-\sum_{i=0}^{s-1} w_{i}} ; \\
0, \text { otherwise }
\end{array}\right.
$$

Let A be a set which contains all vectors satisfying $g(a, b, c)=0$ denoted as

$$
A=\left\{(a, b, c) \in \mathbb{F}_{2}^{n+m+s} \mid g(a, b, c)=0\right\} .
$$

Then, the following $|A|$ clauses form a primary SAT model of the given S-box

$$
\bigvee_{i=0}^{n-1}\left(\alpha_{i} \oplus a_{i}^{l}\right) \vee \bigvee_{j=0}^{m-1}\left(\beta_{j} \oplus b_{j}^{l}\right) \vee \bigvee_{k=0}^{s-1}\left(w_{k} \oplus c_{k}^{l}\right)=1,0 \leq l \leq|A|-1
$$

where $|A|$ is the number of vectors in the set A and $\left(a^{l}, b^{l}, c^{l}\right), 0 \leq l \leq|A|-1$ is the l-th vector in the set A.

Note that the solution space of the above $|A|$ clauses about (α, β, γ) is the same as that of the following boolean function:

$$
\begin{equation*}
h(\alpha, \beta, \gamma)=\bigwedge_{l=0}^{|A|-1}\left(\bigvee_{i=0}^{n-1}\left(\alpha_{i} \oplus a_{i}^{l}\right) \vee \bigvee_{j=0}^{m-1}\left(\beta_{j} \oplus b_{j}^{l}\right) \vee \bigvee_{k=0}^{s-1}\left(w_{k} \oplus c_{k}^{l}\right)\right)=1 \tag{1}
\end{equation*}
$$

Equivalently, we have

$$
\begin{aligned}
& h(\alpha, \beta, \gamma)= \\
& \bigwedge_{(a, b, c) \in \mathbb{F}_{2}^{n+m+s}}\left(h(a, b, c) \vee \bigvee_{i=0}^{n-1}\left(\alpha_{i} \oplus a_{i}\right) \vee \bigvee_{j=0}^{m-1}\left(\beta_{j} \oplus b_{j}\right) \vee \bigvee_{k=0}^{s-1}\left(w_{k} \oplus c_{k}\right)\right),
\end{aligned}
$$

where $h(a, b, c)$ is the value of Eq. (1) by assigning $\alpha=a, \beta=b, \gamma=c$. This equation is called the product-of-sum representation of h. The issue of reducing the number of clauses is turned into the problem of simplifying the product-of-sum representation of the boolean function. According to [1], we know that this simplification problem can be solved by the Quine-McCluskey (QM) algorithm and Espresso algorithm, theoretically.

Using the same method of differential SAT model for S-box, the SAT model for linear correlations through S-box can be built easily. Here, we omit it.

2.3 Sequential encoding method

When building SAT models for ciphers, we always aim at getting some cryptographic properties such as the number of active S-boxes, the differential probability or the linear correlation. All kinds of these objections can be abstracted as the boolean cardinality constraint $\sum_{i=0}^{n-1} w_{i} \leq m$, where w_{i} is a boolean variable, and m is a non-negative integer. However, addition over integers is not a natural operation in SAT language, which is not easy to be described with only OR and AND operations. The sequential encoding method is one of the best methods for characterising boolean cardinality constraint. Many papers [16, 30, 31] use the sequential encoding method [24] to convert the constraint into CNF formulas.

When $m=0$, the cardinality constraint $\sum_{i=0}^{n-1} w_{i} \leq m$ can be translated to n clauses as $\overline{w_{i}}=1,0 \leq i \leq n-1$ which means all variables are zero.

When $m \geq 1$, in order to model constraint $\sum_{i=0}^{n-1} w_{i} \leq m$, auxiliary boolean variables $u_{i, j}(0 \leq i \leq n-2,0 \leq j \leq m-1)$ are introduced to return contradiction when the cardinality is larger than m. More specifically, for the partial sum $\sum_{i=0}^{k} w_{i}=m_{k}$, the values of the auxiliary boolean variables $u_{k, j}(0 \leq j \leq m-1)$ should satisfy the following equations:

$$
u_{k, j}=\left\{\begin{array}{l}
0, \text { if } m_{k} \leq j \leq m-1 \\
1, \text { if } 0 \leq j \leq m_{k}-1
\end{array}\right.
$$

Then, $\sum_{i=0}^{k} w_{i}=\sum_{j=0}^{m-1} u_{k, j}$, and the sequence $\left\{\sum_{i=0}^{k} w_{i} \mid 0 \leq k \leq n-2\right\}$ is nondecreasing. Therefore, the constraint $\sum_{i=0}^{n-1} w_{i} \leq m$ holds if the following implication
predicates are satisfied.

$$
\left.\left.\begin{array}{l}
\text { if } w_{0}=1 \text { then } u_{0,0}=1 \\
u_{0, j}=0,1 \leq j \leq m-1 \\
\text { if } w_{i}=1 \text { then } u_{i, 0}=1 \\
\text { if } u_{i-1,0}=1 \text { then } u_{i, 0}=1 \\
\text { if } w_{i}=1 \text { and } u_{i-1, j-1}=1 \text { then } u_{i, j}=1 \\
\text { if } u_{i-1, j}=1 \text { then } u_{i, j}=1 \\
\text { if } w_{i}=1 \text { then } u_{i-1, m-1}=0 \\
\text { if } w_{n-1}=1 \text { then } u_{n-2, m-1}=0
\end{array}\right\} 1 \leq j \leq m-1\right\} 1 \leq i \leq n-2, ~ \$ 1 .
$$

The above predicates can be interpreted as the following $2 \cdot m \cdot n-3 \cdot m+n-1$ clauses which are the SAT model for the cardinality constraint $\sum_{i=0}^{n-1} w_{i} \leq m$.

$$
\left.\left.\begin{array}{l}
\overline{w_{0}} \vee u_{0,0}=1 \\
\overline{u_{0, j}}=1,1 \leq j \leq m-1 \\
\overline{w_{i}} \vee u_{i, 0}=1 \\
\overline{u_{i-1,0}} \vee u_{i, 0}=1 \\
\overline{w_{i}} \vee \overline{u_{i-1, j-1}} \vee u_{i, j}=1 \\
\overline{u_{i-1}, j} \vee u_{i, j}=1 \\
\overline{w_{i}} \vee \overline{u_{i-1, m-1}}=1 \\
\overline{w_{n-1}} \vee \overline{u_{n-2, m-1}}=1
\end{array}\right\} 1 \leq j \leq m-1\right\} 1 \leq i \leq n-2
$$

2.4 Combining Matsui's bounding conditions with sequential encoding method

At EUROCRYPT 1994, Matsui [19] proposed a branch and bound search algorithm which can be used to identify the optimal difference probability. Let $P_{\text {ini }}(R)$ be the initial estimation for the probability bound achieved by R-round trails and $P_{\text {opt }}(i), 0 \leq i \leq R-1$ be the maximum probability achieved by i-round trails. Then, a partial trail $\left(\alpha^{0} \rightarrow \alpha^{1} \rightarrow \cdots \rightarrow \alpha^{r}\right)$ covering the first r rounds will never extend to be a better R-round trail if it does not satisfy the following condition:

$$
\begin{equation*}
\prod_{i=0}^{r-1} p\left(\alpha^{i} \rightarrow \alpha^{i+1}\right) \cdot P_{o p t}(R-r) \geq P_{\text {ini }}(R) \tag{2}
\end{equation*}
$$

where $p\left(\alpha^{i} \rightarrow \alpha^{i+1}\right)$ is the probability of the i-th round. Therefore, we can give up the partial trail. In this way, the efficiency of search algorithm can be improved greatly.

To facilitate the description of Matsui's bounding conditions, we introduce the probability weight as following.

$$
\left\{\begin{array}{l}
-\log _{2}\left(P_{\text {ini }}(R)\right)=W_{\text {ini }}(R), \tag{3}\\
-\log _{2}\left(P_{\text {opt }}(i)\right)=W_{\text {opt }}(i), \\
-\log _{2}\left(p\left(\alpha^{i} \rightarrow \alpha^{i+1}\right)\right)=\sum_{j=0}^{\sigma-1} w_{j}^{i}
\end{array}\right.
$$

where $w_{j}^{i}, 0 \leq j \leq \varpi-1$ are the boolean variables used to calculate the probability weight of the trail $\alpha^{i} \rightarrow \alpha^{i+1}$. By defining the symbol $w_{\varpi \times i+j}=w_{j}^{i}$, Eq. (2) can be rewritten as
follows:

$$
\begin{equation*}
\sum_{i=0}^{r-1} \sum_{j=0}^{\sigma-1} w_{j}^{i}=\sum_{i=0}^{r \times \sigma-1} w_{i} \leq W_{\text {ini }}(R)-W_{\text {opt }}(R-r) . \tag{4}
\end{equation*}
$$

Note that the right-hand side of this equation is a constant, and the left-hand side of it matches the probability weight of the trail covering the first r rounds. All the above bounding conditions can be replaced with inequalities as the form:

$$
\begin{equation*}
\sum_{i=e_{1}}^{e_{2}} w_{i} \leq m_{e_{1}, e_{2}}, 0 \leq e_{1} \leq e_{2} \tag{5}
\end{equation*}
$$

For the boolean cardinality constraint $\sum_{i=0}^{n-1} w_{i} \leq m$, based on the sequential encoding method, Sun et al. [31] realized bounding conditions without claiming any new variables as follows.

Case 1. Bounding condition $\sum_{i=e_{1}}^{e_{2}} w_{i} \leq m_{e_{1}, e_{2}}$ with $e_{1}=0$ and $e_{2}<n-1$ can be modeled by the following e_{2} clauses:

$$
\overline{w_{i}} \vee \overline{u_{i-1, m_{e_{1}, e_{2}}-1}}=1,1 \leq i \leq e_{2} .
$$

Case 2. Bounding condition $\sum_{i=e_{1}}^{e_{2}} w_{i} \leq m_{e_{1}, e_{2}}$ with $e_{1}>0$ and $e_{2}<n-1$ can be modeled by the following $m-m_{e_{1}, e_{2}}$ clauses:

$$
u_{e_{1}-1, j} \vee \overline{u_{e_{2}, j+j}+m_{e_{1}, e_{2}}}=1,0 \leq j \leq m-m_{e_{1}, e_{2}}-1 .
$$

Case 3. Bounding condition $\sum_{i=e_{1}}^{e_{2}} w_{i} \leq m_{e_{1}, e_{2}}$ with $e_{1}>0$ and $e_{2}=n-1$ can be modeled by the following $2 \cdot\left(m-m_{e_{1}, e_{2}}\right)+1$ clauses:

$$
\left\{\begin{array}{l}
u_{e_{1}-1, j} \vee \overline{u_{n-2, j+m_{e_{1}, e_{2}}}}=1,0 \leq j \leq m-m_{e_{1}, e_{2}}-1 ; \\
u_{e_{1}-1, j} \vee \overline{w_{n-1}} \vee \overline{u_{n-2, j+m_{e_{1}, e_{2}}-1}}=1,0 \leq j \leq m-m_{e_{1}, e_{2}} .
\end{array}\right.
$$

The above method can intermix multiple Matsui's bounding conditions into one SAT model with an increment on the number of clauses. At the same time, the number of variables remains the same as the original SAT model.

3 New SAT model of combining bounding conditions with sequential encoding method

Although numerous Matsui's bounding conditions can be obtained, it is not sure which bounding condition can accelerate the solve efficiency of SAT model accurately. According to the experiments, adding all Matsui's bounding conditions into the SAT model is not the best choice. With the observations and experiences in the tests, Sun et al. [31] put forward a strategy on how to create the sets of bounding conditions that probably achieve extraordinary advances. But this is an experimental strategy. It is worth studying how to combine bounding conditions with sequential encoding method in a better way.

3.1 Further insights into Matsui's bounding conditions

We all know that the efficiency of Matsui's algorithm comes from the fact that it can eliminate some impossible solutions and reduce the search space. When building SAT models, we
have to convert Matsui's bounding conditions into other form of formulas. With the same mathematical symbols defined in Sect. 2, let $w_{i} \in \mathbb{F}_{2}, 0 \leq i \leq n-1$ be the variables which are used to calculate the differential probability or linear correlation of a cipher. According to Sect.2.4, Sun et al. [31] summarize all Matsui's bounding conditions as the form of $\sum_{i=e_{1}}^{e_{2}} w_{i} \leq m_{e_{1}, e_{2}}$. However, we find that constraints of the form $\sum_{i=e_{1}}^{e_{2}} w_{i} \leq m_{e_{1}, e_{2}}$ can not always eliminate all the impossible solutions determined by Matsui's bounding conditions. We will give an example to show this phenomenon.

For a toy cipher E which has 3 rounds, let $\alpha^{0} \rightarrow \alpha^{1} \rightarrow \alpha^{2} \rightarrow \alpha^{3}$ be the 3 -round trail. By introducing 6 boolean variables $\left(w_{0}^{0}, w_{1}^{0}, w_{0}^{1}, w_{1}^{1}, w_{0}^{2}, w_{1}^{2}\right)$, the probability weight of round function is calculated as follows:

$$
\begin{equation*}
-\log _{2}\left(p\left(\alpha^{i} \rightarrow \alpha^{i+1}\right)\right)=w_{0}^{i}+w_{1}^{i} \tag{6}
\end{equation*}
$$

When Matsui's bounding conditions satisfy $W_{\text {opt }}(1)=1, W_{\text {opt }}(2)=2$ and $W_{\text {ini }}(3)=3$, the boolean variables $\left(w_{0}^{0}, w_{1}^{0}, w_{0}^{1}, w_{1}^{1}, w_{0}^{2}, w_{1}^{2}\right)$ should satisfy the following conditions:

$$
\left\{\begin{array}{l}
w_{0}^{0}+w_{1}^{0} \geq W_{\text {opt }}(1) \tag{7}\\
w_{0}^{1}+w_{1}^{1} \geq W_{\text {opt }}(1) \\
w_{0}^{2}+w_{1}^{2} \geq W_{\text {opt }}(1) \\
w_{0}^{0}+w_{1}^{0}+w_{0}^{1}+w_{1}^{1} \geq W_{\text {opt }}(2) \\
w_{0}^{1}+w_{1}^{1}+w_{0}^{2}+w_{1}^{2} \geq W_{\text {opt }}(2) \\
w_{0}^{0}+w_{1}^{0}+w_{0}^{1}+w_{1}^{1}+w_{0}^{2}+w_{1}^{2}=W_{\text {ini }}(3)
\end{array}\right.
$$

Then, the solutions of $\left(w_{0}^{0}, w_{1}^{0}, w_{0}^{1}, w_{1}^{1}, w_{0}^{2}, w_{1}^{2}\right)$ satisfying Eq. (7) are as follows:

$$
\begin{aligned}
& \{0,1,0,1,0,1\},\{0,1,0,1,1,0\},\{0,1,1,0,0,1\},\{0,1,1,0,1,0\}, \\
& \{1,0,0,1,0,1\},\{1,0,0,1,1,0\},\{1,0,1,0,0,1\},\{1,0,1,0,1,0\} .
\end{aligned}
$$

Thus, the number of impossible solutions eliminated by $W_{\text {opt }}(1)=1, W_{\text {opt }}(2)=2$ and $W_{\text {ini }}(3)=3$ is $2^{6}-8=56$.

According to Sect.2.4, all the form of $\sum_{i=e_{1}}^{e_{2}} w_{i} \leq m_{e_{1}, e_{2}}$ conditions deduced from Matsui's bounding conditions are as follows:

$$
\left\{\begin{array}{l}
w_{0}^{0}+w_{1}^{0} \leq W_{\text {ini }}(3)-W_{\text {opt }}(2) \tag{8}\\
w_{0}^{0}+w_{1}^{0}+w_{0}^{1}+w_{1}^{1} \leq W_{\text {ini }}(3)-W_{\text {opt }}(1) \\
w_{0}^{1}+w_{1}^{1} \leq W_{\text {ini }}(3)-W_{\text {opt }}(1)-W_{\text {opt }}(1) \\
w_{0}^{1}+w_{1}^{1}+w_{0}^{2}+w_{1}^{2} \leq W_{\text {ini }}(3)-W_{\text {opt }}(1) \\
w_{0}^{2}+w_{1}^{2} \leq W_{\text {ini }}(3)-W_{\text {opt }}(2) \\
w_{0}^{0}+w_{1}^{0}+w_{0}^{1}+w_{1}^{1}+w_{0}^{2}+w_{1}^{2} \leq W_{\text {ini }}(3)
\end{array}\right.
$$

Then, the solutions of $\left(w_{0}^{0}, w_{1}^{0}, w_{0}^{1}, w_{1}^{1}, w_{0}^{2}, w_{1}^{2}\right)$ satisfying Eq. (8) are as follow:

$$
\begin{aligned}
& \{0,0,0,0,0,0\},\{0,0,0,0,0,1\},\{0,0,0,0,1,0\},\{0,0,0,1,0,0\}, \\
& \{0,0,0,1,0,1\},\{0,0,0,1,1,0\},\{0,0,1,0,0,0\},\{0,0,1,0,0,1\}, \\
& \{0,0,1,0,1,0\},\{0,1,0,0,0,0\},\{0,1,0,0,0,1\},\{0,1,0,0,1,0\}, \\
& \{0,1,0,1,0,0\},\{0,1,0,1,0,1\},\{0,1,0,1,1,0\},\{0,1,1,0,0,0\}, \\
& \{0,1,1,0,0,1\},\{0,1,1,0,1,0\},\{1,0,0,0,0,0\},\{1,0,0,0,0,1\}, \\
& \{1,0,0,0,1,0\},\{1,0,0,1,0,0\},\{1,0,0,1,0,1\},\{1,0,0,1,1,0\}, \\
& \{1,0,1,0,0,0\},\{1,0,1,0,0,1\},\{1,0,1,0,1,0\} .
\end{aligned}
$$

Thus, the number of impossible solutions eliminated by Eq. (8) is $2^{6}-27=37$. Therefore, the bounding conditions in Eq. (8) do not eliminate all the impossible solutions determined by $W_{\text {opt }}(1)=1, W_{\text {opt }}(2)=2$ and $W_{\text {ini }}(3)=3$.

Here, we analyze the reasons for this phenomenon. When using Matsui's branch and bound algorithm to search for R-round optimal trails, we will firstly obtain a partial trail denoted as $\alpha^{0} \rightarrow \alpha^{1} \rightarrow \cdots \rightarrow \alpha^{r}$ covering the first r rounds. Then, we can use Eq. (2) to deduce the bound conditions of the form $\sum_{i=e_{1}}^{e_{2}} w_{i} \leq m_{e_{1}, e_{2}}$. But, it should be noted that all the obtained partial trails are valid. That is, the partial trails should satisfy

$$
\sum_{i=0}^{r-1} \sum_{j=0}^{\infty-1} w_{j}^{i} \geq W_{\text {opt }}(r)
$$

Therefore, when combining Matsui's bounding conditions with automatic search algorithm, this kind of bounding conditions should also be considered.

Theorem 1 For an R-round cipher, the same impossible solutions determined by Matsui's bounding conditions $W_{\text {ini }}(R)$ and $W_{\text {opt }}(i), 0 \leq i \leq R-1$ can be eliminated by the following bounding conditions

$$
\begin{equation*}
W_{\text {opt }}\left(r_{2}+1-r_{1}\right) \leq \sum_{i=r_{1}}^{r_{2}} \sum_{j=0}^{\infty-1} w_{j}^{i} \leq W_{\text {ini }}(R)-W_{\text {opt }}\left(r_{1}\right)-W_{\text {opt }}\left(R-1-r_{2}\right), \tag{9}
\end{equation*}
$$

where $0 \leq r_{1} \leq r_{2} \leq R-1$.
Proof Let $\alpha^{r_{1}} \rightarrow \alpha^{r_{1}+1} \rightarrow \cdots \rightarrow \alpha^{r_{2}+1}$ be a feasible partial trail covering $\left(r_{2}+1-r_{1}\right)$ rounds, where $0 \leq r_{1} \leq r_{2} \leq R-1$. Because of the constraint $W_{\text {opt }}\left(r_{2}+1-r_{1}\right)$, the partial trail should satisfy the following bounding condition:

$$
W_{\text {opt }}\left(r_{2}+1-r_{1}\right) \leq \sum_{i=r_{1}}^{r_{2}} \sum_{j=0}^{m-1} w_{j}^{i} .
$$

Then, due to the constraint of $W_{i n i}(R)$, the partial trail will not be extended to a better R-round trail if the following bounding condition is violated

$$
\sum_{i=r_{1}}^{r_{2}} \sum_{j=0}^{m-1} w_{j}^{i} \leq W_{\text {ini }}(R)-W_{\text {opt }}\left(r_{1}\right)-W_{\text {opt }}\left(R-1-r_{2}\right),
$$

Therefore, the bounding conditions in Eq. (9) are converted from $W_{\text {ini }}(R)$ and $W_{\text {opt }}(r), 0 \leq$ $i \leq R-1$. That is, all the feasible trails will not be eliminated by the bounding conditions in Eq. (9).

Let $\alpha^{0} \rightarrow \alpha^{1} \rightarrow \cdots \rightarrow \alpha^{R}$ be a trail which does not satisfy all Matsui's bounding conditions $W_{\text {ini }}(R)$ and $W_{\text {opt }}(i), 0 \leq i \leq R-1$. Thus, there is at least a partial trail that does not satisfy $W_{\text {ini }}(R)$ or $W_{\text {opt }}(i)$. We denote this partial trail as $\alpha^{r_{1}} \rightarrow \alpha^{r_{1}+1} \rightarrow \cdots \rightarrow$ $\alpha^{r_{2}-r_{1}+1}$. Then, this partial trail will violate the bounding condition as following

$$
\begin{equation*}
W_{\text {opt }}\left(r_{2}+1-r_{1}\right) \leq \sum_{i=r_{1}}^{r_{2}} \sum_{j=0}^{\varpi-1} w_{j}^{i} \leq W_{\text {ini }}(R)-W_{\text {opt }}\left(r_{1}\right)-W_{\text {opt }}\left(R-1-r_{2}\right) . \tag{10}
\end{equation*}
$$

Therefore, the trail $\alpha^{0} \rightarrow \alpha^{1} \rightarrow \cdots \rightarrow \alpha^{R}$ will not satisfy all the bounding conditions in Eq. (9). That is, all the infeasible trails determined by Matsui's bounding conditions will be eliminate by the bounding conditions in Eq. (9).

Using the same mathematical symbols with Eq. (5), we have the following corollary.
Corollary 1 All Matsui's bounding conditions can be replaced with inequality constraints of the form $l_{e_{1}, e_{2}} \leq \sum_{i=e_{1}}^{e_{2}} w_{i} \leq m_{e_{1}, e_{2}}$.

3.2 A new method of combining bounding conditions with sequential encoding method

From Corollary 1, we know that the general form of bounding condition is $l_{e_{1}, e_{2}} \leq$ $\sum_{i=e_{1}}^{e_{2}} w_{i} \leq m_{e_{1}, e_{2}}$. If we get the condition $l_{0, e_{2}} \leq \sum_{i=0}^{e_{2}} w_{i} \leq m_{0, e_{2}}$, according to the rules of sequential encoding method, we have

$$
u_{e_{2}, j}= \begin{cases}0, & \text { if } m_{0, e_{2}} \leq j \leq m-1, \\ 1, & \text { if } 0 \leq j \leq l_{0, e_{2}}-1, \\ \text { uncertain }, & \text { otherwise }\end{cases}
$$

Therefore, the value of some auxiliary variables are determined. We can reduce the variables and clauses which characterise these determined values. Because there are at least $m_{0, e_{2}}-l_{0, e_{2}}$ auxiliary variables whose values are uncertain. We have to introduce the boolean variables denoted as $\left\{u_{e_{2}, j} \mid l_{0, e_{2}} \leq j \leq m_{0, e_{2}}-1\right\}$ to represent these uncertain values. Then, we can use the following equation to compute the partial sum of $\sum_{i=0}^{e_{2}} w_{i}$.

$$
\sum_{i=0}^{e_{2}} w_{i}=\sum_{j=l_{0, e_{2}}}^{m_{0, e_{2}}-1} u_{e_{2}, j}+l_{0, e_{2}}
$$

Base on this idea, we propose a new method of combining bounding conditions with sequential encoding method.
Lemma 1 Let $\sum_{i=0}^{n-1} w_{i} \leq m, 1 \leq n$ be a cardinality constraint. Based on the sequential encoding method, the following clauses can eliminate the same impossible solutions determined by the condition $l_{0,0} \leq w_{0} \leq m_{0,0}$:

$$
\begin{aligned}
& \text { if } l_{0,0}=0 \text { and } m_{0,0}=1: \\
& \quad \overline{w_{0}} \vee u_{0,0}=1 \\
& \text { if } l_{0,0}=0 \text { and } m_{0,0}=0: \\
& \quad \overline{w_{0}}=1 \\
& \text { if } l_{0,0}=1 \text { and } m_{0,0}=1: \\
& \quad w_{0}=1
\end{aligned}
$$

Proof When using sequential encoding method to model the cardinality constraint $\sum_{i=0}^{n-1} w_{i} \leq$ m, we have to introduce m auxiliary boolean variables $u_{0,0}, u_{0,1}, \ldots, u_{0, m-1}$ to represent the value of partial sum w_{0}. Different from the method in Sect. 2.4, we can realise the bounding condition $l_{0,0} \leq w_{0} \leq m_{0,0}$ in the following way.

When $l_{0,0}=0$ and $m_{0,0}=1$, only the value of auxiliary variable $u_{0,0}$ is uncertain. Thus, the value of partial sum w_{0} can be represented by the rules of sequential encoding method as $\overline{w_{0}} \vee u_{0,0}=1$.

When $l_{0,0}=m_{0,0}=0$, all the values of auxiliary variables are determined. Thus, no auxiliary variables need to be introduced. The value of partial sum w_{0} can be represented as the clause $\overline{w_{0}}=1$.

When $l_{0,0}=m_{0,0}=1$, all the values of auxiliary variables are determined. Thus, no auxiliary variables need to be introduced. The value of partial sum w_{0} can be represented as the clause $w_{0}=1$.

Lemma 2 Let $\sum_{i=0}^{n-1} w_{i} \leq m, 3 \leq n$ be a cardinality constraint. If the bounding condition $l_{0, e_{2}-1} \leq \sum_{i=0}^{e_{2}-1} w_{i} \leq m_{0, e_{2}-1}, 1 \leq e_{2} \leq n-2$ is known, the following clauses can eliminate the same impossible solutions determined by bounding condition $l_{0, e_{2}} \leq \sum_{i=0}^{e_{2}} w_{i} \leq m_{0, e_{2}}$.

$$
\begin{align*}
& \text { if } \begin{array}{l}
m_{0, e_{2}} \\
\overline{w_{e_{2}}}=1 \\
\text { if } m_{0, e_{2}}>0: \\
\text { if } l_{0, e_{2}}=0: \\
\overline{w_{e_{2}}} \vee u_{e_{2}, 0}=1 \\
\text { if } l_{0, e_{2}-1}<m_{0, e_{2}-1}: \\
\overline{u_{e_{2}-1,0}} \vee u_{e_{2}, 0}=1 \\
\text { if } j=l_{0, e_{2}-1}: \\
\overline{w_{e_{2}}} \vee u_{e_{2}, j}=1 \\
\text { if } j>l_{0, e_{2}-1} \text { and } j \leq m_{0, e_{2}-1}: \\
\overline{w_{e_{2}}} \vee \overline{u_{e_{2}-1, j-1}} \vee u_{e_{2}, j}=1 \\
\text { if } j \geq l_{0, e_{2}-1} \text { and } j \leq m_{0, e_{2}-1}-1: \\
\overline{u_{e_{2}-1, j}} \vee u_{e_{2}, j}=1 \\
\text { if } m_{0, e_{2}-1}=m_{0, e_{2}} \text { and } l_{0, e_{2}-1}<m_{0, e_{2}}: \\
\overline{w_{e_{2}}} \vee \overline{u_{e_{2}-1, m_{0, e_{2}}-1}}=1 \\
\text { if } l_{0, e_{2}-1}=m_{0, e_{2}}: \\
\overline{w_{e_{2}}}=1
\end{array}
\end{align*}
$$

Proof When using original sequential encoding method to model the cardinality constraint $\sum_{i=0}^{n-1} w_{i} \leq m$, we have to introduce m auxiliary boolean variables $u_{e_{2}, 0}, u_{e_{2}, 1}, \ldots, u_{e_{2}, m-1}$ to represent the value of partial sum $\sum_{i=0}^{e_{2}} w_{i}$. Different from the method in Sect. 2.4, we can realise the bounding condition $l_{0, e_{2}} \leq \sum_{i=0}^{e_{2}} w_{i} \leq m_{0, e_{2}}$ in the following way.

When $m_{0, e_{2}}=0$, all the values of auxiliary variables are determined. Thus, all the auxiliary variables and related clauses can be reduced. And the value of $w_{e_{2}}$ can be represented as the clauses $\overline{w_{e_{2}}}=1$.

When $m_{0, e_{2}}>0$, in order to characterise the value of $\sum_{i=0}^{e_{2}} w_{i}$, the $m_{0, e_{2}}-l_{0, e_{2}}$ auxiliary variables whose values are uncertain must be introduced, denoted as $\left\{u_{e_{2}, j} \mid l_{0, e_{2}} \leq j \leq\right.$
$\left.m_{0, e_{2}}-1\right\}$. And all the other auxiliary variables whose values are determined are not needed. Then, we use the rules of sequential encoding method to model these uncertain variables one by one.

If $l_{0, e_{2}}=0$, the value of $u_{e_{2}, 0}$ should satisfy the following rules of sequential encoding method.

$$
\left\{\begin{array}{l}
\text { if } w_{e_{2}}=1 \text { then } u_{e_{2}, 0}=1 \\
\text { if } u_{e_{2}-1,0} \text { is uncertain, when } u_{e_{2}-1,0}=1 \text { then } u_{e_{2}, 0}=1
\end{array}\right.
$$

For $\max \left(l_{0, e_{2}}, 1\right) \leq j \leq m_{0, e_{2}}-1$, the value of $u_{e_{2}, j}$ should satisfy the following rules of sequential encoding method.

$$
\left\{\begin{array}{l}
\text { if } u_{e_{2}-1, j-1} \text { is determined as } 1 \text { and } w_{e_{2}}=1 \text { then } u_{e_{2}, j}=1 ; \\
\text { if } u_{e_{2}-1, j-1} \text { is uncertain, when } u_{e_{2}-1, j-1}=1 \text { and } w_{e_{2}}=1 \text { then } u_{e_{2}, j}=1 ; \\
\text { if } u_{e_{2}-1, j} \text { is uncertain, when } u_{e_{2}-1, j}=1 \text { then } u_{e_{2}, j}=1 .
\end{array}\right.
$$

Because of the bounding condition $l_{0, e_{2}} \leq \sum_{i=0}^{e_{2}} w_{i} \leq m_{0, e_{2}}$ and the rules of sequential encoding method, auxiliary boolean variables $u_{e_{2}, j}$ will return contradiction when $\sum_{i=0}^{e_{2}} w_{i}>m_{0, e_{2}}$. Thus, the following clauses should be satisfied.

$$
\left\{\begin{array}{l}
\text { if } m_{0, e_{2}-1}=m_{0, e_{2}}, u_{e_{2}-1, m_{0, e_{2}}-1} \text { is uncertain, } w_{e_{2}}=1 \text { then } u_{e_{2}-1, m_{0, e_{2}}-1}=0 ; \\
\text { if } l_{0, e_{2}-1}=m_{0, e_{2}} \text { then } w_{e_{2}}=0 .
\end{array}\right.
$$

The above predicates can be interpreted as the clauses as Eq. (11).
Lemma 3 Let $\sum_{i=0}^{n-1} w_{i} \leq m, 2 \leq n$ be a constraint. If the bounding condition $l_{0, n-2} \leq$ $\sum_{i=0}^{n-2} w_{i} \leq m_{0, n-2}$ is known, the following clauses can eliminate the same impossible solutions determined by $l_{0, n-1} \leq \sum_{i=0}^{n-1} w_{i} \leq m_{0, n-1}$.

Proof According to Lemma 1 and 2, the auxiliary variables $u_{n-2, j}, l_{0, n-2} \leq j \leq m_{0, n-2}-$ 1 are introduced to describe the value of $\sum_{i=0}^{n-2} w_{i}$. For the bounding condition $l_{0, n-1} \leq$ $\sum_{i=0}^{n-1} w_{i} \leq m_{0, n-1}$, we only need to know whether the condition is valid or not. Therefore, no auxiliary variables need to be introduced. Then, the value of w_{n-1} should satisfy the following rules of sequential encoding method.

$$
\left\{\begin{array}{l}
\text { if } m_{0, n-1}=0 \text { then } w_{n-1}=0 \\
\text { if } l_{0, n-2}<m_{0, n-1}=m_{0, n-2}, w_{n-1}=1 \text { then } u_{n-2, m_{0, n-1}-1}=0 \\
\text { if } m_{0, n-1}>0, l_{0, n-2}=m_{0, n-1} \text { then } w_{n-1}=0
\end{array}\right.
$$

The above predicates can be interpreted as the clauses as Eq. (12).

Theorem 2 Based on the sequential encoding method, the following clauses are the SAT model which can eliminate the same impossible solutions determined by the bounding conditions $l_{0, e_{2}} \leq \sum_{i=0}^{e_{2}} w_{i} \leq m_{0, e_{2}}, 0 \leq e_{2} \leq n-1$:

$$
\begin{align*}
& \text { if } l_{0,0}=0 \text { and } m_{0,0}=1 \text { : } \\
& \overline{w_{0}} \vee u_{0,0}=1 \\
& \text { else if } l_{0,0}=m_{0,0}=0 \text { : } \\
& \overline{w_{0}}=1 \\
& \text { else if } l_{0,0}=1 \text { and } m_{0,0}=1 \text { : } \\
& w_{0}=1 \\
& \text { if } m_{0, e_{2}}=0 \text { : } \\
& \overline{w_{e_{2}}}=1 \\
& \text { if } m_{0, e_{2}}>0 \text { : } \\
& \text { if } l_{0, e_{2}}=0 \text { : } \\
& \overline{w_{e_{2}}} \vee u_{e_{2}, 0}=1 \\
& \text { if } l_{0, e_{2}-1}<m_{0, e_{2}-1} \text { : } \\
& \overline{u_{e_{2}-1,0}} \vee u_{e_{2}, 0}=1 \\
& \begin{array}{l|l}
\text { if } j=l_{0, e_{2}-1} \\
\overline{w_{e_{2}}} \vee u_{e_{2}, j}=1
\end{array} \quad 1 \leq e_{2} \\
& \left.\begin{array}{l}
\text { if } j>l_{0, e_{2}-1} \text { and } j \leq m_{0, e_{2}-1} \\
\overline{w_{e_{2}}} \vee \overline{u_{e_{2}-1, j-1}} \vee u_{e_{2}, j}=1 \\
\text { if } j \geq l_{0, e_{2}-1} \text { and } j \leq m_{0, e_{2}-1}-1 \\
\quad \overline{u_{e_{2}-1, j}} \vee u_{e_{2}, j}=1
\end{array}\right\} \begin{array}{l}
\\
\max \left(l_{0, e_{2}}, 1\right) \leq j \\
\leq m_{0, e_{2}}-1 \\
\end{array} \tag{13}\\
& \text { if } m_{0, e_{2}-1}=m_{0, e_{2}} \text { and } l_{0, e_{2}-1}<m_{0, e_{2}} \\
& \overline{w_{e_{2}}} \vee \overline{u_{e_{2}-1, m_{0, e_{2}}-1}}=1 \\
& \text { if } l_{0, e_{2}-1}=m_{0, e_{2}} \\
& \overline{w_{e_{2}}}=1 \\
& \text { if } m_{0, n-1}=0 \text { : } \\
& \overline{w_{n-1}}=0 \\
& \text { if } m_{0, n-1}>0 \text { : } \\
& \text { if } m_{0, n-2}=m_{0, n-1} \text { and } l_{0, n-2}<m_{0, n-1} \text { : } \\
& \overline{w_{n-1}} \vee \overline{u_{n-2, m_{0, n-1}-1}}=1 \\
& \text { if } l_{0, n-2}=m_{0, n-1} \text { : } \\
& \overline{w_{n-1}}=1
\end{align*}
$$

Proof Any bounding condition $l_{0, e_{2}} \leq \sum_{i=0}^{e_{2}} w_{i} \leq m_{0, e_{2}}$ belongs to only one case of Lemma 1-3. Therefore, we can integrate them into Eq. (13) which is the SAT model based on sequential encoding method.

According to Theorem 2, if we want to build the SAT model in Eq. (13), we need the lower and upper bounds of partial sum $\sum_{i=0}^{e_{2}} w_{e_{2}}, 0 \leq e_{2} \leq n-1$. From Theorem 1, we know that all the Matsui's bounding conditions can be converted into a series of linear inequalities.

Thus, we propose a method based on MILP to obtain these bounds. The whole procedure is demonstrated in Algorithm 1.

```
Algorithm 1 Determining the lower and upper bounds of conditions
Require: Matsui's bounding conditions \(W_{\text {ini }}(R)\) and \(W_{\text {opt }}(i), 0 \leq i \leq R-1\)
Ensure: The lower bound \(l_{0, e_{2}}\) and upper bound \(m_{0, e_{2}}\) of \(\sum_{i=0}^{e_{2}} w_{i}\)
    Let \(\mathcal{M}\) be an empty MILP model
    for \(0 \leq r_{1} \leq r_{2} \leq R-1\) do \(\quad \triangleright\) Add the linear conditions in Eq. (9) into models
        \(\mathcal{M}\).addConstr \(\left(W_{\text {opt }}\left(r_{2}+1-r_{1}\right) \leq \sum_{i=r_{1}}^{r_{2}} \sum_{j=0}^{\sigma-1} w_{j}^{i}\right)\)
        \(\mathcal{M} \cdot \operatorname{addConstr}\left(\sum_{i=r_{1}}^{r_{2}} \sum_{j=0}^{\sigma-1} w_{j}^{i} \leq W_{\text {ini }}(R)-W_{\text {opt }}\left(r_{1}\right)-W_{\text {opt }}\left(R-1-r_{2}\right)\right)\)
    end for
    - Lower bound
    Let \(\mathcal{M}_{l}=\mathcal{M}\)
    \(\mathcal{M}_{l}\).setObjective( \(\sum_{i=0}^{e_{2}} w_{i}\), Minimize) \(\quad \triangleright\) Set the objective function
    \(l_{0, e_{2}}=\mathcal{M}_{l}\).optimize ()\(\quad \triangleright\) (Solve the MILP model and obtain the lower bound)
    - Upper bound
    Let \(\mathcal{M}_{m}=\mathcal{M}\)
    \(\mathcal{M}_{m}\).setObjective \(\left(\sum_{i=0}^{e_{2}} w_{i}\right.\),Maximize) \(\quad \triangleright\) Set the objective function
    \(m_{0, e_{2}}=\mathcal{M}_{m}\). optimize \() \quad \triangleright\) (Solve the MILP model and obtain the upper bound)
    return \(\left(l_{0, e_{2}}, m_{0, e_{2}}\right)\)
```

For all partial sums $\sum_{i=0}^{e_{2}} w_{i}, 0 \leq e_{2} \leq n-1$, we can use Algorithm 1 to get their lower and upper bounds easily. Then, according to Theorem 2, the SAT model of combining Matsui's bounding conditions with sequential encoding method can be obtained. And we can use it to search for the optimal characteristics of ciphers.

4 Applications to block ciphers

We apply our new method to several block ciphers and compare it with the traditional method of combining Matsui's bounding conditions with sequential encoding method proposed by Sun et al. [31]. In order to make the comparison as fair as possible, we implement the two methods on the same platform (AMD Ryzen 95950 X 16 -Core 3.4 G GHz) and the same SAT solver (CaDiCal [4]). All the source codes can be found in https://github.com/RNG2022/ simplest-Sat-model

4.1 Description of some block ciphers

SPN Ciphers. PRESENT [6] has an SPN structure and uses 80- and 128-bit keys with 64-bit blocks through 31 rounds. In order to improve the hardware efficiency, it uses a fully wired diffusion layer. RECTANGLE [40] is very similar to PRESENT. It is a 25 -round SPN cipher with the 64-bit block size. As an improved version of PRESENT, GIFT [2] is composed of two versions. GIFT-64 is a 28 -round SPN cipher with the 64 -bit block size, and GIFT-128 is a 40 -round SPN cipher with the 128 -bit block size.

Feistel Ciphers. LBlock [37] is a lightweight block cipher proposed by Wu and Zhang. The block size is 64 bits and the key size is 80 bits. It employs a variant Feistel structure and consists of 32 rounds. And TWINE [32] is a 64-bit lightweight block cipher supporting 80and 128-bit keys. It has the same structure as LBlock and consists of 36 rounds.

Table 2 The comparison results of the two methods

Cipher	Total round	Property	$K_{v a r}$	$K_{\text {cnf }}$	$K_{\text {sol }}$
PRESENT	31 (Full)	differential	7.1\%	11.1\%	36.6\%
		linear	2.0\%	4.7\%	46.6\%
RECTANGLE	25 (Full)	differential	16.2\%	20.0\%	35.0\%
		linear	14.1\%	27.4\%	94.0\%
GIFT64	28 (Full)	differential	8.7\%	12.3\%	44.8\%
		linear	19.0\%	24.1\%	94.7\%
GIFT128	29	differential	19.0\%	22.9\%	30.7\%
	25	linear	24.2\%	28.5\%	61.2\%
LBlock	32 (Full)	differential	18.8\%	52.5\%	52.0\%
		linear	18.0\%	31.8\%	58.7\%
TWINE	36 (Full)	differential	14.4\%	19.6\%	45.5\%
		linear	18.0\%	30.8\%	60.0\%
SPECK32	22 (Full)	differential	23.0\%	28.5\%	69.0\%
		linear	32.8\%	43.0\%	89.5\%
SPECK48	18	differential	22.1\%	33.5\%	84.0\%
	23 (Full)	linear	29.9\%	39.5\%	67.0\%
SPECK64	27 (Full)	differential	18.3\%	22.7\%	76.5\%
		linear	24.9\%	34.2\%	69.3\%
SPECK96	10	differential	49.3\%	54.5\%	82.7\%
	14	linear	47.2\%	56.7\%	67.8\%
SPECK128	9	differential	51.8\%	57.8\%	90.3\%
	10	linear	59.7\%	68.3\%	71.8\%

ARX Ciphers. SPECK [3] is a family of lightweight block ciphers published by National Security Agency (NSA). It adopts ARX structure which takes the modular addition as its nonlinear operation. According to block size, SPECK family of ciphers are composed of SPECK $2 n$, where $n \in\{16,24,32,48,64\}$.

4.2 The results of applications

In order to better illustrate our results, the following notations are introduced.

- $M_{\text {new }}$ and $M_{\text {sun }}$: the methods proposed in Sect. 3 and [31], respectively.
- Var, Cnf, and $T^{\text {sol }}$: the number of variables, clauses and solving time of models, respectively.
$-K_{\text {var }}=\frac{V a r_{\text {new }}}{V_{\text {arsun }}}, K_{\text {cnf }}=\frac{C n f_{\text {new }}}{C n f_{\text {sun }}}$ and $K_{\text {sol }}=\frac{T_{\text {sow }}^{s o l}}{T_{\text {sun }}^{s o l}}$: The ratio of the total number of variables, total number of clauses and total solving time of models, respectively.
- $P_{\text {opt }}$ and Cor $_{\text {opt }}$: the optimal probability and correlation of differential trails and linear trails, respectively.
We apply the two methods $M_{\text {sun }}$ and $M_{\text {new }}$ to the above SPN, Feistel and ARX ciphers to search for their optimal differential probabilities and linear correlations. The detailed results are shown in Table 4-15. The comparison of the two methods on the total number of variables, clauses and solving time of models are presented in Table 2. Take PRESENT as an example,

Table 3 New optimal differential probabilities and linear correlations

(a) Differential property					
Cipher	Round	$\log _{2}{ }_{2}^{P_{2 p t}}$	Var	Cnf	$T^{\text {sol }}$
GIFT128	30	-193	838882	2119484	430.20h
	31	-198.415	473100	1176426	38.28 h
	32	-204.415	527361	1331711	53.29h
	33	-210.415	523013	1331731	55.56h
	34	-217.415	607170	1550500	67.38h
	35	-224.83	627866	1601828	58.78h
	36	-234.415	947853	2384355	330.88 h
	37	-240.415	642079	1604643	71.70h
	38	-246.415	633699	1596599	86.96h
	39	-253.415	729939	1845704	31.96h
	40	-260.415	644931	1633919	131.86h
SPECK48	19	-89	68632	177696	482.23h
	20	-96	77548	197656	673.51h
SPECK96	11	-58	125910	311320	674.98h
SPECK128	10	-49	150920	381667	358.21h
(b) Linear property					
Cipher	Round	$\log _{2}^{\text {Cor }} \text { opt }$	Var	Cnf	$T^{\text {sol }}$
GIFT128	26	-91	147345	379885	994.45h
	27	-94	91807	236723	631.82h
	28	-98	123898	321268	347.7h
	29	-101	93844	244787	156.13h
	30	-105	126614	332020	319.5h
	31	-108	95881	252851	125.83h
	32	-112	129330	342772	272.14h
	33	-117	173725	455905	306.97h
	34	-121	148366	386148	314.38h
	35	-126	197520	510125	764.42h
	36	-130	167402	429524	524.84h
	37	-133	125704	324443	145.39 h
	38	-137	168070	436180	196.20h
	39	-140	126205	329435	155.27h
	40	-143	122722	324467	147.33h
SPECK96	15	-43	50325	165960	74.47h
	16	-48	69323	222298	289.07h
SPECK128	11	-31	55745	175540	261.10h

when searching for the optimal differential probabilities of every round from 1 to 31 , the total number of variables, clauses and the time of solving SAT models needed by our method is only $7.1 \%, 11.1 \%$ and 36.6% of the method $M_{\text {sun }}$, respectively.

For full-round PRESENT, RECTANGLE, GIFT64, LBlock, TWINE, SPECK32 and SPECK64, the optimal differential probabilities and linear correlations of ciphers have been
obtained. For GIFT128, SPECK48, SPECK96 and SPECK128, our method $M_{\text {new }}$ finds some new differential probabilities and linear correlations covering more rounds which are listed in Table 3.

5 Conclusion

In this paper, we aim at finding a better way of combining Matsui's bounding conditions with sequential encoding method. By studying the properties of Matsui's bounding conditions, the general form of inequality constraint which can eliminate all the impossible solutions determined by Matsui's bounding conditions is proposed. Because the values of some auxiliary boolean variables in sequential encoding method can be determined, we propose a new method of integrating bounding conditions into SAT model. When applying our new method to search for the optimal differential probability and linear correlation of block ciphers, the total number of variables, clauses and solving time of SAT models are decreased. In addition, we find some new differential and linear characteristics covering more rounds. As a result, we obtain a more efficient search tool.

Because our method of combining bounding condition with sequential encoding method is general, it can be used to search for other kinds of distinguishers for ciphers. The wide applications will be done in the future. And for SPECK48, SPECK96 and SPECK128, some optimal differential probabilities or linear correlations of the full-round ciphers can not be obtained by the existing methods. How to speed up the search of these ciphers is a problem worth studying.

Acknowledgements The authors would like to thank the anonymous reviewers for their detailed comments and suggestions. This work is supported by the National Natural Science Foundation of China [Grant No.62102448,62202493].

Appendix

Table 4 Experimental results of PRESENT

(a) Differential property							
Round	$\log _{2}^{P_{\text {opt }}}$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
1	-2	669	3112	0.1s	667	3059	0.1s
2	-4	668	2659	0.1 s	472	2217	0.1 s
3	-8	4203	14763	0.2s	2443	10799	0.2s
4	-12	7839	24564	0.3 s	3739	15479	0.3 s
5	-20	32809	92575	3.7s	14973	53459	2.4 s
6	-24	22011	58386	2.2s	8491	29135	1.1s
7	-28	29679	76683	2.4 s	9211	32663	1.7 s
8	-32	38499	97428	2.8 s	9931	36191	1.5 s
9	-36	48471	120621	3.0 s	10651	39719	1.0s
10	-41	80418	196930	3.9s	8999	31662	1.6 s
11	-46	98990	238786	8.1s	14923	52427	2.4 s
12	-52	150790	358715	32.4 s	28420	97945	9.7s

Table 4 continued

(a) Differential property $\underline{M}_{\text {sun }}$							
Round	$\log _{2}{ }_{2} \text { opt }$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
13	-56	107355	252813	5.4 s	18889	64523	3.3 s
14	-62	209460	489035	28.9s	35040	118125	16.7s
15	-66	145437	337053	10.0s	22861	76631	3.1s
16	-70	164337	379110	18.8s	22717	78431	2.1 s
17	-74	184389	423615	8.3 s	22573	80231	2.3 s
18	-78	205593	470568	6.4 s	22429	82031	2.5 s
19	-82	227949	519969	5.1s	8334	29753	1.3 s
20	-86	251457	571818	7.1s	8334	30449	1.3 s
21	-90	276117	626115	7.6 s	8334	31145	1.3 s
22	-96	508490	1148645	15.6s	28141	101795	4.0 s
23	-100	335511	755283	11.8s	27697	102995	4.6 s
24	-106	612280	1374005	33.3 s	34129	117935	16.6s
25	-110	400665	896547	17.2s	33397	118559	4.9s
26	-116	725670	1619525	60.0s	40117	134075	36.3s
27	-120	471579	1049907	31.8s	39097	134123	12.5 s
28	-124	505167	1123068	20.8s	14034	47405	1.4 s
29	-128	539907	1198677	18.2s	13746	47525	2.3 s
30	-132	575799	1276734	19.1s	13458	47645	4.9s
31	-136	612843	1357239	18.3s	13170	47765	3.5 s
Total		7575051	17154948	403.0s	539417	1895896	147.3 s

(b) Linear property

Round	$\log _{2}^{C o r} \text { opt }$	$M_{\text {sun }}$			$M_{\text {new }}$		
		Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
1	-1	351	1790	0.6 s	351	1758	0.1s
2	-2	382	1977	0.4 s	318	1817	0.1s
3	-4	1369	6599	0.7 s	983	5634	0.1s
4	-6	2293	9945	0.7 s	1391	7754	0.1s
5	-8	3473	13867	0.7s	1799	9874	0.2 s
6	-10	4909	18365	1.0s	2207	11994	0.3 s
7	-12	6601	23439	1.2 s	2615	14114	0.4 s
8	-14	8549	29089	1.0 s	3023	16234	0.4 s
9	-16	10753	35315	1.1s	3431	18354	0.7s
10	-18	13213	42117	1.3 s	3839	20474	0.8 s
11	-20	15929	49495	1.7 s	4247	22594	0.6 s
12	-22	18901	57449	2.1s	4655	24714	1.1s
13	-24	22129	65979	2.2 s	5063	26834	0.8 s
14	-26	25613	75085	2.5 s	5471	28954	0.9s
15	-28	29353	84767	2.8 s	5879	31074	1.1 s

Table 4 continued

(b) Linear property							
		$M_{\text {sun }}$			$M_{\text {new }}$		
Round	$\log _{2} \text { Cor }_{\text {opt }}$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
16	-30	33349	95025	2.7s	6287	33194	1.6 s
17	-32	37601	105859	5.0s	6695	35314	1.9 s
18	-34	42109	117269	3.5 s	7103	37434	2.1 s
19	-36	46873	129255	5.3 s	7511	39554	1.6 s
20	-38	51893	141817	5.5 s	7919	41674	1.7 s
21	-40	57169	154955	3.4 s	8327	43794	2.2s
22	-42	62701	168669	6.0 s	8735	45914	2.2 s
23	-44	68489	182959	6.3 s	9143	48034	3.0s
24	-45	74533	197825	7.7s	9551	50154	3.3 s
25	-48	80833	213267	8.0s	9959	52274	3.6s
26	-50	87389	229285	8.8s	10367	54394	3.7 s
27	-52	94201	245879	8.9s	10775	56514	4.6s
28	-54	101269	263049	8.5 s	11183	58634	5.1 s
29	-56	108593	280795	9.3 s	11591	60754	3.7 s
30	-58	116173	299117	10.0s	11999	62874	4.9 s
31	-60	124009	318015	14.1s	12407	64994	9.5 s
Total		9731820	22048710	133.3 s	194824	1027681	62.1 s

Table 5 Experimental results of RECTANGLE

(a) Differential property							
		$M_{\text {sun }}$			$M_{\text {new }}$		
Round	$\log _{2} P_{\text {opt }}$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
1	-2	669	2392	2.9s	667	2339	1.1 s
2	-4	668	2179	0.4 s	472	1737	0.3 s
3	-7	2659	8117	0.8s	1491	5486	0.7s
4	-10	4653	13313	1.2 s	2129	7678	0.7 s
5	-14	11193	30351	1.3 s	4501	15503	1.1 s
6	-18	16845	43752	1.7 s	6085	20039	1.1 s
7	-25	50313	125223	7.6s	18281	55018	5.0s
8	-31	60335	145130	15.8s	21455	60545	9.9 s
9	-36	63766	150466	18.8s	20654	57228	14.1 s
10	-41	80418	187330	23.0s	23402	64540	16.6 s
11	-46	98990	228226	70.5 s	26150	71852	42.8s
12	-51	119482	273154	103.0 s	28898	79164	27.1 s
13	-56	141894	322114	227.8s	31646	86476	52.7 s
14	-61	166226	375106	140.7s	34394	93788	57.1s
15	-66	192478	432130	256.9s	37142	101100	58.8s

Table 5 continued

(a) Differential property							
		$M_{\text {sun }}$			$M_{\text {new }}$		
Round	$\log _{2} P_{\text {opt }}$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
16	-71	220650	493186	203.8s	39890	108412	75.2s
17	-76	250742	558274	354.1s	42638	115724	76.6 s
18	-81	282754	627394	242.8 s	45386	123036	98.5s
19	-86	316686	700546	287.3 s	48134	130348	132.7 s
20	-91	352538	777730	406.6s	50882	137660	137.9 s
21	-96	390310	858946	479.1s	53630	144972	106.8 s
22	-101	430002	944194	497.5 s	56378	152284	111.5 s
23	-106	471614	1033474	335.0s	59126	159596	175.3 s
24	-111	515146	1126786	560.1 s	61874	166908	170.5 s
25	-116	560598	1224130	621.7 s	64622	174220	324.8s
Total		4801629	10683643	4860.6s	779927	2135653	1698.9 s

(b) Linear property

Round	$\log _{2} \text { Cor }_{\text {opt }}$	$M_{\text {sun }}$			$M_{\text {new }}$		
		Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
1	-1	367	1246	1.6s	351	1214	0.9s
2	-2	446	1433	0.7s	318	1273	0.4 s
3	-4	1705	4967	1.4 s	983	4002	0.7s
4	-6	2997	7769	1.2 s	1391	5578	0.8s
5	-8	4673	11147	1.3 s	1799	7154	0.7s
6	-10	6733	15101	1.3 s	2207	8730	1.0 s
7	-13	14268	30114	3.6 s	4252	16115	2.5 s
8	-16	19731	39396	6.6s	5473	19691	4.5 s
9	-19	26058	49926	9.8 s	6694	23267	10.8s
10	-22	33249	61704	20.9s	7915	26843	21.6s
11	-25	41304	74730	48.2 s	9136	30419	44.1s
12	-28	50223	89004	104.5 s	10357	33995	74.6 s
13	-31	60006	104526	234.6s	11578	37571	220.5 s
14	-34	70653	121296	292.6s	12799	41147	271.6s
15	-37	82164	139314	380.6s	14020	44723	429.5 s
16	-40	94539	158580	0.30h	15241	48299	778.5 s
17	-42	71037	118311	368.5 s	10435	33506	205.9s
18	-45	119292	197409	507.8s	16162	52415	875.7s
19	-48	134115	220227	0.36h	17479	56183	0.32h
20	-51	149802	244293	0.36h	18796	59951	0.30h
21	-54	166353	269607	0.34h	20113	63719	0.35h

Table 5 continued

(b) Linear property							
		$M_{\text {sun }}$			$\underline{M n e w}$		
Round	$\log _{2}{ }_{2}^{\text {Cor opt }}$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
22	-57	183768	296169	0.41h	21430	67487	0.38h
23	-60	202047	323979	0.49h	22747	71255	0.48h
24	-63	221190	353037	0.52h	24064	75023	0.52h
25	-66	241197	383343	1.52h	25381	78791	1.39h
Total		1997917	3316628	4.86h	281121	908351	4.57h

Table 6 Experimental results of GIFT64

(a) Differential property							
		$M_{\text {sun }}$			$M_{\text {new }}$		
Round	$\log _{2}{ }_{2 \text { opt }}$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
1	-1.415	590	2747	0.3 s	590	2699	0.2s
2	-3.415	1560	6677	0.3 s	1268	5947	0.2s
3	-7	4554	16630	0.5 s	2990	12916	0.3 s
4	-11.415	11663	36670	3.2 s	6281	24437	0.5 s
5	-17	28744	81820	15.5 s	13678	48259	2.4 s
6	-22.415	38950	103956	33.8s	16090	53830	19.4s
7	-28.415	65899	168535	110.9s	24275	78099	66.7 s
8	-38	136625	334925	433.1s	49795	147570	343.9s
9	-42	73534	175738	74.6s	23962	69556	25.8 s
10	-48	136911	323127	191.0s	38249	112630	62.1 s
11	-52	110934	259130	33.0s	26634	79812	43.5 s
12	-58	198771	460311	189.2s	42257	128014	54.8s
13	-62	156014	358650	56.6s	29306	90068	20.7s
14	-68	272151	621687	70.7s	46265	143398	60.1 s
15	-72	208774	474298	46.8s	31978	100324	5.1s
16	-78	357051	807255	107.8s	28561	86231	38.6s
17	-82	269214	606074	51.2 s	27205	85367	13.7 s
18	-88	453471	1017015	119.7 s	30997	94787	56.1 s
19	-92	337334	753978	59.5s	29353	93347	34.6s
20	-98	561411	1250967	133.5 s	33433	103343	59.6s
21	-102	413134	918010	82.6s	31501	101327	16.2s
22	-108	680871	1509111	125.7 s	35869	111899	75.3 s
23	-112	496614	1098170	87.5 s	33649	109307	35.5 s
24	-118	811851	1791447	239.1s	38305	120455	142.2 s
25	-122	587774	1294458	120.8s	35797	117287	40.4s
26	-128	954351	2097975	251.9s	40741	129011	137.8s

Table 6 continued

(a) Differential property							
		$M_{\text {sun }}$			$M_{\text {new }}$		
Round	$\log _{2} P_{\text {opt }}$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
27	-132	686614	1506874	155.6s	37945	125267	11.8s
28	-138	1108371	2428695	365.3 s	43177	137567	100.2 s
Total		9163735	20504930	3160.9s	800151	2512754	1416.4s
(b) Linear property							
		$M_{\text {sun }}$			$M_{\text {new }}$		
Round	$\log _{2} \text { Cor opt }$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
1	-1	351	1150	1.1s	351	1118	0.8s
2	-2	382	1337	0.3 s	318	1177	0.4 s
3	-3	637	2245	0.4 s	445	1765	0.4 s
4	-5	2039	6879	0.8 s	1269	4954	0.7s
5	-7	3155	10033	0.8s	1741	6562	0.8s
6	-10	7077	21216	1.5 s	3601	12815	1.5 s
7	-13	10236	29106	2.3 s	4822	16247	2.2 s
8	-16	13971	38244	4.5 s	6043	19679	3.7 s
9	-20	24950	65986	27.2 s	10250	31940	18.8s
10	-25	41805	106810	218.3 s	16955	49845	182.2 s
11	-29	43090	107342	592.1s	16742	47540	460.1 s
12	-31	25795	63539	175.1s	8893	25474	166.5 s
13	-34	45021	110115	218.2s	13705	39935	215.0 s
14	-37	52500	127317	250.5 s	14638	42791	208.2 s
15	-40	60555	145767	500.8s	15571	45647	345.1 s
16	-43	69186	165465	462.0s	16504	48503	344.2 s
17	-46	78393	186411	351.7 s	17437	51359	357.0s
18	-49	88176	208605	256.1s	18370	54215	221.0 s
19	-52	98535	232047	241.0s	19303	57071	330.8 s
20	-55	109470	256737	227.0s	20236	59927	214.9s
21	-58	120981	282675	266.9s	21169	62783	338.5 s
22	-61	133068	309861	253.0s	22102	65639	307.0s
23	-64	145731	338295	309.1s	23035	68495	310.4 s
24	-67	158970	367977	271.8 s	23968	71351	225.8 s
25	-70	172785	398907	264.5 s	24901	74207	456.5 s
26	-73	187176	431085	283.2s	25834	77063	260.3 s
27	-76	202143	464511	285.6s	26767	79919	262.8 s
28	-79	217686	499185	311.7 s	27700	82775	237.5 s
Total		2113864	4978847	5777.5 s	402670	1200796	5473.2s

Table 7 Differential property of GIFT128

Round	$\log _{2} P_{\text {opt }}$	$M_{\text {sun }}$			$M_{\text {new }}$		
		Var	Cnf	$T^{\text {sol }}$	Var	yCnf	$T^{\text {sol }}$
1	-1.415	1182	5499	0.2 s	1182	5403	0.2s
2	-3.415	3128	13381	0.2s	2548	11931	0.2 s
3	-7	11939	42911	0.7s	8057	33693	0.5 s
4	-11.415	23375	73502	1.5 s	12713	49269	1.4 s
5	-17	48201	137955	7.9s	22631	80998	6.9s
6	-22.415	78022	208308	19.7 s	32698	108934	17.8 s
7	-28.415	131979	337655	98.1s	49363	158179	83.3 s
8	-39	305162	746449	1.06h	115588	337447	0.71h
9	-45.415	272180	645604	0.74h	98536	273887	0.52h
10	-49.415	239761	562598	542.7 s	72419	206125	201.9s
11	-54.415	345062	802966	726.5 s	87710	256334	115.0s
12	-60.415	483563	1114804	0.60h	110573	324151	229.8 s
13	-67.83	664028	1515923	2.00h	145314	418180	0.28h
14	-79	1218318	2747022	42.98h	316984	856761	8.06h
15	-85.415	856156	1912402	22.88h	204874	538803	4.63h
16	-90.415	833262	1854320	6.58h	176946	472134	0.63h
17	-96.415	1095855	2430141	7.86h	209023	564547	1.74h
18	-103.415	1416604	3128587	27.29h	255346	687908	2.79h
19	-110.83	1597380	3513947	42.54h	277578	742308	3.00h
20	-121.415	2729099	5973181	744.30h	495133	1285212	151.29h
21	-126.415	1528822	3334794	35.71h	272002	699574	8.2h
22	-132.415	1950067	4246118	24.23h	314263	818523	5.52h
23	-139.415	2444925	5311943	44.26h	272403	971688	13.35h
24	-146.83	2680964	5811667	61.77h	394602	1026020	26.42h
25	-157.415	4447707	9611825	744.50h	680957	1731196	283.76h
26	-162.415	2431742	5244388	38.59h	367058	927014	20.19h
27	-168.415	3046199	6562735	79.10h	419503	1072499	35.63h
28	-174.415	3271885	7041002	84.05h	419187	1080583	39.76h
29	-181.83	4018764	8637027	126.33h	490994	1268484	56.14h
Total		38175331	83568654	2137.78h	7265067	19127269	657.28h
30	-193	-	-	-	838882	2119484	430.20h
31	-198.415	-	-	-	464358	1158942	38.28h
32	-204.415	-	-	-	527361	1331711	53.29h
33	-210.415	-	-	-	523013	1331731	55.56h
34	-217.415	-	-	-	607170	1550500	67.38h
35	-224.83	-	-	-	627866	1601828	58.78h
36	-234.415	-	-	-	947853	2384355	330.88 h

Table 7 continued

Round	$\log _{2} P_{\text {opt }}$	$M_{\text {sun }}$			$\underline{M_{\text {new }}}$		
		Var	$C n f$	$T^{\text {Sol }}$	Var	$\mathrm{y} C n f$	$T^{\text {Sol }}$
37	-240.415	-	-	-	642079	1604643	71.70h
38	-246.415	-	-	-	633699	1596599	86.96h
39	-253.415	-	-	-	729939	1845704	31.96h
40	-260.415	-	-	-	644931	1633919	131.86h

Table 8 Linear property of GIFT128

Round	$\log _{2} \text { Cor }_{\text {opt }}$	$M_{\text {sun }}$			$\underline{M n e w}$		
		Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
1	-1	703	2302	1.0 s	703	2238	0.8 s
2	-2	766	2681	0.4 s	638	2361	0.5 s
3	-3	1277	4501	0.4 s	893	3541	0.4 s
4	-5	4087	13791	0.9s	2549	9946	1.0 s
5	-7	6323	20113	1.0s	3501	13186	1.3 s
6	-10	14181	42528	2.1 s	7249	25775	1.9 s
7	-13	20508	58338	4.8 s	9718	32711	4.6 s
8	-17	38338	104234	24.0s	17262	54884	25.9 s
9	-22	66780	173900	234.0 s	29480	87725	224.1 s
10	-26	70814	178870	640.3 s	29642	84948	721.0 s
11	-31	113135	279355	1.33 h	44955	125305	1.55h
12	-36	142550	345035	7.85h	54430	147565	6.96h
13	-38	67573	161991	1.40 h	23083	62978	0.37h
14	-41	115848	276465	2.83 h	24510	96239	2.13h
15	-45	178898	423742	4.27h	49422	137796	4.23h
16	-48	153843	342028	2.99h	39427	110063	1.06h
17	-51	173226	405870	1.28h	40360	113927	1.17h
18	-56	328690	765185	5.46h	74550	207765	5.79h
19	-59	222738	515616	2.63h	48706	134603	3.74h
20	-64	416330	958975	22.39 h	88460	242225	17.66h
21	-68	373878	856594	41.29 h	78746	212388	23.98h
22	-74	629715	1434747	536.54h	134681	355678	355.26h
23	-79	589055	1334575	335.82h	129035	333305	192.01h
24	-82	387213	874722	57.26h	80821	208,775	24.93h
25	-86	560174	1262890	162.42h	109634	284,772	84.86h
Total		4676643	10859048	1186.8h	1132455	3090699	725.96h

Table 8 continued

Round	$\log _{2} \text { Cor opt }^{\text {or }}$	$M_{\text {sun }}$			$\underline{M_{\text {new }}}$		
		Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
26	-91	-	-	-	147345	379885	994.45h
27	-94	-	-	-	91807	236723	631.82h
28	-98	-	-	-	123898	321268	347.7h
29	-101	-	-	-	93844	244787	156.13h
30	-105	-	-	-	126614	332020	319.5h
31	-108	-	-	-	95881	252851	125.83h
32	-112	-	-	-	129330	342772	272.14h
33	-117	-	-	-	173725	455905	306.97h
34	-121	-	-	-	148366	386148	314.38h
35	-126	-	-	-	197520	510125	764.42h
36	-130	-	-	-	167402	429524	524.84h
37	-133	-	-	-	125704	324443	145.39h
38	-137	-	-	-	168070	436180	196.20h
39	-140	-	-	-	126205	329435	155.27h
40	-143	-	-	-	122722	324467	147.33h

Table 9 Experimental results of LBlock

(a) Differential property M_{S}					$\underline{M n e w}$		
Round	$\log _{2} P_{o p t}$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
1	0	184	546	0.1 s	184	522	0.1 s
2	-2	1053	3524	0.2s	1051	3401	0.2 s
3	-4	1911	6169	0.2s	1615	5360	0.2 s
4	-6	3057	9511	0.2s	2179	7319	0.2 s
5	-8	4491	13501	0.3 s	2743	9278	0.2 s
6	-12	11070	31656	0.5 s	6210	20115	0.5 s
7	-16	16210	44036	0.7 s	8410	25880	0.5 s
8	-22	32571	84505	1.8 s	16149	46879	1.2 s
9	-28	45633	113891	2.8 s	21609	59682	1.8 s
10	-36	80208	193906	5.0s	36876	97323	3.4 s
11	-44	107136	252370	8.5 s	47748	121452	5.8s
12	-48	73530	170916	4.0 s	29770	75305	2.3 s
13	-56	160164	368326	13.3 s	60420	151638	9.2 s
14	-62	150563	342553	14.1 s	53837	133497	10.0s
15	-66	124200	281046	9.2 s	40110	100020	6.2 s
16	-72	198877	447903	13.4 s	58849	147315	11.4s

Table 9 continued
(a) Differential property

Round	$\log _{2} P_{\text {opt }}$	$M_{\text {sun }}$			$\underline{M_{\text {new }}}$		
		Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
17	-76	161110	361336	11.7s	43690	109890	7.7s
18	-82	253911	567365	19.0s	63861	161133	12.8 s
19	-86	202820	451706	20.8s	47270	119760	13.6s
20	-92	315665	700939	20.7s	68873	174951	14.7 s
21	-96	249330	552156	11.7s	50850	129630	6.5 s
22	-102	384139	848625	18.2s	73885	188769	11.6s
23	-106	300640	662686	20.5s	54430	139500	9.7 s
24	-112	459333	1010423	21.8s	78897	202587	9.7 s
25	-115	284202	624243	10.4s	45218	117120	5.7 s
26	-121	536886	1177618	22.3 s	79926	208453	12.1s
27	-126	499251	1092904	36.3s	72563	188404	16.5 s
28	-131	537885	1175710	26.5s	74789	194482	10.8 s
29	-135	479895	1047811	17.3 s	62455	163690	8.4s
30	-141	720202	1570430	34.3 s	90300	236789	9.6 s
31	-146	662427	1442272	51.5 s	81743	213268	18.5 s
32	-151	706821	1537174	39.2 s	83969	219346	16.3 s
Total		7765375	7187757	456.3 s	1460479	3772758	237.3 s

(b) Linear property

Round	$\log _{2}^{\text {Cor opt }}$	$M_{\text {sun }}$			$M_{\text {new }}$		
		Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
1	0	176	481	0.1 s	176	465	0.1s
2	-1	623	1981	0.1s	607	1918	0.1s
3	-2	1013	3156	0.1s	877	2934	0.1 s
4	-3	1499	4524	0.1s	1147	3950	0.1s
5	-4	2081	6052	0.1s	1417	4966	0.1 s
6	-6	4353	11893	0.2 s	2671	9251	0.2 s
7	-8	6051	15376	0.3 s	3331	11279	0.3 s
8	-11	11098	26227	0.5 s	5570	18236	0.5 s
9	-14	15038	33227	0.8s	6910	21852	0.8s
10	-18	25040	52116	1.4 s	10700	32605	1.3 s
11	-22	32780	64771	2.6 s	13100	38565	2.2 s

Table 9 continued

(b) Linear property							
Round	$\log _{2} \text { Cor }_{\text {opt }}$	$M_{\text {sun }}$			$M_{\text {new }}$		
		Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
12	-24	24027	46129	1.3 s	8737	25595	1.2 s
13	-27	37802	71199	3.2s	12554	36876	2.3 s
14	-30	44718	82487	2.8s	13830	40364	1.9 s
15	-33	52210	94607	3.7s	15106	43852	3.5s
16	-36	60278	107559	7.8s	16382	47340	3.7s
17	-37	33647	59590	2.5 s	8291	24342	1.7 s
18	-40	74694	131375	4.2 s	16918	50300	2.4 s
19	-42	62541	109018	3.4 s	13291	39635	2.4s
20	-45	92562	160043	4.3 s	18594	55532	3.1s
21	-47	76662	131575	4.1s	14548	43559	2.3 s
22	-50	112350	191527	5.1s	20270	60764	3.1 s
23	-52	92223	156244	4.5 s	15805	47483	2.4 s
24	-55	134058	225827	5.5 s	21946	65996	3.6s
25	-56	72217	121220	2.8s	10977	33478	1.8 s
26	-59	155194	259627	6.7 s	22098	68188	2.1 s
27	-62	168926	280835	9.3 s	23822	72572	6.9 s
28	-65	183234	302875	16.1s	25546	76956	5.2s
29	-66	97669	161024	4.3 s	12713	38830	3.4 s
30	-69	207826	341795	6.3 s	25442	78636	5.7s
31	-72	223670	366075	16.2s	27294	83276	5.7s
32	-74	178917	291859	10.2 s	21097	64415	6.2 s
Total		2285177	3912294	130.4s	411767	1244010	76.5s

Table 10 Experimental results of TWINE

(a) Differential property							
		$M_{\text {sun }}$			$M_{\text {new }}$		
Round	$\log _{2}{ }_{2}{ }_{\text {opt }}$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
1	0	184	761	0.6 s	184	737	0.4s
2	-2	1053	4814	1.0s	1051	4691	1.1s
3	-4	1911	8104	1.1s	1615	7295	1.2 s
4	-6	3057	12091	1.1s	2179	9899	1.3 s
5	-8	4491	16726	1.1s	2743	12503	1.1 s
6	-12	11070	38106	2.0 s	6210	26565	1.9 s
7	-16	16210	51561	2.1 s	8410	33405	2.5 s
8	-22	32571	96545	3.6s	16149	58919	3.3 s
9	-28	45633	127436	4.1s	21609	73227	4.0s
10	-38	100661	265893	10.9s	47575	147587	8.6 s
11	-46	111870	283105	15.2s	51312	149829	11.3 s
12	-51	92541	229174	11.0s	38657	111682	7.9s
13	-58	148588	362181	22.8s	56940	163576	20.9s
14	-64	155253	372989	30.1s	55307	157479	15.8s
15	-68	127790	304341	14.3 s	40920	117745	9.4 s
16	-74	204239	482693	39.5s	59647	172963	28.9s
17	-77	131330	308567	15.0s	34410	101436	7.6s
18	-83	256928	600482	32.3 s	61348	183183	17.8s
19	-88	247479	574738	35.2s	55775	166306	27.4s
20	-94	322371	744437	60.4 s	68985	205247	21.8 s
21	-97	202482	465815	14.0s	39554	119500	7.8 s
22	-103	387828	889106	26.3 s	70014	214123	12.6 s
23	-107	303395	692916	10.5 s	51545	158445	5.6s
24	-113	463358	1054586	24.9s	74690	230279	13.5 s
25	-116	286598	650531	11.1s	42718	133612	4.6s
26	-122	541247	1225463	17.2s	75383	238483	7.9s
27	-126	417660	943011	18.5s	55500	176085	5.8 s
28	-132	629881	1418495	28.5 s	60760	189025	6.6s
29	-136	483370	1085931	21.8s	59080	188105	9.2 s
30	-142	725235	1625639	54.7s	64580	201525	12.6s
31	-146	553880	1238931	28.3 s	62660	200125	12.0s
32	-152	827309	1846895	41.3 s	68400	214025	15.1s
33	-155	501770	1118447	22.8 s	51418	166572	7.6s
34	-161	930398	2070860	39.1s	56350	178372	6.8 s
35	-166	848643	1885174	68.0s	70310	225145	23.7s
36	-172	1051617	2331743	74.8 s	76510	239965	21.4 s
Total		11169901	25428287	805.3 s	1610498	4977660	366.8 s

Table 10 continued

(b) Linear property							
		$M_{\text {sun }}$			$M_{\text {new }}$		
Round	$\log _{2}^{\text {Cor opt }^{2}}$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
1	0	176	777	0.6 s	176	761	0.3 s
2	-1	607	3165	0.7s	607	3102	0.7s
3	-2	941	4932	0.7s	877	4710	0.7s
4	-3	1339	6892	0.8s	1147	6318	0.8s
5	-4	1801	9012	0.7s	1417	7926	0.7s
6	-6	3633	17221	1.2 s	2671	14579	1.1 s
7	-8	4875	21592	1.4 s	3331	17495	1.4 s
8	-11	8666	35699	2.3 s	5570	27708	1.9 s
9	-14	11438	43883	2.4s	6910	32508	2.3 s
10	-18	18640	66916	4.0s	10700	47405	3.0s
11	-22	23980	81051	4.7s	13100	54845	3.6 s
12	-24	17403	56785	2.7s	8737	36251	2.3 s
13	-27	27194	86591	4.7 s	12554	52268	3.6 s
14	-30	31950	99063	5.0s	13830	56940	4.3 s
15	-32	27459	83560	4.0s	10975	45503	2.8 s
16	-35	41594	124467	6.2 s	15506	64540	4.3 s
17	-36	23177	68572	2.9s	7885	33598	1.6 s
18	-39	51370	150395	5.3 s	16170	70124	3.1 s
19	-41	42936	124075	4.5 s	12778	55487	3.0s
20	-44	63446	181175	6.4 s	17974	77980	4.1 s
21	-45	34647	98142	3.1 s	9087	40254	1.2 s
22	-48	75398	211967	5.2 s	18510	83308	3.1s
23	-50	61869	172270	4.1 s	14581	65471	2.2 s
24	-53	89906	248123	5.8s	20442	91420	3.9 s
25	-54	48421	132832	3.4 s	10289	46910	2.0 s
26	-57	104034	283779	5.6 s	20850	96492	2.6 s
27	-59	84258	228145	5.0s	16384	75455	3.2 s
28	-62	120974	325311	8.0s	17851	79979	3.5 s
29	-63	64499	172642	3.7 s	11491	53566	2.2 s
30	-66	137278	365831	7.8 s	12549	56742	3.4 s
31	-68	110103	291700	5.4s	12619	57946	2.5 s
32	-71	156650	412739	7.0s	13707	61182	3.7s
33	-72	82881	217572	4.4s	12693	60222	2.3 s
34	-75	175130	458123	7.4 s	13847	63590	3.7 s
35	-77	139404	362935	5.8s	13885	64730	2.9s
36	-80	196934	510407	9.4s	15069	68158	3.2 s
Total		2085011	5758341	152.1s	396769	1775473	91.2s

Table 11 Experimental results of SPECK32

(a) Differential property		\underline{M} Sun			$\underline{M_{\text {new }}}$		
Round	$\log _{2} P_{\text {opt }}$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
1	0	79	294	0.5 s	79	279	0.1s
2	-1	281	1229	1.9 s	281	1170	0.1s
3	-3	783	3154	2.1s	691	2837	0.2s
4	-5	1368	5002	1.7s	1000	3995	0.2s
5	-9	3925	12826	2.6 s	2535	9285	0.6 s
6	-13	6465	19176	3.4 s	3665	12425	1.8 s
7	-18	11838	32782	9.3 s	6050	19264	6.7 s
8	-24	20349	53299	55.2 s	9653	28875	41.9s
9	-30	28511	71702	417.5 s	12565	35903	299.9s
10	-34	26350	64751	484.3 s	10340	29245	248.0s
11	-38	32265	78226	805.1 s	11095	31635	764.8 s
12	-42	38780	92976	0.34h	11850	34025	852.1 s
13	-45	36328	86427	680.1s	9704	28376	292.8 s
14	-49	52565	124216	0.30h	12495	37085	698.4 s
15	-54	73638	172510	0.61h	16646	48856	878.3 s
16	-58	70840	164726	0.38h	15160	44165	690.1s
17	-63	97188	224542	1.34h	19844	57352	0.96h
18	-69	130424	299069	8.96h	26796	75411	5.81h
19	-74	127386	290218	28.08h	25982	71704	16.33h
20	-77	94186	213859	5.64h	17642	49148	4.25 h
21	-81	129125	292506	9.80h	21855	61925	10.08h
22	-85	141865	320456	8.62h	22385	63865	5.92h
Total		1124539	2623946	64.74h	258313	746825	44.69 h

(b) Linear property

Round	$\log _{2} \text { Cor opt }^{\text {or }}$	$M_{\text {sun }}$			$M_{\text {new }}$		
		Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
1	0	111	455	0.1s	111	440	0.1 s
2	0	190	924	0.1 s	190	879	0.1 s
3	-1	582	2855	0.1 s	582	2722	0.1 s
4	-3	1398	6232	0.2 s	1306	5783	0.2 s
5	-5	2169	8788	0.2 s	1801	7604	0.3 s
6	-7	3120	11749	0.5 s	2296	9425	0.5 s
7	-9	4251	15115	1.1 s	2791	11246	0.8 s
8	-12	7654	25655	3.8 s	4614	17884	3.9s
9	-14	7455	23863	10.8s	4081	15482	6.1 s
10	-17	12526	38639	46.1 s	6334	23532	28.8s
11	-19	11559	34591	48.4s	5371	19718	37.6s

Table 11 continued

(b) Linear property							
		$M_{\text {sun }}$			$M_{\text {new }}$		
Round	$\log _{2} \text { Cor opt }^{\text {or }}$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
12	-20	8941	26418	17.0s	3673	13886	30.0s
13	-22	15399	44977	41.7 s	5695	22034	25.9s
14	-24	17835	51268	12.8 s	6145	23765	26.4s
15	-26	20451	57964	15.8 s	6595	25496	23.2 s
16	-28	23247	65065	38.9s	7045	27227	35.7 s
17	-30	26223	72571	62.2 s	7495	28958	31.7s
18	-34	50310	136821	0.37h	14570	53795	622.0 s
19	-36	34419	92200	0.37h	9889	35396	0.44h
20	-38	38025	101101	0.59h	10249	36947	0.43h
21	-40	41811	110407	0.34h	10609	38498	0.42h
22	-42	45777	120118	0.33h	10969	40049	0.33h
Total		373453	1047776	2.09h	122411	460766	1.87h

Table 12 Experimental results of SPECK48

(a) Differential property							
		$M_{\text {sun }}$			$\underline{M n e w}$		
Round	$\log _{2}{ }_{2 \text { opt }}$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
1	0	119	446	0.1 s	119	423	0.1s
2	-1	425	1869	0.3 s	425	1778	0.1 s
3	-3	1191	4810	0.5 s	1051	4325	0.2 s
4	-6	2966	10551	0.8 s	2214	8492	0.3 s
5	-10	6575	20761	1.9 s	4215	14875	1.3 s
6	-14	10590	30741	6.4 s	5870	19545	2.9 s
7	-19	19110	52168	23.2s	9494	29980	18.4s
8	-26	37868	97805	174.1s	17836	52472	155.2 s
9	-33	54112	133941	0.49h	24176	67280	0.60h
10	-40	72932	175413	4.18h	30516	82088	4.30h
11	-45	69234	163648	5.19h	26174	69748	5.29h
12	-49	69125	161871	3.08h	22805	61465	2.59h
13	-54	97908	227464	5.64h	28712	78076	4.66h
14	-58	95090	219421	1.33h	24920	68405	1.10h
15	-63	131550	301768	6.21h	31250	86404	4.06h
16	-68	151335	345052	8.63h	33527	92578	4.91h
17	-75	233120	527877	59.46h	50800	137776	55.15h
18	-82	269972	606885	192.27h	59716	157736	157.98h
Total		1323222	3082491	286.55h	373820	1033446	240.69h
19	-89	-	-	-	68632	177696	482.23h
20	-96	-	-	-	77548	197656	673.51h

Table 12 continued

(b) Linear property							
		$M_{\text {sun }}$			$M_{\text {new }}$		
Round	$\log _{2} \text { Cor }_{\text {opt }}$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
1	0	167	695	0.1s	167	672	0.1s
2	0	286	1412	0.2s	286	1343	0.1s
3	-1	878	4367	0.4 s	878	4162	0.2s
4	-3	2118	9544	0.4s	1978	8855	0.3 s
5	-6	4624	18411	0.6s	3872	15988	0.5 s
6	-8	5163	18832	1.4 s	3757	14981	1.0s
7	-12	12405	41821	21.8s	8195	30970	10.4 s
8	-15	13882	43731	79.5 s	8266	29900	63.8 s
9	-19	23105	69231	0.33h	12595	44030	0.36h
10	-22	23730	68419	0.95h	11786	40348	0.84h
11	-25	29116	81827	3.70h	13100	44684	3.44h
12	-28	35054	96431	6.67h	14414	49020	6.06h
13	-30	30711	83281	3.12h	11353	39134	2.50h
14	-33	47302	126663	10.28h	15958	55532	7.97h
15	-37	69365	182556	40.11h	22555	76760	36.48h
16	-39	47694	124006	29.34h	14476	49223	25.03 h
17	-43	90305	232291	124.91h	25945	87810	106.15h
18	-45	61086	155641	86.19h	16510	55853	42.87h
19	-48	90332	228663	57.01h	22604	77364	38.81h
20	-51	100594	252651	51.20h	24010	81884	17.42h
21	-54	111408	277835	217.37h	25416	86404	151.05h
22	-57	122774	304215	335.77h	26822	90924	223.90h
23	-59	100227	247261	52.73h	20383	70010	20.59h
Total		1022326	2669784	1019.7h	305326	1055851	683.48h

Table 13 Experimental results of SPECK64

(a) Differential property							
		$\underline{M s u n}$			$\underline{M_{\text {new }}}$		
Round	$\log _{2} P_{o p t}$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
1	0	159	598	0.1 s	159	567	0.1s
2	-1	569	2509	0.3 s	569	2386	0.1s
3	-3	1599	6466	0.4 s	1411	5813	0.2s
4	-6	3990	14199	1.0 s	2982	11436	0.5 s
5	-10	8855	27961	2.7 s	5695	20075	2.4 s
6	-15	17679	50812	15.8s	10079	32782	11.0s

Table 13 continued

(a) Differential property							
		$M_{\text {sun }}$			$\underline{M_{\text {new }}}$		
Round	$\log _{2} P_{\text {opt }}$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
7	-21	32319	86556	78.0s	16779	50841	78.6s
8	-29	62991	159427	0.39h	30945	87369	0.38h
9	-34	58056	142108	0.54h	25640	70444	0.46h
10	-38	60690	146291	0.35h	23050	63905	0.55h
11	-42	73545	175406	518.8 s	24065	67775	551.8s
12	-46	87640	207156	524.9s	25080	71645	333.0s
13	-50	102975	241541	685.1 s	26095	75515	508.7s
14	-56	170401	396040	0.50h	40943	117103	0.41h
15	-62	202055	464969	2.03h	48083	133931	2.21h
16	-70	308286	702316	47.58h	75378	202569	34.51h
17	-73	157152	355875	1.06h	36120	96728	1.01h
18	-76	173082	391331	0.73h	33922	93812	0.33h
19	-81	288162	649648	0.77h	51086	143332	0.53h
20	-85	266705	599311	0.35h	43945	124025	0.45h
21	-89	293045	656946	0.35h	43875	125725	0.30h
22	-94	386793	864742	0.52h	54593	156958	0.50h
23	-99	425742	948952	1.16h	58454	166876	0.85h
24	-107	709857	1575649	14.96h	103395	285009	12.20h
25	-112	523152	1156936	11.15h	78776	211876	10.08h
26	-116	471520	1040961	3.88h	66400	179905	2.74h
27	-121	610170	1344904	17.29h	80786	220300	11.97h
Total		5497189	12409610	104.43h	1008305	2818702	79.89h

(b) Linear property

Round	$\log _{2} \text { Cor }_{\text {opt }}$	$M_{\text {sun }}$			$M_{n e w}$		
		Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
1	0	223	935	0.1s	223	904	0.1 s
2	0	382	1900	0.2 s	382	1807	0.2 s
3	-1	1174	5879	0.3 s	1174	5602	0.2 s
4	-3	2838	12856	0.4 s	2650	11927	0.3 s
5	-6	6208	24811	1.4 s	5200	21556	1.0 s
6	-9	9622	34583	3.9s	7102	27676	3.2 s
7	-13	17765	58536	55.2 s	11785	43300	40.1 s
8	-17	25205	77401	452.1 s	15135	52885	440.0s
9	-19	19497	57676	787.2 s	10267	35840	417.7 s
10	-21	23502	68269	161.9s	10732	38513	231.5 s
11	-24	37852	107623	570.3s	15604	56260	377.1 s
12	-27	45730	127067	742.3 s	17506	62380	577.2 s

Table 13 continued

(b) Linear property							
Round	$\log _{2} \text { Coropt }^{\text {Cot }}$	$M_{\text {sun }}$			$M_{\text {new }}$		
		Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
13	-30	54352	148123	0.57h	19408	68500	0.53h
14	-33	63718	170791	0.70h	21310	74620	0.65h
15	-37	93445	246156	16.18h	30165	103220	6.47h
16	-41	109565	283621	68.49h	34755	115285	46.92h
17	-43	74577	191080	4.35h	22039	73280	3.48h
18	-45	82302	209857	0.68h	21760	74465	0.55h
19	-47	90399	229471	0.61h	21481	75650	0.58h
20	-49	98868	249922	549.0s	21202	76835	643.7s
21	-52	144912	364211	108.0s	29192	106612	96.8s
22	-54	118965	297418	51.0s	22489	82889	32.2 s
23	-59	263694	653938	0.76h	50606	180502	0.68h
24	-63	246015	603951	37.94h	50065	169085	29.54h
25	-66	215848	526530	41.97 h	43424	144324	31.36h
26	-68	174399	423994	15.31h	32791	110429	8.52h
27	-70	186123	451606	0.51h	31861	110312	0.46h
Total		2207180	5628206	188.30h	550308	1924658	130.53h

Table 14 Experimental results of SPECK96

(a) Differential property							
		\underline{M} sun			$\underline{M_{\text {new }}}$		
Round	$\log _{2}{ }_{2}^{P_{\text {opt }}}$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
1	0	239	902	0.8s	239	855	0.1 s
2	-1	857	3789	1.9 s	857	3602	0.1 s
3	-3	2415	9778	2.6s	2131	8789	0.2s
4	-6	6038	21495	4.2 s	4518	17324	0.7 s
5	-10	13415	42361	6.4 s	8655	30475	3.4s
6	-15	26799	77020	24.4s	15359	49870	22.7s
7	-21	49007	131244	163.8 s	25627	77497	230.4s
8	-30	108025	272406	1.53h	54445	151910	1.49h
9	-39	159420	384536	41.24h	76920	202360	40.56h
10	-49	243782	570615	452.48h	111848	283107	367.75h
Total		609997	1514146	495.50h	300599	825789	409.86h
11	-58	-	-	-	125910	311320	674.98h
(b) Linear property							
		$M_{\text {sun }}$			$M_{\text {new }}$		
Round	$\log _{2} \text { Cor }_{\text {opt }}$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
1	0	335	1415	0.1s	335	1368	0.1s
2	0	574	2876	0.1 s	574	2735	0.1 s

Table 14 continued

(b) Linear property							
		$M_{\text {sun }}$			$M_{\text {new }}$		
Round	$\log _{2} \text { Cor }_{\text {opt }}$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {Sol }}$
3	-1	1766	8903	0.2s	1766	8482	0.2 s
4	-3	4278	19480	0.2 s	3994	18071	0.2 s
5	-6	9376	37611	1.3 s	7856	32692	1.1 s
6	-9	14550	52439	12.6s	10750	42012	10.5s
7	-13	26885	88776	200.6s	17865	65780	180.4s
8	-18	46923	143128	1.25h	28679	98698	1.12h
9	-22	53435	154236	10.24h	29685	98220	7.03h
10	-27	83859	232396	127.10h	42863	137626	107.60h
11	-31	88445	237556	260.22h	41505	130660	173.60h
12	-33	62940	166486	36.05h	26008	83255	14.02h
13	-36	96992	253923	44.06h	35328	115844	24.34h
14	-39	112318	290559	44.82h	37094	122908	27.07h
Total		602676	1689784	523.80h	284302	958351	354.82h
15	-43	-	-	-	50325	165960	74.47h
16	-48	-	-	-	69323	222298	289.07h

Table 15 Experimental results of SPECK128

(a) Differential property							
		\underline{M} sun			$\underline{M_{\text {new }}}$		
Round	$\log _{2}{ }_{2 \text { opt }}$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
1	0	319	1206	0.1s	319	1143	0.1 s
2	-1	1145	5069	0.1 s	1145	4818	0.1 s
3	-3	3231	13090	0.3 s	2851	11765	0.3
4	-6	8086	28791	1.0 s	6054	23212	0.7 s
5	-10	17975	56761	3.5 s	11615	40875	4.2
6	-15	35919	103228	36.7s	20639	66958	30.3
7	-21	65695	175932	343.8 s	34475	104153	286.3
8	-30	144825	36520	2.74h	73325	204390	2.71h
9	-39	213740	365206	76.38h	103720	272600	68.75h
Total		490935	1264859	79.23h	254143	729914	71.56h
10	-49	-	-	-	150920	381667	358.21h

(b) Linear property

Round	$\log _{2} \text { Cor }_{\text {opt }}$	$M_{\text {sun }}$			$M_{\text {new }}$		
		Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
1	0	447	1895	0.1 s	447	1832	0.1s
2	0	766	3852	0.2s	766	3663	0.1s

Table 15 continued

(b) Linear property		$M_{\text {sun }}$			$\underline{M_{\text {new }}}$		
Round	$\log _{2} \text { Cor }_{\text {opt }}$	Var	Cnf	$T^{\text {sol }}$	Var	Cnf	$T^{\text {sol }}$
3	-1	2358	11927	0.2s	2358	11362	0.2 s
4	-3	5718	26104	0.4s	5338	24215	0.3 s
5	-6	12544	50411	3.6s	10512	43828	2.9s
6	-9	19478	70295	23.2 s	14398	56348	18.1s
7	-13	36005	119016	463.5 s	23945	88260	308.5 s
8	-18	62859	191896	2.85h	38471	132490	2.34h
9	-22	71595	206796	3.08h	39845	131900	2.35h
10	-27	112371	311596	98.78h	57551	184858	70.51 h
Total		324141	993788	104.85h	193631	678756	75.29h
11	-31	-	-	-	55745	175540	261.10h

References

1. Ahmed Abdelkhalek Yu., Sasaki Y.T., Tolba M., Youssef A.M.: MILP modeling for (large) s-boxes to optimize probability of differential characteristics. IACR Trans. Symmetric Cryptol. 2017(4), 99-129 (2017).
2. Banik S., Pandey S.K., Peyrin T., Sasaki Y., Sim S.M., Todo Y.: GIFT: A small present - towards reaching the limit of lightweight encryption. In Wieland Fischer and Naofumi Homma, editors, Cryptographic Hardware and Embedded Systems - CHES 2017-19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes in Computer Science, pages 321-345. Springer, 2017.
3. Beaulieu R., Shors D., Smith J., Treatman-Clark S., Weeks B., Wingers L.: The SIMON and SPECK families of lightweight block ciphers. IACR Cryptol. ePrint Arch., p. 404 (2013).
4. Biere A.: Cadical at the sat race 2019. In Heule M., Järvisalo M., Suda M. (Ed.) SAT Race 2019—Solver and Benchmark Descriptions,Theory and Applications of Satisfiability Testing—SAT 2009, volume B-2019-1, pp. 8-9. University of Helsinki (2019).
5. Biham E., Shamir A.: Differential cryptanalysis of des-like cryptosystems. In Alfred Menezes and Scott A. Vanstone, editors, Advances in Cryptology-CRYPTO '90, Santa Barbara, California, USA, August 1115, 1990, Proceedings, volume 537 of Lecture Notes in Computer Science, pp. 2-21. Springer (1990).
6. Bogdanov A., Knudsen L.R., Leander G., Paar C., Poschmann A., Robshaw M.J.B., Seurin Y., Vikkelsoe C.: PRESENT: an ultra-lightweight block cipher. In: Paillier P., Verbauwhede I. (Eds.) Cryptographic Hardware and Embedded Systems - CHES 2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727 of Lecture Notes in Computer Science, pp. 450-466. Springer (2007).
7. Boura C., Coggia D.: Efficient MILP modelings for sboxes and linear layers of SPN ciphers. IACR Trans. Symmetric Cryptol. 2020(3), 327-361 (2020).
8. Cui T., Jia K., Fu K., Chen S., Wang M.: New automatic search tool for impossible differentials and zero-correlation linear approximations. IACR Cryptol. ePrint Arch., p. 689 (2016).
9. Erlacher J., Mendel F., Eichlseder M.: Bounds for the security of ascon against differential and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2022(1), 64-87 (2022).
10. Fu K., Wang M., Guo Y., Sun S., Hu L.: Milp-based automatic search algorithms for differential and linear trails for speck. In: Peyrin T. (Ed.) Fast Software Encryption-23rd International Conference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers, volume 9783 of Lecture Notes in Computer Science, pp. 268-288. Springer (2016).
11. Gu Z., Rothberg E., Bixby R.: Gurobi optimizer. http://www.gurobi.com/.
12. Kim S., Hong D., Sung J., Hong S.: Accelerating the best trail search on aes-like ciphers. IACR Trans. Symmetric Cryptol. 2022(2), 201-252 (2022).
13. Kölbl S., Leander G., Tiessen T.: Observations on the SIMON block cipher family. In Gennaro R., Robshaw M. (Eds.) Advances in Cryptology-CRYPTO 2015-35th Annual Cryptology Conference,

Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer Science, pages 161-185. Springer (2015).
14. Li T., Sun Y.: Superball: a new approach for MILP modelings of boolean functions. IACR Trans. Symmetric Cryptol. 2022(3), 341-367 (2022).
15. Liu Y., Liang H., Li M., Huang L., Hu K., Yang C. Wang M.: STP models of optimal differential and linear trail for s-box based ciphers. Sci. China Inf. Sci. 64(5) (2021).
16. Liu Y., Wang Q., Rijmen V.: Automatic search of linear trails in ARX with applications to SPECK and chaskey. In Manulis M., Sadeghi A-.R., Schneider S.A. (Eds.) Applied Cryptography and Network Security-14th International Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings, volume 9696 of Lecture Notes in Computer Science, pp. 485-499. Springer (2016).
17. Liu Z., Li Y., Jiao L., Wang M.: A new method for searching optimal differential and linear trails in ARX ciphers. IEEE Trans. Inf. Theory 67(2), 1054-1068 (2021).
18. Matsui M.: Linear cryptanalysis method for DES cipher. In Tor Helleseth, editor, Advances in Cryptology - EUROCRYPT '93, Workshop on the Theory and Application of of Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings, volume 765 of Lecture Notes in Computer Science, pp. 386-397. Springer (1993).
19. Matsui M.: On correlation between the order of s-boxes and the strength of DES. In Alfredo De Santis, editor, Advances in Cryptology - EUROCRYPT '94, Workshop on the Theory and Application of Cryptographic Techniques, Perugia, Italy, May 9-12, 1994, Proceedings, volume 950 of Lecture Notes in Computer Science, pp. 366-375. Springer (1994.)
20. Mouha M., Preneel B.: Towards finding optimal differential characteristics for arx: Application to salsa20. Cryptology ePrint Archive, Report 2013/328 (2013). https://ia.cr/2013/328.
21. Mouha N., Wang Q., Gu D., Preneel B.: Differential and linear cryptanalysis using mixed-integer linear programming. In: Wu C., Yung, M, Lin D., (Eds.), Information Security and Cryptology-7th International Conference, Inscrypt 2011, Beijing, China, November 30-December 3, 2011. Revised Selected Papers, volume 7537 of Lecture Notes in Computer Science, pp. 57-76. Springer (2011).
22. Sasaki Y., Todo, Y.: New algorithm for modeling s-box in MILP based differential and division trail search. In: Farshim P., Simion E. (Eds.) Innovative Security Solutions for Information Technology and Communications - 10th International Conference, SecITC 2017, Bucharest, Romania, June 8-9, 2017, Revised Selected Papers, volume 10543 of Lecture Notes in Computer Science, pp. 150-165. Springer (2017).
23. Sasaki Y., Todo Y.: New impossible differential search tool from design and cryptanalysis aspects - revealing structural properties of several ciphers. In: Coron J.S., Nielsen J.B. (Eds.) Advances in Cryptology-EUROCRYPT 2017-36th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30-May 4, 2017, Proceedings, Part III, volume 10212 of Lecture Notes in Computer Science, pp. 185-215 (2017).
24. Sinz C.: Towards an optimal CNF encoding of boolean cardinality constraints. In van Beek P. (Ed.) Principles and Practice of Constraint Programming-CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings, volume 3709 of Lecture Notes in Computer Science, pp. 827-831. Springer (2005).
25. Stephen A.C.: The complexity of theorem-proving procedures. In Harrison M.A., Banerji R.B., Ullman J.D. (Eds.) Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA, pp. 151-158. ACM (1971).
26. Sun S., Hu L., S L.ong, Xie Y., Wang P.: Automatic security evaluation of block ciphers with s-bp structures against related-key differential attacks. In Lin D., Xu S., Yung M. (Eds.), Information Security and Cryptology - 9th International Conference, Inscrypt 2013, Guangzhou, China, November 27-30, 2013, Revised Selected Papers, volume 8567 of Lecture Notes in Computer Science, pp. 39-51. Springer, (2013).
27. Sun S., Hu L., Wang P., Qiao K., Ma X., Song L.: Automatic security evaluation and (related-key) differential characteristic search: Application to simon, present, lblock, DES(L) and other bit-oriented block ciphers. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology—ASIACRYPT 2014 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, volume 8873 of Lecture Notes in Computer Science, pp. 158-178. Springer (2014.)
28. Sun B., Liu Z., Rijmen V., Li R., Cheng L., Wang Q., AlKhzaimi H., Li C.: Links among impossible differential, integral and zero correlation linear cryptanalysis. In Gennaro R., Robshaw M. (Eds.) Advances in Cryptology-CRYPTO 2015-35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer Science, pp. 95-115. Springer (2015).
29. Sun L., Wang W., Wang M.: Automatic search of bit-based division property for ARX ciphers and word-based division property. In: Takagi T., Peyrin T. (Eds.) Advances in Cryptology—ASIACRYPT

2017-23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I, volume 10624 of Lecture Notes in Computer Science, pp. 128-157. Springer (2017).
30. Sun L., Wang W., Wang M.: More accurate differential properties of LED64 and midori64. IACR Trans. Symmetric Cryptol. 2018(3), 93-123 (2018).
31. Sun L., Wang W., Wang M.: Accelerating the search of differential and linear characteristics with the SAT method. IACR Trans. Symmetric Cryptol. 2021(1), 269-315 (2021).
32. Suzaki T., Minematsu K., Morioka S., Kobayashi E.: Twine: A lightweight block cipher for multiple platforms. In Lars R. Knudsen and Huapeng Wu, editors, Selected Areas in Cryptography, 19th International Conference, SAC 2012, Windsor, ON, Canada, August 15-16, 2012, Revised Selected Papers, volume 7707 of Lecture Notes in Computer Science, pages 339-354. Springer, 2012.
33. Todo Y., Isobe T., Hao Y., Meier W.: Cube attacks on non-blackbox polynomials based on division property. In: Katz J., Shacham H. (Ed.) Advances in Cryptology-CRYPTO 2017-37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III, volume 10403 of Lecture Notes in Computer Science, pp. 250-279. Springer (2017).
34. Udovenko A.: MILP modeling of boolean functions by minimum number of inequalities. IACR Cryptol. ePrint Arch., page 1099 (2021).
35. Wang S., Hu B., Guan J., Zhang K., Shi T.: Milp-aided method of searching division property using three subsets and applications. In: Galbraith S.D., Moriai S. (Ed.) Advances in Cryptology-ASIACRYPT 2019-25th International Conference on the Theory and Application of Cryptology and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part III, volume 11923 of Lecture Notes in Computer Science, pp. 398-427. Springer (2019).
36. Wu S., Wang M.: Security evaluation against differential cryptanalysis for block cipher structures. IACR Cryptol. ePrint Arch. p. 551 (2011).
37. Wu W., Zhang L.: Lblock: A lightweight block cipher. In Javier López and Gene Tsudik, editors, Applied Cryptography and Network Security - 9th International Conference, ACNS 2011, Nerja, Spain, June 7-10, 2011. Proceedings, volume 6715 of Lecture Notes in Computer Science, pages 327-344, 2011.
38. Xiang Z., Zhang W., Bao Z., Lin D.: Applying MILP method to searching integral distinguishers based on division property for 6 lightweight block ciphers. In: Cheon J.H., Takagi T. (Ed)., Advances in Cryptology—ASIACRYPT 2016, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, volume 10031 of Lecture Notes in Computer Science, pp. 648-678 (2016).
39. Zhang Y., Sun S., Cai J., Hu L.: Speeding up MILP aided differential characteristic search with matsui's strategy. In Chen L., Manulis M., Schneider S.A. (Eds.) ISC 2018, Guildford, UK, September 9-12, 2018, Proceedings, volume 11060 of Lecture Notes in Computer Science, pp. 101-115. Springer (2018)
40. Zhang W., Bao Z., Lin D., Rijmen V., Yang B., Verbauwhede I.: RECTANGLE: a bit-slice lightweight block cipher suitable for multiple platforms. Sci. China Inf. Sci. 58(12), 1-15 (2015).
41. Zhou C., Zhang W., Ding T., Xiang Z.: Improving the milp-based security evaluation algorithm against differential/linear cryptanalysis using A divide-and-conquer approach. IACR Trans. Symmetric Cryptol. 2019(4), 438-469 (2019).

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

[^0]: Communicated by D. Stebila.

 Senpeng Wang
 wsp2110@126.com
 1 State Key Laboratory of Cryptology, Beijing, China
 2 PLA SSF Information Engineering University, Zhengzhou, China

