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Abstract

Interactive arguments, and their (succinct) non-interactive and zero-knowledge counterparts, have
seen growing deployment in real world applications in recent years. Unfortunately, for large and complex
statements, concrete proof generation costs can still be quite expensive. While recent work has sought
to solve this problem by outsourcing proof computation to a group of workers in a privacy preserving
manner, current solutions still require each worker to do work on roughly the same order as a single-prover
solution.

We introduce the Honest Majority Multi-Prover (HMMP) model for interactive arguments. In
these arguments, we distribute prover computation among M collaborating, but distrusting, provers.
All provers receive the same inputs and have no private inputs, and we allow any t < M/2 provers to
be statically corrupted before generation of public parameters, and all communication is done via an
authenticated broadcast channel. In contrast with the recent works of Ozdemir and Boneh (USENIX ’22)
and Dayama et al. (PETS ’22), our model targets prover efficiency over privacy.

We show that: (1) any interactive argument where the prover computation is suitably divisible
into M sub-computations can be transformed into an interactive argument in the HMMP model; and
(2) arguments that are obtained via compiling polynomial interactive oracle proofs with polynomial
commitment schemes admit HMMP model constructions that experience a (roughly) 1/M speedup over
a single-prover solution. The transformation of (1) preserves computational (knowledge) soundness,
zero-knowledge, and can be made non-interactive via the Fiat-Shamir transformation. The constructions
of (2) showcase that there are efficiency gains in proof distribution when privacy is not a concern.

1 Introduction

Interactive arguments [BCC88, GMR89] (or arguments in short) are interactive protocols that allow a
computationally bounded (i.e., polynomial time) prover to certify an NP statement x with witness w to a
computationally weak (i.e., sub-linear time) verifier. The (perfect) correctness condition states that an honest
prover can always convince a verifier of a true statement, while the soundness condition states that any
polynomial-time malicious prover cannot convince a verifier of a false statement (except with small probability).
Arguments and their (succinct) non-interactive counterparts [Mic00,Val08,GW11,SG11,DFH12,BCCT12,
GGPR13,BCCT13,BCI+13] remain relevant to both researchers and practitioners for their continued adoption
in a variety of technologies, including privacy preserving smart contracts [KMS+16], e-cash [BSCG+14],
decentralized private computation [BCG+20], and accountable anonymity [GGM16]. This continued study
has advanced the state-of-the-art towards (nearly) optimal prover and verifier efficiency: for a witness of size

N and security parameter λ, many arguments achieve ˜︁Oλ(N)1 prover time and Oλ(log(N)) (or even Oλ(1))
verifier time under a variety of cryptographic assumptions, and additionally achieve other desirable properties
such as zero-knowledge [GMR89] and various notions of knowledge-soundness [GI08,Lin03,GW11,WTS+18].

Though the asymptotic costs of proof generation are nearly optimal, in practice the concrete costs become
prohibitive for all but the most powerful machines when statement and witness sizes become large (e.g.,

∗Purdue University, {block9,clg}@purdue.edu
1 ˜︁O omits polylog(N) factors and subscript λ omits poly(λ) factors.
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N ⩾ 220). One solution for this problem is to outsource proof generation to more powerful machines: a
simple solution is to give the worker machine the statement x and witness w and have it generate the proof.
However, many applications wish to protect the privacy of the delegator; i.e., sharing w in the clear is
undesirable. While it is impossible to avoid sending the true witness w with a single worker machine, recent
work [OB22,DPP+22] overcomes this problem by constructing privacy preserving delegation schemes using
multiple worker machines to collaboratively build a proof. Both these schemes can handle the scenario where
there is an honest majority of workers, or even the case of a single honest worker by leveraging certain secure
multi-party computation (MPC) protocols [Yao82,GMW87,Kil91, IKOS07].

The main drawback of this approach is that each worker runs in time proportional to a single-prover
solution, with additional overheads to run specialized MPC protocols tailored for their applications. In
essence, these delegation schemes share the witness w via a secret sharing scheme, and each worker produces
a proof for their secret share. The key property of these schemes is that the proof produced via operating on
a secret share of w is itself a secret share of a valid proof using witness w. Thus, the delegator can recover a
complete proof by recombining the worker proofs. Therefore, the cost of computing a secret share proof is
identical to the cost of a single prover producing a proof for w.

While preserving privacy is generally desirable, in some applications it is not necessary. For example,
zero-knowledge rollups (zk-rollups) are an increasingly popular method for increasing the scalability of
blockchains. In a zk-rollup, a node bundles together a number of (publicly known) transactions off-chain
and then generates a zero-knowledge proof of validity. One significant challenge, though, is that these proofs
are expensive for a single node to generate, which reduces the throughput gains that they are meant to
achieve. Note that in this scenario, all proof inputs are publicly known to all nodes participating in the
system [Eth,LNS20].

Of course, multiple provers are unnecessary if no privacy is required (i.e., just send w to one worker
machine). Moreover, under the assumption that the majority of provers are honest, another strategy is to
simply have each prover submit one bit certifying the validity of the statement x, with the delegator taking
the majority and submitting this as a proof to the verifier. However, all provers in these solutions again run
in roughly the same time as a single-prover solution. This seems wasteful:

if privacy is not a concern, is there a way for multiple distrusting provers to jointly compute a proof for a
statement such that each participant performs less work than a single-prover solution?

1.1 Our Contribution

With the goal of leveraging collaboration to gain efficiency, we introduce the Honest Majority Multi-Prover
(HMMP) model for interactive arguments. A HMMP model argument is an interactive argument where M
mutually distrusting provers collaborate to convince a verifier of the validity of an NP statement x such
that each prover is given the same witness w and has no other private inputs. Furthermore, up to t < M/2
provers can be statically corrupted before the generation of public parameters (or the first message of the
verifier), and all provers communicate with each other and the verifier via an authenticated sender broadcast
channel [PSL80,LSP82]. We require correctness to hold with high probability in the presence of t < M/2
static corruptions, and require soundness to hold when all M provers are corrupt.

We also define zero-knowledge in the HMMP model analogously to the single-prover definition of zero-
knowledge. Informally, we say a HMMP model interactive argument is zero-knowledge if a malicious verifier
learns nothing more than the validity of the statement x when interacting with M honest prover algorithms.
Note this definition differs from the various zero-knowledge definitions of [OB22,DPP+22], but we see it as
natural in our setting since all provers share the same witness and have no private inputs. See Section 2.1 for
more discussion.

Our main result is showing that any argument where the prover computation is “suitably” partitionable
can be transformed into an argument in the HMMP model. Suitably partitionable means that the prover
computation can be divided into some number of sub-computations, then recombined into the same message
that the single prover would have sent. Our transformation perfectly preserves soundness and zero-knowledge;
in particular, it simply reduces to the soundness and zero-knowledge of the original argument. Moreover, if
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the single prover argument is publicly verifiable or public coin,2 then our transformed argument preserves
these properties. However, we experience a (small) multiplicative increase in the correctness error over the
original argument. For example, if the single-prover argument has perfect correctness, then our HMMP model
argument has correctness with a small probability of error.

Our transformation leverages a simple “shuffle” and “audit” strategy, where all provers are shuffled during
the generation of public parameters via a random permutation, and a committee of τ provers jointly check
consistency of the next message. We stress that our transformation is completely insecure (i.e., not sound) if
provers can be adatively corrupt, or statically corrupt after the generation of public parameters (or the first
message of the verifier). See Section 2.1 for details.

We capture the key properties of our HMMP transformation in the following theorem.

Theorem 1.1. Let M, τ, t ∈ N be parameters such that t < M/2 and τ ⩽ t. If Πarg is an interactive argument
such that the prover computation can be divided into M sub-computations, then there exists a HMMP model
argument Πhmp with M provers and the following parameters:

• if Πarg is publicly verifiable (resp., public coin), then Phmp is publicly verifiable (resp., public coin);

• if Πarg has correctness error δarg, then Πhmp has correctness error δhmp = 1− (1−δarg) · (1−M · (t/M)τ )
when at most t provers are corrupt;

• if Πarg has εarg (computational) soundness, then Πhmp has εhmp = εarg (computational) soundness; and

• if Πarg has γarg zero-knowledge error, then Πhmp has zero-knowledge error γhmp = γarg.

Furthermore, Πhmp can be made non-interactive via the Fiat-Shamir transformation [FS87].

1.1.1 Efficiency of Theorem 1.1.

Our HMMP model transformation is general in the sense that we only require the prover computation of a
single-prover argument to be suitably partitionable; in particular, the M sub-computations need not be more
efficient than the single-prover computation, and there may exist arguments with this property. This is a
major hurdle towards our efficiency goals.

We overcome this limitation by directly working with a specific class of interactive arguments that
admit efficient sub-division of prover computations. In particular, we consider the class of arguments
that are obtained from compiling polynomial interactive oracle proofs (PIOPs) [RRR16, BSCS16] with
polynomial commitment schemes [KZG10], which has become one common paradigm for designing arguments
[MBKM19,GWC19,CHM+20,BFS20,BHR+20,BHR+21]. Briefly, a polynomial interactive oracle proof is
an interactive proof (i.e., it is an argument where the prover is computationally unbounded) where large
prover messages are encoded as polynomials and are sent as an oracle for the verifier to query, and all other
communication between the prover and verifier is efficient. A polynomial commitment scheme is a special
commitment scheme that allows a committer to commit to some polynomial to a receiver, and allows the
committer to provably open (via an argument) to evaluations of the polynomial at a specific point specified
by the receiver. The essential feature of a polynomial commitment scheme is that this “proof of evaluation”
allows the committer to open to an evaluation point without opening the entire polynomial.

Arguments using this paradigm generally have the following structure: (1) a prover uses the polynomial
commitment scheme to commit to the polynomial oracles for the verifier to query; (2) the efficient communi-
cation between the prover and the verifier is a sum-check protocol [LFKN92] over a polynomial that depends
on the committed polynomial; and (3) any query made by the verifier to its oracle is completed using the
evaluation proof of the polynomial commitment scheme.

We give an overview of this paradigm in Section 2.2 and discuss how to obtain more efficient HMMP
model provers by sub-division of computation, and capture these efficiencies in the following theorem.

2Publicly verifiable means any party with the transcript of the interaction (i.e., the proof) can verify its validity, and public
coin means all messages sent by a verifier are uniformly and independently chosen at random.
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Theorem 1.2. Let M, τ, t, λ ∈ N be parameters such that t < M/2 and τ ⩽ t. For every NP relation with
statements of size poly(λ) and witnesses of size N , there exists a HMMP model interactive argument Πhmp

with M provers and the following efficiency properties:

• the individual prover computation is ˜︁Oλ(τ · (N/M));

• the communication complexity between provers is ˜︁Oλ(τ · (N/M)) bits;

• the verifier computation is Oλ(M + log(N)); and

• the verifier receives Oλ(M · log(N)) bits from all provers and sends Oλ(log(N)) bits to all provers.

Our efficiency guarantees in Theorem 1.2 only hold with respect to t corrupt parties under the assumption
that their goal is not to make the honest parties perform more computation. In particular, we assume that
the goal of the corrupt parties is to try and force the verifier to reject even if the NP statement is true.

Corrupt parties could have the alternative goal of forcing honest parties to perform more computations.
In this case, there is a simple attack: in each round of computation, one dishonest party intentionally submits
an incorrect value to force an audit. This can happen t < M/2 times, which in the worst case (i.e., t = Θ(M))

forces each honest prover to perform ˜︁Oλ(τ ·N) computation, which is proportional to a single prover solution.
While not addressed in this work, this attack is unavoidable in our HMMP model transformation. However,

one possible solution to this issue is to permanently kick parties and/or implement a reputation system to
punish misbehaving provers; this could amortize the damage done by malicious provers.

1.2 Additional Related Work

Interactive arguments have a rich history of research over the past four decades [BCC88,GMR89,Mic00,
Val08,GW11,SG11,DFH12,BCCT12,GGPR13,BCCT13,BCI+13]. The recent works of Ozdemir [OB22]
and Dayama et al. [DPP+22] construct privacy preserving delegation schemes, and define their model in
a similar way to ours. However, their goals are to preserve privacy, which is orthogonal to our goal of
increasing efficiency while assuming no privacy. Another result loosely related to our work is due to Wu
et al. [WZC+18]. [WZC+18] constructs DIZK, which works to distribute the creation of a zero-knowledge
proof across multiple machines controlled by the prover, such as a compute cluster. This achieves something
much closer to “centralized decentralization”, where a single prover distributes their computation to many
(honest) trusted nodes. In contrast, our model supports any number of distinct provers that wish to work
together to convince a verifier of a statement, with only an honest-majority assumption. Also somewhat
related is the recent work of Naor, Parter, and Yogev [NPY20]. Here, the authors construct interactive proofs
with distributed verifiers. In this setting, the verifiers are represented by an n node graph G defining their
communication pattern, and a prover communicates with all nodes via short messages.

Polynomial commitment schemes are a relatively new cryptographic primitive introduced by Kate,
Zaverucha, and Goldberg [KZG10]. Several variants of polynomial commitment schemes have been explored
since their introduction, including privately verifiable schemes [KZG10,PST13], publicly-verifiable schemes
with trusted setup [BFS20], and zero-knowledge schemes [WBT+17]. Recent results have focused on obtaining
publicly-verifiable schemes without a trusted setup [BCC+16,WBT+17,BBB+18,WTS+18,BSBHR18,KPV19,
BSGKS20,BFS20,Lee21,SL20,ZXZS20]. More recently, Block et al. [BHR+20,BHR+21] construct the first
space-efficient polynomial commitment schemes, where both the prover and verifier space is poly-logarithmic
in the size of the polynomial, and recent work [BCHO22] expands these results.

2 Technical Overview

We give an overview of Theorems 1.1 and 1.2. At a high level, for Theorem 1.1 we utilize a shuffle and audit
strategy to ensure consistency among all provers. For Theorem 1.2, we identify three core components of the
polynomial IOP + polynomial commitment scheme paradigm and efficiently divide the these components
among M provers to get efficient arguments.
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Figure 1: Diagram of the interaction between Phmp and Vhmp.

2.1 Overview of Theorem 1.1

Fix an argument scheme Πarg = (Setuparg, Parg, Varg), where Setuparg is the setup algorithm and Parg and
Varg are interactive algorithms representing the prover and verifier, respectively. Suppose that Parg is divisible
into M sub-computations, which we model as follows. Let f be the next message function of Parg, let
S : [M ] × {0, 1}∗ → {0, 1}∗ be a partition function, and let f∗, f1, . . . , fM : {0, 1}∗ → {0, 1}∗ be functions
such that for all z ∈ {0, 1}∗, we have f(z) = f∗ (f1(S(1, z)), . . . , fM (S(M, z))). Intuitively, fi is the ith

sub-computation and f∗ is reconstructs the next message of Parg. Note that here [M ] := {1, . . . ,M}.
Given the above functions, one can envision the following straw man transformation from Πarg to

Πhmp = (Setuphmp,Phmp, Vhmp), where Phmp = (P1, . . . , PM ) are M collaborating provers.

1. Define Setuphmp := Setuparg.

2. Define Phmp as follows: for any input z

(a) Prover Pi computes yi = fi(S(i, z)) and broadcasts yi.

(b) All provers compute y = f∗(y1, . . . , yM ) and broadcast y to Vhmp.

3. Define Vhmp as follows: during any round of interaction, upon receiving M messages from Phmp, take
the majority and feed this value into Varg. If Varg returns a message, broadcast that message to Phmp.
Otherwise accept or reject as Varg. Fig. 1 gives a pictorial representation of this interaction.

Clearly the above transformation is secure when all provers are honest; however, it is clear that even a single
malicious prover ˜︁Pj could inject arbitrary values into the computation. The key observation is that we do
not take advantage of our honest majority assumption. To leverage this, we introduce a permute and audit
mechanism to allow for cross-examination among provers.

2.1.1 Secure Transformation.

We modify the above straw man scheme in the following two ways. First, we introduce a τ audit window to
the protocol: every fi is computed by τ provers Pi, Pi+1, . . . , Pi+τ−1, and their results are broadcast to all
other provers. Then, all provers check to see if the τ submitted values are all the same. If they are not, then
a global audit is initiated. In this global audit, all provers P1, . . . , PM compute the value fi, broadcast this
computation, and then take the majority of the answers. The computed majority value is then compared with
the τ submitted values, and any prover that submitted an incorrect value is kicked from the protocol. By
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our honest majority assumption, if a global audit is initiated then it is guaranteed to only remove dishonest
parties from the protocol; this is an invariant property of our audit procedure (see Lemma 4.7).

However, even introducing the above audit window is not sufficient for security unless τ > t. In particular,
if τ ⩽ t, then an adversary can simply corrupt τ provers in quick succession and is still able to attack the
protocol. Further, setting τ > t is undesirable; if t = c ·M for some constant c < 1/2, then every prover has
a τ = Ω(M) blow-up in computational complexity, and at that point it would be simpler for all provers to
compute all values fi, defeating our efficiency goals for the HMMP model.

To remedy this, we introduce a uniformly random permutation π on the set [M ] and modify the above
audit procedure as follows. For computing function fi, the parties Pπ(i), . . . , Pπ(i+τ−1) all compute fi, and
then follow the above audit procedure as prescribed. So long as the permutation is sampled after the adversary
performs t corruptions, then with good probability every audit window will contain at least one honest prover.
So long as at least one honest prover is in every audit window, then any incorrect behavior from corrupt
provers will be caught by a global audit.

This leads to the following secure transformation of Πarg to Πhmp.

1. Define Setuphmp as follows: sample pp′ ← Setuparg and sample uniformly random permutation π : [M ]→
[M ]. Output pp = (pp′, π).

2. Define Phmp as follows: for any input z

(a) For j ∈ {i, i+ 1, . . . , i+ τ − 1}, prover Pπ(j) computes yi = fi(S(i, z)) and broadcasts yi.

(b) All provers audit the value yi as necessary.

(c) After all values fi are computed, all provers compute y = f∗(y1, . . . , yM ) and broadcast y to Vhmp.

Fig. 2 presents this transformation pictorially (on the right), along with the insecure transformation
(on the left).

3. Vhmp is defined analogously as before.

By definition, our HMMP model requires an adversary to perform t static corruptions before the generation
of public parameters by Setuphmp. Thus Setuphmp samples the permutation π and we obtain a secure
transformation.3

Correctness. Suppose that Πarg has correctness error δarg; that is, the probability that Varg rejects a
correct proof from an honest prover Parg is at most δarg. Then our transformation guarantees correctness
error δarg so long as every τ audit window contains at least one honest prover.

Proposition 2.1. Let Πarg be an argument with δarg correctness error such that Theorem 1.1 can be applied
to Πarg. Let H ⊆ [M ] be the indices of the honest provers and let π be a permutation over [M ]. For every
i ∈ [M ], if H ∩ π(J ) ̸= ∅ for J = {i, i + 1, . . . , i + τ − 1}/(MZ) then the argument Πhmp has correctness
error δarg.

Clearly, if the permutation π is fixed ahead of time before the corruption of t provers, then there is always
a way for the adversary to construct a set J such that H ∩ π(J ) = ∅. Hence, we enforce the corruption of t
provers before a uniformly random permutation π is sampled. Then we can guarantee with suitably high
probability that Proposition 2.1 holds. The following lemma characterizes the probability that Proposition 2.1
holds over a uniformly random permutation.

Lemma 2.2. Let τ, t,M ∈ N be integers such that τ ⩽ t and t < M , and let T ⊂ {1, . . . ,M} be a subset
of size t. For permutation π over [M ], let S(i,j) = {Sℓ,π : ℓ = (i + k modM) ∀k ∈ {0, . . . , j − 1}}, where
Sℓ,π = π(ℓ) for all ℓ ∈ {1, . . . ,M}. Then Pr

[︁
∃i ∈ [M ] : S(i,τ) ⊆ T

]︁
⩽ M · (t/M)

τ
, where the probability is

taken over uniformly random permutation π.

3Alternatively, the verifier can sample π and send it as its first message, after t static corruptions have occurred.
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Figure 2: Demonstration of the insecure straw man implementation of Phmp (pictured left) and the secure
implementation of Phmp (pictured right) with the τ audit window for computing f1, for τ = 3. Here π is a
uniformly random permutation on the set {1, . . . ,M}.

Lemma 2.2 states that the probability there exists an audit window with no honest provers is at most
M ·(t/M)τ ; i.e., with probability at least 1−M ·(t/M)τ , Phmp behaves identically to the honest prover algorithm
Parg. Note τ is a parameter for the argument Πhmp and can be chosen such that M · (t/M)τ = negl(M), e.g.,
τ = polylog(M). Proposition 2.1 and Lemma 2.2 together guarantee that correctness holds with probability
at least (1− δarg) · (1−M · (t/M)τ ), thus our correctness error is δhmp = 1− (1− δarg) · (1−M · (t/M)τ ) as
desired.

Soundness. As stated in Section 1.1, we require soundness to hold with respect to all M provers being
corrupt. Informally, we say that a HMMP model argument Πhmp is ε-computationally sound if the probability
M malicious collaborating provers convince a verifier of a false statement with probability at most ε. We
similarly extend our soundness definition to knowledge soundness [BG92]. Informally, we say that a HMMP
model argument Πhmp has knowledge soundness if whenever M malicious collaborating provers cause a
verifier to accept, then a valid (NP) witness can be efficiently extracted via an extractor by interacting with
and rewinding the M malicious provers. Our definitions mirror both [OB22,DPP+22].

Under these definitions, it is not difficult to see that both soundness and knowledge soundness directly
reduce to the single-prover argument case (this observation is similarly made in both [OB22,DPP+22]). In
particular, any M malicious prover strategy that is successful in breaking soundness is itself a single-prover
strategy for breaking soundness: the single prover simply simulates the interaction “in its head”. For
knowledge soundness, from an extractor perspective, any property that holds for a malicious prover also
holds for a collection of malicious provers. See Section 4 and Proposition 4.10 for more details.

Defining and Obtaining Zero-Knowledge. We define zero-knowledge analogously to [DPP+22]. In
particular, we say that a HMMP model argument is zero-knowledge with error γ if any malicious verifier
interacting with M honest collaborating prover algorithms learns nothing other than the validity of the
statement, except with probability at most γ. In our setting this definition of zero-knowledge is the most
natural since all M provers are given the same witness and have no other private inputs to protect.

If collaborating provers each have some private input to protect, then one can define zero-knowledge
with respect to an honest verifier and t malicious provers by stipulating the malicious provers learn nothing
by interacting with the honest provers; [OB22] defines t-zero knowledge in this way, and [DPP+22] calls
this witness confidentiality. Moreover, [DPP+22] defines another zero-knowledge variant with respect to t
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malicious provers and a malicious verifier, which they call witness confidentiality with collusion. While both
of these notions of zero-knowledge are interesting, they do not apply (nor make sense) in our case since all
provers have the same inputs.

As stated in Theorem 1.1, our transformation preserves zero-knowledge, which can be seen via the following
abstraction. Given a zero-knowledge argument Πarg, the prover next message function can be viewed as two
functions: the non-zero knowledge function f and the zero-knowledge function g. Given sufficiently many
random coins f and input z, if f(z) is sent by the prover in the non-zero knowledge setting, then g(f(z); r) is
sent in the zero-knowledge setting. This abstraction allows us to preserve zero-knowledge by giving Phmp a
shared random string r as input in addition to the witness. Each prover then uses the same random string r
and sends y′ = g(y; r), where y is computed as in Item 2c. In place of receiving r as input, one can assume
a randomness beacon [Rab83,SJK+17] to broadcast r, or leverage honest-majority MPC to agree upon r
[BOGW88,RBO89].

Obtaining Non-Interactivity. Briefly, a non-interactive argument is an argument Πarg where only a
single message is sent from the prover to the verifier, and there is no other interaction. Similarly, we say a
HMMP model argument Πhmp is non-interactive if M collaborating and communicating provers generate a
single message (i.e., the proof string), send this message to the verifier, and there is no other interaction.

We obtain non-interactivity directly by applying the Fiat-Shamir transformation [FS87] to any public
coin HMMP model argument. All provers are assumed to have access to a shared random oracle H, and the
provers each use H to generate the next message of the verifier. In particular, instead of sending M messages
to the verifier, each prover takes the majority of these messages, appends this new message to the transcript
so far, then applies the random oracle H to the updated transcript and uses the output as the verifier message.
Security now holds information theoretically in the random oracle model: if any dishonest prover does not
follow this procedure, then with high probability over the random oracle, the verifier challenges generated
in a dishonest way will be incorrect, which guarantees that with high probability the dishonest parties are
caught in subsequent rounds.

2.2 Overview of Theorem 1.2

Recall that Theorem 1.1 does not guarantee efficiency gains for collaborating provers, which is the goal of
our model. We overcome this limitation of Theorem 1.1 by directly applying our HMMP model to a class of
arguments for NP that follow the paradigm of compiling polynomial interactive oracle proofs with polynomial
commitment schemes. Arguments obtained via this paradigm have algebraic structure that we can take
advantage of during the collaborative proof generation. We first give an overview of the paradigm, then
discuss how to efficiently distribute the computation of each sub-component, then describe how to compose
these components to obtain Theorem 1.2.

2.2.1 Paradigm Overview.

As mentioned before, this paradigm compiles any polynomial interactive oracle proof (polynomial IOP, PIOP)
for NP with a suitable polynomial commitment scheme to obtain interactive arguments for NP. We begin
by giving an overview of polynomial commitment schemes, or polynomial commitments in short. Briefly,
polynomial commitments consist of a tuple of algorithms (Setup,Com,Open,Eval). This tuple allows a sender
to (non-interactively) produce a commitment C = Com(f) for polynomial f , open a commitment C to a
polynomial f using Open, and additionally supports “proofs of evaluation” using Eval. The Eval algorithm
is an interactive protocol between the sender and receiver which does the following: on input commitment
C, evaluation point x from the receiver, and value y from the sender, Eval certifies that the sender knows
a polynomial f such that f = Open(C) and y = f(x). Intuitively, Eval allows the sender to open the
commitment C at specific evaluation points without revealing the entire polynomial. Crucially, this proof of
evaluation requires far less computation than just opening the entire polynomial f .

Given the outline of a polynomial commitment scheme, we turn to polynomial IOPs. We focus on PIOPs
where the prover sends a single oracle, and the rest of the communication between the prover and verifier is
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succinct (i.e., poly-logarithmic in the size of the witness). These PIOPs (roughly) operate as follows:

1. The first message sent by the prover is an oracle proof string consisting of all evaluations of a (low-degree)
polynomial, say f ∈ F[X1, . . . , Xn] for finite field F. The verifier has query access to these evaluations.

2. The prover and verifier engage in a sum-check protocol [LFKN92] over some auxiliary (low-degree)
polynomial,say p ∈ F[X1, . . . , Xn], that depends on the f .

3. At the end of the sum-check, the verifier has some claim of the form “p(r) = y” for r ∈ Fn sampled
uniformly at random. The verifier then makes a constant number of queries to the oracle f to verify
this claim, and accepts or rejects.

To obtain arguments, we compile the above PIOP with a polynomial commitment. This is done by
(1) having the prover commit to the polynomial f in Item 1 using Com; and (2) for every query to f made
by the verifier in Item 3, the prover and verifier instead run the Eval protocol to obtain these queries. The
remainder of the PIOP remains the same; i.e., the prover and verifier still run a sum-check protocol. Note
this extends to PIOPs that send multiple oracles: simply commit to each oracle and run Eval whenever a
query is made.

This paradigm yields interactive arguments for all of NP [BHR+20,BHR+21,BCHO22]. Therefore, if we
extend the above paradigm to the HMMP model with the efficiency gains proportional to 1/M for M provers,
then we obtain Theorem 1.2. There are three tasks to implement in the HMMP model: (1) generating the
polynomial f in Item 1; (2) computing the sum-check in Item 2; and (3) computing the commitment for
Item 1 and the proof of evaluation for Item 3; i.e., computing the polynomial commitment. We concretely
consider the following problems in the HMMP model to address these tasks. First, we give a HMMP model
protocol for circuit satisfiability. Second, we give a HMMP model protocol for the sum-check protocol. Third,
we instantiate the well-known Bulletproofs polynomial commitment scheme in the HMMP model. In what
follows, we give an overview of these protocols along with formal propositions outlining their efficiency
guarantees. All together, this yields Theorem 1.2.

We first fix some notation. We focus on constructing an argument for the NP complete language of
(arithmetic) circuit satisfiability. Let F be a finite field and let C : {0, 1}∗ → F be an arithmetic circuit of size
N ; i.e., C has N wires (including input and output wires), and gates in C perform addition and multiplication
over F. Let M ⩽ N be the number of provers, let t < M/2 be the number of corrupt parties, and let τ ⩽ t
be the audit window parameter.

2.2.2 Circuit SAT.

Generally, the polynomial f sent in Item 1 of a PIOP is the encoding of a wire transcript (i.e., values of
wires) of an arithmetic circuit C of size N on input x, which corresponds to proving circuit satisfiability. For
arithmetic circuits, this is proving that C(x) = y for some y ∈ F. Our first step is to give an efficient HMMP
model protocol for producing this transcript.

For simplicity, assume that N/M is an integer. Partition the circuit C into M partitions C1, . . . , CM each
of size N/M such that for any j ∈ {1, . . . ,M}, partition Cj only depends on wires from partitions Ci for
i ⩽ j. Then the M provers (P1, . . . , PM ) produce a wire transcript of C as follows. Let x be the input to
the circuit C. For j = 1, 2, . . . ,M , audit window Pπ(j), Pπ(j+1), . . . , Pπ(j+τ−1) compute the wire transcript of
partition Cj , using input x and previously obtained transcripts for circuits Ci for all i < j. The audit window
then broadcasts their computed transcript, invoking a global audit and re-balance as necessary.

At the end of the protocol, each party combines all partial transcripts in order to obtain the final wire
transcript for C. Since each Cj consists of N/M gates, each audit window performs O(N/M) computations
to generate the wire transcript for Cj , yielding O(τ · (N/M)) arithmetic gate evaluations for each prover.4

For simplicity, we assumed that N/M was an integer. However, this is not necessary: we can instead let
k = ⌊N/M⌋ and partition C into at most 2M partitions C1, . . . , C2M each of size at most k with the same

4We do not count the work required to write down the entire transcript, as this is minor in comparison to generating the
actual transcript.
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dependency properties as before. This increases individual prover complexity by a factor of at most 2, yielding
the same asymptotic results. The following proposition formally captures our HMMP model protocol for
circuit satisfiability.

Proposition 2.3. There exists an interactive proof in the HMMP model for arithmetic circuit satisfiability
with the following properties: for circuits of size N over finite field F and parameters τ,M such that M ⩽ N ,

• each prover computes O(τ · (N/M)) arithmetic gate evaluations; and

• each prover broadcasts O(τ · (N/M)) field elements.

2.2.3 Sum-Check Protocol.

Let f ∈ F[X1, . . . , Xn] be a polynomial of constant individual degree (i.e., degi(f) = Θ(1) for all i). The
sum-check protocol [LFKN92] is an interactive proof certifying that

∑︁
x∈{0,1}n f(x) = y for some y ∈ F. The

protocol proceeds for n rounds, where in the first round the prover sends y and for every round j = 1, . . . , n,
the prover computes a polynomial gj(Xj) :=

∑︁
x∈{0,1}n−j g(r,Xj , x), where r = (r1, . . . , rj−1) are random

field elements sent by the verifier in each prior round.
During every round j ∈ {1, . . . , n} of the protocol, the prover evaluates g at 2n−j points to compute the

constant-degree polynomial gj(Xj). Because computing gj is linear, we can sub-divide this computation

into M different sums. For simplicity, assume that 2n−j/M is an integer. Then we can partition {0, 1}n−j

into subsets S1, . . . , SM ⊂ {0, 1}n−j
each of size 2n−j/M . For every i ∈ {1, . . . ,M}, the audit window

Pπ(i), . . . , Pπ(i+τ−1) computes and broadcasts the polynomial gj,i(Xj) :=
∑︁

x∈Si
g(r,Xj , x). Note that g has

constant individual degree, so each audit window broadcasts O(1) field elements. After broadcasting all gj,i,
each prover reconstructs the polynomial gj :=

∑︁
i gj,i, sends it to the verifier, and proceeds to the next round.

Each audit window performs 2n−j/M evaluations of g and O(2n−j/M) field additions to compute gj,i.
Additionally, each prover performs O(M) field additions to reconstruct gj since gj has constant degree. Thus
each prover performs O(τ · (2n−j/M)) evaluations of g and O(τ · (2n−j/M) +M) field additions in round
j. As with the circuit SAT algorithm, if 2n−j/M ⩾ 1 and is not an integer, we can set k =

⌊︁
2n−j/M

⌋︁
and

partition {0, 1}n−j
into S1, . . . , S2M sets of size at most k. This increases the prover complexity by a factor

of at most 2, yielding the same asymptotic complexity. Thus in the worst case, the total prover computation
over all rounds j = 1, . . . , n is O(τ · (2n/M)) evaluations of g and O(τ · (2n/M) + n ·M) field additions, and
each prover broadcasts O(τ · n) field elements.

We conveniently assumed that 2n−j/M ⩾ 1, but it is possible that in some round j we have 2n−j < M .
To handle this case, consider j∗ as the unique index such that 2n−j∗ < M ⩽ 2n−j∗+1. Then we let the
first 2n−j∗ audit windows evaluate g at a single point to construct gj∗ ; i.e., they compute gj∗,i = g(r,Xj∗ , i)
where i ∈ {0, . . . , 2n−j∗ − 1} is interpreted in binary in the natural way. Then the next 2n−j∗−1 audit
windows evaluate g at a single point and construct gj∗+1 as above. This continues until a single audit window
constructs the polynomial gn.

By dividing up the computation this way, we ensure that every prover computes O(τ) evaluations of g and
O(M) field additions and broadcasts O(τ) field elements over all rounds j∗, . . . , n. To see this, notice that
2n−j∗ < M ⩽ 2n−j∗+1 < 2M ; moreover

∑︁n
j=j∗ 2

n−j < 2M . Thus, our above division of computation only
requires each audit window to evaluate g at at most 2 points, giving the stated complexity O(τ). Additionally,
each round j = j∗, . . . , n requires 2n−j additions to reconstruct the polynomial gj , giving O(M) additions
overall. We capture our sum-check protocol in the following corollary.

Corollary 2.4. For any n-variate polynomial g over finite field F of constant individual degree, there exists
a HMMP model protocol for computing the sum-check protocol of f on {0, 1}n such that for parameters τ and
M ⩽ 2n,

• each prover computes O(τ · (2n/M)) evaluations of g and O(τ · (2n/M) + n ·M) field additions; and

• each prover broadcasts O(τ · n) field elements.

We actually prove a more general result about the sum-check protocol for polynomials of individual degree
d being summed over a set Hn, where H ⊂ F. See Proposition 5.1 and Section 5.2 for details.
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2.2.4 Polynomial Commitment Scheme.

Recall that polynomial commitments allow a sender to commit to a polynomial and additionally allow
the sender to open the polynomial at specific evaluations specified by the receiver without opening the
entire polynomial. Such schemes are the continued subject of recent research and have many attractive
features such as succinct proofs, small commitments, and their use in the PIOP + polynomial commitment
paradigm to obtain succinct arguments. As such, there are many different schemes from a variety of
cryptographic assumptions, including discrete-log [BCC+16,BBB+18,WTS+18,BHR+20], groups of unknown
order [BFS20,BHR+21], and bilinear pairings [KZG10,Lee21,OB22,BCHO22].

In this work, we do not tackle implementing every polynomial commitment scheme in the HMMP model.
We instead focus on the well-known and studied Bulletproofs scheme due to Bootle et al. [BCC+16] and
Bünz et al. [BBB+18]. We give the complete details of how we implement Bulletproofs in the HMMP model
in Section 5.3. Here, we give an overview of the core components of Bulletproofs and how to implement them
efficiently in the HMMP model.

The Bulletproofs polynomial commitment scheme utilizes a vector-commitment and an inner product.
Let Y ∈ FN be a vector given to a prover and let X ∈ FN be a public vector, and for simplicity assume
N = 2n. Then the prover commits to Y using a Pedersen commitment [Ped91] over a prime-order group G.
For generators g1, . . . , gN , the commitment to Y is C :=

∏︁
i g

Yi
i . Computation of C is easily divisible among

M provers: let N/M be an integer and partition the set {1, . . . , N} into subsets S1, . . . , SM each of size N/M .

Then audit window Pπ(i), . . . , Pπ(i+τ−1) computes and broadcasts the partial commitment Ci =
∏︁

j∈Si
g
Yj

j .
One all Ci are obtained, each prover locally computes the commitment C =

∏︁
i Ci. Therefore each prover

performs O(τ · (N/M)) group exponents and O(τ · (N/M) + M) group multiplications, and each prover
broadcasts O(τ) group elements. As before, if N/M is not an integer, we can partition {1, . . . , N} into subsets
S1, . . . , S2M each of size at most ⌊N/M⌋, and each prover does at most two times the computation as the
case where N/M is an integer.

The inner-product argument uses a halving protocol to reduce the inner-product claim γ = ⟨X,Y ⟩ into
another inner-product claim γ′ = ⟨X ′, Y ′⟩, where X ′, Y ′ ∈ FN/2. This is done by splitting X and Y into
(XL, XR) and (YL, YR), where XL, YL are the first N/2 symbols of X,Y , respectively, and XR, YR are the
last N/2 symbols of X,Y , respectively. The prover computes “cross inner-products” γ0 = ⟨XR, YL⟩ and
γ1 = ⟨XL, YR⟩. Then, given a random verifier challenge α, new vectors X ′, Y ′ are computed as αXL+α−1XR

and α−1YL+αYR; moreover, γ′ is defined using α, γ0, γ1, and γ such that γ′ = ⟨X ′, Y ′⟩. This halving protocol
continues until the vector Y ′ is of length 1.

We divide the above computation among M provers, then generalize it to any round j = 1, . . . , n of the
halving protocol. Suppose that N/(2M) is an integer. Partition XL, XR and YL, YR into M vectors XL,i, XR,i

and YL,i, YR,i each of length N/(2M) for all i ∈ {1, . . . ,M}. Then each audit window Pπ(i), . . . , Pπ(i+τ−1)

computes and broadcasts partial sums γ0,i = ⟨XR,i, YL,i⟩ and γ1,i = ⟨XL,i, YR,i⟩. Once all γ0,i, γ1,i are
obtained, each prover locally computes γ0 =

∑︁
i γ0,i and γ1 =

∑︁
i γ1,i. Upon receiving α from the verifier,

each audit window now computes partial parts of X ′, Y ′. That is, audit window Pπ(i), . . . , Pπ(i+τ−1) computes
and broadcasts vectors X ′

i = αXL,i +α−1XR,i and Y ′
i = α−1YL,i +αYR,i. Once all X ′

i, Y
′
i are obtained, each

prover locally computes X ′ = (X ′
1, . . . , X

′
M ) and Y ′ = (Y ′

1 , . . . , Y
′
M ).

For general round j = 1, . . . , n, if 2n−j−1/M ⩾ 1 is an integer, then each audit window performs
O(2n−j/M) field multiplications and additions to compute values γ0,i, γ1,i and vectors X ′

i, Y
′
i . Each audit

window also broadcasts O(2n−j/M) field elements, and each prover performs O(M) additions to reconstruct
γ0, γ1 and O(τ ·(2n−j/M)) additions to reconstruct vectors X ′, Y ′. Thus each prover performs O(τ ·(2n−j/M))
field multiplications and O(τ · (2n−j/M) +M) additions, and broadcasts O(τ · (2n−j/M)) field elements.
This gives that over all rounds j = 1 . . . , n, each prover performs O(τ · (N/M)) field multiplications and
O(τ · (N/M) + n ·M) additions, and broadcasts O(τ · n · (N/M)) field elements. Again we note that if
2n−j−1/M ⩾ 1 is not an integer, we obtain the same asymptotic complexities. By the same ideas as the
division of the sum-check, if j∗ is the unique round where 2n−j∗−1 < M ⩽ 2n−j∗ , we can divide up the
remaining computation such that each prover only performs O(τ) field multiplications, O(M) additions, and
broadcasts O(τ) field elements over all rounds j = j∗, . . . , n. Thus our total prover complexity is O(τ · (N/M))
field multiplications and O(τ · (N/M) + n ·M) field additions, and each prover broadcasts O(τ · n · (N/M))
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field elements.
In the context of Bulletproofs, each prover also computes “folded” Pedersen commitments. In fact, we

divide up computation of these commitments in the same way as we divide up the inner products above.
This results in similar complexities for group exponents and multiplications.

Proposition 2.5. Assuming the hardness of discrete-log in prime-order groups, there exists a HMMP model
inner-product argument with the following properties: for vectors of length N = 2n over a finite field and
parameters τ,M such that M ⩽ N ,

• each prover computes O(τ · (N/M)) field multiplications and group exponents, O(τ · (N/M + n ·M))
field additions and group multiplications; and

• each prover broadcasts O(τ · n · (N/M)) field and group elements.

Efficiency of the Bulletproofs Verifier. The original verifier from the Bulletproofs inner-product
argument runs in time ˜︁O(N) because it also must compute foldings of the public values. A nice side-effect
of implementing the Bulletproofs prover in the HMMP model is that we can take advantage of our honest
majority assumption to get an exponential speedup in our verifier. In particular, we can modify the verifier to
only sample the required elements α needed to shuffle the inner products, and at the end of the protocol all
provers can send the “folded” values needed for the verifier to perform the final verification. This results in a
O(log(N)) verifier for our HMMP model Bulletproofs inner-product argument. See Section 5.3 for details.

Corollary 2.6. The verifier of our HMMP model Bulletproofs inner-product argument samples O(log(N))
field elements and performs Θ(1) group exponents and field multiplications.

2.2.5 Efficient HMMP Model Arguments for NP.

Given the above building blocks, we now combine them all to obtain Theorem 1.2. Let F be a finite field and
G be a prime-order group for some λ-bit prime. Let Phmp denote our HMMP model prover algorithm

Using our Circuit SAT algorithm (Proposition 2.3), Phmp obtains a wire transcript. We view this wire
transcript as a function f : {0, 1}n → F, where N = 2n is the size of the arithmetic circuit. While f may
not be a polynomial, it uniquely defines a multi-linear extension f̃ : Fn → F (see Fact 5.4). A multi-linear
extension is a polynomial with individual degree at most 1 such that f̃(x) = f(x) for all x ∈ {0, 1}n.

Using our Bulletproofs algorithm, Phmp commits to f̃ using a Pedersen commitment to commit to the
vector Y ∈ FN defined as Yi = f(i−1), where i−1 is viewed as an n-bit string in the natural way. The prover
and verifier then engage in a sum-check over some auxiliary polynomial g of constant individual degree that
depends on the polynomial f̃ and some other efficiently computable constant individual degree polynomials;
in particular, these other polynomials are computable in O(log(N)) time [CMT12,Tha13,XZZ+19].

After engaging in the sum-check protocol, the verifier invokes the polynomial commitment scheme to
obtain some constant number of evaluations of the polynomial f̃ . Note that the evaluation of f̃ is exactly
given by an inner product ⟨Y,Z⟩, where Z ∈ FN is a vector that depends on an evaluation point x specified
by the verifier, and some interpolation polynomials (Fact 5.4); moreover, this vector is computable using˜︁O(N) field multiplications and can be divided up between Phmp to obtain ˜︁O(τ · (N/M)) field multiplications

for each prover (Fact 5.4). Thus for any evaluation of f̃ at point x, Phmp computes the vector Z and engages
in the Bulletproofs inner-product argument with the verifier. This happens a constant number of times.
Noting that we assume F and G operations take poly(λ) time, and that we do not count the cost of writing
down field/group elements, Propositions 2.3 and 2.5 and Corollaries 2.4 and 2.6 all together yield the desired
efficiencies given in Theorem 1.2.

3 Preliminaries

We let λ ∈ Z+ denote the security parameter. For natural number n ∈ N, we let N = 2n. A function
µ : N→ R⩾0 is called negligible if 1/µ(n) = o(p(n)) for any positive polynomial p. For integers a ⩽ b, we let
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[a, b] denote the set {a, a+ 1, . . . , b}, and for positive integer k, we let [k] denote the set [1, k]. For integer M
and integers a ⩽ b, we let [a, b]M denote the set {a (modM), (a+ 1) (modM), . . . , b (modM)} ⊂ ZM . For a

finite, non-empty set S, we let x
$← S denote sampling x uniformly at random from S. We let F denote a

finite field and G denote a finite group.

3.1 Interactive Arguments

We give formal definitions of standard interactive arguments. In Section 4, we complement these definitions
with our HMMP model definitions.

Definition 3.1 (Witness Relation Ensemble). A witness relation ensemble (or relation ensemble) is a
binary relation RL that is polynomially bounded, polynomial-time recognizable, and defines the language
L = {x : ∃w, (x,w) ∈ RL}.

We now define interactive arguments for relation ensembles.

Definition 3.2 (Interactive Arguments). Let R be a relation ensemble. Let (Setup, P, V ) denote three
algorithms such that P and V are a pair of PPT interactive algorithms and Setup is a non-interactive algorithm
that outputs public parameters pp on input 1λ and aux, for any auxiliary input aux. Let ⟨P (w), V (z)⟩(pp, x)
denote the output of V after interacting with P on common inputs pp and x, where P additionally receives w
such that (x,w) ∈ R and V receives auxiliary input z ∈ {0, 1}∗. We say that (Setup, P, V ) is an interactive
argument for relation R if the following hold:

1. δ-Correctness. For all (x,w) ∈ R and every z ∈ {0, 1}∗ we have

Pr[⟨P (w), V (z)⟩(pp, x) = 1] ⩾ 1− δ(λ),

where the probability is taken over pp← Setup(1λ, aux) and the random coins of V .

2. ε-Computational Soundness. For every x and w such that (x,w) ̸∈ R, every non-uniform interactive
polynomial-sized adversary P ∗, and every z ∈ {0, 1}∗, we have

Pr[⟨P ∗(w), V (z)⟩(pp, x) = 1] < ε(λ),

where the probability is taken over pp← Setup(1λ, aux) and the random coins of V .

If the above soundness definition holds with respect to unbounded cheating provers, then we say that (Setup, P, V )
is an interactive proof for R.

Two desirable properties of interactive arguments include public verifiability and public coin, which we
define here.

Definition 3.3 (Publicly Verifiable). An interactive argument (Setup, P, V ) is publicly verifiable if any party
viewing the transcript T = ⟨P (w), V (z)⟩(x) can certify the validity of the interaction.

Definition 3.4 (Public Coin). An interactive argument (Setup, P, V ) is called public coin if all messages sent
from V to P are chosen uniformly and independently at random, and independently of the prover’s messages.

Zero-knowledge is often desirable as well. We recall the standard definition of zero-knowledge with
auxiliary input.

Definition 3.5 (Zero-knowledge Arguments). A public-coin interactive argument (Setup, P, V ) for relation
ensemble R is said to have computational zero-knowledge with respect to an auxiliary input if for every
PPT interactive algorithm V ∗ there exists a PPT simulator S that runs in polynomial time with respect
to its first input such that for every (x,w) ∈ R and any z ∈ {0, 1}∗: View(⟨P (w), V ∗(z)⟩(x)) ≈c S(x, z).
Here View(⟨P (w), V ∗(z)⟩(x)) denotes the distribution of the transcript of the interaction between P and V ∗

and ≈c denotes computational indistinguishability. If the statistical distance between the two distributions is
negligible then the interactive argument is said to have statistical zero-knowledge. If the simulator is allowed
to abort with probability at most 1/2, but the distribution of its output conditioned on no abort is identical to
View(⟨P (w), V ∗(z)⟩(x)), the the interactive argument is said to have perfect zero-knowledge.
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Arguments often need some form of knowledge soundness for security. We recall one such notion:
witness-extended emulation.

Definition 3.6 (Witness-extended Emulation [Lin03]). Given a public-coin interactive argument (Setup, P, V )
and arbitrary prover algorithm P ∗, let Rec(P ∗, pp, x, st) denote the message transcript between P ∗ and V on
shared input x, initial prover state st, and pp generated by Setup. Furthermore, let ERec(P∗,pp,x,st) denote a
machine E with a transcript oracle for this interaction that can be rewound to any round and run again on
fresh verifier randomness. The tuple (Setup, P, V ) has witness-extended emulation if for every deterministic
polynomial-time P ∗ there exists an expected polynomial-time emulator E such that for all non-uniform
polynomial-time adversaries A the following holds:

Pr

[︃
A(tr) = 1:

pp← Setup(1λ, aux), (x, st)← A(pp),
tr ← Rec(P ∗, pp, x, st)

]︃
≈ (1)

Pr

[︃
A(tr) = 1 ∧
tr accepting =⇒ (x,w) ∈ R :

pp← Setup(1λ, aux), (x, st)← A(pp),
(tr, w)← ERec(P∗,pp,x,st)(pp, x)

]︃
.

4 The Honest Majority Multi-Prover Model

In this section, we give our formal definition of the Honest Majority Multi-Prover Model for interactive
arguments and prove Theorem 1.1. We begin with the definition of the HMMP model.

Definition 4.1. The Honest Majority Multi-Prover (HMMP) Model is an interactive protocol framework
where M provers P1, . . . , PM collectively convince a verifier V of the validity of a statement. During any
round of communication, the provers P1, . . . , PM are allowed to communicate and collectively send a message
to V . Communication is done via an authenticated sender broadcast channel.

Given Definition 4.1, we define interactive arguments in this model.

Definition 4.2 (HMMP Model Interactive Arguments). Let R be a relation ensemble and let M ∈ Z+.
Let P = (P1, . . . , PM ), let (P , V ) denote a pair of PPT interactive HMMP model algorithms, and let Setup
denote a non-interactive setup algorithm that outputs public parameters pp given security parameter 1λ. Let
⟨P (pp, x, w), V (pp, x)⟩ denote the output of V ’s interaction with P on common inputs pp and statement x,
where P additionally has witness w. The triple (Setup,P , V ) is an M -prover interactive argument for R in
the HMMP model if

1. δ-Correctness. For every (x,w) ∈ R, for every non-uniform polynomial-sized adversary A that
statically corrupts t < M/2 provers before the selection of public parameters, and for all z ∈ {0, 1}∗, we
have Pr[⟨ ˜︁P (w), V (z)⟩(pp, x) = 1] ⩾ 1− δ(λ), where ˜︁P denotes all honest and corrupt provers, and the
probability is taken over pp ← Setup(1λ, aux) and the random coins of V . If δ = 0, then we say the
argument has perfect correctness.

2. ε-Computational Soundness. For every x and w such that (x,w) ̸∈ R, all non-uniform polynomial-

sized adversaries ˜︁P = ( ˜︁P1, . . . , ˜︁PM ), and every z ∈ {0, 1}∗, we have Pr[⟨ ˜︁P (w), V (z)⟩(pp, x) = 1] ⩽ ε(λ),
where the probability is taken over pp← Setup(1λ, aux) and the random coins of V .

If P1, . . . , PM are computationally unbounded algorithms, then we replace all adversaries above with another
computationally unbounded algorithm and obtain an interactive proof for R in the HMMP model.

Our HMMP model definitions public verifiability, public coin, zero-knowledge, and non-interactivity are
identical to the standard definitions.

Definition 4.3 (HMMP Model Public Verifiability). A HMMP model interactive argument (Setup,P , V )
is publicly verifiable if any party viewing the transcript T = ⟨P (w), V (z)⟩(x) can certify the validity of the
interaction. Importantly, the interaction among provers P is not part of the transcript T .
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Definition 4.4 (HMMP Model Public Coin). A HMMP model interactive argument (Setup,P , V ) is called
public coin if all messages sent from V to P are chosen uniformly and independently at random, and
independently of the prover’s messages.

Definition 4.5 (HMMPModel Zero-Knowledge). A public-coin interactive HMMP model argument (Setup,P , V )
for a relation ensemble R is said to have γ-computational zero-knowledge with respect to an auxiliary input if
for every PPT interactive algorithm V ∗ there exists a PPT simultor S running in polynomial time with respect
to its first input such that for every (x,w) ∈ R and any z ∈ {0, 1}∗, we have View(⟨P (w), V ∗(z)⟩(x)) ≈γ

S(x, z), where all provers in P are honest. Here, View denotes the distribution of the transcript of the
interaction between P and V ∗ and ≈γ denotes γ-computational indistinguishability. If the statistical distance
between the above two distributions is negligible, then the argument has statistical zero-knowledge. If the
simulator is allowed to abort with probability at most 1/2, but the distribution of its output conditioned on no
abort is identical to View(⟨P (w), V ∗(z)⟩(x)), then the argument has perfect zero-knowledge.

We formally define HMMP model witness-extended emulation as well.

Definition 4.6 (HMMP Model Witness-extended Emulation). Given a public-coin HMMP model interactive

argument (Setup,P , V ) and adversary Ahmp against the argument, let Rec( ˜︁P , pp, x, st) denote the message

transcript between ˜︁P and V on shared input x, initial prover state st, and pp generated by Setup, where˜︁P = ( ˜︁P1, . . . , ˜︁PM ) are M corrupt HMMP model prover algorithms. Furthermore, let ERec( ˜︁P ,pp,x,st) denote a
machine E with a transcript oracle for this interaction that can be rewound to any round and run again on
fresh verifier randomness. The tuple (Setup,P , V ) has witness-extended emulation if for every deterministic
polynomial-time Ahmp there exists an expected polynomial-time emulator E such that for all non-uniform
polynomial-time adversaries A the following holds:

Pr

[︃
A(tr) = 1:

pp← Setup(1λ, aux), (x, st)← A(pp),

tr ← Rec( ˜︁P , pp, x, st)

]︃
≈ (2)

Pr

[︃
A(tr) = 1 ∧
tr accepting =⇒ (x,w) ∈ R :

pp← Setup(1λ, aux), (x, st)← A(pp),

(tr, w)← ERec( ˜︁P ,pp,x,st)(pp, x)

]︃
.

4.1 The HMMP Model Transformation

Given any interactive argument such that the prover has a suitably partitionable next-message function, we
can transform this interactive argument to one that is secure in the HMMP model. This transformation
preserves zero-knowledge and non-interactivity. Our construction makes explicit use of the partitioned function
and employs a “permute and audit” strategy where provers are shuffled and must perform computations in
audit windows to cross-check other provers. The properties of this transformation are given in Theorem 1.1.

4.1.1 Construction.

Let (Setuparg, Parg, Varg) be an interactive argument where Parg is suitably partitionable. Then we construct
a HMMP model interactive argument (Setuphmp,Phmp, Vhmp) with the desired properties.

The Setup Algorithm. The algorithm Setuphmp is a modification of Setuparg that additionally outputs

a random permutation π on the set [M ]. Suppose Setuparg takes as input 1λ for security parameter λ and

additional input aux. Then we define Setuphmp as follows: on input 1λ, aux, 1M , 1τ for security parameter λ,

auxiliary input aux, number of provers M , and audit parameter τ , first sample pparg ← Setuparg(1
λ, aux).

Next sample uniformly random permutation π : [M ]→ [M ]. Finally output pp := (pparg, π,M, τ).
As stated previously, we include the random permutation π to shuffle the (potentially corrupt) provers to

ensure soundness. We remark that π can also be the first message sent by the verifier Vhmp in the definition
of the interaction, but we choose to include this in the setup phase.
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Protocol 1: Phmp Implementation

Parties :M provers Phmp = (P1, . . . , PM ).
Input : pp← Setuphmp(1

λ, aux, 1M , 1τ ), (x,w) ∈ RL, partial transcript Π with all messages sent
between Phmp and Vhmp so far.

Internal State: Each Pi has tuple P ∈ [M ]M of the current provers, initially set as
P = (1, 2, . . . ,M).

1 foreach i ∈ [M ] do
2 foreach j ∈ [i, i+ τ − 1] do

3 Pπ(j) computes and broadcasts y
(i)
j = fi(S(i, pp ◦ x ◦ w ◦Π)).

4 if y
(i)
j not all equal for j ∈ [i, i+ τ − 1] then

5 All provers set y(i) = Audit(pp, x, w,Π, i, {y(i)j }j).

6 else All provers set y(i) = y
(i)
i .

7 For all i ∈ [M ], Pi sets β
(i) = f∗(y(1), . . . , y(M)) and broadcasts β(i) to Vhmp.

The Multi-Prover Algorithm. We present Phmp in Protocol 1 and describe it in detail. Let f be the next
message function of Parg, and let f1, . . . , fM , f∗ be functions and S be a partition function such that for all
z ∈ {0, 1}∗ that are valid prover inputs f(z) = f∗ (f1(S(1, z)), . . . , fM (S(M, z))). To implement Parg using
M provers, we utilize the functions fi, f

∗, and S. Given a permutation π and parameter τ , function fi is
computed by all provers Pπ(j) for j ∈ [i, i+τ −1]M , where [i, i+τ −1]M denotes the set {i, i+1, . . . , i+τ −1}
modulo M . Then each Pπ(j) broadcasts their computation of the function fi, and if any of the τ messages
differ then the sub-routine Audit is invoked.

The sub-routine Audit (presented in Protocol 2) is a global audit of the current message being computed.
That is, if function fi is being computed and Audit is called, all M provers engage in a global audit of this
computation. In this sub-routine, all provers compute the value fi and compare it to the values broadcast by
the provers Pπ(j) for j ∈ [i, i+ τ − 1]M . Then for every j such that the value presented by Pπ(j) differs from
the globally computed value, the index j is added to a set A, and then the sub-routine Rebalance (presented
in Protocol 3) is called.

The sub-routine Rebalance removes prover Pπ(j) from the protocol and replaces it with the most recent
prover Pπ(k) for k < j that was not removed from the protocol, for every j ∈ A. This ensure that over the
course of audits if malicious parties submit incorrect values then they are removed from the protocol for
future computations.

Our Audit and Rebalance sub-routines also allow us to handle aborting provers. Since all provers have the
same inputs, if any prover Pπ(i) aborts during the execution of the protocol, the remaining provers simply
treat the value that was to be computed by this prover as a null value (e.g., ⊥) and proceed as normal. Then
when this value is given, the provers engage in Audit and Rebalance to replace the prover that aborted.

The Verifier Algorithm. We present the algorithm Vhmp in Protocol 4. The algorithm is identical to
Varg, except that additionally Vhmp takes the majority of the prover messages it receives, and then uses this
majority value as input to Varg. It then forwards the message from Varg to the broadcast channel, sending
this message to all M provers, and accepts or rejects as Varg. Additionally, in the case that Audit is called by
Phmp, Vhmp receives updated prover tuples Pi for every i ∈ [M ], computes the majority of these tuples and
updates its state P with this majority.

4.1.2 Correctness and Soundness.

We show that the defined interactive argument (Setuphmp,Phmp, Vhmp) is an argument in the HMMP model,
as per Definition 4.1. To show correctness and soundness, we first show some key properties about the
algorithm Phmp.
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Protocol 2: Audit sub-routine
Input :Public parameters pp, statement x,

audit parameter τ , partial transcript
Π, current index i, claimed values

{y(i)j }j∈[i,i+τ−1]M .

Output :Value y(i).
1 foreach k ∈ [M ] do
2 Pk computes and broadcasts

ỹ
(i)
k = fi(S(i, pp ◦ x ◦ w ◦Π)).

3 foreach k ∈ [M ] do

4 Pk computes y(i) = majority(ỹ
(i)
1 , . . . , ỹ

(i)
M ).

5 Pk computes and broadcasts

Ak = {j ∈ [i, i+ τ − 1]M : y
(i)
j ̸= y(i)}.

6 foreach k ∈ [M ] do
7 Pk computes A = majority(A1, . . . , AM ).

8 Run Rebalance(A).

9 return y(i).

Protocol 3: Rebalance sub-routine
Input : Set A ⊂ [M ].

1 foreach i ∈ A do
2 foreach j = i, i− 1, . . . , 1,M, . . . , i+ 1 do
3 Find first j such that

k = (i− j)modM ̸∈ A.

4 Remove party Pπ(i) from the protocol and
set Pπ(i) := Pπ(k).

5 foreach j ∈ [M ] do
6 Pj updates internal state Pj by

replacing π(i) with π(k).
7 Pj broadcasts Pj to Vhmp.

Fix the number of provers M ∈ N, the number of corrupted parties t ∈ N such that t < M/2, and the
audit window size τ ∈ N such that τ ⩽ t. We first show that the algorithm Audit never evicts an honest
prover.

Lemma 4.7. Let pp, x, τ,Π, i, {y(i)j : j ∈ [i, i+ τ − 1]M} be an input to Audit, and let H ⊆ [M ] be the indices

of the honest provers. Let A ⊂ [M ] be the set computed in Protocol 2 via Audit(pp, x, τ,Π, i, {y(i)j }j). Then
H ∩ π(A) = ∅, where π(A) := {π(i) : i ∈ A}.

Proof. The proof follows directly from the honest majority assumption. That is, in Line 7 of Protocol 2, since
there is an honest majority of provers, the set A contains all indicies j such that Pπ(j) did not compute the
correct value of fi. Since any honest prover computes the correct value of fi, this implies that the computed
A only contains indicies j such that Pπ(j) submitted an incorrect value, which implies that H ∩ π(A).

The next property we observe is that if every window of τ provers contains at least one honest party,
then this property is invariant under Audit. That is, running Audit never introduces a window of τ dishonest
provers.

Lemma 4.8. Let H ⊆ [M ] be the indices of the honest provers and fix pp← Setuphmp(1
λ, aux, 1M , 1τ ). If for

every i ∈ [M ] it holds that H∩π(J ) ̸= ∅ for J = [i, i+τ−1]M , then after executing Audit(pp, x, τ,Π, i, {y(i)j }j)
for any i ∈ [M ], it holds that H ∩ π(J ) ̸= ∅.

Proof. Note that Audit is only called during round i ∈ [M ] of the computation if not all messages computed
during this round by the window of τ provers is equal; thus without loss of generality, Audit is only called
when there exists at least one dishonest prover. By assumption, there exists at least one honest prover in
every window of τ provers. This implies that every honest prover is at most distance τ from another honest
prover; that is, for every i, j ∈ H, it holds that |π(i)− π(j)| ⩽ τ . By Lemma 4.7, honest provers are never
evicted from their windows during an audit, which implies that after any Audit it holds that |π(i)− π(j)| ⩽ τ
for every i, j ∈ H, which in turn applies that there exists at least one honest prover in every window of τ
provers.

Now given Lemmas 4.7 and 4.8, we recall and prove Proposition 2.1.
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Protocol 4: Vhmp Implementation

Input : pp← Setuphmp(1
λ, aux, 1M , 1τ ), x ∈ {0, 1}∗, partial transcript Π with all messages sent

between Phmp and Vhmp so far.
Output :Accept or Reject.
Internal State: Tuple P ∈ [M ]M of the current provers, initially set as P = (1, 2, . . . ,M).

1 if Audit and Rebalance have been invoked then
2 Update P = majority(P1, . . . ,PM ), where Pi are broadcast from Rebalance.

3 Set β = majority{{β(i)}i∈P}.
4 Compute α← Varg(pp, x, (Π, β)).
5 if α is accept or reject then return α.
6 Broadcast α to Phmp.

Proposition 2.1. Let Πarg be an argument with δarg correctness error such that Theorem 1.1 can be applied
to Πarg. Let H ⊆ [M ] be the indices of the honest provers and let π be a permutation over [M ]. For every
i ∈ [M ], if H ∩ π(J ) ̸= ∅ for J = {i, i + 1, . . . , i + τ − 1}/(MZ) then the argument Πhmp has correctness
error δarg.

Proof. By Lemmas 4.7 and 4.8, we have that if every window of τ provers contains at least one honest party,
then the output of Phmp with t < M/2 corruptions is identical to the output of Phmp with t = 0 corruptions.
This shows the result.

Finally, the following proposition follows directly from applying Lemma 2.2. This proposition states that
the probability of sampling a bad permutation π (i.e., a permutation where no honest parties exist in some
window of τ provers) is small (depending of the choice of τ).

Proposition 4.9. Let H ⊆ [M ] be the indices of the honest provers. Then Pr[∃i ∈ [M ] : H ∩ π(Ji) = ∅] ⩽
M · (t/M)τ , where t is the number of corrupt provers and the probability is taken over uniformly random
permutation π : [M ]→ [M ].

For completeness, we recall and prove Lemma 2.2.

Lemma 2.2. Let τ, t,M ∈ N be integers such that τ ⩽ t and t < M , and let T ⊂ {1, . . . ,M} be a subset
of size t. For permutation π over [M ], let S(i,j) = {Sℓ,π : ℓ = (i + k modM) ∀k ∈ {0, . . . , j − 1}}, where
Sℓ,π = π(ℓ) for all ℓ ∈ {1, . . . ,M}. Then Pr

[︁
∃i ∈ [M ] : S(i,τ) ⊆ T

]︁
⩽ M · (t/M)

τ
, where the probability is

taken over uniformly random permutation π.

Proof. Fix i ∈ [M ]. Note that S(i,τ) ⊆ T if and only if for every j ∈ [0, τ − 1], we have Si+j mod M ∈ T . For
a fixed j we have that

Pr
π
[Si+j mod M ∈ T ] = Pr [∃k ∈ T : π(i+ jmod M) = k] ⩽ (t/M) .

Note that all events Si+j mod M ∈ T are independent for all j. Therefore we have

Pr
π

[︁
S(i,τ) ⊆ T

]︁
=

τ−1∏︂
j=0

Pr
π
[Si+j mod M ] ⩽ (t/M)

τ
.

Applying Union Bound over indices i ∈ [M ] yields the desired probability.

Correctness. By Proposition 2.1, as long as the permutation sampled by Setuphmp is not a bad permutation,
then the interaction between Phmp and Vhmp is identical to the interaction between Parg and Varg. In particular,
if Πarg has δarg-correctness, then Πhmp has δarg-correctness conditioned on the permutation being good.
By Proposition 4.9, the probability that a good permutation is sampled is at least 1 −M · (t/M)τ . Let
p := p(M, t, τ) = 1−M ·(t/M)τ . Then the probability that ⟨Phmp(w), Vhmp⟩(pp, x) = 1 is at least (1−δarg) ·p.
This gives our stated correctness error δhmp = 1− (1− δarg) · (1−M · (t/M)τ ).
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Soundnesss. As discussed in Section 2.1, the soundness of our HMMP model protocol directly reduces to
the soundness of the underlying interactive argument. This is because by our definition, we require soundness
to hold with respect to M corrupt provers ˜︁P1, . . . , ˜︁PM . Notice that any set of M corrupt provers that can
break the soundness of our HMMP model argument can directly be used to break the soundness of the
underlying argument with identical probability. The reduction is simple: first run the corrupt provers and
wait for them to broadcast their answers. Take the M values broadcast by the provers, take the majority,
and directly forward this to the verifier for the argument. By our construction of Vhmp, it is easy to see that

if ˜︁P1, . . . , ˜︁PM break soundness with Vhmp, then our constructed adversary breaks soundness with Varg.

Zero-Knowledge. Given a zero-knowledge argument (Setuparg, Parg, Varg), we modify our algorithm Phmp

to obtain zero-knowledge for the transformed HMMP model argument. For this transformation, we first
observe that the next message function of Parg can be abstracted as two functions f : {0, 1}∗ → {0, 1}∗ and
g : {0, 1}∗ → {0, 1}∗ such that for any input x ∈ {0, 1}∗: (1) f(x) computes the desired functionality; and

(2) g(f(x); r) gives the zero-knowledge property, given uniformly random string r
$←{0, 1}∗. Intuitively, we

achieve zero-knowledge for (Setuphmp,Phmp, Vhmp) by additionally requiring that

1. All provers Pi engage in a protocol to generate a shared (almost) uniformly random string r
$←{0, 1}∗

(or simply use a randomness beacon); and

2. Compute β(i) = g
(︁
f∗(y(1), . . . , y(M))

)︁
in the final step of Phmp in Protocol 1.

Thus with high probability over the choice of permutation π, so long as the honest majority of provers all
receive the same random string r, the verifier Vhmp receives the correct zero-knowledge message. The random
string r can be generated in every round either by assuming access to a randomness beacon [Rab83,SJK+17]
that broadcasts random bits to all provers, or by any MPC protocol for collective coin tossing with an
honest majority of provers [BOGW88,RBO89]. In the MPC case, since we are in the honest majority setting,
adversaries can only bias the output of the coins by a negligible amount [BOGW88,RBO89]. Further, in the
case of abort, parties run an Audit with the set A containing the index of the aborting party, then re-run the
randomness generation protocol.

Non-Interactive Arguments. To obtain non-interactivity via the Fiat-Shamir transform [FS87], we assume
all provers in Phmp have access to the same random oracle H. Let pp, x, w, τ,Π be the input to Phmp during
any round of the computation, where the public parameters are generated as pp← Setuphmp(1

λ, aux, 1M , 1τ ),
(x,w) ∈ RL, and Π is a partial transcript containing all prior messages sent by Phmp and messages generated
by H (i.e., the simulated messages of Varg). Then the provers Phmp generate the next message α of Vhmp as
follows:

1. upon the broadcast of all β(i) for i ∈ [M ], every prover Pj computes β = majority(β(1), . . . , β(M)); and

2. every Pj computes α← H(pp, x, (Π, β)) and uses this α as the verifier message.

It is clear that this transformation is identical to the case of transforming (Setuparg, Parg, Varg) into a non-
interactive argument. Note that if any malicious prover of the protocol Phmp deviates from defining α as
described above, with high probability over the choice of random oracle H these malicious provers are caught
in the proceeding rounds of the protocol.

Witness-Extended Emulation. We show that the transformation of Theorem 1.1 also preserves witness-
extended emulation. We capture this via the following proposition.

Proposition 4.10. If (Setuparg, Parg, Varg) is an interactive argument with witness-extended emulation, then
(Setuphmp,Phmp, Vhmp) obtained by applying Theorem 1.1 has witness-extended emulation.
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Proof. Suppose that (Setuparg, Parg, Varg) is an interactive argument with witness-extended emulation. Let
(Setuphmp,Phmp, Vhmp) be the HMMP model interactive argument obtained by applying Theorem 1.1. We
argue that this HMMP model argument has witness-extended emulation (as per Definition 4.6). We
show this by constructing an emulator Ehmp such that Eq. (2) holds. Suppose Ehmp has oracle access to

Rec( ˜︁Phmp, pp, x, st) where pp ← Setuphmp(1
λ, aux) and (x, st) ← A(pp). Then given pp, x as input, Ehmp

does the following

1. Parse pp as (pp′, π,M, τ), where pp′ ← Setuparg(1
λ, aux).

2. Ehmp initializes an empty transcript tr.

3. Let E be the emulator for argument (Setuparg, Parg, Varg). Ehmp runs E(pp′, x) and simulates oracle
access to Rec(P ∗, pp′, x, st), where P ∗ is some arbitrary prover strategy. In particular, Ehmp simulates

this oracle access by directly forwarding the transcript derived from its oracle Rec( ˜︁Phmp, pp, x, st) with
the following modifications:

• Whenever ˜︁Phmp sends M messages to Vhmp, Ehmp replaces these M messages in the transcript
with the majority of these messages.

• Any message from Vhmp that is broadcast to the M provers of ˜︁Phmp is instead replaced with a
single message.

• Any messages generated due to a call to Audit are not given as part of the interaction.

Note that this simulation is otherwise unchanged; whenever E rewinds to round i, then Ehmp similarly
rewinds to round i. Note that Ehmp stores the unmodified transcript in tr.

4. Upon receiving (tr′, w)← E(pp, x), output (tr, w).

We now argue that Eq. (2) holds. In particular, we show that adversary A on input tr cannot distinguish

between whether tr was output by Rec( ˜︁Phmp, pp, x, st) or Ehmp. Further, if tr output by Ehmp is accepting
then (x,w) ∈ R. First note that A cannot distinguish whether tr is generated by Rec or Ehmp since the
transcript generated by Ehmp is identical to a transcript generated by Rec, except for that Ehmp might rewind
and resample verifier randomness. Since the verifier is public-coin, as long as Ehmp samples new coins the
same way the verifier does, the transcripts are indistinguishable. Next suppose that tr is accepting. Note
that a valid arbitrary prover strategy P ∗ is to simulate ˜︁Phmp honestly, send the majority of M messages

received from ˜︁Phmp to Varg. This implies that if tr is accepting then tr′ is also accepting. Further, by
Theorem 1.1, if (Setuparg, Parg, Varg) is an interactive argument for R, then so is (Setuphmp,Phmp, Vhmp).
By witness-extended emulation of (Setuparg, Parg, Varg), since tr′ is accepting we have that (x,w) ∈ R; this
implies that tr is accepting implies that (x,w) ∈ R. Finally, we establish indistinguishably by observing that
if Eq. (2) does not hold, then we immediately have a prover P ∗ such that Eq. (1) does not hold, breaking
witness-extended emulation of (Setuparg, Parg, Varg).

5 Efficient Interactive Arguments for NP in the HMMP Model

We dedicate this section to proving Theorem 1.2, which we recall here.

Theorem 1.2. Let M, τ, t, λ ∈ N be parameters such that t < M/2 and τ ⩽ t. For every NP relation with
statements of size poly(λ) and witnesses of size N , there exists a HMMP model interactive argument Πhmp

with M provers and the following efficiency properties:

• the individual prover computation is ˜︁Oλ(τ · (N/M));

• the communication complexity between provers is ˜︁Oλ(τ · (N/M)) bits;

• the verifier computation is Oλ(M + log(N)); and
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• the verifier receives Oλ(M · log(N)) bits from all provers and sends Oλ(log(N)) bits to all provers.

To show Theorem 1.2, it suffices to prove Propositions 5.1, 2.3 and 2.5. Then by our discussion in the
overview, we obtain Theorem 1.2.

5.1 HMMP Model Circuit SAT

In Section 2.2, we outlined a HMMP model protocol for circuit satisfiability. We give the formal protocol
here and add some discussion.

One key condition is the need for a circuit C to be partitionable into C1, . . . , CM circuits each of size
N/M such that for any j ∈ [M ], partition Cj depends only on wires from Ci for any i ⩽ j and the input x.
We remark that a suitable topological sorting will define a sequence of individual gates with this property,
after which the partitions C1, . . . , CM can be suitably defined.

Given the above discussion, the discussion in Section 2.2, and Protocol 5, Proposition 2.3 follows.

Protocol 5: HMMP Model Circuit SAT
Parties :M provers Phmp = (P1, . . . , PM ).
Input :An arithmetic circuit C : {0, 1}n → F of size N , an input to the circuit x, an output y, and

a partition of C into C1, . . . , CM .
Output :A wire transcript w certifying that C(x) = y.

1 Each prover sets wire transcript wi = ∅ for i ∈ [M ].
2 foreach i ∈ [M ] do
3 foreach j ∈ [i, i+ τ − 1]M do
4 Pπ(j) uses wk for all k < i and x to compute and broadcast a wire transcript wi,j for Ci.

5 if all wi,j are not equal for j ∈ [i, i+ τ − 1]M then
6 All provers set wi = Audit(C, x, {wk}k<i, {wi,j}j∈[i,i+τ−1]M ).

7 else
8 All provers set wi := wi,i.

9 Each prover defines w = (w1, . . . , wM ).
10 return w.

5.2 HMMP Model Sum-Check

We give the formal description of our HMMP model sum-check protocol and prove the following proposition.

Proposition 5.1. There exists a HMMP model protocol for the sum-check protocol with the following
properties: for a finite field F, an n-variate polynomial f ∈ F[X1, . . . , Xn] of individual degree at most d, a
subset H ⊂ F, and parameters τ,M such that M ⩽ |H|n,

• the individual prover computation is O(τ · ((n · |H|n)/M + |H|)) polynomial evaluations and O(τ · ((n ·
|H|n)/M + d · |H|)) field additions; and

• each prover broadcasts O(τ · d · (n+ |H|)) field elements.

Note that setting H = {0, 1} and d = Θ(1) in Proposition 5.1 directly yields Corollary 2.4.

5.2.1 Single-Prover Sum-Check Protocol

We first recall the single-prover sum-check protocol. We present it in Protocol 6, and give an overview here.
For a finite field F, polynomial g ∈ F[X1, . . . , Xn] of individual degree at most d, and subset H ⊂ F, the
sum-check protocol [LFKN92] is an interactive proof certifying that

∑︁
x∈Hn g(x) = y for some y ∈ F. The
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Protocol 6: Sum-Check Protocol
Parties :Prover P and verifier V .
Prover Input :A multi-variate polynomial g ∈ F[X1, . . . , Xn] of individual degree at most d, a

subset H ⊂ F, and a value y ∈ F.
Verifier Input : Individual degree upper bound d, a subset H ⊂ F, and value y ∈ F.
Verifier Output :Accept or Reject.
Oracle :The verifier V has oracle access to evaluations of the polynomial g.

1 P computes and sends to V the univariate polynomial g1(X1) :=
∑︁

x∈Hn−1 g(X1,x).
2 V checks that g1 is univariate with degree at most d and that y =

∑︁
x∈H g1(x), aborting with Reject

if not.
3 V samples and sends r1

$← F to P .
4 foreach 1 < j < n do
5 P computes and sends to V the univariate polynomial gj(Xi) :=

∑︁
x∈Hn−j g(r,Xj , x), where

r := (r1, . . . , rj−1).
6 V checks that gj is univariate with degree at most d and that gj−1(rj−1) =

∑︁
x∈H gj(x), aborting

with Reject if not.

7 V samples and sends rj
$← F to P .

8 P computes and sends to V the univariate polynomial gn(Xn) := g(r1, . . . , rn−1, Xn).
9 V checks that gn is univariate with degree at most d and that gn−1(rn−1) =

∑︁
x∈H gn(x), aborting

with Reject if not.

10 V samples rn
$← F and queries the oracle at g(r1, . . . , rn). V checks that gn(rn) = g(r1, . . . , rn),

aborting with Reject if not.
11 V outputs Accept.

protocol assumes that the verifier has oracle access to evaluations of the polynomial f and proceeds in n
rounds: in the first round, the prover sends y and the polynomial g1(X1) :=

∑︁
x∈Hn−1 g(X1, x). The verifier

checks that (1) g1 has degree at most d; and (2) y =
∑︁

b∈H g1(b), rejecting if either do not hold. The verifier
then samples r1 ∈ F uniformly at random and sends it to the prover, and additionally sets y′ = g1(r1). Then,
for every j = 2, . . . , n

• the prover computes and sends polynomial gj(Xj) :=
∑︁

x∈Hn−j g(r,Xj , x) to the verifier, where r =
(r1, . . . , rj−1);

• the verifier checks that gj has degree at most d and y′ =
∑︁

b∈H gj(b), rejecting if either do not hold; and

• the verifier samples rj ∈ F uniformly at random, sets y′ = gj(rj), and sends rj to the prover. If j = n,
then the verifier instead queries g(r1, . . . , rn) and checks if it is equal to gn(rn), rejecting if not.

In the sum-check protocol, generating the polynomial gj for j = 1, . . . , n requires evaluating the polynomial g
at |H|n−j points (keeping the variable Xj free) and computing the same number of polynomial additions
over F.

5.2.2 HMMP Model Sum-Check Protocol

We outline how to obtain Proposition 5.1 given the single-prover sum-check protocol and present our
HMMP model sum-check in Protocol 7. Since gj is a polynomial and is a linear function, we can easily
sub-divide the computation between multiple parties, then reconstruct the complete polynomial via addition.
Suppose we are in round j of the computation and for simplicity assume that |H|n−j/M is an integer.
Partition the set Hn−j into M subsets H ′

1, . . . ,H
′
M each of size |H|n−j/M Then the computation of gj

is divided as follows. For i = 1, . . . ,M , audit window Pπ(i), Pπ(i+1), . . . , Pπ(i+τ−1) computes the polyno-
mial gj,i(Xj) :=

∑︁
x∈H′

i
g(r1, . . . , rj−1, Xj , x). The audit window then broadcasts gj,i(Xj) and invokes a

22



global audit and re-balance as necessary. At the end of this round of computation, each party obtains
gj(Xj) :=

∑︁M
i=1 gj,i(Xj) and sends this polynomial to the verifier.

Thus during this round j of the computation, each audit window performs O(|H|n−j/M) evaluations of g
andO(|H|n−j/M+M) additions over over F, yieldingO(τ ·(|H|n−j/M)) evaluations andO(τ ·(|H|n−j/M+M))
additions for each prover. Moreover, each prover broadcasts O(d·τ) field elements since each gj,i is a univariate
polynomial of degree at most d. As before with the circuit satisfiability algorithm, if |H|n−j/M is not an
integer (but is at least 1), we can let k =

⌊︁
|H|n−j/M

⌋︁
and partition the computation of gj into at most

2M polynomials gj,1, . . . , gj,2M by partitioning Hn−j into at most 2M subsets H ′
1, . . . ,H

′
2M each of size at

most k. Then each audit window computes at most 2 polynomials in round j, yielding the same asymptotic
complexity.

Things are slightly more complicated if M > |H|n−j . Let j∗ be the index such that |H|n−j∗ < M ⩽
|H|n−j∗+1. From this same inequality, we know that |H|n−j∗+1 < |H| · M . Moreover, it holds that∑︁n

j=j∗ |H|n−j = (|H|n−j∗+1 − 1)/(|H| − 1) < |H| ·M . Thus we can sub-divide the computation of the final
n− j∗ polynomials with only a O(|H|) overhead for each prover as follows. In a round-robin fashion, the first
|H|n−j∗ audit windows compute the polynomial gj∗,i for i = 1, . . . , |H|n−j∗ , followed by the next |H|n−j∗−1

audit windows each computing the polynomial gj∗+1,i for i = 1, . . . , |H|n−j∗−1, and so on until the final
round. Each audit window participates in the round-robin computation at most O(|H|) times, which gives
our O(|H|) overhead and O(τ · |H|) evaluations and O(τ · |H| · d) field additions in total over all rounds
j = j∗, . . . , n.

As before, let j∗ ∈ {1, . . . , n} be the round such that |H|n−j∗ < M ⩽ |H|n−j∗+1. By our previous
discussion, the total computation done by each prover in all rounds j = j∗, j∗ + 1, . . . , n is O(τ · |H|)
evaluations and O(τ · |H| · d) field additions. Moreover, for any round j = 1, . . . , j∗ − 1, each prover performs
O(τ · (|H|n−j/M)) evaluations and O(d · τ · (|H|n−j/M +M)) field additions. This gives O(n · τ · (|H|n/M))
evaluations and O(n · τ · (|H|n/M + |H|)) field additions over all rounds j = 1, . . . , j∗ − 1. Thus we have
obtained Proposition 5.1. desired.

5.3 HMMP Model Polynomial Commitment Schemes

We formally show Proposition 2.5 in this section. For our purposes, we utilized the Bulletproofs-based Block
et al. [BHR+20] tailored for multi-linear polynomials.

5.3.1 Polynomial Commitment Scheme Preliminaries

Much of this section is borrowed from Block et al. [BHR+20]. We let F := Fp denote a finite field of prime
order p. When clear from context we omit p above. For finite cyclic group G, we assume that G is a
multiplicative group. For n ∈ N and bit-string b = (bn, . . . , b1) ∈ {0, 1}n, we assume that bn is the most
significant bit and b1 is the least significant bit. We let “◦” denote the string concatenation operator; that is,
for b ∈ {0, 1}n and c ∈ {0, 1}, we have b ◦ c := (bn, . . . , b1, c) ∈ {0, 1}n+1

. Often, we index a vector and/or
sequence using a binary string. That is, for N = 2n and Y ∈ FN , for b ∈ {0, 1}n we have that Yb is the b-th
element of Y , where we interpret b naturally as an integer in the range {0, 1, . . . , N − 1}.

Discrete-log Assumption. Let GGen be a randomized algorithm that on input 1λ for security parameter
λ returns (G, p, g) such that G is the description of a finite cyclic group of prime order p, where p is a λ-bit
prime, and g is a generator of G.

Assumption 5.2 (Discrete-log Assumption). The discrete-log assumption holds for GGen if for all PPT
adversaries A there exists a negligible function µ such that

Pr
[︂
α′ = α : (G, p, g)← GGen(1λ), α

$← Zp, α′ ← A(G, g, gα)
]︂
⩽ µ(λ).

We use the following variant of the discrete-log assumption, which is equivalent to the assumption above.
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Assumption 5.3 (Discrete-log Relation Assumption [BCC+16]). The discrete-log relation assumption holds
for GGen if for all PPT adversaries A and for all n ⩾ 2 there exists a negligible function µ such that

Pr

[︄
∃αi ̸= 0 ∧

n∏︂
i=1

gα1
i = 1 :

(G, g, p)← GGen(1λ), g1, . . . , gn
$←G,

(α1, . . . , αn) ∈ Zn
p ← A(G, g1, . . . , gn).

]︄
⩽ µ(λ).

For αi not all equal to 0, we say that
∏︁

i g
αi
i is a non-trivial discrete-log relation between group elements

g1, . . . , gn. The discrete-log relation assumption states that any PPT adversary cannot find a non-trivial
relation between randomly chosen group elements.

Multi-linear Polynomials. An n-variate polynomial f ∈ F[X1, . . . , Xn] is a multi-linear polynomial if
every variable has individual degree at most 1. Any multi-linear polynomial is uniquely represented by its
evaluations over the Boolean hypercube. We capture this in Fact 5.4.

Fact 5.4. For n-variate multi-linear polynomial f , for any ζ ∈ Fn we have

f(ζ) =
∑︂

b∈{0,1}n

f(b) · β(ζ, b), β(ζ, b) :=

n∏︂
i=1

ζi · bi + (1− ζi) · (1− bi). (3)

Note that any sequence Y ∈ FN for N = 2n uniquely defines a n-variate multi-linear polynomial Eq. (3).
For sequence Y ∈ FN and evaluation point ζ ∈ Fn, we define MLE(Y, ζ) :=

∑︁
b Yb · β(ζ, b).

Definition 5.5 ([BHR+20]). A tuple of protocols (Setup,Com,Open,Eval) is a multi-linear polynomial
commitment scheme if it satisfies the following

1. pp ← Setup(1λ, 1N ) takes as input the unary representations of security parameter λ ∈ N and size
parameter N = 2n corresponding to n ∈ N, and produces public parameter pp. We allow pp to contain
the description of the field F over which the multi-linear polynomials will be defined.

2. (C; d) ← Com(pp, Y ) takes as input public parameter pp and sequence Y = (Yb)b∈{0,1}n ∈ FN that
defines the multi-linear polynomial to be committed, and outputs public commitment C and secret
decommitment d.

3. b← Open(pp, C, Y, d) takes as input pp, a commitment C, sequence committed Y and a decommitment
d and returns a decision bit b ∈ {0, 1}.

4. Eval(pp, C, ζ, γ;Y, d) is a public-coin interactive protocol between a prover P and a verifier V with
common inputs—public parameter pp, commitment C, evaluation point ζ ∈ Fn and claimed evaluation
γ ∈ F, and prover has secret inputs Y and d. The prover then engages with the verifier in an interactive
argument system for the relation

Rmle(pp) = {(C, ζ, γ;Y, d) : Open(pp, C, Y, d) = 1 ∧ γ = MLE(Y, ζ)} . (4)

The output of V is the output of Eval protocol.

We require the following three properties.

1. Computational Binding. For all PPT adversaries A and n ∈ N

Pr

⎡⎢⎢⎣b0 = b1 ̸= 0 ∧ Y0 ̸= Y1 :

pp← Setup(1λ, 1N )
(C,Y0,Y1, d0, d1)← A(pp)
b0 ← Open(pp, C, Y (0), d0)
b1 ← Open(pp, C, Y (1), d1)

⎤⎥⎥⎦ ≤ negl(λ) .
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2. Perfect Correctness. For all n, λ ∈ N and all Y ∈ FN and ζ ∈ Fn,

Pr

[︃
Eval(pp, C,Z, γ;Y, d) = 1 :

pp← Setup(1λ, 1N ),
(C; d)← Com(pp, Y ), γ = MLE(Y, ζ)

]︃
= 1 .

3. Witness-extended Emulation. We say that the polynomial commitment scheme has witness-extended
emulation if Eval has a witness-extended emulation as an interactive argument for the relation ensemble
{Rmle(pp)}pp (Eq. (4)) except with negligible probability over the coins of pp← Setup(1λ, 1N ).

5.3.2 Multi-Linear Polynomial Commitment Scheme in the HMMP Model

We dedicate this section to proving Proposition 2.5. Since the prover of a polynomial commitment scheme is
responsible for computing three functionalities—the commitment Com, the opening Open, and the evaluation
Eval—we shall define the above functions for each of these phases for simplicity. We first recall the multi-linear
polynomial commitment scheme of Block et al. [BHR+20], which we refer to as the BHRRS polynomial
commitment scheme.

BHRRS Polynomial Commitment Scheme. We recall the BHRRS polynomial commitment scheme.
Note that the BHRRS polynomial commitment scheme focuses on space-efficiency of the prover; that is,
the prover uses space which is poly-logarithmic in the description size of the multi-linear polynomial. They
achieve this space-efficiency in the random oracle model by assuming multi-pass streaming access to the
description of the multi-linear polynomial that is being committed. For simplicity, we present the BHRRS
polynomial commitment scheme without its space-efficient implementation.

We now specify the BHRRS polynomial commitment scheme.

1. Setup(1λ, 1N ): on input security parameter 1λ and size parameter 1N for N = 2n, where n ∈ N, sample
(G, p, g ∈ GN ), set F := FP , and return pp := (G,F, N, p, g). Here, g is a vector of N distinct generators
of G.

2. Com(pp, Y ): return commitment C =
∏︁

b∈{0,1}n gYb

b .

3. Open(pp, C, Y ): return 1 if and only if C = Com(pp, Y ).

4. Eval(pp, C, ζ, γ;Y ) is an interactive protocol ⟨P, V ⟩ which begins with V sending gV
$←G. Then both

P and V compute Cγ = C · gγV to bind claimed evaluation γ. P and V then engage in EvalReduce on
input (Cγ , Z, g, gV , γ;Y ) where P proves knowledge of Y such that

Cγ = Com(pp, Y ) · gγV ∧ ⟨Y,Z⟩ = γ,

where ζ ∈ Fn and Z :=
(︁
zb = β(ζ, b)

)︁
b∈{0,1}n for function β defined in Eq. (3). The protocol is presented

in Protocol 8

BHRRS Polynomial Commitment Scheme in the HMMP Model. We specify how to construct
each function Com, Open, and Eval in our HMMP model. Excluding the Open function, the specification and
analysis of Com and Eval directly yield Proposition 2.5.

HMMP Model Com. The algorithm Com receives pp ← Setuphmp(1
λ, 1N , 1M , 1τ ) as input along

with sequence of evaluations Y ∈ FN defining a multi-linear polynomial. Here pp = (pp′, π,M, τ) where

pp′
$← Setup(1λ, 1N ) for Setup algorithm of the BHRRS polynomial commitment scheme. By assumption

N = 2n and M = 2m for m ⩽ n.
Let g0, . . . , gN−1 be generators of a prime-order group G. Then the commitment to f is C =

∏︁N−1
i=0 g

f(i)
i ,

where i is interpreted as an element in {0, 1}n in the natural way when evaluating f(i). To implement this
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commitment in the HMMP model, first partition the set {0, 1, . . . , N − 1} into M subsets S1, . . . , SM each
of size N/M . Then for every i ∈ {1, . . . ,M}, the audit window Pπ(i), . . . , Pπ(i+τ−1) computes the partial

commitment Ci =
∏︁

j∈Si
g
f(j)
j , and broadcasts Ci, invoking a global audit and re-balance as necessary. After

the computation of CM , each party combines all commitments into the final commitment C =
∏︁

i Ci and
broadcast this to the verifier. Here, each prover performs O(τ · (N/M)) group multiplications and exponents,
with at most a 2 fold increase if N/M is not an integer, and broadcasts O(τ) group elements.

HMMP Model Open. Each prover in the Open algorithm must send its entire witness Y . In particular,
this is identical to the single-prover case, with the modification that V now needs to take majority of all
these vectors.

HMMP Model Eval. To produce proofs of evaluations, the BHRRS polynomial commitment scheme
utilizes the Bulletproofs inner-product argument in conjunction with a Pedersen commitment. The inner-
product argument certifies that (1) γ = ⟨X,Y ⟩, where X ∈ FN is a public vector and Y ∈ FN is a private
vector held by the prover; and (2) the vector Y used to compute ⟨X,Y ⟩ is consistent with some Pedersen
commitment C. The inner-product argument employs a “half-and-fold” technique to reduce the claim
γ = ⟨X,Y ⟩ to a claim γ′ = ⟨X ′, Y ′⟩, where X ′, Y ′ ∈ FN/2.

We outline the reduction from size N to size N/2 vectors. In a bit more detail, let C be a Pedersen
commitment to the vector Y using generators G = (g0, . . . , gN−1) and suppose γ is the claimed inner-product
⟨X,Y ⟩. The verifier first samples and sends a random group generator g, and both the prover and verifier
update the commitment C to C · gγ . Let Xo, Xe ∈ FN/2, Yo, Ye ∈ FN/2, and Go, Ge ∈ GN denote the odd and
even halves of the vectorsX, Y , and G, respectively. That is, Xo := (X2i)i∈[0,N−1] andXe := (X2i+1)i∈[0,N−1],
with Yo, Ye and Go, Ge being defined analogously. The prover computes γ0 = ⟨Xo, Ye⟩ and γ1 = ⟨Xe, Yo⟩, and
additionally computes two commitments C0 and C1, where C0 is gγ0 times the Pedersen commitment to Ye

using generators Go and C1 is gγ1 times the Pedersen commitment to Yo using generators Ge. Upon receiving
C0, C1, the verifier samples and sends uniformly random challenge α ∈ F to the prover. The prover then sends
γ′ = α2 ·γ0+γ+α−2 ·γ1 to the verifier, and both parties compute new commitment C ′ = (C0)

α2 ·C · (C1)
α−2

,

new public vector X ′ = α−1 ·Xe +α ·Xo, and new generator vector G′ = (Ge)
α−1 ∗ (Go)

α, where “∗” denotes
entry-wise multiplication and the exponents are computed for every entry. Additionally, the prover computes
Y ′ = α · Ye + α−1 · Yo. This reduction continues until the vectors X ′, Y ′, G′ all have length 1, at which point
the prover simply sends Y ′ to the verifier, yielding n = log(N) rounds for the protocol.

Like the sum-check protocol, we take advantage of the above reduction’s structure to give an efficient
HMMP model protocol. Suppose that N/(2M) is an integer. For i ∈ {o, e}, partition vectors Xi, Yi, Gi into
vectors Xi,j , Yi,j , Gi,j each of size N/(2M) for j ∈ {1, . . . ,M}. Then each audit window Pπ(j), . . . , Pπ(j+τ−1)

computes and broadcasts the values

γ0,j = ⟨Xo,j , Ye,j⟩ C0,j = Com(Go,j , Ye,j)

γ1,j = ⟨Xe,j , Yo,j⟩ C1,j = Com(Ge,j , Yo,j)

where Com(u, v) :=
∏︁

i u
vi
i (i.e., a Pedersen commitment). After all audit windows have broadcast their

values, every prover computes

γ0 =

M∑︂
j=1

γ0,j C0 = gγ0 ·
M∏︂
j=1

C0,j

γ1 =

M∑︂
j=1

γ1,j C1 = gγ1 ·
M∏︂
j=1

C1,j

and broadcasts (C0, C1) to the verifier.
Upon receiving α from the verifier, each prover locally computes the values γ′ and C ′ as specified. The

provers then jointly compute the vectors X ′, Y ′, and G′ as follows. Each audit window Pπ(j), . . . , Pπ(j+τ−1)

26



computes and broadcasts

X ′
j = α−1Xe,j + αXoj Y ′

j = αYe,j + α−1Yo,j G′
j = (Ge,j)

α−1

∗ (Go,j)
α.

Once all provers have broadcast their values, each prover obtains X ′, Y ′, G′ by concatenating X ′
j , Y

′
j , G

′
j in

order.
For any round r ∈ {1, . . . , n} such that 2n−r−1/M ⩾ 1, every prover performs O(τ · (2n−r/M)) field

multiplications and group exponents, and performs O(τ · (2n−r/M + M)) field additions and group mul-
tiplications. Additionally, each prover broadcasts O(τ · (2n−r/M)) field and group elements. Moreover,
for any round r such that 2n−r−1 < M , we can divide up the remaining computation the same way we
did for the sum-check protocol. If r∗ is the round such that 2n−r∗−1 < M ⩽ 2n−r∗ , then over all rounds
r = r∗, . . . , n each prover performs O(τ) field and group operations, and a total of O(τ ·M) field and group
elements are broadcast. Additionally, the complexity of each prover over all rounds r = 1, . . . , r∗ − 1 is
O(τ · (N/M)) field multiplications and group exponents and O(τ · (N/M + n ·M)) field additions and group
multiplications. This yields total prover complexity O(τ · (N/M)) field multiplications and group exponents
and O(τ · (N/M + n ·M)) field additions and group additions. Moreover, each prover broadcasts a total of
O(τ · n · (N/M)) field elements. This gives Proposition 2.5.

The HMMP Model Verifier. We note that the HMMP Model verifier Vhmp for our polynomial commit-
ment scheme is constructed exactly as given in Theorem 1.1, with one exception. In the BHRRS polynomial
commitment scheme, the verifier must compute the new vectors g′ and Z ′ during every recursive round.
Instead, we leverage the honest majority assumption and have Phmp send the final folded vectors g ∈ G and
Z ∈ F in addition to Y ∈ F, then Vhmp performs the final check that V would perform in Protocol 8. This
gives Corollary 2.6.

6 Extensions of the Honest Majority Multi-Prover Model

One can easily re-imagine the HMMP model and interactive arguments in the HMMP model by tweaking any
of the moving parts. We discuss some potential modifications below, and leave it as future work to achieve
HMMP model constructions with such modifications.

Adaptive Corruption. It is crucial for our construction of Phmp in Protocol 1 that adversarial corruption
is static and occurs before the generation of the permutation π. In our construction, any adaptive corruption
break both correctness and soundness. Though we believe our static corruption is reasonable to assume in
the real world, giving a HMMP model argument that is secure against adaptive corruptions would greatly
increase the applicability of this model, as well as give interesting new transformations and protocols in this
setting.

Communication Between Provers. For simplicity, we assume an authenticated sender broadcast channel
with which the provers use for communication. This allows provers to easily identify who sent which messages
and easily perform audits as necessary. One could also change this communication assumption (e.g., secure
point-to-point, asynchronous sending, etc.) and define the HMMP model with respect to this communication
channel. Of course, this could simplify some aspects of the HMMP model as well as complicate other aspects.

Communication with the Verifier. Again for simplicity, we assume that the provers communicate with
the verifier via the same authenticated broadcast channel. This allows the verifier to easily send its message
to all provers simultaneously, as well as allowing the prover to identify which provers are sending which
messages. The second point above helps a verifier ignore multiple messages sent by the same prover during
any round (e.g., a malicious prover trying to flood the verifier with messages).
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7 Future Work

We have demonstrated the efficiency gains of collaborative proof generation when privacy is not a concern.
Even for small values of M , our HMMP model directly yields concrete efficiency gains; e.g., for M = 23 and
τ = 22, our provers experience a roughly 2× decrease in overall computational costs, at the cost of (a modest
amount of) communication. For another setting of M = 25 and τ = 23, we obtain a 4× decrease.

Our HMMP model can easily be tweaked by modifying different parts of it. Some potential modifications,
left as future work, include modifying the model to handle adaptive corruptions, modifying the communication
channels used by the provers, and modifying the communication channels used between the provers and the
verifier. Additionally, one can imagine adjusting the adversarial model to trying to protect against adversaries
with the goal of forcing other provers to perform computation proportional to a single prover. Our framework
is modular and lends itself well to different aspects being tweaked to handle many situations.
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Protocol 7: HMMP Model Sum-Check Protocol
Parties :M provers P and verifier V .
Prover Input :A multi-variate polynomial g ∈ F[X1, . . . , Xn] of individual degree at most d, a

subset H ⊂ F, and a value y ∈ F.
Verifier Input : Individual degree upper bound d, a subset H ⊂ F, and value y ∈ F.
Verifier Output :Accept or Reject.
Oracle :The verifier V has oracle access to evaluations of the polynomial g.

1 P initializes r = ∅ and count = 1.
2 V initializes y′ = y.
3 foreach j ∈ [n] do
4 if |H|n−j ⩾ M then
5 P partitions Hn−j into M subsets H1, . . . ,HM each of size Hn−j/M .
6 foreach i ∈ [M ] do
7 foreach k ∈ [i, i+ τ − 1]M do
8 Pπ(k) computes and broadcasts gj,i,k(Xj) :=

∑︁
x∈Hn−j

k
g(r,Xj , x).

9 else
10 foreach i = 1, . . . , |H|n−j do
11 foreach k ∈ [count, count+ τ − 1]M do
12 Pπ(k) computes and broadcasts gj,i,k(Xj) := g(r,Xj , hi), where hi is the ith element of

Hn−j .
13 P updates count = count+ 1(modM).

14 if not all gj,i,k are equal then
15 All provers set gj,i(Xj) := Audit(i, {gj,i,k}k).
16 else All provers set gj,i(Xj) := gj,i,i(Xj).

17 foreach i ∈ [M ] do Pi computes g
(i)
j (Xj) :=

∑︁
k gj,k(Xj) and broadcasts it to V .

18 V sets gj(Xj) = majority(g
(1)
j (Xj), . . . , g

(M)
j (Xj)).

19 V checks that gj(Xj) has degree at most d and y′ =
∑︁

x∈H gj(x), outputting reject if either do not
hold.

20 V samples rj
$← F.

21 if j < n then
22 V sets y′ = gj(rj), and broadcasts rj to P .
23 P updates r = (r, rj).

24 else V queries the oracle and checks gn(rn) = g(r1, . . . , rn), aborting with Reject if not.

25 V outputs Accept.
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Protocol 8: Eval protocol

Parties :Prover P and verifier V .
Prover Input :Public parameters pp, commitment C, ζ ∈ Fn, γ ∈ F, and Y ∈ FN

Verifier Input :Public parameters pp, commitment C, ζ ∈ Fn, and γ ∈ F
Verifier Output :Accept or Reject.

1 V samples and sends gV
$←G.

2 P and V define Cγ := C · gγV ∈ G.

3 P and V define sequence Z = (Zb = β(b, ζ))b∈{0,1}n ∈ FN .
4 P and V engage in EvalReduce(Cγ , Z, γ, g, gV , N ;Y ).
5 Procedure EvalReduce(Cγ , Z, γ, g, gV , N ;Y )
6 if N = 1 then
7 P sends Y ∈ F to V .

8 V outputs Accept if and only if Cγ = gY · g(Y ·Z)
V and γ = ⟨Y,Z⟩, where g ∈ G and Z ∈ F; else

outputs Reject.

9 Set n = log(N).
10 P computes γ0, γ1 as

γ0 =
∑︂

b∈{0,1}n−1

Yb◦0 · Zb◦1 γ1 =
∑︂

b∈{0,1}n−1

Yb◦1 · Zb◦0.

11 P computes and sends C0, C1 to V , where

C0 = gγ0

V ·
∏︂

b∈{0,1}n−1

(gb◦1)
Yb◦0 C1 = gγ1

V ·
∏︂

b∈{0,1}n−1

(gb◦0)
Yb◦1 .

12 V samples and sends α
$← F to P .

13 P computes and sends γ′ = α2 · γ0 + γ + α−2 · γ1.
14 P and V both compute

C ′
γ′ = (C0)

α2

· Cγ · (C1)
α−2

Z ′ =
(︁
Z ′
b = α−1 · Zb◦0 + α · Zb◦1

)︁
b∈{0,1}n−1

g′ =
(︁
g′
b = (gb◦0)

α−1

· (gb◦1)α
)︁
b∈{0,1}n−1 .

15 P computes Y ′ =
(︁
Y ′
b = α · Yb◦0 + α−1 · Yb◦1

)︁
b∈{0,1}n−1 .

16 P and V engage in EvalReduce(C ′
γ′ , Z ′, γ′, g′, gV , N/2;Y ′)
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Protocol 9: HMMP Model Eval Protocol
Parties :M provers P and verifier V .
Prover Input :Public parameters pp, commitment C, ζ ∈ Fn, γ ∈ F, and Y ∈ FN

Verifier Input :Public parameters pp, commitment C, ζ ∈ Fn, and γ ∈ F.
Verifier Output :Accept or Reject.

1 V samples and sends gV
$←G.

2 P and V define Cγ := C · gγV ∈ G. P additionally initializes count = 1.
3 P partitions {0, 1}n into M subsets S1, . . . , SM each of size N/M .
4 foreach i ∈ [M ] do
5 foreach j ∈ [i, i+ τ − 1]M do
6 Pπ(j) computes and broadcasts Zi,j = (β(b, γ))b∈Si ∈ FN/M .

7 if not all Zi,j are equal then
8 All provers set Zi := Audit(i, {Zi,j}j).
9 else All provers set Zi := Zi,i.

10 while N > 1 do
11 Set n = log(N).
12 if N/2 ⩾ M then
13 Run Protocol 10 with inputs (N/2, n, Y, Z, g) and obtain {γ0,i}i, {γ1,i}i, {C0,i}i, and {C1,i}i.
14 else
15 Run Protocol 11 with inputs (N/2, Y, Z, g, count) and obtain {γ0,i}i, {γ1,i}i, {C0,i}i, and

{C1,i}i
16 foreach i ∈ [M ] do

17 Pi computes and broadcasts γ
(i)
0 :=

∑︁
i γ0,i, γ

(i)
1 :=

∑︁
i γ1,i, C

(i)
0 := gγ0

V ·
∏︁

i C0,i, and

C
(i)
1 := gγ1

V ·
∏︁

i C0,i to V .

18 V samples and broadcasts α
$← F to P

19 foreach i ∈ [M ] do
20 Pi computes and broadcasts γ′ = α2 · γ0 + γ + α−2 · γ1.

21 V and all provers locally compute Cγ := (C0)
α2 · Cγ · (C1)

α−2

.
22 if N/2 ⩾ M then
23 Run Protocol 12 with inputs (N/2, n, Y, Z, g, α) and obtain Y,Z ∈ FN/2 and g ∈ GN/2.

24 else
25 Run Protocol 13 with inputs (N/2, Y, Z, g, α, count) and obtain Y,Z ∈ FN/2 and g ∈ GN/2.

26 Update N ← N/2.

27 Each Pi broadcasts Y ∈ F, g ∈ G, and Z ∈ F to V .

28 V outputs Accept if and only if Cγ = gY · g(Y ·Z)
V ; else outputs Reject.

29 P and V both compute

C ′
γ′ = (C0)

α2

· Cγ · (C1)
α−2

Z ′ =
(︁
Z ′
b = α−1 · Zb◦0 + α · Zb◦1

)︁
b∈{0,1}n−1

g′ =
(︁
g′
b = (gb◦0)

α−1

· (gb◦1)α
)︁
b∈{0,1}n−1 .

30 P computes Y ′ =
(︁
Y ′
b = α · Yb◦0 + α−1 · Yb◦1

)︁
b∈{0,1}n−1 .
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Protocol 10: Polycom Compute Partial Evals and Commitments 1

Input : Integers N/2 and n, Y, Z ∈ FN , and g ∈ GN

Output :Values {γ0,i}i, {γ1,i}i, {C0,i}i, and {C1,i}i
1 P partitions {0, 1}n−1

into M subsets B1, . . . , BM each of size N/(2M).
2 foreach i ∈ [M ] do
3 foreach j ∈ [i, i+ τ − 1]M do
4 Pπ(j) computes and broadcasts

γ0,i,j =
∑︂
b∈Bi

Yb◦0 · Zb◦1 C0,i,j =
∏︂
b∈Bi

(gb◦1)
Yb◦0

γ1,i,j =
∑︂
b∈Bi

Yb◦1 · Zb◦0 C1,i,j =
∏︂
b∈Bi

(gb◦0)
Yb◦1 .

5 if not all {γ0,i,j}j are equal then All provers set γ0,i = Audit(i, {γ0,i,j}j).
6 else All provers set γ0,i = γ0,i,i.
7 if not all {γ1,i,j}j are equal then All provers set γ1,i = Audit(i, {γ1,i,j}j).
8 else All provers set γ1,i = γ1,i,i.
9 if not all {C0,i,j}j are equal then All provers set C0,i = Audit(i, {C0,i,j}j).

10 else All provers set C0,i = C0,i,i.
11 if not all {C1,i,j}j are equal then All provers set C1,i = Audit(i, {C1,i,j}j).
12 else All provers set C1,i = C1,i,i.

13 return {γ0,i}i, {γ1,i}i, {C0,i}i, and {C1,i}i.

Protocol 11: Polycom Compute Partial Evals and Commitments 2

Input : Integer N/2, Y,Z ∈ FN , g ∈ GN , and integer count.
Output :Values {γ0,i}i, {γ1,i}i, {C0,i}i, and {C1,i}i

1 foreach i = 0, . . . , N/2− 1 do
2 foreach j ∈ [count, count+ τ − 1]M do
3 Pπ(j) computes and broadcasts γ0,i,j = Yi◦0 · Zi◦1, γ1,i,j = Yi◦1 · Zi◦0, C0,i,j = (gi◦1)

Yi◦0 ,

C1,i,j = (gi◦0)
Yi◦1 .

4 if not all {γ0,i,j}j are equal then All provers set γ0,i = Audit(i, {γ0,i,j}j).
5 else All provers set γ0,i = γ0,i,i.
6 if not all {γ1,i,j}j are equal then All provers set γ1,i = Audit(i, {γ1,i,j}j).
7 else All provers set γ1,i = γ1,i,i.
8 if not all {C0,i,j}j are equal then All provers set C0,i = Audit(i, {C0,i,j}j).
9 else All provers set C0,i = C0,i,i.

10 if not all {C1,i,j}j are equal then All provers set C1,i = Audit(i, {C1,i,j}j).
11 else All provers set C1,i = C1,i,i.
12 count = count+ 1(modM).

13 return {γ0,i}i, {γ1,i}i, {C0,i}i, and {C1,i}i.
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Protocol 12: Polycom Compute Partial Sequences 1

Input : Integers N/2 and n, Y, Z ∈ FN , g ∈ GN , and α ∈ F.
Output : Sequences Y,Z ∈ FN/2, g ∈ GN/2.

1 P partitions {0, 1}n−1
into M subsets B1, . . . , BM each of size N/(2M).

2 foreach i ∈ [M ] do
3 foreach j ∈ [i, i+ τ − 1]M do
4 Pπ(j) computes and broadcasts

Z ′
i,j = (α−1 · Zb◦0 + α · Zb◦1)b∈Bi

Y ′
i,j = (α · Yb◦0 + α−1 · Yb◦1)b∈Bi

g′
i,j = ((gb◦0)

α−1

· (gb◦1)α)b∈Bi

5 if not all {Z ′
i,j}j are equal then All provers set Z ′

i = Audit(i, {Z ′
i,j}j).

6 else All provers set Z ′
i = Z ′

i,i.

7 if not all {Y ′
i,j}j are equal then All provers set Y ′

i = Audit(i, {Y ′
i,j}j).

8 else All provers set Y ′
i = Y ′

i,i.

9 if not all {g′
i,j}j are equal then All provers set g′

i = Audit(i, g′
i,j}j).

10 else All provers set g′
i = g′

i,i.

11 return Y = (Y ′
1 , . . . , Y

′
M ), Z = (Z ′

1, . . . , Z
′
M ), and g = (g′

1, . . . , g
′
M ).

Protocol 13: Polycom Compute Partial Sequences 2

Input : Integers N/2 and n, Y, Z ∈ FN , g ∈ GN , α ∈ F, and integer count.
Output : Sequences Y,Z ∈ FN/2, g ∈ GN/2.

1 foreach i = 0, . . . , N/2− 1 do
2 foreach j ∈ [count, count+ τ − 1]M do
3 Pπ(j) computes and broadcasts Z ′

i,j = α−1 · Zi◦0 + α · Zi◦1, Y
′
i,j = α · Yi◦0 + α−1 · Yi◦1, and

g′
i,j = (gi◦0)

α−1 · (gi◦1)α.
4 if not all {Z ′

i,j}j are equal then All provers set Z ′
i = Audit(i, {Z ′

i,j}j).
5 else All provers set Z ′

i = Z ′
i,i.

6 if not all {Y ′
i,j}j are equal then All provers set Y ′

i = Audit(i, {Y ′
i,j}j).

7 else All provers set Y ′
i = Y ′

i,i.

8 if not all {g′
i,j}j are equal then All provers set g′

i = Audit(i, g′
i,j}j).

9 else All provers set g′
i = g′

i,i.

10 count = count+ 1(modM).

11 return Y = (Y ′
1 , . . . , Y

′
M ), Z = (Z ′

1, . . . , Z
′
M ), and g = (g′

1, . . . , g
′
M ).
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