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Abstract. We describe FPGA implementations of the Spook candidate
to the NIST lightweight cryptography competition in two flavors. First,
unprotected implementations that exhibit the excellent throughput and
energy consumption for the area target specified by the NIST benchmark-
ing initiative. Second, protected implementations leveraging the leveled
implementation concept that the Spook design enables and confirming
the significant performance gains that it enables.

1 Introduction

Spook is Authenticated Encryption with Additionnal Data (AEAD) scheme. It
is a Round 2 candidate to the NIST LightWeight Cryptography (LWC) competi-
tion.1 Its primary design goals are resistance against side-channel attacks (SCAs)
and energy efficient implementation. Spook is build on the TETSponge AEAD
mode, that is based on two primitives: a Tweakable Block Cipher (TBC) used
in the key generation and tag generation parts of the mode, and a permutation
used in the the sponge part of the mode [8]. The TBC of Spook is Clyde-128 and
(in the primary variant of the mode) its permutation is Shadow-512. Both algo-
rithms are named after their block size. Recently, an update of Spook (Spook v2)
has been introduced [3], in order to increase the security margins of Shadow-512
while also improving the performances of some of its components.

Since the NIST LWC competition is aimed at standardizing “lightweight
cryptographic algorithms that are suitable for use in constrained environments”,
evaluating their implementation results is of primary importance for the compar-
ison of different candidates. Relevant constrained environments include hardware
platforms such as FPGAs and ASICs. Therefore, in order to make the comparison
of hardware cipher implementations easier and more fair, a common hardware
API (next denoted as the LWC HW API) was proposed by the Athena Project
benchmark initiative, which we use next [9].

Since the embedded platforms are one of the main targets for the NIST LWC
competition, side-channel attacks (SCA) are important to consider. The Spook
cipher is designed with this concern in mind, and it is expected that it can be
implemented with excellent protection against SCAs and limited overheads. For
this purpose, one of the main countermeasures against SCAs is masking. It is

1 https://csrc.nist.gov/projects/lightweight-cryptography.

https://csrc.nist.gov/projects/lightweight-cryptography


an algorithmic protection that consists in replacing every intermediate value in
a computation by a set of so-called shares that are individually independent
of the secret intermediate value [7]. Although the design of efficient masking
schemes has been extensively studied, implementing a cryptographic primitive in
a masked fashion still incurs significant overheads. The TETSponge mode used
in Spook aims at enabling so-called leveled implementations, which minimize
these overheads by ensuring strong security guarantees against leakage with only
two calls to a strongly protected (e.g., masked) TBC while only requiring weak
protections (or in parallel hardware implementations, no protection at all) for
the other permutation calls used to process the message.

In this paper, we present two hardware implementations of Spook: an un-
protected one and a leveled, protected one (where Clyde-128 is masked). Both
implementations are compliant with the LWC HW API and have been designed
in a general architecture where API handling features are common for the two
implementations, and only the block implementing core primitives differs. In ad-
dition to performance improvements for the unprotected core compared to the
preliminary results reported in [10] and [3], we also present the first results of
side-channel protected implementations of the full Spook algorithm.

The paper is organized in four parts. First, we describe the general archi-
tecture. Next, details about both the unprotected and the protected cores are
given. Finally, performance metrics for both implementations are presented.

2 General framework

In this section, we describe at a high level the main blocks of the implementations
and how they interface. The implementations are built around a crypto core
block which implements the cryptographic functionality and is optimized to be
as small and efficient as possible, at the expense of an increase of complexity in
its interfaces: it has many control signals, and the input data must be provided
in fixed-sized, already padded blocks. The interface of the crypto core is however
identical for both normal and masked implementations. The other blocks adapt
the crypto core to the more standard interface of the LWC HW API [9].

We next briefly recall the LWC HW API, then describe the various blocks
that interact to implement it: the crypto core, segment manager, main FSM,
encoder, decoder and SDI handler, as shown in Figure 1.

2.1 LWC HW API

The LWC HW API is based around three interfaces: the public data input (PDI),
the secret data input (SDI), and the data output (DO). An additional interface
(RDI) dedicated to provides fresh randomness is considered in the case of pro-
tected implementations. Each interface features a bus of a given width (32 bits
in our implementation), a valid signal and a ready signal. The interface is syn-
chronous and unidirectional, with the bus and valid signals going in the direction
of the interface and the ready signal going in the opposite direction. A transfer
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Fig. 1. General framework.

occurs on the interface if, at a given clock cycle, both valid and ready signals
are high. The data transferred is the one present on the bus at that clock cycle.

On each interface, two kinds of data are transferred: instructions and seg-
ments. An instruction consists in a single 32-bit transfer while a segment starts
with a transfer containing the segment header, followed by a number of payload
transfers (the number of payload transfers is contained in the segment header).
Three main instructions are considered: ACTKEY (used to start the loading of a
new key through the SDI interface), ENC and DEC (used to start respectively an
encryption or a decryption process). Two additional status instructions indicate
the successful completion of an instruction: SUCCESS and FAILURE. Finally,
only the segments types allowing the independent transfer of the following data
are considered: the key (only on the SDI interface), the nonce, the associated
data, the plaintext, the ciphertext and the tag. No merged data segment (e.g.,
Npub || AD) are supported.

The typical operation of the LWC HW API is as follows: first, the key is
loaded by sending an activate key instruction on the PDI, followed by a key load
instruction and a key segment on the SDI. Then, an encrypt (resp., decrypt)
instruction is sent on the PDI, followed by a Nonce segment, one empty segment
(i.e., of length 0) or any number of AD segments, with one empty or any number
of plaintext (resp., ciphertext) segments. Finally, for decryption operation, a tag
segment is sent. For each plaintext (resp., ciphertext) segment on the PDI, a
ciphertext (resp., plaintext) segment is produced on the DO. An additional tag
segment followed by a SUCCESS status are produced on the DO at the end
of an encryption operation. Decryption operation additionally outputs a status
instruction on the DO indicating if the decryption succeeded or failed.



2.2 Crypto core

The crypto core implements the cryptographic functionality and comes in two
flavours: the unprotected core (Section 3) and the protected core (Section 4)
which contains a masked implementation of the Clyde-128 TBC.

The main input of the crypto core is a bus carrying blocks of 256 bits of
AD, plaintext or ciphertext (matching the rate of the TETSponge mode). Those
blocks must be padded, and metadata about which bytes are padding is required.
A 32-bit SDI input bus carries the key, while another 32-bit bus inputs the nonce
and the tag. The only output is a 128-bit bus, which corresponds to half a block
(matching the crypto core internal pipeline width) or to the size of the tag.

The control signal of the core, in addition to the validity/readiness of each
bus, are initialization and finalization commands, and encryption/decryption
mode selection. Additionally, there is a tag ok signal that is the output of the
tag verification circuit, a busy signal to indicate readiness of the core and a
need nonce signal to report to the main FSM that the value of the nonce is still
required and cannot be overwritten.

The wide input bus of the core aims at maximizing its flexibility, leaving the
integrator to use the buffering strategy that is most suited for each use-case.
Since implementing the padding feature on such a wide bus would be expensive,
it has been decided not to implement it in the crypto core, which allows for more
optimized implementations.

2.3 Segment Manager

The segment manager is set up (by the main FSM) with the length (in bytes) of
a segment, then takes inputs from a 32-bit bus and concatenates them in 256-bit
blocks (padding if necessary). The segment manager is built around a 256-bit
shift register (the block builder) and padding logic operating over 32 bits.

Its block output is fed to the crypto core, along with metadata: which bytes
of the block are padding, whether the block is AD, whether the block is the first
of its type (that is, first block of AD/plaintext/ciphertext).

The control interface to the main FSM is made of the initilization new seg
signal, the length of the segment and whether the segment is the first of its type.
The segment manager signals the last segment transfer with the feed last signal.

2.4 Other supporting blocks

The main FSM controls the crypto core, the Segment manager and the SDI
handler. It also sends output segment headers to the encoder. The decoder is a
combinational block that decodes instructions and segment headers. The encoder
builds the output from segment headers and result instructions provided by the
main FSM and segment data from the crypto core. It contains a full 256-bit
buffer for the segment data (in order to avoid stalling the crypto core while the
output is transferred) and a 32-bit instruction buffer (to avoid stalling the main
FSM). The SDI handler filters instructions and segment headers from the SDI
input, and controls the transfer of the key to the crypto core.



2.5 Timing and interfaces

The data interfaces between the blocks follow the data/valid/ready principle of
the LWC HW API. However, for performance reason (reducing critical path),
the data signal is one cycle late with respect to the valid/ready signal on the
segment manager to cryto core and crypto core to encoder interfaces.

2.6 Compliance with the LWC HW API

Our implementation follows the minimum compliance criteria described in [9].
The interface bus width is limited to 32 bits. The size of the AD/PT data is not
limited by the implementation (provided that these are split in one or multiple
segments having a maximum size of 216 − 1 bytes of payload each, as mandated
by the LWC HW API). After the encrypt (resp., decrypt) instruction and once
the key has been loaded, the core expect the following segment order at the
PDI interface during an encryption process: public nonce, associated data and
plaintext (resp., ciphertext). The data segments produced at the DO interface
are the ciphertext (resp., plaintext) followed by the tag (resp., no other segment).

The only non-compliance to be noted with the LWC HW API is the way
the shared key data is sent to the core for the protected implementation. The
LWC HW API transfers all the shares of each key word sequentially, which could
lead to security order reduction: if leakage on the SDI bus depends on the XOR
between sequential values (a.k.a. transition leakage), then the security order may
be halved [1]. Instead, our implementation transfers one share of all words at
a time, and process all shares sequentially. The transition occurs then between
shares of of different words, which mitigates their impact.

3 Unprotected core

In this section, we describe the unprotected Spook core. Its architecture is ori-
ented towards the area requirements specified for the NIST benchmarking effort
(https://cryptography.gmu.edu/athena/LWC/LWC_Suggested_FPGA_Design_
Goals.pdf) while optimizing throughput and energy consumption.

3.1 Overview

As represented in Figure 2, the unprotected core is composed of two main parts:
the primitive core unit (Figure 3) contains most of the core’s datapath; the core
FSM drives the datapath according to the commands issued by the Main FSM.
Other parts are two 128-bit registers to store the nonce or tag (N/T holder) and
the key (key holder), respectively. A 128-bit MUX selects the output of the core
as either the plaintext/ciphertext (aka digestion result) or the tag.

https://cryptography.gmu.edu/athena/LWC/LWC_Suggested_FPGA_Design_Goals.pdf
https://cryptography.gmu.edu/athena/LWC/LWC_Suggested_FPGA_Design_Goals.pdf
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Fig. 2. Unprotected crypto core.
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3.2 Primitive core

The main functionality of the primitive core is the implementation of the Clyde-
128 (tweakable block cipher) and Shadow-512 (permutation) cryptographic prim-
itives. The primitive core architecture is introduced in [3], to which we refer for
the description of the implemented algorithms and for a high-level overview. For
completeness, we recall and expand the description of its architecture.

The architecture operates on 128 bits, hence it requires 4 cycles to execute a
round of Shadow-512 and 1 cycle for a round of Clyde-128. Furthermore, thanks
to the similarities between Clyde and Shadow (same S-box, L-box, etc.), the
ability to compute Clyde-128 can be added on top of the implementation of
Shadow-512 with little additional logic.

On Figure 3, each bus is 128-bit wide unless indicated otherwise. The IOs
(in red) are the nonce, key, tag, bytes to digest (denoted as Din, that are AD
padded plaintext or ciphertext) and the digested bytes (denoted as Dout, that are
plaintext or ciphertext). The symbols S, L, D and W in logic blocks correspond
respectively to the S-box, L-box, D-box and constant addition.

The mix ciphertext module is only used during a decryption process to mix
the partial input ciphertext block with the state of the sponge before it is used
during the following execution of Shadow-512. The signals α0 and α1 control the
addition of the domain separation bits.

To compute Clyde-128, the initial plaintext and tweak are respectively stored
in the registers R0 and R1. The control signal mode RB is unset (i.e., equals 0)
while mode clyde is set. In this way, the state of Clyde-128 cycles through the R0
register and the SLW logic (and the tweakey addition) at the rate of one round



per clock cycle. Therefore, the full Clyde-128 computation takes 12 cycles. The
tweak flows through registers R1, R2 and through the φ logic, producing a valid
updated tweak every two clock cycles.

For Shadow-512, the four 128-bit bundles b0, . . . , b3 are stored in the registers
R0 to R3. Those registers act as a large circular shift register with two shifting
modes. Shadow-512 uses two rounds that differ in their linear layer. For Round
A (and the S-box of round B), the data cycles from R3 to R0, then through the
SLW unit and the S unit back to R3, computing a full round in four cycles (all
mux controls are unset). For Round B (except its S-box), data is cycling inside
the same Ri register: the signal mode RB is set, forwarding the data to the DW
unit (that updates a part of it input and shifts the other part) for 4 cycles.

When starting the Spook operation, the N and 0* values are loaded in R0

and R1 respectively during the first clock cycle. Then, in 12 cycles, the first call
of Clyde-128 is computed, producing the fresh seed B.

Next, during the first round of the first execution of Shadow-512, the initial
state (i.e., 0∗||N ||0∗||B) is loaded sequentially per bundle (except for B), using
again the control signals feed0 and feedN. Shadow is then executed (in 48 cycles
per execution), and the digest unit is used a the beginning of each execution when
AD/P/C needs to be fed. Finally, the Clyde tag computation takes 12 cycles,
with the signal t set in order to ensure that the MSB of the tweak is high.

Two LFSRs are used in order to generate the constants of the primitives: a
4-bit LFSR for Clyde and a 32-bit LFSR for Shadow.

4 Protected core

In this section, we describe the protected Spook core architecture. The latter
aims at providing high security against leakage by only masking the Clyde-128
TBC. Precisely, such an implementation offers strong integrity guarantees (i.e.,
ciphertext integrity with misuse-resistance and leakage in encryption and decryp-
tion) and the best confidentiality guarantees that can be reached with a one-pass
design (i.e., CCA security with misuse-resilience and leakage in encryption only).
See [4] for a discussion. As for performance, such a leveled implementation aims
maintaining the throughput and energy efficiency of the unprotected core at the
cost of a larger (but manageable) circuit.

4.1 Overview

As explained in [3], a protected Spook implementation can leverage a leveled
architecture. This means that, thanks to the TETSponge mode, the side-channel
security (and therefore the area cost, speed and energy consumption) of the
Clyde-128 and Shadow-512 implementations can significantly differ. The first
one protects a long-term key and has to be strongly protected against side-
channel attacks (i.e., ensure DPA security) – we will use masking for this purpose.
The second one protects ephemeral secrets and requires weaker (and cheaper)
protections (i.e., ensure SPA security) – we will use an unprotected parallel



implementations for this purpose. In order to ensure the integrity guarantees,
one can choose between implementing a masked tag verification or to exploit
the (unprotected) inverse-based tag verification from [5]. We used the slightly
cheaper and concetually simpler inverse-based solution.

The protected core contains two independent sub-cores: the Shadow core and
MSKClyde core, as depicted in Figure 4. The first one computes the Shadow512
primitive and and does not use any special countermeasures. The other com-
putes both the direct and the inverse operations of the Clyde128 primitive and
is masked. The Shadow core follows the same architecture as the primitive core
described in Section 3. The main difference is that the logic related to the compu-
tation of Clyde-128 (i.e., The Φ logic, the tweakey addition, the 4-bits constant
addition and the bypass multiplexer) are removed. The MSKClyde is deeply
changed: its architecture will be detailed in Section 4.2.

While the N/T data holder is the same as for the unprotected case, the key
holder is modified in order to manage shared key values: in addition to increasing
its size, a refresh mechanism is added, in order to refresh the key after each Clyde-
128 evaluation. The refresh algorithm is as follows: let d be the number of shares,
let x0, . . . , xd−1 be the shares and r0, . . . , rd−1 be random bits (taken from a 128-
bit LFSR PRNG), the refreshed shares are xi ← xi⊕ri⊕r(i+1 mod d), (which we
assume sufficient in practice, see [2], Theorem 4) A Random Data Input (RDI)
interface is added and is handled by a RDI handler that, when activated, reseeds
the PRNGs of the key holder and of the MSKClyde.

4.2 Architecture of the masked Clyde module

The MSKClyde core relies on the HPC2 glitch-resistant masking scheme pro-
posed in [6], which provides state-of-the-art guarantees of composability in the
presence of physical defaults like glitches. As depicted in Figure 5, it takes as
input an unshared tweak (i.e., clyde tweak), an unshared plaintext/ciphertext
(i.e., clyde din), a shared key (i.e., key sharing) and outputs a shared cipher-
text/plaintext (i.e., dout) that is then recombined (i.e., clyde dout). Similarly to
most masking schemes, the HPC2 scheme requires fresh randomness to perform
the non-linear operations in a secure manner. Randomness is provided by the
rnd0 and rnd1 busses, and is generated by dedicated PRNGs (i.e., PRNG0 and
PRNG1). Each PRNG is implemented with parallel 128-bits LFSRs, each pro-
ducing 32 fresh random bits per clock cycle. We focused on the case where these
LFSRs allow to generate all the required randomness (i.e., d ∗ (d − 1) bits per
bus and per Sbox) in 1 clock cycle. As a result, the exact amount of parallel
LFSRs depends on the number of shares chosen for the masking scheme.

A wrapper (the Stalling Unit) is used to ensure that the randomness is valid
when required (i.e., when the signal need rnd* is asserted) and that it does not
enter the core earlier. In practice, the core asserts the signal pre need rndi 1
cycle before fresh randomness is required on the bus rndi. This has the effect of
starting the generation of fresh randonmness by the PRNGi. If the randomness
is not valid at the next clock cycle (i.e., the signal rndi valid is not asserted), the
MSKClyde core is stalled as long as it is the case.
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As shown in Figure 6, the MSKClyde core operates over a d ∗ 128-bit long
shared representation of the state (i.e., state sharing), where d is the number
of shares. To make this possible considering the unshared inputs, the processed
data first goes through a cst msk unit that trivially shares its input. When a
new execution starts, the signal new run is asserted during one clock cycle. This
has the effect of fetching the inputs in the core and resetting the submodules.
This step is followed by the first constant and tweakey additions performed by
the Add W TWK core, whose input is generated by the W unit and the δ unit,
providing respectively the values of the 4-bit constant (i.e., W) and the 128-bit
δ used to compute the tweakey. Both the W unit and the δ unit are similar to the
4-bits LFSR and the Φ unit of the unprotected core, except that an additional
register holds the evolving values of δ. The FSM Clyde core controls the update
of the later by asserting the signals upd W and upd delta during one clock cycle.
The signals add W and add TWK enable the addition of the corresponding value
inside the Add W TWK core. The shared value of the key is fed by the Key Holder
and does not change during the Clyde-128 computation.

The Clyde-128 rounds (composed of an Sbox layer, an L-box layer and a
constant addition) are computed by alternating between the Sbox layer logic
and the Lbox layer logic. The Clyde FSM core drives the datapath according
to the layer under computation and enables the addition of the constant and
of the tweakey when required. Two architectural parameters can be changed:
the number of parallel masked 4-bit S-boxes implemented in the S-box layer
logic (denoted by NSB) and the number of parallel masked 64-bit L-boxes in the



Lbox layer (denoted by NLS). By using multiple S-boxes/L-boxes in parallel and
combining them with a shift register strategy, the area versus latency trade-off
of the Clyde-128 core can be adjusted. In particular, the latency of the L-box
layer is 2/NLS with NLS being equal either to 1 or 2. For the S-box layer, the
latency is 3+32/NSB where NSB can take any of the following values: 1, 2, 4, 8,
16 and 32. The additional three cycles are due to the latency of a single masked
S-box that comes from masking scheme requirements [6].
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Fig. 6. Protected Clyde-128 core.

Each block developed above can compute its inverse operation, making straight-
forward the implementation of the inverse Clyde-128 primitive. Except for the
masked S-boxes, the inverse functionality of each unit is implemented using an
independent and parallel dedicated logic block. Both the direct and the inverse
functionality logic blocks are fed with the input data and their corresponding
output are muxed. The appropriate value is chosen depending on the value of
the signal inverse.

In order to reduce the logical cost, the implementation of the inverse S-
box reuses the already existing logic for the implementation of the direct one.
The S-box being nearly involutive, its inverse is obtained by applying a simple
linear layer at the inputs and outputs of the already existing core, as depicted
in Figure 7. This costs 5 XOR gates and 2 multiplexers while allowing to avoid
the costly logic of the masked AND gates.

5 Results

In this section, we present the results obtained for FPGA and ASIC implemen-
tations. The numbers we provided for both targets rely on the architectures



Sbox
Logic[d-1:0]

[d-1:0]

[d-1:0]

[d-1:0]

[d-1:0]

[d-1:0]

[d-1:0]

[d-1:0]

[d*4-1:0]

[4*d-1:0]

rnd0
rnd1

in
ve
rs
e

in
ve
rs
e

en
_s
b

Fig. 7. Protected S-box supporting direct and inverse operation.

described above. In particular, the protected implementation was synthetized
adopting NSB = 8 and NLB = 1 as degree of parallelization.

Note that an additional pipeline stage is considered between the core FSM
and the datapath of each crypto core. Combined with the possibility to replicate
some registers of the latter, is ease the routing of some sensitive control signal
driving multiplexers involved in the critical path.

The numbers provided for the FPGA target are based on an Artix7 FPGA
(xc7a50tcsg325-3) implementation performed with the Xilinx Vivado v2019.2.1
toolset. These results are shown in Table 1 and are given post place-and-route
(i.e., post-implementation). The table includes standard FPGA metrics, namely
the amount of slice registers and look-up tables required, the maximal clock
frequency, the latency and the corresponding throughpout (for long messages)
as well as the TPA (throuput to area ratio).

The maximum throughput is improved by 112 Mbps (11.7%) compared to the
results reported in [3]. This is achived with a slight resources increase (45 addi-
tional registers (3%) needed for the pipelining of control signals). The protected
core is larger than the unprotected one, but it achieves the same throughput.

Instance Regs LUTs Freq Latency Throughput
[Mhz] [cycles] [Mbps]

Unprotected 1527 2067 206.8 48 1102.9
Protected (d = 2) 5499 6340 200 48 1066.6
Protected (d = 3) 6209 9111 200 48 1066.6
Protected (d = 4) 8367 11555 200 48 1066.6

Table 1. Artix-7 implementation results (xc7a50tcsg325-3)

The numbers provided for the ASIC target are based on a 65nm technology
implementation performed with the TSMC-N65LP (low-power) design kit. The
tools are Cadence Genus v18.10-p003 1 for the synthesis and Cadence Innovus



v18.10-p002 1 for the place-and-route flow. The implementation relies on the use
of a clock-gating strategy in order to reduce the dynamic power when sub-blocks
are in idle state. The results are shown in Table 2 and are given post synthesis.
The table includes standard ASIC metrics, namely the area, the maximal clock
frequency, the estimated power consumption, the throughput (for long messages)
and the energy per bit. The latency is the same as for the FPGA implementation.

The results for the unprotected core exhibit a throughput improvement of
975 Mpbs (45%) compared to the results reported in [3]. This come at the signif-
icant area cost of 6.93 kGE (38%). Again, the protected core is larger than the
unprotected one, but it achieves the same throughput.

Instance Area Frequency Power Throughput Energy
[kGE] [Mhz] [mW] [Mbps] [nJ/bit]

Unprotected 25.13 588 7 3124 2.24
Protected (d = 2) 64.6 588 12.46 3124 3.99
Protected (d = 3) 88.8 588 17.611 3124 5.64
Protected (d = 4) 116.03 588 23.44 3124 7.5

Table 2. ASIC TSMC-N65 implementation results (post synthesis)

For short messages, the throughput is lower than the one shown in Table 1
and Table 2 due to the latency inherent to the initial/final executions of Clyde-
128. This takes 24 cycles for the unprotected core and 12 ∗ (2/NLS + 32/NSB +
3) cycles for the protected core. In Figure 8, we illustrate the throughput of
the implementations for various message lengths. It shows that the overhead
cost of initialization/finalization is small when the message is larger than 1 kB.
Furthermore, the number of implemented S-boxes in the protected Clyde-128
implementation can be reduced with limited impact on the latency.
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