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Abstract. We present a much-improved practical protocol, based on the hardness of Module-SIS and
Module-LWE problems, for proving knowledge of a short vector s⃗ satisfying As⃗ “ t⃗ mod q. The cur-
rently most-efficient technique for constructing such a proof works by showing that the ℓ8 norm of s⃗ is
small. It creates a commitment to a polynomial vector m whose CRT coefficients are the coefficients of
s⃗ and then shows that (1) A ¨CRTpmq “ t⃗ mod q and (2) in the case that we want to prove that the ℓ8

norm is at most 1, the polynomial product pm ´ 1q ¨ m ¨ pm ` 1q equals to 0. While these schemes are
already quite practical, the requirement of using the CRT embedding and only being naturally adapted
to proving the ℓ8-norm, somewhat hinders the efficiency of this approach.

In this work, we show that there is a more direct and more efficient way to prove that the coefficients of
s⃗ have a small ℓ2 norm, which does not require an equivocation with the ℓ8 norm nor any conversion to
the CRT representation. We observe that the inner product between two vectors r⃗ and s⃗ can be made
to appear as a coefficient of a product (or sum of products) between polynomials which are functions
of r⃗ and s⃗. Thus, by using a polynomial product proof system and hiding all but one coefficient, we
are able to prove knowledge of the inner product of two vectors (or of a vector with itself) modulo
q. Using a cheap “approximate range proof”, one can then lift the proof to be over Z instead of Zq.
Our protocols for proving short norms work over all (interesting) polynomial rings, but are particularly
efficient for rings like ZrXs{pXn

` 1q in which the function relating the inner product of vectors and
polynomial products happens to be a “nice” automorphism.

The new proof system can be plugged into constructions of various lattice-based privacy primitives in
a black-box manner. As examples, we instantiate a verifiable encryption scheme and a group signature
scheme which are more than twice as compact as the previously best solutions.

1 Introduction

The fundamental hardness assumption upon which lattice-based cryptography rests is that it is computa-
tionally difficult to find a low-norm vector s satisfying

As “ t mod q. (1)

It is then natural that for creating privacy-preserving protocols based on the hardness of lattice problems,
one is usually required to prove the knowledge of an s satisfying the above, or a related, equality. Unlike in
the analogous case of discrete logarithms, where proving knowledge of a secret s satisfying gs “ t turns out
to have a very simple and efficient solution [Sch89], the added requirement of showing that }s} is small turns
out to be a major complication for practical lattice cryptography.

Over polynomial rings (i.e. rings of the form ZrXs{pfpXqq, where fpXq is a monic, irreducible polynomial),
one can give a fairly-efficient zero-knowledge proof of knowledge of a vector s̄ and a polynomial c with small
coefficients satisfying

As̄ “ ct mod q, (2)

where }s̄} is some factor (depending on the dimension of s) larger than }s} [Lyu09, Lyu12]. While such
proofs are good enough for constructing fairly efficient basic protocols (e.g. signature schemes [Lyu09, Lyu12,
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BG14, DKL`18]), the fact that the norm of the extracted s̄ is noticeably larger than that of s, along with
the presence of the extra multiplicand c, makes these proofs awkward to use in many other situations. This
very often results in the protocols employing these proofs being less efficient than necessary, or in not giving
the resulting scheme the desired functionality.

As simple examples of inefficiencies that may creep up when only being able to prove (2), consider Regev-
style lattice-based encryption schemes (e.g. [Reg09, LPS10, LPR10]) where s is the randomness (including
the message) and t is the ciphertext. In order to decrypt, it is necessary for t to have a short pre-image, and so
being able to only prove knowledge of (2) is not enough to guarantee that the ciphertext t can be decrypted
because it is ct that has a short pre-image, not t (and c is not known to the decryptor). A consequence of
this is that the currently most-efficient lattice-based verifiable encryption scheme [LN17] has the undesirable
property that the expected decryption time is equal to the adversary’s running time because the decryptor
needs to essentially guess c. Employing this scheme in the real world would thus require setting up a scenario
where the adversary cannot use too much time to construct the proof. Other lattice-based constructions (e.g.
group signature schemes [LNPS21]) were required to select much larger parameters than needed in order to
accommodate the presence of the multiplicand c and the “slack” between the length of the known solution
s and the solution s̄ that one can prove.

1.1 Prior Art for Proofs of (1)

Early protocols for exactly proving (1) used the combinatorial algorithm of Stern [Ste93] to prove that the
ℓ8 norm of s is bounded by revealing a random permutation of s. The main problem with these protocols
was that their soundness error was 2{3, and so they had to be repeated around 200 times to achieve an
acceptably small (i.e. 2´128) soundness error. This resulted in proofs for even basic statements3 being more
than 1MB in size [LNSW13], while more interesting constructions required outputs on the order of dozens
of Megabytes (e.g. [LLNW16]). A noticeable improvement was achieved in [Beu20] by generically combining
Stern’s protocol with a “cut-and-choose” technique to noticeably decrease the soundness error of each protocol
run (at the expense of higher running times). This allowed proofs for basic statements to be around 200KB
in size.

A very different, more algebraic, approach for proving (1) utilized lattice-based commitments and zero-
knowledge proofs about committed values to prove relations between the coefficients of s and also prove a
bound on its ℓ8 norm. The first such protocols [YAZ`19, BLS19, ESLL19] had proof sizes that were on the
order of several hundred kilobytes. These schemes were greatly improved in [ALS20, ENS20], where it was
shown how to very efficiently prove products of polynomial products over a ring and then linear relations
over the CRT coefficients of committed values. Optimizations of these techniques [LNS21b] decreased the
proof size for the basic example to around 33KB.

The high level idea for these proofs, when s has coefficients in the set t´1, 0, 1u, is to create a BDLOP
commitment [BDL`18] to a polynomial m whose CRT coefficients are the coefficients of s, prove this (linear)
relationship as well as the one in (1) [ENS20], and then prove that pm ´ 1q ¨ m ¨ pm ` 1q “ 0 [ALS20].

There are a few intrinsic elements of this approach which hinder its efficiency, especially in certain situ-
ations. The first is that m consists of large polynomial coefficients, and so committing to it requires using
a more expensive commitment scheme, which is especially costly when s is long4 (we discuss this in more
detail when talking about various commitments in Section 1.3). Another downside is that for vectors s with
somewhat-large coefficients, such as ones that are obtained from trapdoor sampling (e.g. [ABB10, MP12]),
proving the smallness of the ℓ8-norm becomes significantly costlier because the degree of the polynomial
product increases. There is also an incompatibility between the requirement that the underlying ring has
a lot of CRT slots and negligible soundness error of the protocol – thus a part of the protocol needs to be

3 A standard example that has been used for comparison-purposes in several works is 1024ˆ 2048 integer matrix A,
a 32-bit modulus q, and s having coefficients in t´1, 0, 1u (or }s} ď

?
2048).

4 The aforementioned framework was most appropriate for committing to small-dimensional messages (e.g. in proto-
cols related to anonymous transactions (e.g. [EZS`19, LNS21b, ESZ21]) and proving various relationships between
them.
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repeated for soundness amplification. And finally, proving the ℓ2 norm, rather than the ℓ8 one, is very often
what one would like to do when constructing proofs for lattice-based primitives. This is because efficient
trapdoor-sampling used in many lattice primitives produces vectors of (tightly) bounded ℓ2 norm, and noise
also generation generally results in tight ℓ2-norm bounds.

1.2 Our Results

We propose a simpler, more efficient, and more direct approach for proving a tight bound on the ℓ2 norm of s
satisfying (1). Unlike in the previous approach, we do not need to recommit to s in CRT form, and therefore
don’t have a ring algebra requirement which had a negative effect on the protocol soundness. Furthermore,
not needing to create a BDLOP commitment to s noticeably shrinks the proof size. In particular, we define
a commitment scheme which combines the Ajtai [Ajt96] and BDLOP [BDL`18] commitments into one, and
then put the long commitment to s into the “Ajtai” part of the commitment scheme, which does not increase
the commitment size.5

We then observe that the inner product of two vectors over Z can be made to appear as the constant
coefficient of a polynomial product, or as a coefficient in a sum of polynomial products. Our protocol for
proving the ℓ2-norm of s is then a specific application of a more general protocol that can prove knowledge
of constant coefficients of quadratic relations over polynomial rings for messages that are committed in the
“Ajtai” and “BDLOP” parts of our new commitment. Our protocols are built up in a black-box manner from
basic building blocks, and can then also be used in a black box manner for implementing the zero-knowledge
proof parts of various lattice-based primitives. As examples, the ZK proof of the basic relation from (1) is
« 2.5X shorter than in previous works, a verifiable encryption scheme can be as short as the one from [LN17]
without the constraint that the decryption time is proportional to the adversary’s attack time, and we give
a group signature scheme whose signatures are more than 2X smaller than the currently most compact one.

Our proof system for the basic equality from (1) is around 14KB, and approximately 8KB of that consists
of just the “minimum” commitment (i.e. a commitment to just one element in Rq that doesn’t include s)
and its opening proof. This shows that our construction is quite close to being optimal for any approach
that requires creating a commitment to s using known lattice-based commitment schemes. Since all zero-
knowledge proofs that we’re aware of for showing that a secret s satisfies fpsq work by first committing to
s, it appears that any significant improvement to this proof system (e.g. another factor of 2) would require
noticeable improvements in fundamental lattice primitives, basing security on stronger assumptions, or a
noticeable departure from the current approach.

We now give a detailed overview of the techniques and results in this work, and then sketch how our
framework can be used to construct lattice-based privacy protocols.

1.3 Techniques Overview

Throughout most of the introduction and paper, we will concentrate on the ring Rq “ ZqrXs{pXd`1q, as our
constructions are most efficient here because they can utilize a specific automorphism in this ring. Towards
the end of this section and in Section 7, we describe how to adapt our construction, and most applications,
to other rings that do not have this algebraic structure. All our constructions will be based on the hardness
of the Module-SIS and Module-LWE problems and one should think of the degree of the underlying ring d
to be something small like 64 or 128 (we use 128 for all our instantiations).

Commitment Schemes. In the original Ajtai commitment scheme, implicit in [Ajt96], one commits to a
message s1 using randomness s2, where }si} are small, as

A1s1 ` A2s2 “ t mod q. (3)

5 The BDLOP part of the commitment scheme is then used for low-dimensional auxiliary elements that will need to
be committed to later in the protocol.
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It’s easy to see that creating a second valid opening ps1
1, s

1
2q for the same commitment value t is equivalent

to solving the SIS problem over Rq, and the hiding aspect of the commitment scheme is based on the
indistinguishability of pA2,A2s2q from uniform. A useful feature of the above commitment scheme is that
the dimension of the message s1 does not increase the commitment size. And since the hardness of SIS does
not really depend on the dimension of the solution, increasing the dimension of s1 does not negatively impact
the security either. On the other hand, one does need the coefficients of s1 to be small.

A different commitment scheme, called the BDLOP scheme [BDL`18], commits to a message m using
randomness s as

„

A
B

ȷ

¨ s `

„

0
m

ȷ

“

„

tA
tB

ȷ

mod q, (4)

where only the randomness s needs to have a small norm. An opening of this commitment is just s since it
uniquely determines m, and so it is again easy to see that two different openings lead to a solution to SIS
for the matrix A. The hiding property of this commitment is based on the indistinguishability from uniform

of

ˆ„

A
B

ȷ

,

„

A
B

ȷ

¨ s

˙

.

This scheme has two advantages and one disadvantage over the one in (3). The disadvantage is that both
the commitment size and the opening size grow linearly with the dimension of the message vector m. An
advantage is that the coefficients of m can be arbitrarily large modulo q. The other advantage is that if one
plans ahead and sets the dimension of s large enough, one can very cheaply append commitments of new
elements in Rq. For example, if we have already created a commitment to m as in (4) and would like to
commit to another polynomial vector m1, we can compute B1s ` m1 “ t1

B mod q, where B1 is some public

randomness. If

¨

˝

»

–

A
B
B1

fi

fl ,

»

–

A
B
B1

fi

fl ¨ s

˛

‚ is indistinguishable from uniform, then ptA, tB , t
1
Bq is a commitment to

m,m1. Note that committing to k extra Rq elements requires growing the commitment size by only k Rq

elements, something that cannot be done using the scheme from (3).
For optimality, our construction will require features from both of these schemes, and it actually turns

out to be possible to combine the two of them into one. So to commit to a message s1 with a small norm,
and a message m with unrestricted coefficients (modulo q), one can create a commitment

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

“

„

tA
tB

ȷ

mod q, (5)

where the randomness is s2. We will call this combination of the Ajtai and BDLOP commitment scheme,
the ABDLOP commitment. The savings over creating two separate commitments is that instead of needing
the t term from (3) and the tA term from (4), we only have the tA term. So we get an Ajtai commitment
to s1 for free! And similarly, the opening does not require both s2 from (3) and s from (4).

One can show that (5) is indeed a commitment scheme and has an efficient zero-knowledge opening
proof.6 Furthermore, there is also an efficient zero-knowledge proof (much like in [BDL`18]) which allows
one to efficiently show that the committed values s1,m satisfy a relation over Rq

R1s1 ` Rmm “ u mod q, (6)

where the matrices R1,Rm, and the vector u are public. This proof system is given in Figure 4, and we just
mention that the proof size is not affected by the sizes of R1 and Rm. In other words, the proof size for
proving linear relations over Rq is the same as the proof size of just proving knowledge of the committed
values. The only way in which this proof puts a restriction on the underlying ring is that the modulus q
must be large enough so that the extracted SIS solution is hard, and that the challenge set C is such that
the difference of challenges is (with high probability) invertible. This can be done by choosing the modulus

6 As for the Ajtai and BDLOP commitments, the opening needs to be carefully defined because the ZK proof only
proves approximate relations as in (2). The details are in Section 3.1.

4



q in a way that Xd ` 1 splits into very few irreducible factors of the form Xk ´ ri modulo q (or the prime
factors of q), which in turn implies that all elements of Rq with small coefficients are invertible [LS18].

The way this commitment scheme will be used in our protocols is that we will put high-dimensional
messages with small coefficients into s1, while putting small-dimensional values with large coefficients –
generally auxiliary “garbage terms” that we will need to commit to during the protocol which aid in proving
relations among the elements in s1 – into m.

Inner Products over Zq. Suppose that instead of just wanting to prove linear relations over Rq, as above,
we wanted to prove linear relations over Zq. That is, if we let R1, Rm be integer matrices, and we write s⃗1
and m⃗ to be integer vectors whose coefficients are the integer coefficients of the polynomial vectors s1 and
m, then we would like to prove that R1s⃗1 `Rmm⃗ “ u⃗ mod q.

An important observation is the following: if r⃗ “ pr0, r1, . . . , rd´1q, s⃗ “ ps0, s1, . . . , sd´1q P Zd
q are vectors

and rpXq “
ř

i riX
i, spXq “

ř

i siX
i P Rq are the corresponding polynomials, then xr⃗, s⃗y mod q is equal

to the constant coefficient of the polynomial product rpX´1q ¨ spXq over Rq.
7 Similarly, for r⃗, s⃗ P Zkd

q , one

can define the corresponding polynomial vectors r “ pr1, . . . , rkq, s “ ps1, . . . , skq P Rk
q to have the same

coefficients as r⃗, s⃗ in the straightforward manner, then xr⃗, s⃗y mod q is equal to the constant coefficient of
ř

i ripX
´1q ¨ sipXq, where the multiplication is performed over Rq.

For a polynomial h “ h0 ` h1X ` . . .` hd´1X
d´1 P Rq, we will write rh to mean the constant coefficient

h0. The procedure to prove that xr⃗, s⃗y mod q “ α is then to create polynomial vectors r, s such that Ćxr, sy

(where the inner product is over Rq) is equal to xr⃗, s⃗y. One can hope to use the protocol from Figure 4 to
prove the linear relation over Rq, which would imply the linear relation over Zq. The problem is that naively
proving the relation over Rq would necessarily require the prover to reveal all the coefficients of xr, sy instead
of just the constant one, which implies giving out extra information about the committed vector s⃗, and so
is clearly not zero-knowledge.

We now outline the solution to this problem for general linear functions. For a linear function f : Rk
q Ñ

Rq, we would like to prove that the committed values s1,m in the ABDLOP commitment satisfy rfps1,mq “ 0

(for aesthetics, we will write rfpxq to mean Ćfpxq). In order to mask all but the constant coefficient, we use a
masking technique from [ENS20], where the prover first creates a commitment to a polynomial g P Rq such
that rg “ 0 and all of its other coefficients are chosen uniformly at random. In our proof system, he commits
to this polynomial in the “BDLOP part” of (5) by outputting tg “ xb, s2y ` g, where b is some random
public polynomial vector. The verifier then sends a random challenge γ P Zq, and the prover computes

h “ γ ¨ fps1,mq ` g. (7)

The prover then creates a proof, as in Figure 4, that the committed values s1,m, and g satisfy this linear
relation, and sends h along with this proof to the verifier. The verifier simply checks the validity of the linear
proof, and also that rh “ 0 mod q.

The proof leaks no information about all but the constant coefficient of fps1,mq because they are masked

by the completely random coefficients of g. To see that this proof is sound, note that for all g, if rfps1,mq ‰ 0,

then Prγrγ ¨ rfps1,mq ` rg “ 0s ď 1{q1, where q1 is the smallest prime factor of q. In order to reduce the
soundness error down to ϵ, the prover would need to create a commitment to λ different gi, where p1{q1qλ “ ϵ
and then reply to λ different challenges γi by creating λ different hi as in (7). Since the gi are just one
polynomial in Rq, the hi are also just one polynomial each, and so amplifying the proof requires sending
just 2λ extra elements in Rq.

The above shows that proving one relation rfps1,mq “ 0 requires a small number λ of extra polynomials
g and h. Usually, we will want to prove many such linear equations, and so it would be quite inefficient if our
proof size grew linearly in their number. But, just like in the basic protocol in Figure 4, we can show that
the number of equations that we need to prove does not affect the size of the proof. If we would like to prove

7 For a polynomial rpXq “
d´1
ř

i“0

riX
i

P Rq, rpX´1
q “ r0 ´

d´1
ř

i“1

riX
d´i.
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k equations rfips1,mq “ 0, the prover still sends the term g in the first round (let’s ignore the amplification
for now), but this time instead of sending just one random challenge γ P Zq, the verifier sends k random
challenges γi. The prover then creates the equation

h “
ÿ

i

γi ¨ fips1,mq ` g, (8)

and sends h along with a proof that the s1,m, and g satisfy the above. The verifier checks the proof and
that rh “ 0 mod q. The fact that this proof leaks no information and that the soundness error is again 1{q1
is virtually identical as for (7), and we give a full description of this protocol in Figure 5.

Quadratic Relations and Norms. In the above, we saw an overview of how one can prove knowledge
of inner products over Rq and Zq when one of the values is committed to and the other is public. We now
show how to do the same thing when both values are in the commitment – in other words, how to prove
quadratic relations over committed values.

The most efficient protocol for proving quadratic relations between committed polynomials in Rq is
given in [ALS20]. That protocol assumes that the elements were committed using the BDLOP commitment
scheme, and one can show that a similar approach works for the ABDLOP scheme as well. And so one can
prove arbitrary quadratic relations over Rq between the committed polynomials in the polynomial vector s1
and m in (5). We will now explain how to use this proof system, together with the ideas presented above,
to construct a proof that the s satisfying (1) has small ℓ2-norm. For simplicity of this description, let’s just
suppose that we would like to prove that }s} “ β instead of }s} ď β.8 The idea is to first commit to s as
part of the s1 part of (5) (i.e. in the “Ajtai part” of the ABDLOP scheme). Then we use the observation
from the previous section that notes that if s1 “ ps1, . . . , skq P Rk

q , then }s}2 is the constant coefficient of
ř

i sipX
´1q ¨ sipXq. We cannot directly use the proof system for linear proofs because that one assumed that

one of the multiplicands was public. We thus need to extend the protocol from [ALS20] to prove knowledge
of

ř

i sipX
´1q ¨ sipXq when having a commitment to s.

Let us recall the main ideas from [ALS20] and then see how they can be applied to the ABDLOP
commitment. Suppose, for example, that we wanted to prove that s1s2 ´ s3 “ 0, and we had commitments
to si in the Ajtai part of the ABDLOP commitment (i.e. the si are part of the s1 in (5)). If one looks at the
protocol in Figure 4 for proving knowledge of committed values in the ABDLOP protocol, then we note that
the prover sends the vector z1 “ cs1 ` y1. This z1 consists of terms zi “ sic ` yi, where c is a polynomial
challenge (with small coefficients) and yi is a masking polynomial whose job is to hide si.

The high level idea in which the protocol from [ALS20] (and some that preceded it [BLS19, ESLL19,
YAZ`19]) proves quadratic relations is by having the verifier create a quadratic equation (in c) out of the
linear equations zi “ csi ` yi. That is, the verifier computes

z1z2 ´ cz3 “ ps1s2 ´ s3qc2 ` g1c` g0, (9)

where g1 and g0 are some terms which depend on yi and si and are committed to by the prover prior to
receiving the challenge c.9 The above is a quadratic equation in the variable c (since all the other terms
are already committed to), and so if the prover shows that z1z2 ´ cz3 “ g1c ` g0 (i.e. it’s actually a linear
equation) it will imply that with high probability the quadratic coefficient, s1s2 ´ s3 is equal to 0.

To prove that the constant coefficient of spX´1q ¨ spXq is some value β, one can try to do something
similar. Here, it becomes important that the function mapping s to spX´1q is an automorphism (call it σ)
for Rq. Given the term z “ sc` y, the verifier is able to compute

σpzq ¨ z ´ σpcq ¨ c ¨ β2 “ pσpsq ¨ s´ β2q ¨ σpcq ¨ c` σpsq ¨ y ¨ σpcq ` s ¨ σpyq ¨ c` σpyq ¨ y, (10)

8 To prove the latter, one would commit to a vector b⃗ which is the binary representation of the integer β2
´ }s}

2 and

then prove that it is indeed binary and that x⃗b, p1, 2, 22, ...0, . . . , 0qy is β2
´ }s}

2; which implies that the latter is

positive. Note that it is still a quadratic relation in the committed values s and b⃗.
9 [ALS20] showed that the yi were already implicitly committed to by the first part of the protocol.
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and, if the above is equal to g2 ¨σpcq`g1 ¨c`g0, would like to conclude that the coefficients in front of σpcq ¨c
is 0. Unfortunately, we can’t conclude this because the c and σpcq are not independent. What we instead do
is choose the challenges c from a set that is fixed under this automorphism – that is, σpcq “ c. Then (10)
becomes

σpzq ¨ z ´ c2β2 “ pσpsq ¨ s´ β2q ¨ c2 ` pσpsq ¨ y ` s ¨ σpyqq ¨ c` σpyq ¨ y, (11)

and we again have a quadratic equation in c. Luckily, the requirement that σpcq “ c does not restrict the

challenge set too much. In particular, if we choose c P Rq to be of the form c “ c0 `
d{2´1
ř

i“1

ci ¨ pXi ´ Xd´iq,

where ci P Zq, then c “ σpcq.10 So we are free to set d{2 coefficients of the challenge polynomial instead of
the usual d. So obtaining the same soundness requires the coefficients to be a little larger, but this has a
rather small effect on the proof size.

The protocol in Figure 6 is a very general protocol for proving that a quadratic function in the coefficients
of s1 and m, and the automorphisms of s1 and m, is satisfied as long as the challenge set is fixed under the
particular automorphism. If we only want to prove the ℓ2 norm, then we do not want to prove a quadratic
function over Rq, but rather we just want to prove something about the constant coefficient of a quadratic
relation over Rq. To do this, we employ the same masking technique as in (7) that we used for our linear
proofs over Zq. Furthermore, just like in the linear proofs setting, if we need to prove multiple quadratic
relations, we can first combine them into one equation, and then the proof size does not increase. Also note
that we can clearly combine linear and quadratic equations together into one quadratic equation. The full
protocol is presented in Figure 8.

We are almost done, except for the fact that all of our proofs are modulo q. That is, the protocol only
proves that }s}2 “ β2 mod q, which is not the same as proving }s}2 “ β2. In order to prove that there
is no “wraparound” modulo q, we employ a version of the “approximate range proof” technique to show
that the coefficients of s are all small-enough. We do not need a sharp bound on these coefficients, but
just need to show that they are small-enough that no wraparound occurs. For this, we use the technique
[BL17, BN20, LNS20, GHL21] of committing to a masking vector y⃗ (in the BDLOP part of (5)), receiving
a ´1{0{1 challenge matrix R, and outputting z⃗ “ Rs⃗ ` y⃗ (and doing a rejection sampling to hide s⃗). It
can be shown that if }z⃗} is small, then }s⃗} is also small. The dimension of y⃗ and z⃗ is small (between 128
and 256), and so the extra commitment to y⃗ and the revealing of z⃗ is inexpensive. The protocol for the
approximate range proof is given in Figure 9, and the general protocol proving these approximate range
proofs in combination with other quadratic functions is given in Figure 10.

Putting Everything Together. The structure for proving (1) involves creating an ABDLOP commitment
as in (5) with s1 “ s and making the randomness s2 long enough to accommodate future commitments to a
few intermediate terms necessary in the proof. One then uses the aforementioned proofs to show that }s1}

is small, and that the linear equation in (1) is satisfied. Notice that we don’t really need any ring structure
on the equation in (1); if it is over Zq, we can simply prove it using the linear proofs over Zq. This is
computationally more expensive than if the equation were over Rq, because for every multiplication over Zq,
we have to compute one multiplication over Rq, but the proof size will be the same.

We also note that the modulus in (1) does not have to be the same as in the commitment scheme. In fact,
it will often be necessary to use a larger modulus in the commitment scheme because it has to be larger than
}s}2. For example, we can set the commitment scheme modulus to p ¨ q and then simply lift the equation in
(1) to this modulus by multiplying both sides of it by p. As long as the challenge differences are invertible
in the ring Rq and Rp, all the protocols go through unchanged.

Another possibility is, instead of proving As “ t mod q, one proves that

As ´ t “ r ¨ q (12)

10 This is easy to see because σpXi
´Xd´i

q “ X´i
´Xi´d, and multiplying by ´Xd

“ 1, we obtain σpXi
´Xd´i

q “

´Xd´i
` Xi.
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over the integers. If each row of A consists of m integer coefficients, then each coefficient of r has magnitude
at most mq. One can then do the proof system using a larger modulus p, and also prove that each coefficient
of q´1pAs ´ tq mod p is small using the approximate range proof. The advantage of this method over using
pq as the modulus for the commitment scheme, as above, is that it allows the commitment scheme modulus
p to be a prime, and so one needs fewer terms for coefficient masking (see the discussion after (7)), which
could save a few kilobytes in the complete proof. A disadvantage is that there is now the extra secret r term
that needs to be dealt with.

Useful Extensions. While we concentrated on proving the smallness of the ℓ2-norm of a vector s⃗ (or
more generally the knowledge of the inner product between two vectors), it is also possible to use our
techniques to prove many other inter-vector relations. In particular, a useful relation (e.g. if dealing with
general functions/circuits) is proving the knowledge of the component-wise product r⃗˝s⃗. This can be generally
accomplished by proving a polynomial product over a ring Rp of two vectors r and s whose CRT coefficients
are r⃗ and s⃗. The important thing is to choose a prime p such that the polynomial Xd ` 1 factors into
linear factors modulo p. As mentioned above, by simply subtracting off the remainder as in (12), one can
use different moduli for the commitment scheme for the relations that we would like to prove. Thus one
can choose a “CRT-friendly” modulus for the underlying relation, while using a modulus that allows the
polynomial differences to be invertible (so not a CRT-friendly one) for the commitment scheme.

We also point out that proving inner products can be directly used to prove another very natural function
– showing that all the coefficients of a vector are from the set t0, 1u. For this, one uses the observation that
s⃗ has coefficients in t0, 1u if and only if xs⃗, 1⃗ ´ s⃗y “ 0. And since given a commitment for s⃗, one can maul it
into a commitment to 1⃗ ´ s⃗, one can generically apply the aforementioned protocol in Figure 8.

Using Other Rings. In proving that the norm of a polynomial s was small, we exploited the fact that in

the ring R, ČspX´1q ¨ s “ }s}2 and that spX´1q was an automorphism. In Section 7, we show that the same
high level ideas can also be made to work for rings that don’t have this algebraic structure. Specifically,
for all rings R “ ZrXs{pXd ` fd´1X

d´1 ` . . . ` f1X ˘ 1q, there exists a linear function g : R Ñ R such

that Čgprq ¨ s is equal to xr⃗, s⃗y. If g is not an automorphism, then proving knowledge of }s}2 “ Čgpsq ¨ s would
require the prover to commit to both s and gpsq, and then also prove the linear relationship between the
commitments of s and gpsq. Opening two commitments instead of one will increase the proof size, but this
is slightly mitigated by the fact that the challenges no longer need to be restricted to be fixed under any
automorphism.

Sample Constructions. In Section 6, we present various instantiations of lattice-based primitives that
can be constructed using our zero-knowledge proof system. We now give a very high-level description of
a group signature scheme. In a group signature scheme, the Setup Authority uses a master secret keys to
distribute member secret keys to the members of the group. The members can then use their secret keys to
sign messages on behalf of the group. An entity known as the Opener (or group manager) also has a special
secret key that allows him to obtain the identity of the signer of any message. The privacy criterion states
that it should be impossible, for everyone but the Opener, to trace back a signature to the particular user, nor
link that two signatures were signed by the same user. Conversely, the traceability requirement states that
every message signed by a user with identity µ will get traced back to him by the Opener. Group signatures
are an interesting primitive in their own right, but are particularly useful in determining the practicality
of zero-knowledge proofs as they contain some ingredients which are prevalent throughout privacy-based
cryptography.

We show how we can use our improved ZK proof to construct a lattice-based group signature following
the framework of [dPLS18, LNPS21]. The master public key is rA | Bs,u, and the secret key of a group
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member with identity µ is a short vector

„

s1
s2

ȷ

such that

rA | B ` µGs ¨

„

s1
s2

ȷ

“ u mod q. (13)

The setup authority with a trapdoor for the lattice L “ tx : rA | Bs ¨ x “ 0 mod qu can create such short
vectors which are distributed according to a discrete Gaussian distribution [ABB10, MP12].

The group member’s signature of a message consists of a Module-LWE encryption of his identity µ as
„

A1

b

ȷ

¨ r `

„

0
rp{2uµ

ȷ

“ t mod p, (14)

where A1,b is the public key (of the Opener) and r is the randomness, together with a a ZKPoK that he

knows µ, r, and

„

s1
s2

ȷ

satisfying (13) and (14). The message that the user is signing is, as usual, put into the

input of the hash function used in the Fiat-Shamir transform of the ZKPoK.
To create this signature, the user commits to s1, s2, r, µ in the “Ajtai” part of the ABDLOP commitment

(5). He then proves that the norms of s1, s2, r are small, that µ has 0{1 coefficients, and that (14) and
(13) hold. Notice that (14) is just a linear equation and proving (13) is proving the quadratic relation
As1 `Bs2 `Gµs2 “ u mod q. All of these proofs fit into the appropriate functions in the protocol in Figure
10 and the full description of the group signature is given in Section 6.4.

The security of the scheme rests on the fact that creating a valid proof on a µ that is not the user’s
identity implies having a solution to (13) on a new identity, which is directly equivalent to breaking the
ABB signature scheme [ABB10, MP12], which in turn implies breaking the Module-SIS problem. Prior to
this work, proving tight bounds on the ℓ2 norm of polynomial vectors with somewhat large coefficients was
not very efficient, and so constructions of group signature schemes using this approach [dPLS18, LNPS21]
did not prove (13), but rather proved an approximate version of it as in (2) – i.e. they proved knowledge of
s̄1, s̄2, c satisfying

rA | B ` µGs ¨

„

s̄1
s̄2

ȷ

“ cu mod q, (15)

where }s̄i} " }si}.
A consequence of being only able to prove the above is a vicious cycle of the larger norms and the presence

of c resulting in a larger extracted solution to the Module-SIS problem, which in turn requires having a larger
modulus for SIS security, which then also requires a larger lattice dimension for LWE security. Furthermore,
because these schemes relied on the verifiable encryption scheme of [LN17], they also did not prove (14), but
rather an approximate version of it as in (2). The implication is that in order to decrypt, the Opener needed
to guess the unknown c, which in expectation requires the same number of guesses as the adversary’s number
of calls to the random oracle during the proof. Thus special care would be needed to instantiate the scheme
in an environment that would not allow the adversary to be able to have too much time to try and forge
a signature. We believe that efficiently eliminating this requirement in all lattice-based schemes requiring a
verifiable encryption scheme is a notable improvement on the state of affairs.

Public Key Size Signature Size
Opening Time Independent
of Adversary’s Forgery Time

[LNPS21] 96KB 203KB ˆ

This Work 48KB 92KB ✓

Table 1: Our group signature and that of [LNPS21].

We compare the instantiation of the group signature from this paper to the previously most efficient
one from [LNPS21] in Table 1. We mention that there are also tree-based group signatures (e.g. [ESZ21,
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BDK`21]) which have shorter outputs for small group sizes, but have the disadvantage that the signing
time, verification time, and public key size are linear in the group size. The signature length of these schemes
also grows slightly with the group size, and for groups having more than « 221 members, our scheme has a
comparable signature size (in addition to a much smaller public key and signing/verification times).

Proof Size

[LNS21a] 33KB

This Work 14KB

Ciphertext Size Proof Size
Decryption Time
Independent of
Forgery Time

[LN17] 9KB 9KB ˆ

[LNS21a]11 4KB 33 - 44KB ✓
This Work 1KB 19KB ✓

Table 2: The table on the left compares the difference in proof size of proving knowledge of short s⃗, e⃗ satisfying
As⃗ ` e⃗ “ t⃗ mod q, where A P Z1024ˆ1024

q and q « 232, and }ps⃗, e⃗q} ď
?
2048. The protocol from [LNS21a] needs to

make the additional restriction that all the coefficients in s⃗, e⃗ are from t´1, 0, 1u. The table on the right compares
our instantiation of a verifiable encryption scheme from this paper with [LN17] and [LNS21a].

Part of the group signature includes a verifiable encryption scheme, in which the encryptor proves that
the encryption is valid. When looked at separately, this scheme has a similar size to the one from [LN17], but
with the noticeable advantage of not having a dependency between the decryption time and the adversary’s
forgery time. We also give a comparison of the proof size for the basic system in (1) between our proof system
and the prior best one from [LNS21a] that followed the framework of [ALS20] and [ENS20]. The comparisons
for the verifiable encryption scheme and the basic proof system are in table 2 and detailed descriptions of
the proofs can be found in Sections 6.2 and 6.3.

Acknowledgements. We would like to thank Ward Beullens for generalising Lemma 2.15 for all powers-of-two
k (initially, the lemma only covered k “ 1) and also Damien Stehlé and Elena Kirshanova for their very
useful feedback. This work is supported by the EU H2020 ERC Project 101002845 PLAZA.

2 Preliminaries

2.1 Notation

Denote Zp to be the ring of integers modulo p. Let q “ q1, . . . , qn be a product of n odd primes where
q1 ă q2 ă . . . ă qn. Usually, we pick n “ 1 or n “ 2. We write v⃗ P Zm

q to denote vectors over a ring Zq.
Matrices over Zq will be written as regular capital letters R. By default, all vectors are column vectors. We
write v⃗||w⃗ for a usual concatenation of v⃗ and w⃗ (which is still a column vector). For v⃗, w⃗ P Zk

q , v⃗ ˝ w⃗ is the
usual component-wise multiplication. For simplicity, we denote u⃗2 “ u⃗ ˝ u⃗. We write x Ð S when x P S is
sampled uniformly at random from the finite set S and similarly x Ð D when x is sampled according to the
distribution D. Let rns :“ t1, . . . , nu.

For a power of two d and a positive integer p, denote R and Rp respectively to be the rings ZrXs{pXd`1q

and ZprXs{pXd ` 1q. Lower-case letters denote elements in R or Rp and bold lower-case (resp. upper-case)
letters represent column vectors (resp. matrices) with coefficients in R or Rp. For a polynomial f P Rp,

denote f⃗ P Zd
q to be the coefficient vector of f . By default, we write its i-th coefficient as its corresponding

regular font letter subscript i, e.g. fd{2 P Zp is the coefficient corresponding to Xd{2 of f P Rp. For the

constant coefficient, however, we will denote f̃ :“ f0 P Zp. The ring R has a group of automorphisms AutpRq

11 This paper presents a verifiable decryption scheme, but the proof size for a verifiable encryption scheme constructed
in the same manner would be similar. At the very least, it needs to be as large as the proof of the basic equation
in (1).
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that is isomorphic to Zˆ
2d. Let σi P AutpRqq be defined by σipXq “ Xi. For readability, we denote for an

arbitrary vector m P Rk:
σipmq :“ pσipm1q, . . . , σipmkqq

and similarly σipRq for any matrix R. When we write xu,vy P Z for u,v P Rk, we mean the inner product
of their corresponding coefficient vectors.

For an element w P Zq, we write }w}8 to mean |w mod˘ q|. Define the ℓ8 and ℓp norms for w “

w0 ` w1X ` . . .` wd´1X
d´1 P R as follows:

}w}8 “ max
j

}wj}8, }w}p “
p

b

}w0}
p
8 ` . . .` }wd´1}

p
8.

If w “ pw1, . . . , wmq P Rk, then

}w}8 “ max
j

}wj}8, }w}p “
p
a

}w1}p ` . . .` }wk}p.

By default, }w} :“ }w}2. Similarly, we define the norms for vectors over Zq. Denote Sγ “ tx P Rq : }x}8 ď

γu.

2.2 Probability Distributions

We first define the discrete Gaussian distribution used for the rejection sampling.

Definition 2.1. The discrete Gaussian distribution on Rℓ centered around v P Rℓ with standard deviation
s ą 0 is given by

Dℓ
v,spzq “

e´}z´v}
2

{2s2

ř

z1PRℓ e´}z1}2{2s2
.

When it is centered around 0 P Rℓ we write Dℓ
s “ Dℓ

0,s.

We will use the following tail bound, which follows from [Ban93, Lemma 1.5(i)].

Lemma 2.2. Let z Ð Dm
s . Then Pr

”

}z} ą t ¨ s
?
md

ı

ă

´

te
1´t2

2

¯md

.

Next, we recall the binomial distribution.

Definition 2.3. The binomial distribution with a positive integer parameter κ, written as Binκ is the dis-
tribution

řκ
i“1pai ´ biq, where ai, bi Ð t0, 1u. The variance of this distribution is κ{2 and it holds that

Binκ1 ˘ Binκ2 “ Binκ1`κ2 .

2.3 Cyclotomic Rings

The ring R has a group of automorphisms AutpRq that is isomorphic to Zˆ
2d,

i ÞÑ σi : Zˆ
2d Ñ AutpRq,

where σi is defined by σipXq “ Xi. Consider σ´1 P AutpRqq. We define the following map T : Zkd ˆZkd Ñ R
which given vectors a⃗ “ pa0, . . . , akd´1q and b⃗ “ pb0, . . . , bkd´1q, it outputs:

Tp⃗a, b⃗q :“
k´1
ÿ

i“0

σ´1

˜

d´1
ÿ

j“0

aid`jX
j

¸

¨

˜

d´1
ÿ

j“0

bid`jX
j

¸

P R. (16)

As briefly described in the introduction and in more detail in Section 5, we will make use of the following
simple property of T.
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Lemma 2.4. Let a⃗, b⃗ P Zkd for k ě 1. Then, the constant coefficient of T
´

a⃗, b⃗
¯

is equal to x⃗a, b⃗y.

In Section 7 we show how to construct functions T with the same property for different underlying rings
than ZrXs{pXd ` 1q.

Suppose each pqiq splits into 2 prime ideals of degree d{2 in R. This means Xd ` 1 ” φ0φ1 pmod qiq
with irreducible polynomials φj of degree d{2 modulo qi. We assume that Zq contains a primitive 4-th root
of unity ζi P Zq but no elements whose order is a higher power of two, i.e. qi ´ 1 ” 4 pmod 8q. Therefore, we
have

Xd ` 1 ”

´

X
d
2 ´ ζi

¯´

X
d
2 ´ ζ3i

¯

pmod qiq. (17)

We recall the main result by Lyubashevsky and Seiler [LS18] which says that small polynomials over Rqi

are invertible.

Lemma 2.5 (DBLP:conf/eurocrypt/LyubashevskyN17,[LS18]). Let p ” 5 pmod 8q be a prime.
Then, any f P Rp which satisfies either 0 ă }f}8 ă 1?

2
p1{2 or 0 ă }f} ă p1{2 has an inverse in Rp.

In this paper we will be working with polynomials in Rp which are stable under the σ´1 automorphism.
The following result says that for specific primes p, if c P Rp satisfies σ´1pcq “ c and c is non-zero then c is
invertible over Rp.

Lemma 2.6. Let p ” 5 pmod 8q be a prime. Take any c P Rp such that σ´1pcq “ c. Then, c is invertible
over Rp if and only if c ‰ 0.

Proof. Since p is congruent to 5 modulo 8, we can factor the polynomial Xd ` 1 modulo p as

Xd ` 1 ” pXd{2 ´ rqpXd{2 ` rq pmod pq

for some r P Zp where polynomials Xd{2 ˘ r are irreducible modulo p. Since σ´1pcq “ c, we can write c as

c “ c0 ` c1X ` . . .` cd{2´1X
d{2´1 ´ cd{2´1X

d{2`1 ´ . . .´ c1X
d´1.

Now, we observe that

c mod pp,Xd{2 ˘ rq “ c0 `

d{2´1
ÿ

i“1

pci ˘ rcd{2´iqX
i.

Suppose c ‰ 0. Then, one of the coefficients c0, . . . , cd{2´1 P Zp is non-zero, say ci. Note that if i “ d{4 then
ci ˘ rcd{2´i is not zero since r ‰ ˘1. Now, consider the case i ‰ d{4. We claim that for any sign b P t´1, 1u,
either ci ´ brcd{2´i or cd{2´i ´ brci is not zero. Indeed, assume both of them were equal to zero, concretely
ci “ brcd{2´i and cd{2´i “ brci for b P t´1, 1u. Then we would obtain

ci “ brcd{2´i “ b2r2ci “ r2ci “ ´ci

which is a contradiction since ci ‰ 0. Hence, we deduce that c mod pp,Xd{2 ´ rq and c mod pp,Xd{2 ` rq are
non-zero. Therefore, by the Chinese Remainder Theorem, we conclude that c has an inverse in Rp. [\

Denote Rˆ
q to be the set of invertible polynomials in Rq. Recall that a polynomial f is invertible in Rq

if and only if for each i P rns, f mod qi is invertible in Rqi . Hence, Lemma 2.6 says that if f P Rq satisfies
0 ă }f}8 ă q1 and σ´1pfq “ f then f P Rˆ

q .

2.4 Approximate Range Proofs

In some cases, we will not need to prove a tight bound on the norm of a vector, but it will be enough for us
to prove that its coefficients are small. The application of this proof is in showing that the inner product of
a vector is small enough that it is the same modulo q and over the integers. The intuition for obtaining such
proofs is the observation that the inner product (modulo q) of a random vector r⃗ Ð Binm1 with an arbitrary
vector w⃗ P Zm

q is less than 1
2}w⃗} with probability at most 1

2 [BL17]. The slightly more general lemma from
[LNS21a] that we will be using is
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Lemma 2.7. Let w⃗ P Zm
q and y⃗ P Zk

q . Then

Pr
RÐBinkˆm

1

„

}Rw⃗ ` y⃗}8 ă
1

2
}w⃗}8

ȷ

ď 2´k.

For a largem, the gap between the upper bound (m¨}w⃗}8) and the lower bound ( 12 ¨}w⃗}8) is a factor ofm.
One can probabilistically lower it to Op

?
mq, but there is a way to get a constant-size gap by considering the

ℓ2-norm. A well-known result of Johnson and Lindenstrauss says that any set of k points in m-dimensional
Euclidean space can be embedded into a much smaller ℓ-dimensional Euclidean space, where ℓ “ Oplogmq

and independent of k, so that all pairwise distances are preserved within an arbitrarily small factor. In
practical scenarios, such embeddings are simply random projections.

Recently, Gentry et al. [GHL21] applied this result in the context of proving shortness of a committed
vector w⃗ P Zm. Concretely, the idea is to choose a random rectangular matrix R Ð Bin256ˆm

2 and prove that
the projection v⃗ “ Rw⃗ with respect to R has small norm. When m not too small, substituting the continuous
normal distribution by a binomial one (with the same variance) should heuristically result in very similar
tail bounds. In [GHL21], arguments regarding the moments of Bin1 and experimental results were used to
support this heuristic. Using the fact that the distribution }R ¨ 1d}, where entries of R are chosen from the
normal distribution with mean 0 and variance κ{2, is the scaled χ2 distribution with 256 degrees of freedom,
i.e. κ

2m ¨ χ2r256s, we obtain the following (heuristic) generalization of [GHL21][Corollary 3.2] (we only use
this lemma for the case of κ “ 1, 2).

Lemma 2.8. Under the heuristic substitution of Binκ with the normal distribution of variance κ{2, for any
w⃗ P Zm,

1. Pr
RÐBin256ˆm

κ

“

}Rw⃗}2 ă }w⃗}2 ¨ 13 ¨ κ
‰

« Pr
yÐχ2r256s

ry ă 26s ď 2´256

2. Pr
RÐBin256ˆm

κ

“

}Rw⃗}2 ą }w⃗}2 ¨ 337 ¨ κ
‰

« Pr
yÐχ2r256s

ry ą 674s ď 2´128.

Gentry et al. construct a proof for the shortness of a long vector w⃗ P Zm
q as follows. They first commit

to the random projection v⃗ :“ Rw⃗ P Z256
q , where R Ð Bin256ˆm

1 , and prove that the norm of v⃗ is small and

that v⃗ is a projection of w⃗. Then, [GHL21][Corollary 3.3] says that if }v⃗} ă b
?
30, where b ď q{p45mq, then

we must have }w⃗} ď b (with an overwhelming probability). In our protocols, we will need a modified version
of this result which says that for every vector y⃗ P Z256

q , if }Rw⃗ ` y⃗} is small then we must have that }w⃗} is
small. Even though we believe this generalisation is true for the constants described in [GHL21][Corollary
3.3] (and a generalization for the analogous result in the ℓ8 norm is true [LNS21b]), we don’t know how to
extend the proof to this setting. We thus provide a modified proof which results in slightly worse bounds.

Lemma 2.9. Fix m,P P N and a bound b ď P {41m, and let w⃗ P r˘P {2sm with }w⃗} ě b, and let y⃗ be an
arbitrary vector in r˘P {2sm. Then

Pr
RÐBin256ˆm

1

„

}Rw⃗ ` y⃗ mod P } ă
1

2
b
?
26

ȷ

ă 2´128.

Proof. We first prove an analogous result to [GHL21][Corollary 3.3] with error 2´256 rather than 2´128.

Lemma 2.10. Fix m,P P N and a bound b ď P {41m, and let w⃗ P r˘P {2sm with }w⃗} ě b. Then

Pr
RÐBin256ˆm

2

r}Rw⃗ mod P } ă b
?
26s ă 2´256.

Proof. We have two cases:
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– The first case is when }w⃗}8 ě P {4m. Let i be an index of an entry in w⃗ with magnitude at least P {4m,
and consider any row of R (denoted r⃗): After choosing all but the i’th entry in r⃗, at most one of the
three values t0,˘1u yields |xw⃗, r⃗y mod P | ă P {8m. Since the total probability of any two of those is at
least 1{2 (i.e. Prr0s “ 3{8 and Prr˘1s “ 1{4), we have that the probability that all the rows of R yield
entries smaller than P {8m is at most p1{2q256. Since b ď P {41m then P {8m ą b

?
26 and therefore

Pr
RÐBin256ˆm

2

r}Rw⃗ mod P } ă b
?
26s ď Pr

R
r}Rw⃗ mod P } ă P {8ms ď 2´256.

– The second case is when }w⃗}8 ă P {4m. Here with probability one we have Rw⃗ P r˘P {2s256, so mod-P
reduction has no effect and the assertion follows directly from Lemma 2.8.

[\

We now use the above Lemma to prove Lemma 2.9. Suppose for contradiction that for some w⃗, y⃗,

Pr
RÐBin256ˆm

1

„

}Rw⃗ ` y⃗ mod P } ă
1

2
b
?
26

ȷ

ě 2´128.

This implies that

Pr
R1,R2ÐBin256ˆm

1

„

}R1w⃗ ` y⃗ mod P } ă
1

2
b
?
26 ^ }R2w⃗ ` y⃗ mod P } ă

1

2
b
?
26

ȷ

ě 2´256.

By the triangle inequality (which holds even modulo P ), we have

Pr
R1,R2ÐBin256ˆm

1

”

}pR1 ´R2qw⃗ mod P } ă b
?
26
ı

ě 2´256.

Since the distribution of R1 ´R2 is exactly Bin256ˆm
2 , the above implies that

Pr
RÐBin256ˆm

2

”

}Rw⃗ mod P } ă b
?
26
ı

ě 2´256,

which is a contradiction with the statement of Lemma 2.10. [\

2.5 Module-SIS and Module-LWE Problems

Security of the [BDL`18] commitment scheme used in our protocols relies on the well-known computational
lattice problems, namely Module-LWE (MLWE) and Module-SIS (MSIS) [LS15, DKL`18]. Both problems
are defined over Rq.

Definition 2.11 (MSISκ,m,B). Given A Ð Rκˆm
q , the Module-SIS problem with parameters κ,m ą 0 and

0 ă B ă q asks to find z P Rm
q such that Az “ 0 over Rq and 0 ă }z} ď B. An algorithm A is said to have

advantage ϵ in solving MSISκ,m,B if

Pr
“

0 ă }z}8 ď B ^ Az “ 0
ˇ

ˇA Ð Rκˆm
q ; z Ð ApAq

‰

ě ϵ.

Definition 2.12 (MLWEm,λ,χ). The Module-LWE problem with parameters m,λ ą 0 and an error distri-
bution χ over R asks the adversary A to distinguish between the following two cases: 1) pA,As ` eq for
A Ð Rmˆλ

q , a secret vector s Ð χλ and error vector e Ð χm, and 2) pA, bq Ð Rmˆλ
q ˆ Rm

q . Then, A is
said to have advantage ϵ in solving MLWEm,λ,χ if

ˇ

ˇPr
“

b “ 1
ˇ

ˇA Ð Rmˆλ
q ; s Ð χλ; e Ð χm; b Ð ApA,As ` eq

‰

(18)

´ Pr
“

b “ 1
ˇ

ˇA Ð Rmˆλ
q ; b Ð Rm

q ; b Ð ApA, bq
‰
ˇ

ˇ ě ϵ.
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We also recall the (simplified) Extended Module-LWE problem [LNS21a].

Definition 2.13 (Extended-MLWEm,λ,χ,C,s). The Extended Module-LWE problem with parametersm,λ ą

0, probability distribution χ over Rq, challenge space C Ď Rq and the standard deviation s asks the adversary
A to distinguish between the following two cases:

1. pB,Br, c, z, sign pxz, cryqq for B Ð Rmˆpm`λq
q , a secret vector r Ð χm`λ and z Ð D

pm`λq
s , c Ð C

2. pB,u, c, z, sign pxz, cryqq for B Ð Rmˆpm`λq
q ,u Ð Rm

q , z Ð D
pm`λq
s , c Ð C,

where signpaq “ 1 if a ě 0 and 0 otherwise. Then, A is said to have advantage ϵ in solving Extended-
MLWEm,λ,χ,C,s if

ˇ

ˇ

ˇ
Pr

”

b “ 1
ˇ

ˇ

ˇ
B Ð Rmˆpm`λq

q ; r Ð χm`λ; z Ð D
pm`λq
s ; c Ð C; b Ð ApB,Br, z, c, sq

ı

´ Pr
”

b “ 1
ˇ

ˇ

ˇ
B Ð Rmˆλ

q ; u Ð Rm
q ; z Ð D

pm`λq
s ; c Ð C ; b Ð ApB,u, z, c, sq

ı
ˇ

ˇ

ˇ
ě ϵ.

where s “ sign pxz, cryq.

2.6 Rejection Sampling

In lattice-based zero-knowledge proofs, the prover will want to output a vector z whose distribution should
be independent of a secret message/randomness vector r, so that z cannot be used to gain any information
on the prover’s secret. During the protocol, the prover computes z “ y ` cr where r is either a secret vector
or randomness used to commit to the prover’s secret, c Ð C is a challenge polynomial, and y is a “masking”
vector. In order to remove the dependency of z on r, one applies rejection sampling [Lyu12].

Lemma 2.14 (Rejection Sampling [Lyu12, DDLL13, LNS21a]). Let V Ď Rℓ be a set of polynomials
with norm at most T and ρ : V Ñ r0, 1s be a probability distribution. Fix the standard deviation s “ γT .
Then, the following statements hold.

1. Let M “ expp14{γ`1{p2γ2qq. Now, sample v Ð ρ and y Ð Dℓ
s, set z “ y`v, and run b Ð Rej1pz,v, sq

as defined in Fig. 1. Then, the probability that b “ 0 is at least p1 ´ 2´128q{M and the distribution of
pv, zq, conditioned on b “ 0, is within statistical distance of 2´128 of the product distribution ρˆDℓ

s.
2. Let M “ expp1{p2γ2qq. Now, sample v Ð ρ and y Ð Dℓ

s, set z “ y ` v, and run b Ð Rej2pz,v, sq

as defined in Fig. 1. Then, the probability that b “ 0 is at least 1{p2Mq and the distribution of pv, zq,
conditioned on b “ 0, is identical to the distribution F where F is defined as follows: sample v Ð ρ,
z Ð Dld

s conditioned on xv, zy ě 0 and output pv, zq.
3. Let M “ expp1{p2γ2qq. Now, sample v Ð ρ, β Ð t0, 1u and y Ð Dℓ

s, set z “ y ` p´1qβv, and run
b Ð Rej0pz,v, sq as defined in Fig. 2. Then, the probability that b “ 0 is at least 1{M and the distribution
of pv, zq, conditioned on b “ 0, is identical to the product distribution ρˆDℓ

s.

Rej1pz⃗, v⃗, sq

01 u Ð r0, 1q

02 If u ą 1
M

¨ exp
´

´2xz⃗,v⃗y`}v⃗}2

2s2

¯

03 return 1 (i.e. reject)
04 Else
05 return 0 (i.e. accept)

Rej2pz⃗, v⃗, sq

01 If xz⃗, v⃗y ă 0
02 return 1 (i.e. reject)
03 u Ð r0, 1q

04 If u ą 1
M

¨ exp
´

´2xz⃗,v⃗y`}v⃗}2

2s2

¯

05 return 1 (i.e. reject)
06 Else
07 return 0 (i.e. accept)

Fig. 1: Two rejection sampling algorithms: the one used generally in previous works [Lyu12] (left) and the one
proposed recently in [LNS21a] (right).
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We recall how parameters s and M in the first statement Lemma 2.14 are selected. Concretely, the
repetition rate M is chosen to be an upper-bound on:

Dℓ
spzq

Dℓ
v,spzq

“ exp

ˆ

´2xz,vy ` }v}2

2s2

˙

ď exp

ˆ

28s}v} ` }v}2

2s2

˙

“ M. (19)

Here, we used the fact which says that with probability at least 1´2128 we have |xz,vy| ă 14s}v} for z Ð Dℓ
s

[Ban93, Lyu12]. Hence, by setting s “ 13}v} we obtain M « 3.

Recently, Lyubashevsky et al. [LNS21a] proposed a modified rejection sampling algorithm (see Rej2pz,v, sq

in Fig. 1) where it forces z to satisfy xz,vy ě 0, otherwise it aborts. With this additional assumption, we
can set M in the following way:

exp

ˆ

´2xz,vy ` }v}2

2s2

˙

ď exp

ˆ

}v}2

2s2

˙

“ M. (20)

Hence, for M « 3 one would select s “ 0.675 ¨ }v}. Note that the probability for z Ð Dℓ
s that xz,vy ě 0

is at least 1{2. Hence, the expected number of rejections would be at most 2M “ 6. On the other hand, if
one aims for M “ 6 repetitions using (19), then s “ 8 ¨ }v}. Thus, [LNS21a] manages to reduce the standard
deviation by more than a factor of 10. Further, we remark that this method is still not as efficient as using
bimodal Gaussians [DDLL13], since even though the value M is calculated exactly as in (20), the expected
number of rejections is at most M and not 2M . We summarise the results from [DDLL13, LNS21a] in the
latter two statements of Lemma 2.14.

Rej0pz⃗, v⃗, sq

01 u Ð r0, 1q

02 If u ą 1

M exp

ˆ

´
}v⃗}2

2s2

˙

cosh
´

xz⃗,v⃗y

σ2

¯

03 return 1 (i.e. reject)
04 Else
05 return 0 (i.e. accept)

Fig. 2: Bimodal rejection sampling [DDLL13].

Finally, we highlight that the procedure in the second statement of Lemma 2.14 reveals the sign of
xz,vy. This is still fine when working with “one-time commitments” [LNS21a] since we only leak one bit of
information if v is a randomness vector which is generated every execution. However, secure signature schemes
cannot be produced using this method because each generation of a signature reveals some information about
the secret key.

By using this technique, zero-knowledge property (or rather commit-and-prove simulatability as described
in later sections) of our protocols relies on the (simplified) Extended-MLWE problem [LNS21a] where the
adversary is given the additional one bit of information about the secret. We describe this problem in Section
2.5.

2.7 Challenge Space

In our applications, the set V Ď Rℓ will consist of vectors of the form cr where c P Rq is sampled from a
challenge space C and r P Rℓ

q comes from a set of secret (either randomness or message) vectors. In order
to set the standard deviation for rejection sampling, we need to bound the norm of such vectors. Here, we
present a new way to bound }cr}.

Lemma 2.15. Let r P Rℓ and c P R. Then, for any power-of-two k, we have }cr} ď 2k
a

}σ´1 pckq ck}1 ¨ }r}.
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Proof. Let C “ rotpcq P Zdˆd. We simply want to upper-bound the operator norm }C}2 of the matrix C.
We will use the following two facts from linear algebra. Namely, we have that }C}2 “

a

}CTC}2 and for
every power-of-two k, }CTC}k2 “ }pCTCqk}2 since CTC is symmetric. Also, note that for any u, v P Rq,
}uv} ď }u}1 ¨ }v}, and thus }rotpuq}2 ď }u}1. Therefore, using the observation that CT “ rotpσ´1pcqq, we
deduce

}C}2k2 “ }CTC}k2 “ }pCTCqk}2 “ }rotpσ´1pckqckq}2 ď }σ´1pckqck}1.

Hence, }C}2 ď 2k
a

}σ´1 pckq ck}1 and thus the statement holds.
[\

In order to apply this lemma, we fix a power-of-two k and set the challenge space C as:

C :“ tc P Sσ
κ : 2k

b

}σ´1 pckq ck}1 ď ηu (21)

where
Sσ
κ :“ tc P Sκ : σpcq “ cu . (22)

and the σ P AutpRqq will be specified in our protocols. Also, we denote C̄ :“ tc ´ c1 : c, c1 P C and c ‰ c1u

to be the set of differences of any two distinct elements in C. In practice, σ P tσ1, σ´1u. We will choose the
constants η such that (experimentally) the probability for c Ð Sσ

κ to satisfy 2k
a

}σ´1 pckq ck}1 ď η is at least
99%. In our experiments, we observe that the bounds in Lemma 2.15 are about 4´6X larger than the actual
norms }cr}.

For security of our protocols, we need κ ă 1
2

?
2
q
1{2
1 to ensure the invertibility property of the challenge

space C, i.e. the difference of any two distinct elements of C is invertible over Rq. Indeed, this property
follows from Lemma 2.5. However, if we set σ :“ σ´1 then we can apply Lemma 2.6 and thus we only
need κ ă q1{2. Secondly, to achieve negligible soundness error under the MSIS assumption, we will need |C|

to be exponentially large. In Table 3 we propose example parameters to instantiate the challenge space C
for different automorphisms σ. Finally, for implementation purposes, in order to sample from C, we simply
generate c Ð Sσ

κ and check whether 2k
a

}σ´1 pckq ck}1 ď η. Hence, we cannot choose k to be too large.

σ d κ η |Sσ
κ | |C|

σ1 128 1 27 2202 2201

σ´1 128 2 59 2148 2147

Fig. 3: Example parameters to instantiate the challenge space C :“ tc P Sκ : σpcq “ c ^ 2k
a

}σ´1 pckq ck}1 ď ηu for a
modulus q such that its smallest prime divisor q1 is greater than 8. In our examples we picked k “ 32.

Setting the Standard Deviation. By definition of the challenge space C and Lemma 2.15, if we know
that }r} ď α, then we can set the standard deviation s :“ γηα where γ ą 0 defines the repetition rate M .
On the other hand, if }r}8 ď ν, e.g. because r Ð Sℓ

ν , then we can set s :“ γνη
?
ℓn.

3 The ABDLOP Commitment Scheme and Proofs of Linear Relations

In this section we formally present the ABDLOP commitment scheme together with ZKPoK of the committed
messages. In the same protocol, we also include a proof of knowledge that the committed messages satisfy
some arbitrary linear relations over Rq (Figure 4). We then show how one can use this commitment scheme
and proof of knowledge to prove knowledge of linear relations over Zq (Figure 5). This latter proof is best
modeled as a commit-and-prove protocol because it will be creating some intermediate commitments under
the same randomness, which cannot be simulated. In particular, what we prove is that the view, for all
possible committed messages, is computationally indistinguishable from commitments to 0.
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3.1 The ABDLOP Commitment Scheme

Figure 4 presents the ABDLOP commitment scheme, which commits to messages s1 andm, using randomness
s2, and then proves knowledge of these messages and that they satisfy the relation R1s1 ` Rmm “ u. The
challenge space C is as in (21). The standard deviations s1 and s2 are set as in Section 2.6 so as to provide
a balance between the running time of the algorithm (the lower the values, the higher the probability that
the protocol will need to be repeated) and the security of the commitment scheme based on the hardness
of the MSIS problem (the higher the values, the easier the problem becomes). Because the most common
way in which our commitment scheme will be used involves committing to some values, proving that they
satisfy some relations, and then never using the commitment again, we use a more efficient rejection sampling
(Rej2 in Figure 1) from [LNS21a], which ends up leaking one bit of the secret, on the randomness part of
the commitment (i.e. s2). If one will not be throwing out this commitment, then one should use Rej1 for
everything.

The hiding property of the commitment scheme follows from the MLWE problem when s2 is chosen

from some distribution such that

ˆ„

A2

B

ȷ

,

„

A2

B

ȷ

¨ s2

˙

is indistinguishable from uniform. The zero-knowledge

property of the protocol follows from the standard argument from [Lyu12, LNS21a] showing that z1, z2 are
distributed according to Dm1

s1 and Dm2
s2 (possibly with 1 bit of leakage for the latter) independent of s1

and s2. The correctness of the protocol then follows due to the fact that mid-dimensional integer vectors
sampled from a discrete Gaussian with standard deviation si has norm at most si

?
2mid with overwhelming

probability [Ban93].
The commitment opening needs to be defined to be whatever one can extract from the protocol. Since the

protocol is an approximate proof of knowledge, it does not prove knowledge of s1, s2 satisfying A1s1`A2s2 “

tA, but instead an approximate proof as in (2). Lemma 3.1 states that under the assumption that the Module-
SIS problem is hard, the extracted values ps̄1, s̄2q are unique and they satisfy the desired linear equation
R1s̄1 ` RmptB ´ Bs̄2q “ u, where m is implicitly defined as tB ´ Bs̄2. The last statement proved in the
Lemma shows, as in [ALS20], that not only are the extracted commitments si, unique but also zi ´ cs̄i is
uniquely determined by the first two moves of the protocol. This is crucial to efficiently proving knowledge
of polynomial products later in the paper.

As far as the communication complexity of the protocol, it is important to note that in the real protocol,
one would not actually send w and v, but instead send their hash. Then one would verify the hash of the
equalities. Therefore proving linear relations over Rq is not any more costly, communication-wise, than just
proving knowledge of the committed values. We don’t write the hashes in our protocols because when they
eventually get converted to non-interactive ones using the Fiat-Shamir transform, the hashes will naturally
enter the picture.

We will refer to the protocol in Figure 4 as Π
p1q
many pps2, s1,mq, pf1, f2, . . . , fN qq, where the fi are linear

functions mapping ps1,mq to Rq such that fips1,mq “ 0, represented by the rows of R1,Rm, and u.

Lemma 3.1. The protocol in Figure 4 is a proof of knowledge of ps̄1, s̄2, c̄q P Rm1
q ˆ Rm2

q ˆ C̄ satisfying

1. A1s̄1 ` A2s̄2 “ tA
2. }s̄ic̄} ď 2si

?
2mid for i “ 1, 2

3. R1s̄1 ` RmptB ´ Bs̄2q “ u

Furthermore, under the assumption that MSISn,m1`m2,B is hard for B “ 8η
a

ps1
?
2m1dq2 ` ps2

?
2m2dq2,

4. This ps̄1, s̄2q is unique
5. For any two valid transcripts pw,v, c, z1, z2q and pw,v, c1, z1

1, z
1
2q, it holds that zi ´ cs̄i “ z1

i ´ c1s̄i.

Proof. Let pw,v, c, z1, z2q and pw,v, c1, z1
1, z

1
2q be two accepting transcripts which are obtained via rewinding

the prover who sends w,v in the first step. Because the transcripts are accepting, they satisfy the second
verification equation, and by subtracting the two equalities, we obtain

A1z̄1 ` A2z̄2 ´ c̄tA “ 0, (23)
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Private information: ps1,m, s2q P Rm1`m2`ℓ
q so that }s1} ď α and }s2}8 ď ν

Public information: A1 P Rnˆm1
q ,A2 P Rnˆm2

q ,B P Rℓˆm2
q , R1 P RNˆm1

q , Rm P RNˆℓ
q ,

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

,u “ R1s1 ` Rmm

Prover Verifier

y1 Ð Dm1
s1

y2 Ð Dm2
s2

w :“ A1y1 ` A2y2

v :“ R1y1 ´ RmBy2
w,v -

c Ð C
c�

z1 :“ cs1 ` y1

z2 :“ cs2 ` y2

for i “ 1, 2 :
if Rejipzi, csi, siq “ 1
then z1, z2 :“ K

z1, z2 -
Accept iff:

1. }z1} ď s1
?
2m1d, }z2} ď s2

?
2m2d

2. A1z1 ` A2z2 ´ ctA “ w
3. R1z1 ` RmpctB ´ Bz2q ´ cu “ v

Fig. 4: Proof of knowledge Π
p1q
many pps2, s1,mq, pf1, f2, . . . , fN qq of ps1, s2, c̄q P Rm1

q ˆ Rm2
q ˆ C̄ satisfying (i) A1s1 `

A2s2 “ tA, Bs2 ` m “ tB (ii) }sic̄} ď 2si
?
2mid for i “ 1, 2 and (iii) fjps1,mq “ 0 for j P rN s where each

f1, . . . , fN : Rm1`ℓ
q Ñ Rq is a linear function. The linear functions fj are represented by the corresponding rows of

matrices u,R1,Rm and prove u “ R1s1 ` Rmm where RNˆm1
1 ,RNˆℓ

m ,u P RN
q are public.

where z̄i “ zi ´ z1
i and c̄ “ c ´ c1. Dividing the above equation by c̄, we obtain Lemma statement 1 where

s̄i “ z̄i{c̄. Because the first verification checks that }zi} ď si
?
2mid, we know that }z̄i} ď si

?
2mid, and so

Lemma statement 2 is satisfied. By subtracting the two equalities satisfying the third verification equation,
we obtain

R1z̄1 ` Rmpc̄tB ´ Bz̄2q ´ c̄u “ 0. (24)

Dividing by c̄ and plugging in s̄i “ z̄i{c̄, we get Lemma statement 3.
Now suppose that the extractor extracts another triplet ps̄1

1, s̄
1
2, c̄

1q with ps̄1, s̄2q ‰ ps̄1
1, s̄

1
2q, which, as we

already proved, must satisfy the first two statements of the lemma. Then we have

A1s̄1 ` A2s̄2 “ A1s̄
1
1 ` A2s̄

1
2, (25)

and multiplying the above by c̄c̄1 yields

A1ps̄1 ´ s̄1
1qc̄c̄1 ` A2ps̄2 ´ s̄1

2qc̄c̄1 “ 0. (26)

‘By Lemma condition 2, we know that s̄ic̄, s̄
1
ic̄

1 ď 2si
?
2mid, and so the above can be rewritten as

A1pz̄1c̄
1 ´ z̄1

1c̄q ` A2pz̄2c̄
1 ´ z̄1

2c̄q “ 0, (27)

where }z̄i}, }z̄
1
i} ď 2si

?
2mid. By Lemma 2.15, multiplication by c P C increases the ℓ2 norm by a factor of η,

where η is defined in Figure 3. Thus multiplication by c̄ P C̄ increases the norm by a factor of 2η, and thus
}z̄ic̄

1 ´ z̄1
ic̄} ď 8ηsi

?
2mid. If MSISn,m1`m2,B is hard for B “ 8η

a

ps1
?
2m1dq2 ` ps2

?
2m2dq2, it implies that

z̄ic̄
1 ´ z̄1

ic̄ “ 0, which means that s̄i “ z̄i{c̄ “ z̄1
i{c̄

1 “ s̄1
i, and this proves Lemma statement 4.

To prove Lemma statement 5, suppose that zi ´ cs̄i “ z1
i ´ c1s̄i ` r for some r. Then, we can rewrite this

as z̄i{c̄ “ s̄i ` r{c̄. Since we already proved that z̄i{c̄ “ s̄i, and the s̄i are unique, it means that r “ 0. [\
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Private information: ps1,mq P Rm1`ℓ
q so that }s1} ď α, s2 Ð χm2

Public information: A1 P Rnˆm1
q ,A2 P Rnˆm2

q ,B P Rℓˆm2
q ,Bg P Rλˆm2

q ,
„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

, linear functions F1, . . . , FM : Rm1`ℓ
q Ñ Rq

Prover Verifier

g :“ pg1, . . . , gλq Ð tx P Rq : x0 “ 0u
λ

tg :“ Bgs2 ` g
tg -

pγj,uq Ð ZλˆM
q

pγj,uqjPrλs,uPrMs�
for j P rλs :

hj :“ gj `
M
ř

u“1

γj,uFu ps1,mq

define function fj as in (28)
h1, . . . , hλ-

run Π :“ Π
p1q
many pps2, s1,m||gq, pf1, . . . , fλqq Accept iff :

Π verifies and

@j P rλs, h̃j “ 0

Fig. 5: Commit-and-prove protocol Π
p1q

eval pps2, s1,mq, pF1, F2, . . . , FM qq for messages ps1,mq P Rm1`ℓ
q , randomness

s2 P Rm2
q and c̄ P C̄ which satisfy: A1s1 ` A2s2 “ tA, Bs2 ` m “ tB (ii) }sic̄} ď 2si

?
2mid for i “ 1, 2 (si are

from Figure 4) and (iii) linear functions F1, . . . , FM : Rm1`ℓ
q Ñ Rq for which all the evaluations rFu ps1,mq “ 0.

Here, we assume that the commitment ptA, tBq was generated honestly and already sent by the prover. In particular,
s2 Ð χm2 .

3.2 Linear Proofs over Zq

In this section we show how to transform the protocol from Figure 4 which proves that committed values
satisfy a linear relation over Rq into one that proves knowledge of the constant coefficient of a linear relation
overRq (Figure 5). As shown in the introduction and Section 7, the inner product between two integer vectors
appears in the constant coefficient of the polynomial product of two polynomials derived from these vectors.
Thus proving knowledge that the constant coefficient of some linear function over Rq is 0 is equivalent to
proving knowledge that the output of a linear function over Zq is 0.

While it may see like proving knowledge of just the constant coefficient of a linear function over Rq should
not be much different than proving knowledge of the entire linear function as in Figure 4, the protocols do
have some important differences. The main difference is that due to the need to mask all but the constant
coefficient, we will need to create additional commitments during the proof. The most efficient way to
do this is to append these commitments to the BDLOP part of the commitment scheme using the public
randomness Bg in Figure 5. The implication of needing to append committed values is that one can no longer
reuse the commitment tA, tB since every run of the protocol essentially reveals more information about the
randomness s2. Thus, instead of proving that the protocol is zero-knowledge, we show that the protocol is
of a “commit-and-prove” type, where the security requirement is that the view of the commitment and the
protocol output is computationally indistinguishable for all committed messages. All the other protocols in
this paper also have this characteristic. This does not pose any problems for applications because the way
we use a commitment scheme is in an auxiliary way to aid in proving that the value we care about satisfies
some relations. Thus the commitment never needs to be reused.
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The protocol begins by picking masking values gi P Rq, which are uniformly random everywhere except
in the constant coefficient, in which they are 0. These values are then appended to the commitment of m as
tg “ Bgs2 ` g and then sent to the verifier. The verifier picks λ random challenges for each of the M linear

functions and the prover computes hj “ gj `
M
ř

u“1
γj,uFu ps1,mq for each of the λ different j. Notice that the

preceding are now linear functions

fjps1,m||gq :“ gj `

M
ÿ

u“1

γj,uFu ps1,mq ´ hj (28)

over committed inputs s1,m||g. The prover completes the proof by sending the hj , which completes the
description of the functions, and begins the protocol in Figure 4 for proving that fjps1,m||gq “ 0. The
verifier accepts if the constant coefficient of hj is 0 and the proof from Figure 4 is valid.

We now sketch the security and soundness properties of the protocol. This protocol is a warm-up for
the full one in Figure 8 which proves knowledge of the constant coefficient of quadratic (rather than linear)
functions over Rq, and so we do not give a complete proof for it. To see that the view of the protocol is com-
putationally indistinguishable for all messages s1,m, we first observe that the full commitment that includes

g is indistinguishable from uniform based on (Extended)-Module-LWE as long as

¨

˝

»

–

A2

B
Bg

fi

fl ,

»

–

A2

B
Bg

fi

fl ¨ s2

˛

‚ is

indistinguishable from uniform when s2 Ð χm2 . To simulate the protocol, the simulator can simply pick
tg uniformly at random and also choose h1, . . . , hλ at random (but having the first coefficient being 0). He
can then simulate the protocol from figure 4 on the commitment ptA, tB , tgq and functions fj . Thus the
distribution is computationally indistinguishable from the correct one and is independent of the messages
s1,m.

To show that this protocol indeed proves that ĂFups1,mq “ 0, notice that the probability over the chal-

lenges γj,u that the equation hj “ gj `
M
ř

u“1
γj,uFu ps1,mq is satisfied when rhj “ 0 and yet some ĂFu ps1,mq ‰ 0

is at most 1{q1, where q1 is the smallest prime factor of q. The above holds because the values s1,m, and g
were committed to prior to the verifier sending the challenges. The latter, as well as the fact that the linear

equations fj are satisfied, is proved by the protocol Π
p1q
many pps2, s1,m||gq, pf1, . . . , fλqq. The soundness error

of the protocol is therefore q´λ
1 .

4 Proofs of Quadratic Relations

In this section we show how to prove various quadratic equations between committed messages using the
ABDLOP commitment. More concretely, suppose we have message vectors s1 P Rm1

q and m P Rℓ
q such that

}s1} ď α. Let σ P AutpRqq be a public automorphism over R of degree k and for presentation purposes
define:

pσipxqqiPrks :“ px, σpxq, . . . , σk´1pxqq P Rka
q

for arbitrary vector x P Ra
q . Then, we consider the following statements:

– Single quadratic equation with automorphisms. For a public kpm1 ` ℓq-variate quadratic function f over
Rq,

f
`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

“ 0.

– Many quadratic equations with automorphisms. For N public kpm1 ` ℓq-variate quadratic functions
f1, . . . , fN over Rq,

fj
`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

“ 0 for j P rN s.

– Many quadratic equations with automorphisms and a proof that polynomial evaluations have no constant
coefficients. For N `M public kpm1 ` ℓq-variate quadratic functions f1, . . . , fN and F1, . . . , FM over Rq,
the following hold:
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‚ fj
`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

“ 0 for j P rN s,

‚ let xj :“ Fj

`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

P Rq for j P rM s. Then x̃1 “ . . . “ x̃M “ 0.

Remark 4.1. Similarly as for [ALS20], our techniques can be easily generalized to prove higher degree rela-
tions. Concretely, if we want to prove degree k equations, we end up committing to k´ 1 additional garbage
terms. Throughout this paper (apart from Section 6.5), however, we will only consider quadratic relations.

4.1 Single Quadratic Equation with Automorphisms

Let ptA, tBq be the commitment to the message pair ps1,mq under randomness s2, i.e.

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

.

Suppose the prover wants to prove knowledge of the message

s “

„

pσips1qqiPrks

pσipmqqiPrks

ȷ

P Rkpm1`ℓq
q

such that fpsq “ 0 where f is a kpm1 ` ℓq-variate quadratic function over Rq. Note that each function f can
be written explicitly as:

fpsq “ sTR2s ` rT1 s ` r0

where r0 P Rq, r1 P Rkpm1`ℓq
q and R2 P Rkpm1`ℓqˆkpm1`ℓq

q .
In order to prove this relation, let us consider the protocol for proving linear equations over Rq in Fig.

4. In the last round, the honest prover sends the masked openings zi “ csi ` yi of si for i “ 1, 2 where the
challenge space C is defined as in (21) with the σ automorphism. Even though this is not the case for m, we
can define the masked opening of m as

zm :“ ctB ´ Bz2 “ cm ´ By2.

By construction, zm can be computed by the verifier.
Define the following vectors y and z:

y :“

„

pσipy1qqiPrks

´pσipBy2qqiPrks

ȷ

P Rkpm1`ℓq
q (29)

and

z :“

„

pσipz1qqiPrks

pσipzmqqiPrks

ȷ

“ c

„

pσips1qqiPrks

pσipmqqiPrks

ȷ

`

„

pσipy1qqiPrks

´pσipBy2qqiPrks

ȷ

“ cs ` y. (30)

Here we used the fact that for c P C, σpcq “ c. Then, we have

zTR2z ` crT1 z ` c2r0 “ c2
`

sTR2s ` rT1 s ` r0
˘

` cg1 ` g0 (31)

where polynomials g1 and g0 are defined as:

g1 “ sTR2y ` yTR2s ` rT1 y, g0 “ yTR2y.

Hence, we want to prove that the quadratic term in the expression zTR2z ` crT1 z ` c2r0 vanishes. This is
done by first sending a commitment t to the polynomial g1, i.e. t “ bT s2 `g1 as well as v :“ g0 `bTy2 in the
clear. Then, given t and the masked opening z2 of s2, the verifier can compute f “ ct´bT z2 “ cg1 ´bTy2.
Finally, it checks whether

zTR2z ` crT1 z ` c2r0 ´ f
?
“ v

which is a simple transformation of (31) when sTR2s ` rT1 s ` r0 “ 0.
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Private information: ps1,mq P Rm1`ℓ
q so that }s1} ď α, s2 Ð χm2

Public information: A1 P Rnˆm1
q ,A2 P Rnˆm2

q ,B P Rℓˆm2
q ,b P Rm2

q
„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

,

r0 P Rq, r1 P Rkpm1`ℓq
q ,R2 P Rkpm1`ℓqˆkpm1`ℓq

q , σ P AutpRqq

sTR2s ` rT1 s ` r0 “ 0

Prover Verifier

s :“

„

pσi
ps1qqiPrks

pσi
pmqqiPrks

ȷ

y1 Ð Dm1
s1

y2 Ð Dm2
s2

w :“ A1y1 ` A2y2

y :“

„

pσi
py1qqiPrks

´pσi
pBy2qqiPrks

ȷ

g1 :“ sTR2y ` yTR2s ` rT1 y
t :“ bT s2 ` g1
v :“ yTR2y ` bTy2

w, t, v -
c Ð C

c�
z1 :“ cs1 ` y1

z2 :“ cs2 ` y2

for i “ 1, 2 :
if Rejipzi, csi, siq “ 1
then z1, z2 :“ K

z1, z2 -

z :“

„

pσi
pz1qqiPrks

pσi
pctB ´ Bz2qqiPrks

ȷ

f :“ ct ´ bT z2
Accept iff

}z1} ď s1
?
2m1d and

}z2} ď s2
?
2m2d and

A1z1 ` A2z2 “ w ` ctA and
zTR2z ` crT1 z ` c2r0 ´ f “ v

Fig. 6: Commit-and-prove protocol Πp2q
pps2, s1,mq, σ, fq for messages ps1,mq P Rm1`ℓ

q , randomness s2 P Rm2
q

and c̄ P C̄ which satisfy: A1s1 ` A2s2 “ tA, Bs2 ` m “ tB (ii) }sic̄} ď 2si
?
2mid for i “ 1, 2 and (iii)

f
`

pσi
ps1qqiPrks, pσi

pmqqiPrks

˘

“ 0 where function f : Rkpm1`ℓq
q Ñ Rq is defined as fpxq :“ xTR2x ` rT1 x ` r0.

Here, we assume that the commitment ptA, tBq was generated honestly and already sent by the prover. In particular,
s2 Ð χm2 .
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We present the full protocol in Fig. 6 which follows the commit-and-prove paradigm [CLOS02, LNS21a].
Namely, we assume the prover has already sent the commitment ptA, tBq to the verifier using fresh ran-
domness s2 Ð χm2 . Prover starts by sampling masking vectors y1 Ð Dm1

s1 ,y2 Ð Dm2
s and computing

w “ A1y1 ` A2y2. Then, it calculates g1 “ sTR2y ` yTR2s ` rT1 y, where y is defined in (29), and the
commitment t “ bT s2 `g1 to g1. Finally, the prover sets v “ yTR2y`bTy2 and sends w, t, v to the verifier.

Next, given a challenge c Ð C, the prover computes zi “ csi ` yi for i “ 1, 2 and applies rejection
sampling. If it does not abort, the prover outputs z1, z2.

Eventually, the verifier checks whether z1 and z2 have small norms, A1z1 ` A2z2 “ w ` ctA and
zTR2z ` crT1 z ` c2r0 ´ f “ v where z is defined in (30) and f is defined as f “ ct´ bT z2.

Security Analysis. We summarise security properties of the protocol in Fig. 6 below.

Theorem 4.2. Consider the protocol in Fig. 6 and let χ “ Sν . Suppose s1 “ γ1αη and s2 “ γ2νη
?
m2d for

some γ1, γ2 ą 0 where η is chosen as in Section 2.7.

For completeness, if m1,m2 ě 640{d then the honest prover P convinces the honest verifier V with
probability

«
1

2 exp
´

14
γ1

` 1
2γ2

1
` 1

2γ2
2

¯ .

For commit-and-prove simulatability, there exists a simulator S that, without access to private information
s1,m, outputs a simulation of a commitment ptA, tBq along with a non-aborting transcript of the protocol
between prover P and verifier V such that for every algorithm A that has advantage ε in distinguishing the
simulated commitment and transcript from the real commitment and transcript, whenever the prover does not
abort, there is an algorithm A1 with the same running time that has advantage ε{2 ´ 2´128 in distinguishing
the Extended-MLWEn`ℓ`1,m2´n´ℓ´1,χ,C,s2 .

For soundness, there is an extractor E with the following properties. When given rewindable black-box
access to a probabilistic prover P˚, which convinces V with probability ε ě 2{|C|, extractor E with probability
at least ε´ 2{|C| either outputs ps̄2, s̄1, m̄q P Rm1`m2`ℓ

q and c̄ P Rˆ
q such that

–

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s̄1 `

„

A2

B

ȷ

¨ s̄2 `

„

0
m̄

ȷ

– }c̄}8 ď 2κ

– }c̄s̄1} ď 2s1
?
2m1d and }c̄s̄2} ď 2s2

?
2m2d

– f
`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

“ 0

or a MSISn,m1`m2,B solution for
“

A1 A2

‰

in expected time at most 3T where running P˚ once is assumed

to take at most T time and B “ 8η
a

ps1
?
2m1dq2 ` ps2

?
2m2dq2.

Proof. We first focus on completeness. To begin with, we bound the norm of cs1 and cs2. Note that by
Lemma 2.15 and the definition of C in (21): }cs1} ď ηα and }cs2} ď ην

?
m2d. Then, by Lemma 2.14, the

probability that Rej1 and Rej2 do not abort is at least

1

2 ¨ exp
´

14
γ1

` 1
2γ2

1

¯

¨ exp
´

1
2γ2

2

¯ .

Furthermore, by Lemma 2.2 for t “
?
2 and our assumption that m1,m2 ě 640{d, the probability that

}z1} ď s1
?
2m1d and }z2} ď s2

?
2m2d is overwhelming. The other verification equations hold based on the

discussion above.
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Commit-and-prove simulatability. We can simulate the commitment and a non-aborting transcript between
the honest prover and the honest verifier in the following way.

First, we define a hybrid simulator S0 which still knows secret information s1,m. Given a challenge c Ð C,
it honestly generates the commitment ptA, tB , tq under randomness s2 Ð χm2 . Further, it samples fresh
masked opening z1 Ð Dm1d

s1 and z2 Ð Dd
s2 conditioned on xs2, z2y ě 0. Finally, it setsw :“ A1z1`A2z2´ctA

and v :“ zTR2z ` crT1 z ` c2r0 ´ ct` bT z2. Then, by Lemma 2.14, the distribution of the commitment and
a transcript output by S0 is statistically close to the one in the actual non-aborting protocol.

Next, we define the simulator S1, which still knows secret information s1,m, as follows. It runs identically
as S0 but instead of generating the commitment ptA, tB , tq honestly, it samples u Ð Rn`ℓ`1

q and sets

»

–

tA
tB
t

fi

fl “ u `

»

–

A1s1
m
g1

fi

fl . (32)

We claim that if there is a PPT adversaryA distinguishes between the outputs of S0 and S1 with probability ε,
then there exists a PPT adversary B which solves the Extended-MLWEn`ℓ`1,m2´n´ℓ´1,χ,C,s2 with probability
at least ε{2. Indeed, we can define B as follows. Given an Extended-MLWE tuple pC,u, z2, bq, where

C :“

»

–

A2

B
bT

fi

fl ,

B sets ptA, tB , tq as in (32) and simulates the rest of the transcripts identically as S0 and S1. Then, it outputs
the commitment and the transcript to A. Let us assume that b “ 1. Note that if u “ Cs2 then the output of
B comes from the distribution of S0. Similarly, if u was uniformly random, then the output of B comes from
the distribution of S1. Hence, conditioned on b “ 1, B solves the Extended-MLWE problem with probability
at least ε. Since the probability of b “ 1 is at least 1{2, the statement follows.

Finally, we can simply set S (which does not use any secret information) to proceed identically as S1

but instead of defining ptA, tB , tq as in (32), it directly samples ptA, tB , tq Ð Rn`ℓ`1
q . Then, the output

distributions of S and S1 are identical. Hence, the statement holds by the hybrid argument.

Soundness. We apply the strategy by Attema et al. [ACK21]. Namely, let H P t0, 1uRˆN be a binary matrix
where the R rows correspond to the prover’s randomness and N columns correspond to verifier’s randomness,
i.e. different choices for the challenge c. For simplicity, we denote Hpr, cq to be the entry corresponding to
randomness r and challenge c P C. Clearly, an extractor can check values of each entry in H in time at most
T .

We define the following extractor E :

1. E first samples fresh randomness r and challenge cp0q Ð C. Then, it checks if Hpr, cp0qq “ 1. If not, E
aborts.

2. Otherwise, E samples along row r without replacement until it finds two cp1q, cp2q such that Hpr, cp0qq “

Hpr, cp1qq “ Hpr, cp2qq “ 112.

By [ACK21, Remark 2], the expected time of E is at most 3T and E extracts three valid transcripts

trpiq “ pw, t, v, cpiq, z
piq
1 , z

piq
2 q for i “ 0, 1, 2

with probability at least ε´ 2{|C|.
First we focus on trp0q and trp1q. Define

c̄ :“ cp1q ´ cp0q and s̄i “
z

p1q

i ´ z
p0q

i

cp1q ´ cp0q
for i “ 1, 2.

12 By construction, cp0q, cp1q, cp2q are pairwise distinct.
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By construction, we }c̄}8 ď 2κ, }c̄s̄1} ď 2s1
?
2m1d and }c̄s̄2} ď 2s2

?
2m2d. Moreover, we haveA1s̄1`A2s̄2 “

tA. Further, we define the extracted message vector m̄ :“ tB ´ Bs̄2 and ḡ1 :“ t´ bT s̄2. Then, we have

»

–

tA
tB
t

fi

fl “

»

–

A1

0
0

fi

fl ¨ s̄1 `

»

–

A2

B
bT

fi

fl ¨ s̄2 `

»

–

0
m̄
ḡ1

fi

fl .

Next, let ȳi :“ z
p1q

i ´ cp1qs̄i “ z
p0q

i ´ cp0qs̄i for i “ 1, 2. Moreover, consider the third transcript trp2q and

define y
p2q

i :“ z
p2q

i ´ cp2qs̄i for i “ 1, 2. Using the identical argument as in the proof of Lemma 3.1, either

pȳ1, ȳ2q “ py
p2q

1 ,y
p2q

2 q or E has found a MSISn,m1`m2,B solution for the matrix
“

A1 A2

‰

. From now on, we
assume the former case.

Finally, let us define the following vectors:

s̄ :“

„

pσips̄1qqiPrks

pσipm̄qqiPrks

ȷ

and ȳ :“

„

pσipȳ1qqiPrks

´pσipBȳ2qqiPrks

ȷ

.

Then, from the verification equations we have

zpiqTR2z
piq ` cpiqrT1 z

piq ` cpiq2r0 ´

´

cpiqt´ bT z
piq
2

¯

“ v for i “ 0, 1, 2 (33)

where

zpiq :“

«

pσipz
piq
1 qqiPrks

pσipcpiqtB ´ Bz
piq
2 qqiPrks

ff

“ cpiqs̄ ` ȳ.

By expanding Equation 33, we obtain

cpiq2
`

s̄TR2s ` rT1 s̄ ` r0
˘

` cpiqg1
1 ` g1

0 “ 0 for i “ 0, 1, 2

where

g1
1 “ s̄TR2ȳ ` ȳTR2s̄ ` rT1 ȳ ´ ḡ1

g1
0 “ ȳTR2ȳ ` bT ȳ2 ´ v.

Alternatively, we can write these three equations as follows:

»

—

–

1 cp0q cp0q2

1 cp1q cp1q2

1 cp2q cp2q2

fi

ffi

fl

»

–

g1
0

g1
1

s̄TR2s̄ ` rT1 s̄ ` r0

fi

fl “

»

–

0
0
0

fi

fl .

Since the difference of each two challenges in tcp0q, cp1q, cp2qu is invertible over Rq, we must have that s̄TR2s`

rT1 s̄ ` r0 “ 0. Hence, the statement holds. [\

4.2 Many Quadratic Equations with Automorphisms

We consider a scenario when the prover wants to simultaneously prove N quadratic relations. Clearly, if
one were to prove them separately using the approach from Section 4.1, one would end up committing to
N garbage polynomials g. Here, we circumvent this issue by linear-combining the N equations into one
quadratic equation and prove it using the protocol in Fig. 6. This results in committing to only one garbage
polynomials at the cost of reducing the soundness error by a negligible additive factor.

More precisely, suppose that we want to prove for N public kpm1 ` ℓq-variate quadratic functions
f1, . . . , fN over Rq that

fj
`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

“ 0 for i P rN s. (34)
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Private information: ps1,mq P Rm1`ℓ
q so that }s1} ď α, s2 Ð χm2

Public information: A1 P Rnˆm1
q ,A2 P Rnˆm2

q ,B P Rℓˆm2
q ,b P Rm2

q
„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

,

f1, . . . , fN : Rkpm1`ℓq
q Ñ Rq, σ P AutpRqq

Prover Verifier

µ1, . . . , µN Ð Rq
µ1, . . . , µN�

f :“
řN

j“1 µjfj
Run Πp2q

pps2, s1,mq, σ, fq

Fig. 7: Commit-and-prove protocol Π
p2q
many pps2, s1,mq, σ, pf1, f2, . . . , fN qq for messages ps1,mq P Rm1`ℓ

q , randomness
s2 P Rm2

q and c̄ P C̄ which satisfy: A1s1 ` A2s2 “ tA, Bs2 ` m “ tB (ii) }sic̄} ď 2si
?
2mid for i “ 1, 2 (where si are

used in Fig. 6) and (iii) fj
`

pσi
ps1qqiPrks, pσi

pmqqiPrks

˘

“ 0 for j P rN s. Vector b is used in the sub-protocol Πp2q.

We let the verifier begin by sending challenges µ1, . . . , µN Ð Rq. Then, we define a single quadratic function

f :“
N
ÿ

i“j

µjfj

and prove that
f
`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

“ 0 (35)

using the protocol from Fig. 6. Now, we observe that if one of the conditions in (34) does not hold, then

Equation 35 is satisfied with probability at most q
´d{2
1 (recall that Xd ` 1 splits into two irreducible factors

modulo each qi).
The protocol is provided in Fig. 7. We skip the full security analysis since it will be implicitly included

in the more general case in Theorem 4.5 but we only consider knowledge soundness.

Lemma 4.3. Consider the protocol in Fig. 7. Then, there is an extractor E with the following properties.
When given rewindable black-box access to a probabilistic prover P˚, which convinces V with probability

ε ě 2{|C| ` q
´d{2
1 , extractor E with probability at least ε´2{|C| ´ q

´d{2
1 either outputs ps̄2, s̄1, m̄q P Rm1`m2`ℓ

q

and c̄ P Rˆ
q such that

–

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s̄1 `

„

A2

B

ȷ

¨ s̄2 `

„

0
m̄

ȷ

– for all j P rN s, fj
`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

“ 0
– }c̄}8 ď 2κ
– }c̄s̄1} ď 2s1

?
2m1d and }c̄s̄2} ď 2s2

?
2m2d

or a MSISn,m1`m2,B solution for
“

A1 A2

‰

in expected time at most 6T where running P˚ once is assumed

to take at most T time and B “ 8η
a

ps1
?
2m1dq2 ` ps2

?
2m2dq2.

Proof. Let P˚ be a probabilistic prover which convinces the verifier with probability ε ą 2|C|´1 ` q
´d{2
1 and

runs in time at most T . We define a deterministic algorithm Apρ,µµµq which given randomness ρ P R and
a challenge µµµ P RN

q , it does the following. It simply runs the extractor E˚pρq from the proof of Theorem
4.2 with randomness ρ which then calls P˚pµµµq in a black-box way. We say that A succeeds if A outputs
pµµµ, s̄1, m̄, s̄2, c̄q such that

–

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s̄1 `

„

A2

B

ȷ

¨ s̄2 `

„

0
m̄

ȷ

– }c̄}8 ď 2κ
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– }c̄s̄1} ď 2s1
?
2m1d and }c̄s̄2} ď 2s2

?
2m2d

–
řN

j“1 µjfj
`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

“ 0.

Note that A (and later on E) could also extract a valid MSIS solution. For presentation, we will assume this
never occurs. From Theorem 4.2 we know that the expected runtime of A for any µµµ and ρ Ð R is at most
3T and the probability that A succeeds for random ρ and µµµ is at least ϵ´ 2{|C|.

We introduce the following notation. LetH Ď RˆRN
q be the set of pairs pρ,µµµq such that Apρ,µµµq succeeds.

Also, define Hpρq to be the set of all µµµ for which pρ,µµµq P H. For fixed pρ,µµµq P H, denote s̄
pρ,µµµq

1 to be the s̄1
part of the output of Apρ,µµµq (and similarly for other variables) and denote

s̄pρ,µµµq :“

«

pσips̄
pρ,µµµq

1 qqiPrks

pσipm̄pρ,µµµqqqiPrks

ff

P Rkpm1`ℓq
q .

Finally, we define

H 1 :“
!

pρ,µµµq P H : Dj P rN s, fj

´

s̄pρ,µµµq
¯

‰ 0
)

.

Then, we have the following claim.

Lemma 4.4. If pρ,µµµq P H then Prµµµ1ÐRN
q

rpρ,µµµ1q P Hs ą 0. Moreover, if pρ,µµµq P H 1 then

Pr
µµµ1ÐRN

q

«

N
ÿ

j“1

µ1
jfj

´

s̄pρ,µµµq
¯

“ 0

ff

ď q
´d{2
1 .

Proof. First, we observe that if pρ,µµµq P H then

Pr
µµµ1ÐRN

q

rpρ,µµµ1q P Hs ě Pr
µµµ1ÐRN

q

rµµµ1 “ µµµs ą 0.

Now, if fι
`

s̄pρ,µµµq
˘

‰ 0 for some ι, then for any fixed a P Rq, the probability over µ1
ι Ð Rq that µ

1
ι ¨fι

`

s̄pρ,µµµq
˘

“

a is at most q
´d{2
1 . Hence, the claim follows. [\

Now, we can define our extractor E .

1. Sample ρ Ð R and µµµ P RN
q and run Apρ,µµµq. If Apρ,µµµq does not succeed, abort.

2. If Apρ,µµµq succeeds, run Apρ1,µµµ1q with fresh ρ1 Ð R and µµµ1 Ð RN
q until A succeeds.

We say that E succeeds if it extracts two tuples x “ ps̄1, m̄, s̄2, c̄q and x1 “ ps̄1
1, m̄

1, s̄1
2, c̄

1q such that one of
the conditions below holds:

– ps̄1, s̄2q ‰ ps̄1
1, s̄

1
2q, maxp}c̄}8, }c̄

1}8q ď 2κ and maxp}c̄s̄i}, }c̄
1s̄1

i}q ď 2si
?
2mid for i “ 1, 2, and

„

A1

0

ȷ

¨ s̄1 `

„

A2

B

ȷ

¨ s̄2 `

„

0
m̄

ȷ

“

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s̄1
1 `

„

A2

B

ȷ

¨ s̄1
2 `

„

0
m̄1

ȷ

– for all j P rN s, fj
`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

“ 0 and }c̄}8 ď 2κ and }c̄s̄1} ď 2s1
?
2m1d and }c̄s̄2} ď

2s2
?
2m2d and

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s̄1 `

„

A2

B

ȷ

¨ s̄2 `

„

0
m̄

ȷ

.

In the first case we break the binding property of the commitment scheme and thus find the relevant MSIS
solution. On the other hand, we extract the witness in the second case. Then, we have the following claims
about E .

Claim. The expected number of calls to A is at most 2.
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Proof. Let X be the expected number of calling A and let ε be the probability that Apρ,µµµq succeeds for
random ρ and µµµ. Define E to be the event that A succeeds in the first step. Then,

ErXs “ ErX|Es ¨ ε` ErX|Es ¨ p1 ´ εq “

ˆ

1 `
1

ε

˙

¨ ε` 1 ¨ p1 ´ εq “ 2.

[\

We conclude from the claim above that the expected runtime of E is at most 6T .

Claim. Probability that E succeeds is at least ϵ´ 2{|C| ´ q
´d{2
1 .

Proof. First, we observe that E terminates (without aborting) with probability at least ϵ´ 2{|C|. Suppose E
indeed terminates and let us write pµµµ, s̄1, m̄, s̄2, c̄q and pµµµ1, s̄1

1, m̄
1, s̄1

2, c̄
1q to be the respective outputs of A in

the first and second step of E . We have the three disjoint cases as described below:

Case 1:

‚ ps̄1, m̄, s̄2q ‰ ps̄1
1, m̄, s̄1

2q

‚
řN

j“1 µjfj
`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

“ 0 and
řN

j“1 µ
1
jfj

`

pσips̄1
1qqiPrks, pσ

ipm̄1qqiPrks

˘

“ 0

‚ maxp}c̄}8, }c̄
1}8q ď 2κ and maxp}c̄s̄i}, }c̄

1s̄1
i}q ď 2si

?
2mid for i “ 1, 2

‚

„

A1

0

ȷ

¨ s̄1 `

„

A2

B

ȷ

¨ s̄2 `

„

0
m̄

ȷ

“

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s̄1
1 `

„

A2

B

ȷ

¨ s̄1
2 `

„

0
m̄1

ȷ

Case 2:

‚ ps̄1, m̄, s̄2q “ ps̄1
1, m̄

1, s̄1
2q

‚
řN

j“1 µjfj
`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

“ 0 and
řN

j“1 µ
1
jfj

`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

“ 0

‚ }c̄}8 ď 2κ and }c̄s̄1} ď 2s1
?
2m1d and }c̄s̄2} ď 2s2

?
2m2d

‚

„

A1

0

ȷ

¨ s̄1 `

„

A2

B

ȷ

¨ s̄2 `

„

0
m̄

ȷ

“

„

tA
tB

ȷ

‚ for all j P rN s, fj
`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

“ 0.

Case 3:

‚ ps̄1, m̄, s̄2q “ ps̄1
1, m̄

1, s̄1
2q

‚
řN

j“1 µjfj
`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

“ 0 and
řN

j“1 µ
1
jfj

`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

“ 0

‚ }c̄}8 ď 2κ and }c̄s̄1} ď 2s1
?
2m1d and }c̄s̄2} ď 2s2

?
2m2d

‚

„

A1

0

ȷ

¨ s̄1 `

„

A2

B

ȷ

¨ s̄2 `

„

0
m̄

ȷ

“

„

tA
tB

ȷ

‚ there exists j P rN s so that fj
`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

‰ 0.

Define Ei to be the event that E terminates and Case i occurs. Then, we have

ϵ´ 2{|C| ď PrrE terminatess “ PrrE1 _ E2 _ E3s

and

PrrE succeedss ě PrrE1 _ E2s.
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Hence, we only need to upper-bound the probability PrrE3s. We apply Lemma 4.4 as follows:

PrrE3s ď Pr

«

pApρ,µµµq succeedsq ^

´

řN
j“1 µ

1
jfj

`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

“ 0
¯

^
`

Dj P rN s : fj
`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

‰ 0
˘

ff

ď
1

|R| ¨ qNd

ÿ

pρ,µµµqPH1

Pr
µµµ1

«

N
ÿ

j“1

µ1
jfj

´

s̄pρ,µµµq
¯

“ 0

ff

ď
1

|R| ¨ qNd

ÿ

pρ,µµµqPH1

q
´d{2
1

ď
1

|R| ¨ qNd

ÿ

pρ,µµµqPRˆRN
q

q
´d{2
1

ď q
´d{2
1 .

[\

The statement thus follows by combining the two previous claims. [\

4.3 Polynomial Evaluations with Vanishing Constant Coefficients

Suppose we want to prove simultaneously N quadratic relations (i.e. (34)) and additionally prove that
for quadratic kpm1 ` ℓq-variate polynomials F1, . . . , FM , evaluations Fj

`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

have the
constant coefficient equal to zero. Concretely, if we denote

xj :“ Fj

`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

P Rq

then rxj “ 0 for j P rM s.
For simplicity we first present an approach with soundness error 1{q1. We apply the strategy from [ENS20]

and first commit to a random masking polynomial g Ð tx P Rq : rx “ 0u. Then, given random challenges
γ1, . . . , γM Ð Zq, we send

h :“ g `

M
ÿ

j“1

γjFj

`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

(36)

to the verifier. Then, it simply checks whether the constant coefficient of h is indeed equal to zero. What
is left to prove is that h is well-formed, i.e. (36) holds. This is done by defining the quadratic function

fN`1 : Rkpm1`ℓ`1q
q Ñ Rq as follows.

Let x1 P Rkm1
q , x2 “ px2,1, . . . ,x2,kq P Rkpℓ`1q

q and denote

x2,j :“ x
pmq

2,j ∥ xpgq

2,j P Rℓ`1
q for j P rks, x

pmq

2 :“
´

x
pmq

2,1 , . . . ,x
pmq

2,k

¯

.

Then,

fN`1 px1,x2q :“ x
pgq

2,1 `

M
ÿ

j“1

γjFj

´

x1,x
pmq

2

¯

´ h.

By construction, if px1,x2q “ pσips1qqiPrks, pσ
ipm ∥ gqqiPrks then

x1 “ σips1qqiPrks, x
pmq

2 “ pσipmqqiPrks and x
pgq

2,1 “ g.

Moreover,(36) holds if and only if

fN`1

`

pσips1qqiPrks, pσ
ipm ∥ gqqiPrks

˘

“ 0.
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Recall that we also want to prove (34). We can define analogous polynomials f1, . . . , fN : Rkpm1`ℓ`1q
q Ñ Rq

as:
fjpx1,x2q :“ fj

´

x1,x
pmq

2

¯

.

Hence, we simply want to prove that for every j “ 1, 2, . . . , N ` 1:

fj
`

pσips1qqiPrks, pσ
ipm ∥ gqqiPrks

˘

“ 0.

Finally, this can then be directly done using the protocol

Πp2q
many pps2, s1,m, gq, σ, pf1, f2, . . . , fN`1qq

in Fig. 7.

Private information: ps1,mq P Rm1`ℓ
q so that }s1} ď α, s2 Ð χm2

Public information: A1 P Rnˆm1
q ,A2 P Rnˆm2

q ,B P Rℓˆm2
q ,Bg P Rλˆm2

q ,b P Rm2
q

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

,

f1, . . . , fN , F1, . . . , FM : Rkpm1`ℓq
q Ñ Rq, σ P AutpRqq

Prover Verifier

s :“

„

pσi
ps1qqiPrks

pσi
pmqqiPrks

ȷ

g :“ pg1, . . . , gλq Ð tx : Rq : x̃ “ 0u
λ

tg :“ Bgs2 ` g
tg -

Γ “ pγi,jq Ð ZλˆM
q

pγi,jqiPrλs,jPrMs�
for i P rλs :

hi :“ gi `
řM

j“1 γi,jFj psq

h1, . . . , hλ-
define f1, . . . , fN`λ as in (38) and (39)

run Π
p2q
many

`

ps2, s1,m ∥ gq, σ, pfiqiPrN`λs

˘

Accept iff

Π
p2q
many verifies and

h̃1 “ . . . “ h̃λ “ 0

Fig. 8: Commit-and-prove protocol Π
p2q

eval pps2, s1,mq, σ, pf1, . . . , fN q, pF1, . . . , FM qq for messages ps1,mq P Rm1`ℓ
q ,

randomness s2 P Rm2
q and c̄ P C̄ which satisfy: A1s1 ` A2s2 “ tA, Bs2 ` m “ tB (ii) }sic̄} ď 2si

?
2mid for

i “ 1, 2, (iii) fj
`

pσi
ps1qqiPrks, pσi

pmqqiPrks

˘

“ 0 for j P rN s (where si are used in Fig. 6) and (iv) all the evaluations
Fj

`

pσi
ps1qqiPrks, pσi

pmqqiPrks

˘

, where j P rM s, have constant coefficients equal to zero. Vector b is used in the sub-

protocol Π
p2q
many.

We provide intuition for the soundness argument. Assume that the verifier is convinced that h is of
the correct form (36) and rh “ 0. Also, note that a cheating prover committed to g before seeing the
challenges γ1, . . . , γM . Hence, if for some j P rM s, the constant coefficient of Fj

`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

is non-zero, then the cheating prover has probability at most 1{q1 of guessing the constant coefficient of
řM

j“1 γjFj

`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

.

Boosting Soundness. We exponentially decrease the soundness error by parallel repetition. Namely, in
order to obtain q´λ

1 soundness error, we commit to λ random masking polynomials g “ pg1, . . . , gλq Ð tx :
Rq : rx “ 0uλ as follows:

tg :“ Bgs2 ` g.
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Then, we send tg to the verifier which in return outputs the challenge matrix pγi,jqiPrλs,jPrMs Ð ZλˆM
q . Then,

we compute the vector h “ ph1, . . . , hλq as follows:

»

—

—

—

–

h1
h2
...
hλ

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

g1
g2
...
gλ

fi

ffi

ffi

ffi

fl

`

»

—

–

γ1,1 γ1,2 ¨ ¨ ¨ γ1,M
...

... ¨ ¨ ¨
...

γλ,1 γλ,2 ¨ ¨ ¨ γλ,M

fi

ffi

fl

»

—

—

—

–

F1

`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

F2

`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

...
FM

`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

fi

ffi

ffi

ffi

fl

(37)

and send it to the verifier. It directly checks if all polynomials h1, . . . , hλ P Rq have constant coefficients
equal to zero.

As before, we still need to prove that vector h was constructed correctly. We reduce this problem to

proving quadratic relations. Namely, we define polynomials fN`1, . . . , fN`λ : Rkpm1`ℓ`λq
q Ñ Rq as follows.

Let x1 P Rkm1
q , x2 “ px2,1, . . . ,x2,kq P Rkpℓ`λq

q and denote

x2,j :“
´

x
pmq

2,j ,x
pgq

2,j

¯

P Rℓ`λ
q for j P rks,

x
pmq

2 :“
´

x
pmq

2,1 , . . . ,x
pmq

2,k

¯

, x
pgq

2,1 :“
´

x
pgq

2,1,1, . . . , x
pgq

2,1,λ

¯

.

Then,

fN`i px1,x2q :“ x
pgq

2,1,i `

M
ÿ

j“1

γi,jFj

´

x1,x
pmq

2

¯

´ hi for i P rλs. (38)

By construction, if px1,x2q “ pσips1qqiPrks, pσ
ipm ∥ gqqiPrks then

x1 “ pσips1qqiPrks, x
pmq

2 “ pσipmqqiPrks and x
pgq

2,1,i “ gi.

Furthermore, Equation (37) is true if and only if for all j P rλs we have:

fN`j

`

pσips1qqiPrks, pσ
ipm ∥ gqqiPrks

˘

“ 0.

Since we also need to prove (34), for convenience we define polynomials f1, . . . , fN : Rkpm1`ℓ`λq
q Ñ Rq as:

fjpx1,x2q :“ fj

´

x1,x
pmq

2

¯

. (39)

Finally, we simply run Πquad´many

`

ps2, s1,m,gq, σ, pfjqjPrN`λs

˘

from Fig. 7. We summarise the protocol in
Fig. 8 and provide commitment and proof size analysis in Section 6.1.

Note that with this approach we need to commit to additional λ garbage polynomials.

Security Analysis. We present the security properties of the protocol in Fig. 8 below.

Theorem 4.5. Consider the protocol in Fig. 8 and let χ “ Sν . Suppose s1 “ γ1αη and s2 “ γ2νη
?
m2d for

some γ1, γ2 ą 0 where η is chosen as in Section 2.7.
For completeness, let m1,m2 ě 640{d. Then, the honest prover P convinces the honest verifier V with

probability

«
1

2 exp
´

14
γ1

` 1
2γ2

1
` 1

2γ2
2

¯ .

For commit-and-prove simulatability, there exists a simulator S that, without access to private information
s1,m, outputs a simulation of a commitment ptA, tBq along with a non-aborting transcript of the protocol
between prover P and verifier V such that for every algorithm A that has advantage ε in distinguishing
the simulated commitment and transcript from the actual commitment and transcript, whenever the prover
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does not abort, there is an algorithm A1 with the same running time that has advantage ε{2 ´ 2´128 in
distinguishing Extended-MLWEn`ℓ`λ`1,m2´n´ℓ´λ´1,χ,C,s2 .

For soundness, there is an extractor E with the following properties. When given rewindable black-box

access to a probabilistic prover P˚, which convinces V with probability ε ě 2{|C| ` q
´d{2
1 ` q´λ

1 , extractor E
with probability at least ε´ 2{|C| ´ q

´d{2
1 ´ q´λ

1 either outputs ps̄2, s̄1, m̄q P Rm1`m2`ℓ
q and c̄ P Rˆ

q such that

–

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s̄1 `

„

A2

B

ȷ

¨ s̄2 `

„

0
m̄

ȷ

– fj
`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

“ 0 for j P rN s

– each Fj

`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

P Rq, where j P rM s, has constant coefficient equal to zero
– }c̄}8 ď 2κ
– }c̄s̄1} ď 2s1

?
2m1d and }c̄s̄2} ď 2s2

?
2m2d

or a MSISn,m1`m2,B solution for
“

A1 A2

‰

in expected time at most 12T where running P˚ once is assumed

to take at most T time and B “ 8η
a

ps1
?
2m1dq2 ` ps2

?
2m2dq2.

Proof. Completeness follows directly from the proof of Theorem 4.2 and the discussion in Section 4.3. As for
commit-and-prove simulatability, we simulate the commitment and the transcript identically as in the proof
of Theorem 4.2 with two additional steps: (i) we simulate the commitment tg to g by setting tg Ð Rλ

q to
be a uniformly random vector and (ii) we simulate the polynomials h1, . . . , hλ by choosing them uniformly
at random from X :“ tx P Rq : rx “ 0u. Note that we perfectly simulate each hi since in the real execution,

i.e. (37), gi’s are also sampled uniformly from X and
řM

j“1 γi,jFj

`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

P X.

Knowledge Soundness. Let P˚ be a probabilistic prover which runs in time at most T and convinces the

verifier with probability ϵ ą 2|C|´1 ` q
´d{2
1 ` q´λ

1 . Define a deterministic algorithm ApρP , ρE , Γ q which given
randomness ρ “ pρP , ρEq P RP ˆ RE and challenge Γ P ZλˆM

q does the following. It first runs P˚pρP q

on randomness ρP with challenge Γ and stops after the third round. Let tg and h be the output of P˚ in
the first and third round respectively. Then, it runs the extractor E˚pρEq defined in the proof of Lemma
4.3 with randomness ρE (which runs P˚pρP , Γ q in a black-box way). We say that A succeeds if A outputs
ptg, Γ,h, s̄1, m̄, ḡ, s̄2, c̄q such that

–

»

–

tA
tB
tg

fi

fl “

»

–

A1

0
0

fi

fl ¨ s̄1 `

»

–

A2

B
Bg

fi

fl ¨ s̄2 `

»

–

0
m̄
ḡ

fi

fl

– h̃1 “ . . . “ h̃λ “ 0
– fj

`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

“ 0 for j P rN s

– for all i P rλs, hi “ ḡi `
řM

j“1 γi,jFj

`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

– }c̄}8 ď 2κ
– }c̄s̄1} ď 2s1

?
2m1d and }c̄s̄2} ď 2s2

?
2m2d

As before, we assume that E˚ does not solve MSIS since if it did, then so does A (and later on E). Clearly,
by Theorem 4.3, the probability that A succeeds for random ρ and Γ is at least ϵ´ 2{|C| ´ q

´d{2
1 . Moreover,

the expected runtime ApρP , ρE , Γ q for any fixed ρP , Γ and ρE Ð RE is at most 6T .
We introduce the following notation. Let H Ď RP ˆ RE ˆ ZλˆM

q be the set of triples pρ, Γ q such that
Apρ, Γ q succeeds. Also, define HpρP q to be the set of all pρE , Γ q for which pρP , ρE , Γ q P H. For fixed

pρ, Γ q P H, denote s̄
pρ,Γ q

1 to be the s̄1 part of the output of Apρ, Γ q (and similarly for other variables) and
denote

s̄pρ,Γ q :“

«

pσips̄
pρ,Γ q

1 qqiPrks

pσipm̄pρ,Γ qqqiPrks

ff

P Rkpm1`ℓq
q .

Finally, we define

H 1 :“
␣

pρ, Γ q P H : Dj P rM s, const. coeff. of Fj

`

s̄pρ,Γ q
˘

is non-zero
(

.

Then, we have the following claim, almost identical to Lemma 4.4.
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Lemma 4.6. If pρP , ρE , Γ q P H then Pr
pρ1

E ,Γ 1qÐREˆZλˆM
q

rpρP , ρ
1
E , Γ

1q P Hs ą 0. Moreover, if pρP , ρE , Γ q P

H 1 then

Pr
Γ 1ÐZλˆM

q

«

@i P rλs, rxi “ 0

ˇ

ˇ

ˇ

ˇ

ˇ

xi :“ ḡ
pρ,Γ q

i `

M
ÿ

j“1

γ1
i,jFj

´

s̄pρ,Γ q
¯

ff

ď q´λ
1 .

Now, we define our extractor E .

1. Sample ρ “ pρP , ρEq Ð RP ˆ RE and Γ P ZλˆM
q and run Apρ, Γ q. If Apρ, Γ q does not succeed, abort.

2. If Apρ, Γ q succeeds, run ApρP , ρ
1
E , Γ

1q for the same prover randomness ρP but fresh ρ1
E Ð RE and

Γ 1 Ð ZλˆM
q until A succeeds.

We say that E succeeds if it extracts two tuples x “ ps̄1, m̄, s̄2, c̄q and x1 “ ps̄1
1, m̄

1, s̄1
2, c̄

1q such that one of
the conditions below holds:

– ps̄1, s̄2q ‰ ps̄1
1, s̄

1
2q, maxp}c̄}8, }c̄

1}8q ď 2κ and maxp}c̄s̄i}, }c̄
1s̄1

i}q ď 2si
?
2mid for i “ 1, 2, and

„

A1

0

ȷ

¨ s̄1 `

„

A2

B

ȷ

¨ s̄2 `

„

0
m̄

ȷ

“

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s̄1
1 `

„

A2

B

ȷ

¨ s̄1
2 `

„

0
m̄1

ȷ

– for all j P rN s, fj
`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

“ 0 and for all j P rM s, the constant coefficient of

Fj

`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

equals zero, and }c̄}8 ď 2κ and }c̄s̄1} ď 2s1
?
2m1d and }c̄s̄2} ď 2s2

?
2m2d

and
„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s̄1 `

„

A2

B

ȷ

¨ s̄2 `

„

0
m̄

ȷ

.

In the first case we break the binding property of the commitment scheme and thus find a relevant MSIS
solution. On the other hand, we extract the witness in the second case. Then, we have the following claims
about E .

Claim. The expected number of calls to A is at most 2.

The proof follows identically as in the proof of Lemma 4.3. We conclude that the expected runtime of E is
at most 12T .

Claim. Probability that E succeeds is at least ϵ´ 2{|C| ´ q
´d{2
1 ´ q´λ

1 .

Proof. First, we observe that E terminates (without aborting) with probability at least ϵ ´ 2{|C| ´ q
´d{l
1 .

Suppose E indeed terminates and let us write ptg, Γ,h, s̄1, m̄, ḡ, s̄2, c̄q and ptg, Γ
1,h1, s̄1

1, m̄
1, ḡ1, s̄1

2, c̄
1q to be

the respective outputs of A in the first and second step of E . We have the following three disjoint cases.

Case 1:

‚ ps̄1, m̄, ḡ, s̄2q ‰ ps̄1
1, m̄

1, ḡ1, s̄1
2q

‚ for i P rλs, h̃i “ h̃1
i “ 0

‚ for i P rλs, hi “ ḡi `
řM

j“1 γi,jFj

`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

‚ for i P rλs, h1
i “ ḡ1

i `
řM

j“1 γ
1
i,jFj

`

pσips̄1
1qqiPrks, pσ

ipm̄1qqiPrks

˘

‚ for j P rN s, fj
`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

“ 0 and fj
`

pσips̄1
1qqiPrks, pσ

ipm̄1qqiPrks

˘

“ 0

‚ maxp}c̄}8, }c̄
1}8q ď 2κ and maxp}c̄s̄i}, }c̄

1s̄1
i}q ď 2si

?
2mid for i “ 1, 2

‚

»

–

A1

0
0

fi

fl ¨ s̄1 `

»

–

A2

B
Bg

fi

fl ¨ s̄2 `

»

–

0
m̄
ḡ

fi

fl “

»

–

tA
tB
tg

fi

fl “

»

–

A1

0
0

fi

fl ¨ s̄1
1 `

»

–

A2

B
Bg

fi

fl ¨ s̄1
2 `

»

–

0
m̄1

ḡ1

fi

fl .

34



Case 2:

‚ ps̄1, m̄, ḡ, s̄2q “ ps̄1
1, m̄

1, ḡ1, s̄1
2q

‚ for i P rλs, h̃i “ h̃1
i “ 0

‚ for i P rλs, hi “ ḡi `
řM

j“1 γi,jFj

`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

‚ for i P rλs, h1
i “ ḡi `

řM
j“1 γ

1
i,jFj

`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

‚ for j P rN s, fj
`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

“ 0
‚ }c̄}8 ď 2κ and }c̄s̄1} ď 2s1

?
2m1d and }c̄s̄2} ď 2s2

?
2m2d

‚

»

–

A1

0
0

fi

fl ¨ s̄1 `

»

–

A2

B
Bg

fi

fl ¨ s̄2 `

»

–

0
m̄
ḡ

fi

fl “

»

–

tA
tB
tg

fi

fl

‚ for j P rM s, the constant coefficient of Fj

`

pσips̄1
1qqiPrks, pσ

ipm̄1qqiPrks

˘

is zero.

Case 3:

‚ ps̄1, m̄, ḡ, s̄2q “ ps̄1
1, m̄

1, ḡ1, s̄1
2q

‚ for i P rλs, h̃i “ h̃1
i “ 0

‚ for i P rλs, hi “ ḡi `
řM

j“1 γi,jFj

`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

‚ for i P rλs, h1
i “ ḡi `

řM
j“1 γ

1
i,jFj

`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

‚ for j P rN s, fj
`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

“ 0
‚ }c̄}8 ď 2κ and }c̄s̄1} ď 2s1

?
2m1d and }c̄s̄2} ď 2s2

?
2m2d

‚

»

–

A1

0
0

fi

fl ¨ s̄1 `

»

–

A2

B
Bg

fi

fl ¨ s̄2 `

»

–

0
m̄
ḡ

fi

fl “

»

–

tA
tB
tg

fi

fl

‚ there exists j P rM s, so that the constant coefficient of Fj

`

pσips̄1
1qqiPrks, pσ

ipm̄1qqiPrks

˘

is non-zero.

Define Ei to be the event that E terminates and Case i occurs. Then, we have

ϵ´ 2{|C| ´ q
´d{2
1 ď PrrE terminatess “ PrrE1 _ E2 _ E3s

and
PrrE succeedss ě PrrE1 _ E2s.

Hence, we only need to upper-bound the probability PrrE3s. Now, by Lemma 4.6 we obtain:

PrrE3s ď Pr

«

pApρ, Γ q succeedsq ^
`

Dj P rM s : const. coeff. of Fj

`

pσips̄1
1qqiPrks, pσ

ipm̄1qqiPrks

˘

is non-zero
˘

^

´

@i P rλs, const coeff. of ḡi `
řM

j“1 γ
1
i,jFj

`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

is zero
¯

ff

ď
1

|RP | ¨ |RE | ¨ qλM

ÿ

pρ,Γ qPH1

Pr
pρ1

E ,Γ 1qÐHpρP q

«

@i P rλs, const coeff. of ḡ
pρ,Γ q

i `

M
ÿ

j“1

γ1
i,jFj

´

s̄pρ,Γ q
¯

is zero

ff

ď
1

|RP | ¨ |RE | ¨ qλM

ÿ

pρ,Γ qPH1

PrΓ 1ÐZλˆM
q

”

@i P rλs, const coeff. of ḡ
pρ,Γ q

i `
řM

j“1 γ
1
i,jFj

`

s̄pρ,Γ q
˘

is zero
ı

Pr
pρ1

E ,Γ 1qÐREˆZλˆM
q

rpρ1
E , Γ

1q P HpρP qs

ď
1

|RP | ¨ |RE | ¨ qλM

ÿ

pρ,Γ qPH1

q´λ
1 ¨ qλM ¨ |RE |

|HpρP q|

ď
1

|RP | ¨ |RE | ¨ qλM

ÿ

pρ,Γ qPH

q´λ
1 ¨ qλM ¨ |RE |

|HpρP q|

ď
1

|RP | ¨ |RE | ¨ qλM

ÿ

ρP PRP

ÿ

pρE ,Γ qPHpρP q

q´λ
1 ¨ qλM ¨ |RE |

|HpρP q|

ď
1

|RP | ¨ |RE | ¨ qλM

ÿ

ρP PRP

|HpρP q| ¨
q´λ
1 ¨ qλM ¨ |RE |

|HpρP q|

ď q´λ
1 .
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[\

Finally, the statement follows by combining the two claims about the extractor E . [\

4.4 Reducing the Number of Garbage Commitments

The approach in Section 4.3 requires us to commit to λ additional polynomials gi. Here, we consider a special
case when σ :“ σ´1

13 and show how to reduce this number by a factor of two for free. In particular, will use
the following property of σ´1.

Lemma 4.7. Define the σ´1-trace map Tr : Rq ÞÑ Rq as

Trpxq “ 2´1 px` σ´1pxqq .

Then for any a, b P Rq, the polynomial y “ Tr paq `Xd{2Tr pbq satisfies:

y0 “ a0 and yd{2 “ b0.

Proof. We first observe that for any c P Rq such that σ´1pcq “ c we have cd{2 “ 0. Indeed, if we compare
the d{2-th coefficient of c and σ´1pcq, we get cd{2 “ ´cd{2 and thus cd{2 “ 0.

Let a1 “ Trpaq and b1 “ Trpbq. Clearly, a1, b1 are stable under the σ´1 automorphism and hence we have
a1
d{2 “ b1

d{2 “ 0. Also, by construction a1
0 “ a0 and b1

0 “ b0. Therefore, y0 “ a1
0 ´ b1

d{2 “ a1
0 “ a0. Similarly,

yd{2 “ a1
d{2 ` b1

0 “ b0. [\

For simplicity, suppose that λ is even. The strategy here is to consider each pair papjq, bpjqqjPrλ{2s defined as

apjq :“
M
ÿ

u“1

γ2j´1,uf̃u
`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

bpjq :“
M
ÿ

u“1

γ2j,uf̃u
`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

and apply Lemma 4.7 to simultaneously prove that the constant coefficient of both elements in Rq is equal
to zero. Concretely, we prove that the constant and middle coefficient of each

Tr
´

apjq
¯

`Xd{2Tr
´

bpjq
¯

P Rq

is equal to zero.
Similarly as before, we first generate λ{2 random masking polynomials g “ pg1, . . . , gλ{2q Ð tx P Rq :

x0 “ xd{2 “ 0uλ{2. Then, given a challenge matrix Γ “ pγi,jq Ð ZλˆM
q , we construct apjq and bpjq as above

and send h1, . . . , hλ{2 defined as follows:

hj “ gj ` Tr
´

apjq
¯

`Xd{2Tr
´

bpjq
¯

for j P rλ{2s. (40)

The verifier then checks whether the constant and middle coefficient of each hj is equal to zero.
Finally, we need to prove that all h1, . . . , hλ{2 are well-formed. As before, our goal will be to define λ{2

2pm1 ` ℓ ` λ{2q-variate quadratic functions fN`1, . . . , fn`λ{2 : R2pm1`ℓ`λ{2q
q Ñ Rq such that (40) holds if

and only if

fN`j

`

pσips1qqiPrks, pσ
ipm ∥ gqqiPrks

˘

“ 0 for j P rλ{2s.

13 Thus its degree k is equal to 2.
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First, we observe that:

σpsq “ σ

¨

˚

˚

˝

»

—

—

–

s1
σps1q

m
σpmq

fi

ffi

ffi

fl

˛

‹

‹

‚

“

»

—

—

–

σps1q

s1
σpmq

m

fi

ffi

ffi

fl

“

»

—

—

–

0 Ikm1
0 0

Ikm1
0 0 0

0 0 0 Ikℓ
0 0 Ikℓ 0

fi

ffi

ffi

fl

»

—

—

–

s1
σps1q

m
σpmq

fi

ffi

ffi

fl

“ Us

where U P R2pm1`ℓqˆ2pm1`ℓq
q is the matrix defined above. Hence, we have the following lemma.

Lemma 4.8. Let s1 P Rm1
q ,m P Rℓ

q and set s :“ ps1, σps1q,m, σpmqq. For any 2pm1 ` ℓq-variate quadratic

function f : R2pm1`ℓq
q Ñ Rq of the form fpxq “ xTR2x` rT1 x` r0, define Trpfq to be the quadratic function

Trpfqpxq :“ xT

ˆ

R2 ` UTσpR2qU

2

˙

x `

ˆ

rT1 ` σprT1 qU

2

˙

x `

ˆ

r0 ` σpr0q

2

˙

.

Then, we have Trpfqpsq “ Tr pfpsqq.

Proof. We compute Tr pfpsqq from the definition of trace in Lemma 4.7:

Tr pfpsqq “
fpsq ` σpfpsqq

2

“
sTR2s ` rT1 s ` r0

2
`
σpsT qσpR2qσpsq ` σprT1 qσpsq ` σpr0q

2

“
sTR2s ` rT1 s ` r0

2
`

sTUσpR2qUs ` σprT1 qUs ` σpr0q

2
“ Trpfqpsq.

Here, we used the observation that σpsq “ Us. [\

Let x1 P Rkm1
q , x2 “ px2,1,x2,2q P R2pℓ`λq

q . Denote

x2,1 “

´

x
pmq

2,1 , x
pgq

1,1, . . . , x
pgq

1,λ{2

¯

and x2,2 “

´

x
pmq

2,2 , x
pgq

2,1, . . . , x
pgq

2,λ{2

¯

and set x
pmq

2 :“
´

x
pmq

2,1 ,x
pmq

2,2

¯

. Then, define

fN`jpx1,x2q :“ x
pgq

1,j ` Tr

˜

M
ÿ

u“1

γ2j´1,uf̃u

¸

´

x1,x
pmq

2

¯

`Xd{2Tr

˜

M
ÿ

u“1

γ2j f̃u

¸

´

x1,x
pmq

2

¯

´ hj .

(41)

Then, by Lemma 4.8 we have

fN`j

`

pσips1qqiPrks, pσ
ipm ∥ gqqiPrks

˘

“ 0 for j P rλ{2s

if and only if Equation 40 holds.

As before, in order to prove (34), we define quadratic functions f1, . . . , fN : R2pm1`ℓ`λ{2q
q Ñ Rq as:

fjpx1,x2q :“ fj

´

x1,x
pmq

2

¯

.

Finally, we run Π
p2q
many

`

ps2, s1,m,gq, σ, pfjqjPrN`λ{2s

˘

from Fig. 7.
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5 Applications to Proving Norm Bounds

In this section we provide examples of compound zero-knowledge proofs for various statements based on
the protocol in Figure 8. This protocol defined in the previous section proves simultaneously quadratic
relations and that the constant coefficient of evaluations of some quadratic functions are 0. We only commit
(via ABDLOP) to the message ps1,mq, but notice that the proven relations may also take as input some
automorphisms of the message. We focus on one specific automorphism to instantiate the general framework
of Section 4, that is σ :“ σ´1 using notations from Lemma 2.5. With this choice of automorphism, Lemma 2.4
claims that T allows us to prove inner products modulo q via Figure 8.

In the first subsection, we describe a protocol that proves approximate shortness of the commitment in
the Euclidean norm. In the next subsection, we describe a protocol that encompasses a variety of useful
statements in lattice-based cryptography that is tailored for applications to cryptography via a single instan-
tiation. In particular, this protocol allows to prove an upper bound on the ℓ2-norm of a commitment with
no tightness loss. In the third subsection, we detail an optimization related to the general protocol described
in the second subsection. Finally in the last subsection, we describe the changes in a particular instantiation
of the general protocol.

5.1 Approximate Range Proof

We first describe at a high-level a protocol to prove that a vector s “ ps1,mq committed to via ABDLOP is
such that }s} ď B for some bound B. The bound we can prove with this method is looser than the actual
bound on the norm of s, but the counterpart is that the proof is fairly cheap. We will use this protocol to
show that when s satisfies some relation over Zq and }s} ď B for small enough B, then this relation holds
over Z. The technique is inspired by [GHL21], itself reusing a technique from the ℓ8 approximate range proof
of [LNS21a] adapted to the Euclidean norm. For the sake of simplicity, we assume that the prover wants to
give a proof that his commitment s “ ps1,mq satisfies }s} ď B. The more general statement }Ds ´ e} ď B
for some matrix D and vector e can also be proven using the same strategy as detailed in the next subsection
in Figure 10.

Description of the strategy. The foundation for this protocol is Lemma 2.9. In a nutshell, this Lemma
says that for some distribution on the matrix R, the random projection Rs⃗ of s has approximately the same
norm as s. This way, we have the opportunity to shrink a potentially very long vector s to a much shorter
one (e.g length 256) with approximately the same norm. This projection is a Zq-linear map with respect to
s, which the prover can mask (which entails a slack in the bound we can prove with this method), then send
and prove well-formedness of the mask to the verifier.

The matrix R is a challenge sent by the verifier, and the prover shall prove that Rs⃗ has small norm so
the verifier concludes that so does s⃗. The problem with this method is that for zero-knowledge, the prover
cannot reveal the full vector Rs⃗. Instead of revealing this vector, the prover commits to a Gaussian mask y of
standard deviation s3 for the projection before receiving R. He then applies rejection sampling on the masked
projection z⃗ :“ y⃗ `Rs⃗, and computes a zero-knowledge proof of the well-formedness of z⃗. The statement to
be proven is captured by Figure 7, and thanks to the rejection sampling step, the z⃗ can be revealed to the
verifier without leaking information on s⃗. If the well-formedness proof of z⃗ checks and }z⃗} is small, then it is
a matter of parameters for Lemma 2.9 to convince the verifier that s⃗ has small norm.

Bimodal rejection optimization. This mask z⃗ of Rs⃗ is suited to the use of the bimodal trick to reduce
the standard deviation s3 of y⃗ (therefore also reduce the standard deviation of z⃗, hence the length of the
proof). Explicitly, the prover choses a random sign b P t´1, 1u, computes z⃗ :“ bRs⃗` y⃗, and runs the rejection
sampling algorithm Rej0pz⃗, bRs⃗, s3q. The new distribution of z⃗ reaches the same number of repetitions as the
usual rejection sampling for a lower standard deviation s3, which shrinks the bit length of z⃗. The extra cost
is 1) a commitment to the polynomial b and 2) a proof that b P t´1, 1u. The commitment 1) is added to the
BDLOP part, and is fairly cheap since b is a single polynomial. The zero-knowledge proof that b is a sign 2)
comes almost for free as it is a Zq-linear proof amortized with the well-formedness proof of z⃗.
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Proving that a polynomial is a sign. To perform the bimodal rejection sampling, we need to give a
zero-knowledge proof that b P t´1, 1u. We do this in two steps:

1. We prove that b is an integer
2. We prove that pb´ 1qpb` 1q “ 0.

As Zq is a field, it follows directly from pb´ 1qpb` 1q “ 0 that b indeed is a sign.
We prove that b is an integer by proving that for each non-constant mononomial of degree i: δi :“ Xi P

Rq, 1 ď i ď d ´ 1, the inner product xδi, by “ 0. This inner product maps b to its i-th coefficient, and shall
therefore be 0 for all positions i except for the constant coefficient. Second, pb´ 1qpb` 1q “ 0 is a quadratic

function, which we can prove using Π
p2q

eval as well. The instantation of Π
p2q

eval is detailed in the next paragraph.

Instantiation of Π
p2q

eval. After 2 rounds, the proof reduces to one amortized zero-knowledge proof for
quadratic functions and evaluations. First, the well formedness of the mask z of the projection Rs⃗, then
the proof that b is a sign. For each of the 256 rows of z, we define a function Fi, and for each of the d ´ 1
vectors δj , we define a function Gj .

@1 ď i ď 256, Fips,y, bq “ zi ´ Tpbr⃗i, s⃗q ´ yi

@1 ď j ď d´ 1, Gjpbq “ Tpδ⃗j , b⃗q,

where r⃗i P Zdpm1`ℓq
q is the i-th row of R. Finally, to prove that b P t´1, 1u, we use the functions Gj ’s defined

above and the quadratic function fpbq “ pb´ 1qpb` 1q. For clarity, we define

Ψ “ pF1, . . . , F256, G1, . . . , Gd´1q. (42)

Proposition 5.1. Consider an ABDLOP commitment of messages ps1,mq P Rm1`ℓ
q with randomness s2 P

Rm2
q satisfying A1s1 ` A2s2 “ tA, Bs2 ` m “ tB . Assume that

s3 ě γ
?
337β, t ě 1.64, q ě 41pm1 ` ℓq2

a

256{26tγ
?
337β.

Then the protocol described on Figure 9 is a zero-knowledge proof for the statement }s} ď 2
a

256{26tγ
?
337βpď

189γβq. More precisely, let Peval be the success probability of a honest prover in Π, PE 1 , TE 1 be respectively
the success probability and the run time of the extractor E 1 from Theorem 4.5 running on Π.

For correctness, if the prover and the verifier follow the protocol honestly, then the verifier shall accept
with probability « Peval expp´ 1

2γ2 q.

For soundness, let P be a probabilistic prover with success probability ϵ ě 2
|C|

´ q´d{2 ´ q´λ ´ 2´128.

There exists an extractor E 1 that with rewindable black-box access to P either breaks the binding of the ABD-
LOP commitment, or finds a valid opening p ss2, ss1, sy, sm,sb,scq to the commitment pt, tb, tyq with }pss1, smq} ď

2
b

256
26 tγ

?
337β, with probability PE 1 p1 ´ 2´128q in expected time 2TE 1 .

For commit-and-prove simulatability, there exists a simulator S that, without access to private information
s1,m, outputs a simulation of a commitment pt, ty, tbq along with a non-aborting transcript of the protocol
between prover P and verifier V such that for every algorithm A that has advantage ε in distinguishing
the simulated commitment and transcript from the actual commitment and transcript, whenever the prover
does not abort, there is an algorithm A1 with the same running time that has advantage ε{2 ´ 2´100 in
distinguishing Extended-MLWEn`ℓ`λ`256{d`2,m2´n´ℓ´λ´256{d´2,χ,C,s2 .

Proof. We only detail correctness and soundness, commit-and-prove simulatability follows directly from the
same property from Figure 8, the rejection sampling and the hiding property of ABDLOP.
Correctness. Let i P r256s. If the prover and verifier follow the protocol honestly, we have:

Fips,y, bq “ zi ´ Tpbr⃗i, s⃗q ´ yi (43)

rFips,y, bq “ zi ´ bxr⃗i, s⃗y ´ y⃗i (44)

“ bxr⃗i, s⃗y ´ bxr⃗i, s⃗y “ 0. (45)
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Public information:
Commitment t “ ptA, tBq P Rn`ℓ

q ,A1 P Rnˆpm1`υeq
q ,A2 P Rnˆm2

q ,B P Rℓˆm2
q such that

t “

„

tA
tB

ȷ

“

„

A1

0

ȷ

s1 `

„

A2

B

ȷ

s2 `

„

0
m

ȷ

. B2 P R256{dˆm2
q , b1 P Rm2

q .

Gaussian mask standard deviation s3 :“ γ
?
337β, acceptance coefficient t “ 1.64.

Private information: s “ ps1,mq P Rm1`ℓ
q such that }s} ď β, randomness s2 P Rm2

q .

Prover Verifier

Sample b Ð t´1, 1u Ă Rq

Sample y Ð D
256{d
s3

tb “ bT
1 s2 ` b

ty “ B2s2 ` y
tb, ty -

R Ð Bin256ˆpm1`ℓq

1

R�
z⃗ :“ bRs⃗ ` y⃗
If Rej0pz⃗, bRs⃗, s3q

Then continue, Else abort
z⃗ -

Run Π :“ Π
p2q

evalpps2, s1, pm, bqq, σ, f, Ψq

Accept iff
Π verifies and

}z⃗} ď t
?
256s3

Fig. 9: Commit-and-prove protocol for the messages s “ ps1,mq P Rm1`ℓ
q , randomness s2 P Rm2

q and c̄ P C̄ which
satisfy: A1s1 ` A2s2 “ tA, Bs2 ` m “ tB (ii) }sic̄} ď 2si

?
2mid for i “ 1, 2 (where si are used in Fig. 6) and (iii)

}s} ď 2
b

256
26

tγ
?
337β.

From Equation (43) to Equation (44) comes from Lemma 2.4. Equation (44) to Equation (45) is true because
the prover formed z⃗ “ Rs⃗` y⃗ correctly. Obviously, since b P t´1, 1u, fpbq “ 0. Again using Lemma 2.4 on the
Gj ’s, each functions maps to a non-constant coefficient, which is 0 since in particular b P Zq. We proved that
the inputs of Π are correct, hence with probability Peval, the verifier accepts Π. The probability that the
prover passes the rejection sampling step is given by expp´ 1

p2γq2
q according to Lemma 2.14. Finally, using

the tail bounds from Lemma 2.2 on z⃗, we have that Pp}z} ě t
?
256s3q ď pte

1´t2

2 q256, so the verifier also

checks }z} ď t
?
256s3 with probability at least 1 ´ pte

1´t2

2 q256. For t ě 1.64, we have pte
1´t2

2 q256 ď 2´128 .
The success probability of the prover is at least the probability that 1) Rej0pz⃗, bRs⃗, s3q does not abort, and
2) Π does not abort and the verifier accepts the proof, and 3) the norm verification passes. Therefore the
verifier accepts with probability at least Peval expp´ 1

2γ2 qp1 ´ 2´128q.

Soundness. We let E be the extractor for this zero-knowledge proof and E 1 be the extractor from Π
p2q

eval. The
extractor E proceeds as follows:

1. Run the prover until the third round on a honestly generated challenge R then run E 1. If E does not obtain
a valid opening ss, sy,sb satisfying the relations given by Equation (42), then abort otherwise continue.

2. Rewind the prover until the third round, send a honestly and freshly generated challenge R1 and then run
E 1 until E successfully obtains a valid opening ss1, sy1,sb1 satisfying the relations given by Equation (42).
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With this extraction strategy, the expected run time of E is 2 times the expected run time of E 1 and E has
the same success probability as E 1, see Lemma 4.3 for justifications.

Notice that since ϵ ě 2
|C|

` q´d{2 ` q´λ, in particular the success probability of the prover at producing a

valid Π in the last step is also at least 2
|C|

` q´d{2 ` q´λ and therefore PE 1 ě ϵ´ 2
|C|

´ q´d{2 ´ q´λ ě 2´128.

If E found two valid openings to different messages pss, syq ‰ pss1, sy1q, then E breaks the binding property
of the commitment scheme. We now consider the second possible outcome, that is the extractor E finds

pss2,ss1, sy, sm, b̄q P Rm2`m1`256{d`ℓ`1
q and c̄ P Rˆ

q such that pss1, sy, sm, b̄q are valid ABDLOP messages for the
randomness ss2 and

– fpb̄q “ 0

– For 1 ď i ď 256, rFipss, sy, b̄q “ 0

– For 1 ď j ď d, rGjpb̄q “ 0, and similarly for the second transcript.

We define ss “ pss1, smq. Plugging together the fact that all the rFipss, sy, b̄q are 0 and Equation (44), we have
that z⃗ is of the correct form, that is z⃗ “ Rss⃗ `sy⃗. The latter also holds for z⃗ “ R1

ss⃗1 `sy⃗, but in this case R1

and pss, syq “ pss1, sy1q are independent. Under Lemma 2.4, rGjpsbq “ 0 yields that every non-constant coefficient
of sb is 0, hence b P Zq. Since Zq is an integral domain, fpsbq “ psb´ 1qpsb` 1q “ 0 ensures that sb is a sign.

From the norm verification, we have that

}z} ď t
?
256s3 (46)

}R1
s⃗s` s⃗y mod q} ď t

?
256s3 (47)

}R1
s⃗s` s⃗y mod q} ď t

?
256γ

?
337β (48)

}R1
s⃗s` s⃗y mod q} ď

1

2

?
26

˜

2

c

256

26
tγ

?
337β

¸

, (49)

where Equation (46) to Equation (47) follows from the proven well-formedness of z, Equation (47) to Equa-
tion (48) follows from the assumption on s3 and Equation (48) to Equation (49) is simply reformulating the
upper bound so it fits Lemma 2.9. We now apply Lemma 2.9, which is possible since pss, syq “ pss1, sy1q and R1 are

independent. Under the condition that 2
b

256
26 tγ

?
337β ď

q
41dpm1`ℓq

, we have that if }ss} ě 2
b

256
26 tγ

?
337β,

then the probability over the randomness of the challenge R that Equation (46) is less than 2´128. By con-

traposition, with overwhelming probability 1 ´ 2´128, we have }ss} ď

b

256
26 tγ

?
337β, which completes the

soundness proof. [\

5.2 General Protocol With Exact ℓ2-Norm Proof

In this subsection, we describe a general protocol to prove various quadratic relations on s “ ps1,m, σps1q, σpmqq,
where ps1,mq is the message of an ABDLOP commitment. The statements proven in this protocol are such
that the applications to cryptographic primitives detailed in Section 6 result in a single instantiation of this
protocol. We highlight that among the relations this protocol proves is an exact norm proof }s} ď β, where
β is tight.

In a nutshell, we prove simultaneously quadratic relations over Rq, quadratic relations over Zq, approx-
imate bound on the infinity norm, exact bound on the ℓ2 norm and finally that a vector is binary. All the
later statements are gathered in this single protocol as they rely on proving inner products, which is possible
to prove efficiently using Figure 8. Explicitly, we define public parameters:

‚ Quadratic functions for i P rρs fi : R2pm1`ℓq
q ÝÑ Rq

‚ Evaluation functions for i P rρevals Fi : R2pm1`ℓq
q ÝÑ Rq

‚ For i P rυds, Di P Rkiˆ2pm1`ℓq
q , ui P Rki

q

‚ For i P rυes, Ei P Rpiˆ2pm1`ℓq
q , vi P Rpi

q

41



‚ Bounds pβ
pdq

i qiPrυds, pβ
peq

i qiPrυes.

‚ Matrix Ebin P Rkbinˆ2pm1`ℓq
q and vector vbin P Rkbin

q .

The general statement proven in Figure 10 includes the knowledge of a vector s “ ps1, σps1q,m, σpmqq P

R2m1
q ˆ R2ℓ

q such that

@1 ď i ď ρ, fipsq “ 0 (50)

@1 ď i ď ρeval, rFipsq “ 0 (51)

@1 ď i ď υd, }Dis ´ vi}8 ď β
pdq

i . (52)

@1 ď i ď υe, }Eis ´ vi} ď β
peq

i . (53)

Ebins ´ vbin P t0, 1udkbin . (54)

The functions fi are quadratic relations, and the functions Fi are also quadratic relations but for which we
only prove the constant coefficient. The matrices Di and vectors ui are such that }Dis ´ ui}8 is small, and

we prove the latter with a looser bound β
pdq

i than the actual bound on }Dis ´ ui}8. The matrices Ei and

vectors vi are such that }Eis ´ vi} ď β
peq

i , which we prove exactly in the sense that the proven bound is

β
peq

i . Finally, the matrix Ebin and vector vbin are such that Ebins ´ vbin is binary, which we prove.

General strategy. Suppose we have an ABDLOP commitment to a vector ps1,mq and we want to prove
Equations (50) to (54) on s “ ps1, σps1q,m, σpmqq. To prove the quadratic relations and evaluations Equa-
tions (50) and (51), we simply pass on the functions to the input of the instantiation of Figure 8 that we will
need later anyway. To prove Equation (52), we use the technique from Figure 9 with the ℓ8-norm instead.
The proof of Equation (54) is detailed in the paragraph below. We now focus on Equation (53). Remind

that one can use Π
p2q

eval to give a zero-knowledge proof that the inner product of two commitments mod q
is some public constant. Therefore we can prove that xEis ´ vi,Eis ´ viy mod q is some constant. We use
the approximate range proof from Figure 9 to prove that the computation of xEis ´ vi,Eis ´ viy does not
induce a wraparound modulo q, and therefore also holds over Z.

Remember that we do not want to give away the exact norm of Eis ´ vi, but rather prove that it is
lower than some bound. To circumvent this, we prove that the difference between the bound and the norm

is a positive integer. Explicitly, we prove that pβ
peq

i q2 ´ xEis ´ vi,Eis ´ viy can be written with a binary

representation x⃗i of length 2 logpβ
peq

i q ď d. Overall, proving exact norm reduces to the combination of proofs
for the relations between s and pxiqiPrυes, and a proof that each xi is binary. Notice that both proofs are
over Z rather than Zq, so we need a third proof to lift the relations we can only prove directly over Zq to Z.

Proving that a vector is binary.We detail a simple technique to prove that a vector has binary coefficients.
This proof is enabled by the efficiency of proving inner product relations as it relies on the following fact.

Lemma 5.2. Let n P N and x⃗ P Zn. If xx⃗, x⃗´ 1⃗ny “ 0, then x⃗ P t0, 1un.

Proof. Let x “ px1 . . . xnq P Zn. Every term in the inner product xx⃗, x⃗ ´ 1⃗ny is of the form xipxi ´ 1q.
Moreover, the map a ÞÝÑ apa ´ 1q is a positive over the integers, therefore xx⃗, x⃗ ´ 1⃗ny ě 0 with equality if
and only if every term is 0, i.e x⃗ is binary. [\

In other words, it is enough to prove xx⃗, x⃗ ´ 1⃗ny “ 0 to infer that x⃗ is a binary vector. In our protocol, we
prove that the υe vectors x⃗i and the vector Ebins ´ vbin are binary, which we do in two steps:

1. We prove that xpx⃗||Ebins ´ vbinq, px⃗||Ebins ´ vbinq ´ 1⃗ny “ 0 mod q, which is a direct application of
Figure 7.

2. We prove that }px⃗||Ebins ´ vbinq} ď B for some bound B using Figure 9.
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Provided that B is such that B2 `
a

pυe ` kbinqdB ă q (which is actually very easily met for reasonable pa-

rameters), xpx⃗||Ebins´vbinq, px⃗||Ebins´vbinq´ 1⃗pυe`kbinqdy “ 0 mod q holds over the integers, and Lemma 5.2
yields that x⃗ and Ebins ´ vbin are binary.

Specifications and instantiation. To begin with, the prover appends a commitment to the binary rep-
resentation vector x “ px1|| . . . ||xυe

q in the Ajtai part of the commitment to ps1,mq14. This vector is the

concatenation of the binary decompositions x⃗i of pβ
peq

i q2´}Eis´vi}
2. We write x1 the concatenation of x and

Ebins ´ vbin. The verifier samples two approximate range proof challenge matrices Rpdq, Rpeq. The first one
Rpdq is used for the approximate norm proofs Equation (52) and the second one is used for the exact norm
proofs Equation (53). He sends both matrices to the prover. Finally, the prover computes a zero-knowledge
proof for the following statements:

@1 ď i ď ρ, fipsq “ 0 (55)

@1 ď i ď ρeval, rFipsq “ 0 (56)

@1 ď i ď υd, }Dis ´ vi}8 ď β
pdq

i (57)

xx1,x1 ´ 1pυe`kbinqdy “ 0 mod q (58)

@1 ď i ď υe, xEis ´ vi,Eis ´ viy `

´

1 2 . . . 22 logpβ
peq

i q 0 . . . 0
¯

x⃗i “ pβ
peq

i q2 mod q (59)

p}Eis ´ vi}8qiPrυes, }x
1} are small enough so Equation (58) and Equation (59) hold over Z. (60)

We proceed to describe the functions in the input of Π
p2q

eval. Let us first introduce some notations to make

the exposition more compact: we write p⃗i “ p1 2 . . . 22 logpβ
peq

i q 0 . . . 0q, and for i P rd, es we write r
piq
j

the j-th row of Rpiq, y
piq
j (respectively z

piq
j ) the j-th coordinate of y⃗piq (respectively z⃗piq). Remember that

@i P rds, δi “ Xi is the unitary monomial of degree i in Rq. We remind that x1 is defined as the concatenation
of the binary decompositions x⃗i and Ebins ´ vbin. Finally, we define

epdq “

»

—

–

D1s ´ u1

...
Dυd

s ´ uυd

fi

ffi

fl

, epeq “

»

—

—

—

–

E1s ´ v1

...
Eυe

s ´ vυe

x1

fi

ffi

ffi

ffi

fl

. (61)

We define the following functions to instantiate Π
p2q

eval:

@i P td, eu, gpiqpbpiqq “ pbpiq ´ 1qpbpiq ` 1q (62)

Gpx1q “ Tpx1,x1 ´ 1pυe`kbinqdq (63)

@j P r256s, H
pdq

j ps,ypdq, bpdqq “ z
pdq

j ´ Tpbpdqr
pdq

j , epdqq ´ y
pdq

j (64)

@j P r256s, H
peq

j px1, s,ypeq, bpeqq “ z
peq

j ´ Tpbpeqr
peq

j , epeqq ´ y
peq

j (65)

@i P rυes, Iips,xq “ T pEis ´ vi,Eis ´ viq ` Tpp⃗i, x⃗iq ´ pβ
peq

i q2 (66)

@i P td, eu, 1 ď j ď d´ 1, J
piq
j pbpiqq “ Tpδj , b

piqq (67)

We now pack the functions that are the input of Π
p2q

eval for more clarity. We let

ϕ “ pf1, . . . , fρ, g
pdq, gpeqq (68)

Ψ “

´

pFiqiPρeval
, G, pH

pdq

j qjPr256s, pH
peq

j qjPr256s, pIiqiPυe , pJ
piq
j qiPtd,eu,jPrds

¯

. (69)

14 Note that appending a commitment in the Ajtai part can only be done at the same time as the commitment to
s1. If for some reason it is not possible to commit ahead of time to x⃗, one has to commit to x⃗ in the BDLOP part
instead.
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Public information:
Commitment t P Rn`ℓ

q ,A1 P Rnˆpm1`υeq
q ,A2 P Rnˆm2

q ,B P Rℓˆm2
q such that

t “

„

A1

0

ȷ „

s1
x

ȷ

`

„

A2

B

ȷ

s2 `

„

0
m

ȷ

. Bpdq
P Rp256{dqˆm2

q ,Bpeq
P Rp256{dqˆm2

q , bpdq
P Rm2

q , bpeq
P Rm2

q .

For i P rρs, quadratic functions fi : R2pm1`ℓq
q ÝÑ Rq

For i P rρevals, quadratic functions Fi : R2pm1`ℓq
q ÝÑ Rq

For i P rυes, matrix pDiq P Rkiˆ2pm1`ℓq
q , vector ui P Rki

q , bound β
pdq

i

For i P rυes, matrix pEiq P Rpiˆ2pm1`ℓq
q , vector vi P Rpi

q , bound β
peq

i

Matrix pEbinq P Rkbinˆ2pm1`ℓq
q

Bounds αpdq, αpeq such that }epdq
} ď αpdq, }epeq

} ď αpeq

Standard deviations spdq
“ γpdq

?
337αpdq, speq

“ γpeq
?
337αpeq, acceptance coefficient t P R

Challenge dimensions cpdq
“ d

řυe
i“1 ki, cpeq

“ dpkbin `
řυe

i“1ppi ` 1qq

Input functions of Π
p2q

eval ϕ, Ψ defined in Equations (68) and (69).

Private information:
Randomness s2 Ð χm2 , message s “ ps1,mq P Rm1`ℓ

q

such that Equations (50) to (54) hold. Binary decomposition xi P Rq of pβ
peq

i q
2

´ }Eis ´ vi}
2.

Vectors epdq
“ pD1s ´ u1||...||Dυds ´ uυdq, epeq

“ pE1s ´ v1||...||Eυes ´ vυe ||xq.

Prover Verifier

bpdq, bpeq
Ð t´1, 1u Ă Rq

ypdq
Ð D

256{d

spdq , ypeq
Ð D

256{d

speq

tpdq :“ Bpdqs2 ` ypdq

tpeq :“ Bpeqs2 ` ypeq

tpdq :“ pbpdq
q
T s2 ` bpdq

tpeq :“ pbpeq
q
T s2 ` bpeq

tpdq, tpdq, tpeq, tpeq

-

Rpdq
Ð Bin256ˆcpdq

1

Rpeq
Ð Bin256ˆcpeq

1

Rpdq, Rpeq

�
z⃗pdq :“ bpdqRpdqe⃗pdq

` y⃗pdq

z⃗peq :“ bpeqRpeqe⃗peq
` y⃗peq

If Rej0pz⃗pdq, bpdqRpdqe⃗pdq, spdq
q

and Rej0pz⃗peq, bpeqRpeqe⃗peq, speq
q

Then continue, Else abort

s˚ :“ ps2, ps1,xq, pm,ypdq,ypeq, bpdq, bpeq
qq

z⃗pdq, z⃗peq

-
Run Π “ Π

p2q

evalps
˚, σ, ϕ, Ψq

Accept iff :
‚ Π verifies

‚ }z⃗pdq
}8 ď 14spdq

‚ }z⃗peq
} ď t

?
256speq

Fig. 10: Commit-and-prove protocol for messages ps1,mq P Rm1`ℓ
q , randomness s2 P Rm2

q and c̄ P C̄ which satisfy:

A1

„

s1
x

ȷ

` A2s2 “ tA, Bs2 ` m “ tB (ii) }sic̄} ď 2si
?
2mid for i “ 1, 2 (where si are used in Fig. 6) and s :“

ps1, σps1q,m, σpmqq verifies Equations (50) to (54)).
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Theorem 5.3. Consider an ABDLOP commitment to a message ps1,mq P Rm1`ℓ
q with randomness s2 P

Rm2
q satisfying A1s1`A2s2 “ tA, Bs2`m “ tb. Let B

pdq :“ 28
?
337γpdqαpdq, Bpeq :“ 2

b

256
26 tγ

peq
?
337αpeq,

and assume that t ě 1.64 and

Bpeq ă
q

41cpeq

pBpeqq2 `
a

pυe ` kbinqdBpeq ă q,

2pmax
iPrυes

β
peq

i q2 ` pBpeqq2 ´ 1 ă q.

Then the protocol described on Figure 10 is a commit-and-prove protocol for proving Equations (50) to (54).
Concretely, let Peval be the success probability of a honest prover in Π, PE 1 , TE 1 be respectively the success
probability and the run time of the extractor E 1 from Theorem 4.5. For correctness, if the prover and the

verifier follow the protocol in Figure 10 honestly and t “ 1.64, then the verifier shall accept with probability

« Pevalexpp´
1

2pγpdqq2
qexpp´

1

2pγpeqq2
q.

For soundness, let P be a probabilistic prover with success probability ϵ ě 2
|C|

´q´d{2 ´q´λ ´2´127. There

exists an extractor that with rewindable black-box access to P, either breaks the binding of the commitment
or recovers a valid opening

pss2, pss1, sxq, p sm, sypdq, sypeq,sbpdq,sbpeqq,scq P Rm1`m2`ℓ`υd¨256{d`υe¨256{d`1`1
q ˆ Rˆ

q

for the commitment pt, tpdq, tpeq, tpdq, tpeqq in expected time 2Teval, satisfying Equations (50) to (54).

For commit-and-prove simulatability, there exists a simulator S that, without access to private information
s1,m, outputs a simulation of a commitment pt, tpdq, tpdq, tpeq, tpeqq along with a non-aborting transcript of the
protocol between prover P and verifier V such that for every algorithm A that has advantage ε in distinguishing
the simulated commitment and transcript from the actual commitment and transcript, whenever the prover
does not abort, there is an algorithm A1 with the same running time that has advantage ε{2 ´ 2´100 in
distinguishing Extended-MLWEn`ℓ`λ`p256{d`1q`p256{d`1q,m2´n´ℓ´λ´p256{d`1q`p256{d`1q,χ,C,s2 .

Proof. Correctness. The success probability of a honest prover is at least the probability that 1) Both
rejection sampling steps on z⃗pdq and z⃗peq do not abort 2) The zero-knowledge proof Π successfully convinces
the verifier and 3) Both norm checks are verified. For the rejection sampling steps, each have an indepen-
dent probability of respectively expp´ 1

2pγpdqq2
q, expp´ 1

2pγpeqq2
q not to abort, which yields a probability of

expp´ 1
2pγpdqq2

qexpp´ 1
2pγpeqq2

q for 1). The tail bound Lemma 2.2 indicates that with our bounds, both norm

checks in 3) are verified with probability respectively 512 expp´142{2q and
´

te
1´t2

2

¯256

. With t ě 1.64, both

probabilities are 1 ´ 2´128. Remains to show 2), which we do by showing that Π is a valid instantiation of
Figure 8 and therefore convinces the verifier with probability Peval. Since the prover is honest, we assume
that s verifies Equations (50) to (54) and look at each input function one by one: For all 1 ď i ď ρ, Equa-
tion (50) implies fipsq “ 0, and since both bpdq and bpeq are signs, we also have gpdqpbpdqq “ gpeqpbpeqq “ 0.

From Equation (51), we have rFipsq “ 0. The vector x1 is binary by construction and by assumption from

Equation (54). Under Lemma 2.4 Gpx1q “ xx1, 1 ´ x1y mod q, and under Lemma 5.2 we have rGpx1q “ 0.

Again under Lemma 2.4, if both z⃗pdq and z⃗peq are honestly constructed, the functions H
pdq

j and H
peq

j also
have constant coefficients 0. For each i P rυes, the vector x⃗i is constructed as the binary decomposition of

pβ
peq

i q2 ´ }Eis ´ vi}
2, and this vector x⃗i therefore has support at most 2 log β

peq

i ď d. With p⃗i defined as the

vector whose coefficients are the list of powers-of-two until 2 log β
peq

i (and then zeros), we have

xp⃗i, x⃗iy “ pβ
peq

i q2 ´ xEis ´ vi,Eis ´ viy.
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From Lemma 2.4, the latter equation implies that rIips,xq “ 0, except the inner products are taken modulo

q rather than over the integers. Since we assumed 2pmax
iPrυes

β
peq

i q2 ` pBpeqq2 ´ 1 ă q, these computations also

hold over the integers and therefore we do have rIips,xq “ 0. Finally, @i P td, eu, 1 ď j ď d´ 1, rJ
piq
j pbpiqq “ 0

is immediate since the function maps bpiq to its j-th coefficient and bpiq is a constant, which completes the
correctness proof.

Commit-and-prove simulatability follows from the commit-and-prove simulatability of Figure 8, the re-
jection sampling and the hiding property of ABDLOP.

Soundness. We let E be the extractor for this zero-knowledge proof and E 1 be the extractor from Π
p2q

eval. The
extractor E proceeds as follows:

1. Run the prover until the third round on honestly generated challenges Rpdq, Rpeq then run E 1. If E does

not obtain a valid opening pss2, pss1, sxq, p sm, sypdq, sypeq,sbpdq,sbpeqq,scq P Rm1`m2`ℓ`υd¨256{d`υe¨256{d`1`1
q ˆRˆ

q

satisfying the relations given by Equations (50) to (54), then abort otherwise continue.
2. Rewind the prover until the third round, send honestly and freshly generated challenges Rpdq

1

, Rpeq
1

and
run E 1 until E successfully obtains a valid opening pss1

2, pss
1
1, sx

1q, p sm1, sypdq
1

, sypeq
1

,sbpdq
1

,sbpeq
1

q,sc1q satisfying
the relations given by Equations (50) to (54).

With this extraction strategy, the expected run time of E is 2 times the expected run time of E 1 and E has
the same success probability as E 1, see Lemma 4.3 for justifications. Notice that since ϵ ě 2

|C|
` q´d{2 ` q´λ,

in particular the success probability of the prover at producing a valid Π in the last step is also at least
2

|C|
` q´d{2 ` q´λ and therefore PE 1 ě ϵ´ 2

|C|
´ q´d{2 ´ q´λ ě 2´128.

Similarly as in the soundness proof of Proposition 5.1, either E breaks the binding property of the
commitment scheme, or the messages in both transcripts are the same, which in turn implies that the
challenge matrices Rpdq and Rpeq are independent of those messages. We focus on the latter case.

We have the following:

1. @i P rρs, fipss, σpssqq

2. For i P rρevals, rFipss, σpssqq “ 0
3. @i P td, eu, gpiqpsbpiqq “ 0
4. Gpsx1q “ 0

5. For j P r256s, rH
pdq

j pss, syd, bdq “ 0

6. For j P r256s, rH
piq
j psx1,ss, sye, beq “ 0

7. For i P rυes, rIipss, sxq “ 0

8. For i P td, eu, j P t1, . . . , d´ 1u, rJipbiq “ 0.

We use repeatedly Lemma 2.4 to infer inner product relations from the list of equations satisfied above,
see the correctness paragraph for full explanation. First, 1) and 2) imply respectively that Equations (50)
and (51) are satisfied.

Next, 3) implies that sbpdq and sbpeq are roots of pX ´ 1qpX ` 1q, and 8) implies that all coefficients of sbpdq and
sbpeq are 0 except for the constant one. Since Zq is an integral domain, we have that sbpdq and sbpeq are signs.

5) implies the well-formedness of z⃗pdq “ sbpdqRpdq
se⃗pdq ` sy⃗pdq, where se⃗pdq is defined as in Equation (61) with

the extracted messages. From the norm verification on z⃗pdq, we have that }z⃗pdq}8 “ }sbpdqRpdq
se⃗pdq ` sy⃗pdq}8 ď

t256spdq. Notice that since sbpdq is a sign, the distribution of sbpdqRpdq is Bin256ˆcpdq

1 . As we assumed that the
extractor does not break the binding of the commitment, se⃗pdq is fixed and the hypotheses of Lemma 2.7
are satisfied. Using the latter Lemma, we have that the probability (over the randomness of the challenge
Rpdq) that }z⃗pdq}8 ď 1

2}se⃗pdq} is less than 2´256. Rearranging the terms, we have that with probability that

}se⃗pdq}8 ď 24spdq is at least 1 ´ 2´256, hence Equation (52) is satisfied.

6) implies the well-formedness of z⃗peq “ sbpeqRpeq
se⃗peq ` sy⃗peq, where se⃗peq is defined as in Equation (61) with the

extracted messages. Similarly as above, sbpeq is a sign hence sbpeqRpeq follows Bin256ˆcpeq

1 and is independent
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of se⃗peq. As we assumed Bpeq ă
q

41cpeq , we can use Lemma 2.9 which yields that if }se⃗peq} ě Bpeq, then the

probability that }z⃗peq} ď 1{2Bpeq
?
26 is less than 2´128. Rearranging the terms, we obtain that the probability

that }se⃗peq} ď Bpeq is at least 1 ´ 2´128.

4) implies that sx1 (again defined accordingly with the extracted messages) xx1,x1 ´1y “ 0 mod q. Moreover,
as we assumed pBpeqq2 `

a

pυe ` kbinqdBpeq ă q, the latter inner product does not entail a wraparound
modulo q and therefore holds over the integers. Under Lemma 5.2, this implies that x1 is binary. In particular,
Equation (54) is satisfied.

Finally 7) implies that xp⃗i, s⃗ ixy “ pβ
peq

i q2 ´ }se⃗peq}2 mod q. Moreover, as we assumed 2pmax
iPrυes

β
peq

i q2 ` pBpeqq2 ´

1 ă q, then the computation above holds over the integers. In particular, the latter equation implies that

pβ
peq

i q2 ´ }se⃗peq}2 is a positive integer and therefore Equation (53) is satisfied.
To conclude, either E breaks the binding of the commitment or E finds a valid opening to messages

satisfying Equations (50) to (54) with probability PE 1 p1 ´ 2´256qp1 ´ 2´128q in time 2TE 1 . [\

5.3 Packing Signs

Recall that we commit to each sign bpeq and bpdq separately. We can reduce the proof size by committing to
both of them in the following way. Namely, we compute

b :“ bpeq `Xd{2bpdq P Rq

and commit to b:
tb :“ bT

b s ` b.

In order to prove certain properties of bpeq and bpdq, we observe that:

bpeq “ 2´1 ¨ pb` σpbqq and bpdq “ 2´1 ¨ pXd{2b` σpXd{2bqq.

Then, for example, to prove that bpeq is a sign, we show that

pbpeqq2 ´ 1 “
`

2´1 ¨ pb` σpbqq
˘2

´ 1 “ 4´1 ¨ pb2 ` 2σpbqb` σpbq2q ´ 1 “ 0

and the constant coefficient of
Xi ¨ bpeq “ Xi ¨ 2´1 ¨ pb` σpbqq

is equal to zero for i “ 1, 2, . . . , d´1. Hence, these quadratic relations (with automorphisms) can be handled

directly by Π
p2q

eval.

5.4 Version of the ℓ2-Norm Proof Without Approximate ℓ8 Proof

In this subsection, we deal with the particular instantiation of Figure 10 for υd “ 0. Simply setting this
parameter to 0, for example still requires the prover to send the commitments tpdq, tpdq although these are
not useful. We detail the savings and changes in the protocol for this particular instance.

We assume υd “ 0. In this case, the prover does not sample bpdq nor y⃗pdq and hence does not send the
two commitments tpdq, tpdq in the first round.

The challenge matrix Rpdq is 256ˆcpdq, where cpdq is 0 hence the verifier does not send this challenge either.
The prover only computes z⃗peq, which means he only runs the rejection sampling Rej0pz⃗peq, bpeqRpeqe⃗peq, speqq

and only sends this z⃗peq in the third round. The vector s˚ is defined as ps2, ps1,xq, pm,ypeq, bpeqqq, and the
functions Φ, Ψ are defined as

ϕ “ pf1, . . . , fρ, g
peqq

Ψ “

´

pFiqiPρeval
, G, pH

peq

j qjPr256s, pIiqiPυe , pJ
peq

j qjPrds

¯

.
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6 Concrete Instantiations

In this section we show how to make use of our techniques for proving norms in the real-world applications,
such as proving knowledge of a Module-LWE secret, verifiable encryption and group signatures. In order to
show significance of our results, we compare our efficiency with relevant prior work.

6.1 General Strategy

We first provide a general strategy on instantiating the protocol in Fig. 10 with an improvement presented
in Section 4.4. Firstly, we pick the challenge space C as described in Section 2.7. Further, we choose λ and

q1 such that terms q´λ
1 and q

´d{2
1 are negligible.

There are four rejection sampling algorithms: the first two to mask csi for i “ 1, 2 and then the latter
two to mask Rpeqe⃗peq and Rpdqe⃗pdq. Let γ1, γ2, γ

pdq, γpeq ą 0. Then, we define

s1 “ γ1η
a

α2 ` υe ¨ d, s2 “ γ2ην
a

m2d, speq “ γ3
?
337αpeq, spdq “ γ4

?
337αpdq.

Thus, the non-aborting probability of the prover is

«
1

2 exp
´

14
γ1

` 1
2γ2

1
` 1

2γ2
2

` 1
2γ2

3
` 1

2γ2
4

¯ .

Now we set n and m2 such that Extended-MLWE and MSIS from Theorem 4.5 are hard against known
attacks. We measure the hardness with the root Hermite factor δ and aim for δ ă 1.0045 similarly as
in [BLS19, ALS20, ENS20, LNS21a]. For Module-SIS, we applied the standard methodology from [MR09,
GN08]. Also, we assume that Extended-MLWE is almost as hard as plain MLWE (see [LNS21a] for more
discussion) and applied the LWE-Estimator by Albrecht et al. [APS15].

Further, we look at the size of the non-interactive proof outputs via the Fiat-Shamir transform of the
protocol in Fig. 10. First, note that for the non-interactive proof the messages w and v need not be included
in the output as they are uniquely determined by the remaining components. Moreover, all the challenges
apart from c can be computed as a hash of the previous components of the proof. On the other hand, sending
c requires at most rlogp2κ` 1qs ¨ d bits.

As “full-sized” elements of Rq, we have tA, tB , t
pdq, tpdq, tpeq, tpeq, tg, t and hi. Therefore, we have in total

n` ℓ` 2 ¨ p256{d` 1q ` 2λ` 1 full-sized elements of Rq, which altogether costs at most

pn` ℓ` 512{d` 2λ` 3q drlog qs bits.

Integer Representation Bits

0 00 2
1 01 2

´1 10 2

k ě 2 1102k´41 2k ´ 1

k ď ´2 1102k´31 2k

Table 3: Prefix-free encoding [DLL`17].

Now, the only remaining part are the vectors z1, z2, z⃗
pdq, z⃗peq. We can encode them using the Huffman

coding. Concretely, suppose that z Ð Ds. Then, we can write

z :“ z1 ¨ 2δ`1 ` z0

where z0 “ z mod ˘2δ`1. Since the expected absolute value of z is s and assuming that 2δ « s, the value of
z0 is close to being uniformly random between ´2δ and 2δ. Due to the discrete Gaussian tails, the tails of
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the distribution of z1 decrease very fast. Hence, the idea is to send z0 in the clear (which has δ` 1 bits) and
then encode z1 using the Huffman coding. If we assume that s “ 2δ and the tails of z1 are the same as in
the normal distribution centred at zero 15, then the above compression requires on average approximately
1.57 bits to represent z1. Thus, the total representation of z requires on average « 2.57 ` δ bits. Applying
this strategy to z1, z2, z⃗

pdq, z⃗peq, the overall commitment and proof length is around

pn` ℓ` 512{d` 2λ` 3q drlog qs ` rlogp2κ` 1qs ¨ d` pm1 ` υeqd ¨ p2.57 ` rlog s1sq `m2d ¨ p2.57 ` rlog s2sq

` 256 ¨ p2.57 ` rlog speqsq ` 256 ¨ p2.57 ` rlog spdqsq bits.

Further, we can reduce the number of garbage terms gj from λ to λ{2 using the optimisation based on
the σ´1 automorphism described in Section 4.4. Moreover, as described in Section 5.3, we can commit to
bpdq and bpeq as one polynomial. Hence, the total proof size becomes:

pn` ℓ` 512{d` λ` 2q drlog qs ` rlogp2κ` 1qs ¨ d` pm1 ` υeqd ¨ p2.57 ` rlog s1sq `m2d ¨ p2.57 ` rlog s2sq

` 256 ¨ p2.57 ` rlog speqsq ` 256 ¨ p2.57 ` rlog spdqsq bits.

Dilithium compression. For fair comparison with prior works, we further reduce the commitment and
proof size by applying Dilithium-G [DLL`17] compression techniques, as in [LNS21a] and [ESZ21]. We
describe the optimisation in Appendix A. The only change from the previous case is the introduction of the
variables D (for cutting low-order bits of the commitment tA) and γ (for cutting low-order bits of w which
allows us not to send some part of the masked opening z2 of the commitment randomness s2). Then, by
Theorem A.2, we choose n,m2 and D, γ so that the MSISn,m1`m2,B is hard for B :“ 4η ¨

a

B2
1 `B2

2 where

B1 “ 2s1
?
2m1d and B2 “ 2s2

?
2m2d` 2Dη

?
nd` γ

?
nd.

As a rule of thumb, we first set D “ γ “ 0 and pick the largest n such that MSISn,m1`m2,B is hard. Next,
we find the largest γ (note that D is still zero) for which the Module-SIS problem is still hard. Finally, after
fixing n and γ, we choose the largest D such that MSISn,m1`m2,B is still hard and also 2D´1κd ă γ. Note
that having larger D decreases the commitment size at the cost of having larger hints and therefore, there
is no advantage in picking larger D than logpγ{pκdqq ` 1.

Now, we provide an asymptotic analysis of bounding the size of the hint vector h. First, note that the
coefficient vector h with high probability satisfies }h}8 ď }HighBitsqpctA,2´z2,2q}8 (here we assume the low-

order bits w0 of w do not cause the increase in the high-order bits). Then, }ctA,2 ` z2,2}8 ď 2D´1κd` 16s2
with an overwhelming probability by Lemma 2.2. Hence, we conclude that (with high probability) the
coefficients of h are between ´x and x where

x :“

R

2D´1κd` 16s2
γ

V

. (70)

For our parameters, the standard deviation s2 will be much smaller than γ and thus x will be close to
2D´1κd{γ. Finally, by picking D such that 2D´1κd ă γ, we conclude that the coefficients of h are between
´1 and 1 with high probability. Assuming heuristically that they follow a binomial distribution, we encode
h using a prefix-free encoding 16 [DLL`17] as shown in Table 3. As computed in [DLL`17], encoding a
coefficient of h requires on average « 2.25 bits.

The final proof size including compression becomes:

ndprlog qs ´Dq ` 2.25 ¨ nd` pℓ` 512{d` λ` 2q drlog qs ` rlogp2κ` 1qs ¨ d` pm1 ` υeqd ¨ p2.57 ` rlog s1sq

`m2d ¨ p2.57 ` rlog s2sq ` 256 ¨ p2.57 ` rlog speqsq ` 256 ¨ p2.57 ` rlog spdqsq bits.

15 This assumption is needed so that we can compute the frequencies for the Huffman coding.
16 One could apply the Huffman coding as before, however this requires computing the frequencies of the hint coeffi-

cients.
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Skipping the non-exact norm proof. In certain applications, we will not perform any non-exact ℓ8

norm proofs, as described in Section 5.4 In this scenario we do not send the commitments tpdq, tpdq and the
masked opening z⃗pdq. Also, the packing technique from Section 5.3 becomes pointless. In conclusion, the
proof size for this case becomes:

ndprlog qs ´Dq ` pℓ` 256{d` λ` 2q drlog qs ` rlogp2κ` 1qs ¨ d` pm1 ` υeqd ¨ p2.57 ` rlog s1sq

`m2d ¨ p2.57 ` rlog s2sq ` 2.25 ¨ nd` 256 ¨ p2.57 ` rlog speqsq bits.

We additionally provide SAGE [The22] scripts which compute parameters for the examples described in
this section:

https://github.com/khalvador/LBZKP.

6.2 Proving Knowledge of a Module-LWE Secret

As a primary benchmark for comparison with prior work [ENS20, LNS21a], we prove knowledge of a Module-
LWE secret. Namely, we want to prove knowledge of ps, eq P RM`N

q such that }ps, eq} ď B and

As ` e “ u pmod qq (71)

where A P RNˆM
q and u P RN

q are public.
We propose the following solution using the framework developed in Section 5. Simply, we commit to

s1 :“ s and prove that
›

›

›

›

„

s
As ´ u

ȷ
›

›

›

›

“

›

›

›

›

„

IM
A

ȷ

s ´

„

0
u

ȷ
›

›

›

›

ď B.

In Fig. 11 we show to properly instantiate the protocol in Fig. 10 to prove knowledge of a Module-LWE
secret.

variable description instantiation

ρ # of equations to prove 0
ρeval # of evaluations with const. coeff. zero 0
υe # of exact norm proofs 1
υd # non-exact norm proofs 0
kbin length of the binary vector to prove 0

s1 committed message in the Ajtai part s
m committed message in the BDLOP part H (no message)

E1 public matrix for proving }E1s ´ v1} ď β1

„

IM
A

ȷ

v1 public vector for proving }E1s ´ v1} ď β1

„

0
u

ȷ

β1 upper-bound on }E1s ´ v1} ď β1 B

Fig. 11: Instantiation of the protocol in Fig. 10 for proving As ` e “ u pmod qq and }ps, eq} ď B. The variables in
the first two columns refer to the ones defined in Section 5 and the ones in the last column refer to the parameters
in this subsection.

Remark 6.1. We note that [ENS20, LNS21a] could not avoid committing to e without having additional
commitments. Indeed, previous work efficiently prove smallness of a vector s, e.g. }s}8 ď 1, by committing
to its coefficient vector s⃗1 using NTT slots and then proving that s⃗ ˝ ps⃗ ´ 1⃗q ˝ ps⃗ ` 1⃗q “ 0⃗ [ALS20]. If one
were not to commit to e, then one would need to prove an equation of the form

pAs⃗´ u⃗q ˝

´

As⃗´ u⃗´ 1⃗
¯

˝ pAs⃗´ u⃗` 1⃗q “ 0⃗.
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parameters description value

q prime modulus 232 ´ 99
d ring dimension for of R 128

l # factors Xd
` 1 splits into mod q 2

N height of the A matrix 8
M width of the A matrix 8
γ1 rejection sampling constant for cs1 19
γ2 rejection sampling constant for cs2 1

γpeq rejection sampling constant for the ARP 6
κ maximum coefficient of a challenge in C 2
n height of matrices A1,A2 in ABDLOP 9
m1 length of the message s1 in the “Ajtai” part 8
ℓ length of the message m in the “BDLOP” part 0
λ 2 ¨ p# of garbages gj P Rq for boosting soundnessq 4
m2 length of the randomness s2 in ABDLOP 25
ν randomness s2 is sampled from Sm2

ν 1
γ parameter to cut low-order bits of w 131052
D number of low-order bits cut from tA 9

repetition rate 7
commitment + proof size 14.4KB

Fig. 12: Parameter selection for proving As ` e “ u pmod qq and }ps, eq} ď
?
2048 using the protocol in Fig. 10

However, this relation, which is a mix of linear and product relations, cannot be proven using current methods
included in [ENS20, LNS21a] without making intermediate commitments.

Parameters. We instantiate our protocol for the case when q « 232 and N “ M “ 1024{d similarly as in
[BLS19, ENS20, LNS21a] using the methodology in Section 6.1. We provide a summary of our parameter
selection in Table 12.

Let us pick prime q :“ 232 ´99 ( i.e. q “ q1) and set d “ 128, l “ 2 and pα,Bq “ p
?
1024,

?
2048q17. Then

we define the randomness distribution as uniform over S1. For the challenge space, we set κ “ 2, η “ 59 as
in Fig. 3. Also, for q « 232, we choose λ “ 4. Then, q´d{2 ă q´λ « 2´128 and κ ă q1{2.

There are three rejection sampling algorithms: one to mask cs1, another one to mask cs2 and the last
one to mask }Re⃗peq}. Denote si “ γiTi where T1, T2, T3 are the upper-bounds on }cs1}, }cs2} and }Re⃗peq}

respectively. The repetition rate in our case is at least

2 exp

˜

14

γ1
`

1

2γ21
`

1

2γ22
`

1

2γpeq2

¸

.

The rate in [LNS21a] is around 7 hence we set γ1 “ 19, γ2 “ 1 and γpeq “ 6. All in all, with our parameters
we obtain proofs of size 14.4KB.

6.3 Verifiable Encryption

For presentation, we will consider a standard Regev public-key encryption scheme [Reg09] but similar analysis
can be applied for more complex construction, such as Kyber [BDK`18], Saber [DKRV18] and NTRU [HPS98]
(see [LNS21a][Section 4] for more details). Namely, let p be a prime modulus of the encryption scheme. In
order to encrypt a binary message m P t0, 1ud, a user samples a randomness vector r Ð ξk, where ξ is a
distribution over R, and compute

„

t0
t1

ȷ

:“

„

A
bT

ȷ

r `

„

0
t
p
2 sm

ȷ

(72)

17 It is the case when s1, e only consist of ternary coefficients as assumed in the prior work.
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over Rp :“ ZprXs{pXd ` 1q where pA,bq P RNˆK
p ˆRN

p is the public key 18. Let B be an upper-bound on r

such that the probability that }r} ą B for r Ð ξK is negligible. Then, in the verifiable encryption scenario,
we want to prove knowledge of r P RK and m P R such that (i) Equation 72 is satisfied over Rp, (ii) }r} ď B
and (iii) m P t0, 1ud.

The high-level idea is to commit to s1 :“ pr,mq using the ABDLOP commitment modulo q and prove
these three statements. Note that the latter two have already been covered in Section 5. Hence, from now
on we focus on proving the first statement.

We first observe that if q is divisible by p then (72) can be transformed into a linear equation modulo q
and can be proven as described in Section 4. However, in practical instantiations p will be significantly small
relative to q (e.g. p “ 3329 in Kyber). Consequently, if q has a small prime divisor p then by Theorem 4.5,
we would need to commit to more garbage polynomials gi in order to keep the soundness error negligible.
Moreover, for implementation purposes one might want p to be a prime such that Xd ` 1 splits into many
factors modulo p (e.g. p “ 3329). In this case, if p divides q, then the challenge space C does not have
the invertibility property which is necessary for the soundness proof. In Fig. 14 we propose an example
instantiation for the case when q is divisible by p (see parameter set II).

Now, suppose that p is co-prime to q. Then, (72) is true if and only if there exists a vector v P RN`1

such that
„

t0
t1

ȷ

:“

„

A
bT

ȷ

r `

„

0
t
p
2 sm

ȷ

` pv (73)

over R. From a simple calculation, }v}8 ď B
?
Kd{2 ` 1. We can avoid committing to v, similarly as in

Section 6.5, by proving directly that vector

v :“ p´1 ¨

ˆ„

A 0
bT t

p
2 s

ȷ „

r
m

ȷ

´

„

t0
t1

ȷ˙

P Rn
q (74)

has norm at most Bv :“ pB
?
Kd{2`1q

a

pN ` 1qd. Since this expression is linear in the committed messages
r and m, we can apply the protocol in Fig. 10 to prove its norm. As we will show below, it is enough to
prove an approximate bound, i.e. }v}8 ď Bv ¨ ψ, where ψ :“ 2 ¨ 14 ¨ γpdq ¨

?
337, as described in Section 5.

Indeed, in the soundness argument we would extract a pair pr˚,m˚q which satisfies

$

’

’

’

’

&

’

’

’

’

%

m˚ P t0, 1ud,

}r˚} ď B,
›

›

›

›

›

p´1 ¨

˜«

A 0

bT t
p
2 s

ff«

r˚

m˚

ff

´

«

t0

t1

ff¸
›

›

›

›

›

8

ď Bvψ.

Denote the third expression as v˚ P RN`1. Then, we have

„

t0
t1

ȷ

”

„

A
bT

ȷ

r˚ `

„

0
t
p
2 sm˚

ȷ

` pv˚ pmod qq. (75)

Thus,
›

›

›

›

„

A
bT

ȷ

r˚ `

„

0
t
p
2 sm˚

ȷ

` pv˚ ´

„

t0
t1

ȷ
›

›

›

›

8

ď p
´

B
?
Kd{2 ` 1 `Bvψ

¯

.

Hence, if q is bigger than the right-hand side of this inequality, then we conclude that Equation (75) holds
over integers. In particular pt0, t1q is a valid encryption of m under randomness r over Rp.

In Fig. 13 we instantiate the protocol from Fig. 10 for verifiable encryption as described above.

Remark 6.2. Note that the current state-of-the-art lattice based verifiable encryption [LN17], which is used
in e.g. [dPLS18, LNPS21], only provide relaxed verifiable encryption. Namely, the soundness argument only

18 Recall that all coefficients of the terms involved in (72) are between ´p{2 and p{2.
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variable description instantiation

ρ # of equations to prove 0
ρeval # of evaluations with const. coeff. zero 0
υe # of exact norm proofs 1
υd # non-exact norm proofs 1
kbin length of the binary vector to prove 1

s1 committed message in the Ajtai part pr,mq

m committed message in the BDLOP part H (no message)

E1 public matrix for proving }E1s ´ v1} ď β
peq

1

“

IK 0
‰

v1 public vector for proving }E1s ´ v1} ď β
peq

1 0

β
peq

1 upper-bound on }E1s ´ v1} ď β
peq

1 B

D1 public matrix for proving }D1s ´ u1} ď β
pdq

1 p´1
¨

„

A 0
bT

t
p
2

s

ȷ

u1 public vector for proving }D1s ´ u1} ď β
pdq

1 p´1
¨

„

t0
t1

ȷ

β
pdq

1 upper-bound on }D1s ´ u1} ď β
pdq

1 pB
?
Kd{2 ` 1q

a

pN ` 1qd

Ebin matrix for proving binary
“

0 1
‰

vbin matrix for proving binary 0

Fig. 13: Instantiation of the protocol in Fig. 10 for verifiable encryption. The variables in the first two columns refer
to the ones defined in Section 5 and the ones in the last column refer to the parameters in this subsection. Triple
pE1,v1, β

peq

1 q corresponds to proving exactly that }r} ď B. The next triple pD1,u1, β
pdq

1 q corresponds to proving
approximately that }v} ď pB

?
Kd{2`1q

a

pN ` 1qd where v is defined in (74). Finally, pEbin,vbinq is defined to prove
that m has binary coefficients.

guarantees knowledge of a message and randomness corresponding to the ciphertext pc̄t0, c̄t1q, where c̄ P Rp

is called a relaxation factor. More importantly, c̄ is not known to the decryptor and thus it guesses a c̄ and
attempts to recover the ciphertext pc̄t0, c̄t1q. Consequently, the prior works had to equate the decryption
time with the adversary’s running time. Here, since we commit to r and m using a separate ABDLOP
commitment, we circumvent the relaxation factor by proving exact norms on r and m P t0, 1ud.

Parameters. We provide our parameters choices19 in Fig. 14. For the ciphertext modulus and dimensions,
we follow the Kyber instantiation. In particular, N “ 4,K “ 9 and b “ AT s` e where the secret key s and
error e come from BinNd

2 and BinKd
2 respectively. For the randomness distribution ξ :“ Bind2. Hence, we can

set the upper-bound B on the norm of r Ð ξK as B “ 2
?
Kd and thus Bv “ pKd` 1q

a

pN ` 1qd.

To compute the decryption error probability, we want to calculate the probability that for r, e Ð

BinKd
2 , }xr, ey}8 ă q{4. First, we compute that for any r⃗, e⃗ Ð BinKd

2 , the probability that }xr⃗, e⃗y}8 ą 800
is less than 2´360. Then, by the union-bound, the probability that }xr, ey}8 ą 800 is still at most 2´300.
Hence, in our parameter selection, we will pick a prime p larger than 3200.

The rest of the parameters are chosen similarly as in Sections 6.1 and 6.2. Finally, we need to check that

q « 236 ą p ¨

´

B
?
Kd{2 ` 1 ` pB

?
Kd{2 ` 1q

a

pN ` 1qdψ
¯

.

The term on the right-hand side is much less than 236 thus the inequality holds.

19 One can also instantiate the encryption scheme over a larger ring, e.g. R1 :“ ZrXs{pX256
` 1q. Then, in order to

apply our proof system over a smaller ring R, one would first map the equations to work over R rather than R1

as described in [LNPS21][Section 2.8].
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parameter set description I II

p encryption modulus 3329 3253
N height of A 4 4
K width of A 9 9

ξ ξK is the randomness distribution of r Bind2 Bind2
q proof system modulus 236 ´ 579 231 ´ 305215
d dimension of R 128 128

l # factors Xd
` 1 splits into mod q 2 2

γ1 rej. samp. constant for cs1 41 16
γ2 rej. samp. constant for cs2 1.1 1.5

γpeq rej. samp. constant for exact ARP 16 1.8

γpdq rej. samp. constant for non-exact ARP 1 –
κ maximum coefficient of a challenge in C 2 2
n height of A1,A2 in ABDLOP 9 9
m1 length of the “Ajtai” message s1 10 6
ℓ length of the “BDLOP” message m 0 0
λ 2 ¨ p# of garbage gj for soundnessq 4 12
m2 length of randomness s2 29 29
ν randomness s2 is sampled from Sm2

ν 1 1
γ parameter to cut low-order bits cut from w 503742 54096
D number of low-order bits cut from tA 11 8

repetition rate 7 7
ciphertext size 1KB 1KB

commitment + proof size 19.0KB 18.6KB

Fig. 14: Parameter selection, ciphertext and proof sizes for verifiable encryption. For the second parameter set we
choose q :“ 660061 ¨ 3253. Since p divides q, we do not need to do an approximate range proof of v as for I.
Consequently, we can pick smaller modulus q and apply a similar strategy as in Section 6.2. In particular, we do not
commit to the whole vector r “ pr1, r0q P RK´N

q ˆ RN
q , but only a part of it, i.e. r1.

6.4 Group Signature

We apply our proof system to the recent group signature construction by Lyubashevsky et al. [LNPS21]. Our
construction inherits a big advantage from [dPLS18, LNPS21], namely signature generation and verification
time do not depend on the size of the group. We first sketch the scheme and refer to [LNPS21] for more
details. In this subsection, we work over the larger ring Rkd :“ ZrXs{pXkd`1q where k ě 1 is a power-of-two.
Then, define Rkd,p :“ Rkd{ppq for an integer p. The benefit of having a larger ring than R is small public
key size of our group signature. Operations in the construction will be over Rkd,p where p is prime.

Overview. Let G Ď Rkd,p be the identity space. The group manager first samples A Ð RNˆpN`Mq

kd,p ,B1 Ð

RNˆτN
kd,p , randomness matrix R Ð S

pN`MqˆτN
kd,1 , where

Skd,1 :“ tx P Rkd : }x}8 ď 1u

and sets B :“ AR. Further, it samples u Ð RN
kd,p. Then, the public key is a tuple

gpk :“ pA,B,B1,uq.

Now, for each user with identity i P G, the group manager samples the secret key

ski :“ ps
piq
1 , s

piq
2 , s

piq
3 q Ð D

pp2τ`1qN`Mqkd
s
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such that

“

A|B ` iG|B1
‰

»

—

–

s
piq
1

s
piq
2

s
piq
3

fi

ffi

fl

“ u

using the [MP12] trapdoor sampling with standard deviation s where G :“ IN b r1 g ¨ ¨ ¨ gτ´1s is a gadget
matrix and g :“ rp1{τ s.

The high level idea for signing is for the user with identity i P G to prove knowledge of i and their secret

key ski :“ ps1, s2, s3q P Rp2τ`1qN`M
kd,p which satisfy:

“

A|B ` iG|B1
‰

»

–

s1
s2
s3

fi

fl “ u,

›

›

›

›

›

›

»

–

s1
s2
s3

fi

fl

›

›

›

›

›

›

ď B :“ s
a

2pp2τ ` 1qN `Mqkd, i P G. (76)

For the bound B we used Lemma 2.2 for t “
?
2.

In order to be able to open the group signature scheme, we will add a verifiable encryption to the signature.
Namely, we want the signer to encrypt their identity i, using a public key associated to a decryption key that
the group manager possesses, and prove that this encryption is indeed of their identity. We do this exactly
as described in Section 6.3 with a prime penc :“ 3329. Similarly, all the dimensions and bounds included in
that Section will be written with subscript enc.

Efficient Proof of (76). To begin with, note that relations over Rkd,p such as the first one in Equation
(76) can be written equivalently over our usual subring Rp. Indeed, Lyubashevsky et al. showed that there
is an efficiently computable ring isomorphism between Rkd and Rk, for an appropriately defined vector
multiplication in R, which preserves norms (see [LNPS21][Section 2.8] for more details). Hence, arbitrary
relations we need to prove over Rkd,p can be proven by showing that some corresponding relations over Rp

hold true.
Secondly, we observe that if we choose a proof system modulus q to be divisible by p and commit to

pi, s1, s2, s3q in the “Ajtai” part of the ABDLOP commitment then the first statement in (76) is simply a
system of quadratic equations in the committed messages as in Section 4. Indeed, we pick q “ q1p where
q1 ă p and then prove an equivalent quadratic relation over Rq, namely:

q1
“

A|B ` iG|B1
‰

»

–

s1
s2
s3

fi

fl “ q1
“

A|B|G|B1
‰

»

—

—

–

s1
s2
is2
s3

fi

ffi

ffi

fl

“ q1u. (77)

Further, the second statement is about norms which is covered in Section 5.
Moreover, we define the identity space G. It should be designed so that we can efficiently prove that

i P G (third statement). Let B be the set of non-zero binary polynomials in Rp. Then, we define the identity
space20 as

G :“ tipXkq P Rkd,p : i P B and }i}1 “ ωu.

We choose ω so that the set G has size « 223 for comparison with related work [BDK`21, EZS`19]. Note
that for an appropriate p, a difference of two distinct elements from G is still invertible over Rkd,p which is
crucial for trapdoor sampling.

Note that the space G is constructed in such a way that when we map equations over Rkd,p to Rk
p, then

we only need to commit to one polynomial i P Rp using our ABDLOP commitment instead of k polynomials,
i.e. ipXkq P Rkd,p. Similarly, we only need to send an encryption of i over Rp instead of ipXkq. Hence, for

20 Previous works [dPLS18, LNPS21] define the identity space G to be a set of integers Zp since it was easier to prove
set membership i P G with their proof system. Here, we make a small modification and set the identity space to
be a subset of binary polynomials with fixed norm.
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variable description instantiation

ρ # of equations to prove N
ρeval # of evaluations with const. coeff. zero 1
υe # of exact norm proofs 2
υd # non-exact norm proofs 1
kbin length of the binary vector to prove 1

s1 committed message in the Ajtai part ps
piq

1 , s
piq

2 , s
piq

3 , renc, iq
m committed message in the BDLOP part H (no message)

f1, . . . , fN equations to prove Equation 77

F1 evaluation to prove const coeff. zero σ´1p
řd´1

i“0 Xi
q ¨ i ´ ω

E1 public matrix for proving }E1s ´ v1} ď β
peq

1

“

IkpN`M`2τNq 0
‰

v1 public vector for proving }E1s ´ v1} ď β
peq

1 0

β
peq

1 upper-bound on }E1s ´ v1} ď β
peq

1 s
a

2pp2τ ` 1qN ` Mqkd

E2 public matrix for proving }E2s ´ v2} ď β
peq

2

“

0 0 0 IKenc0
‰

v2 public vector for proving }E2s ´ v2} ď β
peq

2 0

β
peq

2 upper-bound on }E2s ´ v2} ď β
peq

2

?
Benc

D1 public matrix for proving }D1s ´ u1} ď β
pdq

1 p´1
enc ¨

„

0 0 0 Aenc 0
0 0 0 bT

enc t
penc
2

s

ȷ

u1 public vector for proving }D1s ´ u1} ď β
pdq

1 p´1
enc ¨

„

t0
t1

ȷ

β
pdq

1 upper-bound on }D1s ´ u1} ď β
pdq

1 Bv,enc

Ebin matrix for proving binary
“

0 0 0 0 1
‰

vbin matrix for proving binary 0

Fig. 15: Instantiation of the protocol in Fig. 10 for the group signature. The variables in the first two columns refer
to the ones defined in Section 5 and the ones in the last column refer to the parameters in this subsection. Variables
with subscript enc are defined for the verifiable encryption in Section 6.3. Functions F1 is used to prove that identity
i has exactly ω ones. Triples pE1,v1, β

peq

1 q and pE2,v2, β
peq

2 q correspond to proving exactly }ps
piq

1 , s
piq

2 , s
piq

3 q} ď B and

}renc} ď Benc respectively. The last triple pD1,u1, β
pdq

1 q corresponds to proving approximately that }venc} ď Bv,enc :“
pBenc

?
Kencd{2` 1q

a

pNenc ` 1qd where venc is defined in (74).Finally, pEbin,vbinq is defined to prove that i has binary
coefficients.

such a set G, proving ipXkq P G is equivalent to proving that i has binary coefficients and the sum of
coefficients of i is equal to ω which is covered in Section 5.

Last but not least, we observe that including a verifiable encryption from Section 6.3 does not have a
significant impact on the signature size. Indeed, identity i is already committed using the ABDLOP scheme
and additionally committing to the randomness r (in the “Ajtai part”) does not increase the commitment
size. Hence, the only extra cost consists of: (i) a ciphertext, (ii) masked opening of the randomness r, (iii)
commitments and masked openings to polynomials involved in the approximate range proof for v in (74). As
described in Fig. 16, for our instantiation the verifiable encryption costs around 6.5KB compared to 19.0KB
shown in Fig. 14.

In summary, we show in Fig. 15 how to instantiate the protocol in Fig. 10 to construct a group signature.

Parameters. We present our parameter selection in Fig. 16 for a group signature instantiation which
achieves security level 111. We start by setting p “ 238 ´ 107 and q “ p226 ´ 371q ¨ p « 264. Then, we choose
d “ 128, k “ 4 and l “ 2, thus Rkd,p “ ZrXs{pX512`1q. Next, let N “ 2,M “ 3 and τ “ 5, hence g “ rp1{5s.
Further, we pick large enough standard deviation s used for trapdoor sampling. We know from [MP12] that
s ě 2ps1pRq `1q

a

g2 ` 1 where s1 is the operator norm. Note that if R did not have a polynomial structure,
i.e R Ð t´1, 0, 1upN`MqkdˆτNkd, we could use upper-bounds for norms of random subgaussian matrices, e.g.
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[MP12][Lemma 2.9]. Namely, we would obtain the following bound

s1pRq ď
a

pN `Mqkd`
?
τNkd` 6 « 128

with probability at least 1´2163. We found experimentally that for our structured matrix R a similar bound
holds with at least 99% probability

s1pRq ď ψ :“ 113

and thus we set

s :“ 2pψ ` 1q

b

p2{τ ` 1.

Further, we describe how we choose N and M , i.e. the height and the width of the matrix A. Con-
cretely, in the traceability proof, the challenger sets B :“ AR ´ i˚G and B1 “ AR1 where R,R1 Ð

S
pN`MqˆτN
kd,1 and i˚ Ð G. Additionally, it samples skgm :“ psgm1 , sgm2 , sgm3 q Ð D

pp2τ`1qN`Mqkd
s and computes

u :“ rA|AR|AR1s skgm. It will hope that an adversary forges a signature for the identity i˚21 In that case,
we can extract from the forged signature the secret vector ski˚ “ ps̄1, s̄2, s̄3q such that

“

A|AR|AR1
‰

»

–

s̄1
s̄2
s̄3

fi

fl “ u “
“

A|AR|AR1
‰

»

–

sgm1
sgm2
sgm3

fi

fl

and thus

s :“ s̄1 ´ sgm1 ` Rps̄2 ´ sgm2 q ` R1ps̄3 ´ sgm3 q

is a MSIS solution for the matrix A 22. Also, with high probability we have s ‰ 0 since skgm was chosen
independently by the challenger. Now, we need to bound the norm of s. In order to do so, we will use the
property that for any x P RτN

p , }Rx} ď s1pRq}x} ď ψ}x}. Thus, we can bound the norm of s defined above
using the Cauchy-Schwarz inequality as follows:

}s} ď }s̄1 ´ sgm1 } ` ψ}s̄2 ´ sgm2 } ` ψ}s̄3 ´ sgm3 }

ď
a

1 ` ψ2 ` ψ2 ¨

b

}s̄1 ´ sgm1 }2 ` }s̄2 ´ sgm2 }2 ` }s̄3 ´ sgm3 }2.

Finally, we observe that we can bound the second term as:

›

›

›

›

›

›

»

–

s̄1 ´ sgm1
s̄2 ´ sgm2
s̄3 ´ sgm3

fi

fl

›

›

›

›

›

›

2

ď 2 ¨

¨

˚

˝

›

›

›

›

›

›

»

–

s̄1
s̄2
s̄3

fi

fl

›

›

›

›

›

›

2

`

›

›

›

›

›

›

»

–

sgm1
sgm2
sgm3

fi

fl

›

›

›

›

›

›

2
˛

‹

‚

ď 4B2 “ p2Bq2.

Hence

}s} ď BMSIS :“ 2s ¨
a

1 ` 2ψ2 ¨
a

2pp2τ ` 1qN `Mqkd.

Thus we have to choose N such that MSISN,N`M,BMSIS
is hard over Rkd,p and take into account the 1{|G|

security loss. Not to mention the fact that we want AR to be computationally indistinguishable from a
random matrix B, i.e. the MLWEN,M,Skd,1

problem over Rkd,p to be hard.

Parameters for the ABDLOP commitment are chosen similarly as in the previous examples. In particular,
the proof system modulus q has to be large enough to prove exactly that the norm of a user secret key is at
most B “ s

a

2pp2τ ` 1qN `Mqkd. Also, we aim for repetition rate 7 as in the previous examples.

21 Hence, there is a 1{|G| security loss.
22 Since we prove the norm of ski˚ exactly, there is no relaxation factor c in front of the vector u as in previous works.
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parameters description value

p modulus for the group signature 238 ´ 107
d ring dimension for of R 128
k kd is the ring dimension of Rkd 4
N height of the A matrix 2
M N ` M is the width of the A matrix 3
τ τN is the width of the gadget matrix G 5
ω #1’s in the identity i P G 4

|G| size of the identity space « 223

penc encryption modulus 3329
Nenc height of Aenc 4
Kenc width of Aenc 9

ξenc ξKenc is the randomness distribution of renc Bind2
q modulus for the proof system « 264

l # factors Xd
` 1 splits into mod q 2

γ1 rejection sampling constant for cs1 17
γ2 rejection sampling constant for cs2 1.2

γpeq rejection sampling constant exact ARP 2.5

γpdq rejection sampling constant for non-exact ARP 12
κ maximum coefficient of a challenge in C 2
n height of matrices A1,A2 in ABDLOP 12
m1 length of the message s1 in the “Ajtai” part 110
ℓ length of the message m in the “BDLOP” part 0
λ 2 ¨ p# of garbage gj for soundnessq 6
m2 length of the randomness s2 in ABDLOP 41
ν randomness s2 is sampled from Sm2

ν 1
γ parameter to cut low-order bits from w « 237

D number of low-order bits cut from tA 29

repetition rate 7
extra cost of adding verifiable encryption 6.5KB

signature size 92KB
public key size 47.5KB
secret key size 6.3KB

Fig. 16: Parameter selection and concrete sizes for the group signature scheme.

6.5 Product Proofs over Rp for a co-prime p

Another application of our techniques is a product proof over Rp where p ă q is co-prime to our proof system
modulus q. Namely, suppose we want to prove n equations of the form:

aibi “ ci for i “ 1, 2, . . . , n (78)

where all ai, bi, ci P Rp.
Note that if p was a divisor of q, i.e. q “ kp for some integer k, then we would simply apply the

methodology from Section 4.2 to prove kaibi “ kci over Rq. This immediately implies (78).
There are two fundamental reasons why we would consider proving such statements. Firstly, this allows

us to efficiently prove quadratic relations when p is small. Indeed, suppose that we choose p which is divisible
by q. Recall that the soundness error of the protocols in Section 4 mainly depends on the smallest prime
divisor of q, i.e. q1 ď p. Hence, if we wish to have small p, we would need to decrease the number of subfields
l that Rq splits into (so that p´d{l is negligible). Moreover, if we additionally want to execute the protocol
in Fig. 8, e.g. in order to prove binary or L2 norms, we would need to increase the number of garbage terms
g1, . . . , gλ so that p´λ is negligible. This, unfortunately, has a negative impact on the overall communication
size.
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The second reason is that, for suitable primes p, we could prove point-wise product relations a⃗ ˝ b⃗ “ c⃗
over Zp which is a fundamental component in proving general circuit satisfiability and R1CS statements
[BCR`19]. Indeed, if we choose p such that Xd ` 1 splits into linear factors modulo p, then using Number
Theory Transform identically as done in [ALS20, ENS20], we reduce the problem to proving products over
Rp.

We first provide a naive strategy for proving (78). Namely, we commit to ai, bi, ci using the ABDLOP
commitment 23 and prove that the L2 norms of each polynomial is at most p

?
d{2. Then, we commit to each

ki :“
aibi ´ ci

p

and prove that }ki} ď ppd` 2q
?
d{4. Finally, we prove quadratic equations

aibi ´ ci “ pki (79)

over Rq.
The intuition for soundness is that if we proved that ai, bi, ci and ki have small coefficients with respect

to q, and that (79) holds over Rq, then this implies that aibi ´ ci “ pki is true over integers since no modulo
wrap-around occurs24. Consequently, we get aibi “ ci over Rp.

Unfortunately, the cost of this method is committing to additional ki for each out of n equations. We
circumvent this issue by not committing to ki but instead proving that p´1paibi ´ ciq P Rq has small
coefficients. As described before, we do that by committing to the masking polynomials py1, . . . , y256{dq P

R256{d
q and computing pz1, . . . , z256{dq P R256{d

q such that

»

—

–

z⃗1
...

z⃗256{d

fi

ffi

fl

:“ R

»

—

–

p´1p
ÝÝÑ
a1b1 ´ c⃗1q

...

p´1p
ÝÝÑ
anbn ´ c⃗nq

fi

ffi

fl

`

»

—

–

y⃗1
...

y⃗256{d

fi

ffi

fl

where R is a challenge matrix and
ÝÝÑ
aibi is a coefficient vector of aibi P Rq

25. Then, we need to prove that
polynomials zi were well-formed.

Let us focus on the constant coefficient rz1 P Zq of z1 since proving all the other ones follows identically.
Then, if we denote the first row of R by pr1, . . . , rnq P Rn

q , we have:

rz1 “ p´1
n
ÿ

i“1

r⃗Ti p
ÝÝÑ
aibi ´ c⃗iq `

“

1 0 . . . 0
‰

y⃗1.

Hence, we simply need to prove that the constant coefficient of

p´1
n
ÿ

i“1

σ´1priqpaibi ´ ciq ` y1 ´ z1

is equal to zero. Note that all ai, bi, ci and y1 are committed. Hence, this is a quadratic relation with an
automorphism and thus we can apply the protocol in Fig. 8 to prove this property.

7 Working Over General Rings

Throughout the paper, we have focused on working over the polynomial ring R “ ZrXs{pXd ` 1q, and in
particular used the fact that spX´1q is an automorphism in this ring. In this section, we explain how our

23 Hence, each coefficient of ai, bi, ci is between ´p{2 and p{2.
24 This strategy was already used to prove integer multiplication in [LNS20].
25 For simplicity, we omit bimodal rejection sampling which would end up having to prove cubic rather than quadratic

equations.
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main results can be generalized to virtually any other ring that one could be interested in. In particular, let
us define R “ ZrXs{pXd ` fd´1X

d´1 ` fd´2X
d´2 ` . . .` f1X ˘ 1q, where fi P Z.

The first thing to note is that all our protocols for proving linear a quadratic relations over Rq did not
use any special properties of the ring except that the challenge differences need to be invertible. For purposes
of security, one should also be mindful of the “expansion factor” of the ring, which controls the growth of
polynomial products in the ring – if it is too big, then the reductions involving (Ring/Module)-SIS become
meaningless [LM06].

For our proofs over the ring Rq to be meaningfully applied to proving knowledge of inner products
over Z, one needs a correspondence between the inner product and the constant coefficient of a polynomial
multiplication. Below, we show how one can achieve such a correspondence for any R. The multiplication
of a ¨ b in the ring R can be written as a matrix-vector product Ab⃗, where b⃗ consists of the coefficients of
b and the ith column of A (if we number them starting from 0) consists of vectors whose elements are the
coefficients of the polynomial a ¨ Xi P R. It’s not hard to see that the first row of A is the vector a⃗T ¨ M ,
where

M “

»

—

—

—

—

—

—

–

1 0 0 . . . 0 0
0 0 0 . . . 0 ˘1
0 0 0 . . . ˘1 c2,d´1

. . . . . . . . . . . . . . . . . .
0 0 ˘1 . . . cd´2,d´2 cd´2,d´1

0 ˘1 cd´1,2 . . . cd´1,d´2 cd´1,d´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (80)

for some integers ci,j which are of no particular importance to this section. Therefore the inner product xr⃗, s⃗y
is equal to Ąa ¨ s where a⃗T ¨ M “ r⃗T . Since the determinant of M is ˘1, M´1 is also an integer matrix, and
thus a⃗T “ r⃗T ¨M´1 is an integer vector and so a P R.

The protocol for proving a bound on }s}2 over the ring Rq, uses the fact that the matrix M´1 actually
corresponds to an automorphism over Rq, and so the prover does not need to create a commitment to
both s and s⃗T ¨ M´1 – the verifier can essentially derive the latter by himself. In rings where s⃗T ¨ M´1 is
not an automorphism, the prover would additionally need to commit to the polynomial corresponding to
r⃗ “ s⃗T ¨M´1, and then give a linear proof showing that this relationship is indeed satisfied, along with the
proof on the bound of }s}2 “ Ąr ¨ s. The modification for proving that s contains only 0{1 coefficients would
proceed in the same manner. Proving component-wise products over general rings R can also be done, but
ends up again doubling the committed vector. Recall that the idea when working over the ring Rq was to
pick a prime p ! q such that Xd ` 1 fully splits modulo p and then embed the coefficients into the CRT
slots. If, for a particular ring R, there is no such p, then one would need to use a different ring than the one
used for the commitment scheme which does have such a p, and make sure that multiplication of committed
values over this ring corresponds to the one used in the commitment scheme. One way to do this is to only
commit to polynomials of less than half the degree of the ring, so that multiplications in both rings is the
same as over ZrXs.

References

ABB10. Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model. In
EUROCRYPT, pages 553–572, 2010.

ACK21. Thomas Attema, Ronald Cramer, and Lisa Kohl. A compressed $\varsigma $-protocol theory for lattices.
In CRYPTO (2), volume 12826 of Lecture Notes in Computer Science, pages 549–579. Springer, 2021.

AFK21. Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-shamir transformation of multi-round interactive
proofs. Cryptology ePrint Archive, Paper 2021/1377, 2021. https://eprint.iacr.org/2021/1377.

Ajt96. Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In STOC, pages 99–108,
1996.

ALS20. Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. Practical product proofs for lattice commit-
ments. In CRYPTO (2), volume 12171 of Lecture Notes in Computer Science, pages 470–499. Springer,
2020.

60

https://eprint.iacr.org/2021/1377


APS15. Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors.
Journal of Mathematical Cryptology, 9(3):169–203, 2015.

Ban93. Wojciech Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Mathe-
matische Annalen, 296(1):625–635, Dec 1993.

BCR`19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P.
Ward. Aurora: Transparent succinct arguments for R1CS. In EUROCRYPT (1), volume 11476 of Lecture
Notes in Computer Science, pages 103–128. Springer, 2019.

BCS16. Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In TCC (B2), volume
9986 of Lecture Notes in Computer Science, pages 31–60, 2016.
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A Dilithium Compression

In this section, we reduce the commitment and communication size by applying compression techniques from
Dilithium-G [DLL`17].

A.1 Low/High Order Bits

In order to reduce the size of the commitment, we need some algorithms that extract “higher-order” and
“lower-order” bits of elements in Zq. The goal is that when given an arbitrary element r P Zq and another
small element z P Zq, we would like to be able to recover the higher order bits of r ` z without needing to
store z. The algorithms are exactly as in [DLL`17], and we repeat them for completeness in Figure 17. They
are described as working on integers modulo q, but one can extend it to (vectors of) polynomials in Rq by
simply being applied individually to each coefficient.

Power2Roundqpr,Dq

00 r :“ r mod` q
01 r0 :“ r mod˘ 2D

02 return pr ´ r0q{2D

UseGHintqpy, r, γq

03 m :“ pq ´ 1q{γ
04 r1 :“ HighBitsqpr, γq

05 return pr1 ` yq mod ˘m

MakeGHintqpz, r, γq

06 m “ pq ´ 1q{γ
07 r1 :“ HighBitsqpr, γq

08 v1 :“ HighBitsqpr ` z, γq

09 return pv1 ´ r1q mod ˘m

Decomposeqpr, γq

10 r :“ r mod` q
11 r0 :“ r mod˘ γ
12 if r ´ r0 “ q ´ 1
13 then r1 :“ 0; r0 :“ r0 ´ 1
14 else r1 :“ pr ´ r0q{γ
15 return pr1, r0q

HighBitsqpr, γq

16 pr1, r0q :“ Decomposeqpr, γq

17 return r1

LowBitsqpr, γq

18 pr1, r0q :“ Decomposeqpr, γq

19 return r0

Fig. 17: Supporting algorithms for commitment compression.

Lemma A.1. Suppose that q and γ are positive integers satisfying q ” 1 pmod γq. Fix m :“ pq ´ 1q{γ.
Let r and z be vectors of elements in Rq where }z}8 ď γ{2, and let y,y1 be integral vectors of elements in
p´m{2,m{2s. Then the HighBitsq, MakeGHintq, and UseGHintq algorithms satisfy the following properties:

1. UseGHintqpMakeGHintqpz, r, γq, r, γq “ HighBitsqpr ` z, γq.
2. If UseGHintqpy, r, γq “ UseGHintqpy1, r, γq, then y “ y1.
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Private information: ps1,m, s2q P Rm1`m2`ℓ
q so that }s1} ď α and }s2}8 ď ν

Public information: A1 P Rnˆm1
q ,A1

2 P Rnˆpm2´nq
q ,B1

P Rℓˆpm2´nq
q ,

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s1 `

„

A1
2

B1

ȷ

¨ s2,1 `

„

s2,2
m

ȷ

Prover Verifier

y1 Ð Dm1
s1

y2,1 Ð Dm2´n
s2

y2,2 Ð Dn
s2

w :“ A1y1 ` A1
2y2,1 ` y2,2

pw1,w0q :“ Decomposeqpw, γq
w1 -
c� c Ð C

z1 :“ y1 ` cs1

z2 “

„

z2,1
z2,2

ȷ

:“

„

y2,1

y2,2

ȷ

` c

„

s2,1
s2,2

ȷ

for i “ 1, 2 :
if Reji pzi, csi, siq “ 1

then pz1, z2,hq :“ pK,K,Kq

z2,2 :“ z2,2 ´ ctA,2 ´ w0

if }pz2,1, z2,2q} ą B
then pz1, z2,hq :“ pK,K,Kq

h :“ MakeGHintq pz2,2, γw1 ´ z2,2, γq

z1, z2,1,h-

w1
?
“ UseGHintq

`

h,A1z1 ` A1
2z2,1 ´ c ¨ 2DtA,1, γ

˘

}z1}
?
ď s1

?
2m1d

}pz2,1,A1z1 ` A1
2z2,1 ´ c ¨ 2DtA,1 ´ γw1q}

?
ď B

}h}8

?
ď

q´1
2γ

Fig. 18: Proof of knowledge of ps1, s2 :“ ps2,1, s2,2q,m, c̄q P Rm1
q ˆRm2

q ˆRℓ
q ˆ C̄ satisfying (i) A1s1 `A1

2s2,1 `s2,2 “

2D ¨ tA,1, B
1s2,1 ` m “ tB (ii) }s1c̄} ď 2s1

?
2m1d and (iii) }s2c̄} ď 2B.

A.2 ABDLOP Commitment Compression

We apply the aforementioned compression techniques in the opening proof presented above. First, we reduce
the size of the ABDLOP commitment by not sending the low-order bits of tA. Namely, for a suitable D P N
we write

tA “ tA,1 ¨ 2D ` tA,2 where }tA,2}8 ď 2D´1

and only send tA,1. Thus, we reduce the commitment size by Dnd bits.
Further, instead of sampling uniformly random matrices A2 and B, we can choose them in the more

structured way as originally in [BDL`18]
„

A2

B

ȷ

:“

„

A1
2 In

B1 0ℓˆn

ȷ

Rpn`ℓqˆm2
q . (81)

We present the ABDLOP opening proof in Fig. 18. Prover P starts by sampling vectors y1 Ð Dm1
s1 ,y2,1 Ð

Dm2´n
s2 and y2,2 Ð Dn

s2 from discrete Gaussians and computing w “ A1y1 `A1
2y2,1 ` y2,2. Additionally, P

calculates pw1,w0q “ Decomposeqpw, 2γq and sends w1 to the verifier where q ´ 1 is divisible by γ.
After receiving a challenge polynomial c Ð C from V, the prover computes

z1 “ y1 ` cs1 and z2 “

„

z2,1
z2,2

ȷ

:“

„

y2,1

y2,2

ȷ

` c

„

s2,1
s2,2

ȷ
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and applies rejection sampling for z1 and z2. If it accepts, P modifies z2,2 :“ z2,2 ´ ctA,2 ´w0 and calculates
the hint vector h “ MakeGHintq pz2,2, γw1 ´ z2,2, γq. Finally, the prover sends pz1, z2,1,hq. In the last stage,
verifier V checks whether vectors z1 and pz2,1,A1z1 ` A1

2z2,1 ´ c ¨ 2DtA,1 ´ γw1q has small norm and the
coefficients of h are between ´

q´1
2γ and q´1

2γ and

w1
?
“ UseHintq

`

h,A1z1 ` A1
2z2,1 ´ c ¨ 2DtA,1, γ

˘

.

As opposed to the standard opening proof, the prover does not send any masked opening of s2,2. Instead,
P sends a vector of hints h which has much smaller impact on the communication size as opposed to z2,2.

Theorem A.2. Let s1 “ γ1ηα and s2 “ γ2ην
?
m2d. Then, the protocol in Fig. 18 is a zero-knowledge proof

of knowledge.
For completeness, let m1,m2 ě 640{d, γ be an even divisor of q ´ 1 and B be defined as

B “ s2
a

2m2d` η2D´1
?
nd`

γ
?
nd

2
.

Then, the honest prover P convinces the honest verifier V with probability

1

2 exp
´

14
γ1

` 1
2γ2

1
` 1

2γ2
2

¯ .

For soundness, there is an extractor E with the following properties. When given rewindable black-box
access to a probabilistic prover P˚, which convinces V with probability ε ě 1{|C|, extractor E with probability
at least ε´ 1{|C| outputs ps̄1, s̄2 :“ ps̄2,1 ∥ s̄2,2q, m̄, c̄q P Rm1

q ˆ Rm2
q ˆ Rℓ

q ˆ C̄ satisfying

A1s̄1 ` A1
2s̄2,1 ` s̄2,2 “ 2D ¨ tA,1, B1s̄2,1 ` m̄ “ tB , }s̄1c̄} ď 2s1

a

2m1d, }s̄2c̄} ď 2B.

Proof. Since zero-knowledge follows from the standard techniques, we only focus on correctness and knowl-
edge soundness.

Correctness. First, if the rejection sampling steps pass, the distributions of z1, z2 are discrete Gaussians
centered at 0 with standard deviations s1 and s2 respectively (though the latter one is conditioned on
xz2, cs2y ě 0). Since m1d,m2d ě 640, we have that

Pr
z1ÐD

m1
s1

r}z1} ď s1
a

2m1ds ě 1 ´ 2´141

and

Pr
z2ÐD

m2
s2

”

}z2} ď s2
a

2m2d
ˇ

ˇ xz2, cs2y ě 0
ı

ě 1 ´
Prz2ÐD

m2
s2

r}z2} ą s2
?
2m2ds

Prz2ÐD
m2
s2

rxz2, cs2y ě 0s
ě 1 ´ 2´140

by Lemma 2.2 for t “
?
2. Now, since we perturb the vector z2,2, the bound on }z2} increases slightly. Using

the inequalities }ctA,2} ď η}tA,2} “ η2D´1
?
nd and }w0} ď γ

?
nd{2, we get

›

›

›

›

„

z2,1
z2,2 ´ ctA,2 ´ w0

ȷ
›

›

›

›

ď

›

›

›

›

„

z2,1
z2,2

ȷ
›

›

›

›

`

›

›

›

›

„

0
ctA,2

ȷ
›

›

›

›

`

›

›

›

›

„

0
w0

ȷ
›

›

›

›

ď s2
a

2m2d` η2D´1
?
nd`

γ
?
nd

2
“ B.

The verification equation on h follows by definition of MakeGHint. Finally, note that

A1z1 ` A1
2z2,1 ` z2,2 “ c2DtA,1 ` w ´ w0

“ c2DtA,1 ` γw1
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and thus
A1z1 ` A1

2z2,1 ´ c2DtA,1 “ γw1 ´ z2,2.

Consequently, by Lemma A.1:

UseGHintq
`

h,A1z1 ` A1
2z2,1 ´ c ¨ 2DtA,1, γ

˘

“ UseGHintq pMakeGHintq pz2,2, γw1 ´ z2,2, γq , γw1 ´ z2,2, γq

“ HighBitsqpγw1, γq

“ w1.

Knowledge Soundness. Let P˚ be a probabilistic prover which convinces the verifier with probability ε ą

|C|´1. Then, by [ACK21][Lemma 4] there is an algorithm E which extracts two accepting transcripts with
the same first message w1 and distinct challenges with probability at least ϵ´ 1{|C|:

tri “

´

w1, c
piq, z

piq
1 , z

piq
2,1,h

piq
¯

for i “ 0, 1.

Let us define c̄ :“ cp1q ´ cp0q P C̄. Note that by definition of the challenge space, c̄ is invertible over Rq and
}c̄}8 ď 2κ. Let us define

upiq :“ γw1 ` cpiq ¨ 2DtA,1 ´ A1z
piq
1 ´ A1

2z
piq
2,1.

Then, we have }pz
piq
2,1,u

piqq} ď B for i “ 0, 1. Then, by combining the two equations on upiq we get

A1pz
p1q

1 ´ z
p0q

1 q ` A1
2pz

p1q

2 ´ z
p0q

2 q ` pup1q ´ up0qq “ c̄ ¨ 2DtA,1.

Next, we set

s̄1 :“
z

p1q

1 ´ z
p0q

1

c̄
, s̄2 “

„

s̄2,1
s̄2,2

ȷ

:“
1

c̄
¨

«

z
p1q

2,1 ´ z
p0q

2,1

up1q ´ up0q

ff

, m̄ :“ tB ´ Bs̄.

Then, by construction }c̄s̄1} ď 2s1
?
2m1d and }c̄s̄2} ď 2B. [\

B Security in the Random Oracle Model

All prior efficient lattice-based interactive proofs, e.g. [ALS20, ENS20, LNS21a], can be made non-interactive
using the Fiat-Shamir transformation [FS86] and proven secure in the random oracle model [BR93]. Indeed,
even though the original transformation was applied to Σ-protocols, i.e. public-coin three-round protocols,
they can also be applied to multi-round protocols. However, the main bottleneck in the p2µ ` 1q-round26

case, is that, in general, the security loss obtained by applying the Fiat-Shamir transformation can be in the
order of OpQµq where Q is the number of random oracle queries made by an adversary. Note that µ ą 1 for
all aforementioned exact proof systems since they are either five-round [BLS19, YAZ`19, ENS20, LNS21a],
seven-round [ESLR22] or even nine-round as in Section 5. Hence, even the case µ ą 1 might have a significant
impact on the proof size, since one would need to aim for a much larger security level to accommodate for
the loss. However, the schemes assume that in practice the security loss is much milder than the general
bound OpQµq, and hence ignore it when setting up the parameters.

There have been several works on translating security properties of interactive protocols under the Fiat-
Shamir transformation in the random oracle model, e.g. [BCS16, GT21, AFK21, Wik21]. The most recent
results, which are the most relevant to lattice-based zero-knowledge proofs, were proposed independently
by Attema et al. [AFK21] and Wikström [Wik21] who showed that the Fiat-Shamir transformation of any
pk1, . . . , kµq-special-sound interactive proofs has a security loss of at most Q ` 1. Even though this result
can be directly applied to some exact proofs systems, e.g. [BLS19, YAZ`19], more efficient protocols, such
as [ALS20, ENS20] or our protocol in Section 5, do not appear to be special-sound. Hence, it is still an open

26 We assume that the first and last messages are sent from the prover.
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problem whether these interactive proofs also incur linear loss in the number of random oracle queries when
applying the Fiat-Shamir transformation.

In this section, we show that the Fiat-Shamir transformation of our interactive proof Π described in
Section 5 admits a security loss of at most Q ` 1 in the random oracle model where Q is the number of
random oracle queries made by an adversary. Namely, let κ be the knowledge error of Π, i.e. the maximal
probability that a cheating prover can convince the verifier without having a valid witness for the claimed
statement. Then, the Fiat-Shamir transformed protocol FSrΠs has knowledge error at most pQ ` 1q ¨ κ.
To describe the core part of our techniques, we formalize the extraction strategy called “proof using a
probabilistic argument” which, as far as we are aware, was first used in [ALS20]. Our methods will heavily
rely on the abstract sampling game framework introduced by Attema et al. [AFK21].

We note that this section only focuses on the knowledge soundness aspect. Indeed, correctness holds
directly by construction of the Fiat-Shamir transform, while non-interactive zero-knowledge follows from the
fact that the interactive protocol itself is (non-abort) honest-verifier zero-knowledge [Lyu12].

B.1 Negative Multinomial Distribution

In our proofs, we will use certain properties of the following simplified negative multinomial distribution.
Namely, consider a bucket containing a green, b blue and c red balls. In this experiment, ball are drawn
uniformly at random with replacement until the first green ball has been found. Let Y be the number of blue
balls drawn in this experiment which is denoted by Y „ NMNpa, b, cq. Then, we have the following result.

Lemma B.1. Let a, b ě 1 and c ě 0 and Y „ NMNpa, b, cq. Then ,ErY s “ b
a .

Proof. By a counting argument, for i ě 0 we have

PrrY “ is “

8
ÿ

k“0

`

i`k
i

˘

bicka

pa` b` cqk`i`1
.

We claim that
8
ÿ

k“0

`

i`k
i

˘

ckpa` bqi`1

pa` b` cqk`i`1
“ 1

which directly implies that PrrY “ is “ bia
pa`bqi`1 . To this end, let p :“ c

a`b`c . Then

8
ÿ

k“0

`

i`k
i

˘

ckpa` bqi`1

pa` b` cqk`i`1
“

8
ÿ

k“0

ˆ

i` k

i

˙

¨

ˆ

c

a` b` c

˙k

¨

ˆ

a` b

a` b` c

˙i`1

“

8
ÿ

k“0

ˆ

i` k

i

˙

¨ pk ¨ p1 ´ pqi`1

“

8
ÿ

k“0

fpk, i` 1, 1 ´ pq “ 1

where f is the probability mass function of the negative binomial distribution. Hence, we obtain that

PrrY “ is “
bia

pa` bqi`1
“

ˆ

i

0

˙

¨
a

a` b
¨

ˆ

b

a` b

˙i

“ f

ˆ

i, 1,
a

a` b

˙

.

Hence, using the formula for the expected value of the negative binomial distribution we get:

ErY s “

b
a`b

1 ´ b
a`b

“
b

a

which concludes the proof. [\
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B.2 Abstract Sampling Game Revisited

The key building block in analysing a knowledge extractor for our Fiat-Shamir transformed proof will be the
abstract sampling game defined below. Given the access to a prover P˚ attacking the non-interactive proof
FSpΠq in the random oracle model, our extractor will essentially play this game (in the recursive manner).
Since the game itself is similar to [AFK21], we also adapt the notation from the aforementioned work.

Notation. Let h and U1, . . . , Uh, R,N1, . . . , Nh be positive integers. Denote N :“ rN1sU1 ˆ ¨ ¨ ¨ ˆ rNhsUh .
Further, let X Ď t0, 1u˚ ˆ t0, 1u˚ be a set. Looking ahead, h denotes the number of random oracles that a
prover (or a subextractor) has access to and Ui (resp. Niq is the cardinality of the domain (resp. co-domain)
of the i-th random oracle27. Similarly, R is the size of the randomness space of a prover/sub-extractor. Next,
X consists of valid witnesses along with auxiliary information.

The game considers a fixed pU1 ` . . .`Uh `1q-dimensional arrayM , where for all r P rRs and j⃗i P rNis
Ui ,

the entry Mpr, j⃗1, . . . , j⃗hq is of the form pv,h, i, s, zq where v P t0, 1u (indicates correctness), h P rhs (specifies
for which random oracle we want to fork), i P rUhs (says for which query we will fork) and s, z P t0, 1u˚

(outputs a witness candidate along with auxiliary information). Looking ahead, we will treat M as an
extractor of the sub-protocol which outputs the candidate witness. We say an entry of M is valid if v “ 1.

We will rely on the following property of the set X with respect to the array M . It basically says that if
the extractor M outputs a witness s which is not valid, then by running the extractor again by forking the
random oracle in an appropriate place, the probability that M again outputs s is at most κ.

Definition B.2. We say that set X is κ-probabilistically-testable w.r.t. the arrayM if for any pr, j⃗1, . . . , j⃗hq P

rRs ˆ rN1sU1 ˆ ¨ ¨ ¨ ˆ rNhsUh such that Mpr, j⃗1, . . . , j⃗hq “ p1,h, i, s, zq and ps, zq R X , we have

Pr
j˚ÐrNhs

”

Mpr, j⃗1, . . . , j⃗h´1, j⃗
˚, j⃗h`1, . . . , j⃗hq “ p1,h, i, s, z1q

ı

ď κ

where j⃗˚ :“ pjh,1, . . . , jh,i´1, j
˚, jh,i`1, . . . , jh,Uh q P rNhsUh .

Finally, for h P rhs and i P rUhs, we define the function

ah,i : rRs ˆ N Ñ Ně0, pr, j⃗1, . . . , j⃗hq ÞÑ |tj˚ :Mpr, j⃗1, . . . , j⃗h´1, j⃗
˚, j⃗h`1, . . . , j⃗hq “ p1,h, i, ¨, ¨qu|

where j⃗˚ :“ pjh,1, . . . , jh,i´1, j
˚, jh,i`1, . . . , jh,Uh q.

Abstract Game. We formally define the game in Fig. 19 and summarise its key properties in Lemma
B.3. We are interested in the following two cases when the abstract game does not abort. First case is when

Parameters: h, U1, . . . , Uh, R,N1, . . . , Nh P N and the pU1 ` . . . ` Uh ` 1q-dimensional array M .

1. Sample pR, J⃗1, . . . , J⃗hq Ð rRs ˆ rN1s
U1 ˆ ¨ ¨ ¨ ˆ rNhs

Uh . Let MpR, J⃗1, . . . , J⃗hq “ pV,H, I, S,Zq.
2. If V “ 0, return K.
3. Sample J˚

Ð rNHs and set J⃗˚ :“ pJH,1, . . . , JH,I´1, J
˚, JH,I`1, . . . , JH,UHq.

4. MpR, J⃗1, . . . , J⃗H´1, J⃗
˚, J⃗H`1, . . . , J⃗hq “ pV1,H1, I1, S1,Z1

q.
5. If V1

“ 0 or pH, Iq ‰ pH1, I1q, go to Step 3.
6. Return pS,Z,S1,Z1

q.

Fig. 19: Abstract sampling game.

27 To avoid technical difficulties, we restrict the domain of a random oracle from t0, 1u
˚ to t0, 1u

ďu similarly as in
[AFK21].
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S ‰ S1. In our applications, this will imply that we break the binding property of the underlying commitment
scheme. The second one is when S “ S1 ^ pS,Zq P X which directly says that we obtained a valid witness.
Finally, using the fact that X is κ-probabilistically-testable w.r.t. M , we can bound the probability of the
last case occurring, i.e. S “ S1 ^ pS,Zq R X .

Lemma B.3. Let X Ď t0, 1u˚ ˆ t0, 1u˚ be a κ-probabilistically-testable set w.r.t. the array M and con-
sider the algorithm A described in Fig. 19. For h P rhs and i P rUhs, denote the random variable Ah,i :“

ah,ipR, J⃗1, . . . , J⃗hq and let P :“
řh

h“1

řUh

i“1 PrrAh,i ą 0s. Then, the expected number of entries sampled by A
is P ` 1. Moreover, if the fraction of valid entries in M is ε, then

Pr
“

pS,Z,S1,Z1q Ð A ^
`

S ‰ S1 _
`

S “ S1 ^ pS,Zq P X
˘˘‰

ě ε´ Pκ.

Proof. We first focus on the expected runtime. Let T be the number of samples generated by A excluding
the first one. Then, ErT|V “ 0s ¨PrrV “ 0s “ 0. On the other hand, we observe that for fixed h P rhs, i P rUhs

and a P rNhs:

ErT|V “ 1 ^ H “ t^ I “ i ^Ah,i “ as “
Nh

a
and PrrV “ 1 ^ H “ h ^ I “ i|Ah,i “ as “

a

Nh
.

Hence,

ErT|V “ 1s ¨ PrrV “ 1s “

h
ÿ

h“1

Uh
ÿ

i“1

Nh
ÿ

a“1

ErT|V “ 1 ^ H “ h ^ I “ i ^Ah,i “ as ¨ PrrV “ 1 ^ H “ h ^ I “ i ^Ah,i “ as

“

h
ÿ

h“1

Uh
ÿ

i“1

Nh
ÿ

a“1

Nh

a
¨
a

Nh
¨ PrrAh,i “ as

“

h
ÿ

h“1

Uh
ÿ

i“1

PrrAh,i ą 0s “ P

which concludes the first part of the proof.

Next, we prove the lower bound on the success probability. We first introduce the following sets:

Goodph, i, aq :“ tpr, j⃗1, . . . , j⃗hq :Mpr, j⃗1, . . . , j⃗hq “ p1,h, i, s, zq ^ ah,ipr, j⃗1, . . . , j⃗hq “ au

InvWitph, i, aq :“ tpr, j⃗1, . . . , j⃗hq :Mpr, j⃗1, . . . , j⃗hq “ p1,h, i, s, zq ^ ps, zq R X u

GIWph, i, aq :“ Goodph, i, aq X InvWitph, i, aq.

Then, by definition

a

Nh
¨ PrrAh,i “ as “ PrrV “ 1 ^ H “ h ^ I “ i ^Ah,i “ as “

|Goodph, i, aq|

R ¨NU1
1 ¨ . . . ¨NUh

h

. (82)

Now, consider the probability that A does not output K. Note that the probability that A does not abort
in the second step is exactly ε. Assuming A goes through the second step, one observes that the probability
that it terminates, i.e. outputs pS,Z,S1,Z1q, is equal to one. Hence,

ε “ PrrpS,Z,S1,Z1q Ð As “ PrrpS,Z,S1,Z1q Ð A ^ S ‰ S1s

` PrrpS,Z,S1,Z1q Ð A ^ S “ S1 ^ pS,Zq P X s

` PrrpS,Z,S1,Z1q Ð A ^ S “ S1 ^ pS,Zq R X s.
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To prove the statement, we just need to show that PrrpS,Z,S1,Z1q Ð A^ S “ S1 ^ pS,Zq R X s ď Pκ. To this
end, consider any pr, j⃗1, . . . , j⃗hq P GIWph, i, aq for a ą 0 and define Mpr, j⃗1, . . . , j⃗hq “ p1,h, i, s, zq. Then

PrrpS,Z,S1,Z1q Ð A ^ pS,Zq R X | pR, J⃗1, . . . , J⃗hq “ pr, j⃗1, . . . , j⃗hqs

“ Pr
J˚ÐrNhs

„

S1 “ s

ˇ

ˇ

ˇ

ˇ

Mpr, j⃗1, . . . , j⃗h´1, j⃗
˚, j⃗h`1, . . . , j⃗hq “ p1,h, i,S1,Z1q

ȷ

“

PrJ˚ÐrNhs

”

Mpr, j⃗1, . . . , j⃗h´1, j⃗
˚, j⃗h`1, . . . , j⃗hq “ p1,h, i, s,Z1q

ı

PrJ˚ÐrNhs

”

Mpr, j⃗1, . . . , j⃗h´1, j⃗˚, j⃗h`1, . . . , j⃗hq “ p1,h, i,S1,Z1q

ı

ď κ ¨
Nh

a

where j⃗˚ :“ p⃗jh,1, . . . , j⃗h,i´1, J
˚, j⃗h,i`1, . . . , j⃗h,Uh q. For the inequality, we used the fact that X is κ-probabilistically-

testable w.r.t. M and that the denominator is equal to a{Nh since pr, j⃗1, . . . , j⃗hq P Goodph, i, aq. Using this
inequality, we obtain

PrrpS,Z,S1,Z1q Ð A ^ S “ S1 ^ pS,Zq R X s ď

h
ÿ

h“1

Uh
ÿ

i“1

Nh
ÿ

a“1

ÿ

pr,⃗j1,...,⃗jhqPGIWph,i,aq

κ ¨
Nh

a
¨

1

R ¨NU1
1 ¨ . . . ¨NUh

h

ď

h
ÿ

h“1

Uh
ÿ

i“1

Nh
ÿ

a“1

ÿ

pr,⃗j1,...,⃗jhqPGoodph,i,aq

κ ¨
Nh

a
¨

1

R ¨NU1
1 ¨ . . . ¨NUh

h

ď

h
ÿ

h“1

Uh
ÿ

i“1

Nh
ÿ

a“1

κ ¨
Nh

a
¨

|Goodph, i, aq|

R ¨NU1
1 ¨ . . . ¨NUh

h

ď

h
ÿ

h“1

Uh
ÿ

i“1

Nh
ÿ

a“1

κ ¨ PrrAh,i “ as ď Pκ

where for the second-to-last inequality we used (82). This concludes the proof. [\

The next lemma describes a way to bound the value P . In our applications, P will be bounded by the number
of random oracle queries the cheating prover makes. It is a simple generalisation of [AFK21, Lemma 3], but
we provide the proof for completeness.

Lemma B.4 ([AFK21]). Consider the game in Fig. 19 and define functions v, h, i, s, z such that

Mpr, j⃗1, . . . , j⃗hq “ pvpr, j⃗1, . . . , j⃗hq, hpr, j⃗1, . . . , j⃗hq, ipr, j⃗1, . . . , j⃗hq, spr, j⃗1, . . . , j⃗hq, zpr, j⃗1, . . . , j⃗hqq.

As before, for h P rhs and i P rUhs, denote the random variable Ah,i :“ ah,ipR, J⃗1, . . . , J⃗hq. Additionally, let

us assume that for all pr, j⃗1, . . . , j⃗hq, there exists a subset

Spr, j⃗1, . . . , j⃗hq Ď tph, iq : h P rhs ^ i P rUhsu

of cardinality at most Q, such that hpr, j⃗1, . . . , j⃗hq “ hpr, j⃗1
1, . . . , j⃗

1
hq and ipr, j⃗1, . . . , j⃗hq “ ipr, j⃗1

1, . . . , j⃗
1
hq for

all p⃗j1
1, . . . , j⃗

1
hq which satisfy: @pt, iq P Spr, j⃗1, . . . , j⃗hq, jt,i “ j1

t,i. Then

P :“
h
ÿ

h“1

Uh
ÿ

i“1

PrrAh,i ą 0s ď Q` 1.
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Proof. By the law of total probability, we have

P “

h
ÿ

h“1

Uh
ÿ

i“1

PrrAh,i ą 0s

“
ÿ

r,⃗j

PrrR “ r ^ p⃗J1, . . . , J⃗hq “ j⃗s ¨

h
ÿ

h“1

Uh
ÿ

i“1

PrrAh,i ą 0|R “ r ^ p⃗J1, . . . , J⃗hq “ j⃗s

ď
ÿ

r,⃗j

PrrR “ r ^ p⃗J1, . . . , J⃗hq “ j⃗s ¨

¨

˝

ÿ

ph,iqPSpr,⃗jq

1 `
ÿ

ph,iqRSpr,⃗jq

PrrAh,i ą 0|R “ r ^ p⃗J1, . . . , J⃗hq “ j⃗s

˛

‚

ď Q`
ÿ

r,⃗j

PrrR “ r ^ p⃗J1, . . . , J⃗hq “ j⃗s ¨
ÿ

ph,iqRSpr,⃗jq

PrrAh,i ą 0|R “ r ^ p⃗J1, . . . , J⃗hq “ j⃗s.

Now, by definition of the set Spr, j⃗1, . . . , j⃗hq, if ph, iq R Spr, j⃗1, . . . , j⃗hq then for any j˚
h,i P rNhs:

hpr, j⃗1, j⃗h´1, j⃗
˚, j⃗h`1, . . . , j⃗hq “ hpr, j⃗1, . . . , j⃗hq and ipr, j⃗1, j⃗h´1, j⃗

˚, j⃗h`1, . . . , j⃗hq “ ipr, j⃗1, . . . , j⃗hq

where j⃗˚ :“ pjh,1, . . . , jh,i´1, j
˚
h,i, jh,i`1, . . . , jh,Uh q.

Hence, for all ph, iq R

!´

hpr, j⃗1, . . . , j⃗hq, ipr, j⃗1, . . . , j⃗hq

¯)

Y Spr, j⃗1, . . . , j⃗hq we have

PrrAh,i ą 0|R “ r ^ p⃗J1, . . . , J⃗hq “ j⃗s “ 0

which implies that

ÿ

ph,iqRSpr,⃗jq

Pr
”

Ah,i ą 0| R “ r ^ p⃗J1, . . . , J⃗hq “ j⃗
ı

ď Pr
”

Ahpr,⃗j1,...,⃗jhq,ipr,⃗j1,...,⃗jhq ą 0|R “ r ^ p⃗J1, . . . , J⃗hq “ j⃗
ı

ď 1.

Therefore P ď Q`
ř

r,⃗j PrrR “ r ^ p⃗J1, . . . , J⃗hq “ j⃗s ď Q` 1. [\

Weighted Version of the Abstract Sampling Game. Similarly as in [AFK21], in order to obtain tight
bounds on the runtime of the extractor for the multi-round protocol, we need to consider a refined analysis
of the cost of playing the abstract sampling game. Informally, for multi-round protocols, every entry will
correspond to running the extractor of the underlying sub-protocol. As noted by Attema et al. [AFK21],
some invocations of the extractor are expensive, while others are cheap. To this end, we introduce a cost
function Γ and a constant γ which correspond to the expensive and cheap computation respectively.

The following lemma gives an upper-bound on the total cost of playing the abstract sampling game in
terms of the cost functions mentioned above. We simply adapt the proof from [AFK21, Lemma 5] to our
setting.

Lemma B.5. Consider the abstract sampling game in Fig. 19. Let Γ : rRs ˆ rN1sU1 ˆ ¨ ¨ ¨ ˆ rNhsUh Ñ Rě0

be a cost function and γ P Rě0 be a constant cost. As before, for h P rhs and i P rUhs, denote the random

variable Ah,i :“ ah,ipR, J⃗1, . . . , J⃗hq. We define the cost of sampling an entryMpr, j⃗1, . . . , j⃗hq “ pv,h, i, s, zq with

indices ph, iq “ pH, Iq to be Γ pr, j⃗1, . . . , j⃗hq and the cost of sampling an entry Mpr, j⃗1, . . . , j⃗hq “ pv,h, i, s, zq

with indices ph, iq ‰ pH, Iq to be γ. Let ∆ be the total cost of playing this game. Then

Er∆s ď 2 ¨ ErΓ pR, J⃗1, . . . , J⃗hqs ` T ¨ γ

where T :“
řh

h“1

řUh

i“1 PrrpH, Iq ‰ ph, iq ^Ah,i ą 0s.
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Proof. We first split the total cost ∆ into the three cost measures ∆1, ∆2, ∆3 defined as follows.

– ∆1 denotes the total cost of the elements Mpr, j⃗1, . . . , j⃗hq “ p1,h, i, s, zq with ph, iq “ pH, Iq sampled in
the game, while X denotes the number of entries of the form p1,h, i, ¨, ¨q, such that ph, iq “ pH, Iq, sampled
(including the first one if V “ 1).

– ∆2 is the total cost of the elements Mpr, j⃗1, . . . , j⃗hq “ p0,h, i, s, zq with ph, iq “ pH, Iq sampled, while Y
denotes the number of entries of the form p0,h, i, ¨, ¨q, such that ph, iq “ pH, Iq, sampled (including the
first one if V “ 0).

– ∆3 denotes the total cost of the elementsMpr, j⃗1, . . . , j⃗hq “ pv,h, i, s, zq with ph, iq ‰ pH, Iq sampled in the
game, while Z denotes the number of entries of the form pv,h, i, ¨, ¨q, such that ph, iq ‰ pH, Iq, sampled.

By definition, we have ∆ “ ∆1 ` ∆2 ` ∆3. Also, since the cost γ is constant, we have Er∆3s “ γ ¨ ErZs.
The first goal is to relate Er∆1s and Er∆2s to ErXs and ErZs respectively. Now, for any h P rhs and i P rUhs,
denote

J⃗˚
h,i :“ p⃗J1, . . . , J⃗h´1, J⃗

1, J⃗h`1, . . . , J⃗hq where J⃗1 :“ pJh,1, . . . , Jh,i´1, Jh,i`1, . . . , Jh,Uh q

J⃗˚
h,ipXq :“ p⃗J1, . . . , J⃗h´1, J⃗X, J⃗h`1, . . . , J⃗hq where J⃗X :“ pJh,1, . . . , Jh,i´1,X, Jh,i`1, . . . , Jh,Uh q.

Moreover, for any pr˚, j⃗˚q P rRs ˆ rN1sU1 ˆ ¨ ¨ ¨ ˆ rNh´1sUh´1 ˆ rNhsUh´1 ˆ rNh`1sUh`1 ˆ ¨ ¨ ¨ ˆ rNhsUh , let
Λ˚ph, i, r˚, j⃗˚q denote the event

Λ˚ph, i, r˚, j⃗˚q :“
”

pH, Iq “ ph, iq ^ pR, J⃗˚
h,iq “ pr˚, j⃗˚q

ı

.

We first bound Er∆1|Λph, i, r˚, j⃗˚qs. Note that for any h, i, r˚, j⃗˚ such that PrrΛph, i, r˚, j⃗˚qs ą 0, we have

Er∆1|Λph, i, r˚, j⃗˚qs “

8
ÿ

ℓ“0

PrrX “ ℓ|Λph, i, r˚, j⃗˚qs ¨ Er∆1|Λph, i, r˚, j⃗˚q ^X “ ℓs.

First, fix ℓ ą 0. Suppose that Λph, i, r˚, j⃗˚q^X “ ℓ hold and let K1, . . . ,Kℓ be the random variables for which

MpR, J⃗h,ipKiqq “ p1,h, i, ¨, ¨q. Note that they are pairwise independent and their distribution is identical, as
seen in Step 3 of Fig. 19. Then, by definition of ∆1 we get

Er∆1|Λph, i, r˚, j⃗˚q ^X “ ℓs “

ℓ
ÿ

i“1

ErΓ pR, J⃗h,ipKiqq|Λph, i, r˚, j⃗˚q ^ V “ 1s

“ ℓ ¨ ErΓ pR, J⃗1, . . . , J⃗hq|Λph, i, r˚, j⃗˚q ^ V “ 1s.

One can easily check that this equality also holds when ℓ “ 0. Therefore, we get

Er∆1|Λph, i, r˚, j⃗˚qs “ ErΓ pR, J⃗1, . . . , J⃗hq|Λph, i, r˚, j⃗˚q ^ V “ 1s ¨

8
ÿ

ℓ“0

PrrX “ ℓ|Λph, i, r˚, j⃗˚qs ¨ ℓ

“ ErΓ pR, J⃗1, . . . , J⃗hq|Λph, i, r˚, j⃗˚q ^ V “ 1s ¨ ErX|Λph, i, r˚, j⃗˚qs.

Similarly, one proves that

Er∆2|Λph, i, r˚, j⃗˚qs “ ErΓ pR, J⃗1, . . . , J⃗hq|Λph, i, r˚, j⃗˚q ^ V “ 0s ¨ ErY |Λph, i, r˚, j⃗˚qs.

Next, we bound the expected values of X and Y conditioned on Λph, i, r˚, j⃗˚q. First, using the observation
that V “ 0 implies X “ 0 and V “ 1 implies X “ 2, we have

ErX|Λph, i, r˚, j⃗˚qs “ 2 ¨ PrrV “ 1|Λph, i, r˚, j⃗˚qs

and thus

Er∆1|Λph, i, r˚, j⃗˚qs “ 2 ¨ PrrV “ 1|Λph, i, r˚, j⃗˚qs ¨ ErΓ pR, J⃗1, . . . , J⃗hq|Λph, i, r˚, j⃗˚q ^ V “ 1s.
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Next, we focus on ErY |Λph, i, r˚, j⃗˚qs. For fixed h, i, r˚, j⃗˚, denote

a :“ ah,ipr
˚, j⃗˚q “ |tj :Mpr, j⃗˚

1 , . . . , j⃗
˚
h´1, j⃗, j⃗

˚
h`1, . . . , j⃗

˚
h q “ p1,h, i, ¨, ¨qu|

where j⃗ :“ pj˚
h,1, . . . , j

˚
h,i´1, j, j

˚
h,i`1, . . . , j

˚
h,Uh

q. Similarly, we define

b :“ bh,ipr
˚, j⃗˚q “ |tj :Mpr, j⃗˚

1 , . . . , j⃗
˚
h´1, j⃗, j⃗

˚
h`1, . . . , j⃗

˚
h q “ p0,h, i, ¨, ¨qu|.

We observe that

PrrV “ 1|Λph, i, r˚, j⃗˚qs “
a

a` b
and PrrV “ 0|Λph, i, r˚, j⃗˚qs “

a

a` b

assuming that PrrΛph, i, r˚, j⃗˚qs ą 0. Hence, if we condition the event V “ 1 ^ Λph, i, r˚, j⃗˚q, we implicitly
assume that a ą 0. Now, to bound ErY |Λph, i, r˚, j⃗˚qs, we observe that conditioned on V “ 1^Λph, i, r˚, j⃗˚q,
random variable Y follows the simplified negative multinomial distribution with parameters pa, b,Nh ´a´ bq
described in Section B.1. Hence, by Lemma B.1

ErY |V “ 1 ^ Λph, i, r˚, j⃗˚qs “
b

a
.

Thus

ErY |Λph, i, r˚, j⃗˚qs “ PrrV “ 0|Λph, i, r˚, j⃗˚qs ` PrrV “ 1|Λph, i, r˚, j⃗˚qs ¨
b

a

“
b

a` b
`

a

a` b
¨
b

a

“ 2 ¨
b

a` b

“ 2 ¨ PrrV “ 0|Λph, i, r˚, j⃗˚qs

where in the first equality we used the fact that ErY |V “ 0 ^ Λph, i, r˚, j⃗˚qs “ 1. Hence,

Er∆2|Λph, i, r˚, j⃗˚qs “ 2 ¨ PrrV “ 0|Λph, i, r˚, j⃗˚qs ¨ ErΓ pR, J⃗1, . . . , J⃗hq|Λph, i, r˚, j⃗˚q ^ V “ 0s,

and by combining the previous results

Er∆1 `∆2|Λph, i, r˚, j⃗˚qs “ 2 ¨ ErΓ pR, J⃗1, . . . , J⃗hq|Λph, i, r˚, j⃗˚q ^ V “ 0s.

Since the equality holds for all h, i, r˚, j⃗˚ such that PrrΛph, i, r˚, j⃗˚qs ą 0, we deduce that

Er∆1 `∆2s “ 2 ¨ ErΓ pR, J⃗1, . . . , J⃗hqs.

Finally, we still need to prove that ErZs ď T which implies that Er∆3s “ γErZs ď T ¨ γ. We use a similar
approach as for computing the expected value of Y . Namely, recall the values a, b defined above for fixed
h, i, r˚, j⃗˚ such that PrrΛph, i, r˚, j⃗˚qs ą 0. Then, conditioned on V “ 1 ^ Λph, i, r˚, j⃗˚q, Z follows the
simplified negative multinomial distribution with parameters pa,N ´a´b, bq. Hence, by Lemma B.1 we have

ErZ|V “ 1 ^ Λph, i, r˚, j⃗˚qs “
N ´ a´ b

a
.

Moreover, ErZ|V “ 0 ^ Λph, i, r˚, j⃗˚qs “ 0 by definition. In the following, we will use the observation that

PrrpH, Iq “ ph, iq|pR, J˚
h,iq “ pr, j⃗˚qs “

a` b

Nh
.
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Thus
ErZ|Λph, i, r˚, j⃗˚qs “ PrrV “ 1|Λph, i, r˚, j⃗˚qs ¨ ErZ|V “ 1 ^ Λph, i, r˚, j⃗˚qs

“
a

a` b
¨
N ´ a´ b

a

“
1

PrrpH, Iq “ ph, iq|pR, J˚
h,iq “ pr, j⃗˚qs

´ 1

“
PrrpR, J˚

h,iq “ pr, j⃗˚qs ´ PrrpH, Iq “ ph, iq ^ pR, J˚
h,iq “ pr, j⃗˚qs

PrrΛph, i, r˚, j⃗˚qs

“
PrrpH, Iq ‰ ph, iq ^ pR, J˚

h,iq “ pr, j⃗˚qs

PrrΛph, i, r˚, j⃗˚qs
.

Recall that we implicitly assumed that a ą 0. For h, i, r˚, j⃗˚ such that a “ 0, Λph, i, r˚, j⃗˚q implies that
V “ 0. Consequently, ErZ|Λph, i, r˚, j⃗˚qs “ 0. To sum up, we have

ErZs “

h
ÿ

h“1

Uh
ÿ

i“1

ÿ

r˚ ,⃗j˚ s.t.

ah,ipr
˚ ,⃗j˚

qą0

PrrΛph, i, r˚, j⃗˚qs ¨ ErZ|Λph, i, r˚, j⃗˚qs

“

h
ÿ

h“1

Uh
ÿ

i“1

ÿ

r˚ ,⃗j˚ s.t.

ah,ipr
˚ ,⃗j˚

qą0

PrrpH, Iq ‰ ph, iq ^ pR, J˚
h,iq “ pr, j⃗˚qs

“

h
ÿ

h“1

Uh
ÿ

i“1

PrrpH, Iq ‰ ph, iq ^Ah,i ą 0s

“ T.

which completes the proof. [\

The next lemma shows how to upper-bound the parameter T . Since the result is almost identical to Lemma
B.4 and [AFK21, Lemma 6], we omit the formal proof.

Lemma B.6 ([AFK21]). Consider the game in Fig. 19 and define functions v, h, i, s, z such that

Mpr, j⃗1, . . . , j⃗hq “ pvpr, j⃗1, . . . , j⃗hq, hpr, j⃗1, . . . , j⃗hq, ipr, j⃗1, . . . , j⃗hq, spr, j⃗1, . . . , j⃗hq, zpr, j⃗1, . . . , j⃗hqq.

As before, for h P rhs and i P rUhs, denote the random variable Ah,i :“ ah,ipR, J⃗1, . . . , J⃗hq. Additionally, let

us assume that for all pr, j⃗1, . . . , j⃗hq, there exists a subset

Spr, j⃗1, . . . , j⃗hq Ď tph, iq : h P rhs ^ i P rUhsu

of cardinality at most Q, such that hpr, j⃗1, . . . , j⃗hq “ hpr, j⃗1
1, . . . , j⃗

1
hq and ipr, j⃗1, . . . , j⃗hq “ ipr, j⃗1

1, . . . , j⃗
1
hq for

all p⃗j1
1, . . . , j⃗

1
hq which satisfy: @pt, iq P Spr, j⃗1, . . . , j⃗hq, jt,i “ j1

t,i. Then

T :“
h
ÿ

h“1

Uh
ÿ

i“1

PrrpH, Iq ‰ ph, iq ^Ah,i ą 0s ď Q.

B.3 Fiat-Shamir Transformation

We are ready to analyse the non-interactive version of our protocols using the Fiat-Shamir transformation.
For concreteness and simplicity, we focus on the particular protocol for proving knowledge of a polynomial
vector s1 P Rm1

q which satisfies Ps1 “ u over Rq and }s1}2 “ B for public P P Rn1ˆm1
q and u P Rn1

q . For
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convenience, we will denote ppiqiPrn1s to be the rows ofP. HencePs1 “ u is equivalent to @i P rn1s,pT
i s1 “ ui.

We formally define the statement x and the public parameters pp (i.e. the common random string) as follows:

x :“ pP,u, Bq and pp :“
´

A1 P Rnˆm1
q ,A2 P Rnˆm2

q ,Bpeq P R256{dˆm2
q ,Bg P Rλˆm2

q ,b P Rm2
q

¯

.

Non-Interactive Protocol. We construct the non-interactive proof for the statement above using the
toolbox from Section 5. We highlight a few small differences. First, we send the ABDLOP commitment in
the first round, i.e. it is not given as a part of the statement. Second, we skip the rejection sampling steps
in the prover algorithm since we only focus on knowledge soundness. In particular, we do not commit to the
sign which is used for bimodal rejection sampling. Last but not least, for presentation purposes, we still keep
w, v (unlike in Section 6.1) as part of the proof in order to follow the traditional Fiat-Shamir transformation
without any optimisations.

The prover algorithm starts by generating the ABDLOP commitment to s1. Namely, it samples s2 Ð Sm2
ν

and computes tA :“ A1s1 ` A2s2. Then comes the approximate range proof part. Concretely, it samples a

masking ypeq Ð D
256{d

speq and the corresponding commitment tpeq :“ Bpeqs2 `ypeq. Hence, the first message of
the prover and the corresponding challenge are

a1 :“
´

tA, t
peq
¯

and
´

R
peq

0 , R
peq

1

¯

:“ RO1 ppp, x, a1q

where RO1 : t0, 1uďu1 Ñ
`

t0, 1u256ˆm1d
˘2

is the first random oracle. From the challenge the prover computes

the matrix Rpeq :“ R
peq

0 ´ R
peq

1 which of the same distribution as Rpeq in Fig. 9. For convenience, we define

r
peq

i P Rm1
q to be the polynomial vector for which its coefficient vector is the i-th row of Rpeq for i P r256s.

Next, the prover computes z⃗peq :“ Rpeqs⃗1 ` y⃗peq. Further, it samples g :“ pg1, . . . , gλq Ð tx : Rq : x̃ “ 0uλ

and creates the corresponding commitment tg :“ Bgs2 ` g. Thus, the second message of the prover and the
corresponding challenge are

a2 :“
´

z⃗peq, tg

¯

and pγi,jqiPrλs,jPr257s :“ RO2 ppp, x, a1, a2q

where RO2 : t0, 1uďu2 Ñ Zλˆ257
q is the second random oracle.

Now, the prover wants to prove that z⃗peq “ Rpeqs⃗1 ` y⃗peq and xs⃗1, s⃗1y “ B modulo q. One observes that
this is equivalent to proving that the constant coefficients of

σ
´

r
peq

j

¯T

s1 `Xpj´1q mod d ¨ y
peq

rj{ds
´ z

peq

j for j P r256s, and σps1qT s1 ´B

are equal to zero. To this end, the prover computes

hi :“ gi `

256
ÿ

j“1

γi,j ¨

´

σprjqT s1 `Xpj´1q mod d ¨ y
peq

rj{ds
´ z

peq

j

¯

`γi,257 ¨
`

σps1qT s1 ´B
˘

for i “ 1, 2, . . . , λ. (83)

Hence, the prover’s next message and the corresponding challenge are

a3 :“ ph1, . . . , hλq and pµ1, . . . , µλ`n1
q :“ RO3 ppp, x, a1, a2, a3q

where RO3 : t0, 1uďu3 Ñ Rλ`n1
q is the third random oracle.

Up to this point, the prover wants to prove λ ` n1 quadratic equations (with automorphisms) over Rq,
i.e. Equation 83 and pT

i s1 “ ui for i “ 1, 2, . . . , n1. By amortising, we only prove a single quadratic equation:

0 “

λ
ÿ

i“1

µi ¨

˜

gi `

256
ÿ

j“1

γi,j ¨

´

σprjqT s1 `Xpj´1q mod d ¨ y
peq

rj{ds
´ z

peq

j

¯

` γi,257 ¨
`

σps1qT s1 ´B
˘

´ hi

¸

`

n1
ÿ

i“1

µλ`i ¨
`

pT
i s1 ´ ui

˘

.
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Let us define

B :“

„

Bpeq

Bg

ȷ

, tB :“

„

tpeq

tg

ȷ

, m :“

„

ypeq

g

ȷ

P R256{d`λ
q and s :“

»

—

—

–

s1
σps1q

m
σpmq

fi

ffi

ffi

fl

.

Then, the quadratic equation above can be written equivalently as

sTR2s ` rT1 s ` r0 “ 0

where

R2 :“

»

—

—

–

0 0 0 0
řλ

i“1 µi ¨ γi,257 0 0 0
0 0 0 0
0 0 0 0

fi

ffi

ffi

fl

P R2pm1`256{d`λqˆ2pm1`256{d`λq
q

r1 :“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

řλ
i“1

ř256
j“1 µiγi,jσprjq `

řn1

i“1 µλ`ipi

0
řλ

i“1

řd
j“1 µiγi,jX

j´1

...
řλ

i“1

řd
j“1 µiγi,256{d´d`jX

j´1

µ1

...
µλ

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P R2pm1`256{d`λq
q

r0 “ ´

λ
ÿ

i“1

pµiγi,257B ` hiq ´

n1
ÿ

i“1

µλ`iui P Rq.

Finally, we run the sub-protocol for proving a single quadratic equation with automorphism. Namely, the
prover samples masking vectors y1 Ð Dm1

s1 ,y2 Ð Dm2
s and computes w “ A1y1 `A2y2. Then, it calculates

g1 “ sTR2y ` yTR2s ` rT1 y, where y is defined as

y :“

»

—

—

–

y1

σpy1q

´By2

´σpBy2q

fi

ffi

ffi

fl

P R2pm1`256{d`λq
q , (84)

and the commitment t “ bT s2 ` g1 to g1. Then, the prover sets v “ yTR2y ` bTy2. Hence, the prover’s
fourth message and the corresponding challenge are

a4 :“ pt,w, vq and c :“ RO4 ppp, x, a1, a2, a3, a4q

where RO4 : t0, 1uďu4 Ñ C is the fourth random oracle.

Further, given a challenge c, the prover computes zi “ csi ` yi for i “ 1, 2. So, the prover’s last message
is

a5 :“ pz1, z2q

and thus the proof consists of

π :“ pa1, a2, a3, a4, a5q.

76



The verifier is given a proof π and recomputes the corresponding challenges as well as R2, r1, r0. Define

z :“

»

—

—

–

z1
σpz1q

ctB ´ Bz2
σpctB ´ Bz2q

fi

ffi

ffi

fl

and f :“ ct´ bT z2. (85)

Then, the verifier checks whether the following relations hold:

}z⃗peq}
?
ď Be

h̃i
?
“ 0 for i “ 1, 2, . . . , λ

}z1}
?
ď B1 and }z2}

?
ď B2

A1z1 ` A2z2
?
“ w ` ctA

zTR2z ` crT1 z ` c2r0 ´ f
?
“ v.

Knowledge Soundness. We are ready to prove the main result of this section.

Theorem B.7 (Knowledge Soundness). Let q ą max
´

B, 41 ¨ 2?
26

¨m1dBe,
2
13B

2
e ´Be

¯

. Then, there

exists an algorithm E, called a knowledge extractor, with the following properties. Given public parameters
pp and a statement x, as well as oracle access to any (potentially dishonest) Q-query random oracle prover
P˚, which outputs a valid proof with probability ε, the extractor runs in expected polyp|x|, Qq number of steps
and with probability at least

ε´

ˆ

2

|C|
` q

´d{2
1 ` q´λ

1 ` 2´128

˙

it either outputs s̄1 P Rm1
q such that Ps̄1 “ u and }s1}2 “ B, or a MSISn,m1`m2,B̄ solution for the matrix

rA1 | A2s where B̄ :“ 4η
a

B2
1 `B2

2 .

Proof. Consider a dishonest Q-query random oracle prover P˚ which provides a valid proof with probability
ε. After making at most Q queries to the random oracles, P˚ outputs a proof π “ pa1, a2, a3, a4, a5q. We
reformat the output and define:

I1 :“ ppp, x, a1q, I2 :“ ppp, x, a1, a2q, . . . , I5 :“ ppp, x, a1, a2, a3, a4, a5q

as P˚’s output. As in [AFK21], we extend P˚ to a random oracle algorithm A which also checks the validity
of the proof π. Namely, by relaying all the random oracle queries P˚ is making, A runs P˚ to obtain
I “ pI1, I2, I3, I4, I5q and π. Then, it obtains the challenges by querying

´

R
peq

0 , R
peq

1

¯

:“ RO1 pI1q , pγi,jqiPrλs,jPr257s :“ RO2 pI2q , pµ1, . . . , µλ`n1q :“ RO3 pI3q , c :“ RO4 pI4q

and then outputs

I, y :“
´

pp, x, a1, pR
peq

0 , R
peq

1 q, a2, pγi,jq, a3, pµiq, a4, c, a5

¯

, and v :“ V ppp, x, yq

where V ppp, x, yq “ 1 if y is the accepting transcript for statement x with public parameters pp, and 0
otherwise. It is easy to see that A makes at most Q ` 4 random oralce queries and the probability that A
outputs v “ 1 is exactly ε.

The goal now is to define an extractor E , which given black-box access to A, either outputs s̄1 P Rm1
q

such that Ps̄1 “ u and }s̄1} “ B, or a MSISn,m1`m2,B̄ solution for the matrix rA1 | A2s. To this end, we
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Black-box access to: A

1. Run A with randomness ρ Ð R as follows: relay the Q ` µ random oracle queries to the random oracles
and record all query-response pairs. Set i “ I4 and let ci be the response to query i. Obtain pI, y0, vq.

2. If v “ 0, abort and return v “ 0.
3. Otherwise, repeat:

– sample c1
i P Cztciu without replacement,

– run A with randomness ρ as follows to obtain pI1, y1, v1
q: answer the query to i with c1

i while answering
all the other queries consistently if the query was performed by A in the previous run, and with fresh
random value otherwise,

until either 2 additional challenges c1
i with v1

“ 1 and I 1
4 “ I4 have been found or until all challenges c1

i P C
have been tried.

4. If the latter case occurs, output v “ 0.

5. For i “ 0, 1, 2, let yi :“
´

pp, x, a1, pR
peq

0 , R
peq

1 q, a2, pγi,jq, a3, pµiq, a4, c
piq, a

piq

5

¯

be the extracted transcripts.

6. Parse a
piq

5 :“ pz
piq

1 , z
piq

2 q and a1, a2, a3, a4 as in the protocol description above.

7. Define c̄ :“ cp1q
´ cp0q, s̄i “

z
p1q
i ´z

p0q
i

cp1q´cp0q for i “ 1, 2 and m̄ “ pȳpeq, ḡq :“ tB ´ Bs̄2.

8. If z
p1q

i ´ cp1qs̄i ‰ z
p2q

i ´ cp2qs̄i for some i “ 1, 2:

– return I,

»

–

c̄ ¨

´´

z
p2q

1 ´ z
p1q

1

¯

´

´

cp2q
´ cp1q

¯

s̄1
¯

c̄ ¨

´´

z
p2q

2 ´ z
p1q

2

¯

´

´

cp2q
´ cp1q

¯

s̄2
¯

fi

fl as the MSIS solution to rA1 | A2s and v “ 1.

9. Otherwise, return I, ps̄1, s̄2, m̄, c̄q and v “ 1.

Fig. 20: Subextractor E4 as a pQ ` 4q-query random oracle algorithm [AFK21].

introduce a sequence of subextractors E1, E2, E3, E4 which are pQ`4q-query random oracle algorithms. Then,
we will define E which runs E1 and answers its queries using lazy sampling.

We start by defining the extractor E4, which is a pQ`4q-query random oracle algorithm in Fig. 20. Infor-
mally, E4 focuses on finding the witness for a single quadratic equation with automorphism. We summarise
the security properties of E4 below.

Lemma B.8. The extractor E4 makes an expected number of at most 3 ` 2Q queries to A. Furthemore, E4
outputs v “ 1 with probability at least

ε´ pQ` 1q ¨
2

|C|
.

Next, let I “ pI1, I2, I3, I4, I5q be the index vector obtained by E4 in the first step and denote

´

R
peq

0 , R
peq

1

¯

:“ RO1 pI1q , pγi,jqiPrλs,jPr257s :“ RO2 pI2q , pµ1, . . . , µλ`n1q :“ RO3 pI3q .

as the corresponding (recorded) random oracle responses. Further, parse

I4 :“ ppp, x, tA, t
peq, z⃗peq, tg, h1, . . . , hλ, t,w, vq.

Then, conditioned on v “ 1, the extractor either returns ps̄1, s̄2, m̄, c̄q P Rm1
q ˆ Rm2

q ˆ R256{d`λ
q ˆ C̄ which

satisfies the following relations:

»

–

tA
tpeq

tg

fi

fl “

»

–

A1

0
0

fi

fl s̄1 `

»

–

A2

Bpeq

Bg

fi

fl s̄2 `

»

–

0

ȳpeq

ḡ

fi

fl , }c̄s̄1} ď 2B1, }c̄s̄2} ď 2B2
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and

0 “

λ
ÿ

i“1

µi ¨

˜

ḡi `

256
ÿ

j“1

γi,j ¨

´

σprjqT s̄1 `Xpj´1q mod d ¨ ȳ
peq

rj{ds
´ z

peq

j

¯

` γi,257 ¨
`

σps̄1qT s̄1 ´B
˘

´ hi

¸

`

n1
ÿ

i“1

µλ`i ¨
`

pT
i s̄1 ´ ui

˘

,

or a MSISn,m1`m2,B̄ solution for the matrix rA1 | A2s.

Proof. To bound the probability of outputting v “ 1, we directly apply [AFK21, Proposition 2] for Km “ 3.
This result28 says that E4 makes at most 3`Q ¨ p3´1q queries to A and the probability that E4 does returns
1 is at least ε´ pQ` 1q ¨ 2

|C|
. Then, [AFK21, Proposition 1] says that by the end of Step 4 in Fig. 20, if v ‰ 0

then E4 manages to extract a p1, 1, 1, 3q-tree of accepting transcripts. Finally, we run the extraction strategy
from the proof of Theorem 4.2 to extract the ABDLOP opening and a solution to the quadratic equation,
or a MSIS solution. [\

We now turn to defining the subextractor E3 which is informally responsible for proving knowledge of a
solution of multiple quadratic equations. We describe the subextractor in Fig. 21. Here, E3 uses the early
abort feature of E4, as described in [AFK21]. Namely, E4 computes the index vector I by running P˚ as the
first step. This allows the executions in the repeat loop of E3 to abort right after a single run of P˚ if I 1

3 ‰ I3.
This is highlighted in Step 3 of E3.

We now summarise the key properties of the extractor E3.

Lemma B.9. The extractor E3 makes an expected number of at most 6` 5Q queries to A. Also, E3 outputs
v “ 1 with probability at least

ε´ pQ` 1q ¨

ˆ

2

|C|
` q

´d{2
1

˙

.

Next, let I “ pI1, I2, I3, I4, I5q be the index vector obtained by E3 in the first step and denote

´

R
peq

0 , R
peq

1

¯

:“ RO1 pI1q , pγi,jqiPrλs,jPr257s :“ RO2 pI2q , I3 :“ ppp, x, tA, t
peq, z⃗peq, tg, h1, . . . , hλq.

Then, conditioned on v “ 1, the extractor either returns ps̄1, s̄2, m̄, c̄q P Rm1
q ˆ Rm2

q ˆ R256{d`λ
q ˆ C̄ which

satisfies the following relations:

»

–

tA
tpeq

tg

fi

fl “

»

–

A1

0
0

fi

fl s̄1 `

»

–

A2

Bpeq

Bg

fi

fl s̄2 `

»

–

0

ȳpeq

ḡ

fi

fl , }c̄s̄1} ď 2B1, }c̄s̄2} ď 2B2

and

hi “ ḡi `

256
ÿ

j“1

γi,j ¨

´

σprjqT s̄1 `Xpj´1q mod d ¨ ȳ
peq

rj{ds
´ z

peq

j

¯

` γi,257 ¨
`

σps̄1qT s̄1 ´B
˘

for i “ 1, 2, . . . , λ,

pT s̄1 “ ui for i “ 1, 2, . . . , n1,
(86)

or a MSISn,m1`m2,B̄ solution for the matrix rA1 | A2s.

Proof. This is the place where we apply techniques from Section B.2. First, note that while running E3, all
the queries made by different invocations of E4 are answered consistently using lazy sampling, except for the
query i where E3 provides with fresh and potentially different answers. Hence, this is indistinguishable from

28 Even though the original result only considers determinstic provers P˚, it can be extended to probabilistic provers
by linearity of expected runtime and the success probability.
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Black-box access to: E4

1. Run E4 with randomness ρ Ð R as follows: relay the Q ` µ random oracle queries to the random oracles
and record all query-response pairs. Set i “ I3 and let pµ1, . . . , µλ`n1q be the response to query i. Obtain
pI, y, vq.

2. If v “ 0, abort and return v “ 0.
3. Otherwise, repeat:

– sample pµ1
1, . . . , µ

1
λ`n1

q Ð Rλ`n1
q ,

– run E4 with randomness ρ as follows to obtain pI1, y1, v1
q, aborting right after the initial run of P˚ if

I 1
3 ‰ I3: answer the query to i with pµ1

1, . . . , µ
1
λ`n1

q while answering all the other queries consistently if
the query was performed by E4 in the previous run, and with fresh random value otherwise,

until a challenge pµ1
1, . . . , µ

1
λ`n1

q with v1
“ 1 and I 1

3 “ I3 has been found.
4. If y (resp. y1) is a MSIS solution for the matrix rA1 | A2s, return I, y (resp. y1) and v “ 1.

5. Parse y “ ps̄1, s̄2, m̄ “ pȳpeq, ḡq, c̄q and y1
“ ps̄1

1, s̄
1
2, m̄

1
“ pȳpeq1

, ḡ1
q, c̄1

q.

6. If s̄1 ‰ s̄1
1 or s̄2 ‰ s̄1

2, return I,

„

c̄c̄1
ps̄1 ´ s̄1

1q

c̄c̄1
ps̄2 ´ s̄1

2q

ȷ

as the MSIS solution to rA1 | A2s and v “ 1.

7. Parse
´

R
peq

0 , R
peq

1

¯

:“ RO1 pI1q , pγi,jqiPrλs,jPr257s :“ RO2 pI2q
a and I3 :“ ppp, x, tA, t

peq, z⃗peq, tg, h1, . . . , hλq.

8. If all the following equations hold:

– hi “ ḡi `
ř256

j“1 γi,j ¨

´

σprjq
T s̄1 ` Xpj´1q mod d

¨ ȳ
peq

rj{ds
´ z

peq

j

¯

` γi,257 ¨
`

σps̄1q
T s̄1 ´ B

˘

for i “ 1, . . . , λ,

– pT s̄1 “ ui for i “ 1, 2, . . . , n1,
return I, ps̄1, s̄2, m̄, c̄q and v “ 1.

9. Otherwise, return v “ 0.

a The extractor does not explicitly query the random oracles, but instead retrieves the outputs from the recorded
list of query-response pairs from Step 1.

Fig. 21: Subextractor E3 as a pQ ` 4q-query random oracle algorithm.

getting the responses from the full-fledged random oracles j⃗i P CUi
i where Ui “ |t0, 1uďui | and Ci is the

codomain of the i-th random oracle. Hence, the extractor is essentially running the abstract sampling game
from Fig. 19. Indeed, we can treat the array M as the function table of the extractor E4. Given randomness
r and random oracle tables j⃗i, an entry of M consists of a tuple pv,h, i, s, zq, where v denotes the value of v,
h “ 3 denotes the thirds random oracle, i is the value of i “ I3, s is the extracted vector (i.e. either a MSIS
solution or a valid solution for the single quadratic equation) and z “ I.

We now show how different parameters, such as X , P, T , relate to our scenario. Let us define X “ X0 YX1

where

X0 :“
␣

px, Iq P Rm1`m2
q zt0u ˆ t0, 1u˚ :

“

A1 A2

‰

x “ 0 ^ }x} ď B̄
(

X1 :“
!´

ps̄1, s̄2, ȳ
peq, ḡq, I

¯

P Rm1
q ˆ Rm2

q ˆ R256{d`λ
q ˆ t0, 1u˚ : equations in (86) hold

)

.

We claim that X is q
´d{2
1 -probabilistically-testable w.r.t.M . To see that, suppose that E4 outputs pv,h, i, s, zq,

where v “ 1,h “ 3, and suppose that ps, zq R X . First, this means that the output of s is not a valid MSIS
solution. But since v “ 1, we have s “ ps̄1, s̄2, ȳ

peq, ḡq and

0 “

λ
ÿ

i“1

µi ¨

˜

ḡi `

256
ÿ

j“1

γi,j ¨

´

σprjqT s̄1 `Xpj´1q mod d ¨ ȳ
peq

rj{ds
´ z

peq

j

¯

` γi,257 ¨
`

σps̄1qT s̄1 ´B
˘

´ hi

¸

`

n1
ÿ

i“1

µλ`i ¨
`

pT
i s̄1 ´ ui

˘

.
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If
`

ps̄1, s̄2, ȳ
peq, ḡq, I

˘

R X , then with probability at most q
´d{2
1 over the choice of µ1

1, . . . , µ
1
n1`λ Ð Rq, we

have

0 “

λ
ÿ

i“1

µ1
i ¨

˜

ḡi `

256
ÿ

j“1

γi,j ¨

´

σprjqT s̄1 `Xpj´1q mod d ¨ ȳ
peq

rj{ds
´ z

peq

j

¯

` γi,257 ¨
`

σps̄1qT s̄1 ´B
˘

´ hi

¸

`

n1
ÿ

i“1

µ1
λ`i ¨

`

pT
i s̄1 ´ ui

˘

.

This means that if we run E4 for the same fixed random oracles apart from the i-th query to RO3, where we
pick a fresh random challenge pµ1

1, . . . , µ
1
n1`λq, the extractor outputs exactly p1, 3, i, ps̄1, s̄2, ȳ

peq, ḡq, I1q with

probability at most q
´d{2
1 .

Next, to get the bounds on P and T used in Lemmas B.4 and B.6, we use the following observation from
[AFK21]. First, the index vector outputted by E4 matches the index vector outputted by P˚ by [AFK21,
Lemma 7]. Further, for fixed randomness r, its output can only change if a random oracle is reprogrammed in
one of the queried indices. Hence, for each randomness r and fixed random oracles j⃗1, j⃗2, j⃗3, j⃗4, there exists a
set Spr, j⃗1, j⃗2, j⃗3, j⃗4q Ď tph, iq : h P r4s ^ i P t0, 1uďu1u (indicating queries made by P˚) such that P˚’s output
will not change if reprogrammed at the i-th index of the h-th random oracle where ph, iq R Spr, j⃗1, j⃗2, j⃗3, j⃗4q.
Hence, the conditions of Lemmas B.4 and B.6 are satisfied and thus P ď Q` 1 and T ď Q.

We can now analyse the algorithm E3. Concretely, by Lemmas B.3, B.4 and B.8, we get that E3 outputs
v “ 1 with probability at least

ˆ

ε´ pQ` 1q ¨
2

|C|

˙

´ pQ` 1q ¨ q
´d{2
1 “ ε´ pQ` 1q ¨

ˆ

2

|C|
` q

´d{2
1

˙

.

For the expected number of queries to A, we apply the strategy from the proof of [AFK21, Proposition 2]
and analyse the weighted version of the abstract sampling game where Γ pr, j⃗1, j⃗2, j⃗3, j⃗4q is the (expected)
cost of fully running E4 and γ “ 1 which indicates the cost of an early abort invocation of E4. Then, by
Lemmas B.5, B.6 and B.8 we get that the expected cost of running E3 is at most

2 ¨ p3 ` 2Qq `Q “ 6 ` 5Q

which concludes the proof. [\

Further, we turn to defining the subextractor E2 which is informally responsible for proving knowledge s⃗1
and y⃗ such that Rpeqs⃗1 ` y⃗ “ z⃗peq. We describe the subextractor in Fig. 22. As before, E2 uses the early abort
feature as E3. We summarise its security properties below.

Lemma B.10. The extractor E2 makes an expected number of at most 12 ` 11Q queries to A. Also, E2
outputs v “ 1 with probability at least

ε´ pQ` 1q ¨

ˆ

2

|C|
` q

´d{2
1 ` q´λ

1

˙

.

Next, let I “ pI1, I2, I3, I4, I5q be the index vector obtained by E2 in the first step and denote

´

R
peq

0 , R
peq

1

¯

:“ RO1 pI1q , I2 :“ ppp, x, tA, t
peq, z⃗peq, tgq.

Then, conditioned on v “ 1, the extractor either returns: ps̄1, s̄2, ȳ
peq, ḡ, c̄q P Rm1

q ˆ Rm2
q ˆ R256{d`λ

q ˆ C̄
which satisfies the following relations:

»

–

tA
tpeq

tg

fi

fl “

»

–

A1

0
0

fi

fl s̄1 `

»

–

A2

Bpeq

Bg

fi

fl s̄2 `

»

–

0

ȳpeq

ḡ

fi

fl , }c̄s̄1} ď 2B1, }c̄s̄2} ď 2B2
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Black-box access to: E3

1. Run E3 with randomness ρ Ð R as follows: relay the Q ` µ random oracle queries to the random oracles
and record all query-response pairs. Set i “ I2 and let pγi,jqiPrλs,jPr257s be the response to query i. Obtain
pI, y, vq.

2. If v “ 0, abort and return v “ 0.
3. Otherwise, repeat:

– sample pγ1
i,jqiPrλs,jPr257s Ð Zλˆ257

q ,
– run E3 with randomness ρ as follows to obtain pI1, y1, v1

q, aborting right after the initial run of P˚ if
I 1
2 ‰ I2: answer the query to i with pγ1

i,jqiPrλs,jPr257s while answering all the other queries consistently if
the query was performed by E3 in the previous run, and with fresh random value otherwise,

until a challenge pγ1
i,jq with v1

“ 1 and I 1
2 “ I2 has been found.

4. If y (resp. y1) is a MSIS solution for the matrix rA1 | A2s, return I, y (resp. y1) and v “ 1.

5. Parse y “ ps̄1, s̄2, m̄ “ pȳpeq, ḡq, c̄q and y1
“ ps̄1

1, s̄
1
2, m̄

1
“ pȳpeq1

, ḡ1
q, c̄1

q.

6. If s̄1 ‰ s̄1
1 or s̄2 ‰ s̄1

2, return I,

„

c̄c̄1
ps̄1 ´ s̄1

1q

c̄c̄1
ps̄2 ´ s̄1

2q

ȷ

as the MSIS solution to rA1 | A2s and v “ 1.

7. Parse
´

R
peq

0 , R
peq

1

¯

:“ RO1 pI1q and I2 :“ ppp, x, tA, t
peq, z⃗peq, tgq.

8. If
´

R
peq

0 ´ R
peq

1

¯

⃗̄s1 ` ⃗̄ypeq
“ z⃗peq and x⃗̄s1, ⃗̄s1y “ B, then return I, ps̄1, s̄2, m̄, c̄q and v “ 1.

9. Otherwise, return v “ 0.

Fig. 22: Subextractor E2 as a pQ ` 4q-query random oracle algorithm.

and
´

R
peq

0 ´R
peq

1

¯

⃗̄s1 ` ⃗̄ypeq “ z⃗peq, x⃗̄s1, ⃗̄s1y “ B, pT s̄1 “ ui for i “ 1, 2, . . . , n1, (87)

or a MSISn,m1`m2,B̄ solution for the matrix rA1 | A2s.

Proof. Almost identically as in the previous proof, we reduce the problem to the abstract sampling game
from Fig. 19. Namely, let the array M be the function table of the extractor E3. Given randomness r and
random oracle tables j⃗i, an entry of M consists of a tuple pv,h, i, s, zq, where v denotes the value of v, h “ 2
denotes the second random oracle, i is the value of i “ I2, s is the extracted vector (i.e. either a MSIS solution
or a valid solution for the multiple quadratic equations). and z “ I, which in particular contains ph1, . . . , hλq

such that h̃1 “ . . . “ h̃λ “ 0 if v “ 1.
Let X “ X0 Y X1 where

X0 :“
␣

px, Iq P Rm1`m2
q zt0u ˆ t0, 1u˚ :

“

A1 A2

‰

x “ 0 ^ }x} ď B̄
(

X1 :“
!´

ps̄1, s̄2, ȳ
peq, ḡq, I

¯

P Rm1
q ˆ Rm2

q ˆ R256{d`λ
q ˆ t0, 1u˚ : equations in (87) hold

)

.

We claim that X is q´λ
1 -probabilistically-testable w.r.t. M . To see that, suppose that E3 outputs pv,h, i, s, zq,

where v “ 1,h “ 2, and suppose that ps, zq R X . First, this means that the output of s is not a valid MSIS
solution. Moreover, since v “ 1, we have s “ ps̄1, s̄2, ȳ

peq, ḡq and

hi “ ḡi `

256
ÿ

j“1

γi,j ¨

´

σprjqT s̄1 `Xpj´1q mod d ¨ ȳ
peq

rj{ds
´ z

peq

j

¯

` γi,257 ¨
`

σps̄1qT s̄1 ´B
˘

for i “ 1, 2, . . . , λ

pT s̄1 “ ui for i “ 1, 2, . . . , n1.

Now, because ps, zq R X , either

´

R
peq

0 ´R
peq

1

¯

⃗̄s1 ` ⃗̄ypeq ‰ z⃗peq or x⃗̄s1, ⃗̄s1y ‰ B.
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Thus, for any polynomials h1
1, . . . , h

1
λ P Rq with constant coefficients equal to zero, with probability at most

q´λ
1 over the randomness of pγ1

i,jq Ð Zλˆ257
q , we have29

h1
i “ ḡi `

256
ÿ

j“1

γ1
i,j ¨

´

σprjqT s̄1 `Xpj´1q mod d ¨ ȳ
peq

rj{ds
´ z

peq

j

¯

` γ1
i,257 ¨

`

σps̄1qT s̄1 ´B
˘

for i “ 1, 2, . . . , λ.

This means that if we run E3 for the same fixed random oracles apart from the i-th query to RO2, where we
pick a fresh random challenge pγ1

i,jq, the extractor outputs exactly p1, 2, i, ps̄1, s̄2, ȳ
peq, ḡq, I1q with probability

at most q´λ
1 . The rest of the proof follows identically as in the proof of Lemma B.9. [\

Finally, we define the extractor E1 in Fig. 23 which is informally responsible for proving approximate shortness
of s⃗1. We then summarise the properties of E1 below.

Black-box access to: E2

1. Run E2 with randomness ρ Ð R as follows: relay the Q`µ random oracle queries to the random oracles and
record all query-response pairs. Set i “ I1 and let pR

peq

0 , R
peq

1 q be the response to query i. Obtain pI, y, vq.
2. If v “ 0, abort and return v “ 0.
3. Otherwise, repeat:

– sample pR
peq1

0 , R
peq1

1 q Ð
`

t0, 1u
256ˆm1d

˘2
,

– run E2 with randomness ρ as follows to obtain pI1, y1, v1
q, aborting right after the initial run of P˚ if

I 1
2 ‰ I2: answer the query to i with pR

peq1

0 , R
peq1

1 q while answering all the other queries consistently if
the query was performed by E2 in the previous run, and with fresh random value otherwise,

until a challenge pR
peq1

0 , R
peq1

1 q with v1
“ 1 and I 1

1 “ I1 has been found.
4. If y (resp. y1) is a MSIS solution for the matrix rA1 | A2s, return I, y (resp. y1) and v “ 1.

5. Parse y “ ps̄1, s̄2, m̄ “ pȳpeq, ḡq, c̄q and y1
“ ps̄1

1, s̄
1
2, m̄

1
“ pȳpeq1

, ḡ1
q, c̄1

q.

6. If s̄1 ‰ s̄1
1 or s̄2 ‰ s̄1

2, return I,

„

c̄c̄1
ps̄1 ´ s̄1

1q

c̄c̄1
ps̄2 ´ s̄1

2q

ȷ

as the MSIS solution to rA1 | A2s and v “ 1.

7. If }s̄1} ă 2?
26
Be, return I, ps̄1, s̄2, ȳ

peq, c̄q and v “ 1.
8. Otherwise, return v “ 0.

Fig. 23: Subextractor E3 as a pQ ` 4q-query random oracle algorithm.

Lemma B.11. The extractor E1 makes an expected number of at most 24 ` 23Q queries to A. Also, E1
outputs v “ 1 with probability at least

ε´ pQ` 1q ¨

ˆ

2

|C|
` q

´d{2
1 ` q´λ

1 ` 2´128

˙

.

Next, let I “ pI1, I2, I3, I4, I5q be the index vector obtained by E1 in the first step and denote I1 :“ ppp, x, tA, t
peqq.

Then, conditioned on v “ 1, the extractor either returns: ps̄1, s̄2, ȳ
peq, c̄q P Rm1

q ˆ Rm2
q ˆ R256{d`λ

q ˆ C̄ which
satisfies the following relations:

„

tA
tpeq

ȷ

“

„

A1

0

ȷ

s̄1 `

„

A2

Bpeq

ȷ

s̄2 `

„

0

ȳpeq

ȷ

, }c̄s̄1} ď 2B1, }c̄s̄2} ď 2B2

and

}s̄1} ă
2

?
26
Be, x⃗̄s1, ⃗̄s1y “ B, pT s̄1 “ ui for i “ 1, 2, . . . , n1, (88)

or a MSISn,m1`m2,B̄ solution for the matrix rA1 | A2s

29 This observation follows directly by analysing this equation on the level of constant coefficients.
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Proof. As in the proof of Lemma B.9, we reduce the problem to the abstract sampling game. Let the array
M be the function table of the extractor E2. Given randomness r and random oracle tables j⃗i, an entry of
M consists of a tuple pv,h, i, s, zq, where v denotes the value of v, h “ 1 denotes the first random oracle, i is
the value of i “ I1, s is the extracted vector (i.e. either a MSIS solution or a valid solution for the multiple
quadratic equations). and z “ I, which in particular contains z⃗peq such that }z⃗peq} ď Be if v “ 1.

Let X “ X0 Y X1 where

X0 :“
␣

px, Iq P Rm1`m2
q zt0u ˆ t0, 1u˚ :

“

A1 A2

‰

x “ 0 ^ }x} ď B̄
(

X1 :“
!´

ps̄1, s̄2, ȳ
peqq, I

¯

P Rm1
q ˆ Rm2

q ˆ R256{d
q ˆ t0, 1u˚ : equations in (88) hold

)

.

We claim that X is 2´128-probabilistically-testable w.r.t. M . Indeed, suppose that E2 outputs pv,h, i, s, zq,
where v “ 1,h “ 1, and suppose that ps, zq R X . First, this means that the output of s is not a valid MSIS
solution. Because v “ 1, we have s “ ps̄1, s̄2, ȳ

peq, ḡq and

´

R
peq

0 ´R
peq

1

¯

⃗̄s1 ` ⃗̄ypeq “ z⃗peq, x⃗̄s1, ⃗̄s1y “ B, pT s̄1 “ ui for i “ 1, 2, . . . , n1.

Now, because ps, zq R X , this means that }s1} ą 2?
26
Be. Then, by Lemma 2.9, for any vector z⃗peq

1

P Z256
q

such that }z⃗peq
1

} ď Be we have:

Pr
pR

peq1

0 ,R
peq1

1 qÐpt0,1u256ˆm1dq
2

”´

R
peq

1

0 ´R
peq

1

1

¯

⃗̄s1 ` ⃗̄ypeq “ z⃗peq
1

mod q
ı

ď 2´128.

This implies that if we run E2 for the same fixed random oracles apart from the i-th query to RO1, where

we pick a fresh random challenge pR
peq

1

0 , R
peq

1

1 q, the extractor outputs exactly p1, 1, i, ps̄1, s̄2, ȳ
peqq, I1q with

probability at most 2´128. The rest of the proof follows identically as in the proof of Lemma B.9. [\

Eventually, we define the extractor E to basically run E1 and answer any random oracle queries using lazy
sampling. It then obtains a vector s1 P Rm1

q such that Ps1 “ u over Rq, as well as x⃗̄s1, ⃗̄s1y “ B over Zq and

}s̄1} ă 2?
26
Be. However, by assumption on q:

´q ă ´B ď }s̄1}2 ´B ď

ˆ

2
?
26
Be

˙2

´Be “
2

13
B2

e ´Be ă q

and thus }s̄1}2 “ B which concludes the proof. [\
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