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Abstract. Ring signatures and ID-based cryptography are considered
promising in terms of application. A ring signature authenticates mes-
sages while the author of the message remains anonymous. ID-based
cryptographic primitives suppress the need for certificates in public key
infrastructures (PKI). In this work, we propose a generic construction
for post-quantum ID-based ring signatures (IDRS) based on symmetric-
key primitives from which we derive the first two constructions of IDRS.
The first construction named PicRS utilizes the Picnic digital signature
to ensure its security while the second construction XRS is motivated
by the stateful digital signature XMSS instead of Picnic, allowing a sig-
nature size reduction. Both constructions have a competitive signature
size when compared with state-of-the-art lattice-based IDRS. XRS can
achieve a competitive signature size of 889KB for a ring of 4096 users
while the fully stateless PicRS achieves a signature size of 1.900MB for a
ring of 4096 users. In contrast, the shortest lattice-based IDRS achieves
a signature size of 335MB for the same ring size.

Keywords: ID-based ring signature · Applied post-quantum cryptography ·
Symmetric-key primitives.

1 Introduction

Ring signatures [31] are currently considered one of the most valuable crypto-
graphic primitives to ensure privacy. They allow a member of a group (i.e. ring)
to anonymously sign a message on behalf of a group in a spontaneous manner.
This spontaneity allows signers to form a group of their own choice and to gen-
erate an anonymous signature. According to their great promise in providing
authenticity and anonymity, ring signatures have attracted a lot of interest from
the research community.
ID-based Ring Signature (IDRS): ID-based cryptography [32] was introduced in
1984 to erase the need for certificates in public key infrastructures (PKI). ID-
based cryptography utilizes a public key which is the identity of the user, for
example, an identity can be an email address or a name. In this framework, a
trusted third party named the private key generator (PKG) is required. PKG
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uses the identity of a user and his private key to generate the secret signing key
of the corresponding identity. The interest in combining both ID-based cryptog-
raphy and ring signature is undeniable as proven by the works [4,15,21,24,16,35].
As explained by Chow et al. [16], the main advantage of ID-based Ring signa-
ture (IDRS) over “traditional” ring signatures in PKI is that IDRS provides
better spontaneity. PKI’s ring signatures can only form a ring with users that
requested certificates for their public keys while in IDRS signers can form a ring
using users’ identities even if they did not request their secret signing keys to
PKG. Additionally, IDRS may significantly reduce the communication overhead
in sending the list of ring public keys to the verifier along with the signature for
PKI’s RS. The ring IDs may be much shorter and may even be implicitly known
by the verifier (e.g. all employees of a certain organization/department).
Post-quantum IDRS: In 2016, the post-quantum (PQ) standardization process
was launched by NIST and generated considerable attention from researchers.
This also motivates to design post-quantum IDRS as this would provide prim-
itives which ensure anonymity without requiring any certificates. There ex-
ist different PQ candidates to design quantum-safe cryptographic primitives.
Lattice-based cryptography is currently the most investigated candidate due to
its promise of flexibility. There are currently multiple lattice-based IDRS; the
first one by Wang [33] and more recent works by Zhao et al. [36], Wei et al. [34]
and Cao et al. [12].To the best of our knowledge, those are the only quantum-safe
IDRS.
In this work, we will focus on another promising candidate: symmetric-key prim-
itives, for example hash functions or block ciphers. These are old primitives pro-
viding the advantage of a well-studied and well-understood security. Another
advantage is that the security of a symmetric-key-based protocol depends only
on the integrated primitives and not on any assumed hard problem. This means
that, if a symmetric-key primitive has been broken, it can simply be replaced
and the design would still be secure. On the contrary, if the hardness assump-
tion of lattice-based constructions has been broken, then all schemes relying on
this assumption are not secure anymore. The recent design of zero-knowledge
proof systems obtained from symmetric-key primitives opens up new directions.
Zero-knowledge proof systems as ZKBoo [22], ZKB++ [13], KKW [28], ZK-
STARK [6], Aurora [7] and Ligero++ [9] allow a user to prove the knowledge
of a secret witness w such that C(w) = 1, where C is a public circuit similar to
hash functions. For all these aforementioned reasons, our work studies PQ IDRS
constructed based on symmetric-key primitives only.

1.1 Contributions

The contributions of this work can be presented in the following three parts:
Generic post-quantum ID-based ring signatures (Section 3): We de-
signed a circuit C (see Section 3.1) to allow signers to execute a zero-knowledge
proof that they own a witness w such that C(w) = 1. C is divided into two sub-
circuits: C1 and C2. C1 proves the membership of the signer to the ring through
an accumulator (see Definition 10) and C2 proves the knowledge of a signing
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Table 1: PicRS and XRS comparisons. PQ=post-quantum, N= ring size,
✓=proven, (✓)= assumed, h=XMSS tree height

IDRS
PQ |σ|

Max. N
IDRS.Setup |SID|

NIZK
PQ

H
(est.)|σ|(MB)

candidate (Asympt.) (Asympt.)
time

(KB) N = 26 N = 212 N = 220

LowMC 169.964 170.153 170.406

PicRS

KKW ✓ SHA3 3619 3622 3626
Symmetric O(logN) unli. O(1) 167 SHA3 2.046 2.046 2.047

Ligero++ (✓) MiMC 1.902 1.902 1.903
Poseidon 1.898 1.899 1.900

LowMC 12.487 12.680 12.930
KKW ✓ SHA3 332.300 335.266 339.211

XRS Symmetric O(logN) 220 O(2h) 4.899 SHA3 1.490 1.491 1.493
Ligero++ (✓) MiMC 0.973 0.976 0.979

Poseidon 0.885 0.889 0.893

[36] Lattice O(N) unli. - 615000 - ✓ - 5 335 32243

secret key generated by the private key generator PKG. In our generic IDRS
construction, the signing private key for the identity ID is a digital signature of
ID generated by PKG, therefore C2 proves the knowledge of a valid digital sig-
nature. Both C1 and C2 are linked through an “AND” logical gate (C = C1·C2).
The generic circuit is illustrated in Fig. 3.
Applicable post-quantum ID-based ring signatures named PicRS and
XRS from the generic construction (Section 4): We implemented sub-
circuit C1 with a Merkle Accumulator (Section 4.1) to prove the membership to
the ring. sub-circuit C2 can be initiated in two different ways:

(1) PKG uses Picnic digital signature [13], which means that a signer needs to
prove the knowledge of a valid Picnic signature. We designed circuit Picnic.C
presented in Section 4.2, Algorithm 1 and Fig. 5 to prove this statement.

(2) PKG uses the stateful digital signature XMSS [25], which means that a
signer needs to prove the knowledge of a valid XMSS signature. We designed
circuit XMSS.C presented in Section 4.2, Algorithm 2 and Fig. 6 to prove
this statement.

Picnic.C allows to design the first IDRS PicRS, where a signer uses circuit
C = PicRS.C = Merkle.C(= C1)·Picnic.C(= C2) to generate a signature. The
second implementation named XRS ensues from circuit XMSS.C. In XRS, a signer
uses circuit C = XRS.C = Merkle.C(= C1) · XMSS.C(= C2) to generate a sig-
nature. While PicRS is stateless for the signer and PKG, XRS is still stateless
for the signer but requires PKG to keep an updated state to the stateful nature
of XMSS. The PicRS’s PKG can generate an unlimited number of signing secret
keys and therefore handle an unlimited number of users, while there is a cap for
the maximum number of users in XRS (e.g. 220 users).
Applicable constructions analysis and optimization (Section 5): We
evaluate our constructions with two different zero-knowledge proof systems:
KKW [28], Ligero++[9]. Each of them is tested with the standard hash function
SHA3 and, additionally with the following non-standard hash functions to opti-
mize the signature size: LowMC [3], MiMC [2] and Poseidon [23]. We optimize
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the complexity of circuit Picnic.C and XMSS.C by testing different parameters
for Picnic and XMSS to achieve the best possible signature size. In theory, both
schemes have a signature size that grows logarithmically (O(logN)) with the
size of the ring represented by N . This is an improvement when compared with
lattice-based IDRSs [33], [36], [34] or [12], whose signature size grows linearly
(O(N)) with the ring size, making them unsuitable for large rings. In practice,
PicRS and XRS signature sizes are nearly constant because proving the knowl-
edge of a valid Picnic (PicRS) or XMSS (XRS) signature is the bottleneck of both
signature sizes. PicRS achieves a size of 1.900MB while XRS requires only 889KB
for a ring of 4096 members. Table 1 demonstrates that these sizes are competitive
when compared to the current state-of-the-art of lattice-based IDRS introduced
by Zhao et al. [36], which is the only work proposing concrete parameters and
allowing us to estimates their signature sizes.

1.2 Overview of techniques

At the heart of our generic IDRS, we utilize a non-interactive zero-knowledge
proof system (NIZK) based on symmetric-key primitives, which allows us to
prove the knowledge of a witness w such that, for a public circuit C, we have
C(w) = 1. Traditional digital signatures, for example Picnic [13], run the NIZK
on a circuit related to the underlying one-way function as in the original zero-
knowledge proof based signature schemes like Picnic [13] New challenges arise in
IDRS as distinct from a traditional digital signature, namely, the generated proof
needs to include a part of the IDRS signature involves the “verification” circuit
for the signing secret key generation (i.e. verification algorithm of a standard
signature by the key generation authority). This means that optimising the size
of the verification circuit for the underlying signature is critical for our IDRS
signature size and we focused our efforts in this direction.
In our generic IDRS construction, a signer with an identity ID owns a witness
that is the signing secret key SID. SID is a digital signature (see Definition 4),
generated by PKG, using its ID as a message. A signer will use the NIZK proving
procedure on circuit C to generate a signature of a message m. C is designed
to prove that he knows a valid SID, in other words, a valid digital signature
generated by PKG for an ID belonging to the ring L. Circuit C takes as inputs
(i.e. the witness) the signer’s identity ID, the corresponding signing secret key
SID and the list of identities L (i.e. the ring). More formally, the signer will
prove the knowledge of (ID,SID, L) such that C(ID,SID, L) = 1. C, summarized
in Fig.3, is composed of two main sub-circuits named C1 and C2, which are used
to prove the membership in the ring and to prove the knowledge of a valid digital
signature.
We construct applicable constructions by defining and optimizing circuit C and
both its sub-circuits C1 and C2. C1 is implemented as Merkle.C which is con-
structed on top of a Merkle accumulator [18,10,28] and a multiplexer (see Section
4.1) to hide the position of the identity into the accumulator. C2 can be imple-
mented with the verification procedure of the Picnic digital signature or the
verification algorithms of the stateful XMSS digital signature. XRS follows the
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same idea but, instead of having a valid picnic signature as SID, each user owns
an XMSS signature. The proof of knowledge of a valid signature will be done
through circuit XMSS.C(= C2). As the stateful nature of XMSS, XMSS.C re-
quires the use of multiplexers (see Equation 3) to hide the state and, so, provide
anonymity.

1.3 Outline of the paper

This paper is structured as follows. Section 2 formally defines IDRS. Section 3
presents the generic construction. Section 4 introduces both possible instances
PicRS and XRS. Section 5 concludes the paper with a full evaluation of the two
applicable constructions. Appendix A defines the cryptographic primitives used
in this work.

2 Definition of ID-based ring signature (IDRS)

We now formally define an ID-based ring signature. In IDRS, there is a private
key generator (PKG), which is a trusted identity generating the signing secret
keys of users. Only users who have received a signing secret key SID from PKG
can generate a valid and anonymous signature.

Definition 1 (ID-based ring signature). An ID-based ring
signature is defined by the tuple of algorithms: IDRS =
(IDRS.Setup, IDRS.KeyGen, IDRS.Sign, IDRS.Verify)

– (mpk,msk, param) ← IDRS.Setup(1λ): This algorithm takes as input the se-
curity parameters λ, it produces the master public key mpk, the master secret
key msk and the public parameters param. This procedure is executed by the
private key generator (PKG).

– SID← IDRS.KeyGen(ID,msk): This algorithm takes as input an identity ID ∈
{0, 1}∗ and the master secret key msk, it outputs the signer’s secret signing
key SID. This procedure is executed by the private key generator PKG and
the result is transmitted to the user with the identity ID.

– σ ← IDRS.Sign(m, L, ID,SID,mpk, param): This algorithm takes as input the
message m, a list L of N identities, the identity of the signer ID, the signing
secret key SID of the member ID, where ID ∈ L, the master public key mpk
and the public parameters param. It outputs a ring signature σ.

– 0/1← IDRS.Verify(m, L, σ,mpk, param): This algorithm takes as input a ring
signature σ, a message m, the ring list L, the master public key mpk and the
public parameters param. It outputs 1 if σ is valid and generated by one
ID ∈ L, 0 otherwise.

Security properties: A secure ID-based ring signature achieves correctness,
unforgeability and anonymity. All security experiments presented in Fig. 1 and
2 are performed between an adversary A and a challenger CH.



6 M. Buser et al.

Definition 2 (Unforgeability). An IDRS achieves unforgeability if it is infea-
sible for an adversary A to generate a valid signature σ from the identities of
the ring. An IDRS achieves unforgeability if and only if for a security parameter
λ the advantage AdvForge

A of an adversary A satisfies

AdvForge
A (λ) = Pr[ExpForge

A,IDRS(λ) = 1] < negl(λ), (1)

where the unforgeability experiment ExpForge
A,IDRS(λ) is presented in Fig. 1 on pg 6.

ExpForge
A,IDRS(λ)

Setup:
This oracle is executed by the challenger CH who performs the setup algorithm
(mpk,msk, param) ← IDRS.Setup(1λ). PKG’s public key mpk is then sent to the ad-
versary A. The sets Q,S are initialized: Q,S ← ∅.
Query:
SID ← CO(ID): This oracle corrupts a user. The adversary A sends the user’s
identity ID to the challenger CH which computes the corresponding secret key
SID← IDRS.KeyGen(ID,msk) and sends SID to A. ID is added to the set Q.
σ ← SO(m, L, ID,mpk, param): This signing oracle starts with A sending to the chal-
lenger CH a list of user’s identities L, message m and the identity of the signer
ID ∈ L and CH returns a valid signature σ for message m generated by the user ID
(σ ← IDRS.Sign(m, L, ID, SID,mpk, param)). The tuple (m, L) is added to the set S.
Forgery:
A forges (m∗, L∗, σ∗).

if 1← IDRS.Verify(m∗, L∗, σ∗,mpk, param) ∧ ((m∗, L∗) /∈ S) ∧ (ID /∈ Q for all
ID ∈ L∗)

then return 1
return 0

Fig. 1: IDRS Unforgeability Game.

Definition 3 (Anonymity). An IDRS for a ring L, a message m and a signa-
ture σ = IDRS.Sign(m, L, ID,SID,mpk, param), achieves anonymity if and only if
for a security parameter λ the advantage AdvAnom

A of an adversary A satisfies

AdvAnom
A (λ) = |Pr[ExpAnom

A,IDRS(λ) = 1]− 1/N | < negl(λ), (2)

where the anonymity experiment ExpAnom
A,IDRS(λ) is defined in Fig. 2 on pg 7 and

N is number of ring members.

3 Generic construction for ID-based ring signature from
symmetric-key primitives

This section introduces our proposed generic construction of IDRS based on
symmetric-key primitives. A key part of our proposal is that symmetric-key
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ExpAnom
A,IDRS(λ)

Setup:
This game is executed by the challenger CH who performs the setup algorithm
(mpk,msk, param) ← IDRS.Setup(1λ). PKG’s key pair (mpk,msk) is sent to the ad-
versary A.
Challenge:
σ ← CHO(m, L): This interactive oracle is initiated by the adversary A, who
sends a message m to be signed and a list of identities L to the challenger CH.
CH randomly picks ID ∈ L and generates a valid signature σ for the selected ID
(σ ← IDRS.Sign(m, L, ID, SID,mpk, param)). CH sends σ to A.
Output:
A chooses ID∗ based on the received σ.

if ID∗ = ID
then return 1

return 0

Fig. 2: IDRS Anonymity Game.

based zero-knowledge proof systems (NIZK) give us the ability to prove the
knowledge of an input (i.e. witness) w of a circuit C such that C(w) = 1. In an
IDRS, the signer needs to demonstrate that (1) he owns a secret key generated
by the central authority PKG and that (2) his identity belongs to the rings. This
requires a circuit C that proves both statements.

Fig. 3: Generic circuit C

The basic idea behind our generic IDRS is that the PKG possesses a digital sig-
nature (see Definition 4) key pair as master public mpk and private key msk (i.e.
mpk = DS.pk,msk = DS.sk). Then, each user with an identity ID requests a sign-
ing key SID to PKG which generates a digital signature DS.σ taking the identity
ID as the message or, in other words, PKG computes SID← DS.Sign(ID,msk). To
sign a message m, a user in possession of a signing secret key generated by PKG
proves the knowledge through a NIZK (see Definition 6) of SID associated with
an identify ID belonging to the ring L (i.e ID ∈ L). We designed a generic circuit
C (see Fig.3) which proves the validity of both statements. C is divided into two
sub-circuits” C1 to prove ID ∈ L and C2 to prove 1 = DS.Verify(ID,SID,mpk).
C1 and C2 are associated with “AND” gate to form the overall circuit C.
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3.1 Generic IDRS algorithms

We now formally define the algorithms for our generic construction of IDRS,
which follows Definition 1.

(mpk,msk, param)← IDRS.Setup(1λ) : This algorithm is executed by PKG and
performs the following steps:
– (mpk,msk)← DS.KeyGen(1λ) (see Definition 4)
– param← A.Gen(1λ) (See Definition 10)
– Return (mpk,msk)

SID← IDRS.KeyGen(ID,msk): This algorithm is executed by PKG on the re-
quest of the user with the identity ID. It computes a digital signature DS.σ
using the ID as the message. The digital signature DS.σ is transmitted to
the user ID with and becomes his signing secret key SID. This procedure
executes the following steps:
– SID← DS.Sign(ID,msk) (see Definition 4)
– Return SID

σ ← IDRS.Sign(m, L, ID,SID,mpk, param): This procedure takes as inputs the
message m, the set of N identities L, in other words the ring, the signing
secret key SID = DS.σ and the master public key and the public parameters
param which the initial public key of an empty accumulator. This executes
the following steps:
– (AL,A.pk) ← A.Eval(param, L): This ”accumulates” the set of identities

belonging to the ring L. It returns an accumulator A and its updated
public key A.pk.

– wID ← A.WitGen(A.pk,AL, L, ID): This returns the witness wID for the
identity of the signer which will be used to prove that his ID is included
in the accumulator AL.

– π ← NIZK.Prove((m,A.pk,AL,mpk), (SID, ID,wID)) (see Definition 6)
The secret witness is w = (SID, ID,wID), the public statement is com-
posed of the message m, the accumulator public key A.pk, the ac-
cumulator build on the ring AL and PKG public key mpk (x =
(m,A.pk,AL,mpk)). The tuple (x,w) ∈ R if and only if the following
statements stand:
(1) 1 = A.Verify(A.pk,AL,wID, ID): This is equivalent to prove ID ∈ L, so

it will be proven through sub-circuit C1 (See Fig. 3).
(2) 1 = DS.Verify(ID,SID,mpk): This will be proven through sub-circuit

C2 (See Fig. 3).
Both statements will be separately proven through the sub-circuits C1

and C2 which are linked together with a “AND” gate to form the whole
circuit C ((See Fig. 3)) and assure that they are both valid. The mes-
sage to be signed, m, is embedded by integrating it to the Fiat-Shamir
transform 1 [20] to generate the challenge.

1 Fiat-Shamir transform converts an interactive protocol into a non-interactive proto-
col. It generates the challenge c as an outputs of H (c = H(r,m)), where m is the
message to be signed in IDRS, instead of receiving it from the verifier.
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– σ ← π
– Return σ

0/1← IDRS.Verify(m, L, σ,mpk, param): This algorithm takes as inputs the mes-
sage m, the list of identities L and a ring signature σ. It verifies the validity
of σ by executing the following steps:
– π ← σ
– (AL,A.pk)← A.Eval(param, L): The verifier construct the accumulator for

the set of identities belonging to the ring L. It returns an accumulator
AL and its updated public key A.pk.

– Return NIZK.Verify((m,A.pk,AL,mpk), π) : This returns 1 if the proof
π is valid for circuit C.

3.2 Security analysis

The security of our generic IDRS depends on the symmetric-key primitives used,
namely a EU-CMA secure digital signature scheme DS (see Definition 4), a secure
accumulator A presented in Definition 10, a cryptographic hash function H (see
Definition 11) and a secure NIZK NIZK (see Definition 6).

Theorem 1 (Unforgeability). Let IDRS be the construction provided in Sec-
tion 3.1 with a cryptographic hash function H, a EUC-CMA secure digital sig-
nature scheme DS, a secure accumulator A and a secure non-interactive zero-
knowledge proof system NIZK. Then, IDRS achieves unforgeability based on Def-
inition 2.

Proof. Let Vi be the event that A wins the unforgeability experiment i and
(m∗, L∗, σ∗) is a forgery generated by A. In order to prove the unforgeability
of IDRS, we distinguish fours cases in the attempt of signing the message m for
the user with the identity ID who belongs to the ring L and please remind that
σ∗ = π∗:

Event V1 : ExpForge
A,IDRS(λ) = 1.

Event V ′
1 :V1 happens and ((ID∗,SID∗,w∗

ID)← NIZK.Ext(crs, t, (m∗,A.pk∗,A∗
L

,mpk), π∗) such that ((m∗,A.pk∗,A∗
L,mpk), (ID∗,SID∗,w∗

ID)) ∈ R: By the sim-
ulation extractability property of NIZK (see Definition 9), we have Pr[V ′

1 ] =
Pr[V1] − negl(λ). We divide this event into two disjoint sub-events v′1.1 and
v′1.2:

v′1.1: ID∗ ∈ L∗: This event has a negligible probability to happen as this requires
breaking the unforgeability of the digital signature scheme DS as ID∗ /∈ Q
(see Fig. 1). A executes the extractor (see Definition 9) on a previous
signature σ, which gives him a witness SID∗. This event will happen if
and only if A can construct his own SID without interacting with PKG,
which means that he needs to break the digital signature DS used by
PKG with the help of the extracted witness. However, as DS achieves
EU-CMA security (see Definition 5), we can conclude that Pr[v′1.1] ≤
AdvEU−CMA

A < negl(λ).
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v′1.2: ID∗ /∈ L∗: This event has a negligible probability to happen due to the
collision-freeness property of the accumulator A. In this case, the extractor
run on the A’s forgery produces a valid witness w∗

ID for an extracted iden-
tity ID∗ not included in the ring L∗, which has been accumulated into AL∗ ,
i.e. (AL∗ ,A.pk∗) = A.Eval(param, L∗) but A.Verify(A.pk∗,AL∗ ,w∗

ID, ID
∗) =

1. Therefore, if this event happens, we break the collision-freeness prop-
erty of A (see Definition 10) Therefore, we can conclude that Pr[v′1.2] <
negl(λ).

Hence Pr[V ′
1 ] = Pr[v′1.1] + Pr[v′1.2] < negl(λ), so we have Pr[V1] < negl(λ).

Overall, we can conclude Pr[ExpForge
A,IDRS(λ) = 1] = Pr[V1] < negl(λ).

Theorem 2 (Anonymity). Let IDRS be the construction provided in Section
3.1 with a cryptographic hash function H, a EUC-CMA secure digital signature
scheme DS, a secure accumulator A and a secure non-interactive zero-knowledge
proof system NIZK. Then, IDRS achieves anonymity based on Definition 3.

Anonymity. Anonymity is directly stemmed from the zero-knowledge property
of NIZK. We use a game-based approach to show that IDRS provides anonymity.
Let Vi be the event that the adversary A wins the GAMEi.
GAME1: The original anonymity experiment ExpAnom

A,IDRS (Fig. 3) is run by A.
GAME2: Same as the previous game but the proof π generated with NIZK on
circuit C is replaced with the outputs of its simulator NIZK.Sim (see Definition
8). This is computationally indistinguishable from the previous game due to
zero-knowledge properties of NIZK. Therefore, we can conclude that |Pr[V2] −
Pr[V1]| = AdvzkA,NIZK < negl(λ). This concludes the Anonymity proof.

4 IDRS: applicable constructions

This section introduces possible applicable constructions of the generic IDRS
presented in Section 3. Section 4.1 starts with a presentation of the practical
construction of sub-circuit C1 and discusses its security while Section 4.2 is ded-
icated to presenting possible constructions of sub-circuit C2 and also discusses
their security. The section ends with the summary of two possible implementa-
tions of the generic IDRS. We assume that hash functions H output a string of
2λ bits where λ is the post-quantum security level.

4.1 Sub-circuit C1

Sub-circuit C1 (see Fig.3) aims to prove the first statement 1 =
A.Verify(A.pk,AL,wID, ID) which is equivalent to prove ID ∈ L or, in other words,
that the identity ID of the signer belongs to the ring L. As previously stated,
we use an accumulator to prove the membership to the ring. Applying NIZK
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based on symmetric-key primitives requires that the verification of a valid wit-
ness, A.Verify algorithm, can be expressed as a one-way circuit. This leads us to
circuit Merkle.C, derived from the Merkle accumulator.

Merkle accumulator and circuit Merkle.C: The Merkle accumulator respects
Definition 10 and “accumulates” the set of identities L as a Merkle tree [30]. Each
identity of the ring L is a leaf in a Merkle tree. A Merkle tree is a binary tree
in which each internal node is the hash of both its children. The accumulator’s
public key A.pk is the tree root as illustrated in Fig.4a.

The membership proof consists of demonstrating the knowledge of the path from
the leaf associated with the signer identity to the root of the tree. This can be
represented as a circuit Merkle.C(wID, ID) = A.pk, where A.pk is the Merkle root
and wID is the authentication path for the identity ID composed of internal nodes
of the Merkle accumulator/tree and logN bits, which indicate the direction of
the path. Merkle.C is formally presented in Algorithm 2 and is composed of
logN calls of hash function H, where N is the ring size. Additionally, at each
level of the Merkle accumulator, Merkle.C goes through a multiplexer µ which
is defined as follows:

µ(x, y, b) =

{
(x, y) if b = 0,

(y, x) if b = 1.
(3)

µ orders the inputs of H depending on the path coming from left or right in
the tree. µ hides the path’s direction from ID to the root A.pk, hence ensuring
anonymity to our IDRS. µ can be written as a circuit µ(x, y, b) = (b · x +
b · y, b · y + b · x). Fig. 4a depicts an example of a Merkle accumulator and
Merkle.C: the corresponding witness for ID is wID = ((w1, 1), (w2, 0)), where
the Merkle.C(wID, ID) = H(µ(H(µ(ID,w1, 1)),w2, 0)). Without the multiplexer,
the position of the ID would be identifiable from the path meaning that the
anonymity could not be provided. Merkle.C is presented Algorithm 2 on pg. 16.
In conclusion, Merkle.C plays the role of sub-circuit C1 in our general circuit (see

(a) Example: Merkle accumulator
with N = 4, n1 = H(ID2, ID3)

(b) Merkle.C repre-
sentation

Fig. 4: Merkle Accumulator and circuit Merkle.C
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Fig. 3) to prove that the membership to the ring can be replaced in application
by circuit Merkle.C presented in this section. The complexity of Merkle.C grows
logarithmically with the number of identities in the ring.

Security and one-wayness Merkle.C: As the security presented in Section 3.2
shows, we require a secure accumulator A, in our case, a secure Merkle accu-
mulator which comes from the properties of the hash function H (see Definition
11). The collision-freeness of the accumulator comes directly from the collision
resistance property of H. This means that it is computationally infeasible to con-
struct the same accumulator from two different sets of ring members. Merkle.C’s
one-wayness ensues from the one-wayness of the hash function H (see Definition
11). This circuit is a Merkle tree with a public root. It should be computationally
infeasible to recover any of the leaves from the root and this is achieved because
the root is an output of the hash function H, which is a one-way function as
presented in Definition 11.

4.2 Sub-circuit C2

C2 (see Fig.3) aims to prove the validity of signing secret key SID, namely
to prove that 1 = DS.Verify(ID,SID,mpk). Therefore, the verification proce-
dure of the digital signature scheme is to be expressed as a one-way circuit.
The current state-of-the-art of digital signatures based on symmetric-key primi-
tives gives us two possible digital signatures: The stateless Picnic signature (see
Appendix A.1) and the stateful XMSS signature (see Appendix A.2), which
meet the requirements to fulfil Theorem 1 and 2.Both schemes were chosen
because they are considered standard post-quantum signature (XMSS) or as
alternative candidate (Picnic) by the NIST standardization process. It is im-
portant that it exist other alternatives [1]. We first present circuit Picnic.C,
which aims to prove the knowledge of a valid Picnic signature, and then cir-
cuit XMSS.C, which aims to prove the knowledge of a valid XMSS signature.
Circuit Picnic.C: The goal of this circuit is to prove that the signer possesses a
valid Picnic signature generated by PKG. Picnic and a detailed description of its
parameters are presented in Appendix A.1. More formally, the signer proves the
knowledge of SID such that 1 = Picnic.Verify(ID,SID,mpk) with the NIZK.Prove
procedure and circuit Picnic.C. Circuit Picnic.C takes as inputs SID =
(C,P, {seed∗j , h′

j}j /∈C , {{statej,i, ri,j}i ̸=pj
, comj,pj

, {ẑj,a},msgsj,pj
}j∈C) and the

signer identity ID. To facilitate the explanation of the circuit, we present a
high-level picture of Picnic.C in Fig. 5 and we divide it into four sub-circuits
Picnic.c1,Picnic.c2,Picnic.c3 and Picnic.c4. Each sub-circuit executes a specific
step of the Picnic verification procedure (see Definition 12) as presented below:

Sub-circuit Picnic.c1 needs to be executed as the first part of the Picnic.Verify
algorithm, which computes the commitment of n−1 parties for the τ executions
of reveal in the Picnic signature. It starts for every j ∈ C and i ̸= pj computes
comj,i := H(statej,i, rj,i): This is (n − 1)τ executions of the hash function H.
Then it computes the value hj := H(comj,1, . . . , comj,n). At end of the sub-
circuit, we have τ elements (recall that |C| = τ) of 2λ-bits which will be used as
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inputs in sub-circuit Picnic.c4. The detailed construction of Picnic.c1 is presented
in Algorithm 2.
Sub-circuit Picnic.c2 is executed on the second part of the Picnic verification
procedure, namely for j /∈ C, using seed∗j to compute hj as the signer in the
first step of Picnic.Sign algorithm. This creates commitments of the MPC-in-
the-head execution that are not executed in the online phase (see Definition 12).
According to [27], this is used to generate a binary tree similar to GGM [29]
construction with n leaves seedj,i. This sub-circuit can be represented by:

– For all j /∈ C (goes for M − τ iterations)

1. Compute n seed
(i)
j (one per party in MPC) from seed∗j given in the

SID by expending seed∗j into binary tree of n leaves due to the circuit

Tree(seed∗j , n)→ {seed
(i)
j }ni=1 (see Table 2).

2. Generate statej,i and rj,i from the circuit ComputeState(seed
(i)
j ) by com-

puting n (one tuple per party) calls of H (see Table 2).
3. For i ∈ [n]: comj,i := H(statej,i, rj,i):
4. Then compute the result of the commitment based hj :=

H(comj,1, . . . , comj,n).

Circuit Picnic.c2 generatesM−τ outputs of 2λ bits (see detailed construction
in Algorithm 1).

Sub-circuit Picnic.c3 aims to prove the knowledge of τ valid MPC-in-the-head
computation of circuit CPKG (this circuit is used to perform the Picnic sig-
nature). For each j ∈ C run an execution of circuit CPKG among the parties
{Pi}i ̸=pj

using {statei,j}i ̸=pj
, {ẑj,a}, and msgsj,pj

; this yields msgsj,pj
and an

output bit b. Check if b = 1. Then compute h′
j = H({ẑj,a},msgsj,1, . . . ,msgsj,n).

The aim of the sub-circuit is to prove the knowledge of a valid MPC execution.
As previously explained, for each “AND” gates of circuit CPKG used by PKG,
and for each party Pi, Picnic.c3 needs to perform the following MPC-in-the-head
over the circuit (ẑa · [λb]⊕ ẑb · [λa]⊕ [λc]⊕ [λγ ]⊕ ẑa · ẑb) for each n−1 parties for all
|C| = τ simulations (see Algorithm 1). After the MPC simulation, it checks that
the output y is equal to mpk and computes h′

j = H(ẑj,a,msgsj,1, . . . ,msgsj,n).
Sub-circuit Picnic.c4 takes as input all elements output by the other circuits

Picnic.c1, Picnic.c2 and Picnic.c3 and outputs 1 if the final equality (C,P) ?
=

G(ID, h1, h
′
1, . . . , hM , h′

M ) holds.
The final circuit Picnic.C can be represented as Picnic.C =
Picnic.c4(Picnic.c3(SID),Picnic.c2(SID),Picnic.c1(SID), ID). The detailed cir-
cuit is presented in Algorithm 1 and illustrated in Fig. 5.
One-wayness and security of Picnic.C: The unforgeability of Picnic have
been proven in [13,28] and therefore provides the desired security according to
Theorem 1 and 2. The one-wayness of Picnic.C ensues from the one-wayness
of the four sub-circuit presented in Algorithm 1. The one-wayness of Picnic.c1
depends on the one-wayness of the cryptographic hash function H. Indeed, each
step involves only the calls of the hash function H therefore it is computation-
ally infeasible to invert Picnic.c1. Picnic.c2 provides also one-wayness for the same
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Fig. 5: Circuit Picnic.C

Algorithm 1 Picnic.C circuit, for parameters see Appendix A.1 and Table 2

SID = (C,P, {seed∗j , h′
j}j /∈C , {{statej,i}i ̸=pj , comj,pj , {ẑj,a},msgsj,pj}j∈C)

Picnic.c1

Input: SID
Output: {hj}j∈C
1: for j ∈ C do
2: hj = H(H(statej,1, rj,1), . . . , comj,pj ,

.., H(statej,n, rj,n))
3: end for
4: return {hj}j∈C

Picnic.c2

Input: SID
Output: {hj}j /∈C
1: for j /∈ C do
2: {seed(i)j }

n
i=1 ← Tree(seed∗j , n) (See

Table 2)
3: (statei,j , ri,j)← ComputeState(seed)

(See Table 2)
4: hj = H(H(statej,1, rj,1), . . . ,

H(statej,n, rj,n))
5: end for
6: return {hj}j /∈C

Picnic.c3

Input: SID
Output: b
1: for j ∈ C do

2: Execute C, where C is the circuit
used for the Picnic signature.

3: for all {Pi}i ̸=pj do
4: for x ∈ [AND] do
5: (ẑa · [λb]⊕ ẑb · [λa]⊕ [λc]⊕ [λγ ]⊕

ẑa · ẑb)(j,i,x) (see Fig. 5)
6: end for
7: end for
8: h′

j = H({ẑj},msgsj,1, . . . ,msgsj,n)
9: end for
10: return {h′

j}j∈C

Picnic.c4

Input: {hj}j∈C , {h′
j}j∈C , {hj , h

′
j}j /∈C , ID

Output: b

1: b = (C,P) ?
= G(ID, h1, h

′
1, . . . , hM , h′

M )

2: return b

Picnic.C

Input: SID, ID
Output: 0/1
1: b = Picnic.c4(Picnic.c1(SID),

Picnic.c2(SID),Picnic.c3(SID), ID)
2: return b
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reason. Picnic.c3 one-wayness depends on the one-wayness of the following equa-
tion (ẑa · [λb] ⊕ ẑb · [λa] ⊕ [λc] ⊕ [λγ ] ⊕ ẑa · ẑb) on which the NIZK is executed.
This six inputs equation has a 50% chance to output 0, which makes it one-way.
Picnic.c4’s one-wayness follows directly from the one-wayness of hash function G.
This important to notice that in Picnic, G computes the challenge (Fiat-Shamir
transform) and is modelled as random oracle. Hence, producing NIZKs for calls
to a random oracle which is not possible, but in practice G is initialized as an
hash function which makes PicRS possible.

Fig. 6: XMSS.C

XMSS.C circuit: We define circuit XMSS.C that will be used to prove the
knowledge of a valid SID such that 1 = XMSS.Verify(ID,SID,mpk) (see Definition
14). We divided circuit XMSS.C into two sub-circuits XMSS.c1 and XMSS.c2
presented in Algorithm 2 on pg. 16. In order to facilitate the explanation, we
also provide a high-level representation of XMSS.C in Fig. 8.

Sub-circuit XMSS.c1 executes a WOTS+ signatures verification procedure

WOTS+.pk
′
= WOTS+.Verify(ID,WOTS+.σ) (see Definition 13). It outputs

WOTS+.pk
′
.

Sub-circuit XMSS.c2 computes XMSS.pk′ from WOTS+.pk
′
(output of circuit

XMSS.c1) with the help of the authentication path auth (the grey nodes in Fig.
8). This corresponds to h evaluation of the hash function H. This takes the
outputs of circuit XMSS.c1, WOTS+.pk

′
, and using the element auth as chrono-

logical outputs to the hash function H and idx (which indicates the order of
the inputs of every hash function H). The idx indicates the position of the
WOTS+.pk in the XMSS tree. In order to provide anonymity, at each level of
the path verification go through a multiplexer gate is defined in 3 (the same
as the one used for the Merkle accumulator presented in Section 4.1). The
multiplexer hides the position of the WOTS+.pk in PKG’s XMSS tree and so
provides unlinkability between two signatures generated by the same signer.
For example, in Fig. 8, circuit would be XMSS.c2(WOTS+.pk

′
6, auth, idx) =

H(µ(H(µ(H(µ(WOTS+.pk6, auth1, 0)), n1, 1)), n2, 1))
One-wayness and security of XMSS.C: XMSS.C is composed of two sub-
circuits presented in Algorithm 2. The one-wayness of XMSS.C ensues directly
from the unforgeability of XMSS used by PKG and of the one-wayness of the
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hash function. Indeed according to [25], the security of XMSS depends on the
one-wayness of the hash function, it is computationally infeasible to compute
the WOTS+ public key from the XMSS tree root which is mpk. As it is compu-
tationally infeasible to invert XMSS.c2 from mpk and also infeasible XMSS.c2.
The information leaked by the stateful nature of XMSS is hidden by integrating
the multiplexer µ to circuit XMSS.c2. Because of the multiplexer, the position of
the WOTS+ signature in PKG’s XMSS tree is hidden and avoids the possibility
to link two signatures generated by the same signer.

Algorithm 2 XMSS.C circuit, for parameters see Table 2, Definition 13 and 14

SID = (WOTS+.σ, idx, auth)

XMSS.c1

Input: ID,WOTS+.σ
Output: WOTS+.pk

′

1: md = (md1, . . . ,mdlen1)← H(ID, r)
2: c = (md1, . . . ,mdlen2)←

∑len1
i=1(Wint−

1−mdi)
3: md = (md||c)
4: for 1 ≤ i ≤ len do
5: WOTS+.pk

′
i =

HWint−mdi(WOTS+.σi)
6: end for
7: WOTS+.pk

′
= MT({WOTS+.pk

′
i}leni=1)

(see Table 2)
8: return WOTS+.pk

′

XMSS.c2

Input: WOTS+.pk
′
, idx, auth

Output: b
1: h1 ← H(µ(WOTS+.pk, auth1, idx1))
{Where µ is a multiplexer as described
in Section 4.1 and presented in 3}

2: for 1 ≤ i ≤ h do
3: hashi = H(µ(hi−1, authi, idxi))
4: end for
5: return hashh == mpk

XMSS.C

Input: SID
Output: 0/1
1: b = XMSS.c2(XMSS.c1(SID))
2: return b

Merkle.C

Input: wID = (wi, bi)
logN
i=1 ,A.pk

Output: 0/1
1: a1 = H(µ(ID,w1, b1))
2: for i = 2 to i = logN do
3: ai = H(µ(ai−1,wi, bi))
4: end for
5: return A.pk = alogN

4.3 Applicable post-quantum IDRSs from symmetric-key primitives

This section introduced three possible circuits: Merkle.C, which can take the role
of C1, Picnic.C and XMSS.C, which can both be implemented as C2. From these
circuits, we can implemented two different IDRSs.
Post-quantum IDRS from Picnic named PicRS: PicRS follows the generic
construction presented in Section 3.1 and uses Picnic as digital signature DS.
This means that the master public and private keys mpk and msk are set to
msk = Picnic.sk and mpk = Picnic.pk and each user with an identity ID owns
a signing secret key SID = Picnic.σ such that 1 = Picnic.Verify(ID,SID,mpk).
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Table 2: Additional Functions and parameters summary

r ← MT(S) This circuit constructs a Merkle root r of binary
tree from a set of leaves S. This circuit executes
H for |S| − 1 times.

{leafi}2
leaves

i=1 ← Tree(seed, depth) This circuit takes as input a seed seed and an
integer depth indicating the number of the binary
tree leaves. This procedure calls 2 · (leaves − 1)
executions of H.

(state, r)← ComputeState(seed) This circuit takes as input a seed and outputs the
tuple (state, r). This circuit executes one H.

n Number of MPC parties for Picnic signature, this
indicates the number of parties that will perform
the MPC-in-the-head procedure.

M Number of MPC instanciation, which indicates
the number of time the number of time MPC-in-
the-head procedure needs to be executed in the
Picnic

τ number of element in the set C, which correspond
to the number of MPC execution provided in a
Picnic Signature

idx Index indicating a leave position in a
XMSS/Merkle tree

AND number of multiplication/”AND” gates

auth authentication path in a XMSS tree

(mpk,msk) master public key & master secret key

Wint Winternitz parameter of WOTS+, which indicates
the number of hash between WOTS+ secret key
and a public key

len WOTS+ parameters len = len1+ len2 where len1 =⌈
|m|

log(Wint)

⌉
and len2 =

⌊
log(len1(Wint−1))

log(Wint)

⌋
+ 1, this

indicates the number of element a WOTS+ signa-
ture is composed

ID user’s identity

SID signing secret key of user ID

h height of the XMSS tree

· the multiplication/”AND” gates in circuits

+ the addition/”OR” gates in circuits
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In PicRS, the general circuit C (see Fig. 3) named PicRS.C is where the signer
executes the NIZK proof. We have circuit C = PicRS.C where C = PicRS.C =
Merkle.C · Picnic.C. PicRS security comes from the EU-CMA security of Picnic
proven in [14], from the properties of the Merkle accumulator and from the
one-wayness of circuits Merkle.C and Picnic.C discussed in Section 4.3.
Post-quantum IDRS from Picnic XMSS named XRS: The idea of the
XMSS-based IDRS construction is similar to the PicRS construction but the
Picnic digital signature is replaced with the XMSS signature. This means that
in XRS, each signer executes NIZK on circuit C = XRS.C = Merkle.C ·XMSS.C,
where XMSS.C will prove the knowledge of a valid XMSS signature (i.e. 1 =
XMSS.Verify(ID,SID,mpk)). XRS security comes from the EU-CMA security of
XMSS proven in [25], from the properties of the Merkle accumulator and from
the one-wayness of circuits Merkle.C and XMSS.C discussed in Section 4.3.

5 Evaluation

This section analyzes the signature sizes of both applicable constructions PicRS
and XRS for a post-quantum security level of λ = 128 bits. We evaluate both
constructions using two different non-interactive zero-knowledge proof systems
(NIZK): KKW [28] and Ligero++ [9]. We chose to work with these NIZKs
because, on the one hand, KKW is considered the current state-of-the-art of
symmetric-key based NIZK. It has been analyzed in the QROM model, it is
considered by NIST as an alternate candidate for the standardization process
[1] and provides all the security properties that our construction requires. On
the other hand, Ligero++ has been less studied and its post-quantum security
is only assumed, but according to the literature it achieves the most competitive
proof size for large circuits when compared to other works as Aurora [7] or ZK-
STARK [6], which could be promising NIZK’s alternative. KKW is optimized to
work on binary circuits while Ligero++ is optimized for arithmetic circuits (see
Table 3a). We implemented our schemes using different hash functions which are
either considered as binary or as arithmetic circuits (See Table 3b). We use the
standard hash function SHA3 but we also tested our constructions with other
hash functions which have an optimized complexity that decreases the overall
size of the circuit and of the signature. The complexity of all circuits are ex-
pressed in terms of “number of H executions” and we consider an execution of
the compression function H(x, y) = z with x, y, z ∈ {0, 1}2λ. If H has n inputs,
the number of counted execution is n− 1.
In the rest of this section, we discuss the complexity of circuit Merkle.C. We then
start the discussion on optimizing circuit Picnic.C and XMSS.C in order to have
the shortest signature possible for PicRS and XRS. We express the complexity
in terms of number of hash executions. The total complexity of our circuits can
be computed with the help of Table 3b depending on the used H. We conclude
the paper with a comparison between both schemes and a comparison with the
current state-of-the-art of post-quantum IDRS constructed with lattices and
some final recommendations.
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Table 3: NIZKs and Hash functions

(a) NIZKs and their associated type of cir-
cuit. :|C|= circuit size/complexity, |AND|=
number of multiplication gates in circuit C

NIZK Type Proof Size
(Asympt.)

KKW [28] Binary O(|AND|)
Ligero++ [9] Arithmetic O(log2(|C|))

(b) Hash functions’ complexity,
A=arithmetic, B=binary

Hash Type
Complexity

Mult. Add.

SHA3 A/B 38400 422400

LowMC [3] B 1374 30134110

Poseidon [23] A 600

MiMC [2] A 1293 646

µ (Equ. 3) A/B 1024 512

Merkle.C complexity The complexity of Merkle.C, which is used to “accumu-
late” all identities in the ring L increases logarithmically (O(logN)) with the
size of the ring. This ensues from the Merkle tree structure of the accumula-
tor (see Section 4.1). The complexity of circuit Merkle.C can be expressed as
|Merkle.C| = logN · (|H|+ |µ|), where |H| is the complexity of the hash func-
tion H, |µ| is the complexity of the multiplexer (see Equation 3), and N the ring
size. Merkle.C is implemented in both constructions, therefore this discussion is
valid for both PicRS and XRS.

5.1 PicRS signature’s size

The signature size of PicRS depends on the complexity of the circuit PicRS.C =
Merkle.C · Picnic.C (see Section 4.3). To analyze the PicRS signature size, we
need to investigate circuit Picnic.C described in Section 4.2 and in Algorithm
1. We optimize the complexity circuit Picnic.C by testing different parameters,
proposed in their last paper [27], for the Picnic digital signature used by PKG.
We express the complexity of Picnic.C in function of executions of hash functions
H and G, of number of multiplication and addition gates. We consider that an
execution of H has two inputs and therefore the number of calls of H grows
linearly with the number of inputs. Table 4 demonstrates that Picnic.C achieves
its optimal circuit size for the Picnic scheme with the parameters n = 3, τ = 438,
and M = 438. This comes principally from the fact that such an instance does
not need to execute sub-circuit Picnic.c2 as M = τ . Therefore, for the rest of the
analysis of PicRS, we use Picnic parameters (n = 3, τ = 438 = M) as the digital
signature for PKG. Table 1 shows the signature sizes of PicRS for different ring
sizes with different hash functions and NIZKs.
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Table 4: Picnic.C’s complexity for different Picnic parameters n,M , and τ . It
shows the number of executions for the hash functionH andG, the multiplication
(Mult.) and addition (Add.) gates
Picnic Circuits complexity

n M τ Picnic.c1 Picnic.c2 Picnic.c3 Picnic.c4 Picnic.C
H H H Mult. Add. G H G Mult. Add.

3 438 438 1752 0 5256 2680560 244831488 1 7008 1 2680560 244831488

16 604 68 2040 1673392 4352 3121200 285077760 1 1679784 1 3121200 285077760

64 803 50 6300 2495442 12800 9639000 880387200 1 2514542 1 9639000 880387200

5.2 XRS signature’s size

XRS signature size depends on the complexity of circuit XRS.C composed of
sub-circuits XMSS.C and Merkle.C (see Section 4.3) on which the NIZK.Prove
algorithm is executed. In this part, we focus on the specific sub-circuit XMSS.C
and its internal sub-circuit XMSS.c1, which is composed of len ·Wint + len − 1
executions of the hash function H and the second sub-circuit XMSS.c2 consisting
of h calls to H and the multiplexer µ. Table 5 presents the complexity of circuit
XMSS.C with different parameters for the XMSS scheme used by PKG to gen-
erate all secret signing keys. We used parameters proposed by XMSS’s original
paper [25]. Our results demonstrates that XMSS should be implemented with
the parameters Wint = 4 , len = 133, and h = 20 to optimize the complexity
of XMSS. It is important to note that 2h is the maximum number of SID that
can be generated by PKG in this case. The detailed reason of setting h = 20 is
presented in Section 5.3.

After optimizing the complexity of the XMSS.C, we evaluate the signature
size of XRS for different group sizes and with different NIZKs and hash functions.
The details of XRS features and results are presented in Table 1.

Table 5: XMSS.C circuit sizes for each sub-circuit for different Wint and len.
XMSS Circuits complexity

Wint len h |XMSS.c1| |XMSS.c2| |XMSS.C|
4 133 20 665 · |H|

20 · (|H|+ µ)
685 · |H|+ 20 · |µ|

16 67 20 1139 · |H| 1159 · |H|+ 20 · |µ|
64 44 20 2880 · |H| 2900 · |H|+ 20 · |µ|

5.3 PicRS vs XRS

Choice of NIZK: As presented in Table 1, our implementations using Ligero++
as a NIZK are the best options when targeting a signature size optimization. It
works better for large circuits as its proof size grows logarithmically with the
circuit size while KKW grows linearly with the number of multiplication gates
in the circuit. For this reason, our Ligero++-based implementations can use
the standard hash function SHA3 and still achieve a decent signature size while
our KKW-based implementation requires a specifically designed hash function
(LowMC) to be competitive. To the best of our knowledge, KKW is optimized
for binary circuits similar to LowMC while Poseidon and MiMC are arithmetic
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circuits that work over larger finite fields, which makes them unpractical for
KKW. However, KKW has been submitted to the NIST standardization process
[1] and therefore gives stronger security guarantees than the other Ligero++.
Ligero++ was only published recently and its post-quantum security has been
assumed as it relies on known post-quantum paradigms, but it has not been
proven.

Signature Size: Table 1 summarizes the performance of both schemes in terms
of signature size. XRS clearly outperforms PicRS due to the lower complexity of
circuit XMSS.C (see Table 5) used in XRS compared to Picnic.C (see Table 4)
implemented in PicRS. Even if in theory both signature sizes should increase log-
arithmically with the ring size, we observe that both schemes provide a nearly
constant signature size because the circuit complexity of PicRS.C and XRS.C
depends mainly on Picnic.C and XMSS.C. Picnic.C represent 99% of PicRS.C
complexity and XMSS.C 95% of XRS.C’s complexity for the largest ringN = 220.
Because of Ligero++ proof size that increases only logarithmically with the cir-
cuit size while KKW’s one increases linearly with the number of multiplication
gates, PicRS and XRS implemented with Ligero++ have a signature size “more
constant” than the ones implemented with KKW (see Table 1). A possible opti-
mization for XRS could be replacing the WOTS+ scheme by a few-time signature
scheme named FORS [8] in the XMSS scheme used by PKG, which should further
reduce the signature size for XRS. However, this assumption requires a formal
security analysis.

PKG characteristic: In PicRS, PKG enjoys the stateless feature of Picnic and
therefore does not need to update his secret key after a signature as it is required
for XRS. The main advantage of PicRS over XRS is that PKG can theoretically
generate an infinite number of signing secret keys, so can handle an infinite
number of users, while XRS is limited to 2h users. Our implementation showed
in Table 1 sets h = 20 due to the computation complexity of generating a XMSS
tree (e. g. IDRS.Setup algorithm) which is grows exponentially with h.

Comparison with lattice-based IDRS: Table 1 also highlights the compet-
itiveness of XRS and PicRS when it comes to signature sizes compared with
lattice-based IDRS. It is important to highlight that none of the lattice-based
works gave a precise signature size. We estimated the signature size of Zhao et.al.
[36] work according to their formula. We fixed their parameters to n = 1000 (n is
their security parameters for the short integer solution problem (SIS)), q = 240,
w = 3 and k = 41. Their estimated size is presented in Table 1. Regardless of the
difference of the actual signature size, XRS and PicRS enjoy a nearly constant
signature while all current state-of-the-art of lattice constructions [36], [12],[33],
[34] have a signature size increasing linearly with the ring sizeN . Therefore, all of
our implementations shown in Table 1 are more suitable for large rings than the
lattice-based IDRS. Investigating the traditional state-of-the-art lattice-based
ring signature designed by Esgin et al. [19] could be a promising future work to
improve the competitiveness of lattice-based IDRS.

Final recommendations and conclusion: Table 1 shows that XRS imple-
mented with Ligero++ is our most promising construction when an optimized
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signature size is desired. It achieves a competitive signature size with hash func-
tions Poseidon, MiMC and even with the standard hash SHA3. ZK-STARK [6]
and Aurora [7] could be a alternative to Ligero++, they both achieve a proof size
slightly larger than Ligero++, but are still competitive. As illustrated in Table
1, XRS outperforms PicRS with a smaller signature size and a smaller SID that
comes from the difference in size between XMSS and Picnic. It is also important
to highlight that our possible constructions have been evaluated theoretically and
it would be interesting to investigate the applicability with an implementation.
According to KKW [28] Ligero++[9] original papers the circuit’s complexity
influences running and the memory complexity of the signing and verification
algorithms. This increases the advantage of XRS over PicRS. Therefore, our final
recommendation would be to use XRS implemented either with Poseidon and
Ligero++ to achieve the best compromise between proof size and security or
with KKW combined with LowMC to ensure post-quantum security.
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A Definitions

Definition 4 (Digital signature). A digital signature scheme DS is composed
by the following algorithms:

(DS.pk,DS.sk)← DS.KeyGen(1λ): This takes as input the security parameter λ
and outputs the keypair (DS.pk, DS.sk).

DS.σ ← DS.Sign(m,DS.sk): This takes as inputs a message m to be signed and
a secret key DS.sk. It outputs a valid digital signature DS.σ.

0/1 ← DS.Verify(m,DS.σ,DS.pk): This takes as inputs the signed message m,
a digital signature DS.σ, and the public key DS.pk. It outputs 1 if DS.σ is
valid and 0, otherwise.

Definition 5 (EU-CMA). A digital signature scheme DS reaches existential
unforgeability under adaptive chosen message attacks (EU-CMA) security if and
only if for a security parameter λ and an integer q = polynomial(λ) the advan-
tage AdvEU-CMA

A of an adversary A satisfies

AdvEU-CMA
A (λ) = Pr[ExpEU-CMA

A,DS (λ) = 1] < negl(λ), (4)

where ExpEU-CMA
A,DS (λ) is defined in Fig. 7.

ExpEU-CMA
A,DS (λ) :

(DS.pk,DS.sk)← DS.KeyGen(1λ)

(m′,DS.σ)← ADS.Sign(DS.sk)(DS.pk)
The set Q contains q pairs (m′,DS.σ) generated by DS.Sign.
if 1← DS.Verify(m′,DS.σ′,DS.pk) and m′ /∈ Q

then return 1

Fig. 7: EU-CMA security experiment
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Definition 6 (Non-interactive zero-knowledge proof system (NIZK)).
Non-interactive zero-knowledge proof system (NIZK) [5] aims to prove that a
public statement x and a private witness w belong to a defined relation R (i.e.
(x,w) ∈ R). We also let LR = {x|∃w s.t. (x,w) ∈ R}. A NIZK consists of the
following three algorithms:

crs ← NIZK.Setup(1λ) : This generates the common reference string crs from
the security parameters λ.

π ← NIZK.Prove(crs, x, w): This generates a proof π for the common reference
string crs, the statement x and the witness w that satisfies the relation R (to
be more specific, we have (x,w) ∈ R).

0/1← NIZK.Verify(crs, x, π): This returns 1 if the proof π based on the common
reference string crs and the public statement x is valid, 0 otherwise.

Remark 1. In this paper, we omit the use of the common reference string crs.

Definition 7 (Completeness). A proof system NIZK achieves completeness if

for an adversary A, the advantage AdvComp
A,NIZK(λ) is

AdvComp
A,NIZK(λ) = Pr[crs← NIZK.Setup(1λ); (x, π)

$←− A(crs) :
NIZK.Verify(crs, x, π) = 0 ∧ x ∈ LR] ≤ negl(λ).

(5)

Definition 8 (Zero-knowledge). The verifier learns nothing but the validity
of the statement. A NIZK is said to be zero-knowledge if the advanatage of A
AdvzkA,NIZK(λ) is:

AdvzkA,NIZK(λ) = |Pr[crs← NIZK.Setup(1λ) : ANIZK.Prove(crs,x,w) = 1]−

Pr[(crs∗, π∗)← NIZK.Sim(1λ, x) : A(x,crs∗,π∗) = 1]| ≤ negl(λ),
(6)

where (crs∗, π∗)← NIZK.Sim(1λ, x) is a simulator that takes as input the security
parameter λ and the statement x and outputs a common reference string crs∗ and
a simulated proof π∗.

Definition 9 (Simulation extractability). A proof system NIZK satisfies
simulation extractability if there is algorithms S and NIZK.Sim satisfying the
zero-knowledge definition and an extractor E such that:

AdvSimE
A,NIZK(λ) = Pr[(x, π)← AS,NIZK.Sim(1λ);w ← NIZK.Ext(crs, t, x, π) :

NIZK.Verify(x, π) = 1 ∧ (x, π) /∈ Q ∧ (x,w) /∈ R] ≤ negl(λ)
(7)

where E = ((crs, t) ← NIZK.ExtGen(1λ, t), w ← NIZK.Ext(crs, t, x, π) is a extrac-
tor, π ← S(t, x), t is a state and Q is the list of queries done by A to NIZK.Sim.

Definition 10 (Accumulator). An accumulator [10] A is defined by the fol-
lowing algorithms:
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A.pk ← A.Gen(1λ): The setup algorithm takes as input the security parameter
λ and outputs the public key A.pk.

(AX ,A.pk) ← A.Eval(A.pk,X ): The evaluation algorithm takes as inputs the
public key A.pk and the set X and outputs the accumulator AX and an up-
dated public key A.pk for the new accumulated set X .

wxi
/ ⊥← A.WitGen(A.pk,AX ,X , xi): The witness generation algorithm takes as
inputs the public key A.pk, the accumulator AX , the set X , and an element
xi. It outputs the witness wxi

if xi ∈ X and ⊥ otherwise.

0/1 ← A.Verify(A.pk,AX ,wxi
, xi): The verification algorithm takes as inputs

the public key A.pk, the accumulator AX , the witness wxi , and the element
xi. It outputs 1 if wxi is a valid witness for xi ∈ X and 0 otherwise.

Similar to [10], we assume that an accumulator A achieves correctness, sound-
ness and collision-freeness as follows:

– Correctness: For all x ∈ X with A.pk ← A.Gen(1λ), (AX ,A.pk) ←
A.Eval(A.pk,X ), and wx ← A.WitGen(A.pk,AX ,X , x), we have that Pr[0 =
A.Verify(A.pk,AX ,wx, x)] < negl(λ).

– Soundness: For all x /∈ X with A.pk ← A.Gen(1λ), (AX ,A.pk) ←
A.Eval(A.pk,X ), and wx ← A.WitGen(A.pk,AX ,X , x), we have that Pr[1 =
A.Verify(A.pk,AX ,wx, x)] < negl(λ).

– Collision-freeness: An accumulator achieves collision-freeness if for an ad-
versary A we have:

Pr[A.Verify(A.pk∗,AX∗ ,w∗
xi
, x∗

i ) = 1 ∧ x∗
i /∈ X ∗|A.pk← A.Gen(1λ),

(X ∗,w∗
xi
, x∗

i )← A(A.pk), (AX∗ ,A.pk∗)← A.Eval(A.pk,X ∗)] < negl(λ).
(8)

Definition 11 (Cryptographic Hash function). A cryptographic hash func-
tion

H : {0, 1}∗ → {0, 1}2λ (9)

takes as input a message a of any length and outputs the hash value b of length
2λ bits. A cryptographic hash function fulfills the three following properties:

– Pre-image resistance (one-wayness): given a hash value b, where b = H(a)
for a uniformly random a ∈ {0, 1}∗ it is computationally infeasible (in
polynomial-time) to find a such that b = H(a).

– Second Pre-image Resistance: knowing a pair (a0, H(a0)) for a uniformly
random a0 ∈ {0, 1}∗ it is computationally infeasible to find another input
a1 ∈ {0, 1}∗ such that H(a1) = H(a0).

– Collision Resistance: it is computationally infeasible to find two different
inputs a0 and a1 such that a0 ̸= a1 resulting with the same hash value b =
H(a0) = H(a1)
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A.1 The Picnic signature

Picnic applies the MPC-in-the-head paradigm described in [26], and [13]. In
MPC-in-the-head, the prover simulates a MPC computation between n parties
of a circuit C composed of “AND” and “XOR” logical gates. The n parties, shares
the “XORED” bit b, which is denoted by [b] =

⊕n
i=1 bi. The proof will reveal

the views of n− 1 parties, named opened parties, and the messages broadcasted
by the last party, unopened party. The verifier will execute the MPC-in-the-
head protocol based on those views and the messages of the unopened party.
It is important to know that it requires (n − 1)−privacy which means knowing
the view of n − 1 parties does not reveal anything about the last party. In
Picnic, each wire a has a value za and a party Pi owns a mask λa for the wire
a which allow to compute the masked value ẑa = za ⊕ λa. A party Pi owns a
seed seed(i) ∈ {0, 1}2λ, which is used to compute his mask λa,i for each single
wire in C. The party Pn owns an additional value auxn, which is a correction
value of AND bits, where AND is the number of “AND” gates in C. In order to
achieve acceptable soundness, the proof contains multiple parallel executions of
the MPC-in-the-head simulation. Picnic is defined following parameters:

– n: the number of MPC parties,
– M : the number of parallel executions of the MPC-in-the-head protocol,
– AND: the number of “AND” gates in C,
– τ : number of online executions revealed in the proof (τ ≤M), and
– M − τ : number of preprocessing computations revealed.

In the prepropressing, each party generates AND triples {([λa], [λb], [λc])} such
that [λc] = [λa] · [λb].

All λa, λb and λc can be generated from a party-owned seed seed(i). Moreover,
the correction value auxn is part of the staten of the Pn in order to ensure
the validity of . This part is done M times. Then the online part starts. The
parties then evaluate circuit C in a gate-by-gate fashion in chronological. The
only type of gates that requires communication is the “AND” gates and the
following procedure is done:

– Each party locally computes and broadcasts [s] = ẑa·[λb]⊕ẑb·[λa]⊕[λc]⊕[λγ ],
where λγ = λa ⊕ λb. Then computes ẑγ = ẑa · ẑb ⊕ s.

At the end of circuit C, each party broadcast its share and then the outputs
is reconstructed. The online part is done only over τ randomly selected prepos-
sessed executions. The Picnic signature size can be computed from the following
formula [28,17]:

4λ+ τ log(M/τ)6λ+ τ(2λ log(n) + 2AND+ |w|+ 4λ). (10)

Definition 12 (Picnic). The Picnic signature follows Definition 4 and there-
fore is defined by the following algorithms:
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(Picnic.pk,Picnic.sk)← Picnic.KeyGen(1λ): The key generation algorithm initi-
ates the circuit C. It samples w, computes y ← C(w), and lets Picnic.sk = w
and Picnic.pk = y.

Picnic.σ ← Picnic.Sign(m,Picnic.sk): This is simply an execution of KKW.Prove
algorithm and uses the message m to generate the challenge with the help of
the Fiat-Shamir transform. The signing algorithm has the following steps:

1. for j ∈ [M ]

(a) Sets seed∗j
$←− {0, 1}2λ, to generate seed

(1)
j , . . . , seed

(n)
j (one for each

party) and rj,1, . . . , rj,n, set seed
(i)
j = statej,i for 1 ≤ i ≤ n − 1 and

statej,n = seed
(n)
j ||auxj where auxj is the correction value for the

j-th iteration and is computed as follow.
– For y ∈ [AND]

i. The party Pi uses seed
(i)
j to sample λ

(i)
aj,y , λ

(i)
bj,y

and λ
(i)
cj,y

ii. Compute [λaj,y ] and [λbj,y ],

iii. Compute δj,y = [λaj,y ] · [λbj,y ] − [λcj,y ]. Let aux
(n)
j =

(δj,y)y∈[AND].

(b) For i ∈ [n]: comj,i = H(statej,i, rj,i)
(c) hj = H(comj,1, . . . , comj,n).
(d) This procedure starts by computing the masked ẑj,a from the witness

w = Picnic.sk and the λa computed in step (1a) inputs for each wire
a. Then compute the Circuit C by proceeding through the gates in
order. For each party Pi the messages msgsj,i are generated for the
iteration j, msgsj,pj are actually the communication for each “AND”
gate.

(e) h′
j = H(ẑj,a,msgsj,1, . . . ,msgsj,n).

2. (C,P) = G(m,h1, h
′
1, . . . , hM , h′

M ), with C ⊆ [M ] composed τ elements
and P representing the set of unopened parties, one per parallel execu-
tion. This last part is the only difference between KKW and Picnic. In
KKW, the challenge is generated thanks the preprocessing step, while in
Picnic, the message m to be signed is included in the Fiat-Shamir trans-
form. G is a hash function with an output size of τ · logM + τ logN .

3. Return Picnic.σ = (C,P, {seed∗j , h′
j}j /∈C , {{statej,i, rj,i}i ̸=pj

, comj,pj

, {ẑj,a},msgsj,pj}j∈C).

0/1 ← Picnic.Verify(m,Picnic.σ,Picnic.pk): This algorithm exe-
cutes the KKW verification procedure. It return 1 if the re-
sult of KKW.Verify is 1 and 0 otherwise, where Picnic.σ =
(C,P, {seed∗j , h′

j}j /∈C , {{statej,i, rj,i}i ̸=pj
, comj,pj

, {ẑj,a},msgsj,pj
}j∈C)

this algorithms does:

1. For j ∈ C and i ∈ [n] with i ̸= pj, set comj,i := H(statej,i, rj,i) and then
compute the value hj := H(comj,1, . . . , comj,n).

2. For j /∈ C used seed∗j to compute hj as the signer would (step 1 (a) to
(c) of Picnic.Sign algorithm)

3. For each j ∈ C run an execution of C among the parties {Pi}i̸=pj

using {statei,j}i ̸=pj
, {ẑj,a}, and msgsj,pj

; this yields msgsj,pj
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and an output bit b. Check that b = 1. Then compute h′
j =

H({ẑj,a},msgsj,1, . . . ,msgsj,n).
4. Return (C,P == G(m,h1, h

′
1, . . . , hM , h′

M )).

A.2 The stateful digital signature XMSS

The XMSS [25] is a digital signature relying on Merkle tree [30] and properties
of a cryptographic hash function H. XMSS achieves EU-CMA (see Definition 5)
as presented in [25]. A signer can produce at most 2h signatures. As XMSS is
stateful as the signer needs to update his key after each signature. At the heart
of XMSS, there is a one-time signature scheme named WOTS+, in this work we
only consider WOTS+ in XMSS and therefore, WOTS+ signature never needs to
be verified.

Definition 13 (WOTS+). WOTS+ is a one-time signature scheme with the

parameters Wint and len = len1 + len2 where len1 =
⌈

|m|
log(Wint)

⌉
and len2 =⌊

log(len1(Wint−1))
log(Wint)

⌋
+ 1. WOTS+ defined by the following algorithms:

(WOTS+.pk,WOTS+.sk)←WOTS+.KeyGen(1λ): This algorithm computes for

i ∈ [len]: WOTS+.ski
$←− {0, 1}2λ ; WOTS+.pki ← HWint(WOTS+.ski), then

WOTS+.pk = MT({WOTS+.pki}leni=1) (this reduces WOTS+.pk in a 2λ bits
elements, see Table 2).

WOTS+.σ ← WOTS+.Sign(m,WOTS+.sk): This generates a
signature WOTS+.σ = (WOTS+.σ1, . . . ,WOTS+.σlen, r) =
(Hmd1(WOTS+.sk1), . . . ,H

mdlen(WOTS+.sklen), r). Where md is compute

with the following step: r
$←− {0, 1}λ, md = (md1, . . . ,mdlen1) ← H(ID, r),

c = (md1, . . . ,mdlen2)←
∑len1

i=1(Wint− 1−mdi) and md = md||c
WOTS+.pk

′ ←WOTS+.Verify(m,WOTS+.σ,WOTS+.pk): In the context of the
XMSS, WOTS+ signature is not verified. This procedure outputs the corre-
sponding key WOTS+.pk

′
based on the signature WOTS+.σ with the following

procedure. (WOTS+.pk
′
1, . . . ,WOTS+.pk

′
len)

= (HWint−md1(WOTS+.σ1), . . . ,H
Wint−mdlen(WOTS+.σlen)).

Where Where md is compute with the following step: md =
(md1, . . . ,mdlen1) ← H(ID, r), c = (md1, . . . ,mdlen2) ←

∑len1
i=1(Wint − 1 −

mdi) and md = md||c
Then it returns WOTS+.pk

′
= MT({WOTS+.pk

′
i}leni=1)

In XMSS, each leaf is a WOTS+ key pair which will be used by the signer
in chronological order. An XMSS signature is composed of a WOTS+ signature
and an authentication path which are the internal nodes of a binary tree. The
authentication path allows one to compute the tree root from the WOTS+ sig-
nature. For simplification reasons, we omit the use of bitmask in the XMSS tree
construction.

Definition 14 (XMSS). XMSS [11] is a stateful digital signature defined by the
following three polynomial-time algorithms:
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(XMSS.pk,XMSS.sk) ← XMSS.KeyGen(1λ): This starts by generating 2h

WOTS+ key pairs. Then a binary tree is built using the WOTS+.pk as leaves
and outputs the root XMSS.pk. An example is presented in see Fig. 8.

XMSS.σ ← XMSS.Sign(m,XMSS.sk): This takes a message m to be signed, the
secret key XMSS.sk and returns XMSS.σ following the procedure:
1. WOTS+.σ ←WOTS+.Sign(m,WOTS+.skidx),
2. XMSS.σ = (WOTS+.σ, idx, auth), where the index idx indicates the posi-

tion of the WOTS+ keys in the tree and auth is the authentication path
from the WOTS+ to the root (the grey nodes in Fig. 8), and

3. idx = idx + 1. Update the index idx such that the next WOTS+ key pair
will be used for the next signature.

1/0 ← XMSS.Verify(m,XMSS.σ,XMSS.pk): This takes as input a message m,
a signature XMSS.σ and the public key XMSS.pk. It outputs 1 if XMSS.σ is
valid and 0 otherwise. This procedure executes the following steps:
1. WOTS+.pk

′
= WOTS+.Verify(m,WOTS+.σ) (see Definition 13),

2. Compute XMSS.pk′ from WOTS+.pk
′
with the help of the authentication

path auth (the grey nodes in Fig. 8). This corresponds to h evaluations
of the hash function H, and

3. Return XMSS.pk == XMSS.pk′.

Fig. 8: XMSS tree
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