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Abstract. We show how to backdoor the McEliece cryptosystem, such
that a backdoored public key is indistinguishable from a usual public
key, but allows to efficiently retrieve the underlying secret key. For good
cryptographic reasons, McEliece uses a small random seed δ that gener-
ates via some pseudo random number generator (PRNG) the randomness
that determines the secret key.
Our backdoor mechanism works by encoding the encryption of δ into
the public key. Retrieving δ then allows to efficiently recover the (back-
doored) secret key. Interestingly, McEliece can be used itself to encrypt δ,
thereby protecting our backdoor mechanism with strong post-quantum
security guarantees.
Our backdoor mechanism also works for the current Classic McEliece
NIST standard proposal, and therefore opens the door for widespread
maliciously backdoored implementations.
Fortunately, there is a simple fix to guard (Classic) McEliece against
backdoors. While it is not strictly necessary to store δ after key gener-
ation, we show that δ allows identifying maliciously backdoored keys.
Thus, our results provide a strong advice to implementers to store δ in-
side the secret key (as the proposal recommends), and use δ to guard
against backdoor mechanisms.

1 Introduction

Strong cryptography provides confidentiality to everyone. While this is in gen-
eral a highly desirable goal, it also might lead to law enforcement issues. Thus,
there exist strong interests of law enforcement agencies to circumvent crypto-
graphic mechanism by e.g. installing backdoors in cryptographic protocols. In a
nutshell, a backdoored cryptographic scheme is a scheme that provides strong
cryptographic properties, unless one possesses a backdoor that allows for easy
recovery of the scheme’s secret key.

The process of establishing backdoors in cryptographic schemes is espe-
cially promising during a standardization process. As an example, the Snowden
revelations showed that the Dual EC DRBG standard was maliciously back-
doored [BLN16].
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Since we are now close to standardize new cryptographic schemes for the
era of quantum computers, it is of crucial importance to understand whether
the current candidate schemes allow for backdoor mechanisms. In this work, we
address one of the most prominent candidates, the McEliece cryptosystem, for
which we show how to install backdoors, as well as how to detect backdoors.

Previous work. Backdoors were introduced into modern cryptography in the
foundational works of Simmons on subliminal channels [Sim83,Sim85]. The no-
tion of backdoors was more formally captured by Young and Yung [YY96,YY97],
also denoted kleptography. In this work, we will use their SETUP (Secretly Em-
bedded Trapdoor with Universal Protection) mechanism that is an abstraction
for transforming a cryptographic scheme into a backdoored scheme.

A SETUP mechanism allows an adversary A to encode during the key gen-
eration process of a public key cryptosystem information into the public key,
that allows A to later retrieve the underlying secret key. RSA instantiations of
such SETUP mechanisms were given by Crépeau and Slakmon [CS03] who e.g.
encoded half of the bits of the RSA prime p into the public RSA modulus N .

For post-quantum secure cryptosystem, very little is known about successful
SETUP mechanisms. The work of Kwant, Lange and Thissen [KLT17] shows
a backdoor mechanism at the cost of increasing the probability of decryption
failures, which might be used to leak information about the secret key. The
work of Yang, Xie and Pan [YXP20] however shows that [KLT17] does not fulfill
the SETUP notion, since the backdoors can efficiently be detected. Moreover,
Yang, Xie and Pan [YXP20] introduce SETUP mechanisms for RLWE-based
schemes that encode non-quantum secure ECC encryptions of plaintexts into
the ciphertexts.

For code-based cryptosystems and especially McEliece, to the best of our
knowledge no SETUP backdoor mechanism is known. Loidreau and Sendrier [LS01]
propose to use weak Goppa polynomials inside McEliece. This however does not
fulfill the SETUP notion, because one can immediately identify from the secret
keys that the resulting scheme has been backdoored.

For preventing backdoors from a theoretical view point, Bellare, Paterson
and Rogaway [BPR14] introduced the watchdog model. However, applying the
watchdog model to McEliece does not result in a practical encryption scheme.

Our Contribution. We propose the first SETUP mechanism for McEliece. We
first address the usual (Vanilla) Niederreiter version, that has as secret key the
parity check matrix of a (Goppa) code C. The randomness for generating C
comes from the output of a PRNG applied to some secret seed δ, which is a
minor deviation from the common schoolbook description.

The public key is a randomized and permuted basis of C. A malicious adver-
sary A may now backdoor the key generation process of a user u by encoding
an encryption of δ (under A’s public key pkA) into u’s public key pku using
a different permutation of C. We show that the resulting backdoored keys are
indistinguishable from ordinary McEliece under some mild assumption. This in-
distinguishability even holds when our SETUP mechanism, pkA, and the secret



code C are known. Thus, there is no way to check for user u, whether her se-
cret/public key pair has been backdoored. In the terminology of Young and Yung
we therefore provide a strong SETUP.

However, if user u knows in addition the secret seed δ, then she can identify
backdoored keys. The reason is that the randomness for transforming the secret
key sku into the public key pku usually also comes from the PRNG output on δ.
Thus, δ already fully determines the public key from the secret key. This makes
it impossible for A to embed backdoors. Moreover, u may rerun the secret/public
key generation from the verifiable randomness provided by δ to check for the
validity of its non-backdoored key pair.

Thus, if the seed δ is included into u’s secret key sku, then our backdoor
mechanism is detectable from sku. In the terminology of Young and Yung we
therefore provide a weak SETUP for McEliece when δ is part of the secret key.

We also show that our SETUP backdoor mechanism transfers from (Vanilla)
McEliece to Classic McEliece [MDT+20], the 3rd round NIST standardization
candidate. This might at first sight come as a surprise, since our SETUP uses
the permutation to embed the backdoor, while McEliece does not permutate the
entries of C. However, we show that McEliece inherently includes a permutation
that defines the Goppa code, which can be used analogously for our SETUP.

Last but not least, we show that a backdoor implementer A may use (Clas-
sic) McEliece itself for encrypting δ, thereby securing our backdoor even in the
presence of quantum computers.

Implementor’s Advice. Our results show that inclusion of the secret δ efficiently
protects against strong SETUP backdoor mechanisms, though not against weak
SETUPs. Thus, our results strongly suggest including δ into the secret key to
check for the absence of a SETUP mechanism. We would like to stress that
storing δ is not necessary for McEliece functionality. The original purpose of δ is
to provide a small piece of randomness, from which one can efficiently derive the
(quite large) McEliece secret/public key pairs. To this end, standards usually
recommend to store δ. Our work shows another strong benefit of storing δ, since
δ serves as a short proof for the correct, non-backdoored, deterministic derivation
of the secret/public key pair.

Open Problems. Since we describe the first SETUP backdoor mechanism for
code-based cryptography, one might wonder whether our SETUP transfers with-
out much effort to other code-based schemes like BIKE or HQC. However,
BIKE/HQC both use cyclic codes, whose structure seems to prevent a direct
application of our method. It remains an open problem to derive weak/strong
SETUP mechanisms in this setting.

Paper Organization. In section 2 we give some introduction to McEliece and the
SETUP backdoor mechanism of Young and Yung [YY97], section 3 provides the
strong SETUP mechanism for Vanilla McEliece (without storing δ), as well as
the backdoor identification when δ is provided in the secret key. In section 4 we



provide the necessary modifications to our SETUP for Classic McEliece. Even-
tually, in section 5 we show how to use Classic McEliece to hide the encryption
of δ in a user’s public key.

2 Background

2.1 McEliece and Binary Goppa Code

McEliece uses a binary linear [n, k]-code C, i.e., C ⊂ Fn
2 is a subspace of dimen-

sion k. C may be described by a generator matrix G ∈ Fk×n
2 , or equivalently by

a so-called parity check matrix H ∈ F(n−k)×n
2 that generates C’s kernel.

Due to efficiency reasons, all modern instantiations of McEliece use a parity
check matrix, usually called the Niederreiter version of McEliece. While our
SETUP backdoor mechanism for (Vanilla) McEliece from section 3 works for
any code, our SETUP mechanism from section 4 also uses properties of the
Goppa code that is used in the Classic McEliece scheme [MDT+20].

Thus, let us briefly recall the parity check matrix of a binary Goppa code. Let
F2m be a binary field. Choose α1, . . . , αn distinct from F2m , and an irreducible
Goppa polynomial g ∈ F2m [x] of degree t. This defines a linear length-n code C
with minimal distance 2t + 1 and parity check matrix

H =


1 1 · · · 1

α1 α2 · · · αn

...
. . .

αt−1
1 αt−1

2 · · · αt−1
n




g(α1) 0 · · · 0
0 g(α2) · · · 0
...

. . .

0 0 · · · g(αn)


−1

=


1

g(α1)
1

g(α2) · · ·
1

g(αn)
α1

g(α1)
α2

g(α2) · · ·
αn

g(αn)
...

. . .
αt−1

1
g(α1)

αt−1
2

g(α2) · · ·
αt−1

n

g(αn)

 .

Notice that H ∈ Ft×n
2m . If we write the elements of H in an F2 basis, then we

end up with an (mt× n)-matrix, i.e., C is an k = n−mt dimensional subspace
of Fn

2 .

2.2 SETUP Mechanism

SETUP (Secretly Embedded Trapdoor with Universal Protection) mechanisms
were introduced by Young and Yung [YY96,YY97]. A SETUP mechanism trans-
forms a cryptosystem Π into a backdoored cryptosystem Π ′ for a malicious
backdoor holder A with asymmetric key pair (skA, pkA). This transformation
fulfills the following properties.

1. The input to functions in Π ′ agrees with the specification of inputs to Π.
This property ensures the compatibility of Π to Π ′.



2. Π ′ remains efficient and uses EncpkA , and optionally other additional func-
tions.
Requiring efficiency is obviously needed for practicability of a backdoor. The
use of EncpkA restricts the attacker to efficient encryption schemes.

3. DecskA is not part of Π.
This prevents the use of symmetric schemes and guarantees A exclusive
access to the backdoor, assuming that A’s used asymmetric scheme is secure.

4. The output of algorithms in Π ′ contains information efficiently derivable for
A, but remains compatible with the output of algorithms in Π.
The output of Π ′ needs to be compatible to Π in the sense that e.g. a ci-
phertext created with an encryption function from Π ′ must be decryptable
by the corresponding decryption function in Π. While maintaining this com-
patibility, output of Π ′ additionally needs to contain information that the
adversary can derive efficiently.
This property allows formalization of a backdoor in the sense that there
exists an efficient algorithm Recover to extract some information of the
output of Π ′.

Moreover, SETUP mechanisms can be grouped into categories of different
strength. We focus only on the weak and strong SETUP from [YY97].

Weak SETUP. The output of Π and Π ′ are polynomially indistinguishable,
except for A and the legitimate user u of the implementation. Thus, in a weak
setup u may identify with the help of her secret key sku from Π ′ the existence
of a backdoor.

Strong SETUP. The output of Π and Π ′ are polynomially indistinguishable,
except for A. Thus, a user u cannot recognize any backdoors, even when she
knows the SETUP mechanism and pkA.

In the following section we introduce a strong SETUP mechanism for (Vanilla)
McEliece, which we later also adapt to Classic McEliece.

3 Backdooring (Vanilla) McEliece

Our SETUP mechanism backdoors the McEliece key generation routine, where
we encode information into the public key that allows to extract the correspond-
ing secret key.

In (Vanilla) McEliece’s key generation process, see also Figure 1, the secret
parity check matrix H ∈ F(n−k)×n

2 of a binary linear [n, k]-code C is scrambled
by a random invertible linear transformation S ∈ F(n−k)×(n−k)

2 and a random
permutation matrix P ∈ Fn×n. I.e., the public key is pk = SHP ∈ F(n−k)×n

2 ,
and the secret key is sk = (C, S, H, P ). It is important to stress that the random-
ness for constructing C, S, H, P is chosen from the output of an PRNG applied
to a short random seed δ, say of 256 bit. Thus, a small seed δ completely de-
termines sk and allows compact storage of the secret key. While the source of



randomness is not covered in schoolbook descriptions of McEliece, we decide
to include it at this point as it will naturally lead to the possible backdoor in
Classic McEliece.

The invertible matrix S just defines a basis change of H, which does not
affect the code C. The matrix P permutes the coordinates of C, resulting in
a code equivalent to C. From a security perspective, the transformations S, P
are supposed to completely hide the structure of the underlying C. McEliece’s
security is based on pk behaving like a random parity check matrix, for which
the syndrome decoding problem is hard.

3.1 (Vanilla) McEliece Strong SETUP

Our high-level SETUP idea is that a malicious A hides the small random seed
δ in the public key pk. To this end, we encrypt our δ under the adversary’s
public key pkA, resulting in an ℓ-bit ciphertext c ←$ EncpkA(δ) ∈ Fℓ

2 for some
semantically secure encryption Enc with random ciphertexts.

Instead of applying a random permutation P , in our backdoored key genera-
tion we choose a permutation P̃ that permutes pk such that pk’s first row starts
with the ciphertext c ∈ Fℓ

2. Since usually ℓ≪ n, there exists with overwhelming
probability such a permutation P̃ .

From pk, the adversary decrypts δ = DecskA(c), runs the PRNG on δ, and
deterministically reconstructs sk. However, by the semantic security of Enc, the
first row of pk does not provide useful information to anybody not knowing skA.
Moreover, we show that the backdoored parity check matrix p̃k is indistinguish-
able from a pk that is produced with the original Vanilla McEliece scheme.

Let us more formally capture the notion of random ciphertexts.

Definition 1. A public key encryption schemes Enc provides random cipher-
texts if c←$ Encpk(δ) ∈ Fℓ

2 for some random message δ from the message space
is polynomially indistinguishable from a uniformly random bitstring of length ℓ.

Notice that any public key encryption scheme Enc can be transformed into
one that provides random ciphertexts by applying a PRF to its ciphertexts.
However, we show in section 5 that McEliece encryption itself already provides
random ciphertexts under a mild assumption (see Definition 2).

Backdooring Key Generation. The original and backdoored key generation is
described in Figure 1. Notice that we define in the backdoored key generation
KGenV the permutation matrix as the combination of a purely random P and
a permutation P ′ that sends the bits of c to the desired coordinates. Thus,
P̃ = PP ′ is chosen randomly among all permutations that sends the bits of c to
the correct positions.
Notice that K̃GenV works provided that

1. c ∈ Fℓ
2 can be encoded in the first row v = Row1(SHP ) of the public key,

and
2. P ′ is efficiently computable.



Fig. 1. Original and Backdoored Vanilla McEliece Key Generation

KGenV(1n)

1 : δ ←$ {0, 1}s

2 : r := G(δ)
3 : Generate C with parity check H from r.
4 : Compute random S, P from r.
5 : return sk := (C, S, H, P ), pk := (SHP )

K̃GenV(1n, pkA)

1 : δ ←$ {0, 1}s

2 : c←$ EncpkA (δ) ∈ Fℓ
2 with Enc from Def. 1.

3 : r := G(δ)
4 : Generate C with parity check H from r.
5 : Compute random S, P from r.
6 : Find P ′ with Row1(SHP P ′) ∈ c× Fn−ℓ

2 .
7 : P̃ := P P ′

8 : return s̃k := (C, S, H, P̃ ), p̃k := SHP̃

We show both statements in the following lemmata.

Lemma 1. For McEliece parameters, with overwhelming probability c ∈ Fℓ
2 can

be encoded in pku.

Proof. The row v = Row1(SHP ) has n entries, and is randomly distributed by
the random choice of S. Let X be a random variable for the Hamming weight
wt (v). Notice that we can encode any c ∈ Fℓ

2 as long as X ∈ [ℓ, n− ℓ]. Since X
is binomially distributed with E[X] = n

2 , a simple Chernoff bound shows that
the Hamming weight X does not lie in the interval [ 1

4 n, 3
4 n] with exponentially

small probability Pr[|X −E[X]| ≥ 1
4 n] ≤ 2e

n
12 .

If we use McEliece parameters for encrypting c, we obtain ℓ ≈ n − k ≈ 1
4 n,

which guarantees that we can encode c with overwhelming probability.

See section 5 for more details and numerical instantiations of Lemma 1.

Lemma 2. P ′ is efficiently computable.

Proof. Let us assume by the proof of Lemma 1 that v = Row1(SHP ) has its
Hamming weight in [ℓ, n−ℓ], and let c = c1 . . . cℓ. Then we can reshuffle the first
entries in an insertion-sort fashion to c, as follows.

– Let i ∈ {1, . . . , n} be minimal such that ci ̸= vi, and let vj , j > i, be minimal
with ci = vj . Then exchange columns i and j.

This process ends after a maximum of n column exchanges with the desired
reshuffle result that the first row starts with c.

Secret Key Recovery. In Figure 2, we detail the secret key recovery.
Notice that RecoverV(skA, p̃k) recovers the backdoored secret key s̃k :=

(C, S, H, P̃ ) that includes the backdoored permutation P̃ . It is important to



Fig. 2. Vanilla McEliece Secret Key Recovery

RecoverV(skA, p̃k)

1 : Parse Row1(p̃k) = c∥{0, 1}n−ℓ

2 : δ := DecskA (c)
3 : r := G(δ)
4 : Generate C with parity check H from r.
5 : Compute random S, P from r.
6 : Solve p̃k = (SHP )P ′ for the unknown P ′ ∈ Fn×n

2 . Set P̃ = P P ′.
7 : return s̃k = (C, S, H, P̃ )

recover the full secret key, since C, S, and P̃ with p̃k = SHP̃ are used in
McEliece’s decryption process. In Figure 3, we show how messages that are
embedded into a vector m of wt (m) = t are encrypted and decrypted. The
correctness of encryption/decryption follows immediately for both backdoor-free
keys and our backdoored key pair (p̃k, s̃k).

Fig. 3. McEliece encryption/decryption

EncV(pk, m)

1 : return c = pk ·m = HSP m

DecV(sk, c)

1 : Compute S−1c = HP m

2 : Use efficient decoding in C to recover P m

3 : return m = P −1(P m)

It remains to be shown how we realize the computation of P ′ in line 6 of
algorithm RecoverV(skA, p̃k). Notice that we have two matrices p̃k, SHP ∈
F(n−k)×n

2 that differ only by a column permutation P ′. We need that P ′ is
uniquely determined in order to guarantee correct decryption. It is easy to see
that P ′ is uniquely determined iff SHP has pairwise different columns. Let us
assume for a moment that the columns of SHP are indeed pairwise different.
Then it is easy to match every column of SHP with the corresponding column
in p̃k, therefore efficiently recovering the permutation P ′.

To apply this method, we need to show that SHP has pairwise different
columns. This is equivalent to pairwise different columns in SH. Let H =
(h1∥h2∥ . . . , hn) ∈ F(n−k)×n

2 , then SH = (Sh1∥Sh2∥ . . . , Shn) ∈ F(n−k)×n
2 for

some bijective S. Therefore, pairwise different columns in SH are equivalent to
pairwise different columns in H.



It is easy to see that any uniquely decodable linear code C has a parity check
matrix with pairwise different columns. Assume for contradiction that hi = hj .
Let e be an error vector with ei ̸= ej . Define e′ as e with ei and ej exchanged.
Then s = He = He′, and therefore the syndrome s has non-unique decoding.

In the special case of Goppa codes, it is also easy to see that H has pairwise
different columns. Recall from subsection 2.1 that the i-th column hi of H is of
the form

hi = 1
g(αi)

(
1, αi, α2

i , . . . αt−1
i

)
.

Assume that hi = hj for some i ̸= j. By the first coordinate we have g(ai) =
g(aj), which immediately implies αi = αj by the second coordinate. This con-
tradicts the definition of a Goppa code, for which all α1, . . . , αn are pairwise
different.

SETUP Mechanism for (Vanilla) McEliece. Let us now check that our back-
door mechanism for McEliece indeed follows the SETUP definition of Yung,
Young [YY97] from subsection 2.2.

1. The input to functions in backdoored McEliece agrees with the specification
of inputs to McEliece.
All domains remain unchanged.

2. Backdoored McEliece remains efficient and uses EncpkA , and optionally other
additional functions.
Our KGenV(1n) simply applies EncpkA , which we assume to be efficient. Since
P ′ is also efficiently computable, our modification remains efficient.

3. DecskA is not part of C.
We solely use DecskA in RecoverV(skA, p̃k).

4. The output of algorithms in C ′ contains information efficiently derivable for
the adversary, but remains compatible with the output of algorithms in C.
Our p̃k allows to recover the full secret key s̃k using RecoverV(skA, p̃k).
Moreover, the output of our backdoored McEliece scheme is fully compatible
with the original McEliece scheme, especially the original decryption function
works on the backdoored key pairs (p̃k, s̃k).

Theorem 1. Algorithms K̃GenV(1n, pkA) and RecoverV(skA, p̃k) define a strong
SETUP mechanism for (Vanilla) McEliece, when the PRNG-seed δ is not part
of a user’s secret key sku.

Proof. We show that the output of McEliece and its backdoored version are poly-
nomially indistinguishable, except for the adversary. First notice that C, S, H are
identically distributed in KGenV(1n) and K̃GenV(1n, pkA). Therefore, one can only
distinguish via P̃ or p̃k.

Since P̃ = P · P ′ for some uniform random permutation P , our permutation
P̃ is also chosen uniformly at random. Thus, P and P̃ are identically distributed
as well.



It remains to show that an one cannot distinguish via pk and p̃k, which
differ by a permutation that sends the encryption c ←$ EncpkA(δ) ∈ Fℓ

2 for
some random δ to the first ℓ coordinates in the first row. Since Enc provides
random ciphertexts (Definition 1), c is indistinguishable from a random length-ℓ
bitstring. Thus, pk and p̃k only differ by a random column permutation that is
determined by c.

Even if the adversaries public key pkA is leaked, the semantic security of
EncpkA guarantees the security of δ, therefore McEliece key pairs (pku, sku) re-
main indistinguishable from backdoored pairs (p̃ku, s̃ku).

Therefore, our backdoor for the Vanilla McEliece key generation fulfills the
definition of a strong SETUP.

3.2 From Strong to Weak SETUP

Recall that our backdoor mechanism works by encrypting the seed δ into the
backdoored p̃k. From δ we derive all randomness r that was used to construct
the original secret key sk. The algorithm that transfers sk into s̃k is deterministic
given c←$ EncpkA(δ) ∈ Fℓ

2.
In other words, an original McEliece key pair (sk, pk) is solely determined by

the seed δ. Thus, inclusion of δ into the secret key allows for a simple verifica-
tion check of the validity of a key pair, thereby preventing any strong SETUP
mechanism.

Fig. 4. Weak SETUP McEliece Key Generation

K̃Gen
δ

V (1n, pkA)

1 : δ ←$ {0, 1}s

2 : c←$ EncpkA (δ) ∈ Fℓ
2 with Enc from Definition 1

3 : r := G(δ)
4 : Generate C with parity check H from r

5 : Compute random S, P from r

6 : Find P ′ with Row1(SHP P ′) ∈ c× Fn−ℓ
2

7 : P̃ := P P ′

8 : return s̃k := (δ, C, S, H, P̃ ), p̃k := SHP̃

The verification process that checks for backdoor-freeness now simply re-
runs McEliece key generation, and checks whether it obtains C, S, H, P, pk. This
means that the strong SETUP mechanism from subsection 3.1 now becomes a
only a weak SETUP mechanism, because user u can detect it via its secret key.
This is summarized in the following theorem.



Theorem 2. Algorithms K̃Gen
δ

V (1n, pkA) and RecoverV(skA, p̃k) define a weak
SETUP mechanism for (Vanilla) McEliece, when the PRNG-seed δ is part of a
user’s secret key sku.

Our backdoor utilizes the dependency on only δ as a randomness source.
A possible alternative that comes to mind is choosing C, S, H, P by utilizing a
true randomness source. This prevents rerunning the key generation due to the
obvious lack of a seed δ, allowing an adversarial implementation to embed other
helpful intermediate values (e.g. g(x)) without any possibility of detection.

4 How to Backdoor Classic McEliece

In this section, we show that the general ideas from section 3 also transfer to
Classic McEliece. However some care has to be taken, since (mostly for efficiency
reasons) the details of Classic McEliece slightly differ.

Changes from Vanilla to Classic McEliece. The Classic McEliece key generation
is shown in Figure 5. As in Vanilla McEliece one also uses a seed δ to compute
the randomness r for the Goppa code C and its parity check matrix H. However
as opposed to Vanilla McEliece, Classic McEliece does not involve a random
invertible S, and further omits the use of a permutation matrix P . Instead, let S
be the (deterministic) Gaussian elimination matrix that sends H to the unique
reduced row-echelon form

SH =
[
In−k∥T

]
.

To this end, we assume that the first n−k columns of H define a full rank matrix.
The general case can also be handled in Classic McEliece, but the details are
irrelevant for the application of our backdoor SETUP mechanism. The reason
for choosing S as above is that the public key pk = T is a matrix in F(n−k)×k

2 ,
thus saving n− k columns in comparison to Vanilla McEliece.

At first sight, it seems that the absence of P prevents the direct applicability
of our SETUP technique from section 3. Moreover, the deterministic S also does
not allow for backdoor manipulations. However, we show in the following that
the definition of the Goppa code C already implicitly introduces a permutation
P , for which we apply our backdoor mechanism analogous to section 3.

Idea of Backdoored Key Generation. Recall from subsection 2.1 that the parity
check matrix of Goppa is of the form

H =


1

g(α1)
1

g(α2) · · ·
1

g(αn)
α1

g(α1)
α2

g(α2) · · ·
αn

g(αn)
...

. . .
αt−1

1
g(α1)

αt−1
2

g(α2) · · ·
αt−1

n

g(αn)

 .

Here, the αi ∈ Fq are random, distinct field elements. Note that the i-th column
hi of H depends on αi only. Thus, a random choice of the αi already induces a



KGenC(1n)

1 : δ ←$ {0, 1}s

2 : r := G(δ)
3 : Compute Goppa code C = (g(x), α1, . . . , αn) with distinct αi and parity check H from r.

4 : Use Gaussian elimination S to compute SH =
[
In−k∥T

]
.

5 : return sk := (C, S, H), pk := T

Fig. 5. Original Classic McEliece Key Generation

random permutation of the columns. Moreover, we may use our SETUP mech-
anism from section 3 that modifies the permutation to encode the encryption of
δ in the public key by modifying the order of the αi.

In our backdoored key generation algorithm from Figure 6 we permute only
the last k columns of the parity check matrix which constitute the (backdoored)
public key.

K̃GenC(1n, pkA) respectively K̃Gen
δ

C (1n, pkA)

1 : δ ←$ {0, 1}s

2 : c←$ EncpkA (δ) ∈ Fℓ
2 with Enc from Definition 1

3 : r := G(δ)
4 : Compute from r Goppa code C = (g(x), α1, . . . , αn) with distinct αi and parity check H.

5 : Use Gaussian elimination S to compute SH =
[
In−k∥T

]
.

6 : Find permutation P̃ ∈ Fk×k
2 with Row1(T P̃ ) ∈ c× Fk−ℓ

2 . Set P =
(

In−k 0
0 P̃

)
.

7 : Compute C̃ :=
(
g(x), (α1, . . . , αn) · P

)
.

8 : Compute H̃ = H · P .

9 : return s̃k :=

{
(C̃, S, H̃) for K̃GenC(1n, pkA)

(δ, C̃, S, H̃) for K̃Gen
δ

C (1n, pkA)
, p̃k := T P̃

Fig. 6. Backdoored Classic McEliece Key Generation

Classic McEliece Secret Key Recovery. In Figure 7, we detail the secret key
recovery.

The correctness of our RecoverC(skA, p̃k) follows analogous to the discussion
in subsection 3.1.



RecoverC(skA, p̃k)

1 : Parse Row1(p̃k) = c∥{0, 1}k−ℓ

2 : δ := DecskA (c)
3 : r := G(δ)
4 : Compute from r Goppa code C = (g(x), α1, . . . , αn) with parity check matrix H.

5 : Use Gaussian elimination S to compute SH =
[
In−k∥T

]
.

6 : Solve p̃k := T P̃ for the unknown P̃ . Set P =
(

In−k 0
0 P̃

)
.

7 : Compute C̃ :=
(
g(x), (α1, . . . , αn) · P

)
.

8 : Compute H̃ = H · P .
9 : return s̃k := (C̃, S, H̃)

Fig. 7. Classic McEliece Secret Key Recovery

Analogous to Theorem 1 and Theorem 2 we obtain a weak/strong SETUP
for Classic McEliece, depending on whether we include δ into sku or not.

Theorem 3. Algorithm K̃GenC (respectively K̃Gen
δ

C) in combination with RecoverC
define a strong SETUP (respectively weak SETUP) mechanism for Classic McEliece,
when the PRNG-seed δ is not part (respectively is part) of a user’s secret key
sku.

5 How to use Classic McEliece Encryption Against
McEliece

We propose to use the Classic McEliece standard as the encryption algorithm Enc
of A in our SETUP mechanism. First, we show that the short ciphertext length
of Classic McEliece is beneficial for embedding an encryption of δ. Second, one
should use a post-quantum resistant Enc for not weakening our SETUP against
quantum adversaries. And third, we show that under a mild assumption on
the hardness of decoding Classic McEliece encryption indeed provides random
ciphertexts, thereby satisfying Definition 1.

How to encrypt δ. Classic McEliece chooses seed length s = 256. We embed
the random δ ∈ F256

2 into a message m ∈ Fn
2 with weight wt (m) = t using

an injective function. Such an injective embedding exists, and is also efficiently
realizable, provided that 2s <

(
n
t

)
.

Let us encrypt message m under pkA, using the algorithm in Figure 3, i.e.
c = pkA ·m ∈ Fn−k

2 . In addition, Classic McEliece appends the 256-bit SHA3-
hash of c to achieve CCA security. The length of the resulting ciphertext is
ℓ = n− k + 256 bits.



Both SETUPs from section 3 and section 4 require encoding ciphertexts in
the first row of the public parity check matrix. While the SETUP from section 3
gives n coordinates for this task, the SETUP from section 4 has to work with
only k coordinates.

We provide concrete parameters for Classic McEliece instances in Table 1.
For all instances, the ciphertext size ℓ = n−k + 256 is significantly smaller than
k. This even holds if a user u takes the Category-1 instance and A chooses from
Category 5.

Target instance Category n k ℓ t 2s <
(

n
t

)
kem/mceliece348864 1 3488 2720 1024 64 ✓
kem/mceliece460896 3 4608 3360 1504 96 ✓

kem/mceliece6688128 5 6688 5024 1920 128 ✓
kem/mceliece6960119 5 6960 5413 1803 119 ✓
kem/mceliece8192128 5 8192 6528 1920 128 ✓

Table 1. Parameters for Classic McEliece and the resulting size for c

Ciphertext Randomness of Classic McEliece. A Classic McEliece ciphertext con-
sists of a random weight-t linear combination of the columns of pkA, called c,
appended by a SHA-3 hash of c ∈ Fn−k

2 . We have to show that c is polynomi-
ally indistinguishable from a random point p ∈ Fn−k

2 . This is what we call the
Decodable Point Assumption.

Definition 2 (Decodable Point Assumption). Let H ′ ∈ F(n−k)×n
2 be the

parity check matrix of a code C with distance 2t + 1 for which decoding is hard
(e.g. H ′ is a McEliece pk). Then one cannot distinguish ciphertexts c ∈ Fn−k

2
in distance t from C from random points p ∈ Fn−k

2 .

In other words, the Decodable Point Assumption states that one cannot dis-
tinguish points within the unique decoding radius of C from random points.
Since McEliece relies on the hardness of syndrome decoding, i.e., the hardness of
inverting the function m 7→ H ′m, our Decodable Point Assumption can be seen
as a distinguishing version of the computational syndrome decoding problem.
From our assumption, we trivially obtain the following corollary.

Corollary 1. Under the Decodable Point Assumption, Classic McEliece en-
cryption provides random ciphertexts.
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