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We explore the cryptographic power of arbitrary shared physical resources.
The most general such resource is access to a fresh entangled quantum state
at the outset of each protocol execution. We call this the Common Reference
Quantum State (CRQS) model, in analogy to the well-known Common Refer-
ence String (CRS). The CRQS model is a natural generalization of the CRS
model but appears to be more powerful: in the two-party setting, a CRQS
can sometimes exhibit properties associated with a Random Oracle queried
once by measuring a maximally entangled state in one of many mutually un-
biased bases. We formalize this notion as a Weak One-Time Random Oracle
(WOTRO), where we only ask of the m–bit output to have some randomness
when conditioned on the n–bit input.

We show that when n − m ∈ ω(lgn), any protocol for WOTRO in the
CRQS model can be attacked by an (inefficient) adversary. Moreover, our
adversary is efficiently simulatable, which rules out the possibility of proving
the computational security of a scheme by a fully black-box reduction to a
cryptographic game assumption. On the other hand, we introduce a non-
game quantum assumption for hash functions that implies WOTRO in the
CRQ$ model (where the CRQS consists only of EPR pairs). We first build a
statistically secure WOTRO protocol where m = n, then hash the output.

The impossibility of WOTRO has the following consequences. First, we
show the fully-black-box impossibility of a quantum Fiat-Shamir transform,
extending the impossibility result of Bitansky et al. (TCC 2013) to the CRQS
model. Second, we show a fully-black-box impossibility result for a strenght-
ened version of quantum lightning (Zhandry, Eurocrypt 2019) where quantum
bolts have an additional parameter that cannot be changed without generating
new bolts. Our results also apply to 2–message protocols in the plain model.

Contents
1 Introduction 2

1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Technical Overview 10
2.1 The impossibility of WOTROn,m in the CRQS model. . . . . . . . . . . . . 11
2.2 Quantum Black-Box Reductions. . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Σ–universal quantum Fiat-Shamir cannot be f -BB reduced to a game. . . . 12

1



2.4 A quantum assumption allowing for WOTROn,m. . . . . . . . . . . . . . . . 13
2.5 WOTRO and Quantum Lightning. . . . . . . . . . . . . . . . . . . . . . . . 14

3 Notations & Preliminaries 14
3.1 Σ–protocols and the Fiat-Shamir Transform . . . . . . . . . . . . . . . . . . 15
3.2 Black-Box Impossibility Results . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 A Simple Non-Interactive Primitive 16
4.1 WOTRO to Implement the Fiat-Shamir Heuristic . . . . . . . . . . . . . . . 18
4.2 WOTRO from Non-Local Correlations . . . . . . . . . . . . . . . . . . . . . 19

5 Impossibility of WOTRO in the CRQS Model 21
5.1 The Chernoff Attack Against Any Implementation of WOTRO . . . . . . . 21
5.2 Oracle Access Quantum Circuits . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Quantum Black-Box Reductions . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 Efficient Simulation of the Chernoff Attack . . . . . . . . . . . . . . . . . . 25

5.4.1 Proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Black-Box Impossibility of Fiat-Shamir in the CRQS Model 30
6.1 Black-Box Impossibility of Universal Fiat-Shamir . . . . . . . . . . . . . . . 31

7 A Quantum Assumption Allowing for WOTROn,m 34
7.1 Unconditionally Secure WOTROn,n in the CRQ$ Model . . . . . . . . . . . 34
7.2 Collision-Shelters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.3 Is the Collision-Shelter Assumption Realistic? . . . . . . . . . . . . . . . . . 40

8 Black-Box Impossibility of a Flavour of Quantum Lightning 41
8.1 Typed Quantum Lightning. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2 Justification for the tQL assumption. . . . . . . . . . . . . . . . . . . . . . . 42

A Technical Lemmas for Theorem 9 47

B Technical Lemmas for Theorem 11 51

C Basic Properties of WOTRO 55

1 Introduction
Cryptographic protocols can sometimes only be proven secure if some of their components
are assumed to be ideal. For example, some protocols that make use of cryptographic hash
functions can be proven secure if they are modelled as ideal random functions provided as
a black box; this is called the random oracle model (ROM). Another, but weaker, idealized
resource is the common random string model (CRS), in which the participants get a freshly
generated random string at the outset of each protocol execution. Several cryptographic
applications have their most efficient protocols proven secure when provided access to such
extra resources, as all known protocols in the plain model are either inefficient, or do not
satisfy all security requirements.
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The Random Oracle Model (ROM). Introduced by Bellare and Rogaway [BR93] as
a way to idealize cryptographic hash functions, the model has been shown to provide formal
security proofs for a wide variety of cryptographic protocols that are not known to be secure
under standard assumptions in the plain model. A random oracle models a hash function
as one whose value for every input is chosen uniformly and independently at random and
afresh before each protocol execution. This is meant to model the assumption that a hash
function is random, and that looking at its source code yields nothing useful beyond its
input-output behaviour. Rigorous security proofs for practical and efficient applications
like Full Domain Hash signatures (FDH-Signatures), Optimal Asymmetric Encryption
Padding (OAEP), Schnorr’s signatures [Sch89; Seu12], and Fischlin’s NIZK-PoK [Fis05]
are easy to obtain in the ROM but are still missing in the plain model. The random
oracle is a powerful primitive that provides all the main properties of a cryptographic
hash function at once: collision resistance, preimage resistance, and pseudorandomness.
It also has properties that can never be satisfied by any hash function: programmability,
(query) extractability (also known as observability), and freshness.

Common Reference String Model. A CRS is nothing more than a fresh random
string that materializes upon each protocol execution (freshness) and to which all players
have access. This model was originally proposed by Blum, Feldman, and Micali [BFM88]
to help remove interaction in zero-knowledge proof systems. In [Blu+91], the model
was shown to allow for non-interactive zero-knowledge for all NP languages. The works
of [Can01; CF01; DN02] extend its use as a resource enabling universally composable
cryptographic primitives. The common reference string model comes in two main flavours.
The weakest consists of a random and uniform string of polynomial length (in the security
parameter) while the strongest consists of a string of polynomial length picked from some
efficiently sampleable distribution. The first flavour will be denoted by the CR$ model
(i.e. the Common Random String Model) while the second flavour will be denoted by the
CRS model (i.e. the Common Reference String Model).

A customary application of both the CRS model and the ROM is the removal of inter-
action in interactive proof systems. As mentioned above, the CRS model was originally
designed for that purpose [BFM88]. Notice that a random oracle is a much more pow-
erful resource than a CRS, since it provides random access to an exponential number of
them. However, a random oracle is an immaterial resource as its properties could never be
satisfied by any efficient local process. This is in sharp contrast to a CRS, which can be
implemented in practice: we only need a way to publish fresh and public random strings
of polynomial length. Unfortunately, some basic and useful cryptographic primitives are
only known to be securely realizable in the ROM.

When Entanglement Behaves Like a Random Oracle. In order to see why entan-
glement could outperform a CRS in some settings, consider the following scenario where it
seems to provide as much randomness as the random oracle. Suppose Alice prepares n EPR
pairs of qubits and sends half of each pair to Bob. Each can then view their n qubits as
an access to a weak random oracle implementing a random function f : {0, 1}n → {0, 1}n.
The value f(a) can be obtained the following way. To each possible value a ∈ {0, 1}n, we
associate a publicly known orthonormal basis θa for n qubits. The value of f(a) is simply
defined as the outcome of the measurement of the n qubits owned by each party in basis
θa. Notice that this weak random oracle can be queried in only one place by each party,
as after the measurement is performed, the entangled pairs have collapsed to a classical
state. However, when both parties measure in the same basis θa they obtain the same
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uniformly distributed outcome. Moreover, when the bases {θa}a∈{0,1}n are chosen to be
mutually unbiased [Sch60; WF89]1, the value f(a) does not provide any information about
f(a′) for any a ̸= a′.

In this particular setting, n EPR pairs seem to contain as much randomness as a
random oracle. It is therefore tempting to believe that an entangled state of polynomial
size could in certain cases provide a cryptographic resource tantamount to the random
oracle when only one query (or just a few) has to be made by each player. Such a resource,
which we call a Weak One-Time Random Oracle (WOTRO), would be a powerful primitive
for removing interaction in procotols, even if it only provides some randomness: that the
value f(a) is not a deterministic function of a. The above scheme can be made non-
interactive if Alice and Bob share EPR pairs ahead of time. This motivates our study of
a model in which parties have access to a pre-shared entangled state.

The CRQS and CRQ$ Models. In this paper, we consider models where a quantum
state plays the role of a common random string in a situation involving two parties. In the
CRQS (Common Reference Quantum State) model, each party receives one half of a fixed
pure quantum state at the beginning of each protocol execution. The shared quantum
state is of polynomial size and can be generated by some polynomial size quantum circuit.
In the CRQ$ model, each player is given halves of polynomially many (in the security
parameter) maximally entangled pairs of qubits (or qudits in general). Although we could
allow a CRQS or a CRQ$ to be shared between more than two parties, in this work we
only consider the two-party case. Notice that the meaning of common in CRQS and CRQ$
is narrower than for a CRS and CR$: even though a CRQS is common to both parties
involved in a protocol, it is completely unknown to anybody else, as both players share
a pure state. Even though a CRQS is obviously more difficult to deploy in practice than
a CRS, it remains a physical resource, unlike the random oracle. Establishing limits on
what a CRQS can provide would therefore contribute to a better understanding of the
cryptographic power provided by the sharing of a physical resource between the parties
involved in a protocol.

WOTRO in the CRQS model? We investigate the question of whether or not WOTRO
has a secure instantiation in the CRQS model. Like the CRS and ROM, quantum entan-
glement is known to allow the reduction of interaction, but it also enables tasks that would
be classically impossible using only a CRS. Watrous [Wat03] showed that every language in
PSPACE has 3-message proof systems. Another example would be nonlocal games such as
the magic square game [Ara02; Ara03; BBT05], where a pair of entangled non-interacting
provers can win a game that would classically require them to communicate.

The CRQS model provides quantum non-local correlations2 between the prover and
the verifier. Non-local correlations are often idealized by non-local (NL) boxes [PR97].
One NL-box takes the first party’s input a ∈ {0, 1} and the second party’s input b ∈ {0, 1}
to provide u ∈ {0, 1} and v ∈ {0, 1} such that u⊕ v = a ∧ b to the first and second party
respectively. EPR pairs achieve this functionality with probability of success cos2 (π

8 ) while
any CRS would not be able to provide the correct answer with probability better than

1{θa}a∈{0,1}n is a set of mutually unbiased bases for n qubits if for all |u⟩ ∈ θa and |v⟩ ∈ θa′ with
a ̸= a′, we have |⟨u|v⟩|2 = 2−n. There are 2n + 1 mutually unbiased bases for n qubits.

2In quantum mechanics, a non-local correlation is the name given to the statistics of local measurements
applied to distinct parts of a quantum states when they cannot be explained by a local realistic theory. Non-
local correlations here (quantum or not) means also that they do not allow for any form of communication
as they must be compatible with special relativity.
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3
4 . It is not too hard to see that access to sufficiently many NL-boxes allows for a secure
implementation for WOTRO (see details in Section 4.2). While NL-boxes are not physical
objects, the question we are addressing here is whether non-local quantum correlations
can be harnessed to provide a functionality akin to the use of a random oracle queried
once through the use of a CRQS.

One might argue that the CRQS model is not currently realistic given the technologi-
cal difficulties associated with distributing and coherently storing quantum entanglement
(although this is rapidly improving). However, we ask a more fundamental question on
the power of setup assumptions. Are there physically realizable setup assumption that
allows to solve problems that, in the classical model, appear to require a random oracle.

The Fiat-Shamir Transform. One very useful primitive that needs an idealized cryp-
tographic resource like WOTRO for establishing its security is the Fiat-Shamir transform,
also known as the Fiat-Shamir heuristic, introduced in the pioneering work of Fiat and
Shamir in [FS86] as a way to transform identification schemes of a given form into prac-
tical digital signature schemes. More generally, the FS-transform is a simple and efficient
primitive allowing to convert sound interactive proof systems of a particular form into
non-interactive arguments for the same language. Its primary use is to remove interaction
in Σ–protocols.

Σ–protocols [Cra96; Dam10] are public-coin 3-message proof systems where, from pub-
lic input x ∈ {0, 1}∗, the prover sends a commitment a ∈ {0, 1}n to the verifier as the
first message. The verifier then replies with a random challenge c ∈R {0, 1}m (called
public coins) before the prover sends the answer z(x, a, c) that the verifier can check for
consistency. Henceforth, Σ–protocols with commitments of size n and public coins of size
m will be denoted by Σn,m–protocols. These proof systems can be proofs of knowledge,
like their use in identification schemes, or proofs of language membership. In this paper,
Σ–protocols are always considered perfectly correct and special sound. Special soundness3

for proofs of knowledge means that from any two successful conversations with the same
commitment (a, c, z(x, a, c)) and (a, c′, z(x, a, c′)) with c ̸= c′, one can efficiently extract a
witness w for x ∈ L. For proofs of language membership, special soundness means that
when x /∈ L and for each commitment a, there exists at most one challenge c(a) for which
a third message z̃ can ever be found such that (a, c(a), z̃) is accepted by the verifier.

The Fiat-Shamir transform applied to a Σ–protocol is implemented using hash function
hr : {0, 1}∗ → {0, 1}m picked according to CR$ r. The prover then sends (a, hr(a), z(x, a, hr(a)))
to the verifier. In other words, the verifier’s challenge or public coin c in the Σ–protocol
is replaced by c = hr(a)4. It is straightforward to see that when hr is modelled by a
random oracle, the transform applied to a Σ–protocol produces a sound argument The
family of hash functions H = {hr}r∈D{0,1}ℓ(n) , for D an efficiently sampleable distribution

over {0, 1}ℓ(n), is a sound Σn,m–universal instantiation of the Fiat-Shamir transform if hr

converts the special soundness of any Σn,m–protocol (as a proof of language membership)
into a non-interactive argument. Notice that when the hash function is modelled by a
random oracle, the prover and the verifier only have to query the oracle once at the same
point. Replacing the random oracle with a secure instantiation of WOTRO would thus
provide a sound universal Fiat-Shamir transform.

3Special soundness is called optimal soundness in [BLV06].
4Some works include the public instance x as input to hr, our results remain untouched if we include

it. We leave it out for simplicity.
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The Fiat-Shamir Transform in the ROM and QROM. As mentioned above, the
Fiat-Shamir transform was shown secure in the ROM by Pointcheval and Stern [PS96] in
1996. The soundness of the Fiat-Shamir transform is straightforward in the ROM. The
challenging part was to show that it also provides non-interactive proofs of knowledge.
The same was shown to hold in the quantum random oracle (QROM) independently and
differently by Don, Fehr, Majenz, and Schaffner in [Don+19] and by Liu and Zhandry in
[LZ19].

Known Impossibility Results for the Fiat-Shamir Transform. The Fiat-Shamir
transform does not guarantee computational soundness for all Σ–protocols in the CRS
model. In particular, Goldwasser and Kalai have shown that the Fiat-Shamir transform
applied to some (contrived) Σ–protocols is not sound for any instantiation of the hash
function (i.e. instantiated using a CRS) [GK03]. However, this impossibility result requires
the Σ–protocol to be a proof of knowledge.

Ambainis, Rosmanis, and Unruh [ARU14] have shown that the Fiat-Shamir transform
cannot preserve the soundness of every Σ–protocol against quantum adversaries, even when
it is instantiated with a random oracle. More precisely, they construct a proof system,
which can be either a proof of knowledge or an argument of language membership, which is
sound classically but unsound against quantum adversaries. The same holds true when the
Fiat-Shamir transform is applied to these proof systems. In effect, their attack is against
the underlying Σ–protocol rather than against a physical instantiation of a random oracle.
Their results do not contradict the positive results of [Don+19; LZ19] since they show
that the Fiat-Shamir transform preserves soundness in the QROM when the underlying
Σ–protocol is sound against quantum adversaries.

Impossibility results for Σ–protocols used as proofs of language membership are not
known to be as strong as for proofs of knowledge. One reason being that for language
membership, the Fiat-Shamir transform is only asked to provide computational soundness
to a Σ–protocol with statistical soundness whereas for a proof of knowledge the Σ–protocol
is an argument. Remember that a cryptographic game [HH09] is a standard way to define
computational assumptions by requiring that no adversary can win an interactive game
against a challenger with probability that is not overwhelmingly close to some constant
value [HH09]. An assumption that can be formulated as a cryptographic game with an
efficient challenger is called a falsifiable assumption [GW11; Nao03]. Known impossibility
results for the Fiat-Shamir transform applied to Σ–protocols for proofs of language mem-
bership are about the impossibility of black-box reducing its computational soundness to
a cryptographic game.

In [Bit+13], Bitansky et al. provide two results on the impossibility of establishing
the computational soundness of the Fiat-Shamir transform in the CRS model. First, if a
language L /∈ BPP has an honest-verifier zero-knowledge (HVZK) Σ–protocol (with small
enough challenges) then the soundness of the Fiat-Shamir transform applied to it cannot be
established by a black-box reduction5 to a falsifiable assumption6. This impossibility result

5The security of protocol Π is black-box reduced to an assumption expressed as a game if there exists an
oracle polynomial-time machine RP ∗

that, with oracle access to any successful adversary P ∗ for protocol
Π, wins the game.

6The reason why the result applies in the CRS model is because [Bit+13; Dac+12] show how to get,
from such a Fiat-Shamir transform, a 2-message zero-knowledge proof system for L where the verifier
simply sends the identity of the hash function to the prover as first message. This is equivalent to non-
interactive schemes in the CRS model. These proofs systems are shown impossible by an extension of the
impossibility result for 2-round zero-knowledge for non-trivial languages by Goldreich and Oren [GO94].
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applies even to Fiat-Shamir transforms tailor-made for specific Σ–protocols. Second, they
show the impossibility of black-box reducing the computational soundness of any universal
instantiation of the Fiat-Shamir transform to a cryptographic game, even a non falsifiable
one where the challenger is not required to run in polynomial time.

Positive results & related work. A series of results have been focusing on achieving
soundness of the Fiat-Shamir transform from a cryptographic assumptions that cannot be
black-box reduced to cryptographic games. Barak, Lindell and Vadhan [BLV06] introduce
the notion of entropy preserving hash functions (such function families are rather said
to ensure conditional entropy therein) and show that assuming their existence, there is
no constant-round auxiliary-input zero-knowledge proof system for non-trivial languages.
The proof of this result implies the computational soundness of Fiat-Shamir using entropy
preserving hash functions. Later, Dodis, Ristenpart and Vadhan [DRV12] gave a construc-
tion for entropy preserving hash functions assuming the existence of robust randomness
condensers with some extra properties, but without providing any candidate construc-
tion. Canetti, Goldreich, and Halevi [CGH04] introduce correlation intractable families of
hash functions. Correlation intractability is related to entropy preservation as the latter
implies the former. Therefore, a consequence of [Bit+13] is that correlation intractabil-
ity cannot be proven by black-box reduction to a game. In [KRR17], Kalai, Rothblum,
and Rothblum provide a construction for correlation intractable family of hash functions
from a subexponentially secure indistinguishability obfuscator, an exponentially secure
input-hiding obfuscator for the class of multi-bit point functions, and the existence of a
subexponentially secure puncturable PRF7. The subexponential indistinguishable security
of the IO-obfuscator and the exponential security of the multi-bit point functions obfus-
cator allow to evade the impossibility result of [Bit+13]. In [Can+18], Canetti, Chen,
Holmgren, Lombardi, Rothblum, and Rothblum show how to construct a universal in-
stance of the Fiat-Shamir transform using correlation intractable hash functions built
from a strong version of KDM-encryption. The resulting Fiat-Shamir transform also has
security black-box reducible to a cryptographic game with subexponential security.

The concept of shared entanglement as a setup was considered in previous works.
In [CVZ20], Coladangelo, Vidick, and Zhang have shown how to design non-interactive
zero-knowledge arguments for QMA (i.e. quantum NP), with preprocessing. Morimae
and Yamakawa [MY22] use a similar setup for classical verifiability of NIZK arguments
for QMA. The preprocessing is essentially what we call here a CRQ$. Non-interactivity
is obtained from pre-shared EPR pairs used as a teleportation channel. This can be
viewed as a quantum version of the work of Peikert and Shiehian [PS19] and, as such,
is not a Σn,m–universal instantiation of the Fiat-Shamir transform. The ability of a
CRQS to provide zero-knowledge against quantum dishonest verifiers has been investigated
in [DFS04]. It was shown that a CRQS allows quantum zero-knowledge implementations
of a Σ–protocols against a relaxed form of honest verifiers, called non-oblivious.

A model called CRQS was recently8 introduced in [MNY23] as a trusted setup for
provably computationally secure quantum bit commitment (i.e. without relying on com-
plexity assumptions). In the model of [MNY23], a setup algorithm samples a classical
key k and distributes copies of a quantum state |ψk⟩ to each party. A similar model,

7Notice that the result of [KRR17] is very general as it allows to apply securely the Fiat-Shamir
transform to any public-coin 3-message proof systems, not only to Σ–protocols as we define them. Some
of their assumptions can be relaxed a little when the Fiat-Shamir transform is applied to Σ–protocols.

8The authors of [MNY23] were aware of our work but decided to use the same naming scheme, arguing
that our model is mode akin to the quantum version of correlated randomness rather than CRS.
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WOTROn,m
Γ

a ∈ {0, 1}n

c ∈R {0, 1}m

a

c

Figure 1: WOTROn,m as a box. The prover on the left puts a chosen a ∈ {0, 1}n into it, the box
chooses c ∈R {0, 1}m, and outputs (a, c) to the verifier on the right-hand side.

called “unclonable common random state”, is independently introduced in [Qia23] for the
same task of unconditionally secure quantum bit commitment. In the context of a neg-
ative result, the more general the model is, the stronger is the impossibility result. The
models of [MNY23; Qia23] are a special case of ours by considering a CRQS of the form
|Ψ⟩ =

√
p(k)∑k |ψk⟩|ψk⟩ where p(k) denotes the probability to pick key k.

1.1 Our Contributions
We introduce a cryptographic primitive called a Weak One-Time Random Oracle, denoted
WOTROn,m and defined by the box given in Fig. 1, which takes place between a “prover”
who controls the interfaces on the left-hand side of the box, and a “verifier” who controls
the interfaces on the right. A protocol instantiating WOTROn,m is secure if for any function
f(·), the adversary can’t produce an output of the form (a, f(a)) on the verifier’s interface.
We ask whether this primitive has a secure non-interactive instantiation in the CRQS
model. Our main contribution is showing that, despite the evidence to the contrary
presented above, this primitive has no statistically secure implementation in the CRQS
model. Our impossibilities also apply for two-message protocols in the plain model (and
even in the CRQS model) since the CRQS could be prepared by the verifier.

Theorem 1 (informal version of Theorem 8) If n −m ∈ ω(lgn), there is no statis-
tically secure non-interactive protocol for WOTROn,m in the CRQS model.

For any protocol in the CRQS model, we construct an (inefficient) attack that will make
the verifier accept an output of the form (a, f(a)) for a function f chosen at random. Our
attack is a novel use of the operator Chernoff bound of Ahlswede and Winter [AW02].

What about WOTRO protocols that provide computational security by relying on a
hardness assumption? We show that such a protocol could not be proven secure using
reductions that treat the adversary as a black-box (i.e. a CPTP map). We call this a
quantum fully-black-box (or f -BB) reduction.

Theorem 2 (informal version of Corollary 1) If n−m ∈ ω(lgn), there is no proto-
col for WOTROn,m whose security can be established by a quantum f -BB reduction to a
cryptographic game assumption, unless that assumption is false.

The statement above and its proof are similar to the impossibility results of [Bit+13;
BGW12] in the context of Fiat-Shamir in the CRS model. We rely on a technique formal-
ized byWichs in [Wic13]. We show that the input/output behaviour of our attacker against
any WOTRO protocol can be simulated efficiently by a quantum algorithm. This means
that no reduction can exist that breaks the security of a cryptographic game assumption
using only the input/output behaviour of a successful adversary against WOTRO, unless
the assumption is false. Otherwise, the reduction together with the simulator for the
attack would yield an efficient algorithm for breaking the assumption.
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While WOTRO implies Fiat-Shamir, the other direction does not hold. Still, we can
use the attack from our impossibility of WOTRO to obtain a similar result ruling out any
universal instantiation of Fiat-Shamir in the CRQS model.

Theorem 3 (informal version of Theorem 10) For n − m ∈ ω(lgn), there is no
Σn,m–universal instantiation of the Fiat-Shamir transform whose security can be estab-
lished by quantum f -BB reduction to a cryptographic game assumption, unless that as-
sumption is false.

Interestingly, our impossibility is more general than the classical one [Bit+13], even when
restricted to classical shared resources. A CRQS can capture as a special case asymmet-
ric setups such as giving the verifier the trapdoor to some primitive the prover uses or
pre-computed randomized oblivious transfers. We obtain this generality “for free” by con-
sidering the cryptographic primitive WOTRO instead of a family of cryptographic hash
functions, as in [Bit+13].

Studying the WOTRO primitive instead of Fiat-Shamir directly has another advantage
in that our impossibility result also applies to any cryptographic task which (black-box)
implies WOTRO. For instance, we introduce a strengthened variant of Zhandry’s quan-
tum lightning [Zha19] that implies WOTRO. Quantum lightning (QL) is a primitive that
produces a quantum state and an associated serial number such that no adversary can
produce two states with the same serial number (hence the name “lightning”). A con-
sequence of this property is that serial numbers are highly unpredictable. A natural
question is whether some form of metadata can be embedded into quantum lightning such
that changing the value of this metadata requires creating a new lightning state. This
metadata could for example contain ownership information and it would thus be impos-
sible, even to the emitter of the state, to change the owner of a state without generating
an entirely new state. It could also serve to encode a denomination for quantum bank
notes, such that not even the emitting bank could change the denomiation of an existing
quantum note.

We introduce a variant of quantum lightning that allows such metadata by adding
a classical input to the state generation procedure. We call this variant typed quantum
lightning (tQL) which is secure if the serial numbers remain unpredictable conditioned on
the input. We show that this variant implies WOTRO and thus inherits the same black-box
impossibility.

Theorem 4 (informal version of Corollary 2) There is no quantum f -BB reduction
from the security of a tQL scheme to the security of a cryptographic game assumption
when type length n and serial length m satisfy n−m ∈ ω(lgn), unless that assumption is
false.

Why would tQL be a reasonable assumption? Clearly it is a very powerful primitive,
but how much of a leap is it from “vanilla” quantum lightning? While we do not have
a definitive answer to that question, we can show that QL implies tQL with small types.
More precisely, we construct in Section 8.2 a tQL scheme from regular QL for types of
O(lg(n)) bits.

Instantiating WOTRO from a non-game assumption. We show that it is possible
to construct a WOTRO protocol for which security is based on a cryptographic assumption
that does not fit the game formalism. Our result is based on a new hardness assumption
on cryptographic hash functions called collision-shelters. Intuitively, a family of hash
functions is a collision-shelter if no adversary can produce many collisions in superposition.
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WOTRO

|ψ⟩AB

N a

Va,c,v (a, c) or ⊥

c ∈ {0, 1}m

a ∈ {0, 1}n

Figure 2: A WOTROn,m protocol in the CRQS model as described in Definition 6. The prover’s actions
are above the dashed line and the verifier’s actions are below. The classical wire crossing the dashed
line represents the classical message sent from the prover to the verifier.

As such it is an intrinsically quantum definition which cannot be framed as a game since
no challenger can verify that an adversary breaks the assumption. Using this assumption,
we show how to construct a secure WOTROn,m protocol in the CRQ$ model. We first
prove the security of a construction for WOTROn,n similar to the one based on EPR pairs
and mutually unbiased bases sketched earlier. The proof involves computing bounds on
the optimal probability of distinguishing between states from many mutually unbiased
bases and might be of independent interest. A WOTROn,m protocol for m < n is obtained
by hashing the output with a collision-shelter hash function.

Theorem 5 (informal version of Theorem 12) Under the collision-shelter assump-
tion, there are secure instantiations of WOTROn,m in the CRQ$ model.

2 Technical Overview
We call Weak One-Time Random Oracle, denoted WOTROn,m, the following simple non-
interactive primitive. To any a ∈ {0, 1}n, it provides a challenge c ∈ {0, 1}m avoiding with
good probability any function c : {0, 1}n → {0, 1}m. We say that an implementation of
WOTROn,m avoids function c if no (efficient) dishonest prover is able to produce (a, c) such
that c = c(a). An implementation of WOTROn,m is said to be κ–secure if it behaves like a
random oracle when the prover is honest and avoids any function c with probability at least
κ, when the prover is dishonest. It is easy to see that any non-interactive κ–secure imple-
mentation of WOTROn,m can be used to implement the Fiat-Shamir transform with com-
putational soundness error upper-bounded by 1−κ (see Section 4.1). Any implementation
of WOTROn,m that avoids any function c(·) would be a powerful cryptographic primitive
to remove interaction. An implementation Πn,m

WRO = (P′,V′) of WOTROn,m in the CRQS
model is defined by two families of efficient POVMs P′ = {Pa}a and V′ = {Va,c,v}a,c,v with
a ∈ {0, 1}n, c ∈ {0, 1}m, and v is an auxiliary string announced to V′. Πn,m

WRO = (P′,V′) is
executed as folllows:

1. Upon input a ∈ {0, 1}n, P′ applies POVM Pa := {P a
c,v}c,v to register P of the CRQS

to get classical outcome (c, v). P′ then announces (a, c, v) to V′.

2. V′ applies POVM Va,c,v := {V a,c,v
0 , V a,c,v

1 } to register V of the CRQS and accepts iff
classical outcome 1 is obtained.

An adversary A against Πn,m
WRO takes no input and applies a POVM A := {Aa,c,v}a,c,v

to register P of the CRQS to obtain a along with the message (c, v). Notice that as defined,
Πn,m

WRO requires the message transmitted to V′ to be classical. This can be done without

10



R

|ψ⟩AB

Af

V

Figure 3: The interface between the f -BB reduction R and the WOTRO adversary Af . The reduction
simulates the CRQS |ψ⟩AB and the verifier. It provides register A to the adversary Af and receives its
classical outcome.

loss of generality as a protocol asking P′ to send a quantum message can be transformed
into one where P′ only sends a classical message by adding to the CRQS enough EPR pairs
for the quantum message to be teleported. The security of the original protocol remains
untouched by this transformation.

2.1 The impossibility of WOTROn,m in the CRQS model.
For main contribution (Theorem 1), we construct an (inefficient) adversary Af that picks a
random function f : {0, 1}n → {0, 1}m such that the verifier will always accept the outcome
(a, f(a)) in the protocol. Af mounts its attack using the prover’s honest POVM operators
Pa

c,v using the following attack operators: Xf
a := ∑

v Pa
f(a),v. The success of this attack

relies on two crucial facts. First, the quantum operator Chernoff bound Ahlswede and
Winter allows us to show that the {Xf

a }a∈{0,1}n (almost) form a POVM with overwhelming
probability over the choice of f . Second, since the attack uses the honest prover operators,
the verifier will accept with the same probability as with the honest prover.

As for the impossibility of computationally secure WOTRO (Theorem 2), we use a proof
strategy similar to that of Bitansky et al. in [Bit+13; BGW12] when proving that there
exists no black-box reduction from any successful adversary against the entropy preserving
property of a family of hash functions to a cryptographic game. That is, we show that
our adversary against WOTROn,m is simulatable by an efficient quantum circuit. The
main difference here is that our quantum circuit is stateless while it is stateful in [Bit+13;
BGW12]. This prevents the security of WOTROn,m to be established by a reduction to any
cryptographic game that treats the adversary as a black-box (according to Definition 9),
as if there was such a reduction the game would also be won using the efficient simulator
(in other words, the game assumption would be false).

2.2 Quantum Black-Box Reductions.
We should make precise what we mean by quantum black-box reductions. The classical
notion of black-box reductions is uncontroversial; the reduction is an efficient algorithm R
having black-box (i.e. input/output) access to an adversary A breaking a scheme. In the
quantum setting, the reduction itself can be quantum, i.e. be an oracle access quantum
circuit (Definition 8), or it can be classical; and the adversary A can also be quantum or
classical. Firstly, for any reasonable definition of fully black-box, R should not be able
to tell if A is quantum or classical. It has been argued that if R is quantum, R can
be purified as a unitary circuit, and since unitary circuits are reversible, R should have
access to A and its inverse A∗ in order to preserve this property. While this is sometimes
called quantum black-box, it is closer to the classical semi-black-box notion, where the
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underlying primitive is treated as a black-box, but where the reduction can depend on the
adversary [BBF13]. These quantum reductions have been called quantum semi-black-box
reductions in [CX22].

While this type of reduction is very useful (to allow rewinding, for instance), we argue
that it cannot truly be considered “black-box”. Most realistic models of quantum com-
putation (including all current prototypes for quantum computers) include irreversible
operations as part of their native gate sets (for control flow if nothing else). Given a
quantum algorithm written in, say, openQASM, one would need access to the source code
to get a unitary circuit that can be run backwards; it requires “opening the box” to the
same extent as running a homomorphically-encrypted version of an adversary.

Notice also that unlike (fully) black-box reductions, semi-black-box reductions require
the adversary to be efficient, otherwise the reduction implemented as a quantum circuit
with A and A∗ gates, would potentially need to feed exponentially-many auxiliary input
wires to these unitaries. (Fully) Black-box reductions should never be affected by how the
adversary is implemented. Basically, a blackbox reduction remains efficient even when the
adversary is not (when oracle calls to A are at unit cost). This is a crucial property of
fully-blackbox reductions.

In view of the above, we adopt the following definition of quantum fully black-box re-
ductions (f -BB): QPT algorithms R that have oracle access to a CPTP map implementing
the adversary A. This is the true quantum analogue of the kind of black-box reduction
in impossibility results such as [Bit+13]. Note that by weakening the notion of black-box,
for example by giving reversible access to the adversary, the set of possible reductions
increases, so black-box impossibility or separation results become harder to find. In par-
ticular, the result of [Bit+13] is not known to, and probably does not, hold for this kind
of reductions. Our results of Section 6 therefore strictly generalizes [Bit+13] since we
consider the quantum variant of classical f -BB reductions. We expect that extending our
impossibility result to the semi-blackbox setting would require completely new techniques.
On a positive note, the impossibility that we prove here could be avoided when the reduc-
tions considered are not f -BB. Notice, however, that most security proofs in post-quantum
cryptography proceed by f -BB reductions. Most relevant to what we are doing here is
the security of the Fiat-Shamir transform in the QROM as shown in [Don+19; LZ19].
In these two papers, the soundness of the Fiat-Shamir transform is established by f -BB
reductions. Rewinding the adversary is only required to extract the witness, and since
this is only needed to show that the Fiat-Shamir transform is a proof of knowledge in the
QROM, this is irrelevant for the impossibility result we provide here.

2.3 Σ–universal quantum Fiat-Shamir cannot be f -BB reduced to a game.
We then show that the black-box impossibility of WOTRO (indirectly) implies that the
soundness of any Σn,m–universal quantum Fiat-Shamir transform cannot be established
under the same conditions. As our basic impossibility result is about the security of
a cryptographic primitive rather than a property of a family of hash functions (as in
[Bit+13; BGW12]), we follow a different path. First, let us discuss what distinguishes
WOTROn,m from a Σn,m–universal quantum Fiat-Shamir transform in the CRQS model.

Consider a Fiat-Shamir transform in the CRQS model. The general form of such a
protocol is similar to the generic WOTRO protocol outlined above. I.e. the pover performs
a POVM specified by a, the first message in protocol Σ and the verifier performs a binary
outcome POVM on its part of the CRQS as specified by the prover’s message, along with
additional checks according to Σ (see Section 6 for details).

Although this is providing something very close to WOTROn,m in its inner workings, it
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may not need to avoid all functions to be a computationally sound Σ–universal implemen-
tation of the Fiat-Shamir transform. It only needs to avoid functions c : {0, 1}n → {0, 1}m
such that for some Σ–protocol for some language L, there exists x /∈ L for which upon com-
mitment a, only challenge c(a) has a third message z such that (a, c(a), z) is a valid tran-
script. We show that this relaxation on the functions to be avoided by any Σn,m–universal
ΠQFS leads to the same impossibility result than for WOTROn,m.

The proof follows from the existence of a Σ–protocol Σf = (P,Vf ) for membership to
the empty language, where f : {0, 1}n → {0, 1}m is a random oracle. Although Σf only
requires Vf to have access to the oracle f(·) to run the protocol honestly, the adversary
Af has also access to f(·) to mount its attack against the soundness of ΠQFS[Σf ]. This
is essentially the same adversary defined as the one against WOTROn,m described above.
Notice that if the soundness of ΠQFS was f -BB reducible to game G then there would be
an efficient algorithm Bf , having oracle access to f(·), that wins game G. The strategy
used for WOTROn,m can then be applied. A possibly inefficient adversary Af is defined
that almost all the time breaks the soundness of ΠQFS[Σf ]. We finally show that both the
adversary Af and Vf can be simulated by an efficient stateful simulator. As before, this
prevents the soundness of ΠQFS to be established by f -BB reduction to a cryptographic
game unless the game is trivial.

2.4 A quantum assumption allowing for WOTROn,m.
We introduce a strong variant of collision resistant families of hash functions allowing for
a computationally sound Σ–universal implementation of the Fiat-Shamir transform in the
CRQ$ model. We call Gn,m

Γ := {Gn
s }s ⊂ {0, 1}n × {0, 1}n → {0, 1}m a collision-shelter if,

for any target function c : {0, 1}n → {0, 1}m, no efficient quantum adversary can produce
any state polynomially close to a state of the form

|ψ⟩AX =
∑

a

αa|a⟩A ⊗
∑

x:Gn(a,x)=c(a)
βa

x|x⟩X ,

that contains collisions to c(a) when a is measured.
In order to show that collision-shelters are sufficient for a sound Σ–universal Fiat-

Shamir transform in the CRQ$ model, we start with the weak random oracle implemented
using n shared EPR pairs from the introduction. We modify the scheme slightly to get an
unconditionnally 1

4–secure
9 implementation Πn,n

WRO = (P′,V′) of WOTROn,n in the CRQ$
model. This forms the basis upon which WOTROn,m, with m < n, is constructed using
a collision-shelter. We prove that Πn,n

WRO is 1
4–secure using shared maximally entangled

pairs of qutrits as the CRQ$ to allow the use of a particular set {θa}a∈{0,1,2}n of mutually
unbiased bases, introduced by Wootters and Fields [WF89]. The set {θa}a is shown to

prevent any adversary A := {Aa,c,v}a,c,v from observing Aa,c(a),v⊗V
a,c(a),v
1 with probability

better than 3
4 when the CRQ$ is measured by P′ and V′. This result may be of independent

interest and is made possible as A’s success probability is given by an instance of a Weil
sum that can be upper bounded by Deligne’s resolution of one of Weil’s conjectures [Del74].

A protocol Πn,m
WRO[Gn,m

Γ ] = (P′′,V′′) for WOTROn,m withm < n can then be constructed
using a collision-shelter Gn,m

Γ in the obvious way. Upon input a ∈ {0, 1, 2}n, P′′ runs P′

upon input a to get (c′, v) ∈ {0, 1}n×{0, 1}n. P′′ announces (a, c′, v) to V′′. The challenge
produced by Πn,m

WRO is simply set to c := Gn
s (a, c′) ∈ {0, 1}m for s a CRS. V′′ simply runs

V′ on (a, c′, v) and accepts if V′ accepts. It is not difficult to see that if Gn,m
Γ is a collision-

shelter then no efficient adversary A can do better against Πn,m
WRO than an unconditional

9By 1
4 –secure, we really mean

(
1
4 − negl(n)

)
–secure.
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adversary against Πn,n
WRO. As a result, Πn,m

WRO avoids all functions with probability 1
4 .

Negligible soundness error can then be achieved by parallel repetitions.

2.5 WOTRO and Quantum Lightning.
Quantum lightning (QL), introduced by Zhandry [Zha19], is a quantum cryptographic
task allowing anyone to generate quantum states of which they can make exactly one copy
(called the uniqueness property). The original construction of Zhandry based on an ad
hoc assumption was shown insecure by Roberts [Rob21].

Informally, a QL scheme consists of a quantum algorithm � instructing how to con-
struct bolts |�⟩ and of a verification algorithm Ver that on input |�⟩ returns a serial

number s ∈ {0, 1}n without disturbing state |�⟩ such that no efficient adversary can
create two valid states with the same serial number. For this to hold, there must be
uncertainty in the serial number of newly created bolts: for every QPT adversary A,
|�⟩ ← A(�) must satisfy H∞(Ver(|�⟩)) ∈ ω(lgn), otherwise polynomially many tries
would give two bolts with the same serial number, contradicting uniqueness. Note that an
efficient reduction does not necessarily exist in the other direction: an adversary could for
example produce two valid states with identical serial numbers that each have maximal
min-entropy. Such an adversary appears useless for producing a single lightning state with
low min-entropy in the serial number.

We introduce a variant of quantum lightning where the bolt generation procedure
accepts an input. Typed quantum lightning (tQL) is a new primitive similar to QL where

� takes an additional parameter (or type) a ∈ {0, 1}n. Intuitively, security asks that when
we fix the type a, the resulting scheme still produces unpredictable serial numbers. This
is formalized by requiring that the conditional min-entropy H∞(S | A) is large. We show
that a tQL scheme with type length n and serial number length m implies the existence of
a protocol for WOTROn,m. The scheme asks the prover to generate a typed QL state with
type a and teleport that state to the verifier using EPR pairs from a CRQ$, the verifier
accepts if the teleported state is a valid tQL state. A consequence if this scheme is that
no tQL scheme satisfying n − m ∈ ω(lgn) can have its security be f -BB reducible to a
cryptographic game assumption.

3 Notations & Preliminaries
We use n ∈ N as the security parameter throughout the paper. We use poly(n) to denote
a polynomial in n. A function f : N→ N is said to be negligible if for all polynomials p(·)
and for n ∈ N sufficiently large, f(n) ≤ 1/p(n). We denote a negligible function by negl(·).
We use “QPT” as a shorthand for quantum polynomial time. We use ln(·) and lg(·) to
respectively denote the base e and 2 logarithms. To denote a Hilbert space of dimension
2n, we write Hn.

For a set A, its cardinality is denoted |A| and its complement Ā. We write x ∈R A to
indicate that x is chosen uniformly at random from A.

We often use the notation f(·) to denote functions as a way to differentiate them from
variables. If f(·, ·) is a function of two arguments, we denote by f(x, ·) the function of
one argument defined by restricting the first argument to value x. For two sets A and B,
we denote the set of functions from A to B as A → B. Let Fn,m be the set of functions
{0, 1}n → {0, 1}m. We will often view m as a function m(n) of the security parameter n.
To simplify the notation, when n and m are clear in the context, we will write F := Fn,m.
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For a random variable X, E[X] denotes its expected value and for X(r) a random
variable function of r, Er[X] denotes its expected value when r is picked at random. Let
∆(A,B) = 1

2
∑

a |Pr[A = a] − Pr[B = a]| denote the statistical distance between the
distribution of two random variables A and B with the same domain. For an operator
A ∈ Cn×n, ∥A∥1 = tr(

√
A∗A) denotes its trace norm.

3.1 Σ–protocols and the Fiat-Shamir Transform
Let R ⊆ {0, 1}∗ × {0, 1}∗ denote an arbitrary efficiently computable binary relation such
that if (x,w) ∈ R then |w| ≤ p(|x|) for some polynomial p(·). We call x a public instance
and w a witness for x. The condition above ensures that the witness of any public instance
can be conveyed efficiently. From the binary relation R, we define the language LR =
{x | (∃w)[(x,w) ∈ R]} ∈ NP of public instances with witnesses for them.

Definition 1 (Σ–protocol [Dam10]) A Σ–protocol Σ = (P,V) for a binary relation R
is a 3-message protocol with conversation alphabet {0, 1}. On public input x ∈ LR and on
private input w to P such that (x,w) ∈ R, the protocol structure is as follows:

• The prover sends a message a = P1(x,w) ∈ {0, 1}n called the commitment.

• The verifier sends a challenge c ∈ {0, 1}m.

• The prover sends a reply z = P2(a, x, w, c) ∈ {0, 1}∗, and the verifier outputs
V(x, a, c, z) ∈ {accept, reject}.

Moreover, the protocol satisfies the following requirements:

Random public coins: The challenge c ∈ {0, 1}m is chosen uniformly at random in
{0, 1}m without any extra processing (i.e. no need for private information to generate
c).

Perfect correctness: When x ∈ LR, V accepts P with probability 1.

Special soundness: When x ∈ LR, given two accepting conversations for the same com-
mitment (a, c, z) and (a, c′, z′) with c ̸= c′, there exists a PPT algorithm W such that
(x,W(a, c, z, c′, z′)) ∈ R.

□

We should mention here that Σ–protocols are also often used as a synonym of 3-message
public-coins protocols (as in [KRR17; PS19], for instance) irrespectively of whether the
proof system satisfies perfect correctness or special soundness. However, since we are
proving a negative result, there is no loss in generality in adopting the more restrictive
definition of [Dam10].

By special soundness, if x /∈ LR then for any commitment a ∈ {0, 1}n, there is at
most one challenge c ∈ {0, 1}m such that for some response z, (a, c, z) is an accepting
conversation. For some Σ–protocol ΣL for a language L and some x /∈ L, we call the
function that maps a to this one challenge c the bad challenge function.

In the ROM, the Fiat-Shamir transform ΠFS[Σ] = (PFS,VFS) applied to a Σ–protocol
Σ = (P,V) with first message length n and challenge length m for a proof of language
membership is a non-interactive argument where, on public input x ∈ L and random
oracle H : {0, 1}n → {0, 1}m,
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1. PFS runs a = P(x,w) computes c = H(a) and z = P2(a, x, w, c), and sends (a, c, z)
to VFS.

2. VFS rejects if c ̸= H(a), otherwise outputs V(x, a, c, z).

In the CRS model, the protocol is the same with the random oracle replaced with a family
of cryptographic hash functions H = {hr}r where hr : {0, 1}n → {0, 1}m is sampled using
a CRS.

3.2 Black-Box Impossibility Results
The following define what is meant by a cryptographic game assumption.

Definition 2 ([HH09; Bit+13]) A cryptographic game is a tuple G = (Γ, c) composed
of an interactive Turing machine Γ and a constant c ∈ [0, 1]. On security parameter n ∈ N,
the challenger Γ(1n) interacts with an adversary An and outputs a bit b. The output of
this interaction is denoted by ⟨An ⇌ Γ(1n)⟩. The advantage of the family of adversaries
A = {An}n∈N in game G is defined as

AdvA,G(n) = Pr[⟨An ⇌ Γ(1n)⟩ = 1]− c .

A cryptographic game G is secure if for all PPT adversary A, the advantage AdvA,G(n) is
negl(n). The communication can be classical or quantum. □

Intuitively, a protocol Π for WOTRO has its security reducible to a cryptographic
game assumption G if there exists an efficient way to transform any successful adversary
A against Π into a challenger winning game G. If this transformation works only provided
the standard input-output behaviour of A then we say that the security of Π is f -BB
reducible to game G. Quantum black-box reductions are defined formally in Section 5.3.

In this paper, we show the impossibility of black-box reducing the security of crypto-
graphic primitive, called WOTRO, to any cryptographic game. Our proof uses the general
technique of simulatable attacks formalized by Wichs [Wic13] and applied by [Bit+13]
to the Fiat-Shamir transform. An inefficient adversary A against some primitive is sim-
ulatable if there exists a simulator Sim such that no efficient algorithm can distinguish
between A and Sim from black-box query access. A cryptographic task having a sim-
ulatable attack cannot be black-box reduced to a secure cryptographic game since the
reduction R(·) cannot distinguish between the inefficient A and the efficient Sim, which
means that RSim would yield an efficient algorithm for the game G with non-negligible
advantage, contradicting the assumption.

4 A Simple Non-Interactive Primitive
In this paper, we consider a simple non-interactive cryptographic primitive, called a weak
one-time random oracle (WOTROn,m) and illustrated in Fig. 1 where the prover inputs
a ∈ {0, 1}n into the box and gets c ∈ {0, 1}m as output while the verifier inputs nothing
and gets (a, c) as output. An implementation of this primitive is a protocol taking place
between the prover and the verifier. The verifier V is a machine that takes no input,
interacts with the prover in the way prescribed by the protocol, and either accepts and
outputs (a, c) or rejects and outputs ⊥. In an honest implementation, the prover is a
machine P taking as input an a ∈ {0, 1}n and interacts with the verifier as specified by
the protocol, in such a way that the verifier accepts and outputs the same c. The strings
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a and c can then be determined from the transcript of the protocol. We can then view
the whole protocol in the honest case as a conditional distribution Π(c|a) that tells us the
probability of getting the challenge c given that the prover was given a as input.

In a dishonest implementation, the prover P̃ takes no input at all (it is free to choose
a) and might behave in a way that will cause the verifier to reject. The protocol is then
simply a joint probability distribution Π̃P̃(a, c, v), representing the distribution one obtains
when P̃ runs the protocol with the honest verifier V, and where v ∈ {0, 1} is 1 when the
verifier accepts and 0 if he rejects.

We now define correctness and security of an implementation. In a correct implemen-
tation of this primitive, Π(c|a) will reflect exactly the same distribution over a and c given
by the ideal box, namely c will be uniformly distributed and independent of a, and the
verifier always accepts when the prover is honest:

Definition 3 (ϵ-correctness) A protocol Π is a ϵ-correct implementation of WOTROn,m
Γ

if for all a ∈ {0, 1}n the conditional distribution Π(c|a) is (1 − ϵ)-close (in statistical
distance) to the uniform distribution over c and if V accepts with probability at least
1−negl(n) when the prover is honest. Π is said to be statistically correct if it is (1−negl(n))–
correct. □

As for our security definition, it will be rather weak (hence the “weak” in the name of
the primitive): we will only require that in a secure implementation, a dishonest prover P̃
cannot steer the choice of c towards a deterministic function of a. Rather than require that
c be almost uniform and independent, we will only demand that there be some randomness
left in this choice.

Definition 4 (δ–avoiding) For 0 ≤ δ ≤ 1, we say that a tuple of random variables
(A,C, V ) taking values in {0, 1}n × {0, 1}m × {0, 1} δ–avoids the function c : {0, 1}n →
{0, 1}m if

Pr [V = 1 ∧ C = c(A)] ≤ 1− δ .

□

This then leads to the following definition of security for an implementation of WOTRO.

Definition 5 (δ–security) A protocol is a statistically (resp. computationally) δ–secure
implementation of WOTROn,m

Γ if for all dishonest provers (resp. all QPT dishonest provers)
P̃, the random variable tuple (A,C, V ) with joint distribution Π̃P̃(a, c, v) δ–avoids all
functions c : {0, 1}n → {0, 1}m. We say that a protocol for WOTRO is statistically (resp.
computationally) secure if it is statistically (resp. computationally) (1 − negl(n))–secure.
□

Basic Facts About WOTRO. Observe that there is a trivial perfectly secure 2–message
protocol for WOTRO where P sends a and V sends a uniformly random c. Therefore, we
will focus on non-interactive (or 1–message) implementations of WOTRO. A secure non-
interactive WOTRO protocol provides enough conditional randomness for sound instanti-
ation of the Fiat-Shamir transform when applied to public-coin special-sound 3–message
interactive proofs (Σ–protocols).

In the bare model, there is no secure WOTRO protocol as the honest prover program
defines the output c as a function of a that can never be avoided. In the CR$ model, there
exists a simple statistically (1 − negl(m − n))–secure one-message protocol when m > n,
a statistically 1

e–secure protocol when m = n and there is no protocol for m < n whose
computational security can be black-box reduced to a cryptographic game assumption, as a
consequence of [Bit+13]. A detailed examination of these facts is provided in Appendix C.
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WOTRO in the CRQS Model. Since the object of study is the (im)possibility of the
WOTRO primitive in the CRQS model, we present a general form for a 1–message WOTRO
protocol in this model.

Definition 6 (WOTRO in the CRQS model) A WOTROn,m protocol Π = (P,V) in
the CRQS model consists of

• A CRQS ΨP V ∈ D(HP V )

• Amapping of a ∈ {0, 1}n to an efficient POVMN a = {Na
y,w}(y,w)∈{0,1}m×ℓ on register

P .

• A mapping of a ∈ {0, 1}n, y ∈ {0, 1}m and w ∈ {0, 1}ℓ to an efficient POVM
Va,y,w = {V a,y,w

0 , V a,y,w
1 } on register V .

On input a ∈ {0, 1}n:

1. P applies POVM N a on register P of ΨP V to obtain y and an auxiliairy verification
string w and sends (a, y, w) to the verifier.

2. V applies POVM Va,y,w on register V of ΨP V , accepts and outputs (a, y) if the result
is 1, and rejects and outputs nothing if the result is 0.

The conditional distribution of y given a is Π(y|a) = ∑
w tr(Na

y,w ⊗ V
a,y,w

1 ΨP V ) for y ̸= ⊥
and Π(⊥|a) = ∑

y,w tr(Na
y,w⊗V

a,y,w
0 ΨP V ). We say that Π is δ–correct if 1

2n

∑
a∈{0,1}n

∑
y ̸=⊥ Π(y|a) ≥

δ. □

Note that requiring the auxiliary verification string w to be classical is not a restriction
since the CRQS can contain EPR pairs for the teleportation of an arbitrary quantum state
from the prover to the verifier.

4.1 WOTRO to Implement the Fiat-Shamir Heuristic
Let RL be a relation for a language L and let ΣL = (PL,VL) be a Σ–protocol for RL with
commitments in Γn and challenges in Γm. Consider a secure implementation ΠWOTRO =
(PWOTRO,VWOTRO) of WOTROn,m

Γ . We construct a non-interactive zero-knowledge proof
(argument) system for L by applying the Fiat-Shamir transform to ΣL using the protocol
ΠWOTRO as the instantiation of the hash function.

Protocol ΠWOTRO[ΣL]
Setup: A Σ–protocol ΣL = (PL,VL) where PL = (P1

L,P2
L) with commitments of

size n and challenges of size m and a protocol ΠWOTRO = (PWOTRO,VWOTRO) for
WOTROn,m

Γ .

Prover message: on public input x ∈ L and private input w

1. compute a← P1
L(x,w),

2. compute c← PWOTRO(a),

3. compute z = P2
L(a, x, w, c) and

4. send z to the verifier.

Verification: on public input x ∈ L and upon reception of z,
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1. compute (a, c)← VWOTRO()

2. if VWOTRO rejected, output reject else output VL(x, a, c, z).

Theorem 6 If ΣL is a Σ–protocol for language L and if ΠWOTRO is a statistically (resp.
computationally) (1−δ)–secure and correct implementation of WOTRO, then ΠWOTRO[ΣL]
is a statistically (resp. computationally) sound (with soundness error δ) and perfectly
correct non-interactive proof system for language membership in L.

Proof We first show correctness. By the correctness of ΠWOTRO, it holds that the chal-
lenge c ∈ Γm produced by ΠWOTRO is uniformly distributed. When both parties are
honest, the probability that VL accepts when c is taken as the output of ΠWOTRO in pro-
tocol ΠWOTRO[ΣL] is the same as the probability that VL accepts in an execution of ΣL.
Since Σ–protocols are perfectly correct by definition, this probability is one.

Now for soundness, again by the definition of Σ–protocols, protocol ΣL satisfies special
soundness. That is, for x /∈ L, for any commitment a ∈ Γn, there exist at most one
challenge c ∈ Γm that leads to an accepting conversation. Let c : Γn → Γm be the function
that maps commitment a to this unique challenge c that makes VL accept. If ΠWOTRO is
a statistically (1− δ)–secure implementation of WOTROn,m, then the output of ΠWOTRO
(1−δ)–avoids any function for any dishonest P̃WOTRO. The probability that V for protocol
ΠWOTRO[ΣL] accepts when x /∈ L is equal to the probability that VWOTRO accepts output
(A,C) and that VL accepts on input (x,A,C, Z) for some Z. By special soundness, this
probability is at most the probability that P̃WOTRO can make VWOTRO accept the output
(A, c(A)). By the statistical (1− δ)–security of ΠWOTRO, this probability is at most δ.

The reasoning for computational soundness is the same, but where we instead restrict
to QPT adversarial provers P̃WOTRO against ΠWOTRO. ■

4.2 WOTRO from Non-Local Correlations
A non-local box (NL-box) is a hypothetical device distributed between two parties such
that party A inputs x ∈ {0, 1} into the device and gets an output u ∈ {0, 1} and party
B inputs y ∈ {0, 1} and gets v ∈ {0, 1}. The input/output behaviour of the NL-box is
described by

Pr[u, v | x, y] =
{

1
2 if u⊕ v = x ∧ y
0 otherwise.

(1)

Let C : {0, 1}n → {0, 1}N be an error correcting code with minimum distance ϵn (for
any distinct x, x′ ∈ {0, 1}n, the Hamming distance between C(x) and C(x′) is at least ϵn).
Let {hr : {0, 1}N → {0, 1}m}r∈R be a universal2 family of hash functions. The WOTROn,m

protocol is as follows:

1. On CR$ r, and using N NL boxes,

2. Prover: on input a ∈ {0, 1}n, compute codeword x := C(a) and input x into its
interface of the N NL boxes. Let u ∈ {0, 1}N be the result. Send (a, x, u) to the
verifier and use (a, hr(u)) as output.

3. Verifier: On reception of a, x, check that x = C(a). Pick y ∈ {0, 1}N uniformly at
random and input y into its interface of the N NL boxes. Let v ∈ {0, 1}N be the
result. Check that u ⊕ v = x ∧ y. If any of the checks failed, output ⊥, otherwise
output (a, hr((x ∧ y)⊕ v)).
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Theorem 7 The above protocol avoids every function c : {0, 1}n → {0, 1}m.

Proof We begin by describing the most general strategy for an adversary A against the
protocol. A can input arbitrary values in the NL boxes in any order an such that input bits
can depend on the CR$ r and on the boxes’ outputs to previous inputs. Let x̂ ∈ {0, 1}N
and û ∈ {0, 1}N denote the input and output bits to the N NL boxes, respectively. A
is then free to choose a, x and u adaptively based on x̂ and û and send (a, x, u) to the
verifier. Since the verifier checks that x = C(a) and aborts otherwise, we can assume that
x is indeed the codeword that corresponds to a.

We show that A has little freedom in the choice of a due to the error-correcting code
and input/output behaviour of the NL boxes. Since C has minimal distance ϵn, there is
at most one codeword x0 such that d(x0, x̂) ≤ ϵ

2n. Let a0 = C−1(x0). If A tries to send
(a, x = C(a), u) for any a ̸= a0, then the verifier will abort with overwhelming probability
as the following argument shows. Let (y, v) denote the input/output pair of the verifier.
Then,

Pr[x ∧ y = u⊕ v]
= Pr[x ∧ y = u⊕ (û⊕ x̂ ∧ y)]
= Pr[x ∧ y ⊕ u = x̂ ∧ y ⊕ û]
=
∏

i

Pr[xi ∧ yi ⊕ ui = x̂i ∧ yi ⊕ ûi] .

Now, consider the set of positions where x̂ and x differ: S = {i : x̂i ̸= xi}. For any i ∈ S,

• When yi = 0, the expression becomes ui = ûi.

• When yi = 1, the expression becomes xi ⊕ ui = x̂i ⊕ ûi and it is satisfied when
ui ̸= ûi.

Since y is chosen independently and uniformly at random by the verifier, for every i ∈ S,
the expression xi∧ yi⊕ui = x̂i∧ yi⊕ ûi has probability 1

2 of not being satisfied. Therefore
since |S| ≥ ϵ

2n whenever x ̸= x0, the verifier rejects with probability at least 2− ϵ
2 n.

Finally, since A is obligated to send a0 and x0 as described above and u that satisfies
u⊕ v = x0 ∧ y as argued above, the output of the verifier satisfies

Pr[c = c(a0)] = Pr[hr(u) = c(a0)] = Pr[hr(v ⊕ x0 ∧ y) = c(a0)]

= Pr[v ⊕ x0 ∧ y ∈ h−1
r (c(a0))] = |h

−1
r (c(a0))|

2−N

since v ⊕ x0 ∧ y is uniformly distributed. On average over the choice of hr, the above
expression equals 2−m because the universal2 condition implies Er|h−1

r (z)| = 2N−m for
any z ∈ {0, 1}m. ■

It is well known that quantum mechanics can approximate the correlations of “noisy”
NL boxes with success probability of around 85% whereas the best classical strategies can
only achieve 75% success probability. We show in Section 5 that WOTRO is impossible in
the CRQS model, i.e. in a model where NL boxes can be approximated with probability
85%. A natural question is: what is the level of noise at which WOTRO is no longer
possible?

We must point out to the reader that our results do not imply that WOTRO is impos-
sible using 85% NL boxes. There is a fundamental difference between (noisy) NL boxes
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– which capture classical correlations – and entangled states: the latter can be measured
coherently with a collapse happening on the other end. Our impossibility crucially relies
on the adversary’s ability to perform a coherent measurement on its register. In other
words, if there is a secure WOTRO protocol using 85% NL boxes, then this protocol is no
longer secure when the boxes are instantiated using EPR pairs. The question above thus
remains open.

5 Impossibility of WOTRO in the CRQS Model
In this section, we prove our main result: there exists no protocol for WOTRO in the CRQS
model with statistical security or with computational security established by black-box
reduction to a cryptographic game, even a non falsifiable one. Our black-box impossibility
result is proven using a similar technique as [Bit+13; BGW12]. In Section 5.1, we define
an inefficient adversary that breaks completely any protocol implementing WOTROn,m

with n−m ∈ ω(n) in the CRQS model. We call this adversary the Chernoff adversary or
the Chernoff attack. In Section 5.3, we define what we mean by the security of WOTRO
to be established by quantum black-box reduction to crypto game. We generalize to
the quantum case this standard way of proving the security of cryptographic protocols.
In Section 5.4, we show how to efficiently simulate the attack described in Section 5.1.
We then conclude that the security of any protocol for WOTROn,m in the CRQS model
cannot be established by a quantum black reduction to crypto games. As a consequence,
feeding the reduction with the simulator of the Chernoff adversary instead of the Chernoff
adversary will win the game while running efficiently. It follows that the game is trivial if
such a reduction existed.

5.1 The Chernoff Attack Against Any Implementation of WOTRO
In this section, we show that there exist (inefficient) attacks against any 1–message
WOTROn,m protocol in the CRQS model for m (sufficiently) smaller than n. The fol-
lowing definition describes a general strategy for an attack against WOTRO.

Definition 7 An attack Af
n against a WOTROn,m protocol (Definition 6) is character-

ized by a target function f : {0, 1}n → {0, 1}m and a (possibly inefficient) POVM
{P f

a,y,w}(a,y,w)∈{0,1}n×m×ℓ . The adversary performs this POVM on register P of CRQS
ΨP V and sends the result (A, Y,W ) to the verifier. We say that this attack hits function
f except with probability ϵ(Af

n) if

1− ϵ(Af
n) = Pr[Y = f(A) ∧ V accepts] =

∑
a,w

tr
(
(P f

a,y,w ⊗ V
a,f(a),w

1 )ΨP V

)
.

□

We construct an attack whose success is based on the Chernoff bound for operators
proven by Ahlswede and Winter in [AW02] and stated below. For operators A and B
and 0 ≤ η ≤ 1, the notation A ∈ [(1 − η)B; (1 + η)B] means that A ≥ (1 − η)B and
A ≤ (1 + η)B.

Lemma 1 (Operator Chernoff bound) Let X1, . . . , XM be i.i.d. random variables tak-
ing values in the operators D(H) on the D–dimensional Hilbert space H such that 0 ≤ Xj ≤
1, with A = E[Xj ] ≥ α1, and let 0 < η ≤ 1/2. Then

Pr

 1
M

M∑
j=1

Xj ̸∈ [(1− η)A; (1 + η)A]

 ≤ 2D exp
(
−M αη2

2 ln 2

)
. (2)
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Our general attack strategy picks a random f and crafts a measurement on its part of
the CRQS such that the measurement outcome (A, Y,W ) satisfies:

1. Y = f(A) and

2. V(A, Y,W ) accepts with approximately the same probability as in an honest execu-
tion of the protocol.

Such a measurement is not efficiently implementable in general. We call this attack the
“Chernoff adversary” based on the crucial use of the Chernoff bound in building this
measurement.

Theorem 8 (Chernoff adversaries) Let n,m ∈ N such that m < n. Let Πn,m
WOTRO

be a δ–correct WOTROn,m protocol described by CRQS ΨP V and POVM family N a =
{Na

y,w}(y,w)∈{0,1}m×ℓ and Va,y,w = {V a,y,w
0 , V a,y,w

1 } for a ∈ {0, 1}n, y ∈ {0, 1}m and w ∈
{0, 1}ℓ. Let F = {f : {0, 1}n → {0, 1}m} be the set of boolean functions from n-bit strings
to m-bit strings. Let 2k = dimP be the dimension of the prover’s register of ΨP V .

1. Let η =
√

2 ln 2(n+ k)2m

2n . Then, there exists F∗ ⊆ F such that Prf∈RF [f ∈ F∗] ≥
1− negl(n) and for each f ∈ F∗,{

P f
a,w :=

Na
f(a),w

(1 + η)2n−m

}
(a,w)∈{0,1}n×ℓ

,

together with P f
⊥ = 1−

∑
a,w P

f
a,w, form a POVM on the prover’s register P .

2. Suppose {P f
a,w}a,w can be completed as a POVM, then let Af

n be the attack where the

adversary applies POVM {P f
a,w}a,w ∪{P f

⊥} to its register, upon outcome (A,W ) sets
Y = f(A) or Y = ⊥ if outcome ⊥ is observed and sends (A, Y,W ) to the verifier.
The probability of error ϵ(Af

n) of this attack satisfies 1−Ef [ϵ(Af
n)] ≥ δ−negl(n−m)

where δ is the probability that V accepts in an honest execution.

Proof Let 2k be the dimension of register P . Consider the subset of measurement
operators Na

f(a),w from the honest POVM N a that yield the intended outcome for the
cheating prover, i.e. on input a gives outcome y = f(a), and define the operators
Xf

a = ∑
w∈{0,1}ℓ Na

f(a),w. We have that

Ef [Xf
a ] = Ef

∑
y,w∈{0,1}m×ℓ

IEa
y
(f) ·Na

y,w =
∑

y,w∈{0,1}m×ℓ

Ef [IEa
y
(f)] ·Na

y,w = 1P

2m

where IEa
y

is the indicator function for the event Ea
y = {f | y = f(a)} which has probability

1
2m for any y and a since every value for f(a) is equally likely.

Applying the Chernoff bound with D = 2k, M = 2m, and α = 1
2m to the weighted sum

over a of the operators Xf
a , we have

Pr
f

 1
2n

∑
a∈{0,1}n

Xf
a ≰ (1 + η) 1

2m

 ≤ 2k+1 exp
(
− 1

2 ln 2 ·
2n

2m
· η2

)
.

This bound becomes negligible in n if we choose η =
√

2 ln 2(n+ k)2m

2n < 1
2 . Therefore,

except with probability negl(n),
1
2n

∑
a∈{0,1}n

Xf
a = 1

2n

∑
a∈{0,1}n

w∈{0,1}ℓ

Na
f(a),w ≤ (1 + η) 1

2m
. (3)
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Define the ensemble of operators P f
a,w by

P f
a,w :=

Na
f(a),w

(1 + η)2n−m
.

Then, when (3) holds, the set of operators {P f
a,w}a,w forms a POVM when completed with

P f
⊥ = 1−

∑
a,w P

f
a,w.

This gives rise to an attack Af
n where the adversary applies the above POVM to obtain

(a,w) and sets y = f(a) to send (a, y, w) to the verifier. The probability of error ϵ(Af
n) for

this attack corresponds to the probability of obtaining outcome “⊥” or of being rejected
by the verifier. We have,

1− ϵ(Af
n) =

∑
(a,w)∈{0,1}n×ℓ

tr
((
P f

a,w ⊗ V
a,f(a),w

1

)
ΨP V

)
.

Recall that Π(y|a) = ∑
w tr(Na

y,w ⊗ V
a,y,w

1 ΨP V ) is the probability that the verifier accepts
the outcome y ̸= ⊥ for the prover input a in an honest execution and that by the δ–
correctness of ΠWOTRO, 1

2n

∑
a

∑
y ̸=⊥ Π(y|a) ≥ δ. By (3), the above probability can, on

average over f , be upper-bounded as follows:

Ef [1− ϵ(Af )] = 1
(1 + η)2n−m

· Ef

 ∑
(a,w)∈{0,1}n×ℓ

tr
((
Na,f(a),w ⊗ V

a,f(a),w
1

)
ΨP V

)
= 1

(1 + η)2n−m

1
2m

∑
a∈{0,1}n

∑
(y,w)∈{0,1}m×ℓ

tr ((Na,y,w ⊗ V a,y,w
1 ) ΨP V )

= 1
(1 + η)2n

∑
a∈{0,1}n

∑
y ̸=⊥

Π(y|a)

= δ

(1 + η)
≥ (1− η)δ ,

which is approximately δ since η is negl(n−m). ■

5.2 Oracle Access Quantum Circuits
Establishing the security of Π by black-box reduction to a cryptographic game G = (Γ, c) is
defined by a (classical or quantum but efficient) machine MA such that MA(1n) produces
a quantum circuit (with oracle access) made out of some universal set of quantum gates
together with oracle access to the standard interface of any adversary A = {An}n against
Π such that if An breaks Π then MA(1n) wins game G. Let us first define this machine
MA producing the circuit that will be called a reduction in the following.

Definition 8 (oracle access circuit) A quantum oracle access machine M(·) for oracle
O = {On}n is a polynomial-time Turing machine that, on input 1n, outputs the description
of a quantum circuit over a universal set of quantum gates along with a special quantum
gate: On : D(P ) → D(R) with standard interface P for the input and R for the output.
The circuit produced by MO(1n) is called an oracle access quantum circuit. The oracle
calls behave as a CPTP map as the internal register E is not part of the interface. The
i–th call to On is denoted Oi

n : D(Pi) → D(Ri). We say MO makes q(n) oracle queries if
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we can represent the action of circuitMO
n produced by MO(1n) on initial state |0⟩ on all

registers of the circuit as the CPTP map

MOn
n (|0⟩⟨0|) := U q

n ◦ Oq
n ◦ · · · ◦ U1

n ◦ O1
n ◦ U0

n (|0⟩⟨0|)

where U i
n ∈ L(Ri⊗Qi, Pi+1⊗Qi+1) are unitaries made out of the universal set of gates rep-

resenting the action of circuitMOn
n between the calls to On. Register Qi is the reduction’s

working register before the action of U i
n. □

As defined above, an oracle access circuit performs each oracle call using exactly the
same functionality. No information can be kept by the oracle between calls. We then
say that the oracle is stateless. In general, an oracle could be allowed to store quantum
information between calls. This information is unavailable through the oracle input-output
interface but is passed from one call to the next. These oracle access circuits are said to
be stateful.

5.3 Quantum Black-Box Reductions
It remains to define what we mean exactly by polynomial-time black-box reductions. This
notion was introduced by Impagliazzo and Rudich in [IR89] after observing that most
proofs establishing the security of a crypto primitive constructed from one-way functions
consider only the input-output behaviour of the function. In other words, the one-way
function is only used as a black-box to construct the primitive and to prove its security.
In [IR89], Impagliazzo-Rudich show that if it is possible to establish the security of a
secret-key agreement based solely on the input-output behaviour of a one-way function
then this security proof also establishes that P ̸= NP. Reingold, Trevisan, and Vadhan
in [RTV04] introduce three variants of black-box reductions called fully-BB, semi-BB, and
mildly-BB from the stronger to the weaker flavour. In [BBF13], fully black-box reductions
are described informally as follows:

A fully black-box reduction R is an efficient algorithm that transforms any
(even inefficient) adversary A, breaking any instance Πf of primitive P, into
an algorithm RA,f breaking the instance f of Q. Here, the reduction treats
both the adversary as well as the primitive as black-boxes, and Πf denotes the
(black-box) construction out of f .

In our setting and as in [Bit+13; BGW12], we consider proofs establishing the security of
protocol Π (for WOTRO) by providing an efficient oracle access quantum circuit R(·) with
the property that for any A breaking Π, RA wins game G (to be more precise, RA,Γ wins
game G = (Γ, c)). The adversary A against Π is therefore only used through its standard
intput-output interface in reduction RA (i.e. as a quantum channel). This is what we call
a quantum fully black-box reduction (or f -BB reduction), the quantum version of a fully
black-box reduction, also called a BBB reduction in [BBF13]. Our definition agrees with
other works in which fully black-box reductions are defined in the quantum setting [AG22;
HY20].

Definition 9 (Quantum fully black-box reduction to a crypto game) Consider Π
a protocol and let A = {An}n be an adversary provided through its standard interface.
We say that the security of Π is established by quantum fully black-box reduction to crypto
game G = (Γ, c) if there exists an efficient oracle access circuit R(·), called the reduction,
such that when A breaks Π then

Pr
[
⟨RA(1n) ⇌ Γ(1n)⟩ = 1

]
≥ c+ 1

poly(n) .
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□

5.4 Efficient Simulation of the Chernoff Attack
We show that no reduction RA can establish the security of a WOTRO protocol by quantum
black-box reduction to game assumption G. The reason for this state of affair is that the
Chernoff attacks described in Theorem 8 is efficiently simulatable. This means that there
is an efficient algorithm Simn such that no oracle machine can tell whether it is given
oracle access to the inefficient Chernoff adversary Af

n hitting a random function f(·) or to
Simn that does not know anything about f(·).

The most general attack against a WOTRO protocol in the CRQS model (Definition 7)
is a POVM on the prover’s part of the CRQS that produces a classical message which
makes the verifier accept the output c = f(a) with high probability. The attack takes no
input other than the prover’s register P of the CRQS and produces its output in registers
A⊗Y ⊗W . Let F∗ be the set of functions defined in Theorem 8, i.e. such that for f ∈ F∗,∑

a,w P
f
a,w ≤ 1 so that P f

⊥ = 1−
∑

a,w P
f
a,w ≥ 0 and the set of operators {P f

a,w}(a,w)∪{P
f
⊥}

forms a POVM. For f ∈ F∗, the adversary Af
n defined in Theorem 8 can be implemented

by the following isometry Af
n ∈ L(P,R⊗E), where R = A⊗Y ⊗W ≈Hn⊗Hm(n)⊗Hℓ(n)

and where E = E′ ⊗ P ≈Hp(n) ⊗Hn, for ℓ(n), p(n) polynomials:

Af
n : |ψ⟩P 7→

∑
a∈{0,1}n

w∈{0,1}ℓ(n)

|a, f(a), w⟩AY W ⊗ |a, f(a), w⟩E′ ⊗
√
P f

a,w|ψ⟩E′′

+ |⊥,⊥,⊥⟩ ⊗ |⊥,⊥,⊥⟩ ⊗
√
P f

⊥|ψ⟩E′′ , (4)

Let AF∗
n = {Af

n}f∈F∗ be the family of all Chernoff adversaries against protocol Π
implementing WOTROn,m. The standard output interface of any adversary Af

n is made
out of registers A ⊗ Y ⊗ W while register E = E′ ⊗ P is the working register of the
adversary. It is easy to verify that any quantum black-box reduction R(·) establishing the

security of Π by quantum black-box reduction to game G is such that RAf
n wins G even

when f ∈R F∗. Next, we define what it means for the family of all Chernoff adversaries
to be simulatable.

Definition 10 (Simulatable Attack for WOTRO) Let n ∈ N,m(n) ≤ n, Π a WOTROn,m

protocol, and AF∗
n be the family of adversaries defined above. We say that AF∗

n is effi-
ciently ϵ(n)–simulatable if there exists a family of polynomial-time quantum algorithms
Sim = {Simn}n, called the simulator, such that

• The success probability of Af
n is at least 1− negl(n−m) on average over f ∈R F∗.

• For every (possibly inefficient) oracle acess machine M(·) making q(n) = poly(n)
queries to its oracle, the CPTP map M(·)

n describing the action of circuit M(·)(1n)
satisfies

∥Ef∈F∗ [MAf
n

n (|0⟩⟨0|)]−MSimn
n (|0⟩⟨0|R)∥1 ≤ ϵ(n) . (5)

□

Next theorem shows that the family adversaries AF
n is efficiently simulatable. Unlike

the simulator used in [Bit+13] for their family of inefficient adversaries, our simulator is
not stateful. The full proof is in Appendix A.
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Theorem 9 Let n,m and Πn,m
WOTRO be as in the statement of Theorem 8. The family of

adversaries AF∗
n is efficiently negl(n−m)–simulatable.

Theorem 8 and Theorem 9 give a simulatable attack against any WOTROn,m protocol
where n−m is linear in the security parameter n. We conclude,

Corollary 1 Let G be a cryptographic game assumption and let Πn,m be a WOTROn,m

protocol with n−m ∈ ω(lgn). For δ ≥ 1/poly(n), if there is a quantum black-box reduction
showing that Πn,m δ–avoids all functions assuming game G then assumption G is false.

5.4.1 Proof of Theorem 9

Consider a protocol Π for WOTROn,m using a CRQS |Ψ⟩P V with dim(P ) = 2k. Let F be
the set of all functions f : {0, 1}n → {0, 1}m. We consider the following isometric imple-
mentation of the Chernoff adversary Af described in Section 5.4 using internal working
quantum register E = E′ ⊗ E′′,

Af
n : |ψ⟩P 7→

∑
a∈{0,1}n

w∈{0,1}ℓ(n)

|a, f(a), w⟩AY W ⊗ |a, f(a), w⟩E′ ⊗
√
P f

a,w|ψ⟩E′′

+ |⊥,⊥,⊥⟩ ⊗ |⊥,⊥,⊥⟩ ⊗
√
P f

⊥|ψ⟩E′′ , (6)

with input register P and output register A⊗Y ⊗W . Remember however that Theorem 8
does not guarantee that for all f ∈ F , Af

n is a POVM (in which case (6) is not an
isometry). It only tells us that there exists F∗ ⊆ F such that ∀f ∈ F∗, Af

n implements
a valid POVM (and therefore, (6) is indeed an isometry) and Pr [f ∈ F∗] ≥ 1 − negl(n).
When f /∈ F∗, the implementation of Af

n defined in (6) is not an isometry but is still a
linear map, though not a physically realizable one. We consider without loss of generality
that P f

⊥, the outcome corresponding to an error, is always a positive operator even when

f /∈ F∗. That way, we always have that for all f ∈ F ,
∑

a,w P
f
a,w + P f

⊥ ≥ 1E′′ . When

f ∈ F∗, we have
∑

a,w P
f
a,w +P f

⊥ = 1E′′ as {P f
a,w}a,w ∪ {P f

⊥} is a valid POVM. Otherwise,

when f /∈ F∗,
∑

a,w P
f
a,w + P f

⊥ ≥ 1E′′ .
Now, consider the simulator Sim = {Simn}n where Simn is defined as follows:

Simn:

1. Pick a ∈R {0, 1}n,

2. Apply the honest POVM Na to register P to get outcome (c, w),

3. Output (a, c, w).

This simulator corresponds to the isometry

Simn : |ψ⟩P 7→ 2−n/2 ∑
a∈{0,1}n

y∈{0,1}m

w∈{0,1}ℓ(n)

|a, y, w⟩ACW ⊗ |a, y, w⟩E′ ⊗
√
Na

y,w|ψ⟩E′′ , (7)

with the same input-output interface than any adversary against Π. The above simulator
is efficiently implementable since it only purifies the honest prover’s measurement. It is not
too difficult to show that if POVM N a = {Na

y,w}a,y,w can be implemented efficiently for
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all a ∈ {0, 1}n then the isometry (7) is efficient. Notice that the simulator never produces
an error as we assume that the honest strategy in Π never produces an error. We could
have allowed a protocol for WOTROn,m to produce an error with negligible probability in
n. This would not cause any problem with what we establish in the following.

Before going further, we use the operator Chernoff bound of lemma 1 to establish a
few useful properties of the Chernoff adversaries. The following is a direct consequence of
the operator bound.

Lemma 2 Let Π be a protocol for WOTROn,m with POVM N a = {Na
y,w}y,w for prover

PWOTRO. Consider the Chernoff adversaries {Af
n}f∈F against Π as defined in Theorem 8

with η =
√

2 ln 2(n+ k) · 2m−n. Let P f := {P f
a,w}a,w be the POVM applied by Af

n where

P f
a,w =

Na
f(a),w

2n−m(1+η) . Then, for any 1
2η ≥ t > 1,

Pr
f∈F

[∑
a,w

P f
a,w /∈

[(1− tη)
1 + η

1P ,
(1 + tη)

1 + η
1P

]]
≤ 2−n·t2

.

The proof is rather direct and can be found in Appendix A.
Suppose for a contradiction that RA is a reduction that, for any successful adversary

A against protocol Π, produces a circuit that wins game G = (Γ, c) using q(n) = poly(n)
queries to A. We show that oracle access circuits RAf (1n) and RSim(1n) produce states at
negligible trace-norm distance when both are evaluated on |0⟩⟨0| and when Af is picked
with f ∈R F∗. Let RAn

n := RA(1n) be the oracle-access circuit produced by the reduction
with security parameter n upon oracle An.

The first thing to observe is that picking f ∈R F∗ in reduction RAf
n is essentially the

same as running the reduction with f ∈R F , even though in this case RAf
n may not be

physically realizable.

Lemma 3 Let F and F∗ be defined as above for n,m ∈ N. For f ∈ F , consider adversary
Af

n defined in (6). Then,∥∥∥∥ E
f∈F∗

[
RAf

n
n (|0⟩⟨0|)

]
− E

f∈F

[
RAf

n
n (|0⟩⟨0|)

]∥∥∥∥
1
≤ negl(n) .

The proof of this lemma can also be found in Appendix A.
As a direct consequence of lemma 3, we get∥∥∥RSim

n (|0⟩⟨0|)− E
f∈F∗

[
RAf

n (|0⟩⟨0|)
] ∥∥∥

1
≤

negl(n) +
∥∥∥∥RSim

n (|0⟩⟨0|)− E
f∈F

[
RAf

n (|0⟩⟨0|)
]∥∥∥∥

1
.

(8)

To bound the trace-distance between RAf

n (|0⟩⟨0|) for f ∈R F and RSimn
n (|0⟩⟨0|) when

R(.)
n is an oracle access circuit with q := q(n) ∈ poly(n) queries, we use q + 1 hybrid

reductions where hybrid i acts as Simn on the first i queries and acts as Af
n on the

remaining q − i queries. In the following, we denote by RSim,Af

n,j the oracle-access circuit

RA(1n) where the first j calls are made to oracle Simn and the last q − j calls are made

to Af
n. We therefore have that RSim,Af

n,q corresponds to RSim
n and RSim,Af

n,0 corresponds to

RAf

n , and ∥∥∥∥RSim
n (|0⟩⟨0|R)− E

f∈F

[
RAf

n (|0⟩⟨0|)
]∥∥∥∥

1
=∥∥∥∥ E

f∈F

[
RSim,Af

n,q (|0⟩⟨0|)− RSim,Af

n,0 (|0⟩⟨0|)
]∥∥∥

1
.

(9)
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By a standard hybrid argument, the right-hand side of (9) is upper bounded as follows:∥∥∥∥ E
f∈F

[
RSim,Af

n,q (|0⟩⟨0|)− RSim,Af

n,0 (|0⟩⟨0|)
]∥∥∥

1
≤

q∑
j=1

∥∥∥∥ E
f∈F

[
RSim,Af

n,j (|0⟩⟨0|)−RSim,Af

n,j−1 (|0⟩⟨0|)
]∥∥∥∥

1
.

(10)

We now upper bound

∥∥∥∥ E
f∈F

[
RSim,Af

n,j (|0⟩⟨0|)−RSim,Af

n,j−1 (|0⟩⟨0|)
]∥∥∥∥

1
for j ∈ {1, . . . , q}. Notice

that the working registers (register E′ in (6)) of any oracle call can be measured without
modifying the behaviour of the reduction as these registers are not under its control, these
measurements all commute with the operations of the reduction. For any j ∈ {1, . . . , n},
circuits RAf ,Sim

n,j and RSim,Af

n,j−1 differ only in the j-th query, which is made to Simn in

RSim,Af

n,j and to Af
n in RSim,Af

n,j−1 . Otherwise, both RSim,Af

n,j and RSim,Af

n,j−1 query Simn for

all queries prior to the j-th and both query Af
n for all queries following the j-th. Let

S = {0, 1}n × {0, 1}m × {0, 1}ℓ(n) be the set of possible announcements (a, y, w) for a
prover in Π except when an error occured (i.e. when a = ⊥ is obtained). For j ≥ 1, let
Sj−1 = (Sj−1

1 , . . . , Sj−1
j−1) ∈ Sj−1 be the random variable for the outcomes of the j− 1 first

queries to Simn in RSim,Af

n,j (|0⟩⟨0|) and RSim,Af

n,j−1 (|0⟩⟨0|), where Sj−1
h , for h ∈ {1, . . . , j − 1},

represents the result of the h–th call. Remember that the portion of the adversary’s circuit
up to but not including the j–th call is an isometry as it is independent of f ∈ F . This
independence of all j − 1 first outcomes is important in applying the hybrid argument.
Only querying Af

n can produce the special error outcome (⊥,⊥,⊥) and only querying Af
n

with f /∈ F∗ for the j–th query can transform the state of the reduction before the j–th
query into a non-physical one, as its trace-norm could exceed 1. Remember that outcome
Sj−1

h = (a, y, w) corresponds to the outcome when measuring in the computational basis
the internal register E′ of the h–th call to Af

n. We say that Sj−1 is confused about a if
Sj−1

h = (a, y, w) and Sj−1
h′ = (a, y′, w′) for some h ̸= h′ and y ̸= y′. For s ∈ Sj−1, we denote

by QSj−1(s) the probability of results s for the j−1 first calls (to Simn) in RSim,Af

n,j (|0⟩⟨0|).
By construction, this also corresponds to the probability of s for the j − 1 first calls in

RSim,Af

n,j−1 (|0⟩⟨0|). For s ∈ S, we let |ψj(s)⟩ be the state obtained just prior the j-th query in

both RSim,Af

n,j−1 (|0⟩⟨0|) and RSim,Af

n,j (|0⟩⟨0|) given that registers E′′
1 , . . . , E

′′
j−1 have each been

measured in the computational basis to get s. In the following, we abuse the notation and

write RSim,Af

n,j−1 (|ψj(s)⟩⟨ψj(s)|) and RSim,Af

n,j (|ψj(s)⟩⟨ψj(s)|) to denote the result of the each

hybrid reductions when |ψj(s)⟩ is used for the j–th query onward. RSim,Af

n,j−1 (|ψj(s)⟩⟨ψj(s)|)
will make all its remaining queries to Af

n while RSim,Af

n,j (|ψj(s)⟩⟨ψj(s)|) will query Simn one

last time before querying Af
n.

Let F be a random variable uniformly distributed in F . For s ∈ Sj−1, let Ss be the
projector on the subspace producing outcomes s when registers E′′

1 , . . . , E
′′
j−1 of the (j−1)–

th first calls to Simn are each measured in the computational basis. By construction of the
simulator, {Ss}s∈Sj−1 defines a complete Von Neumann measurement of register

⊗j−1
i=1 E

′′
i

provided by the j − 1 first calls to Simn. We have,∥∥∥∥Ef [RSim,Af

n,j (|0⟩⟨0|)−RSim,Af

n,j−1 (|0⟩⟨0|)
]∥∥∥

1

=

∥∥∥∥∥∥
∑
f∈F

Pr [F = f ]
(
RSim,Af

n,j (|0⟩⟨0|)−RSim,Af

n,j−1 (|0⟩⟨0|)
)∥∥∥∥∥∥

1
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=

∥∥∥∥∥∥∥∥
∑

s∈Sj−1
f∈F

Pr [F = f ]
(
SsRSim,Af

n,j (|0⟩⟨0|)Ss − SsRSim,Af

n,j−1 (|0⟩⟨0|)Ss

)∥∥∥∥∥∥∥∥
1

=

∥∥∥∥∥∥∥∥
∑

s∈Sj−1
f∈F

Pr [F = f ]QSj−1(s)
(
RSim,Af

n,j (ψj(s))−RSim,Af

n,j−1 (ψj(s))
)∥∥∥∥∥∥∥∥

1

≤
∑

s∈Sj−1
f∈F

Pr [F = f ]QSj−1(s)
∥∥∥RSim,Af

n,j (ψj(s))−RSim,Af

n,j−1 (ψj(s))
∥∥∥

1

︸ ︷︷ ︸
(D)

. (11)

We now find a negligible upper bound for (D) in (11). This is where the work to apply
the hybrid argument to the j–th query is done. Given s ∈ Sj−1, remember that |ψj(s)⟩
is the state obtained (a pure state) just prior to j–th query in both RSim,Af

n,j (|0⟩⟨0|) and

RSim,Af

n,j−1 (|0⟩⟨0|). Remember also that we denote by RSim,Af

n,j (ψj(s)) and RSim,Af

n,j−1 (ψj(s)) the
action of the circuit from the j–th query onward with initial state |ψj(s)⟩. The j–th query

is made to Simn in RSim,Af

n,j and to Af
n in RSim,Af

n,j−1 .

Let qAf
n

a,w(ψj(s)) := tr((P f
a,w ⊗ 1Zj )|ψj(s)⟩⟨ψj(s)|PjZj

) be the likelihood of outcome

(a, f(a), w) for the j–th query made toAf
n upon |ψj(s)⟩. Let qAf

n
⊥ (ψj(s)) = tr(P f

⊥|ψj(s)⟩⟨ψj(s)|)
be the likelihood that the j–th query to Af

n produces an error and let |ψf,⊥
j (s)⟩ the nor-

malized vector obtained after the j–th query has produced an error (notice that if the

j–th query is made to Simn then no error can be produced). The set {qAf
n

a,w(ψf
j (s))}a,w ∪

{qAf
n

⊥ (ψf
j (s))} is not guaranteed to be a probability distribution when f /∈ F∗ (this is the

reason why we call these values likelihoods instead of probabilities).
Likewise, qSimn

a,y,w(ψj(s)) := 2−n tr((Na
y,w ⊗ 1Zj )|ψj(s)⟩⟨ψj(s)|) be the probability that

Simn picks a uniformly at random and observes (y, w) when applying Π’s honest measure-
ment N a on vector |ψj(s)⟩. Notice that by definition of {P f

a,w}a,w, for all (a, f(a), w) ∈ S,
states (√

P f
a,w ⊗ 1Zj

)
|ψj(s)⟩ and

(√
Na

f(a),w ⊗ 1Zj

)
|ψj(s)⟩

are identical once normalized. Let |ψa,f(a),w
j (s)⟩ be that state. In the following, we write

(a, z) ∈ s if there exists w ∈ {0, 1}ℓ(n) such that (a, z, w) ∈ s. We also write a ∈ s if there
exist z, w such that (a, z, w) ∈ s. Let δ(s) := {a ∈ {0, 1}n | a ∈ s}. The sum over f in (D)
can now be written as

1
#F

∑
f∈F

trEj

(
(Simn ⊗ 1Zj )|ψj(s)⟩⟨ψj(s)|(Simn ⊗ 1Zj )∗

− (Af
n ⊗ 1Zj )|ψj(s)⟩⟨ψj(s)|(Af

n ⊗ 1Zj )∗
)

=
∑

a∈{0,1}n\δ(s)
y∈{0,1}m

w∈{0,1}ℓ(n)

2m

#F
∑
f∈F

f(a)=y

∣∣∣qSimn
a,y,w(ψj(s))− 2−mqAf

n
a,w(ψj(s))

∣∣∣
︸ ︷︷ ︸

(M)

(12)

|a, y, w⟩⟨a, y, w| ⊗
∣∣∣ψa,f(a),w

j (s)
〉〈
ψ

a,f(a),w
j (s)

∣∣∣
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+ 1
#F

∑
f∈F

a∈δ(s)
z∈{0,1}m

w∈{0,1}ℓ(n)

∣∣∣qSimn
a,z,w(ψj(s))− qAf

n
a,w(ψj(s))

∣∣∣

︸ ︷︷ ︸
(A)

|a, z, w⟩⟨a, z, w| ⊗
∣∣∣ψa,f(a),w

j (s)
〉〈
ψ

a,f(a),w
j (s)

∣∣∣

(13)

+ 1
#F

∑
f∈F

qAf
n

⊥ (ψj(s))

︸ ︷︷ ︸
(⊥)

|⊥,⊥,⊥⟩⟨⊥,⊥,⊥| ⊗
∣∣∣ψf,⊥

j (s)
〉〈
ψf,⊥

j (s)
∣∣∣ . (14)

In the equation above, (M) is the main difference between Af
n and Simn, (A) represents the

outcomes in which s is confused about a and (⊥) represents the adversary’s inconclusive
outcome. We refer to Appendix A for the proofs that (A), (⊥), and the main part (M)
are all negligible in n−m.

Putting things together using the bounds on (38),(39), and (40), we conclude that

(D) ≤ negl(n−m) , (15)

and this negligible upper bound on (D) is independent of s ∈ Sj−1 and 1 ≤ j ≤ q(n). We
conclude from (11) that for all 1 ≤ j ≤ q(n),∥∥∥∥Ef [RAf ,Sim

n,j (|0⟩⟨0|)−RAf ,Sim
n,j−1 (|0⟩⟨0|)

]∥∥∥∥
1
≤ negl(n−m) . (16)

Finally, plugging (16) into (10) completes the proof of Theorem 9.

6 Black-Box Impossibility of Fiat-Shamir in the CRQS Model
We assume the reader is familiar with Σ–protocols and the Fiat-Shamir transform. For
more information, we refer to Section 3.1.

In this section, we consider the natural extension of the Fiat-Shamir transform in the
CRQS model where the prover and verifier share an arbitrary entangled state |φn,m⟩, the
prover performs some measurement specified by a on its part of the CRQS, sends the
result to the verifier who performs its own measurement based on the prover’s message.
Since a universal instantiation of the Fiat-Shamir is required to transform any Σ–protocol
into a sound argument, the CRQS |φn,m⟩, as well as the measurement operators of the
prover and verifier must be independent of the actual Σ–protocol and of the statement x.
The quantum Fiat-Shamir transform proceeds as follows:

1. PFS computes a = P(x,w) and performs some measurement N a on its part of
|φn,m⟩ that yield classical outcomes (c, v). It computes z = P2(a, x, w, c), and sends
(a, c, v, z) to VFS.

2. VFS performs a binary-outcome measurement Va,c,v on its part of |φn,m⟩ and rejects
if the outcome is 0, and otherwise outputs V(x, a, c, z).

We consider without loss of generality that all communication remains classical, since
the CRQS could contain polynomially many EPR pairs allowing for the teleportation of
quantum states from the prover to the verifier.

An abstract Fiat-Shamir transform that captures all of the above would look like the
following. Since we are proving a negative result, we only ask that a universal instantiation
of the Fiat-Shamir transform has constant soundness error (instead of negl(n)).
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Definition 11 The Fiat-Shamir transform is given by Πn,m
FS = (PFS,VFS) where PFS takes

as input the commitment a ∈ {0, 1}n and outputs a challenge c ∈ {0, 1}m and a auxiliary
verification information v. VFS takes input (a, c, v) and outputs accept or reject. For a
Σ–protocol Σ = (PΣ,VΣ), the Fiat-Shamir transform applied to Σ is the non-interactive
protocol Πn,m

FS [Σ] = (P,V) defined as

1. P computes a = P1
Σ(x,w) and runs (c, v) ← PFS(a). It computes z = P2

Σ(a, x, w, c),
and sends (a, c, v, z) to V.

2. V runs VFS(a, c, v) and rejects if VFS rejects, and otherwise outputs VΣ(x, a, c, z).

The Fiat-Shamir transform Πn,m
FS is (n,m)–universal if for any Σ–protocol Σ, Πn,m

FS [Σ] is
an argument with soundness error bounded above by some constant greater than zero. □

Note that an instantiation of the Fiat-Shamir transform is also one for WOTRO (and
vice-versa). More precisely, the WOTRO protocol implied by Fiat-Shamir is the protocol
where PWOTRO invokes PFS, sends (a, c, v) to VWOTRO that outputs (a, c) if VFS(a, c, v)
accepts. The main distinction between the two is that a secure protocol for WOTRO
needs to avoid all functions, whereas a universal instantiation of Fiat-Shamir only needs
to avoid functions that are “bad challenges” functions for some Σ–protocol for language
membership to L upon some public parameter x /∈ L .

6.1 Black-Box Impossibility of Universal Fiat-Shamir
We begin by defining what is a black-box reduction from FS to a cryptographic game
assumption similarly to how it is done in [Bit+13].

Definition 12 (Black-Box Reduction for Quantum Fiat-Shamir) Let G = (Γ, c)
be a cryptographic game assumption and let Πn,m

FS be an instantiation of the Fiat-Shamir
transform in the CRQS model. A black-box reduction showing the (n,m)–QFS–universality
of Πn,m

FS under the assumption G in the CRQS model is an oracle-access machine B(·,·,·)

such that the following holds. Let

1. Σ = (P,V) be a Σ–protocol for a language L with commitment length n and challenge
length m that has perfect completeness and special soundness, and

2. A be a (possibly inefficient) attacker that breaks the computational soundness of the
non-interactive proof system Πn,m

FS [Σ] with advantage 1− negl(n).

The reduction B has black-box access to P, V and A, runs in time polynomial in the
running times of P, V and A, and BP,V,A has advantage at least 1/poly(n) in game G. □

As mentioned previously, a FS protocol is essentially a WOTRO protocol, albeit satis-
fying a weaker notion of security. In particular, a WOTRO protocol avoiding only the “bad
challenge” functions of Σ–protocols would be enough for FS. The impossibility to black-
box reduce the security of WOTRO to a cryptographic game, as expressed in Corollary 1,
does not apply directly to Fiat-Shamir.

To show black-box impossibility of FS in the CRQS model, we construct a family
of Σ–protocols {Σf}f :{0,1}n→{0,1}m such that Σf has bad challenge function f(·) for any

f . The verifier Vf in Σf is not necessarily efficient, but we again exploit the simulation
paradigm, where the inefficient adversary is replaced by an efficient indistinguishable sim-
ulator, to simulate this verifier in a way that is consistent with the adversarial prover.
By definition of the reduction B(·,·,·), if an adversary Af breaks the soundness of ΠFS[Σf ],
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B

Γ

VfP Af

Sim
Figure 4: Visualization of the proof of Theorem 10. The black-
box reduction B(·,·,·) wins the game G = (Γ, c) if (P,Vf ) forms
a Σ–protocol Σf and Af breaks the soundness of ΠFS[Σf ]. Since
Sim = (SimV, SimA) jointly simulates Vf and Af , neither B nor Γ can
distinguish if Sim or (Vf ,Af ) is being used. Since Sim is efficient, this
means B(P,SimV,SimA) is an efficient machine that wins game G.

BP,Vf ,Af
wins game G. By replacing (Vf ,Af ) with a pair of simulators (SimV,SimA) such

that no poly(n)–query machine can distinguish between the two pairs, we obtain an effi-
cient algorithm BP,SimV,SimA breaking the security of G. We formalize this joint simulation
below and then prove the black-box impossibility result using the strategy outlined above
and pictured in Fig. 4.

Definition 13 (Joint Simulatability) A family of (possibly inefficient) algorithms {(Af , V f )}f
that have access to the same (possibly inefficient) resource f : {0, 1}n → {0, 1}m are jointly
simulatable if there exist two QPT stateful algorithms Sim1 and Sim2 that share a common
state and such that for any poly(n)–query oracle access machine M (·,·),∣∣∣∣Pr

f
[M (Af ,V f ) = 1]− Pr[M (Sim1,Sim2) = 1]

∣∣∣∣ ≤ negl(n) .

□

Theorem 10 Let G = (Γ, c) be a cryptographic game assumption, let n,m be such that
n −m ∈ ω(lgn) and let Πn,m

FS be a Fiat-Shamir instantiation in the CRQS model. There
does not exist a black-box reduction B(·,·,·) showing the Σn,m–universality of Πn,m

FS from the
security of game G, unless assumption G is false.

Proof Assume there exists a black-box reduction B(·,·,·) showing the (n,m)–universality
of Πn,m

FS from the security of game G. We will show that game G is insecure.
We begin by constructing a family of Σ–protocols that has bad challenge function f

for any function f ∈ F∗ where F∗ is the set of functions for which the operators P f
a,w

defined in Theorem 8 form a POVM with P f
⊥. The Σ–protocol Σf defined below is an

interactive proof of language membership for the empty language. On public input x,
1. P: does nothing.

2. Vf : interact with a potentially malicious prover in the following way.

(a) On first message a ∈ {0, 1}n, pick c ∈R {0, 1}m uniformly at random and send
c to the prover.

(b) On response z from the prover, accept iff c = f(a).
This is indeed a Σ–protocol as it satisfies perfect correctness and special soundness.

Next, we build a dishonest prover that breaks the soundness of the QFS transform
Πn,m

FS [Σf ] of this Σ–protocol. Since ΠFS naturally implies a WOTRO protocol, by Theo-
rem 9 there exists a negl(n−m)–simulatable attack {Af

WOTRO}f such that Af
WOTRO pro-

duces (a, f(a), v) that VFS accepts with probability 1−negl(n−m). Let SimWOTRO be the
simulator for {Af

WOTRO}f . For a function f ∈ F∗, define the adversarial prover Pf that
attacks protocol Πn,m

FS [Σf ] as follows:
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1. Invoke Af
WOTRO on register P of the CRQS to obtain (a, c, v).

2. Send a, c, v and z = ⊥ to the verifier.

3. Recall that the verifier for Πn,m
FS [Σf ] runs VFS of ΠFS with message (a, c, v) on register

V of the CRQS and then runs Vf of Σf on input (a, c, v, z).

The probability that the verifier accepts in protocol Πn,m
FS [Σf ] is equal to the probability

that VFS accepts and that c = f(a), which by construction of Af
WOTRO happens with

probability at least 1− negl(n−m).
Plugging P, Vf and Pf into the reduction B(·,·,·) gives an algorithm BP,Vf ,Pf that breaks

the security of game G, and yet that is not efficient. Using the simulator SimWOTRO for
the adversary Af

WOTRO allows us to replace the inefficient malicious prover Pf against the
QFS transform with an indistinguishable efficient simulator, but Vf is still not efficiently
computable.

We now show how Pf and Vf can be jointly simulated (Definition 13) using the stateless
simulator SimWOTRO for {Af

WOTRO}f . The two stateful algorithms SimP and SimV are
defined as follows

1. Common State: a partial function fA : {0, 1}n → {0, 1}m defined on an initially
empty set A = ∅.

2. SimP : when invoked on a quantum register P , call the simulator SimWOTRO for the
family of adversaries {Af

WOTRO}f∈F∗ . Let (a, c, v) ← SimWOTRO, set A ← A ∪ {a}
and fA(a) = c, and return (a, c, v,⊥). If SimWOTRO produces an a that is already in
A, the simulation fails.

3. SimV: when invoked on classical message (a, c, v, z) and quantum register V , run
VFS on register V of the CRQS with input (a, c, v). If a /∈ A, pick x ∈R {0, 1}m
uniformly at random, set A← A∪{a} and fA(a) = x. Output reject if VFS rejects
or if c ̸= fA(a), otherwise output accept.

Claim 1 The pair of stateful (with common state) algorithms (SimP , SimV) jointly simu-
lates {(Pf ,Vf )}f∈F∗.

Proof Let M (·,·) be an oracle-access machine and let q = poly(n) be an upper-bound on
the number of queries made by M to either of its oracles. We first bound the probability
that the simulation fails and then condition on the simulation succeeding. Let α denote the
random variable of the value a produced by SimWOTRO. Since α is uniformly distributed
(by the definition of SimWOTRO in the proof of Theorem 9), on any given query, the
probability that SimWOTRO produces a that is already in the set A is upper-bounded by

Pr[α ∈ A] =
∑
a∈A

Pr[α = a] ≤ q · 2−n .

A union bound over the q queries allows us to upper-bound the probability that any of
the queries returns an a that was already in A by q2 · 2−n which is negl(n).

Conditionned on the event that SimWOTRO never produces a ∈ A, we show that black-
box query access to (SimP , SimV) is indistinguishable on average over f ∈ F∗ from black-
box query access to (Pf ,Vf ). First, observe that SimP behaves exactly as Pf , except that
it invokes SimWOTRO instead of Af

WOTRO. Therefore the BB-indistinguishability of SimP
and Pf follows from that of SimWOTRO and Af

WOTRO. Second, we note that SimV picks
each new point of the partial function fA uniformly at random, so that fA is identically
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distributed to a random function f restricted to A. Since a uniformly random function f
is in F∗ with probability at least 1− negl(n), we have that SimV is indistinguishable from
Vf on average over f ∈ F∗. Finally, since we condition on the event α /∈ A at every call
of SimWOTRO, the answers of SimP and SimV are always consistent with the same function
f (i.e. the simulation doesn’t fail).

Therefore, the probability that M (·,·) distinguishes (Pf ,Vf ) from (SimP , SimV) is at
most the probability that SimWOTRO andAf

WOTRO can be distinguished plus the probability
that the simulation fails, which sum to at most negl(n−m). ■

We are now ready to conclude the proof. Given the reduction B(·,·,·) we construct an
efficient algorithm for winning game G as follows. The machine B(P,SimV,SimP ) either:

1. wins game G, or

2. if it does not, allows to distinguish (SimV, SimP) from {(Vf ,Pf )}f .

Since we have established the black-box indistinguishability of (SimV, SimP) and {(Vf ,Pf )}f∈F∗ ,
we conclude that a BB-reduction B(·,·,·) from the QFS-universality of Πn,m

WOTRO to game G
would allow to win the game. ■

7 A Quantum Assumption Allowing for WOTROn,m

In [BLV06], Barak, Lindell, and Vadhan introduce a computational assumption allowing
for Σ–universal Fiat-Shamir in the CRS model. It assumes the existence of a family of
entropy preserving hash functions. In [DRV12], Dodis, Ristenpart, and Vadhan showed
that a family of entropy preserving hash functions is necessary for a Σ–universal imple-
mentation of Fiat-Shamir in the CRS model. Of course, it follows from [BLV06; Bit+13]
that this assumption cannot be black-box reduced to any cryptographic game. In this
section, we define a different computational assumption allowing for WOTROn,m in the
CRQ$ model (and therefore allowing for Σ–universal Fiat-Shamir). Our assumption is a
quantum assumption on hash functions called a collision-shelter. We first show in Sec-
tion 7.1 how to construct WOTROn,n with unconditional security in the CRQ$ model.
In Section 7.2, we define the collision-shelter assumption and we show how to use it to
convert WOTROn,n into a computationally secure WOTROn,m as long as m ∈ Ω(n). We
conclude in Section 7.3 by a short discussion about some relations and distinctions between
collision-shelters and collision resistant families of hash functions.

7.1 Unconditionally Secure WOTROn,n in the CRQ$ Model
Let us get back to the implementation of WOTROn,n roughly described in the introduction.
The result stated in Theorem 11 requires the set of MUB to be the one introduced by
Wootters and Fields in [WF89]. These bases are for the tensor product of n Hilbert
spaces, each of odd prime dimension p. Let Γ = {0, . . . , p − 1} denote the elements of
the finite field Fp for p ≥ 3 prime. We refer to the Wootters and Fields MUB for Γn as
Θp,n

WF = {θa}a∈Γn where θa = {|xa⟩}x∈Γn is an orthonormal basis for Γn that, by virtue of
mutual unbiasedness, satisfies |⟨xa|x′

a′⟩| = p− n
2 when a ̸= a′. The formal definition of Θp,n

WF
can be seen in Appendix B. The CRQ$ we use to implement WOTROn,n is composed of 3n
p–dimensional EPR pairs, each denoted by |EPRΓ⟩P V := 1√

p

∑
j∈Γ |jj⟩P V . The CRQ$ is

then set to |EPR3n
Γ ⟩P V := |EPRΓ⟩

⊗3n. Henceforth, we denote by WOTROn,n
Γ the primitive

WOTROn,n where both the input and the output are in Γn.
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Before giving our protocol Πn,n
WRO = (P′,V′) for WOTROn,n

Γ , we first consider a simpler
(but insecure) version of it where the CRQ$ is |EPRn

Γ⟩P V rather than |EPR3n
Γ ⟩P V . Upon

input a ∈ Γn, the simpler scheme asks the prover to measure register P of the CRQ$ in
basis θa ∈ Θp,n

WF to obtain outcome c ∈ Γn. The prover then announces (a, c) to the verifier
who verifies that when measuring register V of the CRQ$ the outcome c is obtained. If
the test is perform with success then the output of the primitive is set to c.

This simple protocol cannot be proven secure as it stands. Instead, Πn,n
WRO asks P′ to

measure 3 batches of EPR pairs |EPRn
Γ⟩P V in the same basis θa to get outcomes x1, x2, x3 ∈

Γn. The challenge produced by the primitive is then c = x3(x1 + x2)−1 (where the
operations are done in Fpn). This choice for determining c follows from our proof technique.
P′ announces (a, x1, x2, x3) that is checked by V′ after measuring register V for each of
the three instances of |EPRn

Γ⟩P V in basis θa. If the test is successful then the output of
the primitive is set to c.

Protocol Πn,n
WRO for WOTROn,n

Γ
Setup: A CRQ$ |EPR3n

Γ ⟩P V .

Prover: On input a ∈ Γn,

1. Measures its part of |EPR3n
Γ ⟩ in basis θ⊗3

a , let x = (x1, x2, x3) ∈ Γ3n be the
result.

2. If x1 + x2 = 0, set c = 0. Otherwise, output c := x3(x1 + x2)−1 and sends
(a, x) to verifier.

Verifier: Upon reception of (a, x),

1. Measure its part of |EPR3n
Γ ⟩ in basis θ⊗3

a , let x′ = (x′
1, x

′
2, x

′
3) ∈ Γ3n be the

result.

2. Output reject if x ̸= x′ and output (a, c′) where c′ = x′
3(x′

1 +x′
2)−1 otherwise.

Next theorem establishes that Πn,n
WRO is 1

4–secure against all adversaries. The proof
is given in Appendix B and may be of independent interest. It consists in showing that
the best measurement to distinguish the state transmitted by a quantum source that
selects a basis a ∈R Γn at random and sends |x(a)a⟩ for any set {(a, x(a))}a∈Γn cannot
be recognized with probability better than 3

4 . Wootters and Fields’ MUBs are useful here
as this probability is given by a Weil sum that can be bounded by Deligne’s resolution of
Weil third conjecture10 [Del74].

Theorem 11 Let Γ = {0, . . . , p − 1} be the set of elements in finite field Fp for p ≥ 3 a
prime number. Protocol Πn,n

WRO, presented above, is a statistically correct and statistically
(1

4 − negl(n))–secure implementation of WOTROn,n
Γ .

We use a set of mutually unbiased bases (MUBs) introduced by Wootters and Fields
in [WF89]. These bases of dimension pn are for n instances of p–level quantum mechanical
systems with p ≥ 3 prime. The construction is as follows:

10Weil’s third conjecture is analogue to the Riemann hypothesis over finite fields and is called as such.
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Definition 14 (Mutually Unbiased Bases of [WF89]) Let p ≥ 3 be prime. Define
the set of mutually unbiased bases Θ[Fpn ] = {θa}a∈Fpn for a Hilbert space of dimension pn

where θa = {|u⟩a}u∈Fpn is composed of vectors |u⟩a expressed in the computational basis
as

|u⟩a = p− n
2
∑

x∈Fpn

exp
(2πi
p
· tr

(
ax2 + ux

))
|x⟩ , (17)

where tr : Fpn → Fp denotes the field trace tr(x) := x+ xp + xp2 + · · ·+ xpn−1
. □

Notice that Klappenecker and Rötteler in [KR04] have shown a very similar construction
for the case p = 2 (mutually unbiased bases of qubits). Unfortunately, our results do not
apply to this construction as Weil sums need a field of odd characteristics.

Proof (of Theorem 11) For correctness, observe that if both parties are honest, their
measurement triplets X and X ′ will be uniformly distributed and perfectly correlated
unless X1 +X2 = 0. Since X1 +X2 is a random element of Γn due to it being the result
of the measurement of EPR pairs, it holds that this event occurs with probability at most
|Γ|−n, which is negligible in n.

Now onto security. Let c : Γn → Γn be an arbitrary target function. In order to cheat,
i.e. to bias the output challenge towards c(a), a dishonest prover must produce a basis
selected by a (the commitment) and measurement outcome x1, x2, x3 such that

1. x3(x1 + x2)−1 = c(a) and

2. V obtains the same outcomes x1, x2, x3 when he measures his part of |EPR3n
Γ ⟩ in

basis θ⊗3
a .

We say that x is a bad outcome if x3(x1 + x2)−1 = c(a). Let B(a) ⊆ Γ3n denote the set of
bad outcomes for commitment a. Note that |B(a)| = p2n for any a ∈ Γn.

The most general strategy for the prover is to apply a POVM {Ma,x}a∈Γn,x∈Γ3n to its
part of the EPR pairs to determine its message to V. The probability that P can bias
the output towards c(a) when V accepts is then the probability that it can produce a
commitment (i.e. a basis) such that a bad outcome will be observed by V in that basis.

Pw = Pr[X ∈ B(A)] (18)

=
∑

a∈Γn,x∈B(a)
tr
(
(|x⟩⟨x|a ⊗Ma,x) ·

∣∣∣EPR3n
Γ
〉〈

EPR3n
Γ

∣∣∣) (19)

= 1
p3n

∑
a∈Γn,x∈B(a)

tr (Ma,x|x⟩⟨x|a) . (20)

To simplify our computations, we have slightly abused notation by writing |x⟩a := |x1⟩a⊗
|x2⟩a ⊗ |x3⟩a when x ∈ Γ3n and x1, x2, x3 ∈ Γn. Using this notation, for x, y ∈ Γ3n we
have |⟨x|a|y⟩b|2 = p−3n whenever a ̸= b.

The optimal cheating strategy for P can be framed as the solution to the following
semidefinite program (SDP):

max
{Ma,x}

1
p3n

∑
a∈Γn

∑
x∈B(a)

tr (Ma,x|x⟩⟨x|a)

s.t.
∑

a∈Γn

∑
x∈B(a)

Ma,x ≤ 1 .
(21)
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The dual of this SDP is:

min
Z ≥ 0

1
p3n

tr (Z)

s.t. ∀a ∈ Γn, x ∈ B(a) |x⟩⟨x|a ≤ Z .

(22)

By the duality of semidefinite programming, a feasible solution to the dual will yield an
upper-bound on the optimal solution of the primal. We now show how to construct a
feasible solution that has constant value for p−3n tr(Z).

Let S = ∑
a∈Γn,x∈B(a) |x⟩⟨x|a and define fα(x) = x

α+x for α ∈ R. Since fα is an operator
monotone function (meaning that A ≤ B ⇒ fα(A) ≤ fα(B) for A,B positive semidefinite),
we have that 1

α+1 |x⟩⟨x|a ≤ fα(S) for any 0 < α ≤ 1. The operator Z = (α + 1)fα(S) is
thus a feasible solution to the dual with associated value α+1

p3n tr(fα(S)).
We now proceed to upper-bound this probability. Since fα is difficult to deal with

directly, we will bound it using Taylor’s theorem, yielding powers of Z that will then be
easier to compute. To get a good bound, we will use a third degree Taylor bound for fα

centered around λ ∈ R:

fα(x) ≤ λ

α+ λ
+ α

(α+ λ)2 (x− λ)− α

(α+ λ)3 (x− λ)2 + α

(α+ λ)4 (x− λ)3 .

Using the Taylor approximation defined above,

1
p3n

tr (Z) ≤ α+ 1
p3n

tr (fα(S))

≤ α+ 1
p3n

(
λ

α+ λ
tr (1) + α

(α+ λ)2 tr (S − λ1)

− α

(α+ λ)3 tr
(
(S − λ1)2

)
+ α

(α+ λ)4 tr
(
(S − λ1)3

))
. (23)

We can rewrite the above traces in the powers of S − λ1 in the following way.

tr (1) = p3n ,

tr (S − λ1) = tr (S)− λp3n ,

tr
(
(S − λ1)2

)
= tr

(
S2
)
− 2λ tr (S) + λ2p3n ,

tr
(
(S − λ1)3

)
= tr

(
S3
)
− 3λ tr

(
S2
)

+ 3λ2 tr (S)− λ3p3n .


(24)

We refer to Lemmas 7, 8 and 9 in Appendix B for the proofs that the following relations
hold:

tr (S) = p3n, tr
(
S2
)

= 2 · p3n − p2n and tr(S3) ≤ 4p3n + p2n .

Choosing to center the Taylor approximation around λ = 1 gives the following bounds
for (24):

tr (1) = p3n ,

tr (S − λ1) = 0 ,

tr
(
(S − λ1)2

)
= 2p3n − p2n − 2p3n + p3n

= p3n − p2n , and

tr
(
(S − λ1)3

)
≤ 4p3n + p2n − 3(2p3n − p2n) + 3p3n − p3n
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= 4p2n .

Substituting these values into (23), we get

Pw ≤
1
p3n

tr (Z) ≤ α+ 1
p3n

(
p3n

α+ 1 −
α(p3n − p2n)

(α+ 1)3 + α · 4p2n

(α+ 1)4

)
.

Looking only at the non-negligible terms, we have

Pw ≤ 1− α

(α+ 1)2 + negl(n)

which is minimized at α = 1 with value Pw ≤ 3
4 + negl(n). Since this probability is the

same for all functions c(·), it follows that the protocol (1
4 − negl(n))–avoids all functions.

■

7.2 Collision-Shelters
We are now ready to define a quantum computational assumption that allows for a secure
implementation of WOTROn,m for m < n. A collision-shelter for security parameter n, is
is a family Gn,m

Γ = {Gn
s : Γn×Γn → Γm}s∈{0,1}ℓ(n) of hash functions that exhibits a strong

quantum flavour of collision resistance. Intuitively, Gn,m
Γ is a collision-shelter if, for any

function c : Γn → Γm, no QPT adversary can produce a state close to

|ψs⟩ =
∑

a

αa|a⟩A ⊗
∑

c:Gn
s (a,c)=c(a)

γa
c |c⟩C ⊗ |φ(a, c)⟩W ′ , (25)

for s ∈R {0, 1}ℓ(n) and in average over outcome a when register A is measured in the com-
putational basis,

∑
c:Gn

s (a,c)=c(a) γ
a
c |c⟩C ⊗ |φ(a, c)⟩W ′ contains collisions in superposition.

Notice that no such state can be produced efficiently when the number of possible a is in
O(lgn) and Gn

s is collision resistant, as the generation of 2 such states would provide a
collision for Gn

s with good probability.

Definition 15 (δ–Colliding States) Let c : Γn → Γm be arbitrary and let Gn
s ∈ Γn ×

Γn → Γm. Let
|ψ⟩ =

∑
a

αa|a⟩A ⊗
∑

c:Gn
s (a,c)=c(a)

γa
c |c⟩C ⊗ |φ(a, c)⟩W ′

be a state hitting function c(·). Let c∗(a) be such that |γa
c∗(a)|

2 = maxc {|γa
c |2} for every

a ∈ {0, 1}n and let |ψ̃∗⟩ = ∑
a αa|a⟩A⊗γa

c∗(a)|c
∗(a)⟩X⊗|φ(a, c∗(a))⟩W be the corresponding

sub-normalized state obtained from |ψ⟩. If ∥|ψ̃∗⟩∥2 < 1−δ then |ψ⟩ is said to be δ–colliding
to c(·) under Gn

s . □

A collision-shelter is a family of hash functions (efficiently samplable and efficiently evalu-
able) that prevents any QPT adversary from generating a δ–colliding state hitting any
function c(·).

Definition 16 (Collision Shelter) The efficiently samplable and efficiently evaluable
hash function family Gn,m

Γ = {Gn
s : Γn×Γn → Γm}s∈{0,1}ℓ(n) is a collision-shelter if, for all

δ > 0, all functions c : Γn → Γm, and all QPT adversaries A = {An}, the probability over
s ∈R {0, 1}ℓ(n) that |ψ⟩ACW ′ ← An(s) is δ–colliding to c(·) under Gn,m

Γ is negligible in n.
The collision-shelter assumption simply posits the existence of a collision-shelter Gn,m

Γ for
m ≤ (1− α)n with 0 < α < 1. □
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We now consider the obvious implementation of WOTROn,m
Γ using Πn,n

WRO and a function-
shelter Gn,m

Γ that simply sets the challenge ĉ ∈ Γm as ĉ = Gn
s (a, c) where c ∈ Γn is the

challenge produced in Πn,n
WRO and s is the CR$. Let us denote this implementation of

WOTROn,m
Γ by Πn,m

WRO[Gn,m
Γ ]. The following theorem is an easy consequence of Defini-

tion 16 and Theorem 11.

Theorem 12 Assuming that Gn,m
Γ = {Gn

s }s is a collision-shelter with Γ a set of elements

in finite field Fp with p ≥ 3 prime. Then, Πn,m
WRO[Gn,m

Γ ] is a computationally
(

1
4 − o(1)

)
–

secure implementation of WOTROn,m
Γ .

Proof Let An be a purified adversary against Πn,m
WRO[Gn,m

Γ ], i.e. whose actions are de-
scribed by a unitary transform up to the point where it needs to send a classical message
to the verifier. Let s ∈ {0, 1}ℓ(n) be the CR$ of an execution of Πn,m

WRO[Gn,m
Γ ] where the

adversary An hits function c : {0, 1}n → {0, 1}m with probability phit. It follows that
|ψAn

s ⟩ – the joint state of An and V generated from the CRQ$ by An after running Πn,n
WRO

in Πn,m
WRO[Gn,m

Γ ] (but before measuring) – can be assumed w.l.g. to be of the following form∣∣∣ψAn
s

〉
ACXW V

= √phit|ψs⟩ACXW V +
√

1− phit|⊠⟩ACXW V ,

where |⊠⟩ACXW V results either in V’s rejection or acceptance without hitting target c(·)
and |ψs⟩AXW V hits function c(·),

|ψs⟩ACXW V =
∑

a∈{0,1}n

αa|a⟩A
∑

x:Gs(a,x3(x1+x2)−1)=c(a)
βa

x

∣∣∣x3(x1 + x2)−1
〉

C
|x⟩X |φ(a, x)⟩W |v(a, x)⟩V

=
∑

a∈{0,1}n

αa|a⟩A
∑

c:Gs(a,c)=c(a)
x:x3(x1+x2)−1=c

βa
x|c⟩C |x⟩X |φ(a, x)⟩W |v(a, x)⟩V

=
∑

a∈{0,1}n

αa|a⟩A
∑

c:Gs(a,c)=c(a)
γa

c |c⟩C
∑

x:x3(x1+x2)−1=c

β̂a
c,x|φ̂(a, x)⟩XW V .

Registers A and X contain the final results a ∈ Γn and x ∈ Γ3n for the execution of Πn,n
WRO

in Πn,m
WRO[Gn,m

Γ ] and C contains the final challenge c = x3(x1 + x2)−1, W is An’s working
register, and V is the register for the state of the verifier |v(a, x)⟩ when (a, x) is announced.
We assume that when V measures |v(a, x)⟩, it always accepts (a, x) and therefore sets the
final challenge as c = x3(x1 + x2)−1. Notice that if An produces state |ψAn

s ⟩ efficiently
then it can also produce |ψs⟩ efficiently as long as phit is polynomial since projecting |ψAn

s ⟩
into the subspace of states hitting c(·) can be implemented efficiently. Let∣∣∣ψ̃∗

s

〉
ACXW V

=
∑

a

αa|a⟩A ⊗ γ
a
c∗(a)|c

∗(a)⟩C ⊗
∑

x:x3(x1+x2)−1=c∗(a)
βa

c∗(a),x|φ̂(a, x)⟩XW V

be defined so that c∗(a) ∈ Γn is such that |γa
c∗(a)|

2 is maximum for each a ∈ Γn. By
definition 16, Gn,m

Γ = {Gn
s }s being a collision-shelter implies that∣∣∣〈ψs

∣∣∣ψ̃∗
s

〉∣∣∣2 ≥ 1− o(1) . (26)

An’s strategy is almost the same as the one where |ψs⟩ is replaced by |ψ̃∗
s⟩. By theorem 11,

the (subnormalized) state ∣∣∣ψ̂An
s

〉
= √phit

∣∣∣ψ̃∗
s

〉
+
√

1− phit|⊠⟩

allows to hit function c∗(·) in Πn,n
WRO with probability phit ≤ 3

4 + negl(n). From (26),
we therefore have that |ψAn

s ⟩ hits target function c(·) with probability no larger than
3
4 + o(1) + negl(n). The result follows. ■
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7.3 Is the Collision-Shelter Assumption Realistic?
While h : Γℓ(n) × Γn → Γm is entropy-preserving if no efficient adversary can, given the
first argument s ∈R Γℓ(n) picked uniformly at random, find x ∈ Γn such that h(s, x) has
almost no entropy (when s has been forgotten), collision-shelters prevent efficient quantum
adversaries from preparing a state with entropy in the second argument when the output
of the hash function applied to both arguments is fixed to a function of its first argument.
Why would it be possible for collision-shelters to exist?

Suppose that for all a ∈ Γn, the hash function Gn
s (a, ·) is collision-resistant against

quantum adversaries. Let c(a) ∈ Γm be arbitrary. It follows that for any a ∈ Γn, no
efficient quantum adversary can produce a state of the form |ψa⟩ = ∑

x:Gn
s (a,x)=c(a) β

a
x|x⟩X⊗

|φ(a, x)⟩ where |⟨ψa|ψ̃∗
a⟩|2 < 1 − δ since two states of that form would allow to find a

collision with non-negligible probability. This, of course, does not imply that {Gn
s (·, ·)}s is

a collision-shelter as Gn
s (a, ·) = Gn

s (a′, ·) =: hs(·) for all a, a′ ∈ Γn is such that Gn
s (a, ·) is

collision-resistant when hs(·) is collision-resistant but the following easy-to-generate state
is o(1)–colliding to c(a) = a1 . . . am when m < n. We start with a uniform superposition
over x over |x⟩|hs(x)⟩, which “fixes” the first m values of a, and introduce a superposition
over the n−m remaining values am+1 . . . an:

p−n/2∑
x

|x⟩X ⊗ |hs(x)⟩ 7→ p−n+ m
2
∑

a

∑
x:hs(x)=a1...am

|x⟩X ⊗ |a⟩A

= p−n/2∑
a

|a⟩A ⊗ p
−n+m

2
∑

x:Gn
s (a,x)=c(a)

|x⟩X .

Such an attack seems difficult to conduct when {Gn
s (a, ·)}a is a set of collision resistant

hash functions that appear independent of each other as far as collisions are concerned.
What it means exactly for hash functions in {Gn

s (a, ·)}a to appear independent is unclear.
It is easy to see that a random oracle On,m

Γ : Γn × Γn → Γm acts as a collision-shelter, in
fact, it is a much stronger assumption as Πn,m

WRO[On,m
Γ ] is already statistically secure.

Theorem 13 Let On,m
Γ : Γn × Γn → Γm be a random oracle accepting quantum queries.

Then, On,m
Γ is a collision-shelter and moreover, Πn,m

WRO[On,m
Γ ] is (1− negl(n))–secure.

Proof As before, we set p := |Γ|. Let c : Γn → Γm be an arbitrary target function and
let Lc := {(a, c) ∈ Γn × Γn | On,m

Γ (a, c) = c(a)}. In order to succeed, an adversary must
announce (a, c) ∈ Lc. Suppose for a contradiction that An hits c(·) with non-negligible
probability δ(n) := 1

q(n) for a positive polynomial q(n). Remember that An wins in
Πn,m

WRO[On,m
Γ ] when it can produce (a, c) ∈ Lc. It corresponds to searching one element of

Lc in a random database containing N = p2n elements. Let t = |Lc| be the number of
good elements for the adversary. It is straightforward to see that except with negligible
probability, t ≤ N/p(1−ϵ)m. In [BW98], it is shown that searching in a database of size N
for a solution when there are no more than t solutions using T queries has a probability
of error pe that satisfies

pe ≥ exp
(
−4bT 2/(N − t)− 8T

√
tN/(N − t)2

)
, (27)

for b > 0 some fixed constant. Since e−x ≥ 1 − x, we then get that for T ∈ poly(n), (27)
satisfies

pe ≥ 1− negl(n) .

■
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The random oracle makes it difficult to produce a single (a, c) ∈ Lc while a collisions-
shelter posits that it is difficult to generate a collision on c(a) for many a ∈ Γn, which at
least requires finding (a, c) ∈ Lc.

Notice that while any secure universal Fiat-Shamir transform in the CRS model re-
quires the existence of an entropy-preserving family of hash functions[DRV12], this does
not seem to be the case for collisions-shelters with respect to WOTRO in the CRQS model.

8 Black-Box Impossibility of a Flavour of Quantum Lightning
In this section, we show that a secure WOTRO can be constructed from a quantum light-
ning scheme that satisfies a slightly stronger security notion. Quantum lightning was
introduced by Zhandry in [Zha19] as a primitive allowing for publicly verifiable quantum
money schemes and provable randomness among others.

8.1 Typed Quantum Lightning.
Quantum lightning provides some fresh randomness that even an adversarial procedure
cannot bias towards a certain value. We present a strenghtened version of this property
that requires that this randomness remains in the presence of an input to the lightning
generation procedure. This notion is sufficiently strong to provide a secure WOTRO pro-
tocol.

Definition 17 A typed quantum lightning scheme is a tuple of QPT algorithms (tQLSetup, tQLGen, tQLVer)
where

• tQLSetup(1n) produces a storm �.

• tQLGen(�, a) takes an additional parameter a ∈ {0, 1}n, and produces a lightning

state |�a⟩.

• tQLVer(�, |�⟩) returns the type a, a serial number s or ⊥ if the state is not valid,
and a leftover quantum register.

Correctness is defined similarly to regular QL: serial numbers are deterministic for honestly
generated bolts and verification does not noticeably affect the bolt. The security properties
of a tQL scheme are as follows: For any QPT adversary A that on input � produces a
type A ∈ {0, 1}n and a state |�⟩, if we let ρQSA′ = tQLVer(�, |�⟩), then

Pr
[
H∞(S | A ∧ (S ̸= ⊥) ∧ (A = A′)) ≤ lg p(n)

]
≤ negl(n) .

□

Based on Definition 17, typed quantum lightning provides randomness in the serial
number conditionned on the type. It is the ability of the adversary to choose the type a
that makes this primitive stronger than regular QL. A natural WOTRO protocol in the
CRS+CRQ$ model based on this new primitive is presented below.

Protocol ΠtQL
WRO for WOTROn,m

Setup: A CRS containing �← tQLSetup(1n) for a tQL scheme with n–bit types
and m–bit serial numbers. A CRQ$ containing |EPR⟩⊗q where q is the qubit size of
a tQL state.
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1. On input a ∈ {0, 1}n, P calls |�a⟩ ← tQLGen(�, a), sets ρQSA =
tQLVer(�, |�a⟩), teleports register Q to V using the EPR pairs and sends
(A,S) to V.

2. Upon reception of (a, s, ρQ), V calls σQ′S′A′ ← tQLVer(�, ρQ) and tests that
A′ = a and S′ = s. V aborts if the tests failed, otherwise V sets c = s and
outputs (a, c).

Theorem 14 The above protocol is a secure instantiation of WOTROn,m.

The proof is a direct consequence of the security of the tQL primitive.

Corollary 2 There is no black-box reduction from the security of a tQL scheme with type
length n and serial length m satisfying n−m ∈ ω(lgn) to the security of a cryptographic
game assumption, unless the assumption is false.

8.2 Justification for the tQL assumption.
Why is typed quantum lightning a realistic assumption? It turns out that the tQL primitive
can be built from “vanilla” QL for types of length O(lgn). We present a construction of a
tQL scheme for lg p(n) bits types for any polynomial p(·) from an arbitrary (regular) QL
scheme.

Prerequisite: A QL scheme (QLSetup,QLGen,QLVer). A family of n · p(n)–wise
independent hash functions H ⊂ {0, 1}n → {0, 1}lg p(n).

• tQLSetup(1n): Let �← QLSetup(1n) and h←$H, output �
′
= (�, h)

• tQLGen(�
′
, a) : Parse �

′
as (�, h). Do |�⟩ ← QLGen(�) until s =

QLVer(�, |�⟩) satisfies h(s) = a and output |�⟩.

• tQLVer(�
′
, |�⟩): Parse �

′
as (�, h). Compute ρSQ ← QLVer(�, |�⟩) and

set A = h(S). Output ρASQ.

Theorem 15 (tQLSetup, tQLGen, tQLVer) is a tQL scheme of lg p(n) bits types.

Proof Correctness follows from that of the underlying QL scheme: a state produced by
tQLGen will be recognized as a valid state by tQLVer if QLGen produces valid states.

The expected running time of tQLGen is exponential in lg p(n) and thus polynomial in
n. Since h is sampled from a family of n · p(n)–pairwise independent hash functions, the
probability that tQLGen does not produce an output after n · p(n) steps is at most

Pr[h(s1) ̸= a ∧ · · · ∧ h(sn·p(n)) ̸= a] =
(

1− 1
p(n)

)n·p(n)
≤ e−n

For security (Definition 17), let A be an attacker against the min-entropy of the tQL
scheme, i.e. A produces with inverse polynomial probability a state |�⟩ such that ρASQ ←
tQLVer(ρ) has logarithmic min-entropy in S conditioned on A:

Pr
[
H∞(S | A ∧ (S ̸= ⊥)) ≤ lgnr

]
≥ 1
nk

(28)
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for some r, k > 0. We construct an adversary B against the uniqueness of the original
lightning scheme from this A. The strategy of B is as follows: call A(1n) twice to obtain
|�1⟩ and |�2⟩, if QLVer(|�1⟩) = QLVer(|�2⟩) halt and output |�1⟩ and |�2⟩, otherwise
repeat. We now show that this strategy will produce a collision for the underlying QL
scheme with an expected polynomial number of calls to A.

Let ā be such that H∞(S | (A = ā)∧ (S ̸= ⊥)) ≤ lgnr and such that Pr[A = ā] ≥ 1
q(n)

for some polynomial q(·) when ρASQ is obtained from tQLVer(A(�)). Note that since a
is lg p(n) in length, such an ā must exist for (28) to hold (otherwise all a that have low
conditional min-entropy have negligible probability of being produced by A). Then for
each pair of invocations of A, the following holds with probability at least 1

nk :

Pr[QLVer(|�1⟩) = QLVer(|�2⟩)]

≥ 1
q(n)2 Pr[QLVer(|�1⟩) = QLVer(|�2⟩) | A1 = ā ∧A2 = ā]

≥ 1
q(n)2 2−H2(QLVer(ρ)|A=ā)

≥ 1
q(n)2 2−H∞(QLVer(ρ)|A=ā)

≥ 1
q(n)2

1
nr

where H2 denotes the collision entropy and is upper-bounded by the min-entropy H∞.
The probability that B halts and succeeds is therefore at least (q(n)2nr·k)−1. ■
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A Technical Lemmas for Theorem 9
Proof (Proof of Lemma 2) Applying the Chernoff bound with D = 2k, M = 2n,
α = 2−m, and Xf

a = ∑
w N

a
f(a),w results in

Pr
f∈F

[
2−n

∑
a

Xf
a /∈

[
(1− tη)1P

2m
, (1 + tη)1P

2m

]]
≤ 2k+1 exp

(
− 1

2 ln 22n−mt2η2
)

= 2k+1 exp
(
−(n+ k)t2

)
≤ 2−n·t2

.

The result then follows easily assuming 1
2n

∑
aX

f
a ≤ (1 + tη) 1P

2m ,

∑
a,w

P f
a,w =

∑
a,w N

a
f(a),w

2n−m(1 + η)

= 2−n∑
aX

f
a

2−m(1 + η)

≤
(1 + tη) 1P

2m

2−m(1 + η)

= (1 + tη)1P

1 + η
.

On the other hand, assuming 1
2n

∑
aX

f
a ≥ (1− tη) 1P

2m ,

∑
a,w

P f
a,w =

∑
a,w N

a
f(a),w

2n−m(1 + η)

= 2−n∑
aX

f
a

2−m(1 + η)

≥
(1− tη) 1P

2m

2−m(1 + η)

= (1− tη)1P

1 + η
.

■

Proof (Proof of Lemma 3) As we did before, we set the dimension of the CRQS on
P’s side to be 2k (which we should write k(n) rather than k). Let

∆ :=
∥∥∥∥ E

f∈F∗

[
RAf

n
n (|0⟩⟨0|)

]
− E

f∈F

[
RAf

n
n (|0⟩⟨0|)

]∥∥∥∥
1
.
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Let ρF∗ = 1
#F∗

∑
f∈F∗ |f⟩⟨f | and ρF = 1

#F
∑

f∈F |f⟩⟨f |. It is easy to see that

∥ρF∗ − ρF∥1 =
∑

f∈F∗

( 1
|F∗|

− 1
|F|

)
+

∑
f∈F−F∗

1
|F|

= 1− Pr [f ∈ F∗] + Pr [f /∈ F∗]
≤ negl(n) ,

after applying lemma 8. Then, we have

∆ ≤ ∥ρF∗ − ρF∥1 + 1
#F

∑
f∈F−F∗

∥∥∥RAf
n

n (|0⟩⟨0|)
∥∥∥

1

≤ negl(n) + 1
#F

∑
f∈F−F∗

∥∥∥RAf
n

n (|0⟩⟨0|)
∥∥∥

1
. (29)

Bounding this sum is not as straightforward as it might look at first glance: while we
know that the sum has very few terms, we have no guarantee that Af

n is a physically
realizable map when f ∈ F − F∗, and hence we cannot trivially bound these norms by
1. Instead, let us consider reduction RAf

n
n := Uq(Af

n ⊗ 1)Uq−1 . . . (Af
n ⊗ 1)U1(Af

n ⊗ 1)U0
where all Uj , j ∈ {0, . . . , q} are unitaries and the 1’s are acting on the wires that are
not part of Af

n’s standard interface. Let |φf
0⟩ := U0|0⟩ be a normalized state and let

|φf
j ⟩ := Uj(Af

n ⊗ 1)|φf
j−1⟩ for 1 < j ≤ q, not necessarily of norm 1 when f /∈ F∗. Using

lemma 2 with t := 2 n−m
4 (and η =

√
2 ln 2(n+ k) · 2m−n as in the statement of lemma 2),

we have that

Pr
f∈RF

[∑
a,w

P f
a,w /∈

[(1− tη)1P

1 + η
,
(1 + tη)

1 + η
1P

]]
≤ 2−n

√
2n−m

. (30)

For |φ⟩ a state of norm 1 and for f ∈ F such that ∑a,w P
f
a,w ≤

(
1+tη
1+η

)
1P ≤ (1 + tη)1P ,

∥(Af
n⊗1)|φ⟩⟨φ|(Af

n⊗1)∗∥1 ≤ 1+tη. Starting with a normalized state |φ⟩, after q(n) queries
to Af

n, the square of the norm of the resulting vector is upper bounded by (1 + tη)q(n).
Notice that when tη = p(n)2−βn for p(n) a polynomial,

(1 + tη)q(n) =
(

1 + p(n)
2βn

)q(n)
=
(

1 + p(n)
2βn

) 2βnq(n)p(n)
p(n)2βn

≈ exp
(
q(n)p(n)

2βn

)
= 1 ,

since limn→∞(1 + 1
N )N = e. In other words, when t ≤ 2 n−m

4 , we have tη = p(n)2−βn

and11,
lim

n→∞

∥∥∥RAf
n

n (|0⟩⟨0|)
∥∥∥

1
= exp

(
q(n)p(n)

2βn

)
≤ 1 + negl(n) . (31)

Therefore, for t ≤ 2 n−m
4 and f such that ∑a,w P

f
a,w ≤ (1 + tη) 1P , we have thatRAf

n
n (|0⟩⟨0|)

essentially preserves norms like an isometry:
∥∥∥RAf

n
n (|0⟩⟨0|)

∥∥∥
1

= 1. For handling the other
case (t > 2 n−m

4 ), we first define

Ft :=
{
f ∈ F

∣∣∣∣∣ (1− tη)1P

1 + η
≤
∑
a,w

P f
a,w ≤

(1 + tη)1P

1 + η

}
,

11Using the fact that 1 + 2−x+1 > exp (2−x) for all x ≥ 0.
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and notice that by construction, for every f ∈ F ,

∑
a,w

P f
a,w =

∑
a,w N

a
f(a),w

2n−m(1 + η) ≤
∑

a 1P

2n−m(1 + η) = 2n1P

2n−m(1 + η) ≤
2m1P

1 + η
. (32)

Let t := 2 n−m
4 and note that t < 1

2η so that the Chernoff bound expressed in lemma 2 can
be used. We consider two cases for f ∈ F − F∗: either f is in Ft − F∗, or f is outside
Ft ∪ F∗. We have,

1
#F

∑
f∈F−F∗

∥∥∥RAf
n

n (|0⟩⟨0|)
∥∥∥

1
= 1

#F

 ∑
f∈Ft−F∗

∥∥∥RAf
n

n (|0⟩⟨0|)
∥∥∥

1

+
∑

f /∈Ft∪F∗

∥∥∥RAf
n

n (|0⟩⟨0|)
∥∥∥

1


≤ Pr [F ∈ Ft −F∗] · (1 + tη)q(n)

+ Pr [F /∈ Ft ∪ F∗] · 2mq(n) (33)

≤ negl(n)(1 + negl(n)) + 2−n
√

2n−m+mq(n) (34)
≤ negl(n) , (35)

as long as n > m, where (33) follows from (32) and (34) follows from (31) and the Chernoff
bound, as stated in (30).

Finally, using (35) in (29) proves the statement. ■

Lemma 4 (A) is negligible.

Proof Since Simn picks a ∈ {0, 1}n uniformly at random, we get∑
a∈δ(s)

z∈{0,1}m

w∈{0,1}ℓ(n)

qSimn
a,z,w(ψj(s)) =

∑
a∈δ(s)

z∈{0,1}m

w∈{0,1}ℓ(n)

2−n tr
(
Na

z,w|ψj(s)⟩⟨ψj(s)|
)

=
∑

a∈δ(s)
2−n tr

(∑
z,w

Na
z,w|ψj(s)⟩⟨ψj(s)|

)

≤
∑

a∈δ(s)
2−n

≤ q(n)2−n

≤ negl(n) . (36)

A similar argument can be applied to qAf
n

a,w(ψj(s)) although {P f
a,w}a,w is a collection of

positive operators that do not form a valid POVM when f /∈ F∗, as ∑a,w P
f
a,w ≰ 1P in

this case. We have,

1
#F

∑
f∈F

a∈δ(s)
z∈{0,1}m

w∈{0,1}ℓ(n)

qAf
n

a,w(ψj(s)) = 1
#F

∑
a∈δ(s)

z∈{0,1}m

w∈{0,1}ℓ(n)

∑
f∈F

f(a)=z

tr
(
P f

a,w|ψj(s)⟩⟨ψj(s)|
)
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= 1
#F

∑
a∈δ(s)

z∈{0,1}m

w∈{0,1}ℓ(n)

∑
f∈F

f(a)=z

tr
(

Na
z,w|ψj(s)⟩⟨ψj(s)|

2n−m +
√

2 ln 2(n+ k)2n−m

)

= 1
#F

∑
a∈δ(s)

∑
f∈F

f(a)=z

tr
( ∑

z,w N
a
z,w|ψj(s)⟩⟨ψj(s)|

2n−m +
√

2 ln 2(n+ k)2n−m

)

≤ 1
#F

∑
a∈δ(s)

∑
f∈F

f(a)=z

1
2n−m +

√
2 ln 2(n−m+ k)2n−m

≤

 ∑
f∈F

f(a)=z

1
#F

 q(n)
2n−m +

√
2 ln 2(n−m+ k)2n−m

≤ negl(n−m) . (37)

We now conclude,
(A) ≤ (36) + (37) ≤ negl(n−m) . (38)

■

Lemma 5 (⊥) is negligible.

Proof This corresponds to the likelihood (and not the probability, as {P f
a,w}a,w is not a

valid POVM when f /∈ F∗) of an error when Af
n is queried once on |ψj(s)⟩, a normalized

state vector. Observe that when f ∈ Ft,
∑

a,w P
f
a,w ≥ (1 − tη)1P and therefore 0 ≤

P f
⊥ ≤ tη 1P . In other words, the probability to get an error when f ∈ Ft is upper

bounded by tη. On the other hand, when f /∈ Ft, the only thing we can say from our
construction is that 0 ≤ P f

⊥ ≤ 1P . In the following and as before, we set t := 2 n−m
4 and

η :=
√

2 ln 2(n+ k)2m−n. Using the operator Chernoff bound expressed in lemma 2, we
have

(⊥) ≤ 1
#F

∑
f∈Ft

qAf
n

⊥ (ψj(s)) +
∑

f /∈Ft

qAf
n

⊥ (ψj(s))


= 1

#F

∑
f∈Ft

tr
(
P f

⊥|ψj(s)⟩⟨ψj(s)|
)

+
∑

f /∈Ft

tr
(
P f

⊥|ψj(s)⟩⟨ψj(s)|
)

≤ tη + Pr [f /∈ Ft]

≤
√

2 ln 2(n+ k)2 −n+m
2 + 2−n

√
2n−m

≤ negl(n−m) . (39)

■

Lemma 6 (M) is negligible.

Proof This the main part to show that the Chernoff adversary AF
n is simulatable. This

is where we use the fact that Simn simulates the adversary Af
n whenever f ∈R F (in real
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life this is for f ∈R F∗). It follows essentially the same steps as in [Bit+13; BGW12]
adapted to deal with our Chernoff adversary. For all f ∈ F such that f(a) = y, we have

(M) =
∑

a∈{0,1}n\δ(s)
w∈{0,1}ℓ(n)

y∈{0,1}m

2m

#F
∑
f∈F

f(a)=y

∣∣∣qSimn
a,y,w(ψj(s))− 2−mqAf

n
a,w(ψj(s))

∣∣∣

=
∑

a∈{0,1}n\δ(s)
w∈{0,1}ℓ(n)

y∈{0,1}m

 ∑
f∈F

f(a)=y

2m

#F


∣∣∣∣∣∣tr
Na

y,w

2n
−

2−mNa
y,w

2n

2m +
√

2 ln 2(n+ k) 2n

2m

|ψj(s)⟩⟨ψj(s)|

∣∣∣∣∣∣

=
∑

a∈{0,1}n\δ(s)

∣∣∣∣∣∣ 1
2n
− 2−m

2n

2m +
√

2 ln 2(n+ k) 2n

2m

∣∣∣∣∣∣
∑
y,w

tr
(
Na

y,w|ψj(s)⟩⟨ψj(s)|
)

≤
∑

a∈{0,1}n\δ(s)

∣∣∣∣∣∣ 1
2n
− 2−m

2n

2m +
√

2 ln 2(n+ k) 2n

2m

∣∣∣∣∣∣
≤

∣∣∣∣∣∣1− 2−m+n

2n

2m +
√

2 ln 2(n+ k) 2n

2m

∣∣∣∣∣∣
≤
√

2 ln 2(n+ k)2m−n

≤ negl(n−m) . (40)

■

B Technical Lemmas for Theorem 11
We now proceed to compute the tr(S), tr(S2) and tr(S3) values used in the proof of
Theorem 11.

Lemma 7 tr(S) = p3n.

Proof Since |B(a)| = p2n,

tr (S) =
∑

a∈Γn

∑
x∈B(a)

tr (|x⟩⟨x|a) = p3n .

■

Lemma 8 tr(S2) = 2p3n − p2n.

Proof

tr
(
S2
)

=
∑

a,b∈Γn

∑
x∈B(a),y∈B(b)

tr(|x⟩⟨x|a|y⟩⟨y|b)

=
∑

a∈Γn

 ∑
x∈B(a)

1 +
∑
b̸=a

∑
x∈B(a),y∈B(b)

|⟨x|a|y⟩b|
2


=
∑

a∈Γn

|B(a)|+ p−3n
∑
b ̸=a

|B(a)| · |B(b)|


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=
∑

a∈Γn

p2n + p−3n
∑
b ̸=a

p4n


=
∑

a∈Γn

p2n + pn
∑
b̸=a

1


= pn

(
p2n + pn(pn − 1)

)
= 2p3n − p2n

■

Upper-bounding tr(S3) will require a little more machinery. We introduce a theorem
of Deligne [Del74] and some of its corollaries before proceeding with the proof.

Theorem 16 ([Del74], Theorem 8.4) Let Q be a polynomial of n variables x1, . . . , xn

and of degree d on Fq, let Qd be the homogeneous part of degree d of Q and let ψ : Fq → C∗

be an additive non-trivial character on Fq. Assume that

1. d is coprime with p, the characteristic of Fq, and

2. the hypersurface H0 of Pn−1
Fq

defined by Qd is smooth,

then ∣∣∣∣∣∣
∑

x1,...,xn∈Fq

ψ (Q(x1, . . . , xn))

∣∣∣∣∣∣ ⩽ (d− 1)nqn/2 .

In the above, the second condition boils down to ensuring that there is no point at which
the ∂Q

∂xi
all vanish simultaneously. Here is a version that is closer to what we will need:

Corollary 3 Let m ≤ k, A a k×m matrix with rank m in Fq, and let C be a k×k matrix
in Fq. Then, if A⊺CA is non-singular,∣∣∣∣∣∣

∑
v⃗,x⃗=Av⃗

ψ (x⃗⊺Cx⃗)

∣∣∣∣∣∣ ⩽ qm/2 .

In other words, we take the sum over all (x1, . . . , xk) that satisfy a system of k − m
independent linear equations.

Proof Let Q = x⃗⊺Cx⃗ = v⃗⊺A⊺CAv⃗, and observe that

∂Q

∂vi
= e⊺iA

⊺CAv⃗ + v⃗⊺A⊺CAei = 2e⊺iA⊺CAv⃗ .

Condition 2 of Theorem 16 is thus equivalent to

A⊺CAv⃗ = 0⇔ v⃗ = 0 ,

which amounts to saying that A⊺CA is non-singular. ■

Here is now a version that is more directly relevant to our case.
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Corollary 4 Let m ≤ k and let B ∈ F(k−m)×k
q and C ∈ Fk×k

q be full rank matrices. Then,∣∣∣∣∣ ∑
x⃗:Bx⃗=0

ψ (x⃗⊺Cx⃗)
∣∣∣∣∣ ⩽ qm/2 .

Proof Let Bc ∈ Fm×k
q such that M :=

[
B
Bc

]
∈ Fk×k

q has full rank. Then condition

Bx⃗ = 0 is equivalent to x⃗ = M−1
[
0
v⃗

]
for some v⃗ ∈ Fm

q . We can thus define P :=
[

0
1

]
and

apply corollary 3 with A = M−1P , while observing that P ⊺M−1⊺CM−1P has full rank,
since M−1⊺CM−1 also has full rank. ■

Lemma 9 tr(S3) ≤ 4p3n + p2n

Proof Let’s first write out the expression of interest:

tr
(
S3
)

=
∑

a,b,c∈Γn

∑
x∈B(a)

∑
y∈B(b)

∑
z∈B(c)

tr (|x⟩⟨x|a|y⟩⟨y|b|z⟩⟨z|c)

=
∑

a=b=c

∑
x

1 + 3
∑
a̸=b

∑
x,y

|⟨x|a|y⟩b|
2 +

∑
a̸=b ̸=c

∑
x,y,z

⟨x|a|y⟩b⟨y|b|z⟩c⟨z|c|x⟩a (41)

where the middle term groups the three cases a ̸= b, a ̸= c and b ̸= c that all have the
same value. We know how to upper-bound the first two sums using the same techniques
as Lemma 8. Most of the proof is dedicated to finding an upper-bound to the third term.

Recall our construction of mutually unbiased bases θa presented in Definition 14. For
r ∈ Fpn and a ∈ Fpn :

|r⟩a = p− n
2
∑

u∈Fpn

exp
(2πi
p
· tr(au2 + ru)

)
|u⟩ .

Extending this basis to 3 systems through θ⊗3
a yields vectors of the form

|x⟩a = p−3n/2 ∑
u∈F3

pn

exp
(2πi
p

tr (au⊺u+ x⊺u)
)
|u⟩ ,

where x⊺ denotes the transpose of x ∈ F3
pn ≃ Γ3n. Here, we slightly abuse notation by

writing |x⟩a for a vector in basis θ⊗3
a .

The inner product of two such vectors is given by the expression

⟨y|b|x⟩a = p−3n
∑

u∈F3
pn

exp
(2πi
p

tr ((a− b)u⊺u+ (x− y)⊺u)
)

.

Combining the three inner products in the expression of interest (41), we have

⟨x|a|y⟩b⟨y|b|z⟩c⟨z|c|x⟩a = p−9n
∑

u,v,w∈F3
pn

exp

2πi
p

tr

 (a− b)u⊺u+ (x− y)⊺u
+(b− c)v⊺v + (y − z)⊺v
+(c− a)w⊺w + (z − x)⊺w



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We introduce some notation that will allow us to present the above expression in a more
compact, albeit more complicated form. Let c : Fpn → Fpm and for a ∈ Fpn , define

Ba =
[
1 0 c(a)
0 1 c(a)

]
∈ F2×3

pn (42)

such that for x1, x2 ∈ Fpn , the expression

[x1, x2] ·Ba
⊺ = [x1, x2, c(a)(x1 + x2)]⊺ ∈ F3

pn (43)

is a sequence of measurement outcomes that leads to the bad outcome c(a) in the protocol.
For a, b, c ∈ Fpn , write

Ba,b,c :=

−Ba 0 Ba

0 Bb −Bb

Bc −Bc 0

 ∈ F6×9
pn ,

and

Ca,b,c :=


(c− a)1F3×3

pn
0 0

0 (b− c)1F3×3
pn

0
0 0 (a− b)1F3×3

pn

 ∈ F9×9
pn . (44)

The previous operators are defined such that∑
x∈B(a)
y∈B(b)
z∈B(c)

⟨x|a|y⟩b⟨y|b|z⟩c⟨z|c|x⟩a

= p−9n
∑

ϱ∈F6
pn

∑
ξ∈F9

pn

exp
(2πi
p

tr (ξ⊺Ca,b,cξ + ϱ⊺Ba,b,cξ)
)

with the goal of bounding above the right-hand side using Corollary 4. The construction
of Ba,b,c appears more complex than necessary because we want it to have a large rank.

Equipped with the above, we are now ready to upper-bound the third term in (41)
with Corollary 4.∑

a̸=b ̸=c

∑
x∈B(a)
y∈B(b)
z∈B(c)

⟨x|a|y⟩b⟨y|b|z⟩c⟨z|c|x⟩a

= p−9n
∑

a̸=b ̸=c

∑
ϱ∈F6

pn

∑
ξ∈F9n

pn

exp
(2πi
p

tr (ξ⊺ · Ca,b,c · ξ + ϱ⊺ ·Ba,b,c · ξ)
)

= p−9n
∑

a̸=b ̸=c

∑
ϱ∈F6

pn

∑
ξ∈F9n

pn

Ba,b,c·ξ=0

exp
(2πi
p

tr (ξ⊺ · Ca,b,c · ξ)
)

(45)

≤ p−9n
∑

a̸=b ̸=c

∑
ϱ∈F6

pn

p2n (46)

= p−9n
∑

a̸=b ̸=c

p6np2n

= p−n(pn)(pn − 1)(pn − 2) .
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Equality (45) above follows from the observation that once ξ is fixed, if Ba,b,c ·ξ is non-zero
then the sum over ϱ will span all pth roots of unity in equal proportions which sums to 0.
In more details, letting α = ξ⊺ · Ca,b,c · ξ ∈ Fpn and 0 ̸= v = Ba,b,c · ξ ∈ F6

pn ,

∑
ϱ∈F6

pn

exp
(2πi
p

tr (α+ ϱ⊺ · v)
)

= p5n
∑

β∈Fpn

exp
(2πi
p

tr (α+ β)
)

= p6n−1 ∑
γ∈Fp

exp
(2πi
p
γ

)
= 0 .

Inequality (46) follows from Corollary 4 by observing that rank(Ba,b,c) ≥ 4. To see this,
note that by removing columns 3, 6 and 9 from Ba,b,c (those corresponding to c(a), c(b) or
c(c)), we are left with the matrix 1 0 −1

0 1 −1
1 −1 0

 .

Taking linear combinations of the above we can obtain1 0 −1
0 1 −1
0 0 0


and hence Ba,b,c has rank at least that of the above matrix, which is equal to 4 since each
of the identities act on F2

pn .
We can now complete the proof by taking the expected value over g. Continuing

from (41),

tr
(
S3
)

=
∑

a=b=c

∑
x∈B(a)

1 + 3
∑
a̸=b

∑
x∈B(a)
y∈B(b)

|⟨x|a|y⟩b|
2 +

∑
a̸=b ̸=c

∑
x∈B(a)
y∈B(b)
z∈B(c)

⟨x|a|y⟩b⟨y|b|z⟩c⟨z|c|x⟩a

≤ p3n + 3p2n(pn − 1) + (pn − 1)(pn − 2) ≤ 4p3n + p2n .

■

C Basic Properties of WOTRO
Proposition 1 The 2-message protocol in which P sends a ∈ Γn directly to V, and V then
chooses c ∈R Γm at random, sends it to P and always accepts is a correct and δ–secure
implementation of WOTROn,m

Γ for δ = 1− 1
|Γ|m and for any alphabet Γ and n,m ⩾ 1.

Proof Let Π(c|a) denote the conditional distribution of the protocol output. Indeed,
correctness is obvious as a and c are correctly distributed with Π(c|a) = 1

#Γm . For security,
let A be the random variable produced by P̃ and C be the random variable produced by
V, and let c : Γn → Γm be some function. Then,

Pr [V = 1 ∧ C = c(A)] = Pr [C = c(A)]

= 1
|Γ|m .

■
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Proposition 2 Let Γ be an arbitrary finite alphabet, let m,n ≥ 1 and let 0 < δ ≤ 1.
There is no correct and δ–secure 1-message implementation of WOTROn,m

Γ in the bare
model. Moreover, there is no such δ–secure non-interactive implementation of WOTROn,m

Γ
common random string (resp. random oracle) model if the function c from Definition 5
can depend on the CR$ r (resp. the random oracle O).

Proof Consider the message sent from the prover P to the verifier V. Without loss of
generality, it is of the form (a, c, w) where a is P’s input, c is the joint output and w is
additional information for V to decide whether to accept or reject. Let Π = (P,V) (resp.
Πr = (Pr,Vr) and ΠO = (PO,VO)) be a correct implementation of WOTRO in the bare
model (resp. CR$ model and ROM). Define the first message of the prover in each model
by

P (a, s) := (a, c(a, s), w(a, s)) (bare)
P r(a, s) := (a, cr(a, s, r), wr(a, s, r)) (CR$)
PO(a, s) := (a, cO(a, s, v), wO(a, s, v)) (ROM)

where s is the random tape of the prover, r is the value of the CR$ and v = (O(a1),O(a2), . . . ,O(aκ(n)))
where a1, . . . , aκ(n) ∈ Γn are chosen using s for some upper bound κ(n) on the number of
oracle queries performed by P in ΠO.

Since the protocol is correct, it must hold that

Pr[V (P (A,S)) = 1] = Pr[V r(P r(A,S)) = 1] = Pr[V O(PO(A,S)) = 1] = 1 (47)

where the probability is taken over the values of A and S. Then for each a with non zero
probability, there exist a value s(a), sr(a) and sO(a) such that

V (P (a, s(a))) = V r(P r(a, sr(a))) = V O(PO(a, sO(a))) = 1 (48)

Define malicious prover P̃ (resp. P̃r and P̃O) that on input a uses random tape value s(a)
(resp. sr(a) and sO(a)). Then the protocol Π (resp. Πr and ΠO) does not avoid the
functions c(a) := c(a, s(a)) (resp. cr(a) := cr(a, sr(a), r) and cO(a) := cO(a, sO(a), v) ). ■

Proposition 3 Let m > n. The protocol for WOTROn,m
Γ in the CR$ model where both

parties output the CR$ r ∈ Γm for any a ∈ Γn and V always accepts is correct and δ–secure,
for δ = 1− |Γ|n−m.

Proof Correctness is obvious, and security is easy to prove as well: suppose that P̃ wants
to steer the output of the protocol towards some function c. He must then look at the
CR$ r, and announce an a such that c(a) = r. Hence, r must happen to be in the image
of c. However, since c is a function from Γn to Γm and m > n, there are at most |Γ|n
strings in the image of c, and the probability that a uniformly chosen r falls into that set
is at most |Γ|n−m. ■

Proposition 4 Let Γ be an arbitrary finite alphabet of size q ≥ 2. Then, for any m,n
with m ≤ n, there exists no exp (−qn−m)–secure implementation of WOTROn,m

Γ in the
ROM.

Proof We will show that a cheating prover that is unbounded in time can search for an
a that will satisfy V. Consider a dishonest prover P̃ who uses the following strategy: run
the honest prover P on all possible inputs a in lexicographic order, and declare victory
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if it ever outputs c(a). We will also assume that function c(·) is chosen uniformly at
random, and show that the expected winning probability of the cheating prover is at least
1− exp(−qn−m). We have the following:

Pr
O,c

[P̃ loses] = Pr
O,c

[
P̃ loses at step a = 0 ∧ P̃ loses at a = 1 ∧ . . .

]
=
∏

a∈Γn

Pr
O,c

[
P̃ loses at step a

∣∣∣P̃ loses at all steps before a
]

=
∏

a∈Γn

Pr
O,c

[
P does not output c(a) on input a

∣∣∣P̃ loses at all steps before a
]

=
∏

a∈Γn

qm − 1
qm

=
(

1− 1
qm

)qn

=
[(

1− 1
qm

)qm]qn−m

< exp(−qn−m).

since c(a) is chosen uniformly at random for each a. Hence, P̃’s winning probability is at
least 1 − exp(−qn−m) as advertised, and there must exist a choice of function c(·) that
achieves this bound. ■

Proposition 5 The protocol for WOTROn,m
Γ in the ROM model where both parties output

the O(a) for any a ∈ Γn and V always accepts is correct and statistically δ–secure, for
δ = 1− |Γ|n−m.

The proof is identical to that of Proposition 3 by considering r = O(a).

Proposition 6 The protocol described in Proposition 5 is 1− negl(n)–secure in the ROM
against polynomial-time provers as long as m is at least linear in n.

Proof Let ℓ(n) be a polynomial which bounds the number of oracle queries that P̃ can
make. Furthermore, without loss of generality we will assume that P̃ never makes the same
oracle call twice. Then, given any function c : Γn → Γm, in order to cheat successfully, P̃
must be able to find an a such that O(a) = c(a).

Now, let A1, · · · , Aℓ(n) be random variables taking values in Γn where Ai represents
the ith query to the oracle (if P̃ makes fewer than ℓ(n) queries, let Ai be any string that
was not queried so far). These random variables are functions of the oracle O, in that they
can depend on the results of previous queries. We then have by the union bound that

Pr
O

[
P̃ wins

]
⩽ Pr

[
O(A1) = c(A1) ∨ O(A2) = c(A2) ∨ . . . ∨ O(Aℓ(n)) = c(Aℓ(n))

]
⩽

ℓ(n)∑
i=1

Pr [O(Ai) = c(Ai)]

= ℓ(n)q−m

⩽ negl(n).

■
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Proposition 7 There are one-message implementations of WOTROn,n
Γ arbitrarily close

to be 1
e–avoiding against unbounded provers in the CR$ model.

Proof Let ℓ(n) be the length of the CR$ (i.e. r ∈R Γℓ(n)) upper bounded by some
polynomial. Let Pr : Γn → Γm × Γ∗ denote P’s message to V upon CR$ r and input
a ∈ Γn. For a ∈ Γn and CR$ r ∈ Γℓ(n), we have Pr(a) = (c(r, a), v(r, a)) which defines
announcement (a, c(r, a), v(r, a)) to V. The verifier’s algorithm Vr : Γn × Γn × Γ∗ →
{0, 1} upon CR$ r accepts (α, β, γ) when Vr(α, β, γ) = 1. The prover’s algorithm can be
considered deterministic given r, all randomness being provided by r. For {1, . . . , pn} = Γn

an enumeration of all elements in Γn, let

Cr := c(r, 1)∥c(r, 2)∥c(r, 3)∥ . . . ∥c(r, pn)

be the sequence of all challenges announced by P upon CR$ r, one for each possible input
a ∈ Γn. Let C := {Cr}r∈Γℓ(n) . For ω ∈ (Γn)pn , we define

Hω := {C ∈ C | (∃j ∈ [pn]) [Cj = ωj ]}

as the set of sequences containing challenges hitting ω somewhere. If Π is δ–avoiding then
for all ω ∈ (Γn)pn , |Hω| ≤ δ · pℓ(n).

We define Π and then show it is 3
4–avoiding using a CR$ r ∈ (Γn)2. Π is simply defined

from r = r1∥r2 ∈ (Γn)2 as

Cr = r1, r1, . . . , r1︸ ︷︷ ︸
pn

2 times

, r2, r2, . . . , r2︸ ︷︷ ︸
pn

2 times

.

We denote the elements of Γn by {1, 2, . . . , pn}. Let ω∗ ∈ (Γn)pn be defined as

ω∗ := 1, 2, 3, . . . , p
n

2 , 1, 2, 3, . . . ,
pn

2 .

It is not difficult to see that ω∗ maximizes the probability to be hit by CR. We have,

Pr
[
CR ∈ Hω∗

]
= Pr

[(
R1 ≤

pn

2

)
∨
(
R2 ≤

pn

2

)]
= 1− Pr

[(
R1 >

pn

2

)
∧
(
R2 >

pn

2

)]
= 1− 1

4 = 3
4 .

By considering longer CR$ r = r1, r2, . . . , rℓ(n) where ri ∈ Γn, it is possible to get arbi-
trarily close to a correct 1

e –avoiding scheme with

Cr = r1, r1, . . . , r1︸ ︷︷ ︸
pn

ℓ(n) times

, r2, r2, . . . , r2︸ ︷︷ ︸
pn

ℓ(n) times

, . . . , rℓ(n), rℓ(n), . . . , rℓ(n)︸ ︷︷ ︸
pn

ℓ(n) times

.

■
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