TrCBC is Insecure

Debrup Chakraborty and Samir Kundu

Indian Statistical Institute
203 B.T. Road, Kolkata 700108, India
debrup.chakraborty@gmail.com, samirkundu3@gmail.com

Abstract. TrCBC is a variant of CBC-MAC which appeared in Information Processing Letters, 112(7):302-307, 2012. The authors claimed TrCBC to be a secure message authentication code (MAC) with some interesting properties. If TrCBC is instantiated with a block cipher with block length n, then it requires $\lceil\lambda/n\rceil$ block cipher calls for authenticating a λ-bit message and requires a single key, which is the block cipher key. We show that with high probability, an adversary can forge TrCBC with just three queries. The attack that we show can be applied to forge a large class of messages.

1 Introduction

CBC-MAC and its variants are widely used and are parts of different standards. It is known that the basic CBC-MAC is not secure as a variable input length MAC; more precisely, CBC-MAC is only secure if the message space is prefix-free, i.e., the message space does not contain any two messages where one is a prefix of the other. In case the message space is not prefix-free, a simple length extension attack can be performed to obtain a forgery with probability 1. But, CBC-MAC is optimal in terms of the number of block-cipher calls. If CBC-MAC is instantiated with a block-cipher of block length n, then to authenticate a message of λ bits it requires a single key (which is the key of the underlying block cipher) and $\lceil\lambda/n\rceil$ block-cipher calls. This makes CBC-MAC a good choice for applications where only fixed-length messages are required to be authenticated.

Over the years, several modifications over the basic CBC-MAC have been proposed to accommodate general message spaces. Some notable constructions in this direction are EMAC [7], XCBC[1], CMAC [2], TMAC [5], OMAC [4], GCBC1 [6], GCBC2 [6]. All these variants require some extra overhead compared to the basic CBC-MAC either in terms of the number of keys used and/or in the number of block-cipher calls required.

TrCBC is a variant of CBC-MAC proposed in [8]. The motivation of TrCBC construction was to provide a CBC-MAC like message authentication code which works for general message spaces but whose overhead in terms of the number of keys and block cipher calls is exactly the same as the CBC-MAC. In [8], it is claimed that TrCBC achieves this with the limitation that it can produce only short tags whose lengths are less than $n/2$-bits, where n is the block-length of the underlying block cipher.

In this paper we show that TrCBC is insecure. A variant of the length extension attack can be mounted on TrCBC which produces $(n/2 - 1)$-bit tags with a success probability of $1/4$. Thus this attack completely refutes the claims in [8].
2 Notations and Preliminaries

General Notations. For a natural number \(N \), \([N]\) denotes the set \(\{1, \ldots, N\} \). For a set \(\mathcal{X} \), \(X \triangleleft \mathcal{X} \) denotes that \(X \) is chosen uniformly at random from \(\mathcal{X} \). The set of all binary strings is denoted by \(\{0,1\}^* \) and the set of all \(n \)-bit strings is denoted by \(\{0,1\}^n \). For \(x, y \in \{0,1\}^* \), \(x||y \) denotes the concatenation of \(x \) and \(y \). For \(x \in \{0,1\}^* \), the length of \(x \) is denoted by \(|x| \). For any \(x \in \{0,1\}^* \), parse\(_n\)(\(x \)) parses \(x \) as \(x_1||x_2||\ldots||x_\ell \) where for \(i \in [\ell−1] \), \(|x_i| = n \) and \(0 < |x_\ell| \leq n \). For \(x \in \{0,1\}^* \) and \(|x| \leq n \), \(\text{Pad}(x) = x\cdot10^{n−|x|−1} \), if \(|x| < n \), and \(\text{Pad}(x) = x \), if \(|x| = n \). For \(x \in \{0,1\}^* \) and \(|x| \geq \gamma \), \(\text{MSB}_\gamma(x) \) and \(\text{LSB}_\gamma(x) \) stand for the most and least significant \(\gamma \) bits of \(x \) respectively. We call a string \(x \in \{0,1\}^n \) as a block. We call \(z \in \{0,1\}^* \) as full block if \(|z| \) is a multiple of \(n \) and as incomplete block otherwise.

Block ciphers. A block cipher is a function \(E : \mathcal{K} \times \{0,1\}^n \rightarrow \{0,1\}^n \), where \(\mathcal{K} \) is the key space, which generally contains fixed length strings; \(n \) is called the block length of the block cipher. For \(K \in \mathcal{K} \) and \(X \in \{0,1\}^n \), we will generally denote \(E(K,X) \) by \(E_K(X) \). A block cipher also has an inverse denoted by \(E_K^{-1}(\cdot) \), but we will not have any occasion to use the inverse in this work.

Message Authentication Codes. A message authentication code(MAC) is a map \(F : \mathcal{K} \times \mathcal{M} \rightarrow \{0,1\}^\tau \), where \(\mathcal{K} \) is the key space and \(\mathcal{M} \) the message space. We often write \(F_K(\cdot) \) to denote \(F(K,\cdot) \). The output of a MAC is called the tag, and \(\tau \) is called the tag length. The security of a MAC \(F \) is defined using an interaction of \(F \) with an adversary \(A \). It is assumed that \(A \) has an oracle access to \(F_K(\cdot) \), where \(K \triangleleft \mathcal{K} \). For a query \(x \in \mathcal{M} \) of \(A \) the oracle responds by sending \(y = F_K(x) \). Let \(A \) query \(x_1, x_2, \ldots, x_q \) and get \(y_1, y_2, \ldots, y_q \) as responses from the oracle. These queries are performed adaptively. Finally, \(A \) outputs a pair \((x^*,y^*) \), where \(x^* \notin \{x_1, x_2, \ldots, x_q\} \). This pair is called a forgery and it is said that \(A \) has successfully forged \(F \) if \(F_K(x^*) = y^* \). The auth-advantage of \(A \) is defined as

\[
\text{Adv}^\text{auth}_{F,K}(A) = \Pr[K \triangleleft \mathcal{K} : A \text{ forges}].
\]

We say that \(F \) is \((\epsilon,t)\) secure if for every adversary \(A \), which runs for time at most \(t \), \(\text{Adv}^\text{auth}_{F,K}(A) \leq \epsilon \). A dominant paradigm of designing MACs is by using block ciphers, and CBC-MAC and its variants are some notable examples of block cipher based MACs.

CBC-MAC : Consider the map \(\text{CBC} : \mathcal{K} \times \mathcal{M} \rightarrow \{0,1\}^n \), where \(\mathcal{M} \subseteq \cup_{i>0} \{0,1\}^{ni} \). For \(M \in \mathcal{M} \), let \(\text{parse}(M) = M_1||M_2||\cdots||M_\ell \), and let \(C_0 = 0^n \), \(C_i = E_K(m_i \oplus C_{i−1}) \) for \(i \in [\ell] \), where \(E_K : \{0,1\}^n \rightarrow \{0,1\}^n \) is a block cipher. We define \(\text{CBC}(K,M) = C_\ell \). We often denote \(\text{CBC}(K,M) \) by \(\text{CBC}_K(M) \). A schematic view of the function \(\text{CBC}_K(M) \) is shown in Figure 2. The function \(\text{CBC} \) is called the CBC-MAC and it is a secure MAC if the underlying block cipher \(E \) is a pseudorandom function and the message space \(\mathcal{M} \) is prefix
free, i.e., for any two distinct \(x, y \in \mathcal{M}\), \(x\) is not a prefix of \(y\). For practical purposes, CBC is used in scenarios where the message space contains strings of fixed length, such message spaces are prefix free.

Let \(X_1, X_2, \ldots, X_\ell \in \{0, 1\}^n\), then it is easy to see that for any \(1 < k < \ell\),

\[
\text{CBC}_K (X_1 \parallel \cdots \parallel X_k \parallel \cdots \parallel X_\ell) = \text{CBC}_K (\text{CBC}_K (X_1 \parallel \cdots \parallel X_k) \oplus X_{k+1} \parallel X_{k+2} \parallel \cdots \parallel X_\ell). \tag{1}
\]

Thus, if \(\text{CBC}_K (X_1 \parallel \cdots \parallel X_k) = T\), then

\[
\text{CBC}_K (X_1 \parallel \cdots \parallel X_k \parallel \cdots \parallel X_\ell) = \text{CBC}_K (T \oplus X_{k+1} \parallel X_{k+2} \parallel \cdots \parallel X_\ell).
\]

This property can be easily translated into a forgery attack: an adversary queries \(X_1 \parallel \cdots \parallel X_k\) and gets response as \(T\); further it queries \(T \oplus X_{k+1} \parallel X_{k+2} \parallel \cdots \parallel X_\ell\) and gets the response \(T_1\); and finally it produces \((X_1 \parallel \cdots \parallel X_k \parallel \cdots \parallel X_\ell, T_1)\) as a forgery. From (1), it is easy to verify that the forgery will be successful with probability 1. This specific attack is called the length extension attack and this cannot be mounted if the message space is prefix free.

3 The Scheme TrCBC

TrCBC instantiated with a block cipher \(E : \mathcal{K} \times \{0, 1\}^n \rightarrow \{0, 1\}^n\) is described in details in Figure 2. A schematic diagram of the same is shown in Figure 3. TrCBC takes a random key \(K \xleftarrow{\$} \mathcal{K}\) and a message \(M \in \{0, 1\}^*\) as a input and returns a tag \(T \in \{0, 1\}^\tau\) of length \(\tau < n/2\).
MAC Algorithm: TrCBC\(_K(M)\)

Input: \(K \stackrel{\$}{\leftarrow} K, M \in \{0,1\}^* \).

Output: \(T \in \{0,1\}^\tau \), where \(\tau < n/2 \).

1. \(M_1 \| \cdots \| M_\ell \leftarrow \text{parse}_n(M) \);
2. \(Y \leftarrow 0^n \);
3. for \(i \leftarrow 1 \) to \(\ell - 1 \) do
 4. \(X \leftarrow Y \oplus M_i \);
 5. \(Y \leftarrow E_K(X) \);
 6. end for
7. if \(|M_\ell| = n \) then
 8. \(X \leftarrow Y \oplus M_\ell \);
 9. \(Y \leftarrow E_K(X) \);
 10. \(T \leftarrow \text{MSB}_\tau(Y) \);
7. else
 12. \(X \leftarrow Y \oplus \text{Pad}(M_\ell) \);
 13. \(Y \leftarrow E_K(X) \);
 14. \(T \leftarrow \text{LSB}_\tau(Y) \);
 15. end if
16. return \(T \).

Fig. 2. Specification of TrCBC instantiated with an \(n \)-bit block cipher \(E_K \).

A simplified view of TrCBC in terms of the function CBC would be useful. Let \(M \in \{0,1\}^* \) where \(|M| = \lambda \). Let \(x_1|x_2|\ldots|x_\ell = \text{parse}(M) \) and let \(r = |x_\ell| \). Notice that \(r = \lambda - (\ell - 1)n = \lambda - (\lceil \lambda/n \rceil - 1)n \). We define TrCBC as

\[
\text{TrCBC}_K(M) = \begin{cases}
\text{MSB}_\tau(CBC_K(M)) & \text{if } r = n, \\
\text{LSB}_\tau(CBC_K(M||10^{n-r-1})) & \text{if } r < n.
\end{cases}
\]

4 An Attack on TrCBC

It was claimed in [8] that TrCBC is a secure MAC if the underlying block cipher is a pseudorandom function. We show that an adversary making just three queries to the MAC oracle can successfully forge TrCBC with probability 1/4.

We consider TrCBC instantiated with a block cipher of block length \(n \) (which is even). We fix the tag length \(\tau = n/2 - 1 \). Let \(x_1, x_2, x_3 \) be fixed but arbitrary strings such that \(|x_1| = |x_3| = n \) and \(|x_2| = n - 2 \). We set \(M_1 = x_1, M_2 = x_2||10 \) and \(M_3 = x_3 \). The three queries which the adversary asks along with the responses are as follows.

1. Query \(X^{(1)} = M_1||M_2 \), and get \(T_1 \) as response.
2. Query \(X^{(2)} = M_1||x_2 \), and get \(T_2 \) as response.
3. Query \(X^{(3)} = M_1||M_2||M_3 \), and get \(T_3 \) as response.

Finally the adversary submits \((M^*, T^*)\) as the forgery, where
Fig. 3. The TrCBC construction. First figure is for the full block messages, i.e., the message length is a multiple of the block size \(n \), and the second figure is for messages whose length is not a multiple of \(n \).

\[
\text{Pad}(M) = M \parallel 10^{n - |M| - 1} \quad \text{and} \quad \tau < n/2.
\]

\(\text{M} = (T_1 \parallel b^*_1 b^*_2 \parallel T_2) \oplus M_3, \quad T^* = T_3 \quad \text{where} \quad b^*_1, b^*_2 \leftarrow \{0, 1\} \).

Note that \((M^*, T^*) \) is a valid forgery, as \(M^* \) which is a single block message has never been queried to the oracle. We are left to show that this forgery is successful with high probability. We claim that for any choice of \(K \in \mathcal{K} \),

\[
\Pr[\text{TrCBC}_K(M^*) = T^*] = 1/4,
\]

where the probability is over the choice of \(b^*_1, b^*_2 \). We substantiate our claim below.

From the TrCBC construction and our simplified description of TrCBC in Eq.(2) we get,

\begin{align*}
T_1 &= \text{TrCBC}_K(M_1||M_2) = \text{MSB}_\tau \left(\text{CBC}_K(M_1||M_2) \right) \quad (3) \\
T_2 &= \text{TrCBC}_K(M_1||x_2) = \text{LSB}_\tau \left(\text{CBC}_K(M_1||x_2||10) \right) = \text{LSB}_\tau \left(\text{CBC}_K(M_1||M_2) \right) \quad (4) \\
T_3 &= \text{TrCBC}_K(M_1||M_2||M_3) = \text{MSB}_\tau \left(\text{CBC}_K(M_1||M_2||M_3) \right). \quad (5)
\end{align*}

As \(|T_1| = |T_2| = \tau = n/2 - 1 \), we have for some \(b_1, b_2 \in \{0, 1\}, \)

\[
T_1 \parallel b_1 b_2 \parallel T_2 = \text{CBC}_K(M_1||M_2). \quad (6)
\]
Hence, using (6) and (1)
\[
\text{MSB}_\tau (\text{CBC}_K(T_1\|b_1b_2\|T_2 \oplus M_3)) = \text{MSB}_\tau (\text{CBC}_K(\text{CBC}_K(M_1\|M_2) \oplus M_3))
\]
\[
= \text{MSB}_\tau (\text{CBC}_K(M_1\|M_2\|M_3))
\]
\[
= T_3,
\]
and
\[
\text{TrCBC}_K(M^*) = \text{MSB}_\tau (\text{CBC}_K((T_1\|b_1^*b_2^*\|T_2) \oplus M_3))
\]
As \(b_1^*, b_2^*\) are chosen uniformly at random from \(\{0, 1\}\), so with probability 1/4, we have \((b_1^*, b_2^*) = (b_1, b_2)\), and thus
\[
\Pr[\text{TrCBC}_K(M^*) = T_3] = \frac{1}{4},
\]
as claimed.

5 Discussions

The source of insecurity. The following are the main characteristics of TrCBC:

1. For full block messages, TrCBC is exactly the CBC-MAC scheme, except that instead of the full output only a part of the output is produced as the tag, in particular \(\tau < n/2\) most significant bits only forms the tag.
2. For messages which are not full block, a deterministic padding is applied and the CBC-MAC of the padded message is computed and the least significant \(\tau\) bits are output as a tag.

The idea behind such a design seems to be separating the outputs for full block and incomplete block messages and the authors thought that a small tag length would prevent a length extension type of attack. But, as only a deterministic padding scheme is applied, hence for any message \(M \in \{0, 1\}^{mn}\) where the last block is not 0\(^n\) almost all bits of \(\text{CBC}_K(M)\) can be recovered with just two queries to TrCBC. To see this, let \(M = M'\|x\), where \(|x| = n\) and \(x \neq 0^n\). Let \(x = a_n \cdots a_2a_1\), where \(a_i \in \{0, 1\}\), and \(j\) be the smallest element in \([n]\) such that \(a_j = 1\). Let \(M_1 = M'|a_n a_{n-1} \cdots a_{j+1}\). Then, following the padding scheme in TrCBC we have,
\[
\text{TrCBC}_K(M) = \text{MSB}_\tau(\text{CBC}_K(M)),
\]
\[
\text{TrCBC}_K(M_1) = \text{LSB}_\tau(\text{CBC}_K(M)).
\]

Our attack essentially uses the above property of TrCBC to recover \(2\tau\) many bits of \(\text{CBC}_K(M)\). This property can be further used to forge a large class of messages, which we describe next.
A generic attack. Consider a message \(X = X_1 \| X_2 \| \ldots \| X_\ell \), for \(\ell \geq 2 \) and suppose there exists \(k \in [\ell - 1] \) such that \(X_k \neq 0^n \), i.e, \(X_1 \| X_2 \| \ldots \| X_{\ell-1} \) is not the all zero string. Let, \(X_k = x \| 10^n \), where the first 1 (from the left) in \(X_k \) occurs in the \(m \)th place. As before, we fix the tag length \(\tau = n/2 - 1 \). Let an adversary query with the three queries specified below:

1. \(X^{(1)} = X_1 \| X_2 \| \ldots \| X_k \).
2. \(X^{(2)} = X_1 \| X_2 \| \ldots \| X_{k-1} \| x \).
3. \(X^{(3)} = X_1 \| X_2 \| \ldots \| X_\ell \).

Let the responses to the above three queries be \(T_1, T_2, T_3 \) respectively, and let \(M^* = ((T_1 \| b_1^* b_2^* \| T_2) \oplus X_{k+1}) \| X_{k+2} \| \ldots \| X_\ell , \)

where \(b_1^*, b_2^* \xleftarrow{} \{0, 1\} \). Then following the same arguments as in Section 4 it is easy to verify that \((M^*, T_3) \) will be a forgery with success probability \(1/4 \).

The case of TCBC. Security properties of truncated CBC-MAC has been studied in details in [3]. In [3] a scheme called TCBC is described as

\[
TCBC_K(X) = \text{MSB}_\tau (\text{CBC}_K (\text{pad1}(X))).
\]

Where \(\text{pad1}(x) \) appends a 1 followed by sufficiently many zeros to \(X \) to make the length of the resulting string a multiple of \(n \). In particular if \(x_1 \| x_2 \| \ldots \| x_\ell = \text{parse}_n(X) \) then

\[
\text{pad1}(X) = \begin{cases}
X \| 10^{n-|x_\ell|-1} & \text{if } |x_\ell| < n. \\
X \| 10^{n-1} & \text{if } |x_\ell| = n.
\end{cases}
\]

It has been proved in [3] that TCBC is a secure pseudorandom function. In particular if TCBC is instantiated with a random permutation then any adversary making \(q \) queries with length at most \(\lambda < 2^{n/4} \) cannot distinguish TCBC from a random function with probability more than \(\epsilon(\lambda, q) = O(\frac{q(q+\lambda)}{2^{n-\tau}} + \frac{\lambda q^2}{2^n}) \). Thus, unlike TrCBC for small values of \(\tau \), TCBC is a secure MAC.

It is important to note the differences between TrCBC and TCBC. The padding scheme of TCBC injectively maps any string in \(\{0, 1\}^* \) to the set of strings \(\cup_{i \geq 1} \{0, 1\}^{ni} \), whereas the padding scheme for TrCBC is not injective. Also, for any message it is not possible for an adversary to know more than \(\tau \) bits of the final output of TCBC, but as we already showed for TrCBC it is possible to know \(2\tau \) many bits of the output for a large class of messages and this helps in the forgery attack. Finally, TCBC requires one more block cipher call than TrCBC for full block messages.
6 Conclusion

We showed concrete and practical attacks on TrCBC. The forgery attack on TrCBC also implies that it is not a pseudo-random function (PRF) as claimed in [8](Theorem 1). We do not see any easy way to fix TrCBC such that it retains the interesting requirement of a single key and $\lceil \lambda/n \rceil$ many block cipher calls for authenticating a λ-bit message.

References