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Abstract

Zero-knowledge proofs are a cryptographic cornerstone of privacy-preserving technologies such
as “Confidential Transactions” (CT), which aims at hiding monetary amounts in cryptocurrency
transactions. Due to its asymptotically logarithmic proof size and transparent setup, most state-of-
the-art CT protocols use the Bulletproofs (BP) [1] zero-knowledge proof system for set membership
proofs such as range proofs. However, even taking into account recent efficiency improvements, BP
comes with a serious overhead in terms of concrete proof size as well as verifier running time and
thus puts a large burden on practical deployments of CT and its extensions.

In this work, we introduce Bulletproofs++ (BP++), a drop-in replacement for BP that improves
its concrete efficiency and compactness significantly. As for BP, the security of BP++ relies only on
the hardness of the discrete logarithm problem in the random oracle model, and BP++ retains all
features of Bulletproofs including transparent setup and support for proof aggregation, multi-party
proving and batch verification. Asymptotically, BP++ range proofs require only O(n/ logn) group
scalar multiplications compared to O(n) for BP and BP+.

At the heart of our construction are novel techniques for permutation and set membership, which
enable us to prove statements encoded as arithmetic circuits very efficiently. Concretely, a single
BP++ range proof to establish that a committed value is in a 64-bit range (as commonly required
by CT) is just 416 bytes over a 256-bit elliptic curve, 38% smaller than an equivalent BP and 27%
smaller than BP+. When instantiated using the secp256k1 curve as used in Bitcoin, our benchmarks
show that proving is about 5 times faster than BP and verification is about 3 times faster than BP.
When aggregating 32 range proofs, proving and verification are about 9.5 times and 5.5 times faster,
respectively.

∗liameagen@protonmail.com
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1 Introduction

Cryptocurrencies like Bitcoin [2] enable decentralized, peer-to-peer payments by maintaining a distributed
public ledger called the blockchain. While this innovation has permitted an unprecedented degree of
financial autonomy on the Internet, the fact that every transaction leaves a permanent record in the
blockchain poses a substantial threat to the financial privacy of users. Even though cryptocurrency
transactions are not typically associated with real-world identities, a surprisingly large amount of
information can be extracted from the information in the blockchain [3, 4, 5, 6, 7, 8].

Among the most glaring pieces of data that an observer can extract are the amounts of funds that
transactions move from sender to recipient. These monetary amounts are stored as plain integers in
many popular cryptocurrencies, including Bitcoin, which makes it easy for blockchain nodes to verify
that a transaction is balanced, i.e., that the sum of all its input amounts equals the sum of all its output
amounts (except for a small fee given to the miners).

Confidential Transactions A common countermeasure to this leak of information, e.g., as suggested
first in the “Confidential Transactions” proposal [9, 10] (CT), is to hide the monetary amounts in
homomorphic commitments such as Pedersen commitments. The additive homomorphism ensures that
blockchain nodes can verify the amounts in a confidential transaction without learning the plain amounts,
by performing the necessary additions for checking the balance equation on the homomorphic commitments
instead of the plain amounts. However, this approach is only sound if the amounts do not overflow
during the homomorphic addition, because this would allow an attacker to violate balance and thus
create money out of thin air. To exclude overflow, transactions are required to carry a non-interactive
zero-knowledge (NIZK) range proof that demonstrates that committed amounts are in a range [0, 2b) of
non-negative integers much smaller than the message space of the commitment space.

Bulletproofs Motivated by this application, the seminal Bulletproofs (BP) by Bünz et al. [1] was
the first to achieve range proofs with an asymptotic size logarithmic in the number of bits in the range
as well as concrete sizes less than 1 kB. Moreover, BP supports aggregate proving, i.e., a single range
proof can cover multiple commitments at once, and this proof is significantly more compact than proving
each commitment separately. This efficiency makes it feasible to use BP in cryptocurrencies, and BP
range proofs have been successfully deployed in Grin [11] and Monero [12] in conjunction with other
privacy-preserving features. However, even though Monero has subsequently upgraded [13] to Chung
et al. [14]’s recent improvement Bulletproofs+ (BP+), which reduces the size of a single 64-bit range
proof to 576 bytes, range proofs still account for 29% to 42% of the size of a typical Monero transaction.1

These concrete storage costs as well as the concrete verification efficiency still leave much to be desired,
considering that all nodes in a cryptocurrency are required to download and verify the entirety of all
range proofs created within the system.

Multi-asset Confidential Transactions While the initial CT proposal [9] supports only a single
asset (e.g., only Bitcoin), the protocol by Poelstra et al. [15] (as deployed for instance in the Liquid
sidechain [16]) extends the idea to multi-asset confidential transactions (MACT), i.e., a single transaction
can transfer multiple assets simultaneously, and no observer can learn the transacted amounts or the
involved assets. Moreover, the range proof construction used in this protocol supports multi-party proving
for transactions created by multiple senders. This is a prerequisite to using coin mixing protocols [17] on
top of MACT, which further enhance privacy.

However, it is thus far unclear how to fully leverage the potential of BP in MACT protocols. While it
is possible to implement the range proofs in MACT using BP, the protocol by Poelstra et al. [15] requires
additional zero-knowledge proofs, called surjection proofs, to show that the assets on the output side of
the transaction are a permutation of the assets on the input side of the transactions. These additional
proofs are large and since they are constructed using techniques different from BP, it is not possible
to aggregate them together with BP range proofs. The alternative approach taken by the Cloak [18]
MACT protocol overcomes this problem by using BP to encode a permutation argument as an arithmetic
circuit. This avoids surjection proofs, but the way the circuit is constructed makes it incompatible with
known multi-party proving techniques for BP. In summary, there is currently no solution to MACT that
is practical and compatible with BP.

1A transaction with two inputs and two outputs needs has a size of 1532 bytes, and a transaction with one input and
two outputs needs has a size of 2220 bytes after the v15 hardfork [13]. In either case, the aggregated range proof covering
the two output amounts has a size of 640 bytes on a 256-bit elliptic curve as used in Monero (see also Table 1).
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Range BP++ BP+ BP

1× 64 10g + 3s 15g + 3s 16g + 5s
2× 64 10g + 5s 17g + 3s 18g + 5s
4× 64 12g + 5s 19g + 3s 20g + 5s
8× 64 14g + 5s 21g + 3s 22g + 5s
16× 64 15g + 4s 23g + 3s 24g + 5s
32× 64 18g + 5s 17g + 4s 26g + 5s
64× 64 19g + 4s 27g + 3s 28g + 5s
256× 64 21g + 5s 31g + 3s 32g + 5s
384× 64 21g + 5s 31g + 3s 32g + 5s

Table 1: BP++ range proof sizes compared to BP and BP+. The range column of the table (m× n)
indicates the number of aggregated proofs (m) and bits of range proven (n) by each proof. To allow for
comparisons independent of the elliptic curve, we express the resulting proof size in terms of the number
of group elements g and scalars s.

1.1 Contributions

The main contribution of this work is Bulletproofs++ (BP++), a zero-knowledge argument of knowledge
for arithmetic circuits in the discrete logarithm setting.

Reciprocal Argument At the core of BP++ is the reciprocal argument, a novel interactive oracle
proof (IOP) that generalizes permutation arguments and set membership arguments in the sense that it
makes it possible to prove statements over objects similar to multi-sets. This approach builds on the work
by Bayer and Groth [19], who encode a multiset as the roots of a polynomial, and whose basic technique
has been extended to show richer permutation arguments in plookup [20] and plays a critical role in
protocols based on Plonk [21]. These protocols use a “grand product”, i.e., the product of numerous
committed values, to show that a particular permutation, which encodes the structure of an arithmetic
circuit, was applied correctly. The reciprocal argument of BP++ is essentially the logarithmic derivative
of the polynomials used by Bayer-Groth permutation arguments. The logarithmic derivative transforms a
product of linear factors into a sum, thereby linearizing the representation of the multiset.

Since the initial publication of a preprint of our work, the reciprocal argument has already been used
in several other works: Haböck [22] modifies the “grand product” of Hyperplonk [23] to use a variant of
the reciprocal argument, which he rederives via the logarithmic derivative. Eagen, Fiore, and Gabizon
[24] develop a more asymptotically and concretely performant lookup argument, improving upon the
sequence of works beginning with Caulk [25, 26].2 As evident from these works, the reciprocal argument
is clearly of independent interest.

Compactness and Efficiency BP++’s novel techniques improve the compactness and efficiency of
BP(+) significantly. Table 1 compares the size of BP++ range proofs with BP and BP+ range proofs.
As demonstrated by the table, BP++ has a clear advantage in terms of proof size compared to the
alternative.

The time needed for proving and verification is dominated in practice by multiplications of group
elements with scalars. In BP and BP+ range proofs, the count of these multiplications scales linearly with
n. However, BP++ offers an asymptotic improvement, reducing the count to O(n/ log n). The benchmarks
in Section 7 demonstrate that BP++’s improvements do in fact translate to actual implementations. A
64-bit range proof takes roughly 4ms for proving and 0.9 ms for verifying, making it 5× quicker than BP
in proving and 3× quicker in verification.

Modularity without Sacrificing Performance Since BP++ is capable of proving arbitrary state-
ments encoded in arithmetic circuits, our range proofs construction is simply an arithmetic circuit
encoding the range relation. As opposed to BP(+), the resulting range proof is just barely less efficient
than a “direct construction” of a range proof, which demonstrates the power of our techniques. Moreover,

2After a per-table setup procedure, these arguments allow the prover to construct an argument for correctness of table
look ups in time independent of the table size. This case is particularly interesting, as it is not currently known how to
construct an analogous product check that depends only on the number of non-identity values being multiplied.
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this approach simplifies the security analysis of the range proof to the correctness of the circuit and
enhances its reusability in other applications.

MACT On the MACT side, we introduce a BP++ MACT protocol (again by specifying an arithmetic
circuit) that relies on the same asset representation as Cloak but uses an instance of the reciprocal
argument, substantially simplifying the permutation argument. The marginal cost of a BP++ MACT
over an aggregated range proof is negligible in prover and verifier time, and proof size.

Compatibility with BP Since BP++ maintains the same interface and security assumptions estab-
lished by BP(+), BP++ is a drop-in replacement for existing uses of BP(+).

For example, BP range proofs in existing protocols like Grin [11], Monero [12], and Liquid [16] can
be replaced without any change in security assumptions and with only minimal modification to existing
protocols. This is also true for statements encoded as general arithmetic circuits. Moreover, the MACT
protocol uses the same asset representation as Cloak, and so can be directly substituted for Cloak for
smaller proof sizes and faster prover and verifier. These replacements retain all benefits of BP:

Aggregate proving A prover who would like to prove multiple statements simultaneously can create a
single aggregated proof, which is more compact than simply giving multiple independent proofs.
For example, in the common case that a cryptocurrency transaction creates m ≥ 1 commitments,
an aggregate range proof can prove that m committed values are in range in just O(log n+ logm)
bits, instead of m ·O(log n) bits in the case of m separate range proofs.

Multi-party aggregate proving For the case that multiple provers want to create a single aggregated
proof, BP++ offers a natural MPC protocol. Multi-party proving yields large space savings when
CT is combined with coin mixing protocols [27].

Batch verification Multiple (possibly aggregated) proofs can be verified in a batch computation,
improving efficiency further.

Conservative cryptographic assumptions BP++ is provably secure assuming only the hardness
of the discrete logarithm problem and can be made non-interactive in the random oracle model,
thus ensuring compatibility with assumptions widely accepted by engineers and users in the
cryptocurrency ecosystem. Concretely, BP++ neither requires pairings nor cycles of curves and can
be instantiated on the secp256k1 elliptic curve which used in Bitcoin, for which a wide range of
implementations exist.

Transparent setup Since the public setup parameters only consist of random group elements, the setup
is trustless assuming a common random string or the random oracle model.

1.2 Related Work

Range Proofs The complexity of the BP range protocol is roughly proportional to the number of
digits in the range [A,B), which in the case of BP is n = ⌈log2(B −A)⌉.

Using larger bases, it is possible to reduce the number of digits. The optimal base for a given range is
the value b such that bb ≈ B−A, which allows representing the range using O(n/ log n) base b digits. Such
a base is used in the range proof protocol by Camenisch, Chaabouni, and shelat [28]. Their protocol is
inherently interactive but achieves O(n/ log n) proof size by batching the set membership checks for each
digit, which is on a high-level similar to the approach in BP++.3 An alternative to digit decomposition
range proofs are those based on Lagrange’s four square theorem. This theorem states that any positive
integer can be written as a sum of four squares, as originally proposed by Lipmaa [29]. In practice, this is
often transformed to an instance of the three square theorem as was originally observed by Groth [30].
To show that a value v < B one can find a four, or three, square decomposition of the value B − v,
which is positive only if the initial condition is met. These protocols require integer commitments, which
historically required either RSA groups, and hence a trusted setup, or ideal class groups.

More recently, Couteau et al. [31] developed a bounded integer commitment protocol that requires only
the discrete logarithm assumption in a group of known order. This allows them to construct three-square
range proofs using elliptic curves, which are highly performant and smaller than BP and BP+ range

3While the protocol by Camenisch, Chaabouni, and shelat [28] uses Boneh-Boyen signatures, which also have the structure
of a reciprocal, this reciprocal is not used in the same way as the reciprocal argument of BP++, and alternative signature
protocols can be used instead with different security assumptions.
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proofs. However, BP++ range proofs remain smaller as compared to their approach. Moreover, since
their bounded integer commitment scheme requires the committed values to remain in a bounded interval,
their approach requires a curve with order somewhat larger than 256 bits at the 128-bit security level.
This lower bound on the group size or, equivalently, on the security of their approach is inherent and
applies even if one ignores the non-tightness of the security analysis when setting parameters, as often
done in practice. This limits their applicability to existing blockchains.

Generalizations of BP There are a number of other works building on BP, including BP+ [14] which
uses a weighted inner product argument to reduce proving time and uses several other improvements
to reduce proof size, and Flashproofs [32] which combine the BP inner product argument with Groth
polynomial commitments [33] to reduce verifier complexity and attempt to minimize Ethereum gas costs.
There has also been work to unify BP with the large, existing body of work on Sigma protocols [34],
and to further generalize this to other related contexts like groups of unknown order [35] to support
homomorphic commitments of arbitrary order. BP have also been generalized to inner product arguments
in other contexts, including by Lee [36], who propose a general purpose SNARK protocol over a pairing
friendly curve that uses an inner product to avoid trusted setup requirements. BP are also core to the
structure of Halo [37] and Halo2 [38], which are now implemented in Zcash [39] and have inspired the
development of accumulation schemes [40]. These allow a prover to efficiently aggregate multiple proofs
in such a way that verification time depends only on the time to verify a single proof.

2 Preliminaries

Notation Hereafter, we denote the set of polynomially-bounded functions in the security parameter λ
by poly(λ) = {f : ∃a ∈ N, f(λ) ∈ O(λa)}, the set of negligible functions in the security parameter λ by
negl(λ) = {f : f(λ)−1 ̸∈ poly(λ)}. A function f is overwhelming if 1− f is negligible.

A probabilistic interactive Turing machine A is probabilistic polynomial-time (PPT) if its runtime is in
poly(λ); it is probabilistic expected polynomial-time (expected-PPT) if its expected runtime is in poly(λ);
it is deterministic polynomial-time (DPT) if it is PPT and does not read from its randomness tape.

We denote by G a cyclic group of prime order p written additively, which is in practice typically a
subgroup of an elliptic curve. We write group elements in G with capital letters and scalars in F := Fp

with lower case letters. We write F[X] for the ring of polynomials over F in indeterminate X; when we
treat it a vector space, then as vector space over the field F.

Vectors Vectors are written with bold letters, and matrices with capital letters. These can be
distinguished from G elements from context. We write the diagonal matrix of powers of µ starting with
µ0 as diag(µ). Vectors are zero indexed and implicitly padded with zeros on the right as necessary for
various operations to be well-defined, i.e. addition and inner products. We denote the vector of all zeros
by 0 and the vector of all ones by 1. To access a slice of a vector, we write (vk:)i = vk+i.

We write the inner product of two vectors using angle brackets and an optional subscript to denote
weighting by powers of the subscript. If the subscript is not present, it is implicitly 1. Inner products are
defined for any vectors of quantities that can be multiplied, i.e. scalars and scalars or scalars and group
elements. The norm of a vector refers to its self inner product and uses the same subscripting convention
for weights. For example, the weighted inner product of x and G and the weighted norm of x are written

⟨x,G⟩µ =
∑
i=0

xiGiµ
i+1 and |x|2µ = ⟨x,x⟩µ.

We write concatenation of vectors using || and tensor product of vectors using ⊗. Iterated tensor
product is evaluated from left to right and obeys the convention

n⊗
i=0

(1, xi) =

(
1, x0, x1, x0x1, x2, . . . ,

n∏
i=0

xi

)
.

This is convenient for describing, e.g., the vector of challenges used by the verifier for the norm linear
argument.

We denote the vector of powers from µ0 to µn−1 by en(µ). It obeys the tensor product equation

eab(µ) = ea(µ)⊗ eb(µ
a) = (1, µ, . . . , µab−1).
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We decompose vectors into subvectors of even (indices 0, 2, . . .) and odd (indices 1, 3, . . .) components,
instead of left and right halves as in BP, written as written as [a]0 and [a]1 respectively. This transformation
simplifies certain parts of the protocol, and may help with locality in implementations. BP and BP+ can
easily be modified to use even and odd halves, as can BP++ to use left and right halves.

2.1 Discrete Logarithm Relation Problem

BP++ is provably secure assuming the expected-PPT hardness of the discrete logarithm relation (DLR)
problem, which is well-known to be tightly equivalent to the standard discrete logarithm problem [41,
Lemma 3]. The DLR problem is, given a random collection of points in G, the problem to find a
non-trivial a ̸= 0 such that ⟨a,G⟩ = 0G, where 0G is the identity in G.

Definition 1 (Discrete Logarithm Relation (DLR) Problem). The discrete logarithm relation (DLR)
problem in G is hard if for all n ≥ 1 and for all expected-PPT adversaries A,

Pr[⟨a,G⟩ = 0G ∧ a ̸= 0 | G←$ Gn;a← A(G)] ≤ negl(λ).

2.2 Zero-Knowledge Arguments of Knowledge

A zero-knowledge argument of knowledge consists of a non-interactive PPT Turing machine K which
outputs a common random string σ, and two interactive PPT Turing machines P (prover) and V (verifier).
Critically, σ does not have any internal structure and can be chosen transparently, without a trusted
setup. The prover and verifier interacting on inputs x and y will produce a transcript π and output a bit
b indicating whether the verifier accepts, which we write π ← ⟨P(x),V(y)⟩ = b. For any σ, a value w is a
witness for a statement x if it satisfies the polynomial time relation (σ, x, w) ∈ R.

A zero-knowledge argument of knowledge must satisfy completeness, soundness, and zero-knowledge.
Completeness requires that the prover be able to convince the verifier to accept x with overwhelming
probability if (σ, x, w) ∈ R. Soundness requires that the prover fail with overwhelming probability to
convince the verifier to accept if (σ, x, w) /∈ R.

Definition 2 (Completeness). A triple (K,P,V) satisfies perfect completeness if for all PPT A,

Pr

[
⟨P(σ, u, w),V(σ, u)⟩ = 1
∨ (σ, u, w) ̸∈ R

∣∣∣∣ σ ← K(1λ);
(u,w)← A(σ)

]
= 1.

The soundness notion we consider in this work is computational witness-extended emulation [42, 43].
This demonstrates that for any prover convincing the verifier of a statement with a particular probability,
there exists an emulator producing transcript indistinguishable from a real transcript and a witness with
probability negligibly different from the prover. The emulator can rerun the prover with the same internal
state but different randomness in order to solve for a witness from the transcript. Since the emulator can
always extract the witness from a proof, the proof is a sound argument of knowledge for the witness.

Definition 3 (Computational Witness-Extended Emulation). The protocol (K,P,V) has WEE if for
all DPT provers P∗, there exists an expected-PPT emulator EO with access to rewinding oracle O =
⟨P∗(σ, u, s),V(σ, u)⟩ such that for all pairs of adversaries (A1,A2),

Pr
[
A2(σ, π) = 1 | σ ← K(1λ); (u, s)← A1(σ);π ← O

]
− Pr

 (π is accepting⇒
(σ, u, w) ∈ R)
∧ A2(σ, π) = 1

∣∣∣∣∣∣
σ ← K(1λ);

(u, s)← A1(σ);
(π,w)← EO(σ, u)

 ≤ negl(λ).

The protocol has CWEE when adversaries A1 and A2 are restricted to non-uniform polynomial time.

The zero-knowledge property requires that the verifier learns nothing about the witness from interacting
with an honest prover. This is formalized via the existence of a simulator that is able to construct an
identically distributed proof without knowledge of the witness. In the notion used here, the simulator
has access to randomness used by the verifier; this is commonly called “special” zero-knowledge in the
literature and requires the protocol to be public coin.

Definition 4 (Public Coin). The protocol (K,P,V) is public coin if all the verifier’s randomness is drawn
uniformly at random independently of interaction with the prover.
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Definition 5 (Perfect Special Honest Verifier Zero-Knowledge). The protocol (K,P,V) has perfect
Special Honest Verifier Zero-Knowledge (SHVZK) if there exists a simulator S such that for all pairs of
adversaries (A1,A2),

Pr

[
(σ, u, w) ∈ R
∧ A2(σ, π) = 1

∣∣∣∣ σ ← K(1λ); (u,w, ρ)← A1(σ);
π ← ⟨P(σ, u, w),V(σ, u; ρ)⟩

]
= Pr

[
(σ, u, w) ∈ R
∧ A2(σ, π) = 1

∣∣∣∣ σ ← K(1λ); (u,w, ρ)← A1(σ);
π ← S(u, ρ)

]
.

General Forking Lemma To show CWEE, BP++ will use the generalized forking lemma by Bootle
et al. [44] (Lemma 2 in Appendix C). It allows handling extractors for multi-round zero-knowledge
argument of knowledge generically.

Trustless Common Setup As a convention, all zero-knowledge arguments presented in this paper
use the same setup algorithm K, which outputs σ = (G,H,G), where G and the components of the two
vectors H,G (of sufficient size, which will be clear from the context) are random generators in G. Since
K is transparent, it is possible to use make the setup trustless in the random oracle model.

Non-Interactive Proofs from Fiat-Shamir All zero-knowledge arguments presented in this paper
are public coin, interactive protocols between a prover and honest verifier. This means that they can
be made non-interactive via the Fiat-Shamir transform [45],4 and honest-verifier zero-knowledge of the
interactive protocols immediately implies that the Fiat-Shamir transformed variants are non-interactive
zero-knowledge in the random oracle model. Recent work has shown that also soundness is retained,
even for multi-round protocols [48, 49, 50]. Concretely, we establish that our protocols achieve special
soundness, which implies that their Fiat-Shamir version achieves knowledge soundness as shown by
Attema, Fehr, and Klooß [48, Theorem 4] and further elaborated on by Ganesh et al. [51, Section 2.8].

Commitments as Inputs Our zero-knowledge arguments accept witness inputs in Pedersen vector
commitments. For convenience later, given generators σ = (G,H, . . . ) from the zero-knowledge setup, we
define a commitment to message v with randomness s to be

Com(m; s) = v0G+ sH0 + ⟨v1:,H8:⟩.

Generators H0, . . . ,H7 are intentionally not used for commitments to simplify the notation in later
sections.

Pedersen commitments are homomorphic, perfectly hiding, and computationally binding up to the
hardness of the discrete logarithm relation problem. We omit a formal treatment of these properties
because the security analysis of our protocols uses the underlying group directly and does not invoke
these abstract properties.

3 Technical Overview

BP++ consists of four primary improvements over earlier, transparent discrete logarithm-based range
proof protocols. First, we substitute the BP+ weighted inner product argument by a weighted norm
argument, which reduces verifier time by approximately half in many common cases. Second, we introduce
a novel set membership and permutation argument based on logarithmic derivatives called the reciprocal
argument, which has already found significant applications beyond BP++. Third, we modify the BP
arithmetic circuit protocol to accomplish “blinding” in one round of communication of a single group
element, which can be easily adapted to other similarly constructed protocols. These modified circuits
are extended to support first order use of the reciprocal argument, similarly to integration of plookup [20]
into Halo2 [38]. Finally, we use these techniques to construct the shortest, and most verifier performant
transparent range proof and MACT protocols.

4The Fiat-Shamir transform replaces every verifier message with the invocation of a hash function applied to the entire
proof transcript up to that point. The transcript must include the problem statement and all prover communication with
the verifier. Failure to properly implement the Fiat-Shamir heuristic has been a common source of bugs [46, 47].
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3.1 Bulletproofs and Bulletproofs+

BP uses a recursive argument to show the inner product relation{(
G,H ∈ Gn, G ∈ G;C ∈ G;x,y ∈ Zn

p

)
: C = ⟨x,y⟩G+ ⟨x,G⟩+ ⟨y,H⟩

}
. (1)

The recursive structure of the argument is itself derived from the recursive structure in Bootle et al. [44].
In each round, a commitment to a scalar v and vectors x and y of length n is reduced to a commitment to
vectors x′ and y′ of length n/2. If this commitment satisfies the relation, then the original commitment
satisfies the relation with overwhelming probability.

In our notation, given a commitment C, the prover sends the verifier commitments (L,R), and the
verifier chooses a challenge γ. The reduced commitment is defined as

C ′ = C + γ−2L+ γ2R = v′G+ ⟨x′,G′⟩+ ⟨y′,H ′⟩. (2)

Each round of the protocol forms essentially a vector valued polynomial commitment. The key to ensuring
that the reduced vectors are of length n/2 comes from the folding relation. The reduced vectors are
defined, in terms of the challenge

x′ = γ[x]0 + γ−1[x]1 y′ = γ−1[y]0 + γ[y]1. (3)

Computing the inner product of these vectors as polynomials in γ, we find that the original inner product
⟨x,y⟩ from the inner product relation occurs as the γ0 term

⟨x′,y′⟩ = ⟨x,y⟩+ γ−2⟨[x]0, [y]1⟩+ γ2⟨[x]1, [y]0⟩. (4)

BP applies this same relation to the inner products between the basis points G and H and the witness
vectors. That is, the reduced basis points are defined in terms of γ to be

G′ = γ−1[G]0 + γ[G]1 H ′ = γ[H]0 + γ−1[H]1. (5)

This means when the inner products ⟨x′,G′⟩ and ⟨y′,H ′⟩ are evaluated, the original inner products will
appear on the γ0 term. The γ−2 coefficients from all three reduced inner products are then collected into
L and likewise the γ2 coefficients into R. This reduction is applied until the reduced vectors are of length
2, at which point the reduced vectors are sent to the verifier.

BP+ uses a very similar recursive structure that also incorporates weights to show a weighted inner
product relation, with the inner product replaced by a weighted inner product. BP+ also differs in how
it handles blinding, but BP++ behaves like BP in this regard.

Both BP and BP+ construct a range proof by decomposing the value into binary digits and proving
the validity of each digit, then showing that the linear combination of these digits equals the committed
value. Binary digits are used since their validity is easy to check: d ∈ {0, 1} if and only if d(d− 1) = 0.

3.2 Reciprocal Argument

The primary technique that makes BP++ range proofs and MACT possible is the reciprocal argument.
Let A be a collection of pairs of multiplicities and values (m ∈ F, v ∈ F) ∈ A.5 The reciprocal argument
is a simple interactive protocol by which the prover can convince a verifier that the total multiplicity m̂v

for each value v ∈ F vanishes. In that case, we say A vanishes.

Definition 6. Let A be a collection of pairs of multiplicities and values. Let the total multiplicity of a
value v ∈ F in A be m̂v(A) such that

m̂v =
∑

(m′,v′)∈A:v=v′

m′.

We say A vanishes if ∀v ∈ F : m̂v(A) = 0. When A is clear from context, we will write m̂v.

5This collection is similar to a multi-set in spirit, but it is formally a different kind of object: As opposed to standard
definitions of multi-sets, multiplicities are in F instead of Z+, and the collection can contain multiple pairs with the same
value v, and even multiple copies of the same pair (m, v).
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The underlying idea of the protocol is that we can associate to A a rational function fA(X) defined
as a sum of poles at each −v with multiplicity m for (m, v) ∈ A

fA(X) =

|A|−1∑
i=0

mi

X + vi
. (6)

This rational function vanishes if and only if the total multiplicity for each symbol vanishes. To show
that this function vanishes, it suffices to evaluate it at a uniformly random value. This follows from a
modification of the Schwartz-Zippel lemma.

3.2.1 The Logarithmic Derivative

The rational function fA(X) has the structure of a logarithmic derivative. The logarithmic derivative
of a function f(X) is the derivative of the logarithm of f(X) with respect to X, i.e., (log f)′(X) for
(log f)(X) = log(f(X)). Ordinarily, logarithms are not well-defined over a finite field, but in this case we
can apply the chain rule to simplify

(log f)′(X) =
f ′(X)

f(X)
. (7)

This expression is well-defined over a finite field when f(X) is a rational function. Since the derivative
is linear and the logarithm is a group homomorphism taking multiplication to addition, the logarithmic
derivative takes F(X)× → F(X)+. Using the product rule, we can check this directly since

f ′(X)

f(X)
+

g′(X)

g(X)
=

f ′(X)g(X) + f(X)g′(X)

f(X)g(X)
=

(fg)′(X)

(fg)(X)
. (8)

Consider the function gA(X) for A as defined before as a collection of pairs of multiplicities and values

gA(X) =
∏

(m,v)∈A

(X + v)m. (9)

Applying the logarithmic derivative to this polynomial, the product becomes a sum of m times the
logarithmic derivative of X + v. This logarithmic derivative simplifies to become 1/(X + v) since the
derivative of X + v is 1. So we have

(log gA)
′(X) =

∑
(v,m)∈A

m

X + v
= fA(X). (10)

This is the sense in which fA(X) is a logarithmic derivative.

3.2.2 Application to Range Proofs

Consider the problem of proving a base-b range proof. We want to prove knowledge of some digits d such
that each di ∈ [0, b− 1], and that these are the base-b digits of some value v.

A natural solution is to use a lookup argument: given a collection of values tj ∈ T called the “table”
and a collection of values vi ∈ V , a lookup argument shows that all elements of V occur in T .

We can use the reciprocal argument to construct a lookup argument by using the reciprocal argument
on A = {(−1, vi) : i} ∪ {(mj , tj) : j}. Note that the largest magnitude multiplicity for an element vi ∈ V
is −|V |, which occurs when V contains only a single element. As long as |V | ≪ |F|, this means that the
total multiplicity of vi ∈ V can only vanish if vi occurs in T . Therefore, the prover can convince the
verifier that all elements of V are in T if A. For a base b range proof, T = {0, . . . , b− 1} and V consisting
of all the digits di, the rational function fA(X) is

fA(X) = −
∑
i

1

X + di
+

b−1∑
j=0

mj

X + j
. (11)

The BP range proof construction uses the binary case b = 2, for which it is easy to check directly that
di(di − 1) = 0 with one multiplication per digit. However, Camenisch, Chaabouni, and shelat [28] suggest
to select b such that bb ≈ B −A. This base uses only O(n/ log n) digits, where n = ⌈log2(B −A)⌉, which
is optimal in the sense that the witness length is a function of the base b and the number n of digits and
is minimized when they are equal.
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Unfortunately, the natural generalization of the binary digit check di(di − 1) to bases b > 2 does not
result in a more efficient proof in BP. In the binary case, each digit requires a single multiplication, but
the number of multiplications increases linearly in the size of the base. What we really want is an efficient
lookup argument, which is where the reciprocal argument comes in. Rather than checking each digit is
the root of some polynomial separately as in BP, we can use Eq. (11) to check membership of each digit
in the set of valid digits. This enables us to construct range proofs with “optimal” base while retaining
efficiency.

3.2.3 Application to MACT

For MACT, we face a related problem when proving multi-asset conservation of money. In this case, we
have two collections of amounts and types of tokens I and O corresponding to the inputs and outputs of
a transaction. We want to show that the total amount of each token in I is equal to the total amount
of each token in O and that each amount in I and O is a positive integer. The latter claim can be
shown using a range proof and the former using a new invocation of the reciprocal argument. Let
A = {(v, t) : (v, t) ∈ I} ∪ {(−v, t) : (v, t) ∈ O}. If A vanishes then the sum of all the amounts in I equals
the sum of all the amounts in O for each token t. If the amounts are all positive integers much smaller
than p, it follows that no tokens were created or destroyed in the transaction. In this case fA(X) is

fA(X) =
∑

(v,t)∈I

v

X + t
−

∑
(v,t)∈O

v

X + t
. (12)

3.3 Norm Linear Argument

As described in Section 3.1, BP and BP+ show a (weighted) inner product relation involving two vectors x
and y by letting the prover send commitments for both x and y. This introduces undesirable redundancy
in some cases. Consider the motivating example of a binary range proof: A prover wants to show
di(di − 1) = 0 for each digit di in the digit vector d that encodes the binary representation of some value
v. In a BP range proof, this requires committing to both x = d and y = −(1 − d), even though y is
entirely determined by x up to the addition of a constant.

Towards a BP++ binary range proof, we can rewrite di(di − 1) = 0 and consider the equivalent
constraint (di − 1/2)2 = 1/4 instead. This allows us to substitute the inner product relation by a norm
relation, which is a relation involving the inner product of a single vector with itself, and thus requires
only a commitment to that single vector. As a result, we not only save data to be committed and hence
communication, but also roughly half the prover and verifier cost.

However, while this motivating example provides an intuition for why a norm relation can be preferable
over an inner product relation, it turns out that in practice, it is almost always more efficient to use a
BP++ reciprocal range proof instead of a BP++ binary range proof. As a consequence, we defer the
details of BP++ binary range proofs to Appendix A, and now turn our attention towards arithmetic
circuits instead.

In the case of arithmetic circuits, similarly as for binary range proofs, using a norm argument allows
reducing the verifier time by half, provided we can commit to only a single vector per commitment instead
of two. Unfortunately, the inner product relation of BP and the weighted inner product relation of BP+
cannot work for this purpose, since even if the initial x = y the reduction is asymmetric so x′ ≠ y′. To
show a norm relation, we need a new reduction technique that is symmetric in the way it reduces x and
y. Unlike BP, the reduced vectors are now defined to be

x′ = [x]0 + γ[x]1 y′ = [y]0 + γ[y]1. (13)

The reduction can be derived by computing the coefficients of the three polynomials 1, γ, γ2 − 1 ∈ F[γ]
where in BP we computed the coefficients of the polynomials γ−2, 1, γ2 ∈ F[γ]. Since these polynomials
are linearly independent in F[γ], the reduction is sound. Setting x = y = n we can show a norm relation,
and with some modifications can show a weighted norm relation.

A norm by itself is not sufficient; we want to be able to show that the witness satisfies linear constraints
without introducing extraneous terms. We can apply this reduction relation to an inner product of an
additional vector l and a public constraint vector c. This will be especially relevant when handling the
blinding procedure for arithmetic circuits and also helps in the MPC proving setting. Thus, BP++ will
show the weighted norm linear relation for a witness (v, l,n) and public (µ, c) satisfy v = ⟨c, l⟩+ |n|2µ.
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3.4 Arithmetic Circuits

In BP and BP+, arithmetic circuits are given as a separate protocol from range proofs. The circuit is
encoded as four matrices a vector (WL,WR,WO,WV , c) and a witness (aL,aR,aO,v) satisfies the circuit
if

WLaL +WRaR +WOaO = WV v + c

aL ◦ aR = aO.
(14)

While one could use an arithmetic circuit to prove a range proof in BP, it would be less efficient than
the specialized range proof protocol. In the BP protocol for circuits, the prover constructs a vector
valued polynomial commitment to some (v(X),x(X),y(X)) and wants to show that when we apply the
inner product equation to this witness, the X2 term of the t(X) = v(X)− ⟨x(X),y(X)⟩ vanishes. To
show this, the prover commits to all the other “error” terms of t(X) in Pedersen scalar commitments in
T1, T3, T4, T5, T6.

BP++ arithmetic circuits avoids these extra commitments, as well as the two final commitments
necessary to blind in both BP and BP+. Rather than committing to these other terms in scalar
commitments, we commit to them as a vector in the final blinding commitment. This is free, and
conveniently generalizes to larger polynomials without increasing proof size. The norm linear argument
naturally allows us to evaluate the committed t(X) at a random X by placing the coefficients in l and
changing the c vector to be powers of X. We are then able to use the other commitments in the proof to
blind these error terms at no additional cost in terms of proof size. This procedure is responsible for the
much of the reduction in proof size.

BP++ also modifies the circuit protocol so that instead of the constraint aL ◦aR = aO, the arithmetic
circuit checks that aL ◦ aR equals a linear combination of the entire witness. Here, the operation ◦ is the
component-wise product of vectors, also known as the Hadamard product.

This makes it efficient to formulate reciprocal constraints, where the denominators occur in aL, the
reciprocals in aR, and the numerators can be any linear combination on the right hand side. This new
arithmetic circuit protocol allows encoding reciprocal range proofs and MACT more efficiently than
existing protocols without the use of specialized protocols.

4 Norm Linear Argument

Unlike BP and BP+ which show inner product relations, BP++ is an argument of knowledge for the
weighted norm linear relation{(

H ∈ Gl,G ∈ Gn, G ∈ G;
C ∈ G, c ∈ Fn, µ ∈ F; l ∈ Zl

p,n ∈ Zn
p

)
:

v = ⟨c, l⟩+ |n|2µ
C = vG+ ⟨l,H⟩+ ⟨n,G⟩

}
. (15)

There are two practical advantages to using a norm linear argument over an inner product argument.
First, certain types of constraints can be more efficiently expressed as a square. In particular, the binary
digit constraint of BP b(b − 1) = 0 can be rewritten in terms of a square. The inner product version
requires committing to both factors in the product, whereas the squared version requires only committing
to one factor. Given a suitable norm linear argument, this reduces the verifier complexity by half.

The second advantage comes in the arithmetic circuit blinding protocol. Unlike BP and BP+ which
perform blinding after committing to the circuit witness, or in the case of BP+ after performing the
argument, over the course of two additional rounds, BP++ arithmetic circuit protocol is able to perform
blinding using a single round. This relies on the linear portion of commitment l and is particularly
convenient to express using the norm linear argument. This blinding procedure is responsible for much
of the reduction in proof size as compared to the predecessor protocols and means that norm linear
argument protocols are able to have uniformly smaller proof sizes than existing inner product protocols.

This relation is equivalent to the weighted inner product relation, in the sense that both are capable
of proving arithmetic circuit satisfiability and more narrowly in the sense that one could, in principle,
write the norm linear relation as an inner product and thus construct a norm linear argument by reducing
directly to an inner product argument. However, the latter requires committing to the vector n twice, in
both x and y from the inner product relation. While it is possible to simplify the initial commitment, by
computing ⟨n,G+H⟩ in the inner product commitment, the vectors x and y are reduced asymmetrically.
This means that even if x = y it is not the case that x′ ̸= y′.
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4.1 Norm Reduction

This makes clear what we want from a norm linear argument: given a commitment C to vectors as defined
in the relation, we want to reduce this commitment to a new commitment to vectors l′ and n′ of half the
length of the original vectors. To this end, we need a folding relation for a pair of vectors that treats
both vectors symmetrically. That is, instead of scaling the halves of x and y by complementary γ and
γ−1, we would like to use reduced vectors that are folded in the same way, such as

x′ = ρ−1[x]0 + γ[x]1 y′ = ρ−1[y]0 + γ[y]1. (16)

Now if x = y then x′ = y′. Here the value is defined as ρ2 = µ for weight µ. Taking the weighted inner
product of these vectors by µ we can work out a relation that includes the original weighted inner product
⟨x,y⟩µ as one coefficient of a polynomial in γ

vx = ρ−1(⟨[x]0, [y]1⟩µ2 + ⟨[x]1, [y]0⟩µ2) vr = ⟨[x]1, [y]1⟩µ2

⟨x′,y′⟩µ2 = ⟨x,y⟩µ + vxγ + vr(γ
2 − 1).

(17)

Note that this relation is sound because the polynomials 1, γ, γ2−1 ∈ F[γ] are linearly independent. As in
BP(+), the protocol follows straightforwardly from this relation by applying it to all the inner products in
the commitment and grouping like terms. The prover can commit to the γ and γ2 − 1 coefficients (X,R)
and then the verifier can select a random γ to evaluate the relation. Because this relation is symmetric,
the prover can apply it to the x = y = n case and reduce n to a single n′.

4.2 Norm Linear Argument

In the norm linear relation, there are 4 inner products that the prover needs to reduce: |n|2µ, ⟨n,G⟩, ⟨c, l⟩,
and ⟨l,H⟩. Since n participates in a weighted inner product (norm), we need to modify the relation for
G slightly, and since l, c, and H only participate in unweighted relations, there are no weights present.
The reduced vectors are thus

v′ = |n′|2µ2 + ⟨c′, l′⟩ c′ = [c]0 + γ[c]1

l′ = [l]0 + γ[l]1 n′ = ρ−1[n]0 + γ[n]1

G′ = ρ[G]0 + γ[G]1 H ′ = [H]0 + γ[H]1.

(18)

The commitments X and R follow directly from expanding all the reduced inner products and
gathering γ and γ2 − 1 coefficients. Explicitly

vx =
(
2ρ−1⟨[n]0, [n]1⟩µ2 + ⟨[c]0, [l]1⟩+ ⟨[c]1, [l]0⟩

)
(19)

vr =
(
|[n]1|2µ2 + ⟨[c]1, [l]1⟩

)
(20)

X = vxG+ ⟨[l]1, [H]0⟩+ ⟨[l]0, [H]1⟩
+ ⟨ρ[n]1, [G]0⟩+

〈
ρ−1[n]0, [G]1

〉 (21)

R = vrG+ ⟨[l]1, [H]1⟩+ ⟨[n]1, [G]1⟩. (22)

Evaluating the polynomial commitment at γ yields a commitment on the reduced basis to the reduced
witness, i.e., we have

C + γX + (γ2 − 1)R = v′G+ ⟨l′,H ′⟩+ ⟨n′,G′⟩. (23)

The full protocol applies this reduction recursively until doing so does not reduce the overall proof size.
This occurs when len (l)+ len (n) ≤ 6, at which point the prover sends the reduced l and n to the verifier.
If these vectors satisfy the norm linear relation for the reduced c and µ, then it follows by induction that
the original commitment satisfies the relation.

Completeness follows directly from this equation holding and soundness from the linear independence
of the polynomials 1, γ, γ2 − 1 ∈ F[γ]. Linear independence can be used to construct a round extractor,
which as in BP can be used to construct an extractor for the entire protocol.

Theorem 1. The weighted norm linear argument has perfect completeness. Assuming the expected-PPT
hardness of the discrete logarithm relation problem, the argument has CWEE and is therefore an argument
of knowledge for the weighted norm linear relation.

See Appendix C.1.1 for the proof.
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4.3 Full Protocol Description

The setup protocol for the norm linear argument K simply chooses all the group elements uniformly at
random G,H,G→ F.

Weighted Norm Linear Argument ⟨Pnl,Vnl⟩

Common input: G,G,H, c, C, ρ and µ = ρ2

P’s input: (l,n) and v = ⟨c, l⟩+ |n|2µ such that C = vG+ ⟨l,H⟩+ ⟨n,G⟩

1. If len (l) + len (n) < 6:

1.1 P → V : l,n

1.2 V computes v := ⟨c, l⟩+ |n|2µ

1.3 V accepts if C
?
= vG+ ⟨l,H⟩+ ⟨n,G⟩, otherwise reject

2. Else:

2.1 P → V : X,R

2.2 V → P : γ ←$ F
2.3 P computes l′,n′

2.4 P,V compute G′,H ′, c′ and ρ′ := µ, µ′ := µ2, C ′ := C + γX + (γ2 − 1)R

2.5 Run ⟨Pnl,Vnl⟩ with (G,G′,H ′, c′, C ′, ρ′, µ′; l′,n′).

As in BP, it is not necessary for the verifier to actually compute the intermediate (G,H, c, C) values
and the final verification check can be replaced with a single linear combination of public curve points.
Letting k be the number of rounds before stopping and the vectors γl and γn be defined as

γl =

k−1⊗
i=0

(1, γi) γn =

k−1⊗
i=0

(ρ2
i

, γi), (24)

the (G,H, c, C) in the final verification equation can be rewritten in terms of the original (G,H, c, C)

v = ⟨c,γl ⊗ l⟩+ |n|2µ (25)

vG+ ⟨γl ⊗ l,H⟩+ ⟨γn ⊗ n,G⟩ ?
= C +

k−1∑
i=0

γiXi + (γ2
i − 1)Ri. (26)

Also as in BP, when verifying multiple proofs simultaneously, the verifier can take a random linear
combination of the equations and combine the γl ⊗ l and γn ⊗ n from different proofs if the G and H
are the same. Thus the marginal cost of verifying an additional proof is only k = O(log n) additional
scalar multiplications and O(n) field operations. There are additional optimizations that help reduce
prover work discussed in Appendix B.

5 Arithmetic Circuits

In BP, arithmetic circuits are represented using four public matrices and one public vector (WL,WR,WO,
WV , c) and four witness vectors (aL,aR,aO,v), which must satisfy Eq. (14). BP arithmetic circuits can
accept inputs to the circuit via Pedersen scalar commitments Vi, and each element of v comes from one
of these scalar commitments. To ensure the correctness of the extractor, and soundness, the matrix WV

must have a left inverse X such that XWV = I.
This representation is closely related to the more common Rank 1 Constraint System (R1CS) and

similarly supports arbitrary linear constraints and fan-in 2 multiplication gates. For each multiplication
in the circuit, the prover commits to the left input in wL,i, the right input in wR,i and the output in
wO,i. This is perfectly sensible in general, but we note that components of aO can be both output of
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a multiplication gate and subject to linear constraints in the components of aL and aR. Systems like
R1CS require additional (redundant) constraints to handle these cases which can be encoded at no extra
cost if the prover were able to directly show

aL ◦ aR = Wm,LaL +Wm,RaR +Wm,OaO. (27)

This motivates the BP++ circuit encoding, where we make exactly this change. It turns out that
effectively every multiplication gate in reciprocal range proofs (Section 6.2) and MACT is of this form,
and the savings from this change make it efficient to directly represent range proofs using arithmetic
circuits. We also modify the circuits to accept input vectors from Pedersen vector commitments, rather
than just scalars.

Concretely, an arithmetic circuit C will be represented using two matrices (Wl,Wm), two vec-
tors (al,am) and two binary flags (fl, fm). The witness for the circuit will consist of four vectors
(wL,wR,wO,wV ) where wL and wR are the left and right inputs to each multiplication, as in BP. To
define linear constraints, rather than using one matrix per witness vector like BP, we use a single matrix
defined over the entire non-input witness w = wL||wR||wO. This is equivalent to having a matrix per
witness vector, and we will refer to the portion of such a matrix Wl that “acts” on each of these vectors
using the notation

Wlw = Wl,LwL +Wl,RwR +Wl,OwO. (28)

The matrices on the right-hand side are just the columns of Wl that multiply each component of the
witness. So if w ∈ FNw and wL,wR ∈ FNm , the matrix Wl,L consists of the first Nm − 1 columns of Wl,
Wl,R consists of columns [Nm, 2Nm), and Wl,O of columns [2Nm, Nw). The inputs to the circuit are k
vectors vi ∈ FNv and wV refers to the concatenation of all vi. This witness satisfies the circuit C if it
satisfies the following equations, and the circuit protocol is for the following relation

C =
(

Wl ∈ FNl×Nw ,al ∈ FNl , fl ∈ {0, 1}
Wm ∈ FNm×Nw ,am ∈ FNm , fm ∈ {0, 1}

)
(29)

0 = Wlw + flwV + al (30)

wL ◦wR = Wmw + fmwV + am (31)

Rac =


 G ∈ G,H ∈ GNv+7,G ∈ GNm ;

C,V ∈ Gk;vi ∈ FNv : i = [0, k),
sV ∈ Fk,wO ∈ FNOwL,wR ∈ FNm

 :
Vi = Com(vi; sV,i)

Eq. (30)
Eq. (31)

 (32)

5.1 Equivalence to BP Circuits

Since BP circuit representation is capable of representing any arithmetic circuit, it suffices to show that
this new format can encode satisfiability of BP circuits to show it is also capable of representing any
arithmetic circuit. To see how, let X be the left inverse of WV as before and let M be the columns of X
with a basis for the orthogonal complement of X, the left null space of WV concatenated as columns.
This means the matrix M is invertible by construction and satisfies

MWV =

[
I
0

]
.

Then let wO = aO, wL = aL, and wR = aR and define the constraints (Wm,Wl, fm, fl,am,al) such that

fm = 0 fl = 1 al = Mc am = 0

Wmw = aO Wlw = M(WLaL +WRaR +WOaO)
(33)

In practice it is not efficient to actually compute M . In the case that elements of wV are used in
multiple constraints it is most efficient to add “copy” constraints that move each wV,i into wO. Since
wO elements can be used in any number of constraints, this allows elements of wV to be used in multiple
constraints. While this is marginally less efficient than BP, inputs must already be copied like this to be
used in multiplication constraints.

5.2 Polynomial Encoding

In order to show the relation is satisfied, we need to reduce arithmetic circuit satisfiability to the norm
linear argument. That is, construct some (v, l,n) such that if it satisfies the norm linear argument for
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(µ, c) then the relation is satisfied. To do this, we transform the systems of equations in Eqs. (30) and (31)
to a single equation by taking a random linear combination of the by power of λ and µ. This makes the
right hand side of Eq. (31) into a weighted inner product, so the linear combination of equations is

0 = eNl
(λ)⊤ (Wlw + flwV + al) + ⟨wL,wR⟩µ

− eNm
(µ)⊤ (Wmw + fmwV + am) .

(34)

As in BP, the prover commits to the witness in a collection of vector commitments CL, CR, CO. To
show that Eq. (34) is satisfied for the openings of these commitments, we can treat these commitments
as a vector valued polynomial commitment to some (v(T ), l(T ),n(T )). The verifier can take a linear
combination of these commitments to evaluate this witness at any value of T . Let the polynomial f(T )
be the scalar valued polynomial that is the application of the norm linear relation to these polynomials

f(T ) = v(T )− ⟨c(T ), l(T )⟩ − |n(T )|2µ. (35)

We want f(T ) = 0 only if Eq. (34) is satisfied. One natural way to establish this is to split f(T )

into a polynomial f̂(T ) that depends on the vector commitments and some other polynomial g(T ) so

f(T ) = f̂(T ) − g(T ). The polynomial f̂(T ) will have a distinguished “value” term that vanishes with
overwhelming probability if and only if Eq. (34) is satisfied, and the polynomial g(T ) will always have
zero value term. We can choose g(T ) so that all the non-value terms (also referred to as “error” terms) of

f̂(T ) vanish. So, if f̂(T )− g(T ) = f(T ) = 0 then the value term must be zero.
BP uses a similar technique and commits to each coefficient of g(T ) in a separate Pedersen scalar

commitment. This takes a total of 5 group elements and 2 scalars. We are able to improve on this by
instead committing to the error terms in l as part of the blinding commitment. This is effectively free,
in the sense that it requires no additional group elements or scalars beyond the blinding commitment,
but also raises the issue of blinding for the error terms. The prover can’t just send g(T ) to the verifier.
Instead we blind these error terms using a novel protocol that puts the blinding in CL, CR, CO, while still
ensuring that f(T ) = 0. This requires no additional rounds or commitments beyond a single blinding
commitment. While the prover and verifier performance improvements are largely due to the reciprocal
argument, the proof size reduction is due largely to this blinding protocol.

5.2.1 Commitment Layout

When the prover commits to the circuit witness in (CL, CR, CO) there is an important degree of freedom
in how the witness can be laid out. Let these commitments be in norm linear form and define the
witnesses (rX ∈ F8, lX ∈ FNl ,nX ∈ FNm) for X = L,R,O and the commitments

CX = rX,0G+ ⟨rX,1:||lX ,H⟩+ ⟨nX ,G⟩. (36)

The rX vectors are the error term blinding vectors. The rest of the vectors will commit to the witness,
with nL = wL and nR = wR. This is necessary since Eq. (34) requires the weighted inner product of these
two vectors. The degree of freedom is how the vector wO is represented in the vectors (nO, lO, lL, lR).
We can quantify this degree of freedom in a function F that injectively maps each component of wO to
one component of these vectors so for tX ∈ {lO, lL, lR,nO} we have

wO,F−1(tX,j) = tX,j tX,j = 0 if (tX, j) ̸∈ imF . (37)

Different protocols prefer different layouts for performance reasons and compatibility to multiparty
proving, which is why we do not just pick a canonical layout. Given the function F , we need to partition
the matrices Wl and Wm into their constituent matrices that act on each of the tX for t = n, l and
X = L,R,O. Let Ma,t,X be the portion of Wa for a = l,m that act on tX and that therefore satisfy

Waw =
∑

X=L,R,O

Ma,l,XlX +Ma,n,XnX . (38)

Since nL = wL and nR = wR, we have Ma,n,L = Wa,L and Ma,n,R = Wa,R. The rest of the matrices
Ma,l,X and Ma,n,O can be constructed by applying function F to the columns of Wa,O. Column j of
matrix Ma,t,X equals column i of Wa,O if i = F−1(tX, j) and is the all zero column otherwise.
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5.2.2 Constraints and Inputs

Given a layout, the prover commits to CL, CR, CO and then the verifier chooses the linear challenge λ
and the multiplicative challenge µ. These challenges determine the random linear combination of the
constraints, as well as the linear combination of inputs. Recall that wV is the concatenation of the
input vectors vi, and that wV can appear in both the multiplicative and linear constraints. In BP, each
input commitment commits to a single scalar, so we can simply take a linear combination of the input
commitments to take a linear combination of the vector of input vector. This is no longer the case when
we are dealing with vector commitments; we can only take a linear combination of the vectors vi.

Suppose we use the powers of µ to separate the multiplicative constraints, and so we want to
evaluate ⟨ekNv (µ),wV ⟩ in the proof. We can expand it using the tensor product structure of ekNv (µ) =
eNv (µ)⊗ ek(µ

Nv ) as

⟨ekNv
(µ),wV ⟩ =

〈
eNv

(µ),

k−1∑
i=0

µNvivi

〉
. (39)

We can obtain the µNvi linear combination of vi by multiplying µNvi with Vi. Treating the result as
a norm linear commitment, we can use eNv

(µ) in the constraint vector to compute the and obtain our
desired result of ⟨ekNV

(µ),wV ⟩. This trick is not generally possible with a matrix WV as used in BP’
arithmetic circuit representation.

There is an additional complexity that arises when using powers of both λ and µ at the same time,
that is when fmfl = 1. In that case taking the λNvi + µNvi+1 linear combination of Vi and then then
taking the inner product with eNv (λ) + eNv (µ) produces unwanted cross terms of the form λiµNvj and
µiλNvj . To deal with these terms, we can subtract the linear constraint corresponding to each input
weighted by these cross terms. Since the cross terms add wV scaled by these values, and since fl = 1,
subtracting off the corresponding linear constraints will balance. After making this adjustment, we can
now define the randomization vectors and randomized constraints

λ = eNl
(λ)− flfm(µeNv

(λ)⊗ ek(µ
Nv ) + eNv

(µ)⊗ ek(λ
Nv )) (40)

µ = µeNm
(µ) (41)

cn,X = (λ⊤Ml,n,X + µ⊤Mm,n,X) diag(µ)−1 (42)

cl,X = λ⊤Ml,l,X + µ⊤Mm,l,X . (43)

Note that cn,X is scaled by diag(µ)−1 so that the weighted inner product yields an ordinary inner
product The input commitments will in general be scaled by the power of λNvi if fl = 1 and µNvi+1 if
fm = 1. Let the linear combination of inputs be

V̂ = 2

k−1∑
i=0

(flλ
Nvi + fmµNvi+1)Vi = v̂G+ ⟨rV ||v̂,H⟩. (44)

5.2.3 Polynomial

Following the choice of λ and µ by the verifier, the prover will commit to the blinding for the proof in the
commitment CS organized with the same naming convention as CX . When laying out the polynomials
(v(T ), l(T ),n(T )) we need to ensure that verifier can evaluate these polynomials by taking a linear
combination of commitments and that the resulting f(T ) polynomial from Eq. (35) from applying the
norm linear relation has the correct value term (which is the term that vanishes with overwhelming
probability if and only if Eq. (34) is satisfied). Let δ be a random value chosen by the verifier. The
polynomials we will use arise from the following linear combination of commitments.

T−1CS + δCO + TCL + T 2CR + T 3V̂ = (v̂T 3 + r0(T ))G+ ⟨r1:(T )||l̂(T ),H⟩+ ⟨n̂(T ),G⟩ (45)

It is easy to see that the value term must be the T 3 term, since the witnesses of CL and CR will be
multiplied, and the coefficient of this product is T 3. Unfortunately, the product of CO and V̂ also maps
to the value term, but their product is also scaled by challenge δ. This ensures that if it does not vanish
then the value term will be distributed uniformly.

Given the polynomial, the linear constraints follow naturally: any linear constraints that are applied
to the witness of a commitment with coefficient T i will be scaled by T 3−i. The constraints vectors,
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including the affine terms and some other public values, are

ps(T ) = |pn(T )|2µ + ⟨λ,al⟩T 3 + ⟨µ,am⟩T 3 (46)

pn(T ) = δ−1T 3cn,O + T 2cn,L + Tcn,R (47)

ĉl(T ) = 2(δ−1T 3cl,O + T 2cl,L + Tcl,R) + fmµeNv
(µ)1: + fleNv

(λ)1: . (48)

Adding pn(T ) and n̂(T ) to obtain n(T ) and using ĉl as the constraint for l̂, we have a witness and
constraint vector such that applying the norm linear verification equation yields polynomial

f̂(T ) = ps(T ) + v̂T 3 −
〈
ĉl(T ), l̂(T )

〉
− |n(T )|2µ. (49)

When writing out the coefficients of f̂(T ), one can see that its T 3 term vanishes when Eq. (34) is satisfied
and therefore, as required, the T 3 term is the value term. To summarize, we have polynomials

P (T ) = ps(T )G+ ⟨pn(T ),G⟩ (50)

C(T ) = P (T ) + T−1CS + δCO + TCL + T 2CR + T 3V̂

= (v(T ) + r0(T ))G+ ⟨l(T ),H⟩+ ⟨n(T ),G⟩ (51)

r̂(T ) = r(T )− T−1rS(T ) (52)

v(T ) = ps(T ) + v̂T 3 + r0(T ) (53)

l(T ) = r1:(T )||l̂(T ) (54)

n(T ) = pn(T ) + n̂(T ) (55)

f̂(T ) = ps(T ) + v̂T 3 −
〈
ĉl(T ), l̂(T )

〉
− |n(T )|2µ (56)

c(T ) = ĉr(T )||ĉl(T ). (57)

5.2.4 Error Terms

Now, we can work backwards to derive what r(T ) needs to be in order to satisfy the verification equation.
Recall Eq. (35), which can be rewritten as

f(T ) = f̂(T )− ⟨ĉr(T ), r(T )⟩. (58)

Our original strategy was to construct a polynomial g(T ) that has a zero value term by construction

so that f(T ) = f̂(T )− g(T ) = 0. Now we can define g(T ) = ⟨ĉr(T ), r(T )⟩ and our goal becomes defining
ĉr(T ) such that value term is always zero. Then, we can simply check that f(τ) = 0 at a random challenge
to verify that the value term vanishes.

Let ĉr(T ) = (1, βT−1, βT, βT 2, βT 3, βT 5, βT 6, βT 7) for random challenge β chosen by the verifier
after CL, CR, CO but before CS . Now expanding g(T ) we find

g(T ) = ⟨ĉr(T ), r(T )⟩
=
〈
ĉr(T ), T

−1rS
〉
+ ⟨ĉr(T ), r̂(T )⟩.

(59)

Let f̂ be the vector of f̂(T ) coefficients not including the value term or constant, so that f̂(T ) =〈
(1, T−1, T, T 2, T 3, T 5, T 6, T 7), f̂

〉
T−1. We want f̂(T ) = g(T ), so we can make the substitution rS =

(f̂0||β−1f̂1:)− sr and cancelling f̂(T ) and g(T ) results in〈
ĉr, T

−1sr
〉
=
〈
ĉr, δrO + TrL + T 2rR + T 3rV

〉
. (60)

The critical point here is that sr is not a function of T , so if we group terms on the right hand side
by their T i coefficient, we can determine exactly what sr must be in order to satisfy this equation, as
well as some restrictions on rX . Most importantly, there is no T 3 term on the left hand side, so if the
right hand side has a T 3 term, then it will be scaled by β. Since all the terms on the right hand side are
committed before β, f̂(T ) ̸= g(T ) with overwhelming probability if the RHS has a non-zero T 3 term.

The prover chooses all the components of rX uniformly at random except for rO,4 = rL,3 = rR,2 = 0
which are the terms that have degree 3 in Eq. (60) and the terms with degree greater than 6. The
prover commits to CS and the verifier chooses a uniformly random T = τ . The prover and verifier can
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compute C(τ), and the prover will then prove to the verifier that C(τ) commits to (v(τ), l(τ),n(τ)) that
satisfies the norm linear relation for (µ, c(τ)), either using the norm linear argument or by just sending
the opening.

Completeness of the protocol follows straightforwardly from the protocol definition. Soundness requires
that we demonstrate the value term faithfully encodes Eq. (34), but otherwise follows from describing
an extractor and Lemma 2. Zero-knowledge requires a more complex argument to show that (v, l,n) is
distributed uniformly at random, which ultimately reduces to showing that r contains a rank 7 linear
combination of the blinding values rL, rR, rO. Given this, the simulator is simple.

Theorem 2 (Arithmetic Circuits). The arithmetic circuit protocol has perfect completeness and perfect
honest verifier zero-knowledge. Assuming the expected-PPT hardness of the discrete logarithm relation
problem, the protocol has computational witness-extended emulation.

See Appendix C.2.1 for the proof.

5.3 Full Protocol Description

Arithmetic Circuit Protocol ⟨Pac,Vac⟩

Common input: G ∈ G, G ∈ GNm , H ∈ GNv+7, Wm ∈ FNm×Nw , am ∈ FNm , Wl ∈ FNl×Nw ,
al ∈ FNl , fl, fm ∈ {0, 1}, V ∈ Gk

P’s input: vi ∈ FNv , sV ∈ Fk, wL, wR ∈ FNm , wO ∈ FNO , F : [0 . . NO − 1] → ({lO, lL, lR} ×
[0 . . Nv − 1]) ∪ ({nO} × [0 . . NO − 1])

1. P computes:

rO, rL,nO,nL, lO, lL, CO, CL := CommitOL(wO,wL,F)
rR,nR, lR, CR := CommitR(wO,wR,F)

2. P,V run the Inner Arithmetic Circuit protocol ⟨Piac,Viac⟩.

CommitOL Subroutine

Input: wO,wL,F

r′O ←$ F6, r′L ←$ F5

rO := (r′O,0, r
′
O,1, r

′
O,2, r

′
O,3, 0, r

′
O,4, r

′
O,5, 0) ∈ F8

rL := (r′L,0, r
′
L,1, r

′
L,2, 0, r

′
L,3, r

′
L,4, 0, 0) ∈ F8

nL := wL ∈ FNm

Let nO ∈ FNm such that nO,j :=

{
wO,i if F−1(nO, j) = i
0 otherwise

Let lX ∈ FNv for X = L,O such that

lX,j :=

{
wO,i if F−1(lX, j) = i
0 otherwise

CX := rX,0G+ ⟨rX,1:||lX ,H⟩+ ⟨nX ,G⟩ ∈ G for X = L,O.

Return rO, rL, nO, nL,lO, lL,CO,CL

CommitR Subroutine
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Input: wO,wR,F

r′R ←$ F4

rR := (r′R,0, r
′
R,1, 0, r

′
R,2, r

′
R,3, 0, 0, 0) ∈ F8

nR := wR ∈ FNm

Let lR ∈ FNv such that

lR,j :=

{
wO,i if F−1(lR, j) = i
0 otherwise

CR := rR,0G+ ⟨rR,1:||lR,H⟩+ ⟨nR,G⟩ ∈ G

Return rR, nR, lR, CR

Inner Arithmetic Circuit Protocol ⟨Piac,Viac⟩

Common input: Same as the Arithmetic Circuit Protocol

P’s input: Same as the Arithmetic Circuit Protocol and rX ∈ F8, nX ∈ FNm , lX ∈ FNv , CX ∈ G
for X = L,R,O

1. P → V : CL, CR, CO

2. V → P : ρ, λ, β, δ ←$ F

3. P,V compute:

Ma,n,L := (Wa,i,j)0≤j≤Nm−1 ∈ FNa×Nm for a = l,m

Ma,n,R := (Wa,i,j)Nm≤j≤2Nm−1 ∈ FNa×Nm for a = l,m

Wa,O := (Wa,i,j)2Nm≤j≤Nw−1 ∈ FNa×NO for a = l,m

Let Ma,n,O ∈ FNa×Nm for a = l,m such that

Ma,n,O,j′,j :=

{
(Wa,O,j′,i) if F−1(nO, j) = i
0 otherwise

Let Ma,l,X ∈ FNa×Nv for a = l,m,X = L,R,O such that

Ma,l,X,j′,j :=

{
(Wa,O,j′,i) if F−1(lX, j) = i
0 otherwise

µ := ρ2 ∈ F

V̂ := 2
∑k−1

i=0 (flλ
Nvi + fmµNvi+1)Vi ∈ G

λ := eNl
(λ)− flfm(µeNv (λ)⊗ ek(µ

Nv ) + eNv (µ)⊗ ek(λ
Nv )) ∈ FNl

µ := µeNm
(µ) ∈ FNm

For X = L,R,O:

cn,X := (λ⊤Ml,n,X + µ⊤Mm,n,X) diagµ−1 ∈ FNm

cl,X := λ⊤Ml,l,X + µ⊤Mm,l,X ∈ FNv

pn(T ) := δ−1T 3cn,O + T 2cn,L + Tcn,R ∈ FNm [T ]

ps(T ) := |pn(T )|2µ + ⟨λ,al⟩T 3 + ⟨µ,am⟩T 3 ∈ F[T ]

4. P computes:

lS ←$ FNv

nS ←$ FNm
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v̂ := 2
∑k−1

i=0 (flλ
Nvi + fmµNvi+1)vi,0 ∈ F

ĉl(T ) := 2
(
δ−1T 3cl,O + T 2cl,L + Tcl,R

)
+ fmµeNv (µ)1: + fleNv (λ)1: ∈ FNv [T ]

l̂(T ) := T−1lS + δlO + T lL + T 2lR + T 3(2
∑k−1

i=0 (flλ
Nvi + fmµNvi+1)vi,1:) ∈ FNv [T ]

n̂(T ) := T−1nS + δnO + TnL + T 2nR ∈ FNm [T ]

n(T ) := pn(T ) + n̂(T ) ∈ FNm [T ]

f̂(T ) := ps(T ) + v̂T 3 −
〈
ĉl(T ), l̂(T )

〉
− |n(T )|2µ ∈ F8[T ]

Let f̂ ∈ F8 be the vector of coefficients of f̂(T )

rV = (0, 2
∑k−1

i=0 (flλ
Nvi + fmµNvi+1)sV,i, 0, . . . , 0) ∈ F8

sr := (βδrO,1, 0, β
−1δrO,0 + rL,1, δrO,2 +β−1rL,0 + rR,1, δrO,3 + rL,2 + rV,1 +β−1rR,0, rL,4 +

rR,3, δrO,5 + rR,4, δrO,6 + rL,5) ∈ F8

rS := (f̂0||β−1f̂1:)− sr

CS := rS,0G+ ⟨rS,1:||lS ,H⟩+ ⟨nS ,G⟩ ∈ G

5. P → V : CS

6. V → P : τ ←$ F

7. P computes:

r(T ) := T−1rS + δrO + TrL + T 2rR + T 3rV ∈ F8[T ]

v(T ) := ps(T ) + v̂T 3 + r0(T ) ∈ F[T ]

l(T ) := r1:(T )||l̂(T ) ∈ F7+Nv [T ]

8. P,V compute:

P (T ) := ps(T )G+ ⟨pn(T ),G⟩ ∈ G[T ]

ĉr(T ) := (1, βT−1, βT, βT 2, βT 3, βT 5, βT 6, βT 7) ∈ F8[T ]

c(T ) := ĉr,1:(T )||ĉl(T ) ∈ F7+Nv [T ]

C(T ) := P (T ) + T−1CS + δCO + TCL + T 2CR + T 3V̂ ∈ G[T ]

9. P,V run the weighted norm linear argument ⟨Pnl,Vnl⟩ = b with common input
(G,G,H, c(τ), C(τ), µ = ρ2) and prover input (l(τ),n(τ), v(τ)).

5.4 Multi-party Proving

BP++ is amenable to exactly the same kind of MPC protocol as BP. Each prover will own a distinct
portion of the norm vector, and these portions should be concatenated to support both kinds of MPC
arguments. The linear portion of the commitment can be shared among all the provers, in the same way
that the scalar component of the BP MPC protocol is shared among all the provers. If the circuit splits
into local circuits for each prover such that each is independently satisfied, then the protocol will be
secure. This is stated without proof, although the techniques of Alupotha, Boyen, and Foo [52] should
transpose directly to BP++ given the similarity of the underlying protocols. Informally, it is sufficient
to show that the protocol is complete if no elements of the witness owned by different provers are ever
multiplied. This is true by construction, as the only elements that are ever multiplied lie over the same
basis element in the norm vector, and this basis element is owned by exactly one prover.

6 Reciprocal Argument

In this section, we formalize the reciprocal argument as an interactive protocol, describe an arithmetic
circuit protocol that integrates the reciprocal argument, and then use that circuit protocol to build higher
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level protocols for range proofs and MACT. The range proofs work by instantiating a lookup argument
using the reciprocal argument as described in the technical overview. We also define the MACT protocols
using the conservation of money check from the technical overview. Because these protocols are simply
given as arithmetic circuits in “reciprocal” form they do not require special security proofs.

6.1 Warmup: Reciprocal Argument Protocol

Let A be a collection of pairs of multiplicities and values (m ∈ F, v ∈ F) ∈ A. Recall that the reciprocal
argument is an interactive protocol by which the prover can convince a verifier that the total multiplicity
m̂v for each value v ∈ F vanishes, in which case we say A vanishes (Definition 6).

We present the protocol in a simple form in which the prover sends the verifier all the information
directly, and the verifier will perform all checks on the prover messages. This protocol independently
demonstrates the key technique used in reciprocal form circuits, range proofs, and MACTs. While this
form is not very useful by itself, the protocol can be naturally adapted to an argument of knowledge by
replacing the prover messages with commitments and changing the verifier checks accordingly. In order
to make use of the reciprocal argument in BP++, we will not run the simple protocol in a black box
manner but instead incorporate it into an arithmetic circuit protocol (see Section 6.2).

The protocol works as follows. First, the prover sends multiplicities m and values v in A. Next the
verifier selects a random challenge α, and the prover responds by sending the “reciprocals” ri = mi/(α+vi).
Finally, the verifier checks that each reciprocal is properly formed and that the sum of all the reciprocals
vanish, i.e., if

(α+ vi)ri = mi and
∑
i

ri = 0. (61)

Reciprocal Argument Protocol ⟨Pra,Vra⟩

1. P → V : m,v

2. V → P : α←$ F

3. P → V : r s.t. ri = mi/(α+ vi)

4. V accepts if (α+ vi)ri = mi for i = 0 . . |r| − 1 and
∑

i ri = 0

This protocol lacks perfect completeness because if α = −vi for any vi then ri is not well-defined.
However, this only occurs with negligile probability since α ←$ F. Informally, soundness follows from
the structure of the sum of the reciprocals. If (α + vi)ri = mi, then either α = −vi and mi = 0 or
ri = mi/(α+ vi). So, with overwhelming probability if

∑
i ri = 0 we have that fA(α) = 0 where

fA(X) =

|A|−1∑
i=0

mi

X + vi
. (62)

Since addition is commutative and associative, we can sum terms in fA(X) with a common denominator
and write it as a sum over the total multiplicities. Let V = {v : ∃m : (m, v) ∈ A} be the set of values in
A. Then

fA(X) =
∑
v∈V

m̂v

X + v
. (63)

We can show that if f(αj) = 0 for 2|V | distinct challenges αj then m̂v must be zero for all v ∈ V .
This follows from two simple observations. First, the “poles” 1/(X + vi) are linearly independent in the
ring F(X) of rational functions in X (as vector space over F), and second, fA(α) = 0 implies fA(X) = 0
by a slight modification of the Schwartz-Zippel lemma.

Lemma 1 (Reciprocal Argument Vanishing). Let A be a collection of pairs of multiplicities and values.
If there exist 2|A| accepting transcripts of the reciprocal argument protocol for A with pairwise distinct
challenges αj, then A vanishes in the sense of Definition 6.
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Proof. Let V = {v : ∃m : (m, v) ∈ A} be the set of values in A. There are at most |V | values α such that
there exists vi ∈ V for which α = −vi. Let α′ be a vector of |V | challenges αj such that α′

j ̸= −vi for
any i, j. Let v be the vector of elements in V , and note that the components of vector −v are pairwise
distinct and the components in α′ are pairwise distinct. This means the |V | × |V | Cauchy matrix C
formed from −v and α′ is well-defined and therefore invertible. Let fj = fA(α

′
j) for fA as defined in

Eq. (63) and note that f = Cm̂v = 0. Since C is invertible, m̂v = 0 and therefore A vanishes.

6.2 Reciprocal Form Circuits

We want to incorporate the reciprocal argument as a higher order operation into the arithmetic circuit
protocol. This is analogous to the use of more complex “gates” [23] in other circuit representations. In
particular, the integration of plookup into plonk in Halo2 [38]. This has the advantage of simplifying the
analysis of protocols that use the reciprocal argument, since they can reuse the security proofs for general
reciprocal form circuits rather than proving the soundness and zero-knowledge of every new, bespoke
protocol.

Suppose we have an arithmetic circuit C and the arithmetic circuit witness (wL,wR,wO,wV ). To
integrate the reciprocal argument, we want to show that this circuit is satisfied and that some set of
rational functions f(X) vanishes, where each rational function encodes a reciprocal argument instance.
In general, we want the symbols and multiplicities to be able to depend on the arithmetic circuit witness
w and ultimately would like to be able to compile the f(X) vanishing check into an arithmetic circuit for
a particular X = α.

We can define three matrices (Wn,Wd,Wp(X)) and one witness vector wD to convert the check
f(X) = 0 into a form that can be compiled into an arithmetic circuit. Let wI = wO||wL||wD be
the “initial” witness and w(X) = wD||wL||wP (X)||wR||wO be the entire witness. These matrices will
ultimately be incorporated into arithmetic circuit constraint matrices, and for practical reasons we want
the new constraints to have access to the inputs. These matrices will satisfy

wP,i(X) =
(WnwI + fmwV + an)i

X + wD,i
(64)

WdwI + flwV + ad = 0 (65)

f(X) = Wp(X)w(X) + ap(X). (66)

The initial witness is the portion of the witness committed before the verifier chooses α, and wD is a
list of all the private poles. For example, in Eq. (11) this vector would include all the di. The matrix
WnwI allows expressing the multiplicities for each private pole as a linear combination of the initial
witness, and the matrix Wd relates the private poles to the rest of the initial witness. The matrix Wp(X)
maps each pole wi,P (X) to a reciprocal argument equation. That is, each reciprocal argument equation
corresponds to a row of Wp(X). If the pole wi,P (X) appears in an equation, then the element of that row
multiplying the pole is non-zero. The vector ap(X) adds all the poles whose denominators are public,
for example mj/(X + j) in Eq. (11). For the purposes of this paper, it is more convenient to describe
reciprocal form circuits in terms of the reciprocal arguments rather than actually describing the matrices.
This is sufficient since these matrices exist for any collection of reciprocal arguments.

Following commitment to wI , the verifier chooses α, and the prover commits to wR and wP (α). We
can now define the new arithmetic circuit C′ for α. First, prepend the vector wD onto wL and the vector
wP (α) onto wR to produce w′

L and w′
R for C′. We keep w′

O = wO, and can let w′ = w′
L||w′

R||w′
O. To

verify that the committed vector w′
P is correctly constructed as wP (α), we can clear the denominator of

Eq. (64) and check
wD,iw

′
P,i = (WnwI + fmwV + an)i − αw′

P,i. (67)

This is satisfied if w′
P,i = wP,i(α) or if wD,i = −α and the numerator is zero. The latter occurs with

negligible probability, so this is sufficient to check w′
P is correctly constructed. The rest of the constraints

can be appended onto the Wl and Wm matrices to construct the W ′
l and W ′

m matrices for C′ as

W ′
lw

′ = (WdwI)||(Wp(α)w(X))||(Wlw) (68)

W ′
mw′ = (WnwI − αwP (α))||(Wmw). (69)

The order of the concatenations was chosen so that wV can appear in the definition of wP (X) since
this is convenient for reciprocal range proofs and MACT. It can be easily changed as necessary without
affecting the security of the protocol. Formally, the reciprocal form arithmetic circuit protocol shows that
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the reciprocal form arithmetic circuit relation is satisfied for the circuit RC. In the relation, Ai refers to
the collection for the ith instance of the reciprocal argument. That is, the collection Ai is encoded as in
Eq. (62) by fi(X) in Eq. (66).

RC =

 C,Wn ∈ FNp×NI ,Wd ∈ FNd×NI ,

Wp(X) ∈ F(X)Np×N ′
w

an ∈ FNp ,ad ∈ FNd ,ap(X) ∈ F(X)Np

 (70)

Rrf =
{
(σ;x,RC;w,wD ∈ FNp) : Ai vanishes,Eq. (65), (σ;x;w) ∈ Rac

}
(71)

Given that we can compile reciprocal form circuits to arithmetic circuits for a particular α, the security
proofs are able to inherit most of the structure of those of arithmetic circuits. Zero-knowledge follows
almost trivially, and soundness requires one additional level in the transcript tree for α to extract the
vanishing of f(α). The protocol too is very similar, the only difference is rather than committing to all
CL, CR, CO together, the prover will send CL, CO, which commit to the initial witness, the verifier will
choose α, and then the prover will send CR.

Theorem 3 (Reciprocal Form Arithmetic Circuits). The arithmetic circuit protocol for circuits in
reciprocal form has completeness and perfect honest verifier zero-knowledge. Assuming the expected-PPT
hardness of the discrete logarithm relation problem, the protocol has computational witness-extended
emulation.

See Appendix C.3 for the proof.

6.3 Full Protocol Description

Reciprocal Form Protocol ⟨Prf ,Vrf ⟩

Common input: Same as the Arithmetic Circuit Protocol and Wn ∈ FNp×NI ,Wd ∈
FNd×NI ,Wp(X) ∈ F(X)Nd×N ′

w ,an ∈ FNp ,ad ∈ F(X)Nd ,ap(X) ∈ F(X)Np

P’s input: Same as the Arithmetic Circuit Protocol and wD ∈ FNp

1. P computes:

w′
L := wD||wL ∈ FNp+Nm

w′
O := wO ∈ FNO

rO, rL,nO,nL, lO, lL, CO, CL := CommitOL(w′
O,w

′
L,F)

2. P → V : CL, CO

3. V → P : α←$ F

4. P computes:

wI := wO||wL||wD ∈ FNO+Nm+Np

Fail if α+ wD,i = 0 for any i = 0 . . Np − 1

w′
P,i := (WnwI + fmwV + an)i · (α+ wD,i)

−1 for i = 0 . . Np − 1

w′
R := w′

P ||wR ∈ FNp+Nm

rR,nR, lR, CR := CommitR(w′
O,w

′
R,F)

w′ := w′
L||w′

R||w′
O ∈ F2(Np+Nm)+NO

5. P → V : CR

6. P,V compute:

w := wL||wR||wO

Let W ′
l ∈ F2Nd+Nl×N ′

w such that W ′
lw

′ = (WdwI)||(Wp(α)w)||(Wlw)
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Let W ′
m ∈ FNp+Nm×N ′

w such that W ′
mw′ = (WnwI − αw′

P )||(Wmw)

a′
m := an||am ∈ FNp+Nm

a′
l := ad||ap(α)||al ∈ FNd+Np+Nl

7. P,V run the Inner Arithmetic Circuit Protocol ⟨Piac,Viac⟩ with Wl = W ′
l Wm = W ′

m wL = w′
L,

wR = w′
L, wO = w′

O, am = a′
m, al = a′

l.

6.4 Reciprocal Range Proofs

Given the reciprocal argument and reciprocal form arithmetic circuits, describing reciprocal range proofs
is fairly simple. We want an argument for range proof relation

Rrp =
{(

G,H ∈ G;V ∈ Gk,A,B ∈ Zk, Bi−Ai ∈ (0, p);v, s ∈ Fk
)
: ∀i : vi ∈ [Ai, Bi), Vi = Com(vi; si)

}
.

(72)
Assume that some base has been chosen for each range [Ai, Bi). To show the relation for a given

value vi, the prover just needs to show the linear constraints ⟨bi,di⟩ = vi −Ai for appropriately defined
bi and the reciprocal constraints. The di appear as the roots of the denominators, so wD naturally is
just the concatenation of these values.

The only two remaining questions are how to compute bi for a given range and base and how to
arrange the multiplicities. Computing the base vector is slightly more complex in the general case.
Arithmetic circuits, as mentioned before, allow placing the vector wO of witness elements that participate
only linear constraints either in the lX portion of the witness, or in the nO portion of the witness. For
reciprocal range proofs, it makes sense to either place them in nO, which we will call “inline” multiplicity
range proofs, or in lL, which we will call “shared” multiplicity range proofs. The terminology refers to
the fact that in the multiparty setting when multiplicities are placed in the linear portion of the witness
multiple provers can reuse the same basis points in their separate proofs. Inline range proofs are so called
because in the multiparty setting, multiplicities must be represented over the basis elements used by each
prover to commit to their digits, so the multiplicities are inline with the digits.

6.4.1 Arbitrary Ranges

Support for arbitrary ranges is always useful and is especially so for larger bases. While in some cases like
B−A = 264 the optimal base b = 16 satisfies bb = B−A, this is typically not the case. In general, we need
to modify b. This problem was already studied and solved in the protocol by Chaabouni, Lipmaa, and
shelat [53], in this sense that this protocol always produces the optimal number of digits. Unfortunately,
this protocol requires one digit that is in base b′ with 0 < b′ < b depending on the range. For the
reciprocal argument, this is not as efficient as using one additional base b digit and a binary digit, which
we describe here without loss of generality letting A = 0 and n = ⌈logb B⌉.

Case 1: b− 1 | B − 1 This is the natural generalization of the binary case, in the sense that 2− 1 = 1
divides every range. For arbitrary bases this is obviously not the case, but when it is the prover will use
the base vector b consisting of powers of b except for the final component, bn−1 = B − bn−1/b− 1

Case 2: bn−1 < B ≤ 2bn−1 When the range is not divisible by b− 1 but is sufficiently close to the lower
power of b the prover can still use n digits by making the last digit binary. This is because the range can
be covered by two overlapping ranges of size bn−1. In this case the final base value is bn−1 = B − bn−1.

Case 3: 2bn−1 < B < bn In the protocol by Chaabouni, Lipmaa, and shelat [53], one would use a
larger final base for this case. As discussed, this is not efficient for the reciprocal argument, so instead
the protocol will use another base b digit to put the range in form of case 2.

bn−1 =

⌈
B − 1

2(b− 1)

⌉
− bn−1 − 1

b− 1
bn = B − (b− 1)bn−1 − bn−1 (73)
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6.4.2 Arithmetic Circuit

In both the inline and reciprocal cases, the vector wD consists of the concatenation of the digit vectors
for all the ranges. The numerator for each digit reciprocal is always 1, so the numerator matrix is simply
zero and an = 1. The vector of reciprocals wP (X) is the concatenation of the values ri,j = 1/(α+ di,j)
so they align with wD per value that verifies the range using

⟨Wd,i,wD⟩ = ⟨bi,di⟩ ad,i = Ai (74)

which requires that fl = 1. Now all that remains is to describe the matrix Wp(X) in terms of the
multiplicities. In both the inline and shared cases, the prover is shows that the set membership check
is satisfied for all the digits of each base. Let the vector mi be the number of times each symbol in
[1, bi) occurs in di. Note this does not include a multiplicity for zero, as this multiplicity is equal to
the number of digits minus the sum of the other multiplicities. For base b, let the total multiplicity be
m̂b =

∑
i:bi=b mi and the total number of digits be n̂b =

∑
i:bi=b len (di). In both the inline and the

shared cases, the prover uses the vectors of reciprocals for each base to show the truth of set membership
equation

∑
i:bi=b

⟨1, ri⟩ =
n̂b − ⟨1, m̂b⟩

X
+

b−2∑
j=0

m̂b,j

X + j + 1
. (75)

The difference arises in how the prover commits to the multiplicities in the inline case, the prover
commits to the vectors mi in wO padded so that they align with di. The partition function F in the
inline case maps all of wO to nO. Since the m̂b are a linear function of the mi, the matrix Wp(X) is
defined to compute this function and then the right hand side of Eq. (75).

In the shared case, the prover commits to the all the m̂b directly in wO and the partition function
maps these values to lL. In this case, since neither lO or nO are used, the commitment can be safely
dropped from the protocol. The matrix Wp(X) once again encodes Eq. (75) for each base, but now uses
the committed total multiplicities.

Theorem 4 (Reciprocal Range Proofs). Both the inline and shared multiplicity reciprocal range proofs
and zero knowledge arguments of knowledge for the reciprocal range proof relation Rrp Eq. (72) assuming
the expected-PPT hardness of the discrete logarithm relation problem.

Proof. The reciprocal range proof protocols are both instances of the reciprocal form arithmetic circuit
protocol, so they have SHVZK, CWEE, and completeness. To show they are arguments for Eq. (72),
we must establish that the circuit is satisfiable only if the inputs v satisfy the relation. The protocol
applies the reciprocal form circuit protocol to A = {(−1, di) : i} ∪ {(mj , tj) : j}. By the soundness of the
reciprocal form circuit protocol, A vanishes (Definition 6). So long as the number of digits is less than F,
which is the case by assumption, this implies all di are valid base b digits. Therefore vi = ⟨bi,di⟩+Ai

implies that vi ∈ [Ai, Bi). Thus, the reciprocal range proof protocol is a zero knowledge argument of
knowledge for Eq. (72).

6.5 Multi-Asset Confidential Transactions

In a MACT, the prover wants to prove a closely related relation to that of an aggregated range proof.
Given a transaction with a set of inputs I (oi = 0) and outputs O (oi = 1), each with a type and amount,
the prover wants to show that the amount of input tokens of each type equals the amount of tokens
output of each type and that all the output token amounts are “positive.” This is because if one of the
outputs were negative it would be possible to secretly create new tokens, by adding more tokens to one of
the other outputs to be larger. It is typically not necessary to check that the inputs are positive since
they are the outputs of some other transaction.

In a finite field, the positivity condition is checked by bounding each output (oi = 1) by a range much
smaller than the field characteristic. More precisely, it must be the case that any negligible amount of
inputs and outputs cannot wrap around in the field to create a “negative” value. For simplicity, we can
assume that all transaction outputs use the same range in the range proof [0, B), and in practice we can
assume that B = 264. The MACT relation is thus

Rct =


(

G,H0, H1 ∈ G;o ∈ {0, 1}k,V ∈ Gk, B ∈ Z,
kB < p, ∀i : oi = 0 vi ∈ [0, B);v, t, s ∈ Fk

)
:

Vi = viG+ tiH0 + siH1

∀i : oi = 1 : vi ∈ [0, B)
∀t :

∑
i:ti=t(−1)oivi = 0

 . (76)
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To check the range proof part of the relation, we can use any reciprocal range proof over all the
transaction outputs, i.e. oi = 1, for the optimal base b and range [0, B). To check that all the amounts of
each type net to zero in F, we can use Eq. (12). This is essentially a multiset permutation check with
large multiplicities, and can be stated in the form of the reciprocal argument using the input/output bits
o as

f(X) =

k∑
i=1

(−1)oivi
X + ti

= 0. (77)

From Lemma 1 it follows that if f(α) = 0 for a uniformly random α then with overwhelming probability
the total multiplicity associated to each ti must be zero in F. From the structure of the function, this
total multiplicity is the sum of all the inputs of that type minus the sum of all the outputs of that type,
and so the total multiplicity is zero in F if and only if the amounts net to zero in F.

Taking these together, we can show that the total amount of each type of asset nets to zero in Z.
We know by assumption that each transaction input amount lies in [0, B), and we know from the range
proof that each transaction output amount lies in [0, B). Therefore, the total multiplicity of any type of
asset m̂v lies in (−kB, kB), which occurs in a transaction with k inputs or k outputs all of the same type
and maximum amount. Since kB < p, this value cannot wrap around the field, so if m̂v = 0 mod p and
m̂v ∈ (−kB, kB) it must be the case that m̂v = 0.

6.5.1 Arithmetic Circuit

Each input and each output commit to two values, so Nv = 2. As in the reciprocal range proofs, all
multiplicative constraints are reciprocal constraints and the matrices WL,WR have zero rows. The
protocol can use any reciprocal range proof, and for the purposes of this protocol assume one is fixed by
a reciprocal form circuit RC for either a shared or inline digit range proof for all vi with oi = 1 for the
range [0, B).

We will append the vector t of types to wD from the range proof, and we will add copy constraints to
check that these are the same values from the input commitments. Note these copy constraints should be
interleaved with the range proof linear constraints to line up with t in wV . This requires fl = 1, which is
also required by the range proof. Each reciprocal in Eq. (77) has vi(−1)oi as its numerator and X + ti as
its denominator. We will define wP,i(X) to be the unsigned reciprocals wP,i(X) = vi/(X + ti). This lets
us simplify (WnwI + fmwV + an)i = vi for these terms and also requires fm = 1. We can insert dummy
constraints that check ti = ti in the multiplicative constraints so that the inputs align with the constraint
matrix. To check that Eq. (77) holds, we can then append a row Wp(X) so that

⟨Wp(X)0,w⟩ =
k∑

i=1

(−1)oiwP,i(X). (78)

This completes the MACT arithmetic circuit. In total, each input adds only one element to wD and
wP (X), one copy constraint to Wd and one, trivial, row to Wn. There is also one constraint in Wp(X) to
check Eq. (12).

The marginal cost of a MACT over an aggregated range proof is negligible in prover time, verifier
time, and proof size. This is in stark contrast to existing protocols which either require large proofs,
complex circuits, and require trading off multi-party proving for the full relation.

Theorem 5 (Multi-Asset Confidential Transactions). The confidential transaction protocol, instantiated
with any of the reciprocal range proofs is a zero-knowledge argument of knowledge for the MACT relation
Eq. (76) assuming the expected-PPT hardness of the discrete logarithm relation problem.

Proof. Since the MACT protocol is an instantiation of the reciprocal form arithmetic circuit protocol, it
has completeness and perfect SHVZK and CWEE. Therefore, it is sufficient to show that this circuit is
satisfied if and only if the protocol inputs v and t satisfy the relation. As a consequence of Theorem 4, we
know that all the transaction output commitments commit to values in [0, B) if they satisfy the circuit,
and we know by assumption that all inputs lie in this range. Since kB < p, the magnitude of the total
multiplicity of any type of asset cannot exceed p. The circuit invokes the reciprocal argument on the
collection A formed as {(v, t) : (v, t) ∈ I} ∪ {(−v, t) : (v, t) ∈ O}. By the soundness of the reciprocal form
circuits, A vanishes (Definition 6), so total multiplicity of each token type must be zero in F. Therefore,
the total multiplicity of each type of asset must be 0 as an integer. Thus, the MACT protocol is a
zero-knowledge argument of knowledge for Eq. (76).
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7 Implementation and Benchmarks

To demonstrate the performance of BP++ in practice, we provide a reference implementation written in
the C programming language.6

This implementation uses secp256k1, a popular elliptic curve used in Bitcoin and other cryptocurrencies.
All operations on secret data performed by the prover implementation are constant time. Since the
norm linear argument part of proving does not operate on secret data, it is allowed to use variable
time operations. All rangeproof benchmarks use shared multiplicity for aggregating rangeproofs. The
experiments were performed on an Intel i7-10510U system at 1.80GHz using a single thread. The 64-bit
range proof size is 416 bytes, which is 28% smaller than BP+ (576 bytes) and 39% smaller than BP
(672 bytes). As described in a paragraph below, the implementation uses a single multi-exponentiation
algorithm and scalar precomputation optimizations. In summary, verifying a 64-bit range-proof took
about 0.9ms and proving about 4ms. Figure 1 shows the proving and verification time as a function of
the total number of range proof bits.

Comparison with BP (secp256k1), BP (Ristretto255) and BP+ (Ristretto255) In order
to compare the performance of BP++ with existing implementations of BP and BP+, we ran a BP
implementation on secp256k1 [54], a BP implementation on Ristretto255 [55] and a BP+ implementation
on Ristretto255 [56]. The results are summarized in Table 2.

Despite secp256k1 having slower group operations than Ristretto255, for a 64-bit range proof, the
BP++ prover is about 3 times and the verifier about 2.2 times faster than the BP+ implementation.
The performance improvement in BP++ is amplified when aggregating multiple range proofs, e.g., when
aggregating 32 64-bit range proofs, the BP++ prover and verifier are about 5-6 times faster than BP+.
A large portion of the speedup in verification and proving time can be explained by the reduced number of
multiplications of group elements with scalars, which decreases from O(n) in BP and BP+ to O(n/ log n)
in BP++. In practice, this translates to only 16 basis points used for BP++’s norm argument in a single
64-bit range proof compared to 128 basis points for BP’s inner product argument and explains the 4x
improvement in proving time on the curve secp256k1.

Implemented Verification Optimizations Since the primary applications of BP++ are in the area
of blockchains, verification time is of significant importance. To improve verifier performance, the BP
paper suggests a few optimizations, such as using a single multi-exponentiation, batch verification, and an
efficient method to compute scalars. The first two optimizations can be directly translated to BP++, but
the method to compute scalars has to be slightly adapted from BP’s inner product argument to BP++’s
norm linear argument. All three optimizations have been implemented in the benchmarked code.

The BP++ verifier can calculate the coefficients for each Gi, Hi directly in terms of norm linear
challenges γ and µ. To elaborate, si the coefficient of Gi can be computed as si = si−jγκρ

−2κ where j is
the nearest power of two smaller than i and κ = ⌊log2(i)⌋. Combining all the mentioned optimizations,
verifying m proofs of n bits each now only requires a single multi-exponentiation of O(mn/ log(mn))
points and O(mn) scalar operations.

Changelog

2023-07-17

• Major rewrite. Range proofs are now described as circuits for an arithmetic circuit protocol.
Added security proofs.

• Fixed soundness vulnerability in range proofs that required the introduction of new challenge
variable δ to the arithmetic circuit protocol.

2022-03-30

• First public draft.

6Our implementation used for benchmarking can be found at https://github.com/sanket1729/secp256k1-zkp/commit/
785f9d728086dd5b9c697ca4d452c517b8243a85. We have since made improvements to the implementation to prepare for
a potential merge into the secp256k1-zkp library, which can be followed at https://github.com/BlockstreamResearch/

secp256k1-zkp/pull/207.
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BP++ BP+ BP([55]) BP([54])

Curve secp256k1 Ristretto255 Ristretto255 secp256k1

Range Prover time (ms)

1× 64 4.041 11.851 12.136 19.241
32× 64 52.108 307.26 384.20 499.060

Range Verifier time (ms)

1× 64 0.840 1.815 1.907 2.223
32× 64 6.424 28.920 29.490 33.548

Table 2: Proving and verification time compared to prior work.

Figure 1: Proving and verification time for BP++ range proofs. X-axis shows the total number of bits
in range proof. For x > 64 bits, we consider aggregation of 64-bit range proofs. Y-axis shows time in
milliseconds.
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A Binary Range Proof

In this appendix, we show how to construct a BP++ binary range proof. For most ranges, the reciprocal
range proof is substantially more efficient for the prover and the verifier than a binary range proof.
However for some small ranges with B −A < 28, a binary range proof can be more efficient.

The structure of the proof follows the construction used by BP(+) where each v is decomposed into a
vector d of digits so that A ≤ v < B iff each dj ∈ {0, 1} and ⟨d, b⟩ = v +A for some public constants. In
the case B −A = 2k, these constants are just powers of 2, and for arbitrary ranges the final constant is
modified to be bn−1 = B −A− 2n−1.
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The main advantage of this protocol over BP(+) is the ability to complete the square for each bit check.

Where those protocols check that each digit satisfies di(di − 1) = 0, we will instead check
(
di − 1

2

)2
= 1

4 .
This is efficient to check using a weighted norm argument, and more importantly only requires the prover
commit to the vector d once. In inner product based range proofs, both factors di and di − 1 need to be
committed, roughly double the amount of data. This results in a verifier that is approximately twice as
fast.

Given the input commitments Vi and (di, bi) for each vi and range [Ai, Bi), the prover will commit to
the concatenation of all the digit vectors, along with some blinding values s0 and sd, in

D = s0G+ sdH1 + ⟨d,G⟩. (79)

The verifier will choose multiplicative challenge µ and linear challenge λ, which serve essentially the
same role in the arithmetic circuit protocol. The linear challenge will separate the linear constraints by
defining the b = λ1b1|| . . . ||λkbk and computing its inner product with the concatenated digits. The
multiplicative challenge will separate the multiplicative constraints by serving as the weights in the
weighted norm. This transforms all the constraints into two vector equations

⟨b,d⟩ =
k∑

i=1

λi(vi −Ai) (80)

∣∣∣∣d− 1

2
1

∣∣∣∣2
µ

=
∑
i

(
di −

1

2

)2

µi+1 =

∣∣∣∣12
∣∣∣∣2
µ

(81)

If these equations hold for random λ and µ, then with overwhelming probability each λ and µ monomial’s
coefficient vanishes. These coefficients encode the statement to prove. Since these equations do not share
any monomials, it is sound to simply check that their sum vanishes. Let δ be similarly defined to separate
the norm error term. After defining a few public constants

ps = |pn|2µ − 2

k∑
i=1

λiAi pn = −1

2
1+ µ−1 diagµ−1b (82)

the vector equations can be transformed into a single weighted norm check

|d+ pn|2µ = ps + 2

k∑
i=1

λivi. (83)

If this equation is satisfied, then with overwhelming probability all the values belong to their respective
ranges. Using a simplified version of the arithmetic circuit blinding protocol, the prover can transform
this relation into a zero-knowledge protocol using only one additional round. The prover will sample
uniformly random s ∈ Fn and compute the first two coefficients

|s+ τδ(d+ pn)|2µ = f0 + f1τ + τ2δ2(ps + 2

k∑
i=1

λivi) (84)

as the third coefficient encodes the statement to prove. The verifier will choose a challenge β, and the
prover will commit to the blinding commitment S so that all the blinding on H0 term cancels, like in the
arithmetic circuit protocol. Now, for any challenge τ , the prover knows an opening to the commitment

C(τ) = τ2psG+ τ⟨pn,G⟩+ S + τδD + 2τ2δ2
k∑

i=1

λiVi (85)

= v(τ)G+ ⟨l(τ),H⟩+ ⟨n(τ),G⟩ (86)

that satisfies the norm linear relation for constraint vector c(τ) = βτ ||0 only if the range proof relation is
satisfied. Intuitively, this is because

v(τ)− ⟨c(τ), l(τ)⟩ = f0 + f1τ + τ2δ2(ps + 2

k∑
i=1

λivi) (87)
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which is exactly the same expression, as a polynomial in the challenges, as |n(τ)|2µ only in the case of a
valid proof.

Soundness follows from essentially the same reasoning as the arithmetic circuit protocol, since the β
term prevents the H0 coefficient in D from being anything other than zero. Therefore, the second term
still encodes the correct expression. Zero-knowledge follows straightforwardly from the fact that the H1

coefficient of every term is chosen uniformly at random.

Theorem 6 (Binary Range Proof). The binary range proof protocol has perfect completeness, perfect
honest verifier zero-knowledge. Assuming the expected-PPT hardness of the discrete logarithm relation
problem, the protocol has computational witness-extended emulation.

Proof. This protocol is almost similar enough to be subsumed into the arithmetic circuit framework, but
unfortunately is not quite. This is because there are not enough commitments do blinding in the same
way, as well as the direct evaluation of a norm on the witness vector. However, it is similar enough to see
that both completeness, SHVZK, and CWEE follow by more or less exactly the same reasoning as the
arithmetic circuit proof.

In the case of SHVZK, the distribution of (v, l,n) is uniformly random, so the simulator will similarly
sample everything uniformly at random except for S, and choose this value so the verification equation is
satisfied.

For CWEE, given a tree of transcripts, the extractor will rewind using the same challenges, with
the same names, in the same way as for an arithmetic circuit with minor changes to accommodate e.g.
differences in degree.

B Fast Scalar Multiplication

In computing the norm linear argument, and in the original BP and BP+ inner product arguments, the
prover needs to compute updated basis points at each round of the protocol. Each of these updated points
is a linear combination of two points from the previous round, and in total the prover must compute O(n)
of these for vectors of length n. This represents a non-trivial amount of the total prover computation.

The amount of time spent on computing the updated bases can be substantially reduced by taking
advantage of the fact that each updated basis element is the same linear combination of different basis
points. That is, the updated basis points G′ are

G′ = sG0 + tG1. (88)

The particular values of s and t are not relevant for this protocol. For p = |F| and fixed s, t ∈ F,
consider the lattice

L = {(a, b, q) : tb− sa+ pq = 0} . (89)

The shortest vector in this lattice has components smaller than approximately
√
p and can be computed

using the extended Euclidean algorithm in O(log |F|) time. We can renormalize the vector equation
defining G′ so that the multiplications by s and t are replaced by b and a respectively

bs−1G′ = bG0 + aG1. (90)

These multiplications can be performed in slightly more than half the time it would take the prover
to perform multiplications by s and t by using Shamir’s trick. The normalization factor of bs−1 can
be deferred to the end of the proof as it factors out of subsequent rounds. This technique may be of
independent interest.

B.1 Complex Multiplication

In curves with complex multiplication (CM), such as secp256k1, we can do even better. For the purposes
of this appendix, it suffices to assume that there exists some efficiently computable endomorphism that
sends a point P to αP for some fixed α ∈ F so that computing αP via the endomorphism is much cheaper
than a generic scalar multiplication.

We can use this endomorphism to make basis updates even more efficient. Consider the lattice

L′ = {(a, b, c, d, q) : (c+ dα)t− (a+ bα)s+ pq = 0} . (91)
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Every element of L′ will satisfy

t = s
c+ dα

a+ bα
. (92)

The shortest vector in L′ will have components which are all smaller than p1/4. Basis updates can now
be computed using four scalar multiplications of one quarter the length as

(c+ dα)s−1G′ = cG0 + d(αG0) + aG1 + b(αG0). (93)

Computing the shortest vector in L′ may seem like it would require a general purpose algorithm,
but for certain kinds of CM it can be stated in terms of the extended Euclidean algorithm once again.
Specifically when the CM field is a Euclidean domain, then one can first write s/t = u+ αv for |u|, |v|
smaller than approximately

√
p and then apply the extended Euclidean algorithm to this value and a

factor of p over the CM field.

C Theorems and Proofs

Definition 7 (Tree of Transcripts [48]). Let k = (k0, . . . , kr−1) ∈ Nr. A k-tree of transcripts for a

(2r + 1)-move public-coin interactive proof is a set of
∏r−1

i=0 ki transcripts arranged in the following tree
structure. The nodes in this tree correspond to the prover’s messages and the edges to the verifier’s
challenges. Every node at depth i has precisely ki children corresponding to ki pairwise distinct challenges.
Every transcript corresponds to exactly one path from the root node to a leaf node.

Definition 8 (k-Special-Soundness [48]). Let k = (k0, . . . , kr−1) ∈ Nr. A (2r + 1)-round public-coin
interactive proof for relation R is k-special-sound (k-SS) if there exists a polynomial time algorithm that,
on input a statement x and a k-tree of accepting transcripts outputs a witness w such that (σ, x, w) ∈ R.

Lemma 2 (General Forking Lemma [44]). If (K,P,V) is a k-special-sound interactive protocol where∏k−1
i=0 ki ∈ poly(λ), then the protocol has WEE.

Lemma 3. Let R be a relation and RDLR = {G ∈ Gn; ;a ∈ Fn : ⟨a,G⟩ = 0G,a ̸= 0} be the relation that
encodes solutions of the DLR problem (Definition 1). An interactive protocol (K,P,V) that has WEE for
the relation R′ = R∪RDLR, where G = K(1λ), has CWEE for the relation R assuming expected-PPT
hardness of the discrete logarithm relation (DLR) problem.

Proof. Let P∗ be a DPT prover for R′ and E the corresponding witness-extended emulator. We define
E ′ as being equal to E but failing when E extracts a witness for RDLR. E ′ is a computational witness
extended emulator for R if E ′ fails with negligible probability.

If E ′ would fail with non-negligible probability, then there exists a pair of non-uniform polynomial-time
adversaries (A1,A2) such that E outputs a solution to the DLR problem with non-negligible probability.
This contradicts the assumed expected-PPT hardness of the DLR problem.

Definition 9. The Cauchy matrix for two vectors x and y of the same length is the matrix Ci,j =
1/(xi − yj). It is invertible when all the xi and yj are unique.

Lemma 4. Given n linearly independent polynomials fi(X) of degree d < m and m ≥ n pairwise distinct
αj ∈ F the matrix Mi,j = fi(αj) has rank n.

Proof. By way of contradiction, suppose n ×m matrix M was not rank n. Since M has n rows, if M
has rank less than n, there must exist some non-zero c ∈ Fn such that M⊤c = 0. Since the polynomials
fi(X) are linearly independent in F[X], for every c the polynomial

∑
i cifi(X) = g(X) is non-zero and

has degree at most d. It holds that M⊤c = (g(α0), . . . , g(αm−1)). If M
⊤c = 0, it must be the case that

g(αi) = 0 for m values of αi. Since m > d this means g is zero on more points than its degree and
therefore must be identically zero. This contradicts the assumption of linear independence, therefore M
must be rank n.

Lemma 5 (Round Extractor). For any k group elements G ∈ Gk and n linearly independent polynomials
fi(X) ∈ F[X] of degree d < m over F[X], there exists an efficient extractor χ such that for n commitments

Ci and m ≥ n transcripts (αj ∈ F,wj ∈ Fk) with distinct αj such that ⟨wj ,G⟩ =
∑n−1

i=0 fi(αj)Ci, χ
either outputs s such that ⟨s,G⟩ = O or a collection of xi such that Ci = ⟨xi,G⟩ and

∑
i fi(X)xi = 0 in

F[X].
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Proof. Let Mi,j = fi(αj). By Lemma 4 this matrix has rank n. Let the matrix W ∈ Fm×k have as its
rows the vectors wj and note WG = MC. If the vectors xi exist, then there exists some matrix X with

rows equal to xi such that C = XG and W = MX. Since m > d, and each
∑n−1

i=0 fi(X)xi,j is of degree
d but zero on the m values αj , if W = MX then

∑
i fi(X)xi = 0.

If W = MX, it must be the case that every column of W lies in the image of M . This is not necessarily
the case and when it is not the extractor will be able to find a discrete log relation. Let M+ be the
Moore-Penrose pseudo inverse, which since M is of full rank is a left inverse for M . By the properties of
the pseudo inverse, we have

MM+WG = MM+MC = MC = WG. (94)

Let W ′ = MM+W . If W ′ = W then X = M+W such that MX = W . In this case, the extractor
will return the rows of X as xi. If W

′ ̸= W , then we have (W ′ −W )G = O and every non-zero row of
W ′−W is a discrete log relation. Since W ′−W ̸= 0, there exists a first non-zero row s and the extractor
will return s.

C.1 Norm Linear Argument

C.1.1 Proof of Theorem 1

Proof. Completeness follows from running the protocol and checking that all the algebraic equations are
satisfied.

CWEE follows by essentially the same argument as the original inner product argument: Given a tree
of transcripts, the norm linear argument extractor χnl will apply a round extractor χ as in Lemma 5
sequentially log2 n times. Each invocation of the round extractor will use 4 transcripts and extract a
witness for the previous round of the norm linear argument or relation RDLR as defined in Lemma 3. So
the entire extractor will find a witness for relation R’, the union of RDLR and the norm linear relation,
from four accepting transcripts and use 4⌈log2 n⌉ = O(n2) total transcripts, where n is the longer of the
lengths of l and n. Since χnl runs in polynomial time, the protocol has k-SS for R′ and, further, since
the number of transcripts is polynomial in the security parameter, the protocol has CWEE for the norm
linear relation under the expected-PPT hardness of the DLR problem by Lemma 2 and Lemma 3. Within
an invocation of the round extractor, fix µ and c, commitments (C,X,R), and basis points (G,G,H)
and let γi be the challenge from each transcript. In each transcript the extractor has (vi, li,ni) such that

C ′
i = C + γiX + (γ2

i − 1)R

= viG+ ⟨li, [H]0 + γi[H]1⟩+ ⟨ni, [G]0 + γi[G]1⟩
= viG+ ⟨l′i,H⟩+ ⟨n′

i,G⟩.
(95)

Note that the l′i and n′
i are multiplied by the same generators in each transcript, and that they satisfy

γi[l
′
i]0 − [l′i]1 = 0 and likewise for n′

i. The extractor can also compute ci = [c]0 + γi[c]1.
Per Definition 7, the challenges are pairwise distinct and therefore, the extractor can apply χ from

Lemma 5. If χ returns a witness for RDLR, the extractor has a solution to the a DLR problem for basis
points (G,G,H) and returns it. Otherwise, the extractor obtains openings for C,X,R, denoted vC , vX ,
vR, l

′
C , etc. There exist polynomials v(T ) = vC + vXT + vR(T

2 − 1), and likewise for l′(T ) and n′(T )
such that v(γi) = vi, l

′(γi) = l′i, and n′(γi) = n′
i. Since we know that each transcript is accepting, we

know that T [l′(T )]0− [l′(T )]1 = 0 at four T = γi but only has degree 3 since l′(T ) and n′(T ) have degree
2. Therefore, the left hand side must be identically zero as a polynomial in T .

From this, it follows that l′(T ) = (1||T )⊗ l(T ) for l(T ) degree 1 and l(γi) = li. This is similarly true
for n′(T ) and the degree one polynomial n(T ). Writing l(T ) = l0 + l1T and grouping like terms, we find
lC = l0||l1, lX = l1||l0, lR = l0||0, as well as for n(T ).

Finally, applying the norm linear equation to (v(T ), l(T ),n(T )) we obtain the quadratic equation

v(T )− ⟨c(T ), l(T )⟩ − |n(T )|2µ = 0 that holds at 4 values of T = γi and therefore must also be identically
zero. Expanding the right hand side in T we find that this implies vX and vR must be constructed
according to the protocol and that vC must satisfy the norm linear relation for (vC , lC ,nC) and the
appropriate linear constraint and weight. So, the round extractor finds a witness for RDLR or a valid
opening for C from four accepting transcripts. Let R′ be the union of the norm linear relation and RDLR.
By running the round extractor log2 n times we extract a witness for R′, which proves that the protocol
has k-SS.
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C.2 Arithmetic Circuits

Lemma 6. For fixed c and µ, let (v, l,n) be a valid opening if v = ⟨c, l⟩ + |n|2µ and let l = r||l′ and
c = ĉr||ĉl. The uniform distribution of openings is equal to the distribution (v+ s0, (r

′ + s1:)||l′,n) where
n and l′ are drawn uniformly at random, (v̂, r′) are any values such that (v̂, r′||l′,n) is a valid opening,
and s are drawn uniformly at random such that ⟨ĉr, s⟩ = 0.

Proof. First, note that the uniform distribution on (v, l,n) is equal to the distribution by first choosing n
and l′ uniformly at random and then choosing v and r uniformly at random such that the opening is valid
for c, µ, n, and l′. Equivalently, letting C = ⟨ĉl, l′⟩+ |n|2µ, choosing (v, r) such that v + ⟨ĉr,1:, r⟩ = C,
assuming ĉr = 1.

Note this equation is affine in (v, r). In particular, any two solutions always differ by a solution s to
the equation ⟨ĉr, s⟩ = 0. Therefore, given any initial solution (v̂, r′), we can generate a uniformly random
solution by choosing s uniformly at random and letting v = v̂ + s0 and r = r + s1:. This is precisely the
distribution described in the lemma.

Lemma 7. For a matrix M and uniformly random a, the vector b = Ma is uniformly distributed at
random in the image of the matrix.

Proof. Every element of the image of M has a unique, disjoint pre-image Pb. By linearity, the difference
of any two elements of the pre-image is an element of the right null space of M and thus each pre-image
has the same size. Therefore, a uniformly random vector a will fall in a uniformly random pre-image,
and so b will be distributed uniformly at random in the image of M .

Corollary 1. Let M be a matrix such that the left null space v⊤M = 0⊤ is generated by one non-zero
vector v0. For uniformly random a, the distribution of Ma is the same as the uniform distribution of b
such that ⟨v0, b⟩ = 0.

C.2.1 Proof of Theorem 2

Proof. Completeness Perfect completeness follows from the protocol description. Since all the constraints
vanish for a valid witness, and all other terms in f(T ) also vanish, the norm linear relation always holds.

Perfect SHVZK follows very straightforwardly if we can show that (v, l,n) is distributed uniformly at
random among valid openings. We will use Lemma 6 to show that the opening produced by an honest
prover is distributed uniformly at random. First, note that the vectors l′ and n as defined in the protocol
and the lemma are chosen uniformly at random, and that the primitive witness from the lemma is just
(f̂0, β

−1f̂1:). Now it remains to show that the values (vb, rb) which in this case are s0 = r0 − f̂0 and

s1: = r1: − f̂1: are distributed uniformly at random.
The values s as noted in the body, are a linear combination of the vectors rL, rR, rO, and rV . We

can use Lemma 7 to show that the values s are distributed uniformly at random such that ⟨ĉr, s⟩ = 0 by
showing that the rank of this matrix is 7, since the dimension of its image is 8. To show that the matrix
has rank 7, it is sufficient to show that it has 7 linearly independent columns.

There are 6 linearly independent columns that come from the 6 linearly blinding factors from CO.
There are only 6 because both rO,4 and rO,7 are both zero. The seventh can be taken from rL,4, which is
independent of all the rO blinding factors. Thus, we have 7 linearly independent columns, so s is chosen
uniformly at random. The simulator thus will choose the opening, all challenges, and all commitments
except for CS uniformly at random. It will then choose CS so that Eq. (34) is satisfied.

CWEE Given a tree of transcripts, the extractor χac will use Nm values of ρ, or equivalently µ = ρ2, Nl

values of λ, 2 values of δ, 2 values of β, and 13 values of τ to extract a valid witness for the AC relation or
RDLR as defined in Lemma 3 from 52NlNm transcripts. In total, with the additional O(max(Nm, Nl+7)2)
for the norm linear extractor, this is polynomial in the security parameter, so the whole protocol is
k-SS and has CWEE for the AC relation assuming the expected-PPT hardness of the DlR problem by
Lemma 2 and Lemma 3.

The extractor will begin by running χnl to extract (v, l,n) with O(N2
m) transcripts. Then, the extractor

will use all 13 values of τ to extract openings with overwhelming probability, or a discrete log relation
with negligible probability, for CS , CO, CL, CR, V̂ using the round extractor χ from Lemma 5. From these
openings, the extractor knows v̂ and can form the polynomials l̂(T ) and n(T )) from the protocol and can

therefore construct f̂(T ). Likewise, the prover can construct the polynomial g(T ) = ⟨ĉr(T ), r(T )⟩. The
polynomial f̂(T ) terms for −2 through 6, and g(T ) has terms for −2 through possible 10.
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We know that f̂(T )−g(T ) = 0 on 13 values of T . Multiplying by T 2, the left hand side is a polynomial
of degree 12 that is zero on 13 values, so it must be identically zero. In particular the value term must be
zero. From the protocol, g(T ) must have zero value term by construction, so f̂(T ) has zero value term.

0 = eNl
(λ)⊤ (Wlw + flwV + al)

+ ⟨wL,wR⟩µ − µeNm
(µ)⊤ (Wmw + fmwV + am)

− δ
〈
nO,nV̂

〉
µ
− β (rO,4 + rL,3 + rR,2)

(96)

Now, we will unwind each challenge in the value term to show that if it is zero, it must be the case
that the rest of the value term is zero. Since all the remaining challenges ρ, λ, β, δ are all chosen in the
same round, it doesn’t matter the order they are unwound. Starting with β, the degree 1 terms in β
are the r components that map to the value term, and everything else has degree 0. We know that the
value terms is zero at 2 values of beta, which means that both the degree zero and degree one terms
must be zero. Thus, all the interfering error term blinding components must net to zero, the remainder
of the value term must also be zero. Similarly for δ there is a δ0 term that includes the inner product
of ⟨nO,nV ⟩ and the rest of the terms of are of degree 0 in δ. Since this polynomial in δ is zero at two
values of δ it must be the case that the interfering inner product is zero and that the remainder of the
value term is zero.

The remaining non-zero terms of the value term are precisely those on the right hand side of equation
Eq. (96), which are the µ and λ linear combination of the circuit constraints. Depending on whether
fl = 1 or fm = 1, the extractor can obtain openings for all V from V̂ , or solve the DLR problem, using
the round extractor from Lemma 5. This is because at least one of fl or fm must be non-zero and V̂ is a
linear combination of V by powers of either λ or µ.

Starting with µ, the final rest of the value term is a degree Nm polynomial in µ. The constant
coefficient is a large polynomial in λ, and every other coefficient is either a multiplicative constraint that
does not depend on λ, or it is a polynomial in λ if fmfl = 1. In the case that it is a polynomial in λ, it
will have two terms with the constant term equal to a multiplicative constraint, and a λi term multiplying
a row of Wlw + flwV + al. Using the Nm + 1 transcripts for µ, the extractor can show that each µi

coefficient is zero. Now using the Nl + 1 transcripts with different values of λ, we can do the same for the
remaining constant term, and the other terms if flfm = 1, to show that all the linear constraints must
vanish. Thus, we have extracted a valid witness from O(NlNm max(Nl + 7, Nm)2) transcripts, which is
polynomial in the security parameter which proves that the protocol has k-SS for the union of the AC
relation and RDLR.

C.3 Proof of Theorem 3

Proof. Completeness. Completeness follows from executing the protocol. In selecting the reciprocal
challenge α, it is possible for the prover to fail if any of the denominators vanish. Since the number
of reciprocals is negligible by construction, the probability of failure is negligible, so the protocol has
completeness.

SHVZK. SHVZK follows directly from the SHVZK of the arithmetic circuit protocol. Since the
reciprocal circuit is compiled to an arithmetic circuit, the simulator will simply choose random α and
then run the arithmetic circuit simulator on the resulting circuit. Thus, the protocol is SHVZK.

CWEE. Given a tree of transcripts, the extractor χrf for the reciprocal form circuit relation Rrf

(Eq. (71)) will use the arithmetic circuit extractor χac on the compiled arithmetic circuit for particular
challenges α. Extractor χac obtains a valid witness for the AC relation or RDLR as defined in Lemma 3
using O(NlNm max(Nl + 7, Nm)2) total transcripts. If χac returns a witness for RDLR, χrf returns it.
We will show below that, otherwise, the polynomial time extractor χrf succeeds in extracting a witness
for Rrf when receiving a tree of transcripts with 2Np pairwise distinct challenges α. Thus, the reciprocal
form circuit protocol is k-SS and has CWEE for relation Rrf assuming the expected-PPT hardness of
the DLR problem by Lemma 2 and Lemma 3.

We now show that if χac does not return a solution to the DLR problem, χrf returns a witness that
satisfies Eq. (65) and the collections Ai encoded by Eq. (66) vanish. Following the notation of Section 6.3,
we can see that χac extracts a witness w′ = w′

L||w′
R||w′

O for a particular challenge α such that

0 = W ′
lw

′ + flwV + a′
l

= ((WdwI)||(Wp(α)w(α))||(Wlw)) + flwV + (ad||ap(α)||al).
(97)
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It follows that Eq. (65) is satisfied.
In order to show that the encoded collections Ai vanish, we show that the circuit encodes instances of

the reciprocal argument for m = WnwI+fmwV +an,v = wD, r = w′
P . We can see that for the extracted

witness
∑

ri +
∑

aP,i(α) = 0, since from Eq. (97) it follows that 0 = Wp(α)w(α) + ap(α) = f(α). This
implies

∑
ri +

∑
aP,i(α) = 0, if Wp(X) and ap(X) are correctly constructed.

Moreover, for the witness w′ extracted by χac it holds that

w′
L ◦w′

R = W ′
mw′ + fmwV + a′

m (98)

(wD||wL) ◦ (w′
P ||wR) = ((WnwI − αw′

P )||(Wmw)) + fmwV + (an||am). (99)

Hence, it holds that

αw′
P +wD ◦w′

P = WnwI + fmwV + an (100)

αr + v ◦ r = m. (101)

which proves that the reciprocal form circuit protocol encodes instances of the reciprocal argument
protocol for collections Ai.

Since the total size of the collections Ai sums to |wD| = Np and the extractor has 2Np transcripts
with pairwise distinct challenges α, by Lemma 1 all Ai vanish. By assumption, Np is polynomial in the
security parameter, so χrf uses polynomially many transcripts to extract a witness for the reciprocal form
circuit relation or RDLR. Thus, the reciprocal form circuit protocol is k-SS.
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