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Abstract—Works on quantum computing and cryptanalysis
has increased significantly in the past few years. Various con-
structions of quantum arithmetic circuits, as one of the essential
components in the field, has also been proposed. However, there
has only been a few studies on finite field inversion despite
its essential use in realizing quantum algorithms, such as in
Shor’s algorithm for Elliptic Curve Discrete Logarith Problem
(ECDLP). In this study, we propose to reduce the depth of the
existing quantum Fermat’s Little Theorem (FLT)-based inversion
circuit for binary finite field. In particular, we propose follow a
complete waterfall approach to translate the Itoh-Tsujii’s variant
of FLT to the corresponding quantum circuit and remove the
inverse squaring operations employed in the previous work by
Banegas et al., lowering the number of CNOT gates (CNOT
count), which contributes to reduced overall depth and gate
count. Furthermore, compare the cost by firstly constructing
our method and previous work’s in Qiskit quantum computer
simulator and perform the resource analysis. Our approach can
serve as an alternative for a time-efficient implementation.

Index Terms—quantum cryptanalysis, inversion, binary field,
simulation.

I. INTRODUCTION

The study on quantum computing has been emerging, partic-
ularly after Peter Shor demonstrated the apparent advantage of
using quantum phenomena to speed up computation and crack
classically intractable problems underlying current public-key
cryptosystems, later known as the Shor’s algorithm [1, 2]. In
addition, research in quantum hardware has seen significant
advancement in the past few years, continually achieving an
increased number of physical qubits every few years [3, 4].
This accelerates the potential use of quantum computers in
Noisy Intermediate-Scale Quantum (NISQ) era, and later in
the Fault Tolerant Quantum Computation (FTQC). Inevitably,
the construction of efficient quantum arithmetic circuits, i.e.,
circuits to perform arithmetic operations in a quantum com-
puter, becomes essential.

To date, numerous research efforts have proposed the quan-
tum circuit implementations of arithmetic operations. Driven
by the interest in Shor’s algorithm for factoring —the variant
to crack Rivest–Shamir-Adleman (RSA)-based cryptosystems,
early research [5, 6] had focused on designing an explicit
construction of quantum circuits for performing modular expo-
nentiation, one of the essential components comprised in the
algorithm. The circuits include specialized circuits and their
underlying components, such as adder, modular adder, and
modular multiplier by a constant. They are further improved in
the later research customized to certain properties of modular

arithmetic operations to obtain additional optimizations, e.g.,
[7–10].

Apart from for factoring, the other variant of Shor’s algo-
rithm as the basis for cracking Elliptic Curve Cryptography
(ECC)-based cryptosystem has also been studied, calling for
concrete construction of its underlying circuit as well, e.g.,
[11–14], though not as flourished. For this case, the circuit
building blocks pose differences from the previous algorithm
variant. Instead of a modular exponentiation, Shor’s algorithm
for Elliptic Curve Discrete Logarithm Problem (ECDLP) re-
quires a scalar multiplication, which is further can be broken
down into a series of point addition circuit. One of the essential
component of the point addition circuit is the inversion block,
used together with multiplication block to perform a division
in the finite field case. In terms of the type of finite field and its
respective elliptic curve, the works in quantum cryptanalysis
of Shor’s ECDLP can be classified into two main areas: for
prime elliptic curves, such as [11–13] and for binary elliptic
curves [14–16].

In terms of inversion operation, there has only been a few
methods proposed for the quantum case, some of which are
based on the classical extended Euclidean algorithm (EEA)
[11] and its variant [12, 13], extended greatest common divisor
(GCD) [14], and Fermat’s Little Theorem (FLT) [14]. As for
the binary elliptic curves, the latter two are the most recent
with an explicit quantum circuit construction. Compared to
other arithmetic operations such as addition and multiplication,
the amount of proposals to improve inversion circuit is very
minimal despite its significance in the quantum cryptanalysis
and quantum arithmetic in general. To meet different needs,
e.g., space-efficient implementation, time-efficient implemen-
tation, or combination of both), an alternative to the existing
approach will be very beneficial.

In this paper, we propose to reduce the depth of the FLT-
based quantum inversion circuit for binary elliptic curves. We
depart from the previous work by Banegas et al. [14], which
interprets the second variant of classical FLT-based Itoh-Tsujii
algorithm to the corresponding quantum circuit, adjusting
their algorithm for a more time-efficient implementation. In
particular, we employ a complete waterfall approach and alter
the first and second stage of their algorithm, relocating the
uncomputation to the end, thus eliminating the intermediate
uncomputation (i.e., repeated inverse squarings) used in the
previous work and minimizing the number of CNOT gates in
the circuit. As a result, an overall lower depth and gate count
can be achieved. Additionally, for verification and comparison,
we build the code for both our proposed inversion method and
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the previous work in Qiskit quantum computer simulator, then
perform the resource analysis for the inversion bit size n of
8, 16, 127, 163, and for the use case of binary elliptic curve
standard: B-233, B-283, B-409, and B-571 as, for the context
of quantum cryptanalysis. Note that our proposed method
comes with a tradeoff of higher ancilla qubits. Nevertheless,
by the fact that the depth corresponds to the time complexity
of a quantum circuit [17] and considering the potential benefit
later discussed in Section IV-B, this work is advantageous for
a time-efficient implementation.

II. PRELIMINARIES

A. Binary Finite Fields in Classical & Quantum Computing

Finite fields, or fields with a finite number of elements,
are commonly employed in cryptographic applications such
as symmetric and asymmetric key cryptosystems and have
applications in various other domains such as network coding
and error control theory [18]. The binary field GF(2m) —here
we refer to as GF(2n) —and prime field GF(p) can be
considered as the most extensively utilized finite fields. For
a detailed comparison of prime and binary fields, readers can
refer to [19].

Regarding binary fields, for classical computer implemen-
tation, a simple logical exclusive-OR (XOR) gate is used to
perform addition, whereas a logical AND gate is often used to
conduct multiplication. The binary fields are more easily em-
ployed than prime fields due to their carry-free characteristic
and more staightforward hardware implementation.

Translating to its quantum counterpart, performing quantum
arithmetic operation in binary field is also relatively simpler
and more cost-efficient than in prime field since addition can
be performed by just a CNOT gate for each bit, whereas
multiplication can be done directly by a series of Toffoli gates
(plus reduction by a series of swap gates and small amount of
CNOT gates).

In a quantum computer environment, the depth of a quantum
circuit refers to the number of time steps (time complexity)
required for the quantum operations making up the circuit
to run [17], which is important since maintaining a long
coherence in a quantum computer is still a very challenging
problem.

B. Related Works on Quantum Inversion Circuit

Despite the importance of inversion circuit in the quantum
cryptanalysis, there has not been many works that extends
beyond the specific implementation and optimization for small
bits, such as for Advanced Encryption Standard (AES) inver-
sion which is fixed on 8-bit inversion, e.g., [20]. In terms of
a more general technique or for larger numbers, such as for
use in Shor’s ECDLP for ECC quantum cryptanalysis, there
has only been a few to date.

For prime fields (i.e., GF (p)), the pioneering work is in
2003 by Proos and Zalka [11], which started the discussion
on using extended Euclidean algorithm (EEA) for performing
the inversion. Fourteen years later, quantum computer sim-
ulators began to rise in development, enabling a more fine-
grained, gate-level optimization of quantum circuit. That time,

Roetteler et al. [12] proposed another approach for performing
inversion, i.e,, using the Kaliski’s almost inverse (also known
as the Kaliski’s binary GCD) algorithm, since they found out
that constructing an efficient EEA-based quantum inversion
circuit is far from trivial.

Regarding the work in the binary elliptic curves, early
research in the past decade (e.g., [15, 21, 22]) focused on
employing the projective coordinate to eliminate the need
of inversion circuit. However, as pointed out in the more
recent literature, the division/inversion problem can not be
completely removed since unlike in the affine coordinates,
projective coordinates introduce new challenge of non-unique
representation of points, which is required in Shor’s algorithm
[13]. To re-obtain a unique representation, one will still need
to perform division by Z coordinate, which is also expensive
[13].

In terms of the more recent works for quantum inversion
in binary elliptic curves, two different approach are recently
proposed by Haner et al, [13]: extended GCD algorithm variant
adopted from the classical inversion by [23], and a Fermat’s
Little Theorem (FLT)-based inversion adapted from classical
Itoh-Tsujii inversion [24]. Readers interested in a more de-
tailed research landscape of the works in Shor’s ECDLP may
refer to [25].

C. FLT-based Inversion in Quantum Computing

The use of Fermat’s Little Theorem (FLT)-based inversion
for quantum computing and cryptanalysis has first been dis-
cussed by Banegas et al [14]. The theorem itself, introduced
by Pierre de Fermat in 1640, states that for a prime number
p and any number not divisible by p, say f , their relation can
be described as Equation 1.

fp−1 ≡ 1 (mod p) (1)

If both sides are multiplied with a−1, the result is as stated in
Equation 2.

f−1 ≡ fp−2 (mod p) (2)

That is, an inversion f−1 can be performed by utilizing
exponentiation. This also applies to binary finite fields, in
which the equation can be slightly rewritten as in Equation
3.

f−1 ≡ f2n−2 (mod m(x)) (3)

In particular, the inversion can be achieved using n multipli-
cations and n− 1 squarings [14], as shown in Equation 4.

f2n−2 = f21 .f22 .f23 ...f2n−1

. (4)

Classically, inversion using the Fermat’s Little Theorem
(FLT) approach is generally less preferable than the extended
Euclidean counterpart because to perform exponentiation, a
large number of multiplications need to be employed, hence
considered more expensive. Nevertheless, several papers have
shown that using the right combination and approach, FLT-
based inversion can also contribute to higher speed, such as
in [26]. Furthermore, there exists improved variants of FLT
algorithm, with the most popular are the ones proposed by Itoh
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and Tsujii [24], which reduces the number of multiplications
via a smart arrangement of equations.

For the use in the quantum binary finite fields, deriving from
classical FLT-based inversion algorithm, Banegas et al. [14]
has described the construction of the corresponding quantum
circuit. In particular, they follow the well-known Itoh-Tsujii’s
derivation of the FLT algorithm which requires a smaller
number of operations than the standard derivation. Using the
second variant of Itoh-Tsujii, the inversion cost can be reduced
to below 2 log(n) multiplications and with the same amount
of squarings as the original FLT [14]. In detail, lowering the
amount of multiplications can be achieved by considering the
following two distributive equations:

f2n−2 = (f2n−1−1)
2

(5)

(f22
t
−1 = f22

t
−1)

22
t−1

(f22
t
−1) (6)

Let n−1 be written as k1 . . . kt with
∑t

s=1 2
ks = n−1 and

k1 > k2 > k3 > . . . kt ≥ 0, with t the Hamming weight of
n−1 in binary, t ≤ ⌊log (n− 1)⌋+1, and k1 = ⌊log (n− 1)⌋.
Using Equations 5 and 6, inversion via exponentiation can be
achieved through the following three stages [14]:

1) Calculate f22
k1−1

with k1 multiplications using Equa-

tion 6, save the intermediate result f22
kt−1

, f22
kt−1−1

,
. . . , f22

k1−1

.
2) Calculate

{
. . .

{
(f22

k1−1

)2
2k2

(f22
k2−1

)}22
k3

. . . }22
kt

(f22
kt−1

)} using t− 1 multiplications.
3) Square 1) and 2) to obtain the inverse, f−1.
In their paper, Banegas et al. [14] describe the quantum

cryptanalysis of binary elliptic curve. Specifically, the describe
the implementation of Shor’s ECDLP, focusing on the point
addition operations and particularly the underlying compo-
nents, including the division operation which can be done by
an inversion followed by a multiplication in the respective
registers. Their target of optimization is the circuit width (i.e.,
qubit size). For their FLT-based inversion, their translation of
Itoh-Tsujii’s algorithm to the quantum circuit are presented at
Algorithm 2 in the Section 6.2 of their paper [14]. In summary,
to perform the inversion, they employ a series of squarings (i.e,
K in their paper), (modular) multiplications M , along with
the inverse squarings K−1. The example of their construction
is illustrated on Circuit 6 in the Section 6.2 of their paper. In
addition, there has been several works that focuses on reducing
depth rather than width, such as by Rahman et al., [27], which
constructs a combinatorial circuit to analyze KATAN block
cipher by optimizing the depth and number of gates [28], and
depth analysis in [29].

III. PROPOSED METHOD

In this section, we describe our proposed quantum FLT-
based inversion operation for binary elliptic curve GF (2n) to
achieve a lower depth. In particular, we propose a different
approach from the previous work by Banegas et al. [14]; that
is, here we employ a complete waterfall approach to translate
the Itoh-Tsujii algorithm to the corresponding quantum circuit.

We modify the steps in previous work [14] to minimize in the
number of CNOT gates. As a result, the overall depth and
gate count can be lowered whereas the same T-depth as the
previous work can be maintained.

A. Proposed Variant of FLT-based Inversion

In this paper, to aid the explanation of our method, we
start by elaborating the quantum circuit construction used in
Banegas et al [14], then introduce our differences along the
way.

In general, the quantum FLT-based inversion consists of
three stages [14], as discussed in the Section II-C and il-
lustrated in Fig. 1. At the first stage, f22

k1 −1 is calculated.
This can be performed by a series of squarings and (modular)
multiplications. At the second stage, f2(n−1)−1) is calculated
in a similar fashion. At the third stage, both are squared to
obtain the inversion result, f−1.

In the method implemented in the previous work [14],
an inverse squaring operation (namely, K−1, or equivalently
SQUARE−1) is required in each iteration of the first stage.
That is, after finishing a squaring, the value is uncomputed by
the SQUARE−1 so that the qubit can be reused for the sub-
sequent squaring. Unfortunately, this introduces more CNOT
gates to the circuit since SQUARE−1 practically consists of
CNOT gates, which is bounded by O(n2). Furthermore, qubit
reuse also requires additional series of CNOT gates of at least
n per squaring for uncomputation, yielding larger overall depth
and gate count.

In this paper, a more straightforward way of using a
waterfall approach to perform inversion is presented. We keep
the standard method of using three stages of calculation.
However, the method of calculation is different, giving dif-
ferent construction and operation placement, as presented in
Algorithm 1. Furthermore, using a sequential arrangement
of values, uncomputation is performed after the calculation
finishes; hence SQUARE−1 and additional CNOTs can be
removed. As a result, a circuit with a lower overall depth and
smaller gate count can be obtained.

Regarding the explanation of Algorithm 1, the algorithm
is for performing a time-efficient FLT-based quantum inver-
sion circuit for a binary elliptic curve using constant field
polynomial m(x) of degree n > 0 as a fixed input. For
simplicity and ease of comparison, we closely follow the
notation and description of [14]. k1 is a register that saves
result multiplication final in stage 1 as a predecessor value
for the next stage, while s is the iteration variable. Note that
k1 > k2 > . . . kt ≥ 0 such that

∑t
s=1 2

ks = n − 1. In this
case, maximum register number is k = 2k1 + t, in quantum
circuit we define this value as number of qubits.

For the operations (functions), lower case represents the
standard gate operation (in this case, CNOT and swap), while
the all-capital case (in this case, SQUARE and MULT) repre-
sents a block of operation which can be rolled out according
to one’s implementation preference. Generally, for binary
finite field quantum circuit, squaring (SQUARE) operation is
constructed via LUP Decomposition, a decomposition method
for linear mapping also used in [14, 20]. As for the (modular)
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multiplication operation, the straightforward Schoolbook mul-
tiplication (followed by reduction) or other approach such as
Karatsuba or Toom-Cook can also be employed. In this study,
since our focus is on the inversion algorithm itself, we utilize
the simple-yet-straightforward Schoolbook multiplication for
the underlying multiplication block.

Algorithm 1 Our proposed variant of FLT. For simplicity and
ease of comparison, notation and description follow [14].

Fixed input : A constant field polynomial m(x) of
degree n > 0.k1 > k2 > . . . kt ≥ 0 such

that
3∑

s=1
2ks = n− 1.kmax = 2 ∗ k1 + t.

Quantum input :
- A non-zero binary polynomials of degree up to
n− 1 stored in array (register) f0 of size n to invert.

- k zero arrays of size n initialized to an all-|0⟩
state: f1, . . . , fk.

Result : inverse of the input, stored in fk
1: for i = 1, . . . , k1 do //stage 1
2: CNOT(f2∗(i−1)+1, f2∗(i−1))
3: for i = 1, . . . , t− 1 do
4: SQUARE(f2∗(i−1)+1)
5: MULT(f2∗(i−1)+2, f2∗(i−1)+1,f2∗(i−1))

6: for s = 1, . . . , t− 1 do //stage2
8: for k = 1, . . . , 2ks+1 do
9: SQUARE(f2∗(i−1)+1)
10: MULT(f2∗(i−1)+2, f2∗(i−1)+1,f2∗(i−1))

11: if t = 1 then
12: swap (fk1 , fk)
13: SQUARE(fk) //stage 3

Note that more ancilla qubits are required compared to the
previous work, but they similarly are to be uncomputed at
the end. In addition, considering the development of quantum
hardware which has seen a rapid acceleration in the increasing
number of qubits, this approach does pose a competitive
advantage.

Fig. 1. A three-stage FLT inversion steps, inferred from [14]

B. Experiment Setup for Evaluation

To compare the performance of our method and previous
work, we construct both the FLT inversion by Banegas et
al., [14] and ours in the Qiskit quantum computer simulator

Fig. 2. Illustration of Modified FLT Algorithm, Example for n = 8

platform and run the resource analysis. For the previous work’s
construction, we follow the algorithm presented on Algorithm
2 in their paper. In our experiment, since our scope is on the
FLT inversion evaluation and not the lower-level component
(e.g., the multiplication block), we employ the exact same set-
ting for the underlying circuits (e.g., same version of squaring
and multiplication blocks) for both Banegas et al’s and ours.
Additionally, for constructing a modular multiplication, we
utilize the Schoolbook multiplication followed by reduction
for both scenarios due to its simplicity. Employing other
multiplication methods (e.g., quantum Karatsuba such as [14,
30] or Toom Cook multiplication such as [31, 32]) can be done
accordingly by simply changing the underlying blocks since it
is supported by Qiskit. Following previous works on quantum
cryptanalysis [13, 14, 28], swap operations can be considered
as free since it can be done via qubit relabeling [33, 34].

Furthermore, since the most prominent use of this quantum
inversion circuit is on the quantum cryptanalysis of binary
elliptic curve using Shor’s ECDLP, we evaluate our work with
the parameters for several NIST’s standardized curves, i.e., B-
233, B-283 B-409 and B-571 with their respective irreducible
polynomials, along with the smaller curve with the irreducible
polynomial listed in [14]. In terms of the metric used, we
currently analyze the number of CNOT Gates (i.e., CNOT
count), circuit depth, and qubit size (i.e., circuit width).

IV. RESULT AND DISCUSSIONS

A. Evaluation Result

To verify our proposed method, we implement both versions
of FLT-based algorithm (i.e., ours and Banegas et al.,’s [14])
on Qiskit platform. Then, we perform the resource analysis
on the decomposed (i.e., transpile function in Qiskit) version
of the quantum circuits and compare the result. We ran our
experiment on Python 3.9.7, Qiskit version 0.30.0 locally in
an x64-based desktop PC (Intel i7-8700, 6 cores processor),
on Windows 10 Pro OS with 64 GB of RAM. For the transpile
function, the basis gates follow the decomposition described in
Q-Crypton, a quantum-security evaluation platform for cryp-
tography developed by ETRI, a Korean government research
institute. In particular, the allowed basis gates are [’id’, ’h’,’t’,
’tdg’, ’s’, ’sdg’, ’rz’, ’x’, ’y’, ’z’, ’cx’], without utilizing
optimization function (i.e., set the optimization level to 0).

Algorithm 1 is translated to quantum circuit construction
following the pseudocode given in the Appendix. In the
algorithm, the placement of the operations (e.g., squarings,
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multiplications, etc) on the quantum registers are shown. Ad-
ditionally, anc in the pseudocode refers to the list of ancillary
registers, namely anc1, anc2, and so on. The corresponding
quantum circuits for degree-8 inversions for the previous work
and this work are shown in Figures 3 and 4. For the higher
bits, due to a very long circuit, the pictures are not displayed
in this paper.

Fig. 3. Our Qiskit’s Circuit Construction of Previous Work’s FLT-based
Inversion [14]

The result of the experiment is presented in Table I. In all
cases, our evaluations decomposed higher-level operations to
CNOT, T , T †, and Hadamard gates only, all with equal gate
count except CNOT gates for both the previous work and ours.
As shown, the number of CNOT gates in our proposed method
are lower than the previous work. This also results in a lower
overall depth of the circuit. Additionally, it can be inferred that
the larger the inversion bit size (which is same as the degree
of m(x)), the larger the savings obtained from our inversion,
as shown in Figures 5 and 6. Note that our method comes
with a tradeoff of higher circuit width (i.e., qubit size).

B. Discussions

This proposed work focus on minimizing the depth of the
circuit as the main metric. In other words, this work wishes to
achieve a time-efficient circuit. This is achieved by reducing
the number of CNOT gates in the circuit by employing a
complete waterfall approach to eliminate the use of the inverse
squaring circuits (SQUARE−1) used in the previous work,
i.e., [14]. Their removal contributes to an overall lower circuit
depth.

In this subsection, we note several considerations that may
arise from our proposed method. Firstly, one may think that the
depth reduction is not very large. However, an inversion circuit
is rarely employed as a standalone circuit. Rather, it is usually

Fig. 4. Our Qiskit’s Circuit Construction of Our Method’s FLT-based
Inversion.pdf

Fig. 5. Depth size difference

incorporated to a larger circuit performing a more complex
operation. For instance, one of the prominent use of quantum
inversion circuit is in the Shor’s ECDLP for cracking ECC
—currently for quantum cryptanalysis and resource estimation,
and possibly for the real cracking in the future of fault-tolerant
quantum computation —specifically, as one of the components
in the point addition operation. Further, the point addition
is used iteratively (repeatedly) in the scalar multiplication
operation. In the long run, more depth savings can be obtained.

Secondly, one might question whether the overall depth,
as the primary metric used in this paper, is of importance.
Indeed, focusing on T depth (and T-count) reduction is very
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TABLE I
COMPARISON OF FLT-BASED INVERSION OF THE PREVIOUS WORK [14] AND THIS WORK BASED ON QISKIT SIMULATION RESULT

n Qubit Count CNOT Count Overall Depth
Previous Work [14] This Work Previous Work [14] This Work Previous Work [14] This Work

8 73 89 1856 1804 810 805
16 209 257 10014 9966 2565 2561

127 2922 3684 1074196 1073434 31267 31237
163 3098 4239 1484366 1483225 53730 53718
233 4894 6525 3306274 3304643 58999 58915
283 6510 8774 5431582 5429318 161071 161057
409 9408 12680 11148086 11144814 111151 111123
571 15418 20557 25778322 25773183 200641 200217

Fig. 6. CNOT size difference

beneficial [29] due to the T-gate’s criticality in the Fault-
Tolerant Quantum Computation (FTQC) [35], thus has been
celebrated as the focus of the recent research efforts in quan-
tum computing and cryptanalysis. Nevertheless, as stated in
[29], the improvements in T depth and T-count are frequently
accompanied by an increase in other resources, such as the
number of controlled-NOT gates (CNOTs) or the overall depth
of the circuit. This extra cost is not insignificant and can
have an impact on a quantum algorithm’s final outputs [29].
Furthermore, as discussed in [36], the cost of a quantum
circuit should not be reduced to the T-cost. Contrarily, it is
critical to reduce secondary resources to a minimum while
maintaining the T-cost unchanged [29], like the purpose of
our work. Another supporting argument come from a recent
study on quantum cryptanalysis of Grover’s algorithm on a
block cipher titled KATAN, which states that NIST has not
specified any limits on circuit width or the use of ancilla qubits
whereas maximum depth of a circuit has been discussed [27].
This strengthens the importance of depth, the parameter that
relates to decoherence of aquantum systems and corresponds
to time complexity of a quantum computer.

Another consideration that may arise is about the number
of qubits. Compared to the previous work, our variant of
quantum FLT-based inversion does employ larger number of
qubits. However, it comes from the ancilla registers, which are
also present in the FLT inversion. On quantum computers, the

ancilla registers will need to be uncomputed at the end of the
computation. That is, the ancilla registers will be returned to
state |0⟩ by applying the inverse gates in reverse order. This
uncomputation results in twice the depth of the original circuit,
as in [30, 31], whereas the ancilla qubits will be cleared up.
Thus, in certain cases, reducing the depth in the large-scale
future quantum computer can be more important. Additionally,
going back to the discussion of our approach, the saving on
depth will be doubled.

Furthermore, looking at the progress of quantum hardware
development, particularly in the most popular one, i.e., super-
conducting qubit, the physical qubit size has seen a significant
increase in the past few years —and is quite promising to
increase much more rapidly in the future —whereas progress
in the coherence time (relates to depth or time complexity) is
not as fast. Combined with the progress in the quantum error
correction (QEC), achieving a similar increase in logical qubit
may be viable in the future.

To conclude, bearing in mind that this proposed inversion
circuit does not incur larger cost in both T count and T-depth,
this construction can be employed as an alternative to the
existing quantum inversion circuit when time complexity is
the main consideration.

V. CONCLUSION

In this paper, we have presented our approach to construct
FLT-based quantum inversion circuit with lower depth for
use in binary elliptic curves. We offer an alternative variant
from the prior work [14] to perform inversion, a crucial
subcircuit of division circuit and the most expensive sub-part
of computing the scalar multiplication in the quantum binary
elliptic curve. In detail, the proposed design employs different
approaches at the first and second stages of Banegas et al.,
[14]’s elaboration of Itoh-Tsujii’s FLT inversion algorithm.
We utilize a different arrangement of the quantum circuit and
move the uncomputation of squarings to the end to eliminate
the intermediate uncomputation, minimizing the number of
CNOT gates in the circuit. As a result, a lower overall gate
count and circuit depth can be achieved. For verification, we
implemented both our method and the previous work’s FLT
approach in IBM Qiskit quantum computer simulator and
compared the resource requirement for B-233, B-283, B-409,
and B-571 as the standard for binary elliptic curve, which
confirms that a lower overall gate count and circuit depth
can be achieved when our approach is used in the perspective
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of quantum cryptanalysis of ECC. Additionally, our approach
maintains the same T-depth as the previous work, which is
of additional advantage. Note that our approach does incur a
higher number of auxiliary qubits. Nevertheless, the fact that
uncomputation must also be performed in any case, meaning
that the auxiliary qubits will still need to be uncomputed at the
end, gives our approach a leverage when one wants to pursue
a lower depth implementation.
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APPENDIX: PYTHON-STYLE PSEUDOCODE FOR CIRCUIT CONSTRUCTION IN QISKIT

####################################################################### 

###Pseudo code for the proposed work’s circuit construction in Qiskit## 

####################################################################### 

 

#Condition  

   if n == 8: 

        ip = [8,4,3,1,0] # degree 8   

        ks = [1,2]  

        k1 = 2 

    elif n == 16: 

        ip = [16,5,3,1,0] #degree 16     

        ks = [1,2,4]  

        k1 = 3 

    elif n == 127: 

        ip = [127,1,0] #degree 127   

        ks = [2,4,8,16,32]  

        k1 = 6 

    elif n == 163: 

        ip = [163,7,6,3,0] #degree 163 

        ks = [2,32] 

        k1 = 7 

    elif n == 233:     

        ip = [233,74,0] #degree 233 

        ks = [8,32,64]  

        k1 = 7 

    elif n == 283: 

        ip = [283,12,7,5,0] #degree 283 

        ks = [2,8,16] 

        k1 = 8 

    elif n == 409: 

        ip = [409,87,0] #degree 409 

        ks = [8,16,128] 

        k1 = 8 

    elif n == 571: 

        ip = [571,10,5,2,0] #degree 571 

        ks = [2,8,16,32]  

        k1 = 9 

    else: 

        raise ValueError('n can only be 8, 16, 127, 163, 233, 283, 409, or 571') 

 

    t= list(bin(n-1)[2:]).count('1') #Hamming Weight 

 

#Stage 1 

    for i in range(k1): 

        for l in range(n): 

            cnot(anc[2*i][l],anc[2*i+1][l]) #cnot(control, target) 

        for j in range(2**i):  

            SQUARE(anc[2*i+1]) 

        MULT(anc[2*i], anc[2*i+1], anc[2*i+2]]) #mult(input, input, output, control) 

 

#Stage 2 

    for s in range(len(ks)): 

        for j in range(ks[s]): 

            SQUARE(anc[2*k1+s])  

        MULT(anc[2*s], anc[2*k1+s], anc[2*k1+s+1]) #mult(input, input, output, control) 

 

    if t == 1: 

        swap(anc[2*k1[0]],anc[2*k1+s+1])   

 

    SQUARE(anc[2*k1+s+1]) 
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