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Abstract
As the first generic method for finding the optimal differentialand linear characteristics,
Matsui’s branch and bound search algorithm has played an important role in evaluating the
security of symmetric ciphers. By combining Matsui’s bounding conditions with automatic
search models, search efficiency can be improved. In this paper, by studying the properties
of Matsui’s bounding conditions, we give the general form of bounding conditions that can
eliminate all the impossible solutions determined by Matsui’s bounding conditions. Then, a
newmethod of combining bounding conditionswith sequential encodingmethod is proposed.
With the help of some small sizeMixed Integer Linear Programming (MILP) models, we can
use fewer variables and clauses to build Satisfiability Problem (SAT)models. As applications,
we use our new method to search for the optimal differential and linear characteristics of
some SPN, Feistel, and ARX block ciphers. The number of variables and clauses and the
solving time of the SAT models are decreased significantly. In addition, we find some new
differential and linear characteristics covering more rounds.

Keywords Automatic search · SAT model · Matsui’s bounding condition · Differential
cryptanalysis · Linear cryptanalysis

Mathematics Subject Classification 94A60 · 65C10

1 Introduction

Differential cryptanalysis [5] and linear cryptanalysis [18] are two powerful methods which
have been widely used in the security analysis of many symmetric ciphers. The core idea of
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these methods is to identify the differential or linear characteristics with high probabilities
or correlations. However, searching for the optimal differences or linear masks is not an easy
work. At EUROCRYPT 1994, Matsui [19] proposed a branch and bound search algorithm
which could be used to identify the optimal differences and linear masks. Matsui’s algorithm
is one of the most powerful and efficient search tools. In a work concurrent to ours (after we
submit this document to IACR Cryptol. ePrint Arch.), Kim et al. [12] accelerated Matsui’s
search algorithm to search for the optimal differences and linear masks of AES-like ciphers.
Matsui’s algorithm is powerful in searching distinguishers. However, the skills of controlling
memory and selecting searching nodes are required when implementing Matsui’s algorithm.
By contrast, automatic search methods use solvers to deal with these problems which are
easier to implement. In order to meet the demands of security analysis of ciphers, many
automatic search methods have been proposed and widely used in the search for numerous
distinguishers.

Mixed Integer Linear Programming (MILP) is a kind of optimization or feasibility pro-
gramwhose objective function and constraints are linear, and the variables are restricted to be
integers or real numbers. MILP problem can be solved automatically withMILP solvers such
as Gurobi [11]. In [21, 36], the first automatic search method based on MILP was proposed
to evaluate the security of word-oriented block ciphers against differential and linear crypt-
analysis. Later, Sun et al. [26, 27] proposed methods for generating inequalities to describe
the bit-wise differential or linear characteristics for S-box. Therefore, their models can be
used to obtain the minimum number of active S-boxes and search for the best differential
and linear characteristics for bit-oriented block ciphers. However, the above methods only
work on small size S-boxes (e.g. 4-bit). At FSE 2017, Abdelkhalek et al. [1] put forward
the first MILP model for large S-boxes (e.g. 8-bit). Then, some efficient methods were pro-
posed to generate inequalities of large S-boxes (e.g. [7, 34]). For ARX ciphers, Fu et al.
[10] built the MILP models for the differential and linear characteristics of modular addition
and applied them to search for the best differential and linear characteristics for SPECK.
Moreover, as a powerful automatic search tool, MILP has been also widely used in other
attacks, such as integral attacks [35, 38], cube attacks [33], impossible differential attacks
[23], and zero-correlation linear attacks [8].

The Boolean Satisfiability Problem (SAT) is a problem which considers the satisfiability
of a given boolean formula. And there are also many SAT solvers, such as CaDiCal [4]. The
first automatic search method based on SAT is introduced by Mouha and Preneel [20]. Then,
at CRYPTO 2015, Kölbl et al. [13] used the SAT/SMT solver to find the optimal differential
and linear characteristics for SIMON. And at ACNS 2016, Liu et al. [16] extended the SAT
based automatic search algorithm to search for the linear characteristics for ARX ciphers. At
FSE 2018, Sun et al. [30] built the SAT-based models for differential characteristics and got
more accurate differential probability for LED64 and Midori64. Moreover, SAT can be used
in the search for impossible differential trails [15] and integral distinguishers [29].

Automatic search tools bring great convenience to the security evaluation of ciphers.
However, when the number of variables or constraints in the model is large, solvers may not
return the result within a reasonable time. Therefore, it is of great importance to improve the
efficiency of automatic search methods. And a lot of works have been done on this issue. We
divide them into three main categories.

Reducing the Variables and Constraints in the Model. Although Sasaki and Todo [22]
point out that the number of inequalities can not strictly determine the efficiency of solving
model, it still has an important impact on the solving time. And a lot of methods have been
proposed to reduce the variables and constraints modeling S-box or linear layers [1, 7, 14,
34].

123



Newmethod for combining Matsui’s bounding conditions

Divide andConquerApproach. In order to obtain the result of a largemodel in reasonable
time, we can divide it into appropriate parts. In [27], Sun et al. split r -rounds cipher into two
parts (the first r0 and the last (r − r0) rounds). Then, they combine them after solving the
models of the two parts respectively. At FSE 2019, Zhou et al. [41] proposed a divide-and-
conquer approach which divided the whole search space according to the number of active
S-boxes at a certain round. At FSE 2022, Erlacher et al. [9] proposed a new search strategy
of dividing the search space into a large number of subproblems based on girdle patterns.

Combining Matsui’s Bounding Conditions into the Model. Matsui’s bounding condi-
tions may reduce the feasible region of the original model. The first method of combining
Matsui’s branch and bound search algorithm with the MILP based search model is proposed
by Zhang et al. [39]. Later, Sun et al. [31] put forward a new encoding method to convert
Matsui’s bounding conditions into boolean formulas of SAT model. Both methods are real-
ized by adding the constraints derived from Matsui’s bounding conditions into the original
model.

From the perspective of application effect, the SATmodel combiningwithMatsui’s bound-
ing conditions proposed by Sun et al. [31] is one of the best choices at present. This method
can obtain the complete bounds (full rounds) on the number of active S-boxes, the differential
probabilities and linear correlations for many block ciphers for the first time. The efficiency
of automatic search has been greatly improved. Just like the MILP models of combining
Matsui’s bounding conditions, according to the experiment results in [31], adding more Mat-
sui’s bounding conditions may not necessarily improve the efficiency. This may be because
that all the previous methods realize the bounding conditions by adding a set of constraints.
And some added constraints increase the search complexity of models. Regrettably, there is
no relevant theory for us to identify the constraints which have negative effects. By doing a
considerable amount of experiments, Sun et al. [31] put forward a strategy on how to organ-
ise the sets of bounding conditions that potentially achieve better performance. Because this
strategy is experimental and lacks sufficient theoretical guidance, we cannot really know its
performance until completing its application. Therefore, it is meaningful to research a bet-
ter way of combining Matsui’s bounding conditions with the automatic search models and
improve the search efficiency.

1.1 Our contributions

The efficiency of Matsui’s bounding conditions comes from the fact that they can elim-
inate some impossible solutions and reduce the search space. When building SAT models,
we have to convert Matsui’s bounding conditions into other form of formulas. By study-
ing the properties of Matsui’s bounding conditions, we give the general form of inequality
constraints that can eliminate all the impossible solutions determined by Matsui’s bound-
ing conditions. Then, we propose a new method of combining bounding conditions with
sequential encoding method. With the help of some small size MILP models, we can use
fewer variables and clauses to build SAT models. This will decrease the solving complexity
of models. As applications, we use our new method to search for the optimal differential
and linear characteristics for SPN, Feistel and ARX block ciphers. Compared with the pre-
vious method, the number of variables and clauses and the solving time of the SAT models
are decreased significantly which can be seen in Table 2. For the block ciphers PRESENT,
RECTANGLE, GIFT64, LBlock, TWINE, SPECK32, SPECK64, the optimal differential
and linear characteristics of the full rounds are obtained which are consistent with the results
in [31]. For SPECK48, SPECK96, SPECK128 and GIFT128, we find some new differential
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Table 1 The comparison of the maximum length of optimal characteristics

Trail GIFT128 SPECK48 SPECK96 SPECK128 Ref

Differential �29 – – – [12]
�40 – – – [12]

– 12 8 8 [17]

29 18 10 9 [31]

40 (Full) 20 11 10 Sect. 4

Linear �22 – – – [12]
�40 – – – [12]

– 13 9 9 [17]

25 23 (Full) 14 10 [31]

40 (Full) 23 (Full) 16 11 Sect. 4

� The results were published after we submitted this work to IACR Cryptol. ePrint Arch. And their method is
not based on automatic search solver and works only for AES-like ciphers

and linear characteristics covering more rounds. And a comparison of the maximum length
of optimal differential and linear trails with previous results is provided in Table 1. For all
the above ciphers, our results reach the maximum length of optimal differential and linear
characteristics at present.

1.2 Outline

This paper is organized as follows: Sect. 2 provides the background of automatic search
method based on SAT. In Sect. 3, by studying the properties of Matsui’s bounding conditions
and sequential encoding method, we propose a new SAT model of combining bounding
conditions with sequential encoding method. In Sect. 4, we use the new method to search for
the optimal differential and linear characteristics for block ciphers. In Sect. 5, we conclude
the paper. And some auxiliary materials are supplied in Appendix.

2 Automatic searchmethod based on SAT

2.1 Boolean satisfiability problem

For a formula, if it only consists of boolean variables, operators AND (∧), OR (∨), NOT (·)
and parentheses, we call it boolean formula. And SAT is the boolean satisfiability problem
which considerswhether there is a valid assignment to boolean variables such that the formula
equals one. If such an assignment exists, the SAT problem is said satisfiable. This problem
is NP-complete [25]. However, many problems with millions of variables can be solved by
modern SAT solvers, such as CaDiCal [4].

For any boolean formula, we can convert it into Conjunctive Normal Form (CNF) denoted

as
∧m

i=0

(∨ni
j=0 ci, j

)
, where ci, j is a boolean variable or constant or the NOT of a boolean

variable. And each disjunction
∨ni

j=0 ci, j is called a clause. CNF is a standard input format
of SAT solvers. If we want to use SAT to solve a problem, we should translate it into a model
consisted of boolean variables and clauses.
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2.2 SATmodels for some basic operations

When we use SAT to search for differential or linear characteristics, we should translate the
search problem into a series of clauses. And the clauses should describe the propagation
properties of differential or linear characteristics through the cipher. We call a pair of differ-
ences (linear masks) is valid when its differential probability (linear correlation) is nonzero.
Here, we will briefly introduce the SATmodels for some basic operations which will be used
in this paper. For more information, please refer to [16, 31]. And in the following, we use x0
to denote the most significant bit of the n-bit vector x = (x0, x1, . . . , xn−1) ∈ F

n
2.

Differential Model 1 (Branching) [31]. Let y = f (x) be a branching function, where
x ∈ F2 is the input variable, and the output variables y = (y0, y1, . . . , yn−1) ∈ F

n
2 is

calculated as y0 = y1 = · · · = yn−1 = x . Then, (α, β0, β1, . . . , βn−1) is a valid differential
of f if and only if it satisfies all the equations in the following:

α ∨ βi = 1
α ∨ βi = 1

}

, 0 ≤ i ≤ n − 1.

Differential Model 2 (Xor) [31]. Let y = f (x) be an Xor function, where x =
(x0, x1, . . . , xn−1) ∈ F

n
2 are the input variables, and the output variable y ∈ F2 is cal-

culated as y = x0 ⊕ x1 ⊕ · · · ⊕ xn−1.
When n = 2, (α0, α1, β) is a valid differential of f if and only if it satisfies all the

equations in the following:

α0 ∨ α1 ∨ β = 1

α0 ∨ α1 ∨ β = 1

α0 ∨ α1 ∨ β = 1

α0 ∨ α1 ∨ β = 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

When n ≥ 3, we can decompose the n-input Xor operation into (n − 1) 2-input Xor
operations by introducing auxiliary boolean variables. After applying 2-input Xor model to
the (n − 1) 2-input Xor operations one by one, the model of n-input Xor operation can be
expressed with 4 × (n − 1) clauses.

According to [28], the linearmasks propagationmodel for branching (resp. Xor) operation
is the same as the differences propagation model for Xor (resp. branching) operation. Thus,
we do not introduce the SAT models for linear masks propagation through branching and
Xor operations.
Differential Model 3 (Modular Addition) [16, 31]. Let z = f (x, y) be a n-bit modular
addition operation. Then, (α, β, γ ) ∈ F

3×n
2 is a valid differential if and only if it satisfies all

the following equations:

αn−1 ⊕ βn−1 ⊕ γn−1 = 0;
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

0 ≤ i ≤ n − 2,
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where the Xor operation denoted by⊕ is symbolic representation which can be converted into
CNF formulas with the method in Differential Model 2 (Xor). In order to model the different
probability, we will introduce (n − 1) binary variables denoted as w0, w1, . . . , wn−2.When
they satisfy the following equations:

αi+1 ∨ γi+1 ∨ wi = 1

βi+1 ∨ γi+1 ∨ wi = 1

αi+1 ∨ βi+1 ∨ wi = 1

αi+1 ∨ βi+1 ∨ γi+1 ∨ wi = 1

αi+1 ∨ βi+1 ∨ γi+1 ∨ wi = 1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

0 ≤ i ≤ n − 2,

the differential probability can be computed as p (α, β, γ ) = 2−∑n−2
i=0 wi .

The papers [16, 31] have showed the model for the linear correlations through modular
addition. Because themost significant bit of modular addition is a constant value, we can omit
this variable. So we give a new linear model for modular addition which is a little different
from the previous.
LinearModel 1 (ModularAddition).For an n-bit modular addition operation z = f (x, y),
we denote the two input linear masks as α and β and the output mask as γ . And in order
to model the correlation, (n − 1) binary variables denoted as w = (w0, w1, . . . , wn−2) are
introduced. Then, the correlation of the linear approximation (α, β, γ ) ∈ F

3×n
2 is nonzero if

and only if (α, β, γ,w) satisfies all the following equations:

α0 ⊕ β0 ⊕ γ0 ⊕ w0 = 0;
α j+1 ⊕ β j+1 ⊕ γ j+1 ⊕ w j ⊕ w j+1 = 0, 0 ≤ j ≤ n − 3;
α0 = β0 = γ0;
αi ∨ γi ∨ wi−1 = 1
αi ∨ γi ∨ wi−1 = 1
βi ∨ γi ∨ wi−1 = 1
βi ∨ γi ∨ wi−1 = 1

⎫
⎪⎪⎬

⎪⎪⎭
1 ≤ i ≤ n − 1.

Then, the linear correlation is computed as p (α, β, γ ) = 2−∑n−2
i=0 wi .

For S-box, the paper [30] showed an example of building the differential SAT model of
4-bit S-box. Then, the paper [31] proposed the SAT model of active n-bit S-box. Based on
the above two methods, we will show a general method for building SAT model of S-box.
Differential Model 4 (S-box). For an S-box f : F

n
2 → F

m
2 , the differential probability

is denoted as p (α, β), where α ∈ F
n
2 is the input difference and β ∈ F

m
2 is the output

difference. If the minimal non-zero differential probability of S-box is 2−s , we introduce
s auxiliary variables w = (w0, w1, . . . , ws−1) satisfying wi+1 ≤ wi , 0 ≤ i ≤ s − 2 to
calculate the non-zero differential probability. In order to build the differential SAT model of
S-box, we introduce a boolean function as follows:

g (α, β,w) =
{
1, if p (α, β) = 2−∑s−1

i=0 wi ;
0, otherwise.

Let A be a set which contains all vectors satisfying g (a, b, c) = 0 denoted as

A = {(a, b, c) ∈ F
n+m+s
2 |g(a, b, c) = 0

}
.
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Then, the following |A| clauses form a primary SAT model of the given S-box

n−1∨

i=0

(
αi ⊕ ali

)
∨

m−1∨

j=0

(
β j ⊕ blj

)
∨

s−1∨

k=0

(
wk ⊕ clk

)
= 1, 0 ≤ l ≤ |A| − 1.

where |A| is the number of vectors in the set A and
(
al , bl , cl

)
, 0 ≤ l ≤ |A| − 1 is the l-th

vector in the set A.
Note that the solution space of the above |A| clauses about (α, β, γ ) is the same as that

of the following boolean function:

h (α, β, γ ) =
|A|−1∧

l=0

⎛

⎝
n−1∨

i=0

(
αi ⊕ ali

)
∨

m−1∨

j=0

(
β j ⊕ blj

)
∨

s−1∨

k=0

(
wk ⊕ clk

)
⎞

⎠ = 1. (1)

Equivalently, we have

h (α, β, γ ) =
∧

(a,b,c)∈Fn+m+s
2

(

h (a, b, c) ∨
n−1∨

i=0
(αi ⊕ ai ) ∨

m−1∨

j=0

(
β j ⊕ b j

) ∨
s−1∨

k=0
(wk ⊕ ck)

)

,

where h (a, b, c) is the value of Eq. (1) by assigning α = a, β = b, γ = c. This equation is
called the product-of-sum representation of h. The issue of reducing the number of clauses
is turned into the problem of simplifying the product-of-sum representation of the boolean
function. According to [1], we know that this simplification problem can be solved by the
Quine-McCluskey (QM) algorithm and Espresso algorithm, theoretically.

Using the same method of differential SAT model for S-box, the SAT model for linear
correlations through S-box can be built easily. Here, we omit it.

2.3 Sequential encodingmethod

When building SAT models for ciphers, we always aim at getting some cryptographic
properties such as the number of active S-boxes, the differential probability or the linear
correlation. All kinds of these objections can be abstracted as the boolean cardinality con-
straint

∑n−1
i=0 wi ≤ m, where wi is a boolean variable, and m is a non-negative integer.

However, addition over integers is not a natural operation in SAT language, which is not easy
to be described with only OR and AND operations. The sequential encoding method is one
of the best methods for characterising boolean cardinality constraint. Many papers [16, 30,
31] use the sequential encoding method [24] to convert the constraint into CNF formulas.

When m = 0, the cardinality constraint
∑n−1

i=0 wi ≤ m can be translated to n clauses as
wi = 1, 0 ≤ i ≤ n − 1 which means all variables are zero.

When m ≥ 1, in order to model constraint
∑n−1

i=0 wi ≤ m, auxiliary boolean variables
ui, j (0 ≤ i ≤ n − 2, 0 ≤ j ≤ m − 1) are introduced to return contradiction when the cardi-
nality is larger thanm. More specifically, for the partial sum

∑k
i=0 wi = mk , the values of the

auxiliary boolean variables uk, j (0 ≤ j ≤ m − 1) should satisfy the following equations:

uk, j =
{
0, if mk ≤ j ≤ m − 1;
1, if 0 ≤ j ≤ mk − 1.

Then,
∑k

i=0 wi = ∑m−1
j=0 uk, j , and the sequence

{∑k
i=0 wi |0 ≤ k ≤ n − 2

}
is non-

decreasing. Therefore, the constraint
∑n−1

i=0 wi ≤ m holds if the following implication
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predicates are satisfied.

if w0 = 1 then u0,0 = 1

u0, j = 0, 1 ≤ j ≤ m − 1

if wi = 1 then ui,0 = 1

if ui−1,0 = 1 then ui,0 = 1

if wi = 1 and ui−1, j−1 = 1 then ui, j = 1

if ui−1, j = 1 then ui, j = 1

}

1 ≤ j ≤ m − 1

if wi = 1 then ui−1,m−1 = 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

1 ≤ i ≤ n − 2

if wn−1 = 1 then un−2,m−1 = 0

The above predicates can be interpreted as the following 2 ·m · n − 3 ·m + n − 1 clauses
which are the SAT model for the cardinality constraint

∑n−1
i=0 wi ≤ m.

w0 ∨ u0,0 = 1

u0, j = 1, 1 ≤ j ≤ m − 1

wi ∨ ui,0 = 1

ui−1,0 ∨ ui,0 = 1

wi ∨ ui−1, j−1 ∨ ui, j = 1

ui−1, j ∨ ui, j = 1

}

1 ≤ j ≤ m − 1

wi ∨ ui−1,m−1 = 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

1 ≤ i ≤ n − 2

wn−1 ∨ un−2,m−1 = 1

2.4 CombiningMatsui’s bounding conditions with sequential encodingmethod

AtEUROCRYPT1994,Matsui [19] proposed a branch and bound search algorithmwhich can
be used to identify the optimal difference probability. Let Pini (R) be the initial estimation for
the probability bound achievedby R-round trails and Popt (i) , 0 ≤ i ≤ R−1be themaximum
probability achieved by i-round trails. Then, a partial trail

(
α0 → α1 → · · · → αr

)
covering

thefirst r roundswill never extend to be a better R-round trail if it does not satisfy the following
condition:

r−1∏

i=0

p
(
αi → αi+1

)
· Popt (R − r) ≥ Pini (R) , (2)

where p
(
αi → αi+1

)
is the probability of the i-th round. Therefore, we can give up the

partial trail. In this way, the efficiency of search algorithm can be improved greatly.
To facilitate the description ofMatsui’s bounding conditions, we introduce the probability

weight as following.
⎧
⎨

⎩

− log2 (Pini (R)) = Wini (R) ,

− log2
(
Popt (i)

) = Wopt (i) ,

− log2
(
p
(
αi → αi+1

)) =∑�−1
j=0 wi

j ,

(3)

where wi
j , 0 ≤ j ≤ � − 1 are the boolean variables used to calculate the probability weight

of the trail αi → αi+1. By defining the symbol w�×i+ j = wi
j , Eq. (2) can be rewritten as
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follows:

r−1∑

i=0

�−1∑

j=0

wi
j =

r×�−1∑

i=0

wi ≤ Wini (R) − Wopt (R − r) . (4)

Note that the right-hand side of this equation is a constant, and the left-hand side of it
matches the probability weight of the trail covering the first r rounds. All the above bounding
conditions can be replaced with inequalities as the form:

e2∑

i=e1

wi ≤ me1,e2 , 0 ≤ e1 ≤ e2. (5)

For the boolean cardinality constraint
∑n−1

i=0 wi ≤ m, based on the sequential encoding
method, Sun et al. [31] realized bounding conditions without claiming any new variables as
follows.

Case 1. Bounding condition
∑e2

i=e1
wi ≤ me1,e2 with e1 = 0 and e2 < n − 1 can be

modeled by the following e2 clauses:

wi ∨ ui−1,me1,e2−1 = 1, 1 ≤ i ≤ e2.

Case 2. Bounding condition
∑e2

i=e1
wi ≤ me1,e2 with e1 > 0 and e2 < n − 1 can be

modeled by the following m − me1,e2 clauses:

ue1−1, j ∨ ue2, j+me1,e2
= 1, 0 ≤ j ≤ m − me1,e2 − 1.

Case 3. Bounding condition
∑e2

i=e1
wi ≤ me1,e2 with e1 > 0 and e2 = n − 1 can be

modeled by the following 2 · (m − me1,e2

)+ 1 clauses:
{
ue1−1, j ∨ un−2, j+me1,e2

= 1, 0 ≤ j ≤ m − me1,e2 − 1;
ue1−1, j ∨ wn−1 ∨ un−2, j+me1,e2−1 = 1, 0 ≤ j ≤ m − me1,e2 .

The above method can intermix multiple Matsui’s bounding conditions into one SAT
model with an increment on the number of clauses. At the same time, the number of variables
remains the same as the original SAT model.

3 New SATmodel of combining bounding conditions with sequential
encodingmethod

Although numerous Matsui’s bounding conditions can be obtained, it is not sure which
bounding condition can accelerate the solve efficiency of SAT model accurately. According
to the experiments, adding all Matsui’s bounding conditions into the SAT model is not the
best choice. With the observations and experiences in the tests, Sun et al. [31] put forward a
strategy on how to create the sets of bounding conditions that probably achieve extraordinary
advances. But this is an experimental strategy. It is worth studying how to combine bounding
conditions with sequential encoding method in a better way.

3.1 Further insights into Matsui’s bounding conditions

We all know that the efficiency ofMatsui’s algorithm comes from the fact that it can eliminate
some impossible solutions and reduce the search space. When building SAT models, we
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have to convert Matsui’s bounding conditions into other form of formulas. With the same
mathematical symbols defined in Sect. 2, let wi ∈ F2, 0 ≤ i ≤ n − 1 be the variables which
are used to calculate the differential probability or linear correlation of a cipher. According
to Sect. 2.4, Sun et al. [31] summarize all Matsui’s bounding conditions as the form of∑e2

i=e1
wi ≤ me1,e2 . However, we find that constraints of the form

∑e2
i=e1

wi ≤ me1,e2 can not
always eliminate all the impossible solutions determined by Matsui’s bounding conditions.
We will give an example to show this phenomenon.

For a toy cipher E which has 3 rounds, let α0 → α1 → α2 → α3 be the 3-round trail. By
introducing 6 boolean variables

(
w0
0, w

0
1, w

1
0, w

1
1, w

2
0, w

2
1

)
, the probability weight of round

function is calculated as follows:

− log2
(
p
(
αi → αi+1

))
= wi

0 + wi
1. (6)

When Matsui’s bounding conditions satisfy Wopt (1) = 1, Wopt (2) = 2 and Wini (3) = 3,
the boolean variables

(
w0
0, w

0
1, w

1
0, w

1
1, w

2
0, w

2
1

)
should satisfy the following conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w0
0 + w0

1 ≥ Wopt (1) ,

w1
0 + w1

1 ≥ Wopt (1) ,

w2
0 + w2

1 ≥ Wopt (1) ,

w0
0 + w0

1 + w1
0 + w1

1 ≥ Wopt (2) ,

w1
0 + w1

1 + w2
0 + w2

1 ≥ Wopt (2) ,

w0
0 + w0

1 + w1
0 + w1

1 + w2
0 + w2

1 = Wini (3) .

(7)

Then, the solutions of
(
w0
0, w

0
1, w

1
0, w

1
1, w

2
0, w

2
1

)
satisfying Eq. (7) are as follows:

{0, 1, 0, 1, 0, 1}, {0, 1, 0, 1, 1, 0}, {0, 1, 1, 0, 0, 1}, {0, 1, 1, 0, 1, 0},
{1, 0, 0, 1, 0, 1}, {1, 0, 0, 1, 1, 0}, {1, 0, 1, 0, 0, 1}, {1, 0, 1, 0, 1, 0}.

Thus, the number of impossible solutions eliminated by Wopt (1) = 1, Wopt (2) = 2 and
Wini (3) = 3 is 26 − 8 = 56.

According to Sect. 2.4, all the form of
∑e2

i=e1
wi ≤ me1,e2 conditions deduced from

Matsui’s bounding conditions are as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w0
0 + w0

1 ≤ Wini (3) − Wopt (2) ,

w0
0 + w0

1 + w1
0 + w1

1 ≤ Wini (3) − Wopt (1) ,

w1
0 + w1

1 ≤ Wini (3) − Wopt (1) − Wopt (1) ,

w1
0 + w1

1 + w2
0 + w2

1 ≤ Wini (3) − Wopt (1) ,

w2
0 + w2

1 ≤ Wini (3) − Wopt (2) ,

w0
0 + w0

1 + w1
0 + w1

1 + w2
0 + w2

1 ≤ Wini (3) .

(8)

123



Newmethod for combining Matsui’s bounding conditions

Then, the solutions of
(
w0
0, w

0
1, w

1
0, w

1
1, w

2
0, w

2
1

)
satisfying Eq. (8) are as follow:

{0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1}, {0, 0, 0, 0, 1, 0}, {0, 0, 0, 1, 0, 0},
{0, 0, 0, 1, 0, 1}, {0, 0, 0, 1, 1, 0}, {0, 0, 1, 0, 0, 0}, {0, 0, 1, 0, 0, 1},
{0, 0, 1, 0, 1, 0}, {0, 1, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 1}, {0, 1, 0, 0, 1, 0},
{0, 1, 0, 1, 0, 0}, {0, 1, 0, 1, 0, 1}, {0, 1, 0, 1, 1, 0}, {0, 1, 1, 0, 0, 0},
{0, 1, 1, 0, 0, 1}, {0, 1, 1, 0, 1, 0}, {1, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 1},
{1, 0, 0, 0, 1, 0}, {1, 0, 0, 1, 0, 0}, {1, 0, 0, 1, 0, 1}, {1, 0, 0, 1, 1, 0},
{1, 0, 1, 0, 0, 0}, {1, 0, 1, 0, 0, 1}, {1, 0, 1, 0, 1, 0}.

Thus, the number of impossible solutions eliminated by Eq. (8) is 26 − 27 = 37. Therefore,
the bounding conditions in Eq. (8) do not eliminate all the impossible solutions determined
by Wopt (1) = 1, Wopt (2) = 2 and Wini (3) = 3.

Here, we analyze the reasons for this phenomenon. When using Matsui’s branch and
bound algorithm to search for R-round optimal trails, we will firstly obtain a partial trail
denoted as α0 → α1 → · · · → αr covering the first r rounds. Then, we can use Eq. (2) to
deduce the bound conditions of the form

∑e2
i=e1

wi ≤ me1,e2 . But, it should be noted that all
the obtained partial trails are valid. That is, the partial trails should satisfy

r−1∑

i=0

�−1∑

j=0

wi
j ≥ Wopt (r) .

Therefore, when combining Matsui’s bounding conditions with automatic search algorithm,
this kind of bounding conditions should also be considered.

Theorem 1 For an R-round cipher, the same impossible solutions determined by Matsui’s
bounding conditionsWini (R)andWopt (i) , 0 ≤ i ≤ R−1 can be eliminated by the following
bounding conditions

Wopt (r2 + 1 − r1) ≤
r2∑

i=r1

�−1∑

j=0

wi
j ≤ Wini (R) − Wopt (r1) − Wopt (R − 1 − r2) , (9)

where 0 ≤ r1 ≤ r2 ≤ R − 1.

Proof Let αr1 → αr1+1 → · · · → αr2+1 be a feasible partial trail covering (r2 + 1 − r1)
rounds, where 0 ≤ r1 ≤ r2 ≤ R−1. Because of the constraintWopt (r2 + 1 − r1), the partial
trail should satisfy the following bounding condition:

Wopt (r2 + 1 − r1) ≤
r2∑

i=r1

�−1∑

j=0

wi
j .

Then, due to the constraint of Wini (R), the partial trail will not be extended to a better
R-round trail if the following bounding condition is violated

r2∑

i=r1

�−1∑

j=0

wi
j ≤ Wini (R) − Wopt (r1) − Wopt (R − 1 − r2) ,

Therefore, the bounding conditions in Eq. (9) are converted fromWini (R) andWopt (r) , 0 ≤
i ≤ R − 1. That is, all the feasible trails will not be eliminated by the bounding conditions
in Eq. (9).
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Let α0 → α1 → · · · → αR be a trail which does not satisfy all Matsui’s bounding
conditions Wini (R) and Wopt (i) , 0 ≤ i ≤ R − 1. Thus, there is at least a partial trail that
does not satisfy Wini (R) or Wopt (i). We denote this partial trail as αr1 → αr1+1 → · · · →
αr2−r1+1. Then, this partial trail will violate the bounding condition as following

Wopt (r2 + 1 − r1) ≤
r2∑

i=r1

�−1∑

j=0

wi
j ≤ Wini (R) − Wopt (r1) − Wopt (R − 1 − r2) . (10)

Therefore, the trail α0 → α1 → · · · → αR will not satisfy all the bounding conditions in
Eq. (9). That is, all the infeasible trails determined by Matsui’s bounding conditions will be
eliminate by the bounding conditions in Eq. (9). 	

Using the same mathematical symbols with Eq. (5), we have the following corollary.

Corollary 1 All Matsui’s bounding conditions can be replaced with inequality constraints of
the form le1,e2 ≤∑e2

i=e1
wi ≤ me1,e2 .

3.2 A newmethod of combining bounding conditions with sequential encoding
method

From Corollary 1, we know that the general form of bounding condition is le1,e2 ≤∑e2
i=e1

wi ≤ me1,e2 . If we get the condition l0,e2 ≤ ∑e2
i=0 wi ≤ m0,e2 , according to the

rules of sequential encoding method, we have

ue2, j =
⎧
⎨

⎩

0, if m0,e2 ≤ j ≤ m − 1,
1, if 0 ≤ j ≤ l0,e2 − 1,
uncertain, otherwise.

Therefore, the value of some auxiliary variables are determined. We can reduce the variables
and clauseswhich characterise these determined values. Because there are at leastm0,e2−l0,e2
auxiliary variables whose values are uncertain. We have to introduce the boolean variables
denoted as {ue2, j |l0,e2 ≤ j ≤ m0,e2 − 1} to represent these uncertain values. Then, we can
use the following equation to compute the partial sum of

∑e2
i=0 wi .

e2∑

i=0

wi =
m0,e2−1
∑

j=l0,e2

ue2, j + l0,e2 .

Base on this idea, we propose a newmethod of combining bounding conditions with sequen-
tial encoding method.

Lemma 1 Let
∑n−1

i=0 wi ≤ m, 1 ≤ n be a cardinality constraint. Based on the sequential
encoding method, the following clauses can eliminate the same impossible solutions deter-
mined by the condition l0,0 ≤ w0 ≤ m0,0:

if l0,0 = 0 and m0,0 = 1 :
w0 ∨ u0,0 = 1

if l0,0 = 0 and m0,0 = 0 :
w0 = 1

if l0,0 = 1 and m0,0 = 1 :
w0 = 1
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Proof Whenusing sequential encodingmethod tomodel the cardinality constraint
∑n−1

i=0 wi ≤
m, we have to introducem auxiliary boolean variables u0,0, u0,1, . . . , u0,m−1 to represent the
value of partial sum w0. Different from the method in Sect. 2.4, we can realise the bounding
condition l0,0 ≤ w0 ≤ m0,0 in the following way.

When l0,0 = 0 and m0,0 = 1, only the value of auxiliary variable u0,0 is uncertain. Thus,
the value of partial sum w0 can be represented by the rules of sequential encoding method
as w0 ∨ u0,0 = 1.

When l0,0 = m0,0 = 0, all the values of auxiliary variables are determined. Thus, no
auxiliary variables need to be introduced. The value of partial sum w0 can be represented as
the clause w0 = 1.

When l0,0 = m0,0 = 1, all the values of auxiliary variables are determined. Thus, no
auxiliary variables need to be introduced. The value of partial sum w0 can be represented as
the clause w0 = 1. 	

Lemma 2 Let

∑n−1
i=0 wi ≤ m, 3 ≤ n be a cardinality constraint. If the bounding condition

l0,e2−1 ≤∑e2−1
i=0 wi ≤ m0,e2−1, 1 ≤ e2 ≤ n−2 is known, the following clauses can eliminate

the same impossible solutions determined by bounding condition l0,e2 ≤∑e2
i=0 wi ≤ m0,e2 .

if m0,e2 = 0 :
we2 = 1

if m0,e2 > 0 :
if l0,e2 = 0 :

we2 ∨ ue2,0 = 1

if l0,e2−1 < m0,e2−1 :
ue2−1,0 ∨ ue2,0 = 1

if j = l0,e2−1 :
we2 ∨ ue2, j = 1

if j > l0,e2−1 and j ≤ m0,e2−1 :
we2 ∨ ue2−1, j−1 ∨ ue2, j = 1

if j ≥ l0,e2−1 and j ≤ m0,e2−1 − 1 :
ue2−1, j ∨ ue2, j = 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

max(l0,e2 , 1) ≤ j ≤ m0,e2 − 1

if m0,e2−1 = m0,e2 and l0,e2−1 < m0,e2 :
we2 ∨ ue2−1,m0,e2−1 = 1

if l0,e2−1 = m0,e2 :
we2 = 1

(11)

Proof When using original sequential encoding method to model the cardinality constraint∑n−1
i=0 wi ≤ m, we have to introduce m auxiliary boolean variables ue2,0, ue2,1, . . . , ue2,m−1

to represent the value of partial sum
∑e2

i=0 wi . Different from the method in Sect. 2.4, we can
realise the bounding condition l0,e2 ≤∑e2

i=0 wi ≤ m0,e2 in the following way.
Whenm0,e2 = 0, all the values of auxiliary variables are determined. Thus, all the auxiliary

variables and related clauses can be reduced. And the value of we2 can be represented as the
clauses we2 = 1.

Whenm0,e2 > 0, in order to characterise the value of
∑e2

i=0 wi , them0,e2 − l0,e2 auxiliary
variables whose values are uncertain must be introduced, denoted as {ue2, j |l0,e2 ≤ j ≤
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m0,e2 −1}. And all the other auxiliary variables whose values are determined are not needed.
Then, we use the rules of sequential encoding method to model these uncertain variables one
by one.

If l0,e2 = 0, the value of ue2,0 should satisfy the following rules of sequential encoding
method.

{
if we2 = 1 then ue2,0 = 1;
if ue2−1,0 is uncertain , when ue2−1,0 = 1 then ue2,0 = 1.

For max(l0,e2 , 1) ≤ j ≤ m0,e2 − 1, the value of ue2, j should satisfy the following rules
of sequential encoding method.

⎧
⎪⎨

⎪⎩

if ue2−1, j−1 is determined as 1 and we2 = 1 then ue2, j = 1;
if ue2−1, j−1 is uncertain, when ue2−1, j−1 = 1 and we2 = 1 then ue2, j = 1;
if ue2−1, j is uncertain, when ue2−1, j = 1 then ue2, j = 1.

Because of the bounding condition l0,e2 ≤ ∑e2
i=0 wi ≤ m0,e2 and the rules of sequen-

tial encoding method, auxiliary boolean variables ue2, j will return contradiction when∑e2
i=0 wi > m0,e2 . Thus, the following clauses should be satisfied.
{
if m0,e2−1 = m0,e2 , ue2−1,m0,e2−1 is uncertain, we2 = 1 then ue2−1,m0,e2−1 = 0;
if l0,e2−1 = m0,e2 then we2 = 0.

The above predicates can be interpreted as the clauses as Eq. (11). 	

Lemma 3 Let

∑n−1
i=0 wi ≤ m, 2 ≤ n be a constraint. If the bounding condition l0,n−2 ≤

∑n−2
i=0 wi ≤ m0,n−2 is known, the following clauses can eliminate the same impossible

solutions determined by l0,n−1 ≤∑n−1
i=0 wi ≤ m0,n−1.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if m0,n−1 = 0 :
wn−1 = 1

if m0,n−1 > 0 :
if m0,n−2 = m0,n−1 and l0,n−2 < m0,n−1 :

wn−1 ∨ un−2,m0,n−1−1 = 1

if l0,n−2 = m0,n−1 :
wn−1 = 1

(12)

Proof According to Lemma 1 and 2, the auxiliary variables un−2, j , l0,n−2 ≤ j ≤ m0,n−2 −
1 are introduced to describe the value of

∑n−2
i=0 wi . For the bounding condition l0,n−1 ≤

∑n−1
i=0 wi ≤ m0,n−1, we only need to know whether the condition is valid or not. Therefore,

no auxiliary variables need to be introduced. Then, the value of wn−1 should satisfy the
following rules of sequential encoding method.

⎧
⎪⎨

⎪⎩

if m0,n−1 = 0 then wn−1 = 0;
if l0,n−2 < m0,n−1 = m0,n−2, wn−1 = 1 then un−2,m0,n−1−1 = 0;
if m0,n−1 > 0, l0,n−2 = m0,n−1 then wn−1 = 0.

The above predicates can be interpreted as the clauses as Eq. (12). 	
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Theorem 2 Based on the sequential encoding method, the following clauses are the SAT
model which can eliminate the same impossible solutions determined by the bounding con-
ditions l0,e2 ≤∑e2

i=0 wi ≤ m0,e2 , 0 ≤ e2 ≤ n − 1:

if l0,0 = 0 and m0,0 = 1 :
w0 ∨ u0,0 = 1

else if l0,0 = m0,0 = 0 :
w0 = 1

else if l0,0 = 1 and m0,0 = 1 :
w0 = 1

if m0,e2 = 0 :
we2 = 1

if m0,e2 > 0 :
if l0,e2 = 0 :

we2 ∨ ue2,0 = 1

if l0,e2−1 < m0,e2−1 :
ue2−1,0 ∨ ue2,0 = 1

if j = l0,e2−1

we2 ∨ ue2, j = 1

if j > l0,e2−1 and j ≤ m0,e2−1

we2 ∨ ue2−1, j−1 ∨ ue2, j = 1

if j ≥ l0,e2−1 and j ≤ m0,e2−1 − 1

ue2−1, j ∨ ue2, j = 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

max(l0,e2 , 1) ≤ j

≤ m0,e2 − 1

if m0,e2−1 = m0,e2 and l0,e2−1 < m0,e2

we2 ∨ ue2−1,m0,e2−1 = 1

if l0,e2−1 = m0,e2

we2 = 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

1 ≤ e2

≤ n − 2

if m0,n−1 = 0 :
wn−1 = 0

if m0,n−1 > 0 :
if m0,n−2 = m0,n−1 and l0,n−2 < m0,n−1 :

wn−1 ∨ un−2,m0,n−1−1 = 1

if l0,n−2 = m0,n−1 :
wn−1 = 1

(13)

Proof Any bounding condition l0,e2 ≤∑e2
i=0 wi ≤ m0,e2 belongs to only one case of Lemma

1-3. Therefore, we can integrate them into Eq. (13) which is the SATmodel based on sequen-
tial encoding method. 	


According to Theorem 2, if we want to build the SATmodel in Eq. (13), we need the lower
and upper bounds of partial sum

∑e2
i=0 we2 , 0 ≤ e2 ≤ n − 1. From Theorem 1, we know

that all the Matsui’s bounding conditions can be converted into a series of linear inequalities.

123



S. Wang et al.

Thus, we propose a method based on MILP to obtain these bounds. The whole procedure is
demonstrated in Algorithm 1.

Algorithm 1 Determining the lower and upper bounds of conditions
Require: Matsui’s bounding conditions Wini (R) and Wopt (i) , 0 ≤ i ≤ R − 1
Ensure: The lower bound l0,e2 and upper bound m0,e2 of

∑e2
i=0 wi

1: Let M be an empty MILP model
2: for 0 ≤ r1 ≤ r2 ≤ R − 1 do � Add the linear conditions in Eq. (9) into models

3: M.addConstr
(
Wopt (r2 + 1 − r1) ≤∑r2

i=r1

∑�−1
j=0 wi

j

)

4: M.addConstr
(∑r2

i=r1

∑�−1
j=0 wi

j ≤ Wini (R) − Wopt (r1) − Wopt (R − 1 − r2)
)

5: end for
———————————— Lower bound ————————————

6: Let Ml = M
7: Ml .setObjective(

∑e2
i=0 wi ,Minimize) � Set the objective function

8: l0,e2 = Ml .optimize() � (Solve the MILP model and obtain the lower bound)
———————————— Upper bound ————————————

9: Let Mm = M
10: Mm .setObjective(

∑e2
i=0 wi ,Maximize) � Set the objective function

11: m0,e2 = Mm .optimize() � (Solve the MILP model and obtain the upper bound)
12: return

(
l0,e2 ,m0,e2

)

For all partial sums
∑e2

i=0 wi , 0 ≤ e2 ≤ n − 1, we can use Algorithm 1 to get their
lower and upper bounds easily. Then, according to Theorem 2, the SAT model of combining
Matsui’s bounding conditions with sequential encoding method can be obtained. And we can
use it to search for the optimal characteristics of ciphers.

4 Applications to block ciphers

We apply our newmethod to several block ciphers and compare it with the traditional method
of combining Matsui’s bounding conditions with sequential encoding method proposed by
Sun et al. [31]. In order to make the comparison as fair as possible, we implement the two
methods on the same platform (AMDRyzen 9 5950X 16-Core 3.4G GHz) and the same SAT
solver (CaDiCal [4]). All the source codes can be found in https://github.com/RNG2022/
simplest-Sat-model

4.1 Description of some block ciphers

SPNCiphers. PRESENT [6] has an SPN structure and uses 80- and 128-bit keys with 64-bit
blocks through 31 rounds. In order to improve the hardware efficiency, it uses a fully wired
diffusion layer. RECTANGLE [40] is very similar to PRESENT. It is a 25-round SPN cipher
with the 64-bit block size. As an improved version of PRESENT, GIFT [2] is composed of
two versions. GIFT-64 is a 28-round SPN cipher with the 64-bit block size, and GIFT-128 is
a 40-round SPN cipher with the 128-bit block size.

Feistel Ciphers. LBlock [37] is a lightweight block cipher proposed by Wu and Zhang.
The block size is 64 bits and the key size is 80 bits. It employs a variant Feistel structure and
consists of 32 rounds. And TWINE [32] is a 64-bit lightweight block cipher supporting 80-
and 128-bit keys. It has the same structure as LBlock and consists of 36 rounds.
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Table 2 The comparison results of the two methods

Cipher Total round Property Kvar Kcn f Ksol

PRESENT 31 (Full) differential 7.1% 11.1% 36.6%

linear 2.0% 4.7% 46.6%

RECTANGLE 25 (Full) differential 16.2% 20.0% 35.0%

linear 14.1% 27.4% 94.0%

GIFT64 28 (Full) differential 8.7% 12.3% 44.8%

linear 19.0% 24.1% 94.7%

GIFT128 29 differential 19.0% 22.9% 30.7%

25 linear 24.2% 28.5% 61.2%

LBlock 32 (Full) differential 18.8% 52.5% 52.0%

linear 18.0% 31.8% 58.7%

TWINE 36 (Full) differential 14.4% 19.6% 45.5%

linear 18.0% 30.8% 60.0%

SPECK32 22 (Full) differential 23.0% 28.5% 69.0%

linear 32.8% 43.0% 89.5%

SPECK48 18 differential 22.1% 33.5% 84.0%

23 (Full) linear 29.9% 39.5% 67.0%

SPECK64 27 (Full) differential 18.3% 22.7% 76.5%

linear 24.9% 34.2% 69.3%

SPECK96 10 differential 49.3% 54.5% 82.7%

14 linear 47.2% 56.7% 67.8%

SPECK128 9 differential 51.8% 57.8% 90.3%

10 linear 59.7% 68.3% 71.8%

ARXCiphers. SPECK [3] is a family of lightweight block ciphers published by National
Security Agency (NSA). It adopts ARX structure which takes the modular addition as its
nonlinear operation. According to block size, SPECK family of ciphers are composed of
SPECK2n, where n ∈ {16, 24, 32, 48, 64}.

4.2 The results of applications

In order to better illustrate our results, the following notations are introduced.

– Mnew and Msun : the methods proposed in Sect. 3 and [31], respectively.
– Var ,Cn f , and T sol : the number of variables, clauses and solving time ofmodels, respec-

tively.

– Kvar = Varnew
Varsun

, Kcn f = Cn f new
Cn f sun

and Ksol = T sol
new
T sol
sun

: The ratio of the total number of

variables, total number of clauses and total solving time of models, respectively.
– Popt and Coropt : the optimal probability and correlation of differential trails and linear

trails, respectively.

We apply the two methods Msun and Mnew to the above SPN, Feistel and ARX ciphers to
search for their optimal differential probabilities and linear correlations. The detailed results
are shown in Table 4-15. The comparison of the twomethods on the total number of variables,
clauses and solving time of models are presented in Table 2. Take PRESENT as an example,

123



S. Wang et al.

Table 3 New optimal differential probabilities and linear correlations

(a) Differential property

Cipher Round log
Popt
2 Var Cn f T sol

GIFT128 30 -193 838882 2119484 430.20h

31 −198.415 473100 1176426 38.28h

32 −204.415 527361 1331711 53.29h

33 −210.415 523013 1331731 55.56h

34 −217.415 607170 1550500 67.38h

35 −224.83 627866 1601828 58.78h

36 −234.415 947853 2384355 330.88h

37 −240.415 642079 1604643 71.70h

38 −246.415 633699 1596599 86.96h

39 −253.415 729939 1845704 31.96h

40 −260.415 644931 1633919 131.86h

SPECK48 19 -89 68632 177696 482.23h

20 -96 77548 197656 673.51h

SPECK96 11 -58 125910 311320 674.98h

SPECK128 10 -49 150920 381667 358.21h

(b) Linear property

Cipher Round log
Coropt
2 Var Cn f T sol

GIFT128 26 -91 147345 379885 994.45h

27 -94 91807 236723 631.82h

28 -98 123898 321268 347.7h

29 -101 93844 244787 156.13h

30 -105 126614 332020 319.5h

31 -108 95881 252851 125.83h

32 -112 129330 342772 272.14h

33 -117 173725 455905 306.97h

34 -121 148366 386148 314.38h

35 -126 197520 510125 764.42h

36 -130 167402 429524 524.84h

37 -133 125704 324443 145.39h

38 -137 168070 436180 196.20h

39 -140 126205 329435 155.27h

40 -143 122722 324467 147.33h

SPECK96 15 -43 50325 165960 74.47h

16 -48 69323 222298 289.07h

SPECK128 11 -31 55745 175540 261.10h

when searching for the optimal differential probabilities of every round from 1 to 31, the
total number of variables, clauses and the time of solving SATmodels needed by our method
is only 7.1%, 11.1% and 36.6% of the method Msun , respectively.

For full-round PRESENT, RECTANGLE, GIFT64, LBlock, TWINE, SPECK32 and
SPECK64, the optimal differential probabilities and linear correlations of ciphers have been
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obtained. For GIFT128, SPECK48, SPECK96 and SPECK128, our methodMnew finds some
new differential probabilities and linear correlations covering more rounds which are listed
in Table 3.

5 Conclusion

In this paper, we aim at finding a better way of combiningMatsui’s bounding conditions with
sequential encoding method. By studying the properties of Matsui’s bounding conditions,
the general form of inequality constraint which can eliminate all the impossible solutions
determined by Matsui’s bounding conditions is proposed. Because the values of some auxil-
iary boolean variables in sequential encoding method can be determined, we propose a new
method of integrating bounding conditions into SAT model. When applying our new method
to search for the optimal differential probability and linear correlation of block ciphers, the
total number of variables, clauses and solving time of SATmodels are decreased. In addition,
we find some new differential and linear characteristics covering more rounds. As a result,
we obtain a more efficient search tool.

Because our method of combining bounding condition with sequential encoding method
is general, it can be used to search for other kinds of distinguishers for ciphers. The wide
applications will be done in the future. And for SPECK48, SPECK96 and SPECK128, some
optimal differential probabilities or linear correlations of the full-round ciphers can not be
obtained by the existing methods. How to speed up the search of these ciphers is a problem
worth studying.

Acknowledgements The authors would like to thank the anonymous reviewers for their detailed com-
ments and suggestions. This work is supported by the National Natural Science Foundation of China [Grant
No.62102448,62202493].

Appendix

Table 4 Experimental results of PRESENT

(a) Differential property
Msun Mnew

Round log
Popt
2 Var Cn f T sol V ar Cn f T sol

1 −2 669 3112 0.1s 667 3059 0.1s

2 −4 668 2659 0.1s 472 2217 0.1s

3 −8 4203 14763 0.2s 2443 10799 0.2s

4 −12 7839 24564 0.3s 3739 15479 0.3s

5 −20 32809 92575 3.7s 14973 53459 2.4s

6 −24 22011 58386 2.2s 8491 29135 1.1s

7 −28 29679 76683 2.4s 9211 32663 1.7s

8 −32 38499 97428 2.8s 9931 36191 1.5s

9 −36 48471 120621 3.0s 10651 39719 1.0s

10 −41 80418 196930 3.9s 8999 31662 1.6s

11 −46 98990 238786 8.1s 14923 52427 2.4s

12 −52 150790 358715 32.4s 28420 97945 9.7s
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Table 4 continued

(a) Differential property
Msun Mnew

Round log
Popt
2 Var Cn f T sol V ar Cn f T sol

13 −56 107355 252813 5.4s 18889 64523 3.3s

14 −62 209460 489035 28.9s 35040 118125 16.7s

15 −66 145437 337053 10.0s 22861 76631 3.1s

16 −70 164337 379110 18.8s 22717 78431 2.1s

17 −74 184389 423615 8.3s 22573 80231 2.3s

18 −78 205593 470568 6.4s 22429 82031 2.5s

19 −82 227949 519969 5.1s 8334 29753 1.3s

20 −86 251457 571818 7.1s 8334 30449 1.3s

21 −90 276117 626115 7.6s 8334 31145 1.3s

22 −96 508490 1148645 15.6s 28141 101795 4.0s

23 −100 335511 755283 11.8s 27697 102995 4.6s

24 −106 612280 1374005 33.3s 34129 117935 16.6s

25 −110 400665 896547 17.2s 33397 118559 4.9s

26 −116 725670 1619525 60.0s 40117 134075 36.3s

27 −120 471579 1049907 31.8s 39097 134123 12.5s

28 −124 505167 1123068 20.8s 14034 47405 1.4s

29 −128 539907 1198677 18.2s 13746 47525 2.3s

30 −132 575799 1276734 19.1s 13458 47645 4.9s

31 −136 612843 1357239 18.3s 13170 47765 3.5s

Total 7575051 17154948 403.0s 539417 1895896 147.3s

(b) Linear property

Msun Mnew

Round log
Coropt
2 Var Cn f T sol V ar Cn f T sol

1 −1 351 1790 0.6s 351 1758 0.1s

2 −2 382 1977 0.4s 318 1817 0.1s

3 −4 1369 6599 0.7s 983 5634 0.1s

4 −6 2293 9945 0.7s 1391 7754 0.1s

5 −8 3473 13867 0.7s 1799 9874 0.2s

6 −10 4909 18365 1.0s 2207 11994 0.3s

7 −12 6601 23439 1.2s 2615 14114 0.4s

8 −14 8549 29089 1.0s 3023 16234 0.4s

9 −16 10753 35315 1.1s 3431 18354 0.7s

10 −18 13213 42117 1.3s 3839 20474 0.8s

11 −20 15929 49495 1.7s 4247 22594 0.6s

12 −22 18901 57449 2.1s 4655 24714 1.1s

13 −24 22129 65979 2.2s 5063 26834 0.8s

14 −26 25613 75085 2.5s 5471 28954 0.9s

15 −28 29353 84767 2.8s 5879 31074 1.1s
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Table 4 continued

(b) Linear property
Msun Mnew

Round log
Coropt
2 Var Cn f T sol V ar Cn f T sol

16 −30 33349 95025 2.7s 6287 33194 1.6s

17 −32 37601 105859 5.0s 6695 35314 1.9s

18 −34 42109 117269 3.5s 7103 37434 2.1s

19 −36 46873 129255 5.3s 7511 39554 1.6s

20 −38 51893 141817 5.5s 7919 41674 1.7s

21 −40 57169 154955 3.4s 8327 43794 2.2s

22 −42 62701 168669 6.0s 8735 45914 2.2s

23 −44 68489 182959 6.3s 9143 48034 3.0s

24 −45 74533 197825 7.7s 9551 50154 3.3s

25 −48 80833 213267 8.0s 9959 52274 3.6s

26 −50 87389 229285 8.8s 10367 54394 3.7s

27 −52 94201 245879 8.9s 10775 56514 4.6s

28 −54 101269 263049 8.5s 11183 58634 5.1s

29 −56 108593 280795 9.3s 11591 60754 3.7s

30 −58 116173 299117 10.0s 11999 62874 4.9s

31 −60 124009 318015 14.1s 12407 64994 9.5s

Total 9731820 22048710 133.3s 194824 1027681 62.1s

Table 5 Experimental results of RECTANGLE

(a) Differential property
Msun Mnew

Round log
Popt
2 Var Cn f T sol V ar Cn f T sol

1 −2 669 2392 2.9s 667 2339 1.1s

2 −4 668 2179 0.4s 472 1737 0.3s

3 −7 2659 8117 0.8s 1491 5486 0.7s

4 −10 4653 13313 1.2s 2129 7678 0.7s

5 −14 11193 30351 1.3s 4501 15503 1.1s

6 −18 16845 43752 1.7s 6085 20039 1.1s

7 −25 50313 125223 7.6s 18281 55018 5.0s

8 −31 60335 145130 15.8s 21455 60545 9.9s

9 −36 63766 150466 18.8s 20654 57228 14.1s

10 −41 80418 187330 23.0s 23402 64540 16.6s

11 −46 98990 228226 70.5s 26150 71852 42.8s

12 −51 119482 273154 103.0s 28898 79164 27.1s

13 −56 141894 322114 227.8s 31646 86476 52.7s

14 −61 166226 375106 140.7s 34394 93788 57.1s

15 −66 192478 432130 256.9s 37142 101100 58.8s
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Table 5 continued

(a) Differential property
Msun Mnew

Round log
Popt
2 Var Cn f T sol V ar Cn f T sol

16 −71 220650 493186 203.8s 39890 108412 75.2s

17 −76 250742 558274 354.1s 42638 115724 76.6s

18 −81 282754 627394 242.8s 45386 123036 98.5s

19 −86 316686 700546 287.3s 48134 130348 132.7s

20 −91 352538 777730 406.6s 50882 137660 137.9s

21 −96 390310 858946 479.1s 53630 144972 106.8s

22 −101 430002 944194 497.5s 56378 152284 111.5s

23 −106 471614 1033474 335.0s 59126 159596 175.3s

24 −111 515146 1126786 560.1s 61874 166908 170.5s

25 −116 560598 1224130 621.7s 64622 174220 324.8s

Total 4801629 10683643 4860.6s 779927 2135653 1698.9s

(b) Linear property

Msun Mnew

Round log
Coropt
2 Var Cn f T sol V ar Cn f T sol

1 −1 367 1246 1.6s 351 1214 0.9s

2 −2 446 1433 0.7s 318 1273 0.4s

3 −4 1705 4967 1.4s 983 4002 0.7s

4 −6 2997 7769 1.2s 1391 5578 0.8s

5 −8 4673 11147 1.3s 1799 7154 0.7s

6 −10 6733 15101 1.3s 2207 8730 1.0s

7 −13 14268 30114 3.6s 4252 16115 2.5s

8 −16 19731 39396 6.6s 5473 19691 4.5s

9 −19 26058 49926 9.8s 6694 23267 10.8s

10 −22 33249 61704 20.9s 7915 26843 21.6s

11 −25 41304 74730 48.2s 9136 30419 44.1s

12 −28 50223 89004 104.5s 10357 33995 74.6s

13 −31 60006 104526 234.6s 11578 37571 220.5s

14 −34 70653 121296 292.6s 12799 41147 271.6s

15 −37 82164 139314 380.6s 14020 44723 429.5s

16 −40 94539 158580 0.30h 15241 48299 778.5s

17 −42 71037 118311 368.5s 10435 33506 205.9s

18 −45 119292 197409 507.8s 16162 52415 875.7s

19 −48 134115 220227 0.36h 17479 56183 0.32h

20 −51 149802 244293 0.36h 18796 59951 0.30h

21 −54 166353 269607 0.34h 20113 63719 0.35h
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Table 5 continued

(b) Linear property
Msun Mnew

Round log
Coropt
2 Var Cn f T sol V ar Cn f T sol

22 −57 183768 296169 0.41h 21430 67487 0.38h

23 −60 202047 323979 0.49h 22747 71255 0.48h

24 −63 221190 353037 0.52h 24064 75023 0.52h

25 −66 241197 383343 1.52h 25381 78791 1.39h

Total 1997917 3316628 4.86h 281121 908351 4.57h

Table 6 Experimental results of GIFT64

(a) Differential property
Msun Mnew

Round log
Popt
2 Var Cn f T sol V ar Cn f T sol

1 −1.415 590 2747 0.3s 590 2699 0.2s

2 −3.415 1560 6677 0.3s 1268 5947 0.2s

3 −7 4554 16630 0.5s 2990 12916 0.3s

4 −11.415 11663 36670 3.2s 6281 24437 0.5s

5 −17 28744 81820 15.5s 13678 48259 2.4s

6 −22.415 38950 103956 33.8s 16090 53830 19.4s

7 −28.415 65899 168535 110.9s 24275 78099 66.7s

8 −38 136625 334925 433.1s 49795 147570 343.9s

9 −42 73534 175738 74.6s 23962 69556 25.8s

10 −48 136911 323127 191.0s 38249 112630 62.1s

11 −52 110934 259130 33.0s 26634 79812 43.5s

12 −58 198771 460311 189.2s 42257 128014 54.8s

13 −62 156014 358650 56.6s 29306 90068 20.7s

14 −68 272151 621687 70.7s 46265 143398 60.1s

15 −72 208774 474298 46.8s 31978 100324 5.1s

16 −78 357051 807255 107.8s 28561 86231 38.6s

17 −82 269214 606074 51.2s 27205 85367 13.7s

18 −88 453471 1017015 119.7s 30997 94787 56.1s

19 −92 337334 753978 59.5s 29353 93347 34.6s

20 −98 561411 1250967 133.5s 33433 103343 59.6s

21 −102 413134 918010 82.6s 31501 101327 16.2s

22 −108 680871 1509111 125.7s 35869 111899 75.3s

23 −112 496614 1098170 87.5s 33649 109307 35.5s

24 −118 811851 1791447 239.1s 38305 120455 142.2s

25 −122 587774 1294458 120.8s 35797 117287 40.4s

26 −128 954351 2097975 251.9s 40741 129011 137.8s
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Table 6 continued

(a) Differential property
Msun Mnew

Round log
Popt
2 Var Cn f T sol V ar Cn f T sol

27 −132 686614 1506874 155.6s 37945 125267 11.8s

28 −138 1108371 2428695 365.3s 43177 137567 100.2s

Total 9163735 20504930 3160.9s 800151 2512754 1416.4s

(b) Linear property

Msun Mnew

Round log
Coropt
2 Var Cn f T sol V ar Cn f T sol

1 −1 351 1150 1.1s 351 1118 0.8s

2 −2 382 1337 0.3s 318 1177 0.4s

3 −3 637 2245 0.4s 445 1765 0.4s

4 −5 2039 6879 0.8s 1269 4954 0.7s

5 −7 3155 10033 0.8s 1741 6562 0.8s

6 −10 7077 21216 1.5s 3601 12815 1.5s

7 −13 10236 29106 2.3s 4822 16247 2.2s

8 −16 13971 38244 4.5s 6043 19679 3.7s

9 −20 24950 65986 27.2s 10250 31940 18.8s

10 −25 41805 106810 218.3s 16955 49845 182.2s

11 −29 43090 107342 592.1s 16742 47540 460.1s

12 −31 25795 63539 175.1s 8893 25474 166.5s

13 −34 45021 110115 218.2s 13705 39935 215.0s

14 −37 52500 127317 250.5s 14638 42791 208.2s

15 −40 60555 145767 500.8s 15571 45647 345.1s

16 −43 69186 165465 462.0s 16504 48503 344.2s

17 −46 78393 186411 351.7s 17437 51359 357.0s

18 −49 88176 208605 256.1s 18370 54215 221.0s

19 −52 98535 232047 241.0s 19303 57071 330.8s

20 −55 109470 256737 227.0s 20236 59927 214.9s

21 −58 120981 282675 266.9s 21169 62783 338.5s

22 −61 133068 309861 253.0s 22102 65639 307.0s

23 −64 145731 338295 309.1s 23035 68495 310.4s

24 −67 158970 367977 271.8s 23968 71351 225.8s

25 −70 172785 398907 264.5s 24901 74207 456.5s

26 −73 187176 431085 283.2s 25834 77063 260.3s

27 −76 202143 464511 285.6s 26767 79919 262.8s

28 −79 217686 499185 311.7s 27700 82775 237.5s

Total 2113864 4978847 5777.5s 402670 1200796 5473.2s
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Table 7 Differential property of GIFT128

Msun Mnew

Round log
Popt
2 Var Cn f T sol V ar yCn f T sol

1 −1.415 1182 5499 0.2s 1182 5403 0.2s

2 −3.415 3128 13381 0.2s 2548 11931 0.2s

3 −7 11939 42911 0.7s 8057 33693 0.5s

4 −11.415 23375 73502 1.5s 12713 49269 1.4s

5 −17 48201 137955 7.9s 22631 80998 6.9s

6 −22.415 78022 208308 19.7s 32698 108934 17.8s

7 −28.415 131979 337655 98.1s 49363 158179 83.3s

8 −39 305162 746449 1.06h 115588 337447 0.71h

9 −45.415 272180 645604 0.74h 98536 273887 0.52h

10 −49.415 239761 562598 542.7s 72419 206125 201.9s

11 −54.415 345062 802966 726.5s 87710 256334 115.0s

12 −60.415 483563 1114804 0.60h 110573 324151 229.8s

13 −67.83 664028 1515923 2.00h 145314 418180 0.28h

14 −79 1218318 2747022 42.98h 316984 856761 8.06h

15 −85.415 856156 1912402 22.88h 204874 538803 4.63h

16 −90.415 833262 1854320 6.58h 176946 472134 0.63h

17 −96.415 1095855 2430141 7.86h 209023 564547 1.74h

18 −103.415 1416604 3128587 27.29h 255346 687908 2.79h

19 −110.83 1597380 3513947 42.54h 277578 742308 3.00h

20 −121.415 2729099 5973181 744.30h 495133 1285212 151.29h

21 −126.415 1528822 3334794 35.71h 272002 699574 8.2h

22 −132.415 1950067 4246118 24.23h 314263 818523 5.52h

23 −139.415 2444925 5311943 44.26h 272403 971688 13.35h

24 −146.83 2680964 5811667 61.77h 394602 1026020 26.42h

25 −157.415 4447707 9611825 744.50h 680957 1731196 283.76h

26 −162.415 2431742 5244388 38.59h 367058 927014 20.19h

27 −168.415 3046199 6562735 79.10h 419503 1072499 35.63h

28 −174.415 3271885 7041002 84.05h 419187 1080583 39.76h

29 −181.83 4018764 8637027 126.33h 490994 1268484 56.14h

Total 38175331 83568654 2137.78h 7265067 19127269 657.28h

30 −193 - – – 838882 2119484 430.20h

31 −198.415 – – – 464358 1158942 38.28h

32 −204.415 – – – 527361 1331711 53.29h

33 −210.415 – – – 523013 1331731 55.56h

34 −217.415 – – – 607170 1550500 67.38h

35 −224.83 – – – 627866 1601828 58.78h

36 −234.415 – – – 947853 2384355 330.88h

123



S. Wang et al.

Table 7 continued

Msun Mnew

Round log
Popt
2 Var Cn f T sol V ar yCn f T sol

37 −240.415 – – – 642079 1604643 71.70h

38 −246.415 – – – 633699 1596599 86.96h

39 −253.415 – – – 729939 1845704 31.96h

40 −260.415 – – – 644931 1633919 131.86h

Table 8 Linear property of GIFT128

Msun Mnew

Round log
Coropt
2 Var Cn f T sol V ar Cn f T sol

1 −1 703 2302 1.0s 703 2238 0.8s

2 −2 766 2681 0.4s 638 2361 0.5s

3 −3 1277 4501 0.4s 893 3541 0.4s

4 −5 4087 13791 0.9s 2549 9946 1.0s

5 −7 6323 20113 1.0s 3501 13186 1.3s

6 −10 14181 42528 2.1s 7249 25775 1.9s

7 −13 20508 58338 4.8s 9718 32711 4.6s

8 −17 38338 104234 24.0s 17262 54884 25.9s

9 −22 66780 173900 234.0s 29480 87725 224.1s

10 −26 70814 178870 640.3s 29642 84948 721.0s

11 −31 113135 279355 1.33h 44955 125305 1.55h

12 −36 142550 345035 7.85h 54430 147565 6.96h

13 −38 67573 161991 1.40h 23083 62978 0.37h

14 −41 115848 276465 2.83h 24510 96239 2.13h

15 −45 178898 423742 4.27h 49422 137796 4.23h

16 −48 153843 342028 2.99h 39427 110063 1.06h

17 −51 173226 405870 1.28h 40360 113927 1.17h

18 −56 328690 765185 5.46h 74550 207765 5.79h

19 −59 222738 515616 2.63h 48706 134603 3.74h

20 −64 416330 958975 22.39h 88460 242225 17.66h

21 −68 373878 856594 41.29h 78746 212388 23.98h

22 −74 629715 1434747 536.54h 134681 355678 355.26h

23 −79 589055 1334575 335.82h 129035 333305 192.01h

24 −82 387213 874722 57.26h 80821 208,775 24.93h

25 −86 560174 1262890 162.42h 109634 284,772 84.86h

Total 4676643 10859048 1186.8h 1132455 3090699 725.96h
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Table 8 continued

Msun Mnew

Round log
Coropt
2 Var Cn f T sol V ar Cn f T sol

26 −91 – – – 147345 379885 994.45h

27 −94 – – – 91807 236723 631.82h

28 −98 – - - 123898 321268 347.7h

29 −101 – – – 93844 244787 156.13h

30 −105 – – – 126614 332020 319.5h

31 −108 – – – 95881 252851 125.83h

32 −112 – – – 129330 342772 272.14h

33 −117 – – – 173725 455905 306.97h

34 −121 – – – 148366 386148 314.38h

35 −126 – – – 197520 510125 764.42h

36 −130 – – – 167402 429524 524.84h

37 −133 – – – 125704 324443 145.39h

38 −137 – – – 168070 436180 196.20h

39 −140 – – – 126205 329435 155.27h

40 −143 – – – 122722 324467 147.33h

Table 9 Experimental results of LBlock

(a) Differential property
Msun Mnew

Round log
Popt
2 Var Cn f T sol V ar Cn f T sol

1 0 184 546 0.1s 184 522 0.1s

2 −2 1053 3524 0.2s 1051 3401 0.2s

3 −4 1911 6169 0.2s 1615 5360 0.2s

4 −6 3057 9511 0.2s 2179 7319 0.2s

5 −8 4491 13501 0.3s 2743 9278 0.2s

6 −12 11070 31656 0.5s 6210 20115 0.5s

7 −16 16210 44036 0.7s 8410 25880 0.5s

8 −22 32571 84505 1.8s 16149 46879 1.2s

9 −28 45633 113891 2.8s 21609 59682 1.8s

10 −36 80208 193906 5.0s 36876 97323 3.4s

11 −44 107136 252370 8.5s 47748 121452 5.8s

12 −48 73530 170916 4.0s 29770 75305 2.3s

13 −56 160164 368326 13.3s 60420 151638 9.2s

14 −62 150563 342553 14.1s 53837 133497 10.0s

15 −66 124200 281046 9.2s 40110 100020 6.2s

16 −72 198877 447903 13.4s 58849 147315 11.4s

123



S. Wang et al.

Table 9 continued

(a) Differential property
Msun Mnew

Round log
Popt
2 Var Cn f T sol V ar Cn f T sol

17 −76 161110 361336 11.7s 43690 109890 7.7s

18 −82 253911 567365 19.0s 63861 161133 12.8s

19 −86 202820 451706 20.8s 47270 119760 13.6s

20 −92 315665 700939 20.7s 68873 174951 14.7s

21 −96 249330 552156 11.7s 50850 129630 6.5s

22 −102 384139 848625 18.2s 73885 188769 11.6s

23 −106 300640 662686 20.5s 54430 139500 9.7s

24 −112 459333 1010423 21.8s 78897 202587 9.7s

25 −115 284202 624243 10.4s 45218 117120 5.7s

26 −121 536886 1177618 22.3s 79926 208453 12.1s

27 −126 499251 1092904 36.3s 72563 188404 16.5s

28 −131 537885 1175710 26.5s 74789 194482 10.8s

29 −135 479895 1047811 17.3s 62455 163690 8.4s

30 −141 720202 1570430 34.3s 90300 236789 9.6s

31 −146 662427 1442272 51.5s 81743 213268 18.5s

32 −151 706821 1537174 39.2s 83969 219346 16.3s

Total 7765375 7187757 456.3s 1460479 3772758 237.3s

(b) Linear property

Msun Mnew

Round log
Coropt
2 Var Cn f T sol V ar Cn f T sol

1 0 176 481 0.1s 176 465 0.1s

2 −1 623 1981 0.1s 607 1918 0.1s

3 −2 1013 3156 0.1s 877 2934 0.1s

4 −3 1499 4524 0.1s 1147 3950 0.1s

5 −4 2081 6052 0.1s 1417 4966 0.1s

6 −6 4353 11893 0.2s 2671 9251 0.2s

7 −8 6051 15376 0.3s 3331 11279 0.3s

8 −11 11098 26227 0.5s 5570 18236 0.5s

9 −14 15038 33227 0.8s 6910 21852 0.8s

10 −18 25040 52116 1.4s 10700 32605 1.3s

11 −22 32780 64771 2.6s 13100 38565 2.2s
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Newmethod for combining Matsui’s bounding conditions

Table 9 continued

(b) Linear property
Msun Mnew

Round log
Coropt
2 Var Cn f T sol V ar Cn f T sol

12 −24 24027 46129 1.3s 8737 25595 1.2s

13 −27 37802 71199 3.2s 12554 36876 2.3s

14 −30 44718 82487 2.8s 13830 40364 1.9s

15 −33 52210 94607 3.7s 15106 43852 3.5s

16 −36 60278 107559 7.8s 16382 47340 3.7s

17 −37 33647 59590 2.5s 8291 24342 1.7s

18 −40 74694 131375 4.2s 16918 50300 2.4s

19 −42 62541 109018 3.4s 13291 39635 2.4s

20 −45 92562 160043 4.3s 18594 55532 3.1s

21 −47 76662 131575 4.1s 14548 43559 2.3s

22 −50 112350 191527 5.1s 20270 60764 3.1s

23 −52 92223 156244 4.5s 15805 47483 2.4s

24 −55 134058 225827 5.5s 21946 65996 3.6s

25 −56 72217 121220 2.8s 10977 33478 1.8s

26 −59 155194 259627 6.7s 22098 68188 2.1s

27 −62 168926 280835 9.3s 23822 72572 6.9s

28 −65 183234 302875 16.1s 25546 76956 5.2s

29 −66 97669 161024 4.3s 12713 38830 3.4s

30 −69 207826 341795 6.3s 25442 78636 5.7s

31 −72 223670 366075 16.2s 27294 83276 5.7s

32 −74 178917 291859 10.2s 21097 64415 6.2s

Total 2285177 3912294 130.4s 411767 1244010 76.5s
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S. Wang et al.

Table 10 Experimental results of TWINE

(a) Differential property
Msun Mnew

Round log
Popt
2 Var Cn f T sol V ar Cn f T sol

1 0 184 761 0.6s 184 737 0.4s

2 −2 1053 4814 1.0s 1051 4691 1.1s

3 −4 1911 8104 1.1s 1615 7295 1.2s

4 −6 3057 12091 1.1s 2179 9899 1.3s

5 −8 4491 16726 1.1s 2743 12503 1.1s

6 −12 11070 38106 2.0s 6210 26565 1.9s

7 −16 16210 51561 2.1s 8410 33405 2.5s

8 −22 32571 96545 3.6s 16149 58919 3.3s

9 −28 45633 127436 4.1s 21609 73227 4.0s

10 −38 100661 265893 10.9s 47575 147587 8.6s

11 −46 111870 283105 15.2s 51312 149829 11.3s

12 −51 92541 229174 11.0s 38657 111682 7.9s

13 −58 148588 362181 22.8s 56940 163576 20.9s

14 −64 155253 372989 30.1s 55307 157479 15.8s

15 −68 127790 304341 14.3s 40920 117745 9.4s

16 −74 204239 482693 39.5s 59647 172963 28.9s

17 −77 131330 308567 15.0s 34410 101436 7.6s

18 −83 256928 600482 32.3s 61348 183183 17.8s

19 −88 247479 574738 35.2s 55775 166306 27.4s

20 −94 322371 744437 60.4s 68985 205247 21.8s

21 −97 202482 465815 14.0s 39554 119500 7.8s

22 −103 387828 889106 26.3s 70014 214123 12.6s

23 −107 303395 692916 10.5s 51545 158445 5.6s

24 −113 463358 1054586 24.9s 74690 230279 13.5s

25 −116 286598 650531 11.1s 42718 133612 4.6s

26 −122 541247 1225463 17.2s 75383 238483 7.9s

27 −126 417660 943011 18.5s 55500 176085 5.8s

28 −132 629881 1418495 28.5s 60760 189025 6.6s

29 −136 483370 1085931 21.8s 59080 188105 9.2s

30 −142 725235 1625639 54.7s 64580 201525 12.6s

31 −146 553880 1238931 28.3s 62660 200125 12.0s

32 −152 827309 1846895 41.3s 68400 214025 15.1s

33 −155 501770 1118447 22.8s 51418 166572 7.6s

34 −161 930398 2070860 39.1s 56350 178372 6.8s

35 −166 848643 1885174 68.0s 70310 225145 23.7s

36 −172 1051617 2331743 74.8s 76510 239965 21.4s

Total 11169901 25428287 805.3s 1610498 4977660 366.8s

123



Newmethod for combining Matsui’s bounding conditions

Table 10 continued

(b) Linear property
Msun Mnew

Round log
Coropt
2 Var Cn f T sol V ar Cn f T sol

1 0 176 777 0.6s 176 761 0.3s

2 −1 607 3165 0.7s 607 3102 0.7s

3 −2 941 4932 0.7s 877 4710 0.7s

4 −3 1339 6892 0.8s 1147 6318 0.8s

5 −4 1801 9012 0.7s 1417 7926 0.7s

6 −6 3633 17221 1.2s 2671 14579 1.1s

7 −8 4875 21592 1.4s 3331 17495 1.4s

8 −11 8666 35699 2.3s 5570 27708 1.9s

9 −14 11438 43883 2.4s 6910 32508 2.3s

10 −18 18640 66916 4.0s 10700 47405 3.0s

11 −22 23980 81051 4.7s 13100 54845 3.6s

12 −24 17403 56785 2.7s 8737 36251 2.3s

13 −27 27194 86591 4.7s 12554 52268 3.6s

14 −30 31950 99063 5.0s 13830 56940 4.3s

15 −32 27459 83560 4.0s 10975 45503 2.8s

16 −35 41594 124467 6.2s 15506 64540 4.3s

17 −36 23177 68572 2.9s 7885 33598 1.6s

18 −39 51370 150395 5.3s 16170 70124 3.1s

19 −41 42936 124075 4.5s 12778 55487 3.0s

20 −44 63446 181175 6.4s 17974 77980 4.1s

21 −45 34647 98142 3.1s 9087 40254 1.2s

22 −48 75398 211967 5.2s 18510 83308 3.1s

23 −50 61869 172270 4.1s 14581 65471 2.2s

24 −53 89906 248123 5.8s 20442 91420 3.9s

25 −54 48421 132832 3.4s 10289 46910 2.0s

26 −57 104034 283779 5.6s 20850 96492 2.6s

27 −59 84258 228145 5.0s 16384 75455 3.2s

28 −62 120974 325311 8.0s 17851 79979 3.5s

29 −63 64499 172642 3.7s 11491 53566 2.2s

30 −66 137278 365831 7.8s 12549 56742 3.4s

31 −68 110103 291700 5.4s 12619 57946 2.5s

32 −71 156650 412739 7.0s 13707 61182 3.7s

33 −72 82881 217572 4.4s 12693 60222 2.3s

34 −75 175130 458123 7.4s 13847 63590 3.7s

35 −77 139404 362935 5.8s 13885 64730 2.9s

36 −80 196934 510407 9.4s 15069 68158 3.2s

Total 2085011 5758341 152.1s 396769 1775473 91.2s
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Table 11 Experimental results of SPECK32

(a) Differential property
Msun Mnew

Round log
Popt
2 Var Cn f T sol V ar Cn f T sol

1 0 79 294 0.5s 79 279 0.1s

2 −1 281 1229 1.9s 281 1170 0.1s

3 −3 783 3154 2.1s 691 2837 0.2s

4 −5 1368 5002 1.7s 1000 3995 0.2s

5 −9 3925 12826 2.6s 2535 9285 0.6s

6 −13 6465 19176 3.4s 3665 12425 1.8s

7 −18 11838 32782 9.3s 6050 19264 6.7s

8 −24 20349 53299 55.2s 9653 28875 41.9s

9 −30 28511 71702 417.5s 12565 35903 299.9s

10 −34 26350 64751 484.3s 10340 29245 248.0s

11 −38 32265 78226 805.1s 11095 31635 764.8s

12 −42 38780 92976 0.34h 11850 34025 852.1s

13 −45 36328 86427 680.1s 9704 28376 292.8s

14 −49 52565 124216 0.30h 12495 37085 698.4s

15 −54 73638 172510 0.61h 16646 48856 878.3s

16 −58 70840 164726 0.38h 15160 44165 690.1s

17 −63 97188 224542 1.34h 19844 57352 0.96h

18 −69 130424 299069 8.96h 26796 75411 5.81h

19 −74 127386 290218 28.08h 25982 71704 16.33h

20 −77 94186 213859 5.64h 17642 49148 4.25h

21 −81 129125 292506 9.80h 21855 61925 10.08h

22 −85 141865 320456 8.62h 22385 63865 5.92h

Total 1124539 2623946 64.74h 258313 746825 44.69h

(b) Linear property

Msun Mnew

Round log
Coropt
2 Var Cn f T sol V ar Cn f T sol

1 0 111 455 0.1s 111 440 0.1s

2 0 190 924 0.1s 190 879 0.1s

3 −1 582 2855 0.1s 582 2722 0.1s

4 −3 1398 6232 0.2s 1306 5783 0.2s

5 −5 2169 8788 0.2s 1801 7604 0.3s

6 −7 3120 11749 0.5s 2296 9425 0.5s

7 −9 4251 15115 1.1s 2791 11246 0.8s

8 −12 7654 25655 3.8s 4614 17884 3.9s

9 −14 7455 23863 10.8s 4081 15482 6.1s

10 −17 12526 38639 46.1s 6334 23532 28.8s

11 −19 11559 34591 48.4s 5371 19718 37.6s
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Newmethod for combining Matsui’s bounding conditions

Table 11 continued

(b) Linear property
Msun Mnew

Round log
Coropt
2 Var Cn f T sol V ar Cn f T sol

12 −20 8941 26418 17.0s 3673 13886 30.0s

13 −22 15399 44977 41.7s 5695 22034 25.9s

14 −24 17835 51268 12.8s 6145 23765 26.4s

15 −26 20451 57964 15.8s 6595 25496 23.2s

16 −28 23247 65065 38.9s 7045 27227 35.7s

17 −30 26223 72571 62.2s 7495 28958 31.7s

18 −34 50310 136821 0.37h 14570 53795 622.0s

19 −36 34419 92200 0.37h 9889 35396 0.44h

20 −38 38025 101101 0.59h 10249 36947 0.43h

21 −40 41811 110407 0.34h 10609 38498 0.42h

22 −42 45777 120118 0.33h 10969 40049 0.33h

Total 373453 1047776 2.09h 122411 460766 1.87h

Table 12 Experimental results of SPECK48

(a) Differential property
Msun Mnew

Round log
Popt
2 Var Cn f T sol V ar Cn f T sol

1 0 119 446 0.1s 119 423 0.1s

2 −1 425 1869 0.3s 425 1778 0.1s

3 −3 1191 4810 0.5s 1051 4325 0.2s

4 −6 2966 10551 0.8s 2214 8492 0.3s

5 −10 6575 20761 1.9s 4215 14875 1.3s

6 −14 10590 30741 6.4s 5870 19545 2.9s

7 −19 19110 52168 23.2s 9494 29980 18.4s

8 −26 37868 97805 174.1s 17836 52472 155.2s

9 −33 54112 133941 0.49h 24176 67280 0.60h

10 −40 72932 175413 4.18h 30516 82088 4.30h

11 −45 69234 163648 5.19h 26174 69748 5.29h

12 −49 69125 161871 3.08h 22805 61465 2.59h

13 −54 97908 227464 5.64h 28712 78076 4.66h

14 −58 95090 219421 1.33h 24920 68405 1.10h

15 −63 131550 301768 6.21h 31250 86404 4.06h

16 −68 151335 345052 8.63h 33527 92578 4.91h

17 −75 233120 527877 59.46h 50800 137776 55.15h

18 −82 269972 606885 192.27h 59716 157736 157.98h

Total 1323222 3082491 286.55h 373820 1033446 240.69h

19 −89 - - - 68632 177696 482.23h

20 −96 - - - 77548 197656 673.51h
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Table 12 continued

(b) Linear property
Msun Mnew

Round log
Coropt
2 Var Cn f T sol V ar Cn f T sol

1 0 167 695 0.1s 167 672 0.1s

2 0 286 1412 0.2s 286 1343 0.1s

3 −1 878 4367 0.4s 878 4162 0.2s

4 −3 2118 9544 0.4s 1978 8855 0.3s

5 −6 4624 18411 0.6s 3872 15988 0.5s

6 −8 5163 18832 1.4s 3757 14981 1.0s

7 −12 12405 41821 21.8s 8195 30970 10.4s

8 −15 13882 43731 79.5s 8266 29900 63.8s

9 −19 23105 69231 0.33h 12595 44030 0.36h

10 −22 23730 68419 0.95h 11786 40348 0.84h

11 −25 29116 81827 3.70h 13100 44684 3.44h

12 −28 35054 96431 6.67h 14414 49020 6.06h

13 −30 30711 83281 3.12h 11353 39134 2.50h

14 −33 47302 126663 10.28h 15958 55532 7.97h

15 −37 69365 182556 40.11h 22555 76760 36.48h

16 −39 47694 124006 29.34h 14476 49223 25.03h

17 −43 90305 232291 124.91h 25945 87810 106.15h

18 −45 61086 155641 86.19h 16510 55853 42.87h

19 −48 90332 228663 57.01h 22604 77364 38.81h

20 −51 100594 252651 51.20h 24010 81884 17.42h

21 −54 111408 277835 217.37h 25416 86404 151.05h

22 −57 122774 304215 335.77h 26822 90924 223.90h

23 −59 100227 247261 52.73h 20383 70010 20.59h

Total 1022326 2669784 1019.7h 305326 1055851 683.48h

Table 13 Experimental results of SPECK64

(a) Differential property
Msun Mnew

Round log
Popt
2 Var Cn f T sol V ar Cn f T sol

1 0 159 598 0.1s 159 567 0.1s

2 −1 569 2509 0.3s 569 2386 0.1s

3 −3 1599 6466 0.4s 1411 5813 0.2s

4 −6 3990 14199 1.0s 2982 11436 0.5s

5 −10 8855 27961 2.7s 5695 20075 2.4s

6 −15 17679 50812 15.8s 10079 32782 11.0s
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Newmethod for combining Matsui’s bounding conditions

Table 13 continued

(a) Differential property
Msun Mnew

Round log
Popt
2 Var Cn f T sol V ar Cn f T sol

7 −21 32319 86556 78.0s 16779 50841 78.6s

8 −29 62991 159427 0.39h 30945 87369 0.38h

9 −34 58056 142108 0.54h 25640 70444 0.46h

10 −38 60690 146291 0.35h 23050 63905 0.55h

11 −42 73545 175406 518.8s 24065 67775 551.8s

12 −46 87640 207156 524.9s 25080 71645 333.0s

13 −50 102975 241541 685.1s 26095 75515 508.7s

14 −56 170401 396040 0.50h 40943 117103 0.41h

15 −62 202055 464969 2.03h 48083 133931 2.21h

16 −70 308286 702316 47.58h 75378 202569 34.51h

17 −73 157152 355875 1.06h 36120 96728 1.01h

18 −76 173082 391331 0.73h 33922 93812 0.33h

19 −81 288162 649648 0.77h 51086 143332 0.53h

20 −85 266705 599311 0.35h 43945 124025 0.45h

21 −89 293045 656946 0.35h 43875 125725 0.30h

22 −94 386793 864742 0.52h 54593 156958 0.50h

23 −99 425742 948952 1.16h 58454 166876 0.85h

24 −107 709857 1575649 14.96h 103395 285009 12.20h

25 −112 523152 1156936 11.15h 78776 211876 10.08h

26 −116 471520 1040961 3.88h 66400 179905 2.74h

27 −121 610170 1344904 17.29h 80786 220300 11.97h

Total 5497189 12409610 104.43h 1008305 2818702 79.89h

(b) Linear property

Msun Mnew

Round log
Coropt
2 Var Cn f T sol V ar Cn f T sol

1 0 223 935 0.1s 223 904 0.1s

2 0 382 1900 0.2s 382 1807 0.2s

3 −1 1174 5879 0.3s 1174 5602 0.2s

4 −3 2838 12856 0.4s 2650 11927 0.3s

5 −6 6208 24811 1.4s 5200 21556 1.0s

6 −9 9622 34583 3.9s 7102 27676 3.2s

7 −13 17765 58536 55.2s 11785 43300 40.1s

8 −17 25205 77401 452.1s 15135 52885 440.0s

9 −19 19497 57676 787.2s 10267 35840 417.7s

10 −21 23502 68269 161.9s 10732 38513 231.5s

11 −24 37852 107623 570.3s 15604 56260 377.1s

12 −27 45730 127067 742.3s 17506 62380 577.2s

123



S. Wang et al.

Table 13 continued

(b) Linear property
Msun Mnew

Round log
Coropt
2 Var Cn f T sol V ar Cn f T sol

13 −30 54352 148123 0.57h 19408 68500 0.53h

14 −33 63718 170791 0.70h 21310 74620 0.65h

15 −37 93445 246156 16.18h 30165 103220 6.47h

16 −41 109565 283621 68.49h 34755 115285 46.92h

17 −43 74577 191080 4.35h 22039 73280 3.48h

18 −45 82302 209857 0.68h 21760 74465 0.55h

19 −47 90399 229471 0.61h 21481 75650 0.58h

20 −49 98868 249922 549.0s 21202 76835 643.7s

21 −52 144912 364211 108.0s 29192 106612 96.8s

22 −54 118965 297418 51.0s 22489 82889 32.2s

23 −59 263694 653938 0.76h 50606 180502 0.68h

24 −63 246015 603951 37.94h 50065 169085 29.54h

25 −66 215848 526530 41.97h 43424 144324 31.36h

26 −68 174399 423994 15.31h 32791 110429 8.52h

27 −70 186123 451606 0.51h 31861 110312 0.46h

Total 2207180 5628206 188.30h 550308 1924658 130.53h

Table 14 Experimental results of SPECK96

(a) Differential property
Msun Mnew

Round log
Popt
2 Var Cn f T sol V ar Cn f T sol

1 0 239 902 0.8s 239 855 0.1s

2 −1 857 3789 1.9s 857 3602 0.1s

3 −3 2415 9778 2.6s 2131 8789 0.2s

4 −6 6038 21495 4.2s 4518 17324 0.7s

5 −10 13415 42361 6.4s 8655 30475 3.4s

6 −15 26799 77020 24.4s 15359 49870 22.7s

7 −21 49007 131244 163.8s 25627 77497 230.4s

8 −30 108025 272406 1.53h 54445 151910 1.49h

9 −39 159420 384536 41.24h 76920 202360 40.56h

10 −49 243782 570615 452.48h 111848 283107 367.75h

Total 609997 1514146 495.50h 300599 825789 409.86h

11 −58 – – – 125910 311320 674.98h

(b) Linear property

Msun Mnew

Round log
Coropt
2 Var Cn f T sol V ar Cn f T sol

1 0 335 1415 0.1s 335 1368 0.1s

2 0 574 2876 0.1s 574 2735 0.1s
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Newmethod for combining Matsui’s bounding conditions

Table 14 continued

(b) Linear property
Msun Mnew

Round log
Coropt
2 Var Cn f T sol V ar Cn f T sol

3 −1 1766 8903 0.2s 1766 8482 0.2s

4 −3 4278 19480 0.2s 3994 18071 0.2s

5 −6 9376 37611 1.3s 7856 32692 1.1s

6 −9 14550 52439 12.6s 10750 42012 10.5s

7 −13 26885 88776 200.6s 17865 65780 180.4s

8 −18 46923 143128 1.25h 28679 98698 1.12h

9 −22 53435 154236 10.24h 29685 98220 7.03h

10 −27 83859 232396 127.10h 42863 137626 107.60h

11 −31 88445 237556 260.22h 41505 130660 173.60h

12 −33 62940 166486 36.05h 26008 83255 14.02h

13 −36 96992 253923 44.06h 35328 115844 24.34h

14 −39 112318 290559 44.82h 37094 122908 27.07h

Total 602676 1689784 523.80h 284302 958351 354.82h

15 −43 – – – 50325 165960 74.47h

16 −48 – – – 69323 222298 289.07h

Table 15 Experimental results of SPECK128

(a) Differential property
Msun Mnew

Round log
Popt
2 Var Cn f T sol V ar Cn f T sol

1 0 319 1206 0.1s 319 1143 0.1s

2 −1 1145 5069 0.1s 1145 4818 0.1s

3 −3 3231 13090 0.3s 2851 11765 0.3

4 −6 8086 28791 1.0s 6054 23212 0.7s

5 −10 17975 56761 3.5s 11615 40875 4.2

6 −15 35919 103228 36.7s 20639 66958 30.3

7 −21 65695 175932 343.8s 34475 104153 286.3

8 −30 144825 36520 2.74h 73325 204390 2.71h

9 −39 213740 365206 76.38h 103720 272600 68.75h

Total 490935 1264859 79.23h 254143 729914 71.56h

10 −49 – – – 150920 381667 358.21h

(b) Linear property

Msun Mnew

Round log
Coropt
2 Var Cn f T sol V ar Cn f T sol

1 0 447 1895 0.1s 447 1832 0.1s

2 0 766 3852 0.2s 766 3663 0.1s
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Table 15 continued

(b) Linear property
Msun Mnew

Round log
Coropt
2 Var Cn f T sol V ar Cn f T sol

3 −1 2358 11927 0.2s 2358 11362 0.2s

4 −3 5718 26104 0.4s 5338 24215 0.3s

5 −6 12544 50411 3.6s 10512 43828 2.9s

6 −9 19478 70295 23.2s 14398 56348 18.1s

7 −13 36005 119016 463.5s 23945 88260 308.5s

8 −18 62859 191896 2.85h 38471 132490 2.34h

9 −22 71595 206796 3.08h 39845 131900 2.35h

10 −27 112371 311596 98.78h 57551 184858 70.51h

Total 324141 993788 104.85h 193631 678756 75.29h

11 −31 – – – 55745 175540 261.10h
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