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Abstract. At ASIACRYPT 2021, Liu et al. pointed out a weakness of the Rasta-like
ciphers neglected by the designers. The main strategy is to construct exploitable
equations of the n-bit χ operation denoted by χn. However, these equations are all
obtained by first studying χn for small n. In this note, we demonstrate that if the
explicit formula of the inverse of χn denoted by χ−1

n is known, all these exploitable
equations would have been quite obvious and the weakness of the Rasta-like ciphers
could have been avoided at the design phase. However, the explicit formula of χ−1

n

seems to be not well-known and the most relevant work was published by Biryukov
et al. at ASIACRYPT 2014. In this work, we give a very simple formula of χ−1

n that
can be written down in only one line and we prove its correctness in a rigorous way.
Based on its formula, the formula of exploitable equations for Rasta-like ciphers can
be easily derived and therefore more exploitable equations are found.
Keywords: Rasta · the inverse of χ · affine variety · algebraic attack

1 Preliminaries
Definition 1. [3] Let K be a field, and let l1, l2, . . . , ls be polynomials in K[v1, v2, . . . , vm].
Then we set

V (l1, l2, . . . , ls) = {(a1, a2, . . . , am) ∈ Km | li(a1, a2, . . . , an) = 0 ∀i ∈ [1, m]}.

We call V (l1, l2, . . . , ls) the affine variety defined by l1, l2, . . . , ls.
From this definition, the affine variety V (l1, l2, . . . , ls) ⊆ Km is the set of all solutions

of the system of equations

l1(a1, a2, . . . , am) = l2(a1, a2, . . . , am) = · · · = ls(a1, a2, . . . , am) = 0.

Throughout this paper, we consider the field F2, i.e. K = F2.

The n-bit χ operation. The n-bit χ operation denoted by χn : Fn
2 → Fn

2 is defined as
follows:

yi = xi + xi+1xi+2 for i ∈ [0, n− 1],
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where X = (x0, x1, . . . , xn−1) and Y = (y0, y1, . . . , yn−1) denote the n-bit input and
output, respectively. Moreover, the indices are considered within modulo n. To ensure χn

is invertible, n has to be an odd number. For convenience, let

h = (n− 1)/2.

Consider the ideal G = ⟨g0, g1, . . . , gn−1⟩ where gi is defined as follows:

gi = yi + xi + xi+1xi+2.

For convenience, the affine variety defined by g0, g1, . . . , gn−1 is denoted by V (G). Obviously,
V (G) represents the mapping table of χn.

Finding the inverse of χn denoted by χ−1
n is equivalent to finding another ideal

G′ = ⟨g′
0, g′

1, . . . , g′
n−1⟩ such that V (G′) = V (G) and g′

i is of the following form

g′
i = xi + Pi,

where Pi is a polynomial in F2[y0, y1, . . . , yn−1].
As far as we know, the formula of χ−1

n is not explicitly given in the literature. However,
algorithmic procedures to efficiently compute χ−1

n for any value of Y have been given in
Daemen’s thesis [4] and Biryukov et al.’s work [2] at ASIACRYPT 2014, respectively.

1.1 On Daemen’s Method to Compute χ−1
n

In Daemen’s thesis, the method to compute χ−1
n is called seed-and-leap. The procedure

takes an arbitrary value Y as input and outputs X. For convenience, 0n denotes (0, 0, . . . , 0)︸ ︷︷ ︸
n 0

and 1n denotes (1, 1, . . . , 1)︸ ︷︷ ︸
n 1

. When Y = 0n, simply output X = 0n. When Y ≠ 0n, X is

computed in a sequential manner as described below:
1. Seed. Find an index j such that yj+1 = 1. Then, xj = yj .

2. Leap. If xj is known, xj−2 can be found. Since n is an odd number, all xi for
i ∈ [0, n− 1] can be found by repeating this step.

We now show that the above procedure to compute χ−1
n is directly derived from the

definition of χn. Specifically, since

yj−2 = xj−2 + xj−1xj ,

yj−1 = xj−1 + xjxj+1,

yj = xj + xj+1xj+2,

yj+1 = xj+1 + xj+2xj+3,

when yj+1 = 1, we have xj+1 = xj+2xj+3, thus resulting xj+1xj+2 = 0 and xj = yj , i.e.
xj is known. Whatever xj is, either xj−1xj or xjxj+1 will be 0, thus resulting either
xj−1 or xj−2 can be uniquely computed. If it is xj−1 that can be computed, i.e. xj = 1,
we can then also compute xj−2 since (xj , xj−1) are known. In other words, after xj is
determined, xj−2 can always be uniquely determined. One may notice that there may
exist two ways to determine some xi because we may leap back to these xi and wonder
whether contradictions will occur. This can be easily checked and no contradictions will
occur. In other words, the above procedure will always output a valid X ̸= 0n for any
Y ̸= 0n.

Since an algorithmic procedure to compute χ−1
n is given, the invertibility of χn is

proved, which is how Daemen proved the invertibility of χn. It is now clear that the
invertibility is not proved by giving a general formula of χ−1

n and that deducing this general
formula from the above seed-and-leap procedure is as difficult as deducing it from the
definition of χn.
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1.2 On Biryukov et al.’s Method to Compute χ−1
n

The algorithm to compute χ−1
n is placed in Appendix D1 of [1] and no specific proof for

its correctness is given. In addition, they also gave the explicit expression of x3 for χ−1
9

which has a nice structure, as shown below:

x3 = y3 + (y5 + (y7(y0 + y2y1)y8)y6)y4. (1)

As far as we can understand, the algorithm described in Appendix D of [1] is unclear
and there seem to be typos. Consequently, we will interpret it with our own description.
Specifically, the original algorithm to compute χ−1

n in [1] is shown in Algorithm 1, while
our new interpretation is shown in Algorithm 2.

Algorithm 1 Given (y0, y1, . . . , yn−1), find χ−1
n (y0, y1, . . . , yn−1) [1]

1: (x0, x1, . . . , xn−1)← (y0, y1, . . . , yn−1)
2: for 0 ≤ i < 3(n−1)

2 do
3: −x(n−2)i ← x(n−2)i + y(n−2)i+2 · y(n−2)i+1

4: return (x0, x1, . . . , xn−1)

Algorithm 2 Given (y0, y1, . . . , yn−1), find χ−1
n (y0, y1, . . . , yn−1) [Our interpretation]

1: (x0, x1, . . . , xn−1)← (y0, y1, . . . , yn−1)
2: for 0 ≤ i < 3(n−1)

2 do
3: x(n−2)i ← x(n−2)i + x(n−2)i+2 · x(n−2)i+1

4: return (x0, x1, . . . , xn−1)

We show that with Algorithm 2, the expression of x3 for χ−1
9 can be simply derived, as

shown below:

i = 0 : x0 = y0 + y2y1,

i = 1 : x7 = y7 + x0y8,

i = 2 : x5 = y5 + x7y6,

i = 3 : x3 = y3 + x5y4.

Hence, we have

x3 = y3 + (y5 + (y7 + (y0 + y2y1)y8)y6)y4.

As a result, we believe our interpretation is clearer and what the authors of [1] wanted to
express should be Algorithm 2.

Again, we take χ−1
9 for example to see how the algorithm ends. Let us continue the

above procedure, as shown below:

i = 4 : x1 = y1 + x3y2,

i = 5 : x8 = y8 + x1x0,

i = 6 : x6 = y6 + x8x7,

i = 7 : x4 = y4 + x6x5,

i = 8 : x2 = y2 + x4x3,

i = 9 : x0 = y0 + x2x1,

1The eprint version.
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i = 10 : x7 = y7 + x0x8,

i = 11 : x5 = y5 + x7x6.

In this way, it is possible to deduce the expressions of xi for all i ∈ [0, 8] in terms of
(y0, y1, . . . , y8) and they are found in the order:

x3 → x1 → x8 → x6 → · · · → x7 → x5.

More generally, with Algorithm 2, the expressions of xi for χ−1
n for all i ∈ [0, n− 1] can be

found in the order:

xh−1 → xh−3 → · · · → xh+3 → xh+1.

How to find Algorithm 2 and prove its correctness? In [1], only this algorithm and
the expression of x3 for χ−1

9 are given, while how this algorithm is obtained and how to
prove its correctness are missing. Different from Daemen’s seed-and-leap method whose
correctness can be easily verified, it is not intuitive to prove the correctness of Algorithm 2.

The following is our understanding. Specifically, let us slightly explain why the
expression of x3 for χ−1

9 is correct. Based on the definition of χ9, there are

x3 + y3 = x4x5 = (y4 + x5x6)x5 = y4x5,

x5 + y5 = x6x7 = (y6 + x7x8)x7 = y6x7,

x7 + y7 = x8x0 = (y8 + x0x1)x0 = y8x0,

x0 + y0 = x1x2 = (y1 + x2x3)x2 = y1x2,

x2 + y2 = x3x4 = (y3 + x4x5)x4 = y3x4.

Therefore, we have

x3 = y3 + (y5 + (y7 + (y0 + (y2 + y3x4)y1)y8)y6)y4.

Based on Algorithm 2, we indeed have

x3 = y3 + (y5 + (y7 + (y0 + y2y1)y8)y6)y4.

Hence, it is necessary to prove x4y3 y1 y8 y6 y4 = 0 always holds. It is easy to observe
that the above procedure can also be generalized for χ−1

n of any valid n. We leave this
observation here, and it can be found later that we will prove the same problem for our
formula of χ−1

n .

1.3 Motivation to Study χ−1
n

For the stream cipher Rasta [5], the trivial algebraic attack is to solve a system of equations
of degree 2R where R denotes the number of rounds. However, it has been shown in [6]
that the last nonlinear layer can almost be peeled off by finding exploitable equations in
terms of (X, Y ) of the following form:

P (Y ) +
n−1∑
j=0

xjLj(Y ) + c = 0,

where c ∈ F2 is a constant, P (Y ) ∈ F2[y0, y1, . . . , yn−1] with Deg(P ) ≤ 2R−1 + 1, and
Lj(Y ) ∈ F2[y0, y1, . . . , yn−1] with Deg(Lj) ≤ 1. In this way, the algebraic attack is reduced
to solving a system of equations of degree 2R−1 + 1 because the degree of the expressions
of X and Y in terms of the key bits is upper bounded by 2R−1 and 1, respectively. The
data complexity of this algebraic attack is related to the number of exploitable equations,
the length of the key and the degree of the constructed equations. Increasing the number
of exploitable equations by a factor of q can reduce the data complexity by a factor of q.
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2 Main Results
It has been observed in [6] that the found exploitable equations belong to the ideal
F = ⟨f0, f1, . . . , fn−1⟩ where

fi = xi + yi + yi+1xi+2 for i ∈ [0, n− 1].

In the following, we will study the affine variety defined by f0, f1, . . . , fn−1 denoted by
V (F).

2.1 The Formula of χ−1
n

Lemma 1. V (G) and V (F) satisfy V (G) = V (F)\{(1n, 0n)}.

Proof. First, we prove V (G) ⊆ V (F). For any (X, Y ) ∈ V (G), we have

yi = xi + xi+1xi+2,

yi+1 = xi+1 + xi+2xi+3,

Hence,

fi = xi + yi + yi+1xi+2 = xi+1xi+2 + xi+1xi+2 = 0,

which implies V (G) ⊆ V (F). As the point (X, Y ) = (1n, 0n) does not satisfy gi = 0 for
i ∈ [0, n− 1], V (G) ⊆ V (F)\{(1n, 0n)}.

Next, we prove V (F)\{(1n, 0n)} ⊆ V (G). For any (X, Y ) ∈ V (F)\{(1n, 0n)}, we have

yi = xi + yi+1xi+2,

yi+1 = xi+1 + yi+2xi+3,

Hence,

gi = yi + xi + xi+1xi+2 = xi+2(xi+1 + yi+1).

As xi + yi = xi+2yi+1, we have

gi = xi+2xi+3yi+2

= xi+2xi+3xi+4yi+3

= . . . = xi+2xi+3 . . . xi+kyi+k−1

= . . . = xi+2xi+3 . . . xiyi−1

= xi+2xi+3 . . . xixi+1yi

= xi+2xi+3 . . . xi+1xi+2yi+1,

which implies gi = 0 always holds when Y ̸= 0n. Thus, we are left to prove V (F)\{(1n, 0n)} ⊆
V (G) for Y = 0n.

When Y = 0n, we immediately obtain a system of linear equations in terms of
(x0, x1, . . . , xn−1), as shown below:

0 = xi + xi+2 for i ∈ [0, n− 1].

There are only 2 solutions to this equation system, which are X = 0n and X = 1n. When
X = 0n, gi = 0 for i ∈ [0, n−1]. When X = 1n, we obtain the point (X, Y ) = (1n, 0n), thus
proving V (F)\{(1n, 0n)} ⊆ V (G). In other words, V (G) = V (F)\{(1n, 0n)} is proved.
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Theorem 1. The expression of χ−1
n is

xi = yi +
h∑

j=1
yi−2j+1

h∏
k=j

yi−2k. (2)

Proof. Let

wi = xi + yi +
h∑

j=1
yi−2j+1

h∏
k=j

yi−2k.

Denote the affine variety defined by w0, w1, . . . , wn−1 by V (W). If we can prove V (W) =
V (G), Theorem 1 is proved.

First, we prove V (W) ⊆ V (G) = V (F) \ {(1n, 0n)}. For any (X, Y ) ∈ V (W), there are

xi = yi +
h∑

j=1
yi−2j+1

h∏
k=j

yi−2k,

xi+2 = yi+2 +
h∑

j=1
yi−2(j−1)+1

h∏
k=j

yi−2(k−1) = yi+2 +
h−1∑
j=0

yi−2j+1

h−1∏
k=j

yi−2k.

Since

xi+2yi+1 = yi+2yi+1 + yi+1

h−1∑
j=0

yi−2j+1

h−1∏
k=j

yi−2k

= yi−2h+1yi−2h + yi−2h

h−1∑
j=0

yi−2j+1

h−1∏
k=j

yi−2k

=
h∑

j=0
yi−2j+1

h∏
k=j

yi−2k

= yi+1

h∏
k=0

yi−2k +
h∑

j=1
yi−2j+1

h∏
k=j

yi−2k

=
h∑

j=1
yi−2j+1

h∏
k=j

yi−2k ⇐ (yi−2h = yi+1),

we have

xi+2yi+1 = xi + yi.

Hence, V (W) ⊆ V (F). As the point (X, Y ) = (1n, 0n) /∈ V (W), we have V (W) ⊆
V (F) \ {(1n, 0n)} = V (G).

Next, we prove V (G) ⊆ V (W). For any (X, Y ) ∈ V (G), there is

yi = xi + xi+1xi+2.

To prove

xi + yi +
h∑

j=1
yi−2j+1

h∏
k=j

yi−2k = 0, (3)
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we first study

yi+1(xi + yi +
h∑

j=1
yi−2j+1

h∏
k=j

yi−2k)

= (xi+1xi+2)(xi+1 + xi+2xi+3) + yi+1

h∑
j=1

yi−2j+1

h∏
k=j

yi−2k

= yi+1

h∑
j=1

yi−2j+1

h∏
k=j

yi−2k.

Since i− 2h = i + 1 mod n, yi+1 is a factor of
∏h

k=j yi−2k. In other words,

yi+1(xi + yi +
h∑

j=1
yi−2j+1

h∏
k=j

yi−2k) = yi+1

h∑
j=1

yi−2j+1

h∏
k=j

yi−2k = 0

holds for any (X, Y ) ∈ V (G). Therefore, for any i ∈ [0, n− 1] and (X, Y ) ∈ V (G), when
yi+1 = 1, Equation 3 always holds. Thus, we are left to prove Equation 3 for yi+1 = 0.

We now prove by induction that if Equation 3 holds for any (X, Y ) ∈ V (G) with
(yi+1, yi+3, . . . , yi+2t+1) ̸= (0, 0, . . . , 0) where t ∈ [0, h− 1], Equation 3 also holds for any
(X, Y ) ∈ V (G) with (yi+1, yi+3, . . . , yi+2t+1, yi+2(t+1)+1) ̸= (0, 0, . . . , 0).

We have proved above that Equation 3 holds for yi+1 ̸= 0. Assuming Equation 3 holds
for the case t = b, we now prove that it also holds for t = b + 1. In other words, we now
prove Equation 3 for yi+2(b+1)+1 = 1 and (yi+1, yi+3, . . . , yi+2b+1) = (0, 0, . . . , 0). In this
case, Equation 3 can be rewritten as

xi + yi +
h∑

j=1
yi−2j+1

h∏
k=j

yi−2k

= xi + yi +
h∑

j=h−b

yi−2j+1 +
h−(b+1)∑

j=1
yi−2j+1

h−(b+1)∏
k=j

yi−2k

= xi + yi +
h∑

j=h−b

yi−2j+1

due to (yi−2h, yi−2(h−1), . . . , yi−2(h−b)) = (yi+1, yi+3, . . . , yi+2b+1) = (0, 0, . . . , 0) and
yi−2(h−(b+1)) = yi+2(b+1)+1 = 0.

For any (X, Y ) ∈ V (G) with (yi+1, yi+3, . . . , yi+2b+1) = (0, 0, . . . , 0), we also have

xi+2d + yi+2d = xi+2d+2yi+2d+1 = xi+2d+2

for d ∈ [0, b] due to V (G) ⊆ V (F).
Therefore,

xi + yi +
h∑

j=1
yi−2j+1

h∏
k=j

yi−2k = xi + yi +
h∑

j=h−b

yi−2j+1

= xi+2 + yi+2 +
h−1∑

j=h−b

yi−2j+1

= · · · = xi−2(h−b)+1 + yi−2(h−b)+1 = xi+2(b+1) + yi+2(b+1).
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As

yi+2(b+1)+1(xi+2(b+1) + yi+2(b+1)) = 0

holds for any (X, Y ) ∈ V (G),

yi+2(b+1)+1(xi + yi +
h∑

j=1
yi−2j+1

h∏
k=j

yi−2k) = 0

holds for any (X, Y ) ∈ V (G) with (yi+1, yi+3, . . . , yi+2t+1, yi+2(t+1)+1) = (0, 0, . . . , 0, 1). In
other words, the case when t = b + 1 is proved.

Based on the above proof, for any (X, Y ) ∈ V (G) with (yi+1, yi+3, . . . , yi+2h+1) ̸=
(0, 0, . . . , 0), Equation 3 always holds. Thus, we are only left with the case when
(yi+1, yi+3, . . . , yi+2h+1) = (yi+1, yi+3, . . . , yi+2h−1, yi) = (0, 0, . . . , 0). In this case,

xi + yi +
h∑

j=1
yi−2j+1

h∏
k=j

yi−2k = xi + yi +
h∑

j=1
yi−2j+1 = xi−1 + yi−1 = xixi+1.

We prove by contradiction that when (yi+1, yi+3, . . . , yi+2h+1) = (0, 0, . . . , 0), xixi+1 =
0 holds for any (X, Y ) ∈ V (G).

If ∃(X, Y ) ∈ V (G) with (yi+1, yi+3, . . . , yi) = (0, 0, . . . , 0) such that xixi+1 = 1, we
immediately obtain

xi = 0, xi+1 = 1. (4)

Since (yi+1, yi+3, . . . , yi) = (0, 0, . . . , 0), we have

0 = yi+1 = xi+1 + xi+2xi+3,

0 = yi+3 = xi+3 + xi+4xi+5,

. . .

0 = yi+2h−1 = xi−2 + xi−1xi,

0 = yi = xi + xi+1xi+2.

Taking Equation 4 into account, we immediately obtain

xi+2 = 0, xi+3 = 1,

xi+4 = 0, xi+5 = 1,

. . . ,

xi−1 = 0, xi = 1,

xi+1 = 0, xi+2 = 1.

Therefore, contradictions occur in (xi, xi+1). Hence, xixi+1 = 0 holds for any (X, Y ) ∈
V (G) with (yi+1, yi+3, . . . , yi+2h+1) = (0, 0, . . . , 0). In other words, Equation 3 holds for
any (X, Y ) ∈ V (G), thus implying V (G) ⊆ V (W) and completing the proof.

Corollary 1. For any t ∈ [0, h] and i ∈ [0, n− 1], we have

xiyi+2t+1 =


yi+2t+1yi if t = 0,

yi+2t+1(yi +
h∑

j=h−t+1
yi−2j+1

h∏
k=j

yi−2k) if t ∈ [1, h].
(5)
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Proof. Based on Theorem 1,

xi = yi +
h∑

j=1
yi−2j+1

h∏
k=j

yi−2k.

Hence,

xiyi+2t+1 = xiyi−2(h−t)

= yiyi+2t+1 + yi−2(h−t)

h∑
j=1

yi−2j+1

h∏
k=j

yi−2k.

When t = 0, we have

xiyi+2t+1 = xiyi−2h

= yiyi+2t+1 + yi−2h

h∑
j=1

yi−2j+1

h∏
k=j

yi−2k

= yiyi+2t+1.

When t ∈ [1, h], we have

xiyi+2t+1 = xiyi−2h

= yiyi+2t+1 + yi−2(h−t)

h∑
j=1

yi−2j+1

h∏
k=j

yi−2k

= yiyi+2t+1 + yi−2(h−t)

h∑
j=h−t+1

yi−2j+1

h∏
k=j

yi−2k

= yi+2t+1(yi +
h∑

j=h−t+1
yi−2j+1

h∏
k=j

yi−2k).

Corollary 2. The degree of the equation

yi+2t+1(xi + yi +
h∑

j=h−t+1
yi−2j+1

h∏
k=j

yi−2k) = 0 for t ∈ [1, h]

in terms of (X, Y ) is t + 2.

Proof. The monomial of the highest degree in this equation is yi+2t+1yi+2t+2
∏h

k=h−t+1 yi−2k.
Moreover, neither yi+2t+1 nor yi+2t+2 is a factor of

∏h
k=h−t+1 yi−2k. Therefore, the degree

of this equation is 2 + t.

Corollary 3. For R ≥ 2 rounds of Rasta of block size n, there are at least n(2R−1 + 1)
exploitable equations, as specified below:

xi + yi+1xi+2 + yi = 0,

yi+1(xi + yi) = 0,

yi+2t+1(xi + yi +
h∑

j=h−t+1
yi−2j+1

h∏
k=j

yi−2k) = 0 for t ∈ [1, 2R−1 − 1],

where i ∈ [0, n− 1].

Proof. This is directly from V (G) ⊆ V (F) (Lemma 1), Corollary 1 and Corollary 2.
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Application to Rasta. Based on Corollary 3, for attacks on r ≥ 3 rounds of Rasta of
block size n, we can improve the data complexity by a factor of 2r−1+1

5 as we now can
construct n(2r−1 + 1) rather than 5n equations in terms of the key bits to describe r
rounds of Rasta. These equations are obviously linear independent as there is at least one
monomial in each equation that does not appear in other equations. Moreover, it can be
found that all the 5n exploitable equations found in [6] correspond to the cases t ∈ [1, 3],
as shown below:

0 = xi + yi+1xi+2 + yi,

0 = yi+1(xi + yi),
0 = yi+3(xi + yi + yi+2yi+1),
0 = yi+5(xi + xi+2 + yi + yi+1yi+2 + yi+1yi+3yi+4),
0 = yi+7(xi + yi + yi+6yi+5 yi+3 yi+1 + yi+4yi+3 yi+1 + yi+2yi+1).

The only equation that does not seem to follow our formula is

0 = yi+5(xi + xi+2 + yi + yi+1yi+2 + yi+1yi+3yi+4). (6)

Indeed, based on our formula, we have

0 = yi+5(xi + yi + yi+4yi+3 yi+1 + yi+2yi+1),
0 = yi+5(xi+2 + yi+2 + yi+4yi+3).

Hence,

0 = yi+5(xi + yi + yi+4yi+3 yi+1 + yi+2yi+1 + xi+2 + yi+2 + yi+4yi+3)
= yi+5(xi + xi+2 + yi + yi+1yi+2 + yi+1yi+3yi+4).

In other words, Equation 6 is just a linear combination of the exploitable equations derived
based on our formula.
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