
VERICA - Verification of Combined Attacks
Automated formal verification of security against simultaneous

information leakage and tampering

Jan Richter-Brockmann1 , Jakob Feldtkeller1 , Pascal Sasdrich1 and
Tim Güneysu1,2

1 Ruhr University Bochum, Horst Görtz Institute for IT Security, Bochum, Germany
2 DFKI, Bremen, Germany

firstname.lastname@rub.de

Abstract. Physical attacks, including passive Side-Channel Analysis and active Fault
Injection Analysis, are considered among the most powerful threats against physical
cryptographic implementations. These attacks are well known and research provides
many specialized countermeasures to protect cryptographic implementations against
them. Still, only a limited number of combined countermeasures, i.e., countermeasures
that protect implementations against multiple attacks simultaneously, were proposed
in the past. Due to increasing complexity and reciprocal effects, design of efficient
and reliable combined countermeasures requires longstanding expertise in hardware
design and security. With the help of formal security specifications and adversary
models, automated verification can streamline development cycles, increase quality,
and facilitate development of robust cryptographic implementations.
In this work, we revise and refine formal security notions for combined protection
mechanisms and specifically embed them in the context of hardware implementations.
Based on this, we present the first automated verification framework that can verify
physical security properties of hardware circuits with respect to combined physical
attacks. To this end, we conduct several case studies to demonstrate the capabilities
and advantages of our framework, analyzing secure building blocks (gadgets), S-boxes
build from Toffoli gates, and the ParTI scheme. For the first time, we reveal security
flaws in analyzed structures due to reciprocal effects, highlighting the importance of
continuously integrating security verification into modern design and development
cycles.
Keywords: SCA · FIA · Formal Verification · BDD · Symbolic Simulation ·
Combined Analysis

1 Introduction
Physical Attacks and Countermeasures. While the theory for design and construction of
secure cryptographic algorithms is a well-matured field of research [KR11], secure practical
implementation and instantiation of cryptography still remains a challenging task. For
instance, physical effects and characteristics of modern electronic devices, such as timing
behavior [Koc96], instantaneous power consumption [KJJ99], or electromagnetic (EM)
emanations [GMO01], can leak sensitive information on processed data. Since Side-Channel
Analysis (SCA) is a well-known threat to cryptographic implementations, a wide range of
protection mechanisms and countermeasures have been presented over time. Among all
proposals, masking is a well-studied and promising approach, mainly due to its theoretically
sound security foundations [CJRR99]. Besides, not only passive observation and analysis
of electronic devices running cryptographic algorithms, but also active disturbance and

https://orcid.org/0000-0002-8454-4755
https://orcid.org/0000-0001-9797-1257
https://orcid.org/0000-0002-5443-626X
https://orcid.org/0000-0002-3293-4989
mailto:jan.richter-brockmann@rub.de, jakob.feldkeller@rub.de, pascal.sasdrich@rub.de, tim.gueneysu@rub.de


2 VERICA - Verification of Combined Attacks

manipulation of modern electronic devices, e.g., through clock glitches [DEG+18], voltage
glitches [ZDCT13], EM pulses [DDRT12, DLM19], or focused laser beams [SA02], can
expose sensitive information to an adversary. Similarly, Fault Injection Analysis (FIA) is
a well-known threat and several countermeasures, mostly relying on redundancy in terms
of time, area, or information, are used to detect or correct injected transient faults.

Combined Hardware Security. However, although SCA and FIA are well-known and
well-studied threats to secure implementations of cryptographic algorithms, both threats
and potential security mechanisms are mostly addressed and evaluated in isolation. More
precisely, while masking and redundancy provide strong security guarantees against SCA
and FIA, respectively, the impact and threat of combining FIA and SCA has long been
neglected and underestimated, hence, only a limited number of combined countermeasures
can be found in literature.

As one of the first attempts, ParTI [SMG16], a first-order secure Threshold Implementa-
tion (TI) of LED, was protected against FIA based on a detection scheme using linear error
codes for information redundancy. Based on the concepts presented in [SRM20], this TI can
be extended to also provide a correction-based protection instead of only detecting faults.
Subsequently, different approaches have been investigated, e.g., using concepts of Multi-
Party Computation (MPC) [RMB+18], Message Authentication Codes (MACs) [MAN+19],
orthogonal error correction [RSBG20], or transformation and encoding [SJR+20], to build
robust countermeasures against combined attacks. However, as it is well known, secure
design and implementation of cryptographic algorithms require long-standing expertise
and experience in the fields of hardware design and security, as the complexity, effort, and
cost of these tasks increase dramatically with design complexity. For this, most recent
approaches focus on the design and implementation of smaller building blocks, e.g., based
on Toffoli gates [DDE+20] or masked multiplication gadgets [DN20], to compose larger
designs from provably secure components.

Formal Verification of Hardware Security. Due to the ever increasing and growing
design complexity, formal verification nowadays is a fundamental part of Very Large
Scale Integration (VLSI) design cycles in industry [BK18]. Regardless of this, existing
formal verification mostly focuses on functional correctness (e.g., in form of model checking
[CCGR99]) and is applied for example to entire Central Processing Units (CPUs) as
shown in [SSR+18] for RISC-V processors. Additionally, a widespread application of
formal verification can be found in safety-critical environments, e.g., in the automotive
industry [GLH18]. However, verification of secure implementation is often not considered.
In light of this, recent hardware security research also stimulates progress and innovation
for formal models of active and passive adversaries and the physical execution environments
of modern electronic devices. Ideally, sound and accurate formal models can simplify and
assist in verification of security and functional correctness of cryptographic implementations
to shorten and streamline hardware development cycles. For this, in the context of masking,
formal security verification is commonly performed in the abstract and elegant Ishai-Sahai-
Wagner (ISW) threshold d-probing model [ISW03], modeling side-channel leakage in
terms of d adversarial probes, providing access to intermediate values of a digital logic
circuit during operation. Inspired by the sophistication of this formal security model, a
consolidated fault adversary model was presented in [RBSG22]. However, again, formal
models of physical attacks, consulted during security verification, are mostly developed in
isolation but neglect the threat of combined attacks. In addition, as mentioned before,
complexity of verification increases dramatically with increasing design size and model
complexity, rendering manual security verification nearly infeasible.



J. Richter-Brockmann, J. Feldtkeller, P. Sasdrich and T. Güneysu 3

Automated Tools for Formal Verification. These challenges inevitably led to the research
and development of automated security reasoning and computer-aided security verification
tools. In connection with SCA and the d-probing model, existing verification tools either
focus on specific countermeasures [ANR18], direct security reasoning [BGI+18,BBC+19,
KSM20,GHP+21,HB21,BMRT21], or assume securely masked gadgets and verify the correct
composition under secure composability notions [BGR18,BDM+20,CGLS21]. In the context
of FIA and active information tampering, state-of-the-art verification tools evaluate specific
countermeasures [HPB21], algebraic vulnerabilities [KRH17], or use simulation to ensure
the robustness of redundancy-based hardware countermeasures [AWMN20,RBRSS+21].
As mentioned before, security threats from SCA and FIA are mainly considered in isolation
and none of the existing security verification tools allow security reasoning under Combined
Analysis (CA).

Contributions. We start this work by extending and proving formal models considering
CA, by precisely specifying adversarial advantages when injecting faults in masked circuits.
Specifically, we provide the first accurate definition of fault-free masked circuits required as
fundamental construction for combined security. In addition, we refine existing software-
only composability notions for CA (proposed in [DN20]) by specifically embedding them
in a hardware context, considering gadgets with multiple-output functions, and, for the
first time, give a formal security argument of the impact of faulty randomness. Thereby,
in specifically considering reciprocal effects, we consolidate isolated security models and
composability notions for SCA and FIA into a holistic system applicable for CA.

Given this, we present the first automated framework for formal security verification of
hardware circuits under CA, reconciling and uniting previous concepts that only addressed
each physical attack in isolation. More specifically, this framework automatically verifies
security of digital logic circuits and secure composability of fundamental building blocks
(gadgets) in the presence of combined attacks In light of this, we show that, due to
unnoticed reciprocal effects, combined verification requires concepts and techniques beyond
simple combination of SCA and FIA verification. Using these features, we conduct several
case studies, i.e., analyzing the gadgets proposed in [DN20], dedicated Statistical Ineffective
Fault Analysis (SIFA) countermeasure recently proposed in [DDE+20], and the ParTI
protection scheme [SMG16]. In particular, these case studies helped to reveal unknown
security flaws in [DN20] which impact software and hardware implementations, likewise.
Consequently, the automated verification framework is able to perform stand-alone SCA
or FIA verification as well as CA and is publicly available on GitHub. We believe that
our open-source tool VERICA sparks and supports new research on combined attacks and
countermeasures.

Outline. In Section 2, we summarize our notations and introduce the fundamental
hardware circuit model. Section 3 covers essential adversary models, security definitions,
and composability notions for SCA, FIA, and CA. In Section 4, we combine stand-
alone verification strategies into a combined verification methodology, for the first time
considering reciprocal effects. Section 5 presents our case studies and extensively evaluates
our proposed verification methodology using a variety of protected hardware circuits taken
from literature. Eventually, we discuss and conclude our work in Section 6.

2 Preliminaries
In this section, we cover essential details required for the remainder of this work, i.e., we
summarize our notations in Table 1 and specify our fundamental hardware circuit model.

https://github.com/Chair-for-Security-Engineering/VERICA


4 VERICA - Verification of Combined Attacks

Table 1. Notations used throughout this work.
Notation Description

d Security order of side-channel countermeasures.
s Number of shares used by a side-channel countermeasure.

k Security order of fault injection countermeasures.
f Fault cardinality (number of simultaneously injected faults).
t Fault type.
l Fault location.

m Number of bits of an uncoded message.
n Number of bits of a codeword generated by a linear error code.
r Number of redundant bits generated by a linear error code.
ℓ Number of distinct messages.

C, G Represents a digital logic circuit or gadget, respectively.
F Functions are written in sans serif font.
S Sets are denoted as upper-case characters in calligraphic font.

2.1 Circuit Model
We consider and model any deterministic digital logic circuit C, given in a gate-level netlist
description, as a Direct Acyclic Graph D = {V, E}. More specifically, the logic circuit
C is decomposed into atomic components, denoted gates and modeled as nodes in the
graph. Formally, we distinguish combinational gates, randomness gates and memory gates
according to the following definitions.

Definition 1 (Combinational Gate). A combinational gate g ∈ Gc is a physical component
in a digital logic circuit C that evaluates outputs as a pure Boolean function of its current
inputs only, but without any dependency on the history of previous inputs.

For the sake of simplicity, but without loss of generality, we restrict the set of considered
combinational gates to Gc = {not, and, nand, or, nor, xor, xnor}.

Definition 2 (Memory Gate). A memory gate g ∈ Gm is a physical, clock-synchronized
component in a digital logic circuit C for which the outputs not only depend on present
inputs but also on the history of previous inputs.

Again, for the sake of simplicity, but without any loss of generality, we restrict the set of
memory gates to registers, i.e., Gm = {reg}. Each memory gate models a clock-dependent
synchronization point within the circuit and can store a single Boolean variable x ∈ F2.

Definition 3 (Randomness Gate). A randomness gate g ∈ Grand is a physical, clock-
synchronized component in a digital logic circuit C without inputs. For each clock cycle
the output is an independently and uniformly chosen random value.

In sum, the circuit model of a digital logic circuit C is defined according to Definition 4.

Definition 4 (Circuit Model). A digital logic circuit C is modeled by a Direct Acyclic
Graph (DAG) given as D = {V, E}, with V denoting the set of vertices and E denoting
the set of edges. Further, a single vertex v ∈ V represents a combinational, memory, or
randomness gate g ∈ G, with G = Gc ∪ Gm ∪ Grand, and each edge e ∈ E represents a wire
connecting two gates carrying an element of the finite field F2.

Further, a circuit is called a gadget iff it implements a function under consideration
of security and compositional properties. This could, for example, be a circuit that
implements a multiplication in F2, such that it is secure against side-channel attacks and
remains so under composition with other circuits.



J. Richter-Brockmann, J. Feldtkeller, P. Sasdrich and T. Güneysu 5

3 Security Models
In this section, we briefly summarize existing security models for SCA and FIA and revisit
corresponding secure composability notions. Eventually, we present an integrated adversary
model and unified composability notions for CA, specifically embedded into the hardware
context.

Basic Adversary Model. According to our basic adversary model, any adversary is
given access to the circuit C and its physical structure. Then, the adversary can invoke C
multiple times with constant secret inputs while potential randomness is drawn freshly for
each invocation. Still, the adversary has no knowledge or control on the actual values that
are processed, including input, intermediate, and output values [ISW03]. The specific view
of the adversary, in addition to further capabilities, are discussed in the remainder of this
section for different scenarios.

Security Proofs via Simulation. Simulation is a proof technique for security arguments
that is in particular useful when statements about composability are required [Can01,
Mau11]. In this setting, we define a real and an ideal game, where the ideal game is
trivially secure (under some adversary model). A system in the real game is then said to
be secure iff the view to the adversary is indistinguishable from the ideal game, i.e., there
is no adversary who can distinguish the two games with a probability higher than 1

2 . The
ideal game is defined by a probabilistic polynomial-time simulator that reproduces the
view of the adversary without access to the secret. From this we can conclude, that the
view of the adversary is indeed independent of the secret.

Statistical Independence. Two events A and B are statistical independent iff it holds
that Pr[B|A] = Pr[B].

3.1 Modeling Side-Channel Analysis
Let us first recall essential definitions for side-channel security from literature. Those are
passive attacks in that the adversary only observes the behavior of some circuit without
any active tampering during processing.

3.1.1 Adversary and Security Model

In the stateless ISW d-probing model [ISW03], an adversary is given the exact values of up
to d wires of a circuit C (called probes) that can be freely chosen prior to each invocation.
Consequently, probing security, in terms of privacy, is given iff for all observations the view
of the adversary is independent of any processed secrets , i.e., all probes can be simulated
without access to any wire of the circuit.

A well known source of additional side-channel leakage in hardware comes from
physical defaults, e.g., glitches. A glitch occurs whenever there are timing differences in
the propagation of signals through the logic, i.e., if the output of a gate evaluates for
a short amount of time to a wrong value due to timing differences at the input. Then,
for a short amount of time, a wire can carry a different secret-dependent value than
the one it carries in an ideal execution. To model this kind of leakage, the glitch-robust
probing model [FGP+18] gives the adversary not only access to the exact value carried
by a wire, but the exact value of all stable synchronization points, i.e., clocked registers,
a probed wire depends on. Hence, a glitch-extended probe is a set of values instead of
a single value. Throughout the paper, we consider registers as elements stopping the
propagation of glitches, however, not defining a state in the sense of the stateful probing
model [ISW03]. Even though the authors of [FGP+18] presented theoretical models for



6 VERICA - Verification of Combined Attacks

other physical defects as well (i.e., transitions and couplings), we restrict our analysis to
the glitch-extended probing model.

3.1.2 Countermeasures and Protection Mechanisms

Boolean masking [CJRR99] is one of the most promising solutions to protect against
d-probing adversaries, due to its sound theoretical foundations.

Definition 5 (Boolean Sharing). A Boolean sharing of a value x ∈ Fm
2 is a vec-

tor ⟨x0, . . . , xs−1⟩ such that x =
⊕s−1

i=0 xi, with xi ∈ Fm
2 uniform random and for all

X ⊊ {x0, ..., xs−1} the values (xi)i∈X are independent. Further, let S : Fm
2 7→ Fm·s

2 be a
probabilistic share function that outputs a valid Boolean sharing ⟨x0, . . . , xs−1⟩ for some
x. Similarly, U : Fm·s

2 7→ Fm
2 is a deterministic unshare function that computes the original

value x for a share vector ⟨x0, . . . , xs−1⟩.

By abuse of the notation, we write S(x) for an x ∈ Fm·ℓ
2 when the encode function

is applied element-wise on ℓ different values xj ∈ Fm
2 . Similarly, we write U(x) for an

x ∈ Fm·s·ℓ
2 when the decode function is applied vector-wise on ℓ different share vectors.

We define a shared circuit as a digital logic circuit that operates on Boolean shares.
Further, the sharing and unsharing functions are considered outside of the adversarial
scope (as usually done in literature), as they inherently violate the definition of d-probing
security [AIS18].

Definition 6 (Shared Circuit). A shared circuit Cs
F for a function F : Fm·ℓ

2 7→ Fm·ℓ′

2
and a Boolean sharing scheme with s shares is a probabilistic circuit realizing a function
FC : Fm·s·ℓ

2 7→ Fm·s·ℓ′

2 , such that ∀x ∈ Fm·ℓ
2 it holds that F(x) = U(FC(S(x))) (functional

correctness).

3.1.3 Composability Notions

The secure construction of shared circuits is a laborious and error-prone task and the
notion of probing security does not support composition of circuits on its own. Therefore,
research has focused on construction of gadgets, i.e., atomic building blocks, which retain
certain security properties when combined.

As a first notion for composition, Barthe et al. [BBD+15] proposed Probe Non-
Interference (P-NI) which limits the amount of leakage for shared intermediates (in
contrast to the conventional naming, we specify the type of non-interference to distinguish
it from other non-interference definitions later in this work).

Definition 7 (Probe Non-Interference [BBD+15]). A shared gadget G is d-P-NI iff any
set of d′ ≤ d probes can be perfectly simulated with at most d′ shares of each input.

As the composition of P-NI gadgets cannot guarantee probing secure circuits, P-NI
on its own is not sufficient. To address this challenge, Probe Strong Non-Interference
(P-SNI) [BBD+16] has been proposed as a more restrictive composability notion.

Definition 8 (Probe Strong Non-Interference [BBD+16]). A shared gadget G realizing a
function F : Fm·s·ℓ

2 7→ Fm·s
2 is d-P-SNI iff for any set of probes, of which d1 are internal

probes and d2 are output probes such that d1 + d2 ≤ d, the probes can be perfectly
simulated by d1 shares of each input.

Both P-NI and P-SNI gadgets are inherently probing secure [BBD+15,BBD+16]. In
addition, the composition of two P-SNI gadgets is again P-SNI [BBD+16]. However, a
more efficient composition can be achieved by combining P-NI and P-SNI gadgets when
following certain rules [BBD+16,BGR18].



J. Richter-Brockmann, J. Feldtkeller, P. Sasdrich and T. Güneysu 7

EF0 : τr

E
F1 : τf

(a) Faults injected in circuit (b) Model: golden circuit

0

(c) Model: faulty circuit

$

EF0 : τr

E F1 : τs

(d) Faults injected in circuit

1

(e) Model: golden circuit

0

1

(f) Model: faulty circuit

Figure 1. Fault model and golden circuits for general circuits (a to c) and shared circuits in
particular (d to f).

For large and complex circuits, the composition of P-NI and P-SNI gadgets can incur
unnecessary overhead. For this Cassiers and Standaert proposed Probe-Isolating Non-
Interference (PINI) [CS20], which enables more efficient constructions, e.g., a trivially
masked XOR gadget.

3.2 Modeling Fault Injection Analysis
We continue with fundamental definitions in the context of fault injection security, which
is considered as active attack as the adversary actively interferes with circuit execution.
In addition, we make small adjustments (where necessary) in preparation for modeling
combined attacks in Section 3.3.

3.2.1 Adversary and Security Model

Following the work in [RBSG22], an adversary is modeled by a function ζ(f, t, l). Here,
f limits the number of simultaneous faults that can occur at the same time and t is
used to precisely specify the fault and is selected from a set T = {τsr, τs, τr, τbf , τfm}.
Particularly, τbf describes bit-flips, τs, τr, and τsr consider stuck-at-one (set), stuck-at-zero
(reset), or both, respectively, while τfm is used to specify custom fault behaviors (e.g.,
given specific technology properties). Eventually, the fault location l can be selected
from L = {ci, m, mci} and restricts the fault injections to combinational gates g ∈ Gc, to
memory gates g ∈ Gm, or both gate types g ∈ Gc ∪ Gm, respectively. The index i for the
selection of combinational gates is used to define a finer grained selection of combinational
gates placed between two register stages. More precisely, i = 0 involves only these gates
that have the longest Data Arrival Time (DAT) while i = ∞ involves all combinational
gates. For more details, we refer the interested reader to the original work [RBSG22].
With this, specific faults are modeled by replacing the faulted gate with a different gate
defined by the introduced fault. Afterwards, the fault propagation can be identified and
effective and ineffective faults be distinguished by comparing the faulty circuit model to a
fault-free circuit model, the so called golden circuit. We illustrate the used fault model
in Figure 1(a-c).

Recently, Dhooghe and Nikova proposed a definition for active security [DN20] where
an adversary is allowed to inject up to k faults into a circuit C at arbitrary – but prior to
each invocation selected – locations. Then active security, in terms of correctness, is given
iff for all fault combinations C either aborts or outputs a correct result, i.e., equivalence
with the golden circuit. Here, the view of the adversary contains the (optional) abort
signal and the correctness of the result. Please note, that to provide security against
some attacks (e.g., SIFA [DEK+18]) no abort signal is allowed. We extend this definition
with the adversary model from [RBSG22] and by explicitly require a protected decoding



8 VERICA - Verification of Combined Attacks

algorithm for error detection or correction1.
When analyzing gadgets for secure composability in the presence of fault injections

(e.g., gadgets from [DN20]), we further extend the locations L of valid fault injections
to additionally consider faulty inputs. This includes faults in data inputs (due to faulty
outputs of other gadgets) as well as randomness gates.

Definition 9 ((k, t, l)-Fault Security). Let GD be a gadget realizing a decoding function
D, such that given an input with at most k faults and an abort signal GD either aborts or
outputs a correct result. A circuit C together with a decoding GD is (k, t, l)-fault secure iff
for any set of up to k faults of type t injected in gates of type l in C, the concatenation
GD(C(·)) either aborts or outputs a result equal to the golden circuit of C.

The final decoding gadget is necessary for both practicality and security. It is practically
impossible to guarantee functional correctness at the output with an unrestricted adversary,
as they can always fault the output directly. For security, the output behavior must be
independent of any sensitive information. In the following, we write k-fault security when
we do not restrict the fault type and fault location.

3.2.2 Countermeasures and Protection Mechanisms

Countermeasures for fault security are mostly based on redundant information or computa-
tion to detect or correct transient faults. In this work, we focus on redundant information
and consider data encoding using binary linear codes.

Definition 10 (Binary Linear Code). An (n, m)-linear code C of length n, dimension m,
and co-dimension r = n − m is a m-dimensional subspace of Fn

2 . Further, let E : Fm
2 7→ Fn

2
be a deterministic encode function following the encoding mechanism of the linear code, and
D : Fn

2 7→ Fm
2 be a deterministic decode function that receives a codeword c and computes

the corresponding message m or aborts.

We define an encoded circuit as a digital circuit that operates on values secured by
information redundancy of linear codes. In accordance with Definition 9 and similar to
Definition 6 we do not consider the encoding and decoding as part of the circuit, as faulting
them inherently violates the definition of fault security.

Definition 11 (Encoded Circuit). An encoded circuit CC
F for a function F : Fm·ℓ

2 7→ Fm·ℓ′

2
and a linear code C is a deterministic circuit realizing a function FC : Fn·ℓ

2 7→ Fn·ℓ′

2 , such
that ∀x ∈ Fm·ℓ

2 it holds that FC(E(x)) ∈ C and F(x) = D(FC(E(x))) (functional correctness).

3.2.3 Composability Notions

Dhooghe and Nikova additionally present security notions for composable injection-secure
gadgets [DN20]. Inspired by the P-NI property, the Fault Non-Interference (F-NI) property
ensures that each intermediate fault only propagates to at most a single output. However,
this is relaxed by also allowing abortion of computations upon fault detection. Please note,
this definition is equal to the definition of Non-Accumulation [DN20], however, with an
explicit requirement for the existence of an appropriate decoding gadget.

Definition 12 (Fault Non-Interference [DN20]). A gadget G is k-F-NI iff for any set of
k′ ≤ k faults at inputs and injected on gates in G, the gadget either aborts or gives an
output with at most k′ bit faults and there exists a decoding gadget GD, such that given
an input with at most k faulty inputs and an abort signal, GD either aborts or outputs a
correct result.

1 [DN20] implicitly requires a protected decode gadget as well, however, we explicitly include it into
the definition to make this requirement more transparent.



J. Richter-Brockmann, J. Feldtkeller, P. Sasdrich and T. Güneysu 9

Analogous to P-SNI tightening P-NI, the notion of Fault Strong Non-Interference
(F-SNI) extends F-NI and ensures full composability in distinguishing input and in-
termediate faults. Again, this definition is equal to the definition of Strong Non-
Accumulation [DN20], however, with an explicit requirement for the existence of an
appropriate decoding gadget.
Definition 13 (Fault Strong Non-Interference [DN20]). A gadget G is k-F-SNI iff for any
set of k1 faulty inputs and every set of k2 faults injected in gates of G, with k1 + k2 ≤ k,
the gadget either aborts or gives an output with at most k2 bit faults and there exists a
decoding gadget GD, such that given an input with at most k faulty inputs and an abort
signal, GD either aborts or outputs a correct result.

Both k-F-NI and k-F-SNI imply k-fault security given a decoding gadget GD that can
detect or correct k faults. In addition, it holds that the composition of two F-SNI gadgets
is F-SNI again [DN20].

3.3 Modeling Combined Analysis
In this section, we now focus on CA, i.e., considering adversaries that are able to simulta-
neously inject faults and place probes. In that, we extend the state of the art in [DN20]
by refinement of circuit models in shared contexts and consideration of leakage caused by
fault injections.

3.3.1 Combined Adversary and Security Model

Security in the combined adversary and security model has to amalgamate the definitions
of probing security and fault security, while additionally considering any reciprocal effects.
For this, we adopt and refine the formal notions in [DN20], considering the extended fault
model in [RBSG22] and explicit decoding functions. Again, all probes and faults are
selected prior to each invocation of the circuit and the view of the adversary is defined
by the probed values, the (optional) abort signal, and the correctness of the result of the
concatenation GD(C(·)), where GD is a circuit realizing a error detection or error correction
mechanism for up to k faults.
Definition 14 ((d, k, t, l)-Combined Security). Let GD be a gadget realizing a decoding
function D, such that, given an input with at most k faults and an abort signal, GD

either aborts or outputs a corrected result. A circuit C together with a decoding GD is
(d, k, t, l)-combined secure iff for any set of up to k faults of type t injected on gates of type
l in C, and any set of up to d probes placed on wires in C the following holds:

Privacy: The abort signal and the probes can be simulated without access to any
wire of C.

Correctness: The concatenation GD(C(·)) either aborts or outputs a result equal to
the golden circuit of C.

In the following, we write (d, k)-combined security when we do not restrict the fault
type and location. Further, we emphasize the adversarial knowledge on faults, since
injecting faults is strongly linked to placing probes [Cla07,SMC21].
Remark 1 (Adversarial Knowledge on Faults). A fault is known iff the adversary exactly
learns the targeted gate, and the fault type t, i.e., the misbehavior caused by the fault.

With this, an adversary additionally learns the following details: (i) the location of
propagated faults, (ii) the distribution of the faults under a chosen input distribution,
and (iii) the probability of fault occurrences under a chosen input distribution. Still, the
adversary does not necessarily learn the exact values (but only distributions). This is also
the case when the exact position of the fault injection is not modeled, e.g., in the case of
faulty inputs (see below).



10 VERICA - Verification of Combined Attacks

3.3.2 Countermeasures and Protection Mechanisms

One obvious countermeasure against combined attacks is the combination of Boolean
sharing and linear codes. Since both rely on linear operations, we assume, without
loss of generality, that the sharing is applied before the linear code. Hence, the initial
transformation in the context of combined security is defined as E ◦ S : Fm

2 7→ Fn·s
2 first

applying Boolean sharing S and then an encoding of a linear-error code E on each created
share. The corresponding reversed transformation is defined as U ◦ D : Fn·s

2 7→ Fm
2 which

receives a shared codeword and computes the corresponding unshared message.
Given this, we can define a shared and encoded circuit as follows. Again, to be consistent

with Definition 6 and Definition 11, we keep the encoding and decoding separate from the
actual circuit.

Definition 15 (Shared and Encoded Circuit). A shared and encoded circuit C(s,C)
F for a

function F : Fm·ℓ
2 7→ Fm·ℓ′

2 , a Boolean-sharing scheme with s shares, and a linear code C
is a probabilistic circuit realizing a function FC : Fn·s·ℓ

2 7→ Fn·s·ℓ′

2 , such that ∀x ∈ Fm·ℓ
2 it

holds that FC(E(S(x))) ∈ C and F(x) = U(D(FC(E(S(x))))) (functional correctness).

3.3.3 Golden Circuit of Probabilistic Circuits

Accurately modeling CA requires a precise notion of fault propagation and misbehavior
in a shared circuit. Unfortunately, this is a non-trivial task as, on the one hand, there
are multiple valid Boolean sharings for one value, such that faults can be effective in the
traditional meaning (i.e., have a different value than the fault-free circuit) but still be
functionally correct, which is especially true for faults injected in generated randomness.
On the other hand, if we have a faulty sharing, then it is hard to precisely determine the
faulty shares, requiring a precise propagation of faults. As a consequence, we introduce
an adjusted definition for the golden (fault-free) circuit of a shared circuit, where, if
faulted, the randomness-generation gates are already replaced, as shown in Figure 1(d-f).
Intuitively, this is correct as the actual value of randomness cannot have an impact on the
functional correctness.

Definition 16 (Golden Circuit). The golden circuit Cgolden of a shared circuit C under a
set of faults F is the circuit C transformed by the faults on generated randomness, i.e.,
{f ∈ F | f targets g ∈ Grand}.

In the following, we show that Definition 16 is meaningful and sound, since faults in
randomness gates do not affect functional correctness and is at most equivalent to a probe
for probing security of a circuit C.

Unaltered Randomness Distribution. We first start by showing that all faults in ran-
domness gates that do not change the randomness distributions, e.g., bit-flips on uniformly
drawn randomness, can be ignored without further impacting functional correctness,
probing security, or simulation-based composability notions.

Theorem 1. Faulting a gate g ∈ Grand, generating some randomness rg, has no effect
on functional correctness, probing security, or simulation-based composability of C if the
randomness distribution of rg is not changed.

Proof. Assume a circuit C with a gate g ∈ Grand generating a random bit rg. Functional
correctness of C cannot be affected by a fault in g as otherwise the functional correctness
would always depend on the concrete value of rg.

Further, assume there is a simulator S for the probing security or composability of C.
The same simulator S can be used to simulate the respective probes with and without a
fault injected in g for the following reasons. If the value at the output of g is observable



J. Richter-Brockmann, J. Feldtkeller, P. Sasdrich and T. Güneysu 11

from the selected probes, then the simulator must select some randomness to represent this
value as otherwise the output distribution of the simulator differs from the distribution
of the probes on the real circuit C. As the fault does not change the distribution of the
output of g, the simulator can use the same randomness regardless of the injected fault in
g. If the value at the output of g is not observable from the selected probes, then the fault
does not influence the output distribution.

Altered Randomness Distribution. Next, we show that faults injected in a randomness
gate which alter the randomness distribution, e.g., set or reset faults, can be replaced by
a probe without impacting functional correctness, probing security, or simulation-based
composability notions. This further implies that propagation of faulty randomness does
not affect probing security or composability (besides providing additional probes). For
this we first prove a lemma claiming that a value with a biased distribution can not mask
some other value, before we show the actual claim in Theorem 2.

Lemma 1. Let x, y ∈ F2 where x has a biased distribution and the distributions of x and
y are independent of each other. Further, let ◦ be a binary operator over F2. Then the
distribution of x ◦ y and y ◦ x is dependent on the distribution of y.

Proof. Let x, y ∈ F2 where x has a biased distribution, i.e., Pr[x = 0] ̸= Pr[x = 1], and
the distributions of x and y are independent of each other. The operations in F2 are
addition (xor) and multiplication (and). As both operations are commutative it is sufficient
to look at x ◦ y. We first consider addition and then multiplication.

Addition: It holds that Pr[x+y = 0] = Pr[x = 0]Pr[y = 0]+Pr[x = 1]Pr[y = 1]. This
term can only be made independent of the distribution of y when Pr[x = 0] = Pr[x = 1],
however, as Pr[x = 0] ̸= Pr[x = 1] it holds that Pr[x + y = 0] is dependent on the
distribution of y. Further, Pr[x + y = 1] = Pr[x = 0]Pr[y = 1] + Pr[x = 1]Pr[y = 0] is
dependent on the distribution of y with the same argument.

Multiplication: It holds that Pr[x · y = 0] = Pr[x = 0]Pr[y = 0] + Pr[x = 0]Pr[y =
1] + Pr[x = 1]Pr[y = 0] and Pr[x · y = 1] = Pr[x = 1]Pr[y = 1]. Both terms are always
dependent on the distribution of y.

Theorem 2. Faulting a gate g ∈ Grand, generating some randomness rg, is equivalent to
placing a probe on rg with respect to functional correctness, probing security, or simulation-
based composability of C, if the randomness distribution of rg is changed.

Proof. Assume a circuit C with a gate g ∈ Grand generating a random bit rg. Again,
functional correctness of C cannot be affected by a fault in g (for the same argument as
before). Next, we prove equivalence in terms of probing security and simulation-based
composability in both directions.

⇒ Assume there is a simulator S0 capturing the probing security or composability of
C when there is a fault injected in g causing a biased distribution of rg. As the
distribution of rg is biased and independent of any input to C, rg can not hide any
input according to Lemma 1. Hence, there is a simulator S1 with the same inputs
as S0 but with the additional output rg, simulating an additional probe on rg. The
simulator S1 is constructed in the same way as S0, however, explicitly draws a value
for rg from the corresponding distribution if not already done by S0. The correctness
of S1 follows from two facts: (i) for values dependent on the distribution of rg the
distribution already considered the biased distribution of rg in S0, and (ii) for values
where the distribution of rg is not required for simulation (either because they are
functionally independent or there is a hiding later on) this is also true when leaking
rg, as rg itself does not hide any values. With a similar argument, we can construct a
simulator S2 equivalent to S1 but with a different distribution for rg. Correctness of



12 VERICA - Verification of Combined Attacks

S2 follows from (i) simulation of values independent of rg do not change by changing
the distribution, and (ii) changes in the distribution of values dependent on rg can be
computed as the only difference to the distribution in S1 is the changed and known
distribution of rg. In particular, we can chose an uniform random distribution for rg.
Now S2 uses the same input shares as S0 but simulates C with a probe placed on rg

instead of a fault injected in g.
⇐ Assume there is a simulator S ′

0 capturing the probing security or composability of
C when a probe is placed on rg. Due to the probe on rg the distribution of rg gets
fixed to Pr[rg = 0] = 1 or Pr[rg = 1] = 1 for each run of S ′

0. Hence, the distribution
of rg is both independent to the distribution of all other inputs to C and biased for
each individual invocation of S ′

0. With Lemma 1 it follows that rg does not hide
any other value and, therefore, there exist a simulator S′

1 equivalent to S′
0 but with

different distribution for rg (same argument as the transition from S1 to S2 above).
In particular, we can chose the distribution chosen by the adversary for a fault in g.
Now, S ′

1 uses the same input shares as S ′
0 but simulates C with a fault injected in g

instead of a probe placed on rg.

This shows equivalence in terms of probing security or simulation-based composability by
showing that we can always transform a simulator of one setting into a simulator of the
other setting.

Together, Theorems 1 and 2 show that faulting some randomness has no impact on
correctness and affects security at most in equivalence to a probe. As probes (backwards)
and fault (forwards) propagation are converse, fault and probing security is not impacted
when defining the golden circuit in replacing/modifying randomness generating gates.
Hence, our definition of the golden circuit is sound.

3.3.4 Composability Notions

In the context of CA, it is again useful to define notions of secure composition to reduce the
analysis complexity of gadgets. In this, we build upon the work of [DN20] by transferring
their definitions to the glitch-extended probing model along with necessary refinements.
To this end, we use Remark 1 to explicitly specify the information access of a simulator to
mimic the view of the adversary. Similarly, we use Definition 16, to overcome the fact that
faulting randomness can lead to more faults at the gadget output than allowed.

Definition 17 ((d, k)-Combined Non-Interference). A gadget G is (d, k)-Combined Non-
Interference (C-NI) if for any set of k1 faulty inputs, k2 faults injected on gates in G, and
d′ probes, such that d′ + k1 + k2 ≤ d and k1 + k2 ≤ k the following holds:

Privacy: The probes and the abort signal can be simulated with d′ + k2 shares of
each input and knowledge of the faults both injected and on inputs.

Correctness: The gadget either aborts or outputs a result with at most k1 + k2 bit
faults compared to the golden circuit and there exists a decoding gadget
GD, such that given an input with at most k faulty inputs and an abort
signal, GD either aborts or outputs a correct result.

Specifically, C-NI is a combination of P-NI with F-NI, however, in contrast to the
NINA definition in [DN20] we do not add k1 to the number of allowed input shares for
simulation, to clarify that faulty inputs must not reveal additional shares. Hence, we
restrict the possible leakage through faulty inputs to the knowledge an adversary can have
about those inputs according to Remark 1, i.e., the changed distribution under the faults.
This ensures that a fault can only leak input shares locally and not by probe propagation
from other gadgets. In addition, we refined the definition of NINA by giving a formal



J. Richter-Brockmann, J. Feldtkeller, P. Sasdrich and T. Güneysu 13

G1
G2

G3

(a) Sequential composition

G1

G2

G3

(b) Parallel composition

G1
G2

G3

(c) Composition with common input

G1
G2

(d) Composition with loop

G1
G2

(e) Output of G1 is used multiple times

Figure 2. Valid (a to c) and invalid (d and e) examples of gadget compositions according to
Theorem 3 and Theorem 4. Example (d) is invalid as it contains a loop and (e) is invalid as the
output of G1 is used two times as input to G2.

description of what a correct output is, specifically comparing the output of the gadget
with the output of the golden circuit as defined in Definition 16. Those changes also apply
to the other composablity notions, given below, in comparison with their counterpart
from [DN20]. Please note, that knowledge about the faults according to Remark 1 is
enough for simulation as a simulator requires only distributions and not concrete values.

Similar to the underlying definitions, C-NI is not sufficient for arbitrary compositions
in the context of CA. Hence, Combined Strong Non-Interference (C-SNI) is defined as the
combination of P-SNI and F-SNI (similar to SNINA in [DN20]).

Definition 18 ((d, k)-Combined Strong Non-Interference). A gadget G is (d, k)-C-SNI
iff for any set of k1 faulty inputs, k2 faults injected on gates in G, d1 probes placed on
intermediate values, and up to d2 probes placed on shares of each output, such that
d1 + d2 + k1 + k2 ≤ d and k1 + k2 ≤ k, the following holds:

Privacy: The probes and the abort signal can be simulated with d1 + k2 shares of
each input and knowledge of the faults both injected and on inputs.

Correctness: The gadget either aborts or outputs a result with at most k2 bit faults
compared to the golden circuit and there exists a decoding gadget GD,
such that given an input with at most k faulty inputs and an abort signal,
GD either aborts or outputs a correct result.

We now show that C-SNI gadgets, according to our refined definitions, still can be
composed to larger circuits without degrading combined security. We give illustrative
examples of valid and invalid compositions in Figure 2.

Theorem 3. The composition of two (d, k)-C-SNI gadgets, that is loop-free and where no
output of one gadget is used multiple times as input to the other gadget, is (d, k)-C-SNI.

Proof. Let G1 and G2 be arbitrary (d, k)-C-SNI gadgets and G3 an arbitrary composition
of G1 and G2, such that there is no loop within G3. Without loss of generality, we assume
no output of G2 is connected to G1 (as there is no loop). Further assume, no output of G1
is connected to more than one input of G2.

Let there be k1 faulty inputs to G3 of which k1
1 go to G1 and k2

1 go to G2. There may be
some inputs shared between G1 and G2, however, it always holds that k1

1 ≤ k1 and k2
1 ≤ k1.

Further, let there be k2 faults injected in gates of G3 of which k1
2 target gates in G1 and

k2
2 target gates in G2. As the gadgets G1 and G2 are disjoint it holds that k1

2 + k2
2 = k2.

We chose k1 and k2 arbitrarily such that k1 + k2 ≤ k. Similarly, let there be d1 probes
placed on intermediate values on G3 of which d1

1 are placed within G1 and d2
1 are placed

within G2. Further, let there be up to d2 probes placed on shares of each output of G3.
We assume all probes placed on wires connecting G1 and G2 as output probes of G3 if the



14 VERICA - Verification of Combined Attacks

wire is additionally connected to an output of G3 and as internal probe to G2 otherwise.
Then it holds that d1

1 + d2
1 = d1, as G1 and G2 are disjoint. We chose d1 and d2 such that

d1 + d2 + k1 + k2 ≤ d. We first prove correctness and then privacy of G3.
Correctness: As no output of G2 is connected to an input of G1 there are exactly k1

1
faulty inputs and k1

2 faults injected in gates of G1. It holds that k1
1 + k1

2 ≤ k1 + k2 ≤ k.
With C-SNI of G1 it follows that G1 either aborts or outputs a result with at most k1

2 bit
faults compared to the golden circuit of G1.

Outputs of G1 can be connected to inputs of G2 and, hence, G2 has at most k1
2 +k2

1 faulty
inputs, and exactly k2

2 faults injected in gates of G2. It holds that k1
2 +k2

1 +k2
2 ≤ k1 +k2 ≤ k.

With C-SNI of G2 it follows that G2 either aborts or outputs a result with at most k2
2 bit

faults compared to the golden circuit of G2.
Therefore, G3 either aborts (if G1 or G2 aborts) or outputs a result with at most

k1
2 + k2

2 = k2 bit faults compared to the golden circuit of G3. This concludes correctness of
G3.

Privacy: As all outputs of G2 are also outputs of G3 there are up to d2 probes placed on
shares of each output of G2. There are also d2

1 internal probes placed in G2 as well as k2
1 +k1

2
faulty input and k2

2 internal faults. It holds that d2
1+d2+k2

1 +k1
2 +k2

2 ≤ d1+d2+k1+k2 ≤ d.
With C-SNI of G2 it follows, that the abort signal and the probes related to G2 can be
simulated with d2

1 + k2
2 shares of each input and knowledge of the faults (Please note,

that knowledge of the faulty inputs dependent on G1 can be gained by propagating the
corresponding faults through G1). We call the corresponding simulator S2.

The outputs of G1 can be connected to the inputs of G2. Therefore, the simulator for
G1 not only has to simulate the probes related to G1 but also the input shares required
for S2. We do this by assuming additional probes at those input shares and, hence,
there are up to d2 + d2

1 + k2
2 probed shares of each output of G1. In addition, there are

d1
1 internal probes, k1

1 faulty inputs, and k1
2 internal faults related to G1. It holds that

d1
1 + d2

1 + d2 + k1
1 + k1

2 + k2
2 ≤ d1 + d2 + k1 + k2 ≤ d. With C-SNI of G1 it follows that the

abort signal and the probes related to G1 can be simulated with d1
1 + k1

2 shares of each
input and knowledge of the faults. We call this simulator S1.

By combining S1 and S2 we get a simulator for G3 that requires at most d1
1+k1

2+d2
1+k2

2 =
d1 + k2 shares of each input (as an input can go to both G1 and G2) and knowledge of the
faults (in the sense of Remark 1) to simulate the abort signal and all the probes. With
this we have shown privacy of G3 and conclude the proof.

While C-SNI supports arbitrary composition, as shown by Theorem 3, the maximum
number of allowed probes and faults is not independent. Independent Combined Strong
Non-Interference (C-SNIind), however, is designed to allow independent security levels for
probing and injection attacks, without losing the notion of composition (similar to SININA
in [DN20]).

Definition 19 ((d, k)-Independent Combined Strong Non-Interference). A gadget G is
(d, k)-C-SNIind if for any set of k1 faulty inputs, k2 faults injected on gates in G, d1 probes
placed on intermediate values, and up to d2 probes placed on shares of each output, such
that d1 + d2 ≤ d and k1 + k2 ≤ k, the following holds:

Privacy: The probes can be simulated with d1 shares of each input and knowledge
of the faults both injected and on inputs.

Correctness: The gadget outputs a result with at most k2 bit faults compared to the
golden circuit.

Theorem 4. The composition of two (d, k)-C-SNIind gadgets, that is loop-free and where no
output of one gadget is used multiple times as input to the other gadget, is (d, k)-C-SNIind.

The proof of Theorem 4 follows the same structure as the proof of Theorem 3 with
only marginal changes. For correctness it is exactly the same argumentation without an



J. Richter-Brockmann, J. Feldtkeller, P. Sasdrich and T. Güneysu 15

abort signal. For privacy we remove all ki and kj
i from the discussion.

Proof. Let G1 and G2 be arbitrary (d, k)-C-SNIind gadgets and G3 an arbitrary composition
of G1 and G2, such that there is no loop within G3. Without loss of generality, we assume
no output of G2 is connected to G1 (as there is no loop). Further assume, no output of G1
is connected to more than one input of G2.

Let there be k1 faulty inputs to G3 of which k1
1 go to G1 and k2

1 go to G2. There may be
some inputs shared between G1 and G2, however, it always holds that k1

1 ≤ k1 and k2
1 ≤ k1.

Further, let there be k2 faults injected in gates of G3 of which k1
2 target gates in G1 and

k2
2 target gates in G2. As the gadgets G1 and G2 are disjoint it holds that k1

2 + k2
2 = k2.

We chose k1 and k2 arbitrarily such that k1 + k2 ≤ k. Similarly, let there be d1 probes
placed on intermediate values on G3 of which d1

1 are placed within G1 and d2
1 are placed

within G2. Further, let there be up to d2 probes placed on shares of each output of G3.
We assume all probes placed on wires connecting G1 and G2 as output probes of G3 if the
wire is additionally connected to an output of G3 and as internal probe to G2 otherwise.
Then it holds that d1

1 + d2
1 = d1, as G1 and G2 are disjoint. We chose d1 and d2 such that

d1 + d2 ≤ d. We first prove correctness and then privacy of G3.
Correctness: As no output of G2 is connected to an input of G1 there are exactly k1

1
faulty inputs and k1

2 faults injected in gates of G1. It holds that k1
1 + k1

2 ≤ k1 + k2 ≤ k.
With C-SNIind of G1 it follows that G1 outputs a result with at most k1

2 bit faults compared
to the golden circuit of G1.

Outputs of G1 can be connected to inputs of G2 and, hence, G2 has at most k1
2 +k2

1 faulty
inputs, and exactly k2

2 faults injected in gates of G2. It holds that k1
2 +k2

1 +k2
2 ≤ k1 +k2 ≤ k.

With C-SNIind of G2 it follows that G2 either aborts or outputs a result with at most k2
2

bit faults compared to the golden circuit of G2.
Therefore, G3 outputs a result with at most k1

2 + k2
2 = k2 bit faults compared to the

golden circuit of G3. This concludes correctness of G3.
Privacy: As all outputs of G2 are also outputs of G3 there are up to d2 probes placed

on shares of each output of G2. There are also d2
1 internal probes placed in G2. It holds

that d2
1 + d2 ≤ d1 + d2 ≤ d. With C-SNIind of G2 it follows, that the probes related to G2

can be simulated with d2
1 shares of each input and knowledge of the faults (Please note,

that knowledge of the faulty inputs dependent on G1 can be gained by propagating the
corresponding faults through G1). We call the corresponding simulator S2.

The outputs of G1 can be connected to the inputs of G2. Therefore, the simulator for
G1 not only has to simulate the probes related to G1 but also the input shares required for
S2. We do this by assuming additional probes at those input shares and, hence, there are
up to d2 + d2

1 probed shares of each output of G1. In addition, there are d1
1 internal probes

to G1. It holds that d1
1 + d2

1 + d2 ≤ d1 + d2 ≤ d. With C-SNIind of G1 it follows that the
probes related to G1 can be simulated with d1

1 shares of each input and knowledge of the
faults. We call this simulator S1.

By combining S1 and S2 we get a simulator for G3 that requires at most d1
1 + d2

1 = d1
shares of each input (as an input can go to both G1 and G2) and knowledge of the faults
(in the sense of Remark 1) to simulate the abort signal and all the probes. With this we
have shown privacy of G3 and conclude the proof.

4 Verification Concept
In this section, we first introduce an appropriate data structure to represent the circuit
model (used for the symbolic simulation). Afterwards, we separately discuss our verification
strategies to validate side-channel security and fault injection resistance. Eventually, we
combine those strategies into a novel combined verification approach.



16 VERICA - Verification of Combined Attacks

4.1 Circuit Model
Our verification approach relies on essential ideas of [KSM20] and [RBRSS+21], such
that we also assume that the target logic circuit C is given as a (Verilog) gate-level
netlist. The gate-level netlist is transformed into a DAG D = {V, E} providing a perfectly
suited data structure to efficiently analyze the given design. More precisely, for symbolic
simulation we adopt the application of Binary Decision Diagrams (BDDs) according
to [KSM20] and [RBRSS+21]. Specifically, each node d ∈ V is associated with a BDD
(based on its represented Boolean function). For more details, we refer the interested
readers to [KSM20,RBRSS+21].

4.2 Side-Channel Analysis
The analysis and verification of resistance against SCA of a target circuit C closely follows
the realization of SILVER originally presented in [KSM20]. SILVER is a formal verification
framework that utilizes BDDs to verify the probing security and composability of digital
logic circuits given as (Verilog) gate-level netlist. Due to the data structure of BDDs, the
tool can efficiently check the statistical independence of two Boolean functions.

Hence, as already introduced in Section 3.1, this perfectly enables verification in the
glitch-extended d-probing model. Additionally, for gadgets solely designed against a
SCA attacker, we consider the P-NI and P-SNI composability notions as recapitulated in
Definition 7 and Definition 8, respectively. Besides, our composability verification approach
also covers the analysis of the recently introduced PINI notation [CS20], closely following
the approach of [KSM20].

4.3 Fault Injection Analysis
Our verification for resistance against (stand-alone) FIA primarily adapts the concepts
of [RBSG22, RBRSS+21]. The authors of [RBRSS+21] presented a formal verification
framework called FIVER that verifies the resistance of digital logic circuits against fault
injection attacks. Similar to SILVER, FIVER utilizes BDDs as underlying data structure to
evaluate the Boolean functions of the circuits under test. Consequently, FIVER can evaluate
countermeasures that are based on detection and correction schemes by incorporating
the fault model presented in [RBSG22]. We adopt these features and further introduce
extended verification methods in the following section. More specifically, we discuss fault
diagnosis strategies to analyze detection or correction countermeasures (slightly adapted
compared to [RBRSS+21] to cover shared circuits as well), approaches to evaluate resistance
against statistical (ineffective) fault attacks, as well as composability of gadgets according
to F-NI and F-SNI, as defined in Definition 12 and Definition 13, respectively.

(Share-wise) Detection. Even though the primary goal of this work is the verification of
combined countermeasures, our framework still supports stand-alone FIA verification for
detection-based countermeasures.

Given a faulty circuit model D′, fault-free operation is indicated by E =
∏s−1

i=0 E′
i, as-

suming that each (share-wise) error flag E′
i = 1 indicates a correct operation (see Figure 3a).

Additionally, given the same input assignments, mismatching circuit outputs are derived
as B =

∑ns−1
i=0 (Yi ⊕ Y′

i). Eventually, the number of effective faults, i.e., undetected faults
visible at the circuit’s output, is derived by counting satisfying assignments of U = E · B

(Share-wise) Correction. For pure correction-based countermeasures, usually coming
without dedicated error detection flags, this procedure is simplified to only counting
satisfying assignments of B =

∑ns−1
i=0 (Yi ⊕ Y′

i) (see Figure 3b).



J. Richter-Brockmann, J. Feldtkeller, P. Sasdrich and T. Güneysu 17

D D′

Y0 Y1 Yns−1· · · E0 E1 Es−1· · · Y′
0 Y′

1 Y′
ns−1· · · E′

0 E′
1 E′

s−1· · ·

· · ·

B0 B1 Bns−1· · ·

+

B

·

E

·

U

(a) Detection-based.

D D′

Y0 Y1 Yns−1· · · Y′
0 Y′

1 Y′
ns−1· · ·

· · ·

B0 B1 Bns−1· · ·
+

B

(b) Correction-based.
Figure 3. Evaluation strategies for detection- and correction-based countermeasures.

Statistical Ineffective Fault Analysis. SIFA exploits statistical dependencies between
fault injections and input values that alter the output distribution of the correct unshared
data [DEK+18, DEG+18, DDE+20]. According to Hadžić et al. [HPB21], absence of
vulnerabilities against SIFA can be proven through statistical independence of detection
values and processed secrets. In [HPB21], this is verified indirectly via Boolean dependency
analysis, factorization, and properties of masked computations. However, as our framework
naturally supports verification of statistical independence (due to the integration of analysis
techniques provided by SILVER [KSM20]) and injections of faults in all available gates
(features from FIVER [RBRSS+21]), we opted to implement direct verification of SIFA.

Consequently, the fundamental step of the verification procedure is the derivation of
the fault detection values. While for detection-based countermeasures this is implicitly
given as E =

∏s−1
i=0 E′

i, for correction-based countermeasures this has to be explicitly con-
structed according to E =

∏ns−1
i=0 (Yi ⊕ Y′

i). Eventually, in both cases, we verify statistical
independence of E and the processed secrets to reason about resistance against SIFA2.

Composability Notions. For secure composition of detection-based or correction-based
gadgets, we specifically verify the notions of F-NI (see Definition 12) and F-SNI (see
Definition 13). For this, we ensure that at most k or k2 = k − k1 circuit outputs differ, i.e.,
Yi ⊕ Y′

i = 1, for all input assignments in case of F-NI or F-SNI, respectively.
For each verification that analyzes the F-NI and F-SNI notions, we additionally consider

faults in primary gadget inputs and randomness gates g ∈ Grand. This is independent of the
location parameter l of the fault model ζ(f, t, l). Further, considering the effects of faulty
randomness, as discussed in Theorem 1 and Theorem 2, we adjust the golden circuit model
according to Definition 16 and proceed with the fault diagnosis as before. More precisely,
a fault injection in a randomness gate g ∈ Grand could lead to more than k errors at the
output of the target gadget G if the outputs are plainly compared to the fault-free gadget.
We address these special cases in our verification process by tracking if a current fault
injection includes faults in randomness gates. In case there is at least one randomness gate
faulted, we apply the corresponding modification to the golden circuit model as well (i.e.,
altering the randomness gates in the golden circuit model according to the faulty circuit
model), and compare the adapted golden circuit model with the faulty circuit model (cf.
Figure 1d to 1f). This allows us to apply the same strategy of counting the satisfied BDDs
Bi as explained above and compare the result to the threshold k or k2 for F-NI or F-SNI,
respectively. The influence of this procedure on the side-channel verification is discussed
in the next section.

2For verification of Statistical Fault Attack (SFA), the same concepts can be applied.



18 VERICA - Verification of Combined Attacks

SCA? SCA
verification

yes

A
n

al
y

si
s

done? FIA?no

no

start

config config

SCA Verification

FIA
verification

yes

Analysis

done?SCA?
no

no

yes

config

config

Report

yes

noyes

FIA Verification

FIA verification status

Figure 4. Concept of our combined verification approach.

4.4 Combined Verification
After the introduction of stand-alone side-channel verification and fault injection verification,
we now introduce our approach to perform combined verification. For this, we again rely on
the glitch-extended d-probing model, now combined with the ζ(f, t, l) fault model. More
specifically, our combined framework enables to verify (d, k, t, l)-combined security as well
as secure composition under the C-NI, C-SNI, and C-SNIind notions. Figure 4 visualizes
the general verification concept, allowing to perform (stand-alone) SCA and FIA, as well
as CA verification.

(d, k)-Combined Security Verification. Combined security verification always starts
with verification of glitch-extended d-probing security, ensuring the secure implementation
of the countermeasure in the absence of any faults. Afterwards, symbolic fault injection,
fault diagnosis, and passive security verification is performed in an incremental active-then-
passive approach, i.e., continuously increasing number of faults while in turn performing
fault diagnosis and SCA verification on the faulty circuit model. Hence, combined
verification requires that the statistical independence checks for the SCA verification can
also be checked on the faulty circuit model and not just on the golden circuit model.
However, in a purely combined security verification scenario, the current state of the fault
injection verification does not influence the checks for the probing security. More precisely,
both verification techniques are applied independently and the number of faults does not
reduce to number of probes.

Composability Verification. Verification of combined composability notions, i.e., C-NI,
C-SNI, and C-SNIind, again starts with verification in the absence of faults, hence is
reduced to verification of P-NI or P-SNI. In the presence of faults, verification of (d, k)-
C-NI and (d, k)-C-SNI requires the reduction of available adversarial probes to d′ =
d − k1 − k2 as introduced in Section 3.2. Additionally, the attacker is allowed to learn
d − k + k1 = d − k2 shares, given k1 input faults, assuming that input faults provide
additional probes. This interaction between the FIA verification and the SCA verification
is highlighted in Figure 4 by the gray arrow and is very important for the combined
verification of combined composability notions. Next, our framework checks P-NI and F-NI
or P-SNI and F-SNI (under these modifications) for C-NI or C-SNI verification, respectively.
As discussed above, we apply Definition 16 (i.e., adapt the golden circuit model in case
randomness gates are faulted) in order to verify the F-NI and F-SNI notions. Note, this
modification ensures that the detection or correction capabilities of the gadget under test
are not exceeded. However, we do not automatically assume that such a fault does not
influence the side-channel security. This is separately verified by the SCA verification
and therefore ensures that faults in randomness gates do not violate the SCA security



J. Richter-Brockmann, J. Feldtkeller, P. Sasdrich and T. Güneysu 19

assumptions. Eventually, for verification of C-SNIind, the F-SNI and P-SNI properties
are verified independently without any modifications on probes and shares.

Optimizations. Adopting reduction strategies from [RBRSS+21], we reduce the combined
verification complexity through incremental probing-security verification. Particularly, we
only consider altered probe combinations, i.e., probing the fault propagation path, during
combined verification. In more detail, we compute all probe combinations that include at
least one gate that was either altered by the fault injection or lies in one of the propagation
paths of the altered gates. Hence, all probe combinations that can solely be created by
gates that were not effected by the preceding fault injection can be neglected in the probing
verification process leading to an increased verification performance.

Soundness of our Verification Approach. In this paragraph we briefly discuss our
verification approach and its soundness. All verification techniques utilized for our strategies
are based on the d-probing model [ISW03] and the fault model presented in [RBSG22].
Hence, our verification can at most be as precise as the abstractions made by these two
models.

Nevertheless, we verify a circuit under test against these models in an active-then-
passive approach as explained above. Since we always verify stand-alone SCA security
on a fault-free model first, following an active-then-passive approach can be justified by
Theorem 5.

Theorem 5. Let C be an arbitrary circuit and GD a gadget realizing a decoding function
D, such that, given an input with at most k faults and an abort signal, GD either aborts or
outputs a corrected result. Then C is combined secure iff the active-then-passive verification
approach with preceding passive verification of GD(C(·)), such that no fault or probe targets
GD, does not find an attack.

Proof. Let C be an arbitrary circuit and GD a gadget realizing a decoding function D, such
that, given an input with at most k faults and an abort signal, GD either aborts or outputs
a corrected result.

⇒ Assume C is combined secure. From privacy of C follows that for all sets of up to k
faults injected on gates in C together with all sets of up to d probes placed on wires
of C the (optional) abort signal and the probes can be simulated without access to
any wire of C. Hence, for all sets of faults, the abort signal and all sets of probes
are statistical independent from any wire of C and in particular from any sensitive
input [KSM20]. As this includes statistical independence of the abort signal and all
probes for the empty fault set the initial passive verification does not find any attack.
In addition, the statistical independence holds for all non-empty fault sets, i.e., all
manipulations of C with up to k faults. This ensures that the active-then-passive
verification step does not find any attack. As a result, all passive verification steps
find no attack. Now, from correctness of C follows that for all sets of up to k faults
the concatenation of GD(C(·)) either aborts or outputs a result equal to the golden
circuit of C. Hence, no active verification step finds an attack.

⇐ Assume the active-then-passive verification approach with preceding passive verifica-
tion of GD(C(·)) does not find any attack when no fault or probe targets GD. From
the initial passive verification it follows that the (potential) abort signal and all sets
of up to d probes are statistical independent of any input to C. Hence, the abort
signal and probes can be simulated without accessing any wire of C [KSM20]. In
addition, as the active-then-passive verification approach does not find any attack,
we have statistical independence of the abort signal and probes from the inputs for
all sets of up to k faults, by enumerating all possible sets of faults and manipulating



20 VERICA - Verification of Combined Attacks

C accordingly. Again, this means the abort signal can be simulated without accessing
any wire of C [KSM20]. Together, this proves privacy of C. Correctness of C follows
from the enumeration of all sets of up to k faults and the fact that the corresponding
active verification does not find any attack.

With a similar argument we can prove the soundness of the verification approaches for
C-NI, C-SNI, and C-SNIind. However, in those proofs we allow certain dependencies to
inputs, where the number of dependent inputs is also determined by the set of injected
faults (in accordance with the respective definitions).

5 Evaluations and Experiments
In this section, we present verification results for various case studies using our proposed
framework VERICA. For this, we first analyze combined gadgets proposed in [DN20]. The
gadgets were originally designed to fulfill the combined security notions NINA, SNINA, and
SINIA [DN20] which are the foundation of our security notions presented in Section 3.3.
Hence, an analysis with VERICA is interesting and important for practical designs since
these gadgets could be used to construct combined protected cryptographic primitives and
entire circuits.

Next, we demonstrate that our framework is able to validate protection against SIFA
checking directly the independence of the secrets and the error detection flag as introduced
in Section 4.3. This strategy is not supported by FIVER [RBRSS+21] and is an additional
feature provided by VERICA.

Eventually, VERICA verifies a 4-bit S-box protected by the ParTI scheme which is one
of the first countermeasures providing protection against SCA and FIA independently.
Even though ParTI does not claim protection against combined attacks, we use the scheme
to demonstrate that VERICA is able to check (d, k)-combined security (cf. Section 4.4)
and that the mere combination of SCA and FIA countermeasures does not automatically
result in combined security.

5.1 Verification of Gadgets against Combined Analysis
The first set of case studies is extracted from the gadget descriptions provided in [DN20].
The algorithms are originally designed for software implementations such that we added
register stages at critical locations to stop glitches. Gruber et al. [GPK+21] presented
a similar approach where they combined Domain-Oriented Masking (DOM) gates with
repetition codes. However, their work does not target the protection of gadgets but rather
the protection of an entire cipher.

Designs. Before we present and discuss evaluation results, we briefly summarize and
explain the different gadget variants and their design and security properties. Here, we
adapt the naming NINA, SNINA, and SININA from [DN20] to describe the different gadget
types.

(d, k)-NINA: NINA corresponds to our C-NI security definition from Definition 17. We
can construct a (d, k)-NINA gadget by implementing a shared xor gate which is
d-order secure with respect to the threshold d-probing model. In order to fulfill the
F-NI security notion, the shared xor gate is replicated k times such that no additional
detection or correction mechanisms are required.



J. Richter-Brockmann, J. Feldtkeller, P. Sasdrich and T. Güneysu 21

Table 2. Combined verification results for different gadget variants according to [DN20].
Gadget Design SCA FIA Combined

d k rand. comb. memory P-NI P-SNI Time F-NI F-SNI Time (d, k) Time

NINA 1 1 0 4 0 1✓ – 0.460 s 1✓ – 0.429 s

C
-N

I (1, 1)✓ 0.430 s
NINA 1 2 0 6 0 1✓ – 0.455 s 2✓ – 0.445 s (1, 2)✓ 0.492 s
NINA 2 1 0 6 0 2✓ – 0.471 s 1✓ – 0.451 s (2,1)✓ 0.436 s
NINA 2 2 0 9 0 2✓ – 0.442 s 2✓ – 0.444 s (2,2)✓ 0.442 s

SNINA 1 1 1 22 16 – 1✓ 0.476 s – 1✓ 0.449 s

C
-S

N
I (1,1)✗/(0,0)✓ 0.455 s

SNINA 1 2 1 38 26 – 1✓ 0.451 s – 2✓ 0.500 s (1,2)✗/(0,0)✓ 0.783 s
SNINA 2 1 3 57 33 – 2✓ 0.566 s – 1✓ 0.456 s (2,1)✗/(0,0)✓ 0.592 s
SNINA 2 2 3 96 54 – 2✓ 0.821 s – 2✓ 0.673 s (2,2)✗/(0,0)✓ 1.062 s

SININA 1 1 2 90 30 – 1✓ 0.450 s – 1✓ 0.461 s

C
-S

N
I i

n
d (1,1)✗/(0,0)✓ 0.456 s

SININA 1 2 3 360 50 – 1✓ 0.555 s – 2✓ 1.395 s (1,2)✗/(0,0)✓ 17.985 s
SININA 2 1 6 207 63 – 2✓ 1.334 s – 1✓ 0.511 s (2,1)✗/(0,0)✓ 73.574 s
SININA∗ 2 2 9 825 105 – 2✓ 76.030 s – 2✓ 5.300 s (2,2)✗/(0,0)✓ >2.7 h
∗ Due to the high verification complexity, we interrupted the combined analysis after testing (2, 1)-C-SNIind where VERICA already

reported a failure.

(d, k)-SNINA. [DN20, Algorithm 2] presents a detection-based design for the protected
multiplication of duplicated shared values. As mentioned above, we opted to im-
plement the gadgets in hardware while adding necessary registers on intermediate
multiplication results (i.e., ui,j,l) to ensure the security in the glitch-extended d-
probing model.

(d, k)-SININA. [DN20, Algorithm 5] constructs a protected multiplication gadget for
duplicated shared values, relying on error correction instead of error detection. Again,
we opted to implement Algorithm 5 in hardware and inserted additional registers
where necessary to stop propagation of glitches.

All the different gadget variants, implemented in Verilog, are provided on GitHub
and have been synthesized using Synopsys Design Compiler using a subset of cells in
the NanGate 45 nm Open Cell Library (OCL). In addition, each detection-based gadget
has been modified to provide a separate error detection flag per output share instead of
returning a null-output, as suggested in [DN20].

Verification. Combined verification of the gadgets is performed for an adversary who
is able to precisely inject (at most) two independent set/reset faults into arbitrary gates
of the circuits. As noted in [IPSW06], this fault model is more powerful for CA than
the commonly employed bit-flip fault model. More specifically, each fault in the set/reset
model can be modeled as an additional probe since an adversary is able to precisely inject
values into the circuit, hence learning information on the processed data. In contrast to
this, the commonly-used bit-flip model certainly maximizes the number of effective faults,
however, an injected fault does not reveal information on processed data of the circuit and,
hence, cannot be modeled as additional probe. Further, for CA, each gadget instance has
been analyzed with respect to composability under the stand-alone P-NI, P-SNI, F-NI,
and F-SNI security notions, first. Afterwards, we verify combined composability notions,
i.e., C-NI, C-SNI, or C-SNIind.

Results. All verification results provided in Table 2 were generated under a 64-bit Linux
Operating System (OS) environment on an Intel Xeon E5-1660v4 CPU with 16 cores, a
clock frequency of 3.20 GHz, and 128 GB of RAM. More precisely, each gadget variant has
been instantiated for all combinations of d ∈ {1, 2} and k ∈ {1, 2}.

Starting with the combined analysis of the proposed NINA gadgets, Table 2 reports the
expected security under the C-NI notion for all four gadgets. Note, however, according to
Definition 17, the number of fault injections is limited by the side-channel security order d.
Nevertheless, we can construct gadgets achieving a higher protection against faults (by

https://github.com/Chair-for-Security-Engineering/VERICA


22 VERICA - Verification of Combined Attacks

a1
2

b1
0

r1

Compression c2

r1

a0
2b0

0 ⊕r1

a1
2b1

1 ⊕r2

a0
2b0

1 ⊕r2

a1
2b1

2

a0
2b0

2

e2

EF0

EP0

Figure 5. Combined attack for the (2, 1)-SNINA gadget proposed in [DN20] considering a
set/reset fault F0.

introducing more duplications) than against probes as shown for the (1, 2)-NINA gadget
in Table 2. Hence, once the number of fault injections is equal or greater d, the gadget
does not provide any protection against SCA but is still protected against fault injections.
VERICA can handle these cases and therefore verifies (1, 2)-C-NI security.

The analysis of the SNINA gadgets shows that all gadgets are insecure under the
C-SNI notion. As already discussed in [DN20], the gadget can leak information in case
the inputs are faulted and the adversary observes the abort signal.3 For higher-order
gadget instantiations (i.e., d ≥ 2), we detect another flaw. For example, the definition
of the (2, 1)-SNINA gadget allows to inject one single-bit fault while providing probing
security up to the first order. However, injecting one precise fault at the input of this
gadget leads to information leakage at the corresponding error flag. This is visualized in
Figure 5 for the detection path of output c2. It is assumed that the attacker injects a
set/reset fault at input a1

2 which is the third share of a belonging to the second duplicate
of the and gate. Without any loss of generality, we assume the attacker injects a set fault
which leads to a propagation of the random input r1 to gate g2. The second input of g2
provides the same multiplication result but from the second instantiation. Hence, the
randomness r1 is canceled out in g2 and only a2b0 is sampled in the subsequent register.
Since all other data paths are fault-free, the remaining registers only store a logical 0 which
eventual leads to leakage of the shares a2 and b0 at the output of the gadget which violates
the P-SNI property. Note, that this phenomena is due to the difficulties to implement
appropriate error detection signals in hardware (it is not caused by flaws in the definitions
of [DN20, Algorithm 2] and does not occur in software implementations). Since the same
data is processed in the different duplications and this data is merged in the detection
paths, a violation of the C-SNI property is expected and hard to prevent.

Again, all SININA gadgets are insecure under the C-SNIind security notions. Figure 6
shows a schematic of a (1, 1)-SININA gadget as suggested in [DN20] with the required
modifications to secure it against hardware glitches. By Definition 19, a (d, k) gadget
should be secure even if an attacker injects up to k faults and uses d probes. However, in
case an attacker injects a fault F0 in one of the registers containing the partial products
that were refreshed in the multiplication module (the most left modules in Figure 6),
the probe P0 can be used to observe the corresponding output after the compression
step (xor gates in Figure 6). It can clearly be seen that the attacker is able to learn
one share of a and one share of b which violates the P-SNI property (cf. Definition 8).
Hence, simultaneous protection against side-channel attacks and fault injection attacks is

3The authors of [DN20] discuss this flaw in the appendix of their paper and argue that the flaw only
occurs with a very low probability. However, the definition of combined security is a notion of perfect
security, which renders a circuit insecure even when the probability of a successful attack is negligible.



J. Richter-Brockmann, J. Feldtkeller, P. Sasdrich and T. Güneysu 23

×

×

×
C

or
re

ct
io

n

a0

a1

b0

b1

a0b0

a0b1 ⊕ r0 ⊕ r1

a1b1

a1b0 ⊕ r0 ⊕ r1

a0

a1

b0

b1

a0

a1

b0

b1

c0

c1

c0

c1

c0

c1

EF0 EP0

r0 r1

Remaining duplications

Figure 6. Combined attack for the (1, 1)-SININA gadget proposed in [DN20] considering a
set/reset fault F0.

not guaranteed. Even though we slightly adapted the C-SNIind definition and the gadget
implementation (i.e., we explicitly consider faults in randomness gates in the security notion
and add register to the hardware implementation) compared to the original proposals
from [DN20], the same flaws occur and can be transferred to the original work (i.e., the
flaws also occur for software implementations). Hence, using VERICA, we were able to
detect flaws in [DN20, Algorithm 5] which does not provide security against combined
attacks.

Note, VERICA is not able to finish the verification of the (2, 2)-SININA gadget since
the design is complex to be analyzed by the proposed algorithms. However, within 2.7 h
VERICA already failed checking the properties of (2, 1)-C-SNIind, such that (2, 2)-C-SNIind
cannot be fulfilled.

5.2 SIFA Constructions
While most countermeasures against SIFA are based on correction mechanisms [SJR+20,
GPK+21], Daemen et al. proposed to use incomplete sub-circuits to avoid that effective
faults become ineffective [DDE+20]. More precisely, the protected circuits are constructed
from three basic circuits, i.e., a Toffoli gate pT (a, b, c) 7→ {a ⊕ b ⊙ c, b, c} [Tof80], a modified
Toffoli gate pχ(a, b, c) 7→ {ā ⊕ b ⊙ c, b, c}, and a simple xor-gate.

To achieve the desired security, the basic circuits are masked and used as building
blocks to construct cryptographic primitives. The masked circuits are given by

pT S(a0, a1, b0, b1, c0, c1) 7→ {a0 ⊕ (b0 · c1) ⊕ (b0 · c0), a1 ⊕ (b1 · c1) ⊕ (b1 · c0), b0, b1, c0, c1}

pχS(a0, a1, b0, b1, c0, c1) 7→ {a0 ⊕ (b0 · c1) ⊕ (b0 · c0), a1 ⊕ (b1 · c1) ⊕ (b1 · c0), b0, b1, c0, c1}

while necessary registers are added to achieve glitch-extended probing security. In the
following, we first analyze these building blocks, before proceeding with the 3-bit permuta-
tion in Xoodoo [DHAK18], the 5-bit S-box in Keccak [BDPA13], and the AES S-box
presented in [HPB21]. This case study should demonstrate the functionality of the SIFA
extension introduced in Section 4.3. As discussed above, this strategy was not implemented
in FIVER [RBRSS+21]. Due to the combination of statistical independence checking (as
presented in SILVER) and fault injection (as presented in FIVER), the verification support
of SIFA-based countermeasures can be realized by checking the statistical independence of
the secrets and the error detection flag.

Masked Toffoli Gates. The masked Toffoli gate pT S consists of four simple Toffoli gates
that process the two shares of the masked input data. We first verify the security against
side-channel attacks in the glitch extended d-probing model and no fault injections, i.e.,
ζ(0, τsr, cm). As expected and shown in Table 3, the design is secure against first-order
side-channel attacks. Next, we perform an analysis with enabled fault injections using



24 VERICA - Verification of Combined Attacks

Table 3. Verification results for designs based on Toffoli gates [DDE+20,HPB21].
Design ζ(0, τsr, cm) ζ(1, τsr, cm) ζ(2, τsr, cm)

Implementation comb. mem. SIFA Prob. SIFA Prob. SIFA Prob.

pT S 8 6 – 1✓[0.47 s] 1✓[0.45 s] 1✓[0.45 s] 1✗[0.46 s] 1✓[0.44 s]
pχS 10 6 – 1✓[0.45 s] 1✓[0.44 s] 1✓[0.45 s] 1✗[0.46 s] 1✓[0.45 s]

χ3 30 30 – 1✓[0.43 s] 1✓[0.46 s] 0✗[0.46 s] 1✗[0.46 s] 0✗[0.49 s]

χ5 52 42 – 1✓[0.44 s] 1✓[0.48 s] 0✗[0.44 s] 1✗[0.48 s] 0✗[0.54 s]

AES S-box, g104 [HPB21] 631 0 – 0✗[13.80 s] 0✗[194.89 s] 0✗[191.93 s] [∞] [∞]
AES S-box, full [HPB21] 634 0 – 0✗[13.90 s] 1✓[194.58 s] 0✗[194.70 s] [∞] [∞]

ζ(1, τsr, cm) as fault model and the SIFA strategy presented in Section 4.3. As claimed
by the authors, the fault detection value is independent of the secret input values, i.e.,
the unshared input data a = a0 ⊕ a1, b = b0 ⊕ b1, and c = c0 ⊕ c1. Hence, the design is
secure against single-bit SIFA attacks. Interestingly, the design is still first-order secure
in the glitch extended d-probing model even in the presence of single-bit faults. Note,
we do not fault input gates in this experiment such that the attacker cannot gain any
additional information from the injected fault, as faults on gates do not provide additional
information to the attacker. Eventually, we also evaluate the masked Toffoli gate under
the fault model ζ(2, τsr, cm). The design is still first-order secure (with the same argument
as above), however, the tool reports only SIFA security under single-bit faults (which is
expected).

We performed the same experiment for the adapted Toffoli gate pχS . The verification
results are similar to the results for pT S .

Xoodoo 3-bit S-box. VERICA confirms the first-order probing security of the 3-bit S-box
used on Xoodoo, implemented with the masked Toffoli gates pT S and pχS . However, as
the countermeasure was not designed to provide (1, 1)-combined security, single-bit faults
lead to successful first-order probing attacks.

Keccak 5-bit S-box. Similarly, the 5-bit S-box used in Keccak, again implemented
with Toffoli gates, is probing secure in the glitch-extended d-probing model, but does not
provide (d, k)-combined security.

AES S-box. Eventually, we examine two different implementations of the AES S-box
presented in [HPB21]4 which is also build from Toffoli gates. The first implementation is
automatically optimized to reuse the intermediate results g104 in order to demonstrate a
flaw in the SIFA protection [HPB21], which is confirmed by VERICA. In contrast to this,
the (non-optimized) full AES S-box design in [HPB21] is secure against single-bit SIFA
attacks. Interestingly, both designs are not secure in the glitch extended d-probing model,
since no register stages have been added to stop potential glitches.

Unfortunately, due to the increasing complexity and number of fault combinations,
VERICA is not able to analyze the S-boxes for two simultaneous injected faults.

5.3 ParTI Verification
In 2016, ParTI presented a first-order secure TI with linear Error-Correcting Codes (ECCs)
to provide protection against SCA and FIA [SMG16]. As a case study, the authors applied
their approach to the lightweight cipher LED [GPPR11]. Even though the design is not
secure against combined attacks, we implemented the scheme to demonstrate that VERICA
is able to check (d, k)-combined security (cf. Section 4.4).

4The source files are publicly available at https://extgit.iaik.tugraz.at/scos/danira

https://extgit.iaik.tugraz.at/scos/danira


J. Richter-Brockmann, J. Feldtkeller, P. Sasdrich and T. Güneysu 25

Table 4. Verification results for an LED S-box TI with error detection or correction [SMG16].
Design ζ(0, τsr, cm) ζ(1, τsr, cm)

Implementation comb. memory Det./Corr. Prob. Det./Corr. Prob.

ParTI S-box (Detection) 678 78 – 1✓[0.866 s] 1✓[1.010 s] 0✗[1.950 s]

ParTI S-box (Correction) 2063 72 – 1✓[4.103 s] 1✓[3.677 s] 0✗[336.239 s]

Designs. In this work, we implement a first-order secure LED S-box based on the TI
scheme. We create two designs that are additionally protected against FIA by applying
ECCs. The first design uses the error detection capabilities of the [8, 4, 4]-code as was
done for ParTI. Hence, this design is expected to be secure against first-order SCA and
up to 3-bit faults should be detectable (Hamming distance of the code is four). In the
second design, we utilized the error correcting capabilities of the linear code such that the
implementation is able to correct single-bit faults (and, again, secure against first-order
SCA without fault injections). For both implementations, we satisfy the independent
property introduced in [AMR+20,SRM20]. In the following, we present the verification
results provided by VERICA.

Verification. Table 4 shows the verification results for both S-boxes. As expected, the
first design provides the claimed probing security (during fault-free operation). Similarly,
all faults in the ζ(1, τsr, cm) model are detected by the linear ECC. As expected, the
design is not (1, 1)-combined secure which was also not claimed in [SMG16] For verification
of correction capabilities, we excluded the final correction stage from the analysis since
injected faults cannot be detected or corrected there. Nevertheless, the verification results
are similar to the design that only uses detection. However, due to the increased number
of gates, the verification complexity increases significantly.

6 Conclusion
The main contribution of this work is twofold. First, we revise and extend the state-of-
the-art formal modeling of CA which leads to the refinement of composability notions of
hardware gadgets that are protected against SCA and FIA. Second, we introduce and
present the first formal verification framework that can validate side-channel security
and fault injection resistance as well as the protection against combined attacks. We
demonstrate the functionality and advantages of VERICA in three extensive case studies
where we analyze combined gadgets, protection mechanisms against SIFA based on Toffoli
gates, and entire S-box implementations according to the ParTI protection scheme.

Limitations. However, even though VERICA can assist the designer in creating secure
hardware implementations of cryptographic primitives, it has some limitations. As shown
in our case studies, CA becomes more difficult with increasing number of gates in the
design under test. This is naturally expected since the number of valid fault injections
drastically increases (especially for multi-bit fault injections) while for each valid fault
injection a separate verification of the side-channel security is conducted (for which the
complexity also increases with the number of gates and security order). Note, even more
powerful computers (i.e., using more cores and more memory) could not analyze these
large circuits since the problem gets too complex. More precisely, the number of valid
fault combinations and valid probe combinations increases exponentially with the number
of gates and the corresponding order (i.e., with the number of simultaneous injected faults
and the probing threshold, respectively).



26 VERICA - Verification of Combined Attacks

Correctness of VERICA VERICA relies on the theoretical foundation of the security
notions and their corresponding proofs presented in Section 3. We transferred these notions
to software and verified them by (smaller) hand-verified examples. These hand-verified
examples are further used in test strategies to ensure the correct functionality of different
methods used in VERICA. However, we cannot fully guarantee the correctness of our source
code due to the huge size of the project. Therefore, we additionally rely on the scrutiny
of the community by releasing the source code and results of the case studies to ensure
correct functionality and implementations.

Future Work. In our case studies we reveal some security flaws in the hardware imple-
mentations of combined gadgets. Hence, an interesting question is how these gadgets need
to be adapted and implemented on hardware such that they resist combined attacks.

Furthermore, in this work we concentrated our investigations on composability notions
based on the P-NI/P-SNI and F-NI/F-SNI security notions. We assume that the compos-
ability notions of C-NI, C-SNI, and C-SNIind can be extended to a combined composability
notion that includes the ideas of the PINI security notion.

Eventually, VERICA reports that the shared implementations of the Toffoli gates from
Section 5.2 are even first-order secure against SCA in the presence of single-bit and two-bit
faults. However, using the shared Toffoli gates to construct larger circuits (e.g., S-boxes),
leads to implementations that are not protected against SCA in the presence of faults.
This observation could be used in the future to formulate composability notions for gadgets
that are protected against SIFA.

Acknowledgments
The work described in this paper has been supported in part by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy -
EXC 2092 CASA - 390781972 and through the projects VE-HEP (16KIS1345) and 6GEM
(16KISK038) supported by the German Federal Ministry of Education and Research
BMBF.

References
[AIS18] Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. Private Circuits: A

Modular Approach. In CRYPTO, pages 427–455, 2018.

[AMR+20] Anita Aghaie, Amir Moradi, Shahram Rasoolzadeh, Aein Rezaei Shahmirzadi,
Falk Schellenberg, and Tobias Schneider. Impeccable Circuits. IEEE Trans.
Computers, 69(3):361–376, 2020.

[ANR18] Victor Arribas, Svetla Nikova, and Vincent Rijmen. VerMI: Verification Tool
for Masked Implementations. In ICECS, pages 381–384. IEEE, 2018.

[AWMN20] Victor Arribas, Felix Wegener, Amir Moradi, and Svetla Nikova. Crypto-
graphic Fault Diagnosis using VerFi. In HOST 2020, pages 229–240. IEEE,
2020.

[BBC+19] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin
Grégoire, and François-Xavier Standaert. maskVerif: Automated Verification
of Higher-Order Masking in Presence of Physical Defaults. In ESORICS,
volume 11735 of Lecture Notes in Computer Science, pages 300–318. Springer,
2019.



J. Richter-Brockmann, J. Feldtkeller, P. Sasdrich and T. Güneysu 27

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. Verified Proofs of Higher-Order
Masking. In EUROCRYPT, pages 457–485, 2015.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong Non-
Interference and Type-Directed Higher-Order Masking. In SIGSAC, pages
116–129, 2016.

[BDM+20] Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu Rivain,
and Raphaël Wintersdorff. Tornado: Automatic Generation of Probing-
Secure Masked Bitsliced Implementations. In Anne Canteaut and Yuval
Ishai, editors, EUROCRYPT, volume 12107 of Lecture Notes in Computer
Science, pages 311–341. Springer, 2020.

[BDPA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Keccak. In EUROCRYPT, volume 7881 of Lecture Notes in Computer
Science, pages 313–314. Springer, 2013.

[BGI+18] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan
Mangard, and Johannes Winter. Formal Verification of Masked Hardware
Implementations in the Presence of Glitches. In EUROCRYPT, volume
10821 of Lecture Notes in Computer Science, pages 321–353. Springer, 2018.

[BGR18] Sonia Belaïd, Dahmun Goudarzi, and Matthieu Rivain. Tight Private Circuits:
Achieving Probing Security with the Least Refreshing. In ASIACRYPT,
pages 343–372, 2018.

[BK18] Raik Brinkmann and Dave Kelf. Formal system verification, chapter Formal
Verification - The Industrial Perspective, pages 155–182. Springer, 2018.

[BMRT21] Sonia Belaïd, Darius Mercadier, Matthieu Rivain, and Abdul Rahman Taleb.
IronMask: Versatile Verification of Masking Security. IACR Cryptol. ePrint
Arch., 2021.

[Can01] Ran Canetti. Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. In FOCS, pages 136–145, 2001.

[CCGR99] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco Roveri.
NuSMV: A new symbolic model verifier. In International conference on
computer aided verification, pages 495–499. Springer, 1999.

[CGLS21] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier
Standaert. Hardware Private Circuits: From Trivial Composition to Full
Verification. IEEE Trans. Computers, 70(10):1677–1690, 2021.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards Sound Approaches to Counteract Power-Analysis Attacks. In
Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in
Computer Science, pages 398–412. Springer, 1999.

[Cla07] Christophe Clavier. Secret External Encodings Do Not Prevent Transient
Fault Analysis. In CHES 2007, volume 4727 of Lecture Notes in Computer
Science, pages 181–194. Springer, 2007.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and Efficiently
Composing Masked Gadgets With Probe Isolating Non-Interference. IEEE
Trans. Inf. Forensics Secur., 15:2542–2555, 2020.



28 VERICA - Verification of Combined Attacks

[DDE+20] Joan Daemen, Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Florian
Mendel, and Robert Primas. Protecting against Statistical Ineffective Fault
Attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):508–543,
2020.

[DDRT12] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria.
Electromagnetic Transient Faults Injection on a Hardware and a Software
Implementations of AES. In FDTC 2012, pages 7–15. IEEE Computer
Society, 2012.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Stefan Mangard,
Florian Mendel, and Robert Primas. Statistical Ineffective Fault Attacks on
Masked AES with Fault Countermeasures. In ASIACRYPT, volume 11273
of Lecture Notes in Computer Science, pages 315–342. Springer, 2018.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard,
Florian Mendel, and Robert Primas. SIFA: Exploiting Ineffective Fault
Inductions on Symmetric Cryptography. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(3):547–572, 2018.

[DHAK18] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. The
design of Xoodoo and Xoofff. IACR Trans. Symmetric Cryptol., 2018(4):1–38,
2018.

[DLM19] Mathieu Dumont, Mathieu Lisart, and Philippe Maurine. Electromagnetic
Fault Injection : How Faults Occur. In FDTC 2019, pages 9–16. IEEE,
2019.

[DN20] Siemen Dhooghe and Svetla Nikova. My Gadget Just Cares for Me - How
NINA Can Prove Security Against Combined Attacks. In CT-RSA, volume
12006 of Lecture Notes in Computer Science, pages 35–55. Springer, 2020.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglia-
longa, and François-Xavier Standaert. Composable Masking Schemes in the
Presence of Physical Defaults & the Robust Probing Model. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2018(3):89–120, 2018.

[GHP+21] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Roderick
Bloem. Coco: Co-Design and Co-Verification of Masked Software Imple-
mentations on CPUs. In Michael Bailey and Rachel Greenstadt, editors,
USENIX, pages 1469–1468. USENIX Association, 2021.

[GLH18] Tomás Grimm, Djones Lettnin, and Michael Hübner. A survey on formal
verification techniques for safety-critical systems-on-chip. Electronics, 7(6):81,
2018.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
Analysis: Concrete Results. In Çetin Kaya Koç, David Naccache, and
Christof Paar, editors, CHES, volume 2162 of Lecture Notes in Computer
Science, pages 251–261. Springer, 2001.

[GPK+21] Michael Gruber, Matthias Probst, Patrick Karl, Thomas Schamberger, Lars
Tebelmann, Michael Tempelmeier, and Georg Sigl. DOMREP-An Orthog-
onal Countermeasure for Arbitrary Order Side-Channel and Fault Attack
Protection. IEEE Trans. Inf. Forensics Secur., 16:4321–4335, 2021.



J. Richter-Brockmann, J. Feldtkeller, P. Sasdrich and T. Güneysu 29

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw.
The LED block cipher. In CHES, volume 6917 of Lecture Notes in Computer
Science, pages 326–341. Springer, 2011.

[HB21] Vedad Hadzic and Roderick Bloem. COCOALMA: A Versatile Masking
Verifier. In FMCAD, pages 1–10. IEEE, 2021.

[HPB21] Vedad Hadzic, Robert Primas, and Roderick Bloem. Proving SIFA protection
of masked redundant circuits. In Automated Technology for Verification and
Analysis, volume 12971 of Lecture Notes in Computer Science, pages 249–265.
Springer, 2021.

[IPSW06] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private
Circuits II: Keeping Secrets in Tamperable Circuits. In EUROCRYPT,
volume 4004 of LNCS, pages 308–327. Springer, 2006.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private Circuits: Securing
Hardware against Probing Attacks. In Dan Boneh, editor, CRYPTO, volume
2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in
Computer Science, pages 388–397. Springer, 1999.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Neal Koblitz, editor, CRYPTO, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

[KR11] Lars R. Knudsen and Matthew Robshaw. The Block Cipher Companion.
Information Security and Cryptography. Springer, 2011.

[KRH17] Punit Khanna, Chester Rebeiro, and Aritra Hazra. XFC: A Framework for
eXploitable Fault Characterization in block ciphers. In DAC 2017, pages
8:1–8:6. ACM, 2017.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - Statistical
Independence and Leakage Verification. In ASIACRYPT, volume 12491 of
Lecture Notes in Computer Science, pages 787–816. Springer, 2020.

[MAN+19] Lauren De Meyer, Victor Arribas, Svetla Nikova, Ventzislav Nikov, and
Vincent Rijmen. M&M: Masks and Macs against Physical Attacks. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2019(1):25–50, 2019.

[Mau11] Ueli Maurer. Constructive Cryptography - A New Paradigm for Security
Definitions and Proofs. In TOSCA, pages 33–56, 2011.

[RBRSS+21] Jan Richter-Brockmann, Aein Rezaei Shahmirzadi, Pascal Sasdrich, Amir
Moradi, and Tim Güneysu. FIVER – Robust Verification of Countermeasures
against Fault Injections. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2021(4):447–473, Aug. 2021.

[RBSG22] Jan Richter-Brockmann, Pascal Sasdrich, and Tim Güneysu. Revisiting
Fault Adversary Models – Hardware Faults in Theory and Practice. IEEE
Transactions on Computers, pages 1–1, 2022.

[RMB+18] Oscar Reparaz, Lauren De Meyer, Begül Bilgin, Victor Arribas, Svetla
Nikova, Ventzislav Nikov, and Nigel P. Smart. CAPA: The Spirit of Beaver
Against Physical Attacks. In CRYPTO 2018, volume 10991 of Lecture Notes
in Computer Science, pages 121–151. Springer, 2018.



30 VERICA - Verification of Combined Attacks

[RSBG20] Jan Richter-Brockmann, Pascal Sasdrich, Florian Bache, and Tim Güneysu.
Concurrent Error Detection Revisited: Hardware Protection against Fault
and Side-channel Attacks. In ARES 2020, pages 20:1–20:11. ACM, 2020.

[SA02] Sergei P. Skorobogatov and Ross J. Anderson. Optical Fault Induction
Attacks. In CHES 2002, volume 2523 of Lecture Notes in Computer Science,
pages 2–12. Springer, 2002.

[SJR+20] Sayandeep Saha, Dirmanto Jap, Debapriya Basu Roy, Avik Chakraborty,
Shivam Bhasin, and Debdeep Mukhopadhyay. A Framework to Counter Sta-
tistical Ineffective Fault Analysis of Block Ciphers Using Domain Transforma-
tion and Error Correction. IEEE Trans. Inf. Forensics Secur., 15:1905–1919,
2020.

[SMC21] Albert Spruyt, Alyssa Milburn, and Lukasz Chmielewski. Fault injection as
an oscilloscope: Fault correlation analysis. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2021(1):192–216, 2021.

[SMG16] Tobias Schneider, Amir Moradi, and Tim Güneysu. ParTI - Towards Com-
bined Hardware Countermeasures Against Side-Channel and Fault-Injection
Attacks. In CRYPTO 2016, volume 9815 of Lecture Notes in Computer
Science, pages 302–332. Springer, 2016.

[SRM20] Aein Rezaei Shahmirzadi, Shahram Rasoolzadeh, and Amir Moradi. Impec-
cable Circuits II. In DAC 2020, pages 1–6. IEEE, 2020.

[SSR+18] Pasquale Davide Schiavone, Ernesto Sánchez, Annachiara Ruospo, Francesco
Minervini, Florian Zaruba, Germain Haugou, and Luca Benini. An Open-
Source Verification Framework for Open-Source Cores: A RISC-V Case Study.
In IFIP/IEEE International Conference on Very Large Scale Integration,
VLSI-SoC 2018, Verona, Italy, October 8-10, 2018, pages 43–48. IEEE, 2018.

[Tof80] Tommaso Toffoli. Reversible computing. In International colloquium on
automata, languages, and programming, pages 632–644. Springer, 1980.

[ZDCT13] Loïc Zussa, Jean-Max Dutertre, Jessy Clédière, and Assia Tria. Power
supply glitch induced faults on FPGA: An in-depth analysis of the injection
mechanism. In IOLTS 2013, pages 110–115. IEEE, 2013.


	Introduction
	Preliminaries
	Circuit Model

	Security Models
	Modeling Side-Channel Analysis
	Modeling Fault Injection Analysis
	Modeling Combined Analysis

	Verification Concept
	Circuit Model
	Side-Channel Analysis
	Fault Injection Analysis
	Combined Verification

	Evaluations and Experiments
	Verification of Gadgets against Combined Analysis
	SIFA Constructions
	ParTI Verification

	Conclusion

