Adapting Belief Propagation to Counter Shuffling of NTTs

Julius Hermelink\textsuperscript{1,2}, Silvan Streit\textsuperscript{3}, Emanuele Strieder\textsuperscript{4} and Katharina Thieme\textsuperscript{5}

\textsuperscript{1} Research Institute CODE, Universität der Bundeswehr München, Germany julius.hermelink@unibw.de
\textsuperscript{2} Infineon Technologies AG, Germany hermelink.external@infineon.com
\textsuperscript{3} Fraunhofer Institute AISEC, Germany silvan.streit@aisec.fraunhofer.de
\textsuperscript{4} Fraunhofer Institute AISEC, Germany emanuele.strieder@aisec.fraunhofer.de
\textsuperscript{5} Fraunhofer Institute AISEC, Germany k.thieme@stud.uni-goettingen.de

Abstract. The Number Theoretic Transform (NTT) is a major building block in recently introduced lattice based post-quantum (PQ) cryptography. The NTT was target of a number of recently proposed Belief Propagation (BP)-based Side Channel Attacks (SCAs). These attacks exploit the known structure of the NTT to reduce the guessing entropy after a profiled SCA by modeling the algorithm as a factor graph. Ravi et al. have proposed a number of countermeasures mitigating these attacks. They introduced three shuffling levels and one configurable masking step to counter the influence of the known structure of the NTT.

In 2021, Hamburg et al. presented a chosen-ciphertext enabled SCA improving noise-resistance. Exemplarily, using their setting, we introduce a set of tools, which reveal that a subset of the proposed shuffling countermeasures could lead to a false security perception.

Firstly, we analyze fine shuffling. We introduce a pre-processing step as well as a new factor node which we call shuffle node. Shuffle nodes allow for a modified version of belief propagation when included into a factor graph. The node iteratively learns the shuffling permutation of fine shuffling within a BP run. This allows a more noise resistant inference in the presence of mixed leakage distributions, which model the uncertainty of shuffled input or output nodes of a NTT butterfly.

Secondly, we introduce a set of tools targeting the coarse shuffling countermeasure. We expand our attacker model and describe several matching algorithms to find inter-layer connections based on shuffled measurements. Our matching algorithm allows for either mixing prior distributions according to a doubly stochastic mix matrix or to extract permutations and perform an exact un-matching of layers. We additionally discuss the usage of sub-graph inference to reduce uncertainty and improve un-shuffling of butterflies.

Based on our results, we conclude that the proposed countermeasures of Ravi et al. are powerful and counter Hamburg et al., yet could lead to a false security perception – a powerful adversary could still launch successful attacks. We discuss on the capabilities needed to defeat shuffling in the setting of Hamburg et al. using our expanded attacker model.

Keywords: Number Theoretic Transform · Shuffling · Kyber · CCA · Belief Propagation · SASCA · Machine Learning · Countermeasures
1 Introduction

All asymmetric cryptographic algorithms rely on computationally hard problems. At the brink of quantum computers, currently used problems like the factorization of integers or discrete logarithm problems might not be appropriately long-term secure anymore. The National Institute of Standards and Technology (NIST) competition for new post-quantum safe public-key algorithms [Nat] is in its final stages [Mooa], with several applicants relying on lattice problems [Moob]. Lattice-based schemes offer high speeds and comparably small key- and ciphertext sizes. Therefore, such schemes are especially well-suited for embedded devices.

As the NIST contest enters its finals stages and standardization is imminent, implementation security, including side-channel security is becoming a topic of increased importance and attention. On embedded devices, side-channel and fault security are a major concern and countermeasures to defend against such attacks are indispensable. Several Side Channel Attacks (SCAs), e.g. [PH16, PPM17, PP19, ACLZ20, RRCB20, RBRC20, GJN20, BDH+21], have emerged, and especially the combination of side-channel and fault attacks with chosen-ciphertext attacks [RRCB20, HHP+21, HPP21], has proven to be highly effective. Countermeasures such as masking or shuffling have been proposed and first implementations using such countermeasures were published [RRVV15, RRdC+16, OSPG18, RPBC20, BDH+21, HP21]. While these are first steps to achieving practical implementation security, the understanding of SCAs is not comparable to the years of experience with classical schemes and intensified research is crucial for practical usage of post-quantum (PQ) schemes.

One of the finalists is Kyber [BDK+18], a Module-Learning with Error (M-LWE) based key exchange mechanism (KEM). Several finalists, including Kyber, use the Number Theoretic Transform (NTT) [CT65] for fast polynomial multiplication. While using an NTT can provide significant speed-ups [CHK+21] compared to school-book multiplication, it turned out to be another possible target for SCAs [PPM17, PP19, HHP+21]. As a major building block in several lattice-based schemes, such attacks on the NTT could be a major threat to a large group of PQ algorithms. Even for schemes previously not using NTT’s, adaptations allowing NTT multiplication have been proposed [CHK+21].

In [HHP+21], Hamburg et al. presented an attack using a chosen-ciphertext that is decompressed to a vector containing a large amount of zeros. During Kyber’s decapsulation, this vector is multiplied with the secret key and fed into an Inverse Number Theoretic Transform (INTT). When using a template attack on the INTT, the sparseness of the input then allows for greatly improved recovery of the secret. Thereby, the key may be fully recovered using a very low number of traces while maintaining a high noise tolerance. Their attack is unaffected by standard masking and thus evades first countermeasures.

In [RPBC20], Ravi et al. propose several countermeasures aimed at protecting an NTT. Their work consists of different masking and shuffling countermeasures of different complexity and level of protection for an NTT. The proposed shuffling countermeasures mitigate the attack of [HHP+21] when no adaptations are made. The first variant, fine shuffling, permutes the inputs to a butterfly. The other two variants, coarse (block) shuffling permute nodes in (a block of) a layer. It has yet been unclear to what extend shuffling can be counteracted by specific attack methods.

Prior work. There are several attacks showing successful SCAs on NTTs using Belief Propagation (BP): [PPM17, PP19] have demonstrated that it is possible to use load and store leakage of a profiled SCA on an NTT software implementation using BP. They target the NTT of Kyber [BDK+18] and are able to recover the secret using a single attack trace. The attack of [PPM17] is limited to low measurement noise and depends on being able to create a very high number of templates. The attack of Pessl and Primas [PP19] targets only ephemeral secrets.
Hamburg et al. [HHP+21] improve upon their attack by using a chosen-ciphertext to create a sparse input to the NTT. Thereby, the convergence is considerably improved and the noise tolerance is increased. This allows to extend the attack given in [PP19] to a non-ephemeral setting by attacking the decryption routine. The creation of the sparse ciphertext is done using the lattice-reduction algorithm Blockwise Korkine-Zolotarev (BKZ) [SE94]. Further, Hamburg et al. discuss the influence of the number and the distribution of zeros on the convergence. In a single trace attack scenario, the attack successively recovers all coefficients up to a noise level $\sigma$ of 0.5 and 0.7 depending on the Kyber parameter set. Using several traces the attack is successful up to $\sigma = 2.7$, depending on the parameter set and number of traces.

This contribution is exemplary based on [HHP+21] and re-uses major parts of the implementation and simulation framework [CCA]. We extend this by taking into account shuffling countermeasures presented by [RPBC20]. Nevertheless, the introduced techniques do not solely apply to the attack of Hamburg et al. but can be generalized to attacks against shuffling countermeasures.

Our contribution. We analyze shuffling countermeasures proposed by Ravi et al. in [RPBC20] hardening the NTT against SCAs. We introduce a number of tools weakening the proposed countermeasures or, under mild noise conditions, even breaking them.

Firstly, we introduce a new factor node which we call shuffle node targeting fine shuffling. This node is added to the factor graph of [HHP+21] and extends the BP algorithm itself. Shuffle nodes iteratively learn the shuffling permutation of fine shuffling within a BP run. This allows for a more noise resistant inference, by separating mixed leakage distributions modeling the uncertainty of shuffled in- or output nodes of a butterfly factor node. Additionally, we introduce the pre-processing technique mixing priors as an easy to implement adaptation countering fine-shuffling and compare mixing priors against using a shuffle node.

Secondly, we propose several tools targeting the coarse shuffling countermeasures. We expand our attacker model and describe several matching algorithms to find inter-layer connections based on shuffled measurements. We additionally discuss the usage of subgraph inference to reduce the uncertainty during the matching of butterflies. By computing matching probabilities using our extended attacker model and then applying the Sinkhorn-Knopp algorithm [Sin64] to the right-stochastic probability matrix, our two-point matching algorithm computes a mix-matrix which is applied to the vector of measurements. While this enables running successful BPs on the measurements, it also creates additional noise. Alternatively, we propose exact permutation matching, allowing to extract permutations which do not increase noise, s high computational power.

Based on our results, we conclude that the proposed countermeasures of [RPBC20] are powerful and counter [HHP+21], yet could lead to a false security perception. A resourceful adversary might still be able to launch successful attacks.

Outline. In Section 2 we present the necessary background including BP. Section 3 describes the countermeasures introduced by Ravi et al. [RPBC20]. Section 4 discusses new techniques and approaches which weaken these countermeasures. Section 5 states simulated results and discusses advantages and limitations of these techniques. Section 6 summarizes the contribution and describes possible extensions as future work.

2 Preliminaries

This section introduces the mathematical background of the NTT, provides a wrap up of Soft Analytical Side-Channel Attacks (SASCAs), and summarizes previous work in the context of profiled SCAs in combination with BP. Since there are a number of previous
contributions in this context, we keep the sections compact and provide references for the interested reader.

2.1 SASCA and Belief Propagation

Soft Analytical Side-Channel Attacks (SASCA) were introduced by Veyrat-Charvillon et al. [VGS14]. SASCAs have the goal to reduce the guessing entropy by combining side-channel leakage of multiple points within the algorithm execution. The combination of each leakage point represents the joint probability distribution of the secret. Therefore, the distribution of each leakage observation is a marginal of the targeted secret. Due to measurement imperfections or leakage model constraints each marginal distribution has some guessing entropy left. SASCA models the reduction of this guessing entropy as a noisy decoding problem.

Belief Propagation is a message passing algorithm which allows inference in noisy decoding problems. The noisy joint distribution can be modeled efficiently using a factor graph. Factor graphs are bipartite graphs consisting of variable nodes which contain the marginals and factor nodes which model the pair-wise connections between the marginals. BP allows inference on these factor graphs while staying computational efficient. Although, BP is only exact in decoding the marginals in acyclic graphs, it has been shown in several contributions that it can be used in the context of cryptographic SCA, where cycles in the algorithmic flow graph are unavoidable [VGS14, PPM17, KPP20, PP19, GRO18, HHP+21].

BP is a core algorithm in this contribution. Therefore, we re-iterate the basic mathematical concepts based on [Mac03] and [VGS14]. As noted before, BP allows efficient computation of marginals to infer the joint probability distribution. Let $P(x)$ be a function of $x$. $x$ is a set of $N$ random variables

$$x \equiv \{x_n\}_{n=1}^N.$$

We define $P(x)$ as a product of $M$ functions $f_m(x_m)$

$$P(x) = f_1(x_1) \cdot f_2(x_2) \cdot \ldots \cdot f_M(x_M),$$

where each function uses a subset $x_m$ of $x$. The initial prior distributions of each $x_m$ is gained by e.g. a profiled SCA. Variables and functions are modeled as variable nodes and factor nodes arranged in a factor graph reflecting the attacked algorithm. The goal of BP is to calculate the marginals

$$Z_n(x_n) = \sum_{\{x_{n'}\}, n' \neq n} P(x)$$

or the normalized version

$$P_n(x_n) = Z_n(x_n)/Z,$$

with $Z = \sum_x \prod_{m=1}^M f_m(x)$.

BP performs this calculation efficiently by iteratively exchanging messages between the nodes. We define two types of messages, namely variable-to-factor messages

$$u_{n \rightarrow m}(x_n) = \prod_{m' \in M(n) \backslash \{m\}} v_{m' \rightarrow n}(x_n),$$
and factor-to-variable messages

\[ v_{m \rightarrow n}(x_n) = \sum_{x_m \setminus n} \left( \prod_{n \in N(m) \setminus m} u_{n' \rightarrow m}(x_{n'}) \right). \]

The exchange of messages is continued until convergence or a different break condition is reached. As already briefly mentioned, in cyclic graphs convergence is not guaranteed. Therefore, in cyclic graphs common break condition are a certain number of iterations or a measure of entropy development of each node. The belief or marginal distributions \( Z_n \) are finally calculated by

\[ Z_n(x_n) = \prod_{m \in M(n)} v_{m \rightarrow n}(x_n). \]

2.2 Number Theoretic Transform

Lattice-based PQ algorithms like Kyber are using the NTT to speed up polynomial multiplications. The NTT is an adapted form of the Discrete Fourier Transform (DFT) and operates on a prime field \( \mathbb{F}_q \) instead of complex numbers. It is a transformation from a polynomial ring, e.g. in Kyber \( \mathbb{R}_q = \mathbb{F}_q[x]/(x^n + 1) \), to the NTT domain which is in most cases given in \( \mathbb{F}_q^n \). Mathematically it is given by evaluating the original polynomial at the \( n \)-th roots of unity. The NTT defines a forward as well as backward transformation which we call INTT and is therefore a bijective mapping between the normal domain and the NTT domain. For \( \mathbb{R}_q \) with a \( 2n \)-th primitive root of unity \( \zeta \), the NTT transformation of an \( n \)-degree polynomial \( f = \sum_{i=0}^{n-1} f_i x^i \) is defined as:

\[ \hat{f} = \text{NTT}(f) = \sum_{i=0}^{n-1} \hat{f}_i x^i, \quad \text{where } \hat{f}_i = \sum_{j=0}^{n-1} f_j \zeta^{(2i+1)j}. \]

and similarly the INTT

\[ f = \text{INTT}(\hat{f}) = \sum_{i=0}^{n-1} f_i x^i, \quad \text{where } f_i = n^{-1} \sum_{j=0}^{n-1} \hat{f}_j \zeta^{-(2j+1)}. \]

The product of two polynomials \( a \) and \( b \) can be calculated as \( \text{INTT}(\text{NTT}(a) \circ \text{NTT}(b)) \), where \( \circ \) denotes the point-wise multiplication. In the case of Kyber, the NTT is an isomorphism from \( \mathbb{R}_q = \mathbb{F}_q[x]/(x^n + 1) \) to \( \mathbb{F}_{q^2} \), with \( \mathbb{F}_{q^2} = \mathbb{F}_q[x]/(x^2 - \zeta) \) where \( \zeta \) is a \( n \)-th primitive root of unity. This can be seen as skipping the last layer of the NTT.

The implementation of the NTT can be efficiently done by chaining so-called butterflies. The usage of these butterflies allows the iterative reformulation of the NTT into smaller NTTs. This splitting is called decimation and different butterfly types can be used. Figure 1 shows a 8-coefficient NTT using the Cooley-Tukey [CT65] butterfly with decimation in time.

Figure 2 (left) shows a translation of an NTT into a factor graph. Figure 2 (right) shows a sub-graph of the total factor graph used throughout this work and was used in [HHHP+21]. For Kyber the total number of butterfly layers is 7 and in each node layer there a 256 variable nodes. The factor graph of Kyber’s INTT can be separated into two sub-graphs since the first layer is skipped. The factor node \( f_{bf} \) is defined as in [PP19]:

\[ f_{bf}(x_a, x_b, x_c, x_d) = \begin{cases} 1, & \text{if } x_a + x_b \cdot \zeta = x_c \mod q \text{ and } x_a - x_b \cdot \zeta = x_d \mod q \\ 0, & \text{otherwise} \end{cases} \]
3 Countermeasures

The information processed within the NTT can contain secret information. For example, in the decryption phase of Kyber, the product of the long-term secret \( \hat{s} \) with the ciphertext \( \hat{u} \) is the input of the inverse NTT. As shown in Hamburg et al. [HHP+21], leakage recorded during this computation can be used to recover the long-term secret \( s \). Further, as the attack infers a distinct subset of secret coefficients with each single trace, which are recovered from within the single linear NTT operation, splitting the NTT computation into two shares does not alter the attack efficiency significantly. This means that the common countermeasure of masking the secret is not sufficient for efficient protection against this kind of attack.

In Ravi et al. [RPBC20], specific countermeasures against this kind of attack were proposed, consisting of masking and shuffling countermeasures. However, their efficiency against a side-channel attacker was not further studied. In this paper, we are analyzing the effects of these shuffling countermeasures.

3.1 Fine Shuffling

In fine shuffling the order of the input loads and output stores for each butterfly are randomized. This way, an attacker can no longer directly assign the recorded leakage value to a specific input/output of a butterfly. As an implementation, Ravi et al. [RPBC20]
propose to utilize an arithmetic conditional swap technique after [HS13], which avoids secret branch conditions and secret lookup operations. This is done, with a random bit deciding the order of loading the two coefficients, followed by a conditional swap using bitwise operations. Possible weak points of this shuffling technique discussed in [RPBC20] are on the one side attacking the multiplication step within each butterfly, as done in [PPM17]. On the other side, they also discuss an attack considering the leakage of the mask used in the conditional swap operation as done in [NCOS16, NC17] for ECC. In this paper, we propose another way to circumvent the fine shuffling, without the need of adjusting the leakage model from [HHP+21]. Figure 3 shows four possible factor graph representations of a fine shuffled butterfly.

3.2 Coarse Full Shuffling

Each butterfly within a layer of the NTT can be computed independent of the other butterflies. Coarse full shuffling permutes the order of execution of the individual butterflies, and thus loading and storing of the coefficients, within each layer. However, the pair of coefficients belonging to a single butterfly are processed together, and are thus loaded and stored in consecutive order. With \( n \) coefficients, this shuffles \( (n/2)! \) permutations per layer.

3.3 Coarse Shuffling in Blocks

In a single layer, several butterflies share the same twiddle factor \( \zeta \). Butterflies with the same twiddle factor are referred to as blocks. Coarse shuffling in blocks, in the following called coarse block shuffling, randomizes the order of computation of the butterflies within a block. Thereby, in comparison to coarse full shuffling, the permutation applied to each layer is restricted. For a layer with \( m \) butterfly groups, this results in \( (\frac{n}{2m})!^m \) permutations. For example, in the INTT of Kyber, with \( n = 256 \), the first layer consists of \( m = 64 \) groups, the entropy is \( (\frac{256}{128})!^2 = 2^{64} \). For the last layer, this reduces to a single group, increasing the entropy to \( 128! \). Figure 4 shows a coarse shuffled sub-graph. Shuffling is only performed within \( \zeta \) blocks and the order of the loads of the input as well as the order of the stores is not shuffled. Note that the layers are shuffled independently. Figure 4 shows an example of a coarse block shuffled sub factor graph.

4 Attacking Shuffled Number Theoretic Transforms

In this section, we describe several techniques to attack, and in some cases defeat, the shuffling countermeasures described by Ravi et al. in [RPBC20]. Our general setting is the same as in [HHP+21]: We simulate a template attack on the execution of an INTT running on an embedded device, where the input of the INTT has been sparsified by the techniques described by Hamburg et al. using a Chosen Ciphertext Attack (CCA).
4.1 Attacker models

By simulating a profiled SCA on a software implementation, we obtain probability distributions for in- and outputs of butterflies. For a Kyber INTT, we have 8 node layers each consisting of 256 variables to observe. We assume that 192 positions of the first layer have been set to zero using [HHP+21]. In contrast to [HHP+21], we differentiate between two attacker models. The first model as described in Hamburg et al. assumes leakage of load operations in the first layer and store operations in the following layer. This approach has been verified experimentally by [PP19]. In addition, we assume an attacker may obtain measurements of load operations in the first node layer, and load as well as store operations in each subsequent node layer, except for the last one, where only store operations are carried out.

Following [PP19] and [HHP+21], at each node with actual value \( a \) with Hamming Weight (HW) \( h \), we model the leakage by first sampling

\[ h' \sim \mathcal{N}(h, \sigma) \]

and then obtaining the HW distribution from

\[ \mathcal{N}(h', \sigma). \]

In the attacks of [PP19] and [HHP+21], those HW distributions are interpreted as distributions on values and fed into a factor graph. This means the probability of measuring a certain HW is assigned to all indices which evaluate to the respective HW. We describe several pre-processing techniques as well as an additional node, to allow BP to work with measurements obtained from a shuffled NTT. Due to the order of executions being shuffled, measurements are not necessarily of the variable that would have been computed at that position in an un-shuffled NTT. By a measurement \( x_{l,h} \) taken at position \( (l, h) \), we mean the actual, possibly wrongly assigned measurement, which may belong to a variable \( v_{l',h'} \) in an un-shuffled graph.

4.2 Defeating Fine-Shuffling

Fine shuffling was proposed by Ravi et al. in [RRCB20] and is re-iterated in Section 3.1. Without additional attack measures, our implementation failed in all cases with all sigmas when using fine-shuffling. Therefore, fine-shuffling provides protection against basic attacks...
that do not take fine-shuffling into consideration. Nevertheless, it does not fully prevent all considered attacks using the same measurements with different pre-processing techniques. We here describe two methods, mixing priors and using a shuffle node to defeat fine-shuffling.

4.2.1 Mixing Prior Distributions

We first observe that given a measurement $x_{l,h}$, at position $(l, h)$, where $l$ is the layer and $h$ is the height, $x_{l,h}$ may be a measurement of the variable at $(l, h)$ or $(l, h + d)$ where $d$ is the distance of the layer, for Kyber this is given by $d = 2l+1$. Thus, by replacing $x_{l,h}$ and $x_{l,h+d}$ by $x_{l,h} + x_{l,h+d}$, both measurements certainly do have positive probability at the value of their corresponding variables $v_{l,h}$ and $v_{l,h+d}$. Here, $+$ is point-wise addition and the sum $x_{l,h} + x_{l,h+d}$ is normalized. The point-wise addition of two probability distributions is shown in Figure 5. Mixing distributions is possible as fine-shuffling only shuffles in a pairwise manner and, therefore, addition of several measurements still gives useful information. While we thereby do not obtain an optimal distribution and significantly decrease our noise tolerance, it is easily integrated into an existing implementation and is successful up to an measurement with noise with a standard deviation of $\sigma = 0.8$, as presented in Figure 9.

4.2.2 Shuffle Node

In the following, we first provide intuition behind the newly introduced shuffle node, followed by a thorough definition. Note that our shuffle node is not only a factor node, but a modification to BP itself. The shuffle node allows for self-modification, i.e. learning, in each BP iteration.

**Intuition.** Mixing two measurements which were fine shuffled removes inconsistent prior distributions. Inconsistent prior distributions are distributions which have zero probability at the correct value. If the two shuffled measurements of two fine shuffled nodes are mixed, inconsistencies are removed since there is a non-zero probability for both possible correct values. As discussed earlier, it is feasible to use these mixed distributions in BP, albeit less noise tolerant in comparison to an un-shuffled distribution setting.

We propose a newly designed factor node which we call shuffle node. The intuition behind the shuffle node is a comparison between the mixed prior distribution and incoming message distributions within a BP run. The shuffle node contains a shuffle factor $\omega$ which is updated and hence slowly infers how the nodes had been shuffled. Our node thereby learns with each iteration, and the initially mixed distributions tend towards the unmixed priors.
**Definition.** Shuffle nodes are factor nodes attached to two variable nodes at positions \((l, h)\) and \((l, h + d)\), as depicted in Figure 3. Each shuffle node holds both priors \(x_{l,h}\) and \(x_{l,h+d}\). An internal factor \(\omega\) determines the mixing of \(x_{l,h}\) and \(x_{l,h+d}\). Initially, \(\omega\) is set to 0.5 which mixes the distributions exactly as described in mixing priors. A shuffle node provides the mixed priors \(\omega \cdot x_{l,h} + (1 - \omega) \cdot x_{l,h}\) to the attached variable nodes \(\tilde{x}_{l,h}\) and \(\tilde{x}_{l,h+d}\). This means, \(\omega = 0\) corresponds to an un-shuffled measurement and \(\omega = 1\) to a switched measurement. If \(\omega\) is in \([0, 1]\) the distributions are being mixed.

\[
\begin{align*}
\omega &
\end{align*}
\]

Figure 6: Sketch of a sub-graph with shuffle node \(f_{sn}\), shuffle factor \(\omega\), priors \(x_{0,0}, x_{0,2}\) and respective shuffled variable nodes \(\tilde{x}_{0,0}\) and \(\tilde{x}_{0,2}\). \(\tilde{x}_{0,0}\) and \(\tilde{x}_{0,2}\) are connected to a butterfly node \(f_{bf}\). Dashed lines indicate edges connected to the global NTT graph.

In each step, \(\omega\) is updated by taking both messages \(m_{l,h}, m_{l,h+d}\) of the variables nodes into account. This is done by computing the Kullback-Leibler divergences [KL51]

\[
\begin{align*}
D_{KL}(m_{l,h}, x_{l,h}), \\
D_{KL}(m_{l,h+d}, x_{l,h}), \\
D_{KL}(m_{l,h}, x_{l,h+d}), \text{ and} \\
D_{KL}(m_{l,h+d}, x_{l,h+d}).
\end{align*}
\]

Then \(\omega\) is calculated as

\[
\omega = \frac{E_{\text{no-shuffle}}}{E_{\text{no-shuffle}} + E_{\text{shuffle}}}
\]

where the evidence for a (not-)shuffled version is given by

\[
\begin{align*}
E_{\text{no-shuffle}} &= D_{KL}(m_{l,h}, x_{l,h}) + D_{KL}(m_{l,h+d}, x_{l,h+d}) \text{ and} \\
E_{\text{shuffle}} &= D_{KL}(m_{l,h+d}, x_{l,h}) + D_{KL}(m_{l,h}, x_{l,h+d}).
\end{align*}
\]

By updating the shuffle factor \(\omega\) our modified version of BP self-improves by learning from already obtained information.

### 4.3 Attacking Coarse Shuffling

Block shuffling, as described by Ravi et al. in [RRCB20], re-iterated in Section 3.2 and Section 3.3, does not shuffle inputs of fixed butterflies, but instead the butterflies of a layer. Coarse block shuffling is limited to shuffling butterflies in a block, i.e. butterflies with the same twiddle factor. A block in layer \(l\) is given by the indices

\[
\{ (l, h) \mid h \in \{ s, \ldots, s + d \} \}
\]
where the start indices $s$ are in $\{0, d, 2d, \ldots, 256\}$ and the distance $d$ is $2^{l+1}$. In contrast to fine-shuffling, here the number of shuffling positions does not allow for a simple mixing without increasing the noise to an infeasible level. To counter this additional complexity, we extend the attacker model: We assume that the attacker can not only measure leaking load, but load as well as store operations in each layer. This approach is visualized in Figure 7. Please note, that loads and stores of different layers are independent. However, loads and stores of the same butterflies are considered in-order and are therefore dependent.

![Attacker model showing loads and stores. Note that butterflies with the same ζ value can be shuffled arbitrary.](image)

Previous work has shown the leakage of load and store operations but had no necessity to combine it [PP19]. Using this attacker model we can employ a new approach which matches similar probability distributions of loads and stores. Thereby, we obtain probability information which can be used to mix or directly un-shuffle the priors.

### 4.3.1 Matching Distributions

We now describe the algorithm to match the distributions in each layer given leakage of load and stores of the same value. For each variable in each layer $l$, except for the first and the last layer, we obtained two distributions, by measuring the stores from butterfly layer $l$ and the loads from butterfly layer $l+1$. Those can be used to find the relative permutation of butterfly layer $l$. As we assume our error to be Gaussian with fixed standard deviation $\sigma$, we identify measurements by their mean.

**One-Point Matching.** When observing a measurement $x$ of a node $v$ with mean $\mu$, we may compute the probability of $v$ having HW $w$ as follows. For $\epsilon > 0$ and $I = [\mu - \epsilon, \mu + \epsilon]$, using Bayes’ rule, we have

$$
P(HW(v) = w \mid x \in I) = \frac{P(x \in I \mid HW(v) = w) \cdot P(HW(v) = w)}{P(x \in I)}$$

where the likelihood can easily be computed by using

$$P(x \in I \mid HW(v) = w) = P_{N_{\mu,x}}(I),$$

the evidence as

$$P(x \in I) = \sum_h P(x \in I \mid HW(v) = h) \cdot P(HW(v) = h)$$
Adapting Belief Propagation to Counter Shuffling of NTTs

and the prior is derived from the number of occurrences of the HW $w$ in the value range.
The probability is now given by taking the limit $\epsilon \to 0$ and a practical approximation may easily be computed by choosing a small enough $\epsilon$. This means for HW $w$ we have

$$P(\text{HW}(v) = w \mid \text{observing } x) = \lim_{\epsilon \to 0} P(\text{HW}(v) = w \mid x \in I).$$

Given two measurements $x_{\text{store}}$ and $x_{\text{load}}$ of $v_{\text{store}}$ and $v_{\text{load}}$, the probability of $v_{\text{store}}$ and $v_{\text{load}}$ belonging together, i.e. $x_{\text{store}}$ and $x_{\text{load}}$ being measurements of the same variable, is

$$\sum_{h} P(\text{HW}(v_{\text{store}}) = h \mid \text{observing } x_{\text{store}}) \cdot P(\text{HW}(v_{\text{load}}) = h \mid \text{observing } x_{\text{load}}).$$

Computing probabilities for all load and stores gives a right-stochastic matrix $A_{l,s}$ for each layer $l$ and block $s$. We now apply the Sinkhorn-Knopp algorithm [Sin64], i.e. alternating normalisation of rows and columns until a doubly stochastic matrix is obtained or the change in entropy reached a certain threshold. We now, in each layer, mix the prior distributions according to the obtained doubly stochastic matrix $A_{l,s}$, by applying matrix multiplication to the vector of priors. To account for the mixture in the previous layer, after each layer, we apply the matrix of layer $l$ to the matrix of layer $l+1$. When combining the algorithm with the CCA described in [HHP+21], some nodes in later layers cannot be matched properly, as they are set to zero. Therefore, only a subset of layers may be used as the structure of the NTT is altered. This is not the case for two-point matching.

Algorithm 1 One-point matching without exact permutation extraction.

Input: $x_{\text{store},l,h},x_{\text{load},l,h}$ for $h \in \{0,\ldots,\text{height}−1\}, l \in \{0,\ldots,\text{layers}−1\}$
Output: Mix matrices $A_{l}$ for $l \in \{1,\ldots,\text{layers}\}$ and mixed measurements

1: for all $l \in \{0,\ldots,\text{layers}−1\}$ do
2: $A_{l} \leftarrow \text{Compute priors}$
3: $\tilde{A}_{l} \leftarrow \text{Sinkhorn-Knopp}(A_{l})$
4: for all $l \in \{1,\ldots,\text{layers}−1\}$ do
5: $x_{\text{load},l} = (x_{\text{load},l−1,0}, \ldots, x_{\text{load},l−1,\text{height}−1})$
6: $x_{\text{load},l} \leftarrow \tilde{A}_{l} \cdot x_{\text{load},l}$
7: $x_{\text{store},l} = (x_{\text{store},l,0}, \ldots, x_{\text{store},l,\text{height}−1})$
8: $x_{\text{store},l} \leftarrow \tilde{A}_{l} \cdot x_{\text{store},l}$
9: $\tilde{A}_{l+1} \leftarrow \tilde{A}_{l} \cdot \tilde{A}_{l+1}$
10: return $\tilde{A}_{l}, x_{\text{store},l,h}, x_{\text{load},l,h}$, for all $l,h$

Two-Point Matching. As in coarse block shuffling butterflies are shuffled, nodes connected to the same butterfly stay in the same relative position (cf. Section 4.3). Therefore, while computing the priors we may take two observations into account at once. Hence, matching can be improved by considering two blocks at once. The probability of a node with index $(l,h)$ being matched with $(l,h')$ is then given by the product of the previously calculated priors for $(l,(h+d) \mod 2d)$. The modified priors give the basis for Algorithm 1. This means two-point matching is one-point matching with taking into account butterfly instead of node shuffling.

Note that even without initial noise, one-point matching creates significant noise, as values in a block are not necessarily unique. Using two-point matching, we not only decrease errors from noise, but also the likelihood of non-unique matchings resulting in an increased noise regardless of the measurement error.

Reducing Full Shuffling to Block Shuffling. Our matching algorithms perform reasonably well under the assumption of only having to match a small number of nodes in the
early layers. When attacking coarse block shuffling, this assumption is true as the number of butterflies is \(2^{\text{layer}+1}\) per block and we therefore feed \(2^{\text{layer}+2}\) nodes into the two-point matching algorithm. Unfortunately, our techniques alone do not allow for an attack on a coarse full shuffled NTT as, here, no restrictions on the permutation applied to layers are present and, in each layer, all nodes may be permuted. Nevertheless, an attacker might be able to assign twiddle factors to measured butterflies, especially if no additional masking of twiddle factors is applied. In that case, the reduction to coarse block shuffling can clearly be done by applying the previously presented algorithms to nodes attached to butterflies with the same twiddle factor. Here, deep learning as a profiling method, as e.g. described in [PPM+21], may be of high value. We note that practicability of such attacks heavily depends on the concrete setting.

**Exact Permutation Matching.** Sometimes, it may not be sufficient or desirable to mix distributions as it increases noise. Instead of applying the mix-matrix, one may extract the permutation with the highest probability from it. Unfortunately, this will often not be correct and cause the BP to fail. To account for this, we provide a version of the algorithm computing not one permutation matrix but many likely permutations per layer. An attacker may then run BP with all combinations of all permutations for every layer.

Finding an exact permutation starts with the same algorithm given above. Instead of aborting and returning the mix-matrix after running the Sinkhorn-Knopp algorithm [Sin64], the row with the most entropy is selected. For this row, we fix all values with probability higher than some threshold. We then, for each value, recursively call the algorithm with the row set to 0 except for in the selected position where we set the probability to 1. After having reached the abort depth in each execution path, all obtained permutations are returned.

We note that exhaustively running all permutations is not realistic in most scenarios. Nevertheless, for a powerful attacker, especially combined with additional information or sub-graph-value matching, this can drastically decrease noise. Exact permutation matching may also be applied to a subset of the layers while working with two-point matching in the remaining layers. This has the advantage of eliminating mixing noise in early layers which would otherwise also distribute to higher layers due to the mix-matrices being products of matrices obtained in earlier layers.

**Algorithm 2** ExactMatch: Finding probable permutations.

**Input:** Prior matrix \(A = A_l\) for some layer \(l\), depth level \(d\), max depth \(d_{\text{max}}\), entropy threshold \(t_e\), probability threshold \(t_p\).

**Output:** A list of permutations.

1. if \(d > d_{\text{max}}\) then
   2. return \([\ ]\)
3. result_list ← \([\ ]\)
4. \(A ← \) Sinkhorn-Knopp\(A\)
5. \(I ← \) Find indices of rows with entropy higher than \(t_e\)
6. for all \(i \in I\) do
   7. \(J ← \) Find indices of columns with probability greater than \(t_p\)
8. for all \(j \in J\) do
9. \(A_{ij} ← \) Set row \(i\) to \((\delta_k)_k\) where \(\delta\) denotes the Kronecker delta.
10. permutations ← MatchExact\((A_{ij}, d + 1, d_{\text{max}}, t_e, t_p)\)
11. result_list ← Append permutations to result_list
12. result_list ← Sort result_list by likelihood and remove duplicates
13. return result_list
4.3.2 Value-Matching using Sub-Graphs

Since matching based on pure HWs is rather imprecise we propose sub-graph evaluation. Sub-graphs of the NTT can contain enough information to converge to the correct values although not connected to the global NTT graph. This clustering allows to use sub-graph convergence as a test routine to enhance certainty into the matching of nodes.

![Graphs](image)

Figure 8: Attack results for different noise levels $\sigma$ with distributed non-zero coefficients using sub-graphs of the NTT. From the left top to the right bottom: Graphs with 4, 8, 16, and 32 input nodes reaching over 2, 3, 4, and 5 layers, respectively. For each sub-graph type, three levels of non-zero elements at the input level are depicted. Each sample point is the average of 100 runs.

Figure 8 shows statistics for four types of sub graphs: Graphs with 4, 8, 16, and 32 input nodes, which corresponds to graphs with 2, 3, 4, and 5 butterfly layers, respectively. For each sub-graph type we evaluate the influence of zero elements as input on the convergence. As expected and already mentioned in [HHP+21], the number of zero elements heavily improves the noise resistance of the graphs. However, for convergence in the context of evaluating a matching process only the statistics with no zero elements is of importance. Graphs with 3 butterflies and no zero elements reach noise resistance up to a $\sigma$ equals 0.4. For each added butterfly layer the noise resistance is increased by approximately 0.1.

4.3.3 Unshuffling the First Layer

Our matching algorithms all rely on a correctly un-shuffled first layer. However, it is not possible to un-shuffle the first layer by matching it to a shuffled second layer. In the first layer, only two butterflies have the same twiddle factor $\zeta$. Thus, for height $h$, that is $\frac{h}{2}$ butterflies, there are $2^h$ possible permutations. To reduce complexity, we are working with a total of only 64 set values, which is achieved by using the technique described in [HHP+21] using 192 zeros. This results in an effective height of 64. Note that for one-point matching, this reduces the maximal number of layers which may be used, as shuffled nodes in zeros blocks are not corrected but do mix with non-zero values in the last two layers.
Without further information a simple brute-force has to run $2^{16}$ BP runs. Although $2^{16}$ BP runs may not be feasible for a small-scale attacker, it is still a considerable reduction in security and viable for a determined and resourceful adversary. Fortunately, the number of BP runs can be reduced by observing failing nodes in unsuccessful runs on sub-graphs (cf. Section 5.2). Due to an incorrectly permuted pairs of butterflies in the first layer often causing an error in the third layer which propagates back, we are in many cases able to successively rule out incorrect sub-permutations by observing failing sub-graphs (see Figure 11). In addition, observing the matching quality in the first layer may already give an insight on the correctness of the corresponding blocks. Assuming the wrong permutation for the first two butterflies but the correct permutation for the second pair of butterflies (or vice-versa) will in many cases cause higher matching differences when using two-point matching. Thereby, complexity may be further reduced in theory down to $2^8$ BP runs, depending on the number of unique HWs per block and the noise level $\sigma$.

5 Results

We simulated our attack methods by extending the implementation of [HHP\textsuperscript{+}21]. The implementation of Hamburg et al. provides an Python framework modelling the attack and a BP implemented in Rust. First, we extended their code by adding a shuffling method allowing to shuffle measurements as described by [RPBC20] as well as the different attacker model modelling measurements of load and store operations. Then, we implemented the methods to attack fine-shuffling described in Section 4.2.1 and Section 4.2.2. For the slightly more computationally expensive techniques to attack coarse shuffling, described in Section 5.2, we use a separate Rust implementation which is called from the original implementation. We modeled our measurements following Pessl and Primas as described in [PP19, HHP\textsuperscript{+}21] and state our results depending on the noise standard deviation $\sigma$. Note that in unsuccessful BP runs, often enough information is obtained to continue with different methods such as lattice reduction following Dachmann-Soled et al. [DDGR20]. In this section, all results are given for the case of 192 zeros using the chosen-ciphertext attack of [HHP\textsuperscript{+}21]. Figure 9 depicts the success rates against fine shuffling as well as coarse block shuffling.

5.1 Fine Shuffling

Fine-shuffling permutes inputs to single butterflies, i.e. each measurement may be swapped with exactly one different measurement. As described in Section 3.1, we provide two different ways to counter fine-shuffling. The first one, mixing priors, does not require any modifications to the BP and is therefore comparably cheap to implement. The second one, using a shuffle node, gives better results but uses a modified BP by adding a special factor node. We implemented both variants.

Mixing Priors. Mixing priors is the point-wise addition (and subsequent normalization) of distributions obtained by measuring a variable. Thereby, we achieve that the resulting distribution at a node certainly is a measurement of the correct variable (cf. section 4.2.1). This heavily increases noise but, as depicted in Figure 9, allows for successful recovery up to a $\sigma$ of 0.8.

Shuffle Node. Using a shuffle node enables our BP to learn from obtained information and thereby successively choose the correct measurement if the initial noise was small enough. This allows us to recover all coefficients up to $\sigma = 1.0$ with a positive success rate. Note that observing the $\omega$ factor (see Section 4.2.2) at a shuffle node gives an indication of whether a measurement at a node was likely shuffled.
5.2 Coarse Shuffling

In Section 4.3, we discussed several techniques countering coarse block shuffling. We implemented one- and two-point matching as well as exact permutation matching in Rust. In addition, we analyzed the convergence of sub-graphs which allow for better matching and un-shuffling the first layer.

In practice, the attack strategy depends on the concrete situation, i.e. the noise level, the obtained distributions, and possibly additional information from traces. Therefore, we did not combine sub-graph convergence and matching, because we do not believe our model to allow for a realistic analysis of the combination of several techniques. We also do not provide a separate analysis of attacking coarse full shuffle as our reduction to block shuffling depends on additional information and is then trivial (while obtaining such information is not trivial at all).

In one- and two-point matching, we obtain a mix-matrix for each layer as described in Algorithm 1. This matrix is applied to the vector of measurements and expresses how likely a permutation is. The matching quality directly corresponds to the row-entropy and the number of non-zero elements per row. We therefore state row-entropy as well as non-zero elements per row for both one- and two-point matching. Data for the mix-matrix statistics was obtained performing 100 runs per sigma, while success rates were obtained with 10 runs per sigma. We always assume the first layer to be un-shuffled as described in Section 4.3.3.

One-Point Matching. As one-point matching does not incorporate available structural information, it significantly underperforms compared to two-point matching. Nevertheless, we state the result for the rare case where two-point matching may not be feasible, as e.g. in a totally different setting. Even without measurement noise, we did not manage to recover the key when using one-point matching, but for very low noise, in many cases almost all coefficients could be recovered.

In Table 1, we state the average number of distributions being mixed with factor higher than 0.005 as well as the average entropy per row of the mix matrix for each layer. Table 2 depicts the average entropy at all non-zero nodes per layer compared to an attack on an un-shuffled NTT. Note that due to zero-values being attached to butterflies with a second non-zero value as input, only the first 4 layers may be used, resulting in 3 layers that have to be matched. Higher layers perform significantly worse as the mix-matrix in layer \( l \) is a product of the matrices for layers \( 1, \ldots, l-1 \) and the number of nodes to match increases per layer (the constraints for the shuffling permutation decreases with every layer).

Table 1: Entries in the one-point mix-matrix with probability higher than 0.005 and, in brackets, the entropy per row.

\[
\begin{array}{cccccc}
\sigma & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 \\
\hline
\text{Layer 1} & 1.27 (0.25) & 1.28 (0.26) & 1.53 (0.37) & 1.91 (0.57) & 2.14 (0.74) \\
\text{Layer 2} & 2.04 (0.82) & 2.1 (0.83) & 2.89 (1.10) & 4.31 (1.57) & 5.02 (1.86) \\
\text{Layer 3} & 4.43 (1.80) & 4.57 (2.28) & 6.64 (2.28) & 10.53 (2.97) & 12.42 (3.32) \\
\end{array}
\]

Two-Point Matching. Two-point matching uses the same base algorithm as one-point matching but makes use of additional information by matching at two nodes at once. Two-point-matching, allows for a noise tolerance up to \( \sigma = 0.4 \). Table 3 depicts the average number of distributions being mixed as well as the average entropy per row of the mix matrix for each layer. In Table 4, we show the average entropy over all non-zero nodes per layer compared to an attack on an un-shuffled NTT. Figure 9 show the success rates for
Table 2: Entropy increase by applying one-point matching compared to an attack against an un-shuffled NTT.

<table>
<thead>
<tr>
<th>$\sigma$</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>No shuffling</td>
<td>0.00</td>
<td>0.05</td>
<td>0.34</td>
<td>0.70</td>
<td>1.01</td>
</tr>
<tr>
<td>Layer 1</td>
<td>0.11</td>
<td>0.17</td>
<td>0.56</td>
<td>1.06</td>
<td>1.45</td>
</tr>
<tr>
<td>Layer 2</td>
<td>0.48</td>
<td>0.54</td>
<td>1.05</td>
<td>1.73</td>
<td>2.18</td>
</tr>
<tr>
<td>Layer 3</td>
<td>1.13</td>
<td>1.20</td>
<td>1.82</td>
<td>2.52</td>
<td>2.90</td>
</tr>
</tbody>
</table>

the full attack using one- and two-point matching on a coarse block shuffled NTT. For two-point matching, layers where butterflies are connected to zero and non-zero inputs, essentially one-point matching is performed, further adding to the significantly worse performing later layers.

Table 3: Entries in the two-point mix-matrix with probability higher than 0.005 and, in brackets, the entropy per row.

<table>
<thead>
<tr>
<th>$\sigma$</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1</td>
<td>1.02 (0.02)</td>
<td>1.02 (0.02)</td>
<td>1.08 (0.05)</td>
<td>1.23 (0.12)</td>
<td>1.36 (0.2)</td>
</tr>
<tr>
<td>Layer 2</td>
<td>1.06 (0.06)</td>
<td>1.07 (0.06)</td>
<td>1.23 (0.13)</td>
<td>1.70 (0.33)</td>
<td>2.18 (0.58)</td>
</tr>
<tr>
<td>Layer 3</td>
<td>1.15 (0.14)</td>
<td>1.17 (0.15)</td>
<td>1.58 (0.30)</td>
<td>2.96 (0.82)</td>
<td>4.54 (1.43)</td>
</tr>
<tr>
<td>Layer 4</td>
<td>1.33 (0.03)</td>
<td>1.37 (0.32)</td>
<td>2.76 (0.75)</td>
<td>6.60 (1.94)</td>
<td>11.58 (2.99)</td>
</tr>
<tr>
<td>Layer 5</td>
<td>8.74 (2.85)</td>
<td>8.91 (2.87)</td>
<td>13.07 (3.45)</td>
<td>25.93 (4.80)</td>
<td>37.95 (5.50)</td>
</tr>
<tr>
<td>Layer 6</td>
<td>29.13 (4.77)</td>
<td>28.90 (4.79)</td>
<td>30.36 (5.35)</td>
<td>33.52 (6.43)</td>
<td>26.78 (6.80)</td>
</tr>
</tbody>
</table>

Table 4: Entropy increase by applying two-point matching compared to an attack against an un-shuffled NTT.

<table>
<thead>
<tr>
<th>$\sigma$</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>No shuffling</td>
<td>0.00</td>
<td>0.05</td>
<td>0.34</td>
<td>0.70</td>
<td>1.01</td>
</tr>
<tr>
<td>Layer 1</td>
<td>0.01</td>
<td>0.06</td>
<td>0.38</td>
<td>0.80</td>
<td>1.16</td>
</tr>
<tr>
<td>Layer 2</td>
<td>0.03</td>
<td>0.08</td>
<td>0.42</td>
<td>0.93</td>
<td>1.39</td>
</tr>
<tr>
<td>Layer 3</td>
<td>0.06</td>
<td>0.12</td>
<td>0.53</td>
<td>1.23</td>
<td>1.89</td>
</tr>
<tr>
<td>Layer 4</td>
<td>0.15</td>
<td>0.20</td>
<td>0.81</td>
<td>1.88</td>
<td>2.63</td>
</tr>
<tr>
<td>Layer 5</td>
<td>0.70</td>
<td>0.78</td>
<td>1.47</td>
<td>2.30</td>
<td>2.68</td>
</tr>
<tr>
<td>Layer 6</td>
<td>1.39</td>
<td>1.48</td>
<td>2.06</td>
<td>2.62</td>
<td>2.83</td>
</tr>
</tbody>
</table>

Exact Permutation Matching. Exact permutation matching alone is not practical for most attackers, but does not increase the noise at all. Therefore, using exact permutation matching on all layers, the noise tolerance is as high as in the original attack. We note that applying it to single layers can be practical, especially when combined with observing sub-graph convergences. Figure 10 depicts the average rank, of the correct permutation with a maximal depth of 2, probability threshold 0.01, entropy threshold 0.1 (cf. Algorithm 2), and we additionally fix no more than 50 coefficients. The rank is the average number of BP’s an attacker has to run to correctly un-shuffle one layer. When applying exact permutation matching to multiple layers, the average number of BP’s behaves multiplicative with possible improvements by observing sub-graph convergence. For layers 5, 6, and layer
Adapting Belief Propagation to Counter Shuffling of NTTs

Figure 9: Success rates of mixing distributions and shuffle node against fine-shuffling, as well as two-point matching against coarse block shuffling.

4 with $\sigma > 0.1$, the correct permutation is not found with this parameter set. The choice of parameters heavily influences the runtime and an attacker with high computational power might be able to improve upon the results depicted here.

Figure 10: Rank of exact permutation matching per layer and $\sigma$.

Convergence of Sub-Graphs. We investigated the possibility to use sub-graphs to check for the correct permutation of the first layer. Figure 11 depicts three heat maps. Each heatmap plots layer 0 to 4 and nodes 0 to 63. Further layers as well as the nodes 64 up to 255 did not add any further information. The topmost heatmap indicates how many of the nodes have been matched correctly. We see that the left side has many more faulty matches than the right side. The second heat map depicts the number of convergences of sub-graphs. Since we evaluated multiple sub-graphs with different starting layers and layer numbers, a node could have multiple occurrence in multiple graphs. We notice, that although the left side has bad matching results, some sub-graphs still converge. This was expected because wrongly matched HWs could still have a valid solution and therefore converge. However, it is apparent that correctly matched layers result in convergence of multiple sub-graphs. In the presented case up to 5 graphs converged per node. Hence, in regions with high confidence multiple graphs of different depth converge. This is supported by the final heatmap which shows which nodes converged to the correct value and therefore reveal the secret. This approach is interesting and showed partial success. However, it only was successful up to a $\sigma$ of 0.2 and we consider the automation and usage in an better
than random guess search for the right permutation of the first layer as future work.

Figure 11: Evaluation of sub-graph convergence as a measure for correct matching with parking of the first layer. Plots were created with a noise level of $\sigma = 0.2$. Depicted are layer 0 to 4 and nodes 0 to 63 since nodes 64 up to 255 are containing zeros and therefore do not add any further findings.

6 Conclusion

In this work, we provide analysis of a subset of NTT countermeasures, fine shuffling and coarse (block) shuffling, proposed by [RPBC20]. We give further evidence that all variants of shuffling provide basic protection against profiled SCAs that have not been adapted to the countermeasures.

We present several techniques to attack shuffled NTTs. Our attacks are practical in the case of fine-shuffling. We introduce a pre-processing technique, mixing priors, to counter fine-shuffling in a lower noise setting. Mixing priors is easy to implement and does not require the BP to be altered. This makes mixing priors a powerful but inexpensive technique. A more sophisticated approach is our shuffle node, which is a factor node and modifies the BP algorithm to learn whether the inputs of a butterfly had been shuffled. The usage of shuffle nodes does improve on noise tolerance compared to mixing priors. To the best of our knowledge, such a factor node has not been used in SASCAs yet.

We provide several tools to attack coarse block shuffling, making a successful attack practical for a powerful adversary. We therefore rely on the adversary being able to observe load and store leakage, which was assumed by [HHP+21] and shown to be feasible in [PP19]. The attacker model is extended by taking load and store leakage at each butterfly layer into account. We state an attack on coarse full shuffling assuming an even further extended attacker model leaking twiddle-factor loads or factors of multiplications. Our matching techniques are stated in two variants, allowing either for a less expensive mixing...
Adapting Belief Propagation to Counter Shuffling of NTTs

of priors using a mix-matrix applied to the vector of measurements in a layer or the extraction of several exact permutations. The first approach creates additional noise while the latter requires an attacker that has enough resources at their hands to run a large number of BPs. Combining both approaches may be favorable as applying exact permutations in early layers does not cause the need for a large number of BPs, but may significantly decrease noise compared to mixing.

Since several lattice-based PQ schemes rely on an NTT for polynomial multiplication and other schemes may be implemented using an NTT, we contribute to a better overall understanding of the security implications of using PQ cryptography. Furthermore, our tools might also be applicable to counter shuffling in several other attacks.

**Future Work.** Our attack leaves room for improvement in un-shuffling the first layer, as e.g. indicated in Section 4.3.3. Using more sophisticated methods, such as algebraic methods to reduce the number of possible permutations, may heavily improve upon the practicability of our attack. This could e.g. include the usage of SAT-solvers or machine learning methods on intermediate results or sub-problems. Such methods could also allow for improving exact permutation matching and thereby increase the overall noise tolerance. Combining and automatization of our techniques to un-shuffle the first layer, perform sub-graph matching, and decide whether to apply exact-permutation matching would be a practical task of high value.

Chunking techniques on sub-graphs, improving our sub-graph methods, might be an option to reduce the noise created by matching in higher layers. For example, iteratively observing overlapping sub-graph convergence and automatically combining results into a meta-graph, might improve overall convergence.

The practical feasibility of reducing from coarse block shuffling to coarse full shuffling is left open. This, as described in Section 4.3.1, requires an attacker to retrieve twiddle-factor information in addition to load and stores already obtained for intermediates. We propose investigating the usage of deep learning on recorded traces to obtain this information which might be hard to observe in a classical template attack.

**Acknowledgements**

Author list in alphabetical order; see [https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf](https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf). This work was supported by the German Ministry of Education, Research and Technology in the context of the project Aquorypt (reference numbers 16KIS1018 and 16KIS1017), and by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 830927.
References


Adapting Belief Propagation to Counter Shuffling of NTTs


