On the Concrete Security of TLS 1.3 PSK Mode

Hannah Davis* Denis Diemert † Felix Günther ${ }^{\ddagger}$ Tibor Jager ${ }^{\S}$

September 26, 2023

Abstract

The pre-shared key (PSK) handshake modes of TLS 1.3 allow for the performant, low-latency resumption of previous connections and are widely used on the Web and by resource-constrained devices, e.g., in the Internet of Things. Taking advantage of these performance benefits with optimal and theoretically-sound parameters requires tight security proofs. We give the first tight security proofs for the TLS 1.3 PSK handshake modes.

Our main technical contribution is to address a gap in prior tight security proofs of TLS 1.3 which modeled either the entire key schedule or components thereof as independent random oracles to enable tight proof techniques. These approaches ignore existing interdependencies in TLS 1.3's key schedule, arising from the fact that the same cryptographic hash function is used in several components of the key schedule and the handshake more generally. We overcome this gap by proposing a new abstraction for the key schedule and carefully arguing its soundness via the indifferentiability framework. Interestingly, we observe that for one specific configuration, PSK-only mode with hash function SHA-384, it seems difficult to argue indifferentiability due to a lack of domain separation between the various hash function usages. We view this as an interesting insight for the design of protocols, such as future TLS versions.

For all other configurations however, our proofs significantly tighten the security of the TLS 1.3 PSK modes, confirming standardized parameters (for which prior bounds provided subpar or even void guarantees) and enabling a theoretically-sound deployment.

A preliminary version of this paper appears in the proceedings of the 41 st Annual International Conference on the Theory and Applications of Cryptology and Information Security (Eurocrypt 2022), DOI: 10.1007/978-3-030-78375-4_18. This is the full version.

[^0]
Contents

1 Introduction 3
2 The TLS 1.3 Pre-shared Key Handshake Protocol 7
3 Code-based MSKE Model for PSK Modes 10
3.1 Key Exchange Syntax 11
3.2 Key Exchange Security 11
4 Indifferentiability Background 16
5 Key-Schedule Indifferentiability 18
5.1 Indifferentiability for the TLS 1.3 Key Schedule in Three Steps 19
5.1.1 Step 1: Domain-separating the Transcript Hash 21
5.1.2 Step 2: Applying the Indifferentiability of HMAC 22
5.1.3 Step 3: Applying Indifferentiability to the TLS Key Schedule 24
6 Modularizing Handshake Encryption 28
6.1 Handshake Encryption as a Modular Transformation 31
7 Tight Security of the TLS 1.3 PSK Modes 34
7.1 TLS 1.3 PSK-only/PSK-(EC)DHE as a MSKE Protocol 34
7.2 Tight Security Analysis of TLS 1.3 PSK-(EC)DHE 35
7.3 Full Security Bound for TLS 1.3 PSK-(EC)DHE and PSK-only 53
8 Evaluation 55
8.1 Evaluation Details 55
A Collision Resistance of Random Oracles 63
B A Careful Discussion of Domain Separation 63
B. 1 PSK-only mode with SHA256 67
B. 2 Pre-shared key with Diffie-Hellmann mode with SHA256 68
B. 3 Pre-shared key with Diffie-Hellmann mode with SHA384 68
B. 4 PSK-only mode with SHA384 70
B. 5 Repairing Domain Separation for TLS 1.3-like Protocols 71

1 Introduction

The Transport Layer Security (TLS) protocol is probably the most widely-used cryptographic protocol. It provides a secure channel between two endpoints (client and server) for arbitrary higher-layer application protocols. Its most recent version, TLS 1.3 [54], specifies two different "modes" for the initial handshake establishing a secure session key: the main handshake mode based on a Diffie-Hellman key exchange and public-key authentication via digital signatures, and a pre-shared key (PSK) mode, which performs authentication based on symmetric keys. The latter is mainly used for two purposes:

Session resumption. Here, a prior TLS connection established a secure channel along with a pre-shared key PSK, usually via a full handshake. Subsequent TLS resumption sessions use this key for authentication and key derivation. For example, modern web browsers typically establish multiple TLS connections when loading a web site. Using public-key authentication only in an initial session and PSK-mode in subsequent ones minimizes the number of relatively expensive public-key computations and significantly improves performance for both clients and servers.

Out-of-band establishment. PSKs can also be established out-of-band, e.g., by manual configuration of devices or with a separate key establishment protocol. This enables secure communication in settings where a complex public-key infrastructure (PKI) is unsuitable, such as IoT applications.

TLS 1.3 provides two variants of the PSK handshake mode: PSK-only and PSK-(EC)DHE. The PSK-only mode is purely based on symmetric-key cryptography. This makes TLS accessible to resource-constrained low-cost devices, and other applications with strict performance requirements, but comes at the cost of not providing forward secrecy [34], since the latter is not achievable with static symmetric keys. ${ }^{1}$ The PSK-(EC)DHE mode in turn achieves forward secrecy by additionally performing an (elliptic-curve) Diffie-Hellman key exchange, authenticated via the PSK (i.e., still avoiding inefficient public-key signatures). This compromise between performance and security is the suggested choice for TLS 1.3 session resumption on the Internet.

Concrete security and tightness. Classical, complexity-theoretic security proofs considered the security of cryptosystems asymptotically. They are satisfied with security reductions running in polynomial time and having non-negligible success probability. However, it is well-known that this only guarantees that a sufficiently large security parameter exists asymptotically, but it does not guarantee that a deployed real-world cryptosystem with standardized parameters-such as concrete key lengths, sizes of algebraic groups, moduli, etc.-can achieve a certain expected security level. In contrast, a concrete security approach makes all bounds on the running time and success probability of adversaries explicit, for example, with a bound of the form

$$
\operatorname{Adv}(\mathcal{A}) \leq f(\mathcal{A}) \cdot \operatorname{Adv}(\mathcal{B})
$$

where f is a function of the adversary's resources and \mathcal{B} is an adversary against some underlying cryptographic hardness assumption.

The concrete security approach makes it possible to determine concrete deployment parameters that are supported by a formal security proof. As an intuitive toy example, suppose we want to achieve " 128 -bit security", that is, we want a security proof that guarantees (for any \mathcal{A} in a certain

[^1]class of adversaries) that $\operatorname{Adv}(\mathcal{A}) \leq 2^{-128}$. Suppose we have a cryptosystem with a reduction that loses " 40 bits of security" because we can only prove a bound of $f(\mathcal{A}) \leq 2^{40}$. This means that we have to instantiate the scheme with an underlying hardness assumption that achieves $\operatorname{Adv}(\mathcal{B}) \leq 2^{-168}$ for any \mathcal{B} in order to upper bound $\operatorname{Adv}(\mathcal{A})$ by 2^{-128} as desired. Hence, the 40 -bit security loss of the bound is compensated by larger parameters that provide " 168 -bit security".

This yields a theoretically-sound choice of deployment parameters, but it might incur a very significant performance loss, as it requires the choice of larger groups, moduli, or key lengths. For example, the size of an elliptic curve group scales quadratically with the expected bit security, so we would have to choose $|\mathbb{G}| \approx 2^{2 \cdot 168}=2^{336}$ instead of the optimal $|\mathbb{G}| \approx 2^{2 \cdot 128}=2^{256}$. The performance penalty is even more significant for finite field groups, RSA or discrete logarithms "modulo p ". This could lead to parameters which are either too large for practical use, or too small to be supported by the formal security analysis of the cryptosystem. We demonstrate this below for security proofs of TLS.

Even worse, for a given security proof the concrete loss ℓ may not be a constant, as in the above example, but very often ℓ depends on other parameters, such as the number of users or protocol sessions, for example. This makes it difficult to choose theoretically-sound parameters when bounds on these other parameters are not exactly known at the time of deployment. If then a concrete value for ℓ is estimated too small (e.g., because the number of users is underestimated), then the derived parameters are not backed by the security analysis. If ℓ is chosen too large, then it incurs an unnecessary performance overhead.

Therefore we want to have tight security proofs, where ℓ is a small constant, independent of any parameters that are unknown when the cryptosystem is deployed. This holds in particular for cryptosystems and protocols that are designed to maximize performance, such as the PSK modes of TLS 1.3 for session resumption or resource-constrained devices.

Previous analyses of the TLS handshake protocol and their tightness. TLS 1.3 is the first TLS version that was developed in a close collaboration between academia and industry. Early TLS 1.3 drafts were inspired by the OPTLS design by Krawczyk and Wee [47], and several draft revisions as well as the final TLS 1.3 standard in RFC 8446 [54] were analyzed by many different research groups, including computational/reductionist analyses of the full and PSK modes in [22, 24, 29, 25]. All reductions in these papers are however highly non-tight, having up to a quadratic security loss in the number of TLS sessions and adversary can interact with. For example, [19] explains that for "128-bit security" and plausible numbers of users and sessions, an RSA modulus of more than 10,000 bits would be necessary to compensate the loss of previous security proofs for TLS, even though 3072 bits are usually considered sufficient for " 128 -bit security" when the loss of reductions is not taken into account. Likewise, [15] argues that the tightness loss to the underlying Diffie-Hellman hardness assumption lets these bounds fail to meet the standardized elliptic curves' security target, and for large-scale adversary even yields completely vacuous bounds.

Recently, Davis and Günther [15] and Diemert and Jager [19] gave new, tight security proofs for the TLS 1.3 full handshake based on Diffie-Hellman key exchange and digital signatures (not PSKs). However, their results required very strong assumptions. One is that the underlying digital signature scheme is tightly secure in a multi-user setting with adaptive corruptions. While such signature schemes do exist $[3,33,18,36]$, this is not known for any of the signature schemes standardized for TLS 1.3, which are subject to the tightness lower bounds of [4] as their public keys uniquely determine the matching secret key.

Even more importantly, both [15] and [19] modeled the TLS key schedule or components thereof as independent random oracles. This was done to overcome the technical challenge that the Diffie-

Hellman secret and key shares need to be combined in the key derivation to apply their tight security proof strategy, following Cohn-Gordon et al. [13], yet in TLS 1.3 those values enter key derivation through separate function calls. But neither work provided formal justification for their modeling, and both neglected to address potential dependencies between the use of a hash function in the key schedule and elsewhere in the protocol.

Our contributions

In this paper, we describe a new perspective on TLS 1.3, which enables a modular security analysis with tight security proofs.

New abstraction of the TLS 1.3 key schedule. We first describe a new abstraction of the TLS 1.3 key schedule used in the PSK modes (in Section 2), where different steps of the key schedule are modeled as independent random oracles (12 random oracles in total). This makes it significantly easier to rigorously analyze the security of TLS 1.3 , since it replaces a significant part of the complexity of the protocol with what the key schedule intuitively provides, namely "as-good-as-independent cryptographic keys", deterministically derived from pre-shared keys, Diffie-Hellman values (in PSK-(EC)DHE mode), protocol messages, and the randomness of communicating parties.

Most importantly, in contrast to prior works on TLS 1.3's tightness that abstracted (parts of or the entire) key schedule as random oracles [19, 15] to enable the tight proof technique of Cohn-Gordon et al. [13], we support this new abstraction formally. Using the indifferentiability framework of Maurer et al. [51] in its recent adaptation by Bellare et al. [5] that treats multiple random oracles, in Section 5 we prove our abstraction indifferentiable from TLS 1.3 with only the underlying cryptographic hash function modeled as a random oracle, and this proof is tight. This accounts for possible interdependencies between the use of a hash function in multiple contexts, which were not considered in [19, 15].

Identifying a lack of domain separation. A noteworthy subtlety is that, to our surprise, we identify that for a certain choice of TLS 1.3 PSK mode and hash function (namely, PSK-only mode with SHA384), a lack of domain separation [5] in the protocol does not allow us to prove indifferentiability for this case. We discuss the details of why domain separation is achieved for all but this case in Appendix B.

This gap could be closed by more careful domain separation in the key schedule, which we consider an interesting insight for designers of future versions of TLS or other protocols. Concretely, the ideal domain separation method would be to add a unique prefix or suffix to each hash function call made by the protocol. However, existing standard primitives like HMAC and HKDF do not permit the use of such labels, so this advice is not practical for TLS 1.3 or similar protocols. For these, a combination of labels (where possible) and padding for domain separation seems advisable, where the padding ensures that the protocol's direct hash calls have strictly longer inputs than the internal hash calls in HMAC and HKDF. We outline this method in more detail in Appendix B.5.

Modularization of record layer encryption. Like most of the prior computational TLS 1.3 analyses [22, 29, 25, 19], we use a multi-stage key exchange (MSKE) security model [28] to capture the complex and fine-grained security aspects of TLS 1.3. These aspects include cleverly distinguishing between "external" keys established in the handshake for subsequent use (by, e.g., application data encryption, resumption, etc.) and "internal" keys, used within the handshake itself (in TLS 1.3 for encrypting most of the handshake through the protocol's record layer) to avoid
complex security models such as the ACCE model [38] which monolithically treat handshake and record-layer encryption.

As a generic simplification step for MSKE models, we show (in Section 6) that for a certain class of transformations using the internal keys, we can even avoid the somewhat involved handling of internal keys altogether. We use this to simplify our analysis of the TLS 1.3 handshake (treating the TLS 1.3 record-layer encryption as such transformation). The result itself however is not specific to TLS 1.3, but general and of independent interest; it furthermore is tight.

Tight security of TLS 1.3 PSK modes. We leverage the new perspective on the TLS 1.3 key schedule and the fact that we can ignore record-layer encryption to give our main results: the first tight security proofs for the PSK-only and PSK-(EC)DHE handshake modes of TLS 1.3.

Evaluation. Finally, we evaluate our new bounds and prior ones from [25] over a wide range of fully concrete resource parameters, following the approach of Davis and Günther [15]. Our bounds improve on previous analyses of the PSK-only handshake by between 15 and 53 bits of security, and those of the PSK-(EC)DHE handshake by 60 and 131 bits of security across all our parameters evaluated.

Further related work and scope of our analysis

Several previous works gave security proofs for the previous protocol version TLS 1.2 [38, 45, 31, 46, 49, 8], including its PSK-modes [49]; all reductions in these works are highly non-tight.

Brzuska et al. [11] recently proposed a stand-alone security model for the TLS 1.3 key schedule, likewise aiming at a new abstraction perspective on the latter to support formal protocol analysis. While their treatment focuses solely on the key schedule and only briefly argues its application to a key exchange security result, it is more general and covers the negotiation of parameters [26, 7] and agile usage of various algorithms.

Our focus is on the TLS 1.3 PSK modes. Hence, our abstraction of the key schedule and the careful indifferentiability treatment is tailored to that mode and cannot be directly translated to the full handshake (without PSKs). We are confident that our approach can be adapted to achieve similar results for the full handshake, but leave revisiting the results in $[19,15]$ in that way to future work.

Like many previous cryptographic analyses [38, 45, 22, 24, 29, 25, 19, 15] of the TLS handshake, our work focuses on the "cryptographic core" of the TLS 1.3 PSK handshake modes (in particular, we consider fixed parameters like the Diffie-Hellman group, TLS ciphersuite, etc.). Our abstraction of the key schedule is designed for easy composition with our tight key exchange proof, and our indifferentiability treatment is important confirmation of that abstraction's soundness. We do not consider, e.g., ciphersuite and version negotiation [26] or backwards compatibility issues in settings where multiple TLS versions are used in parallel, such as [39]. We also do not treat the security of the TLS record layer; instead we explain how to avoid the necessity to do so in order to achieve more modular security analyses, and we refer to compositional results [28, 22, 35, 25, 19] treating the combined security when subsequent protocols use the session keys established in an MSKE protocol.

Numerous authenticated key exchange protocols [33, 13, 50, 37, 36] were recently proposed that can be proven (almost) tightly secure. However, these protocols were specifically designed to be tightly secure and none is standardized.

2 The TLS 1.3 Pre-shared Key Handshake Protocol

Overview. We consider the pre-shared key mode of TLS 1.3, used in a setting where both client and server already share a common secret, a so-called pre-shared key (PSK). A PSK is a cryptographic key which may either be manually configured, negotiated out-of-band, or (and most commonly) be obtained from a prior and possibly not PSK-based TLS session to enable fast session resumption. The TLS 1.3 PSK handshake comes in two flavors: PSK-only, where security is established from the pre-shared key alone, and PSK-(EC)DHE, which includes an (finite-field or elliptic-curve) Diffie-Hellman key exchange for added forward secrecy. Both PSK handshakes essentially consist of two phases (cf. Figure 1).

1. The client sends a random nonce and a list of offered pre-shared keys to the server, where each key is identified by a (unique) identifier pskid. ${ }^{2}$ The server then selects one pskid from the list, and responds with another random nonce and the selected pskid. In PSK-(EC)DHE mode, client and server additionally perform a Diffie-Hellman key exchange, sending group elements along with the nonces and PSK identifiers. In both modes, the client also sends a so-called binder value, which applies a message authentication code (MAC) to the client's nonce and pskid (and the Diffie-Hellman share in PSK-(EC)DHE mode) and binds the PSK handshake to the (potential) prior handshake in which the used pre-shared key was established (see [14, 42] for analysis rationale behind the binder value).
2. Then client and server derive unauthenticated cryptographic keys from the PSK and the established Diffie-Hellman key (the latter only in (EC)DHE mode, of course). This includes, for instance, the client and server handshake traffic keys ($h t k_{C}$ and $h t k_{S}$) used to encrypt the subsequent handshake messages, as well as finished keys ($f k_{C}$ and $f k_{S}$) used to compute and exchange finished messages. The finished messages are MAC tags over all previous messages, ensuring that client and server have received all previous messages exactly as they were sent.
After verifying the finished messages, client and server "accept" authenticated cryptographic keys, including the client and server application traffic secret (CATS and SATS), the exporter master secret (EMS), and the resumption master secret (RMS) for future session resumptions.

Detailed specification. For our proofs we will need fully-specified descriptions for each of the TLS 1.3 PSK and PSK-(EC)DHE handshake protocols. Pseudocode for these protocols can be found in Figure 1, where we let (\mathbb{G}, p, g) be a cyclic group of prime order p such that $\mathbb{G}=\langle g\rangle$.

The two descriptions on the left and right in Figure 1 show the same protocol, but they use different abstractions to highlight how we capture the complex way TLS 1.3 calls its hash function. This one hash function is used in some places to condense transcripts, in others to help derive session keys, and in still others as part of a message authentication code. We call this function \mathbf{H}, and let its output length be $h l$ bits so that we have $\mathbf{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{h l}$. Depending on the choice of ciphersuite, TLS 1.3 instantiates \mathbf{H} with either SHA256 or SHA384 [52]. In our security analysis, we will model \mathbf{H} as a random oracle.

On the left-hand side of Figure 1, we distinguish three named subroutines of TLS 1.3 which use \mathbf{H} for different purposes:

[^2]| Client | Server |
| :---: | :---: |
| $\begin{aligned} & r_{C} \stackrel{\&}{\leftarrow}\{0,1\}^{n l} \\ & x \leftarrow \mathbb{Z}_{p}, X \leftarrow g^{x} \\ & \text { ClientHello: } r_{C} \\ & {[+ \text { ClientKeyShare: } X]^{\dagger}} \\ & \quad \text { ES } \leftarrow \text { Extract }(0, \text { PSK }) \\ & \quad \text { dES } \leftarrow \operatorname{Expand}\left(\mathrm{ES}, \ell_{3} \\| \mathbf{H}(" ")\right) \\ & \quad \text { BK } \leftarrow \operatorname{Expand}\left(\mathrm{ES}, \ell_{0} \\| \mathbf{H}(" ")\right) \\ & \quad f k_{b} \leftarrow \operatorname{Expand}\left(\mathrm{BK}, \ell_{6}\right) \\ & \text { binder } \leftarrow \operatorname{MAC}\left(f k_{b}, \mathbf{H}\left(\mathrm{CH}^{-}\right)\right) \\ & + \text {ClientPreSharedKey: pskid, binder } \end{aligned}$ | |
| | |
| $\begin{array}{r} r_{S} \leftarrow^{\ddagger}\{0,1\}^{n l} \\ y \mathbb{Z}_{p}, Y \leftarrow g^{y} \\ \text { ServerHello: } r_{S} \\ {[+ \text { ServerKeyShare: } Y]^{\dagger}} \\ \text { + ServerPreSharedKey: pskid } \\ \hline \end{array}$ | |
| [DHE | $\left.\leftarrow X^{y}\right]^{\top}$ |
| | |
| | $\begin{aligned} & \text { nsions }\} \\ & \cdot \\| \mathrm{EE})) \\ & \mathrm{d}\}: \quad f i n_{S} \end{aligned}$ |
| $\begin{aligned} & \text { abort if } f i n_{S} \neq \operatorname{HMAC}\left(f k_{S}, \mathbf{H}(\mathrm{CH}\\|\cdots\\| \mathrm{EE})\right) \\ & \mathrm{MS} \leftarrow \operatorname{Extract}(\mathrm{dHS}, 0) \end{aligned}$ | |
| accept | $\cdot \\| \mathrm{SF})$ |
| accept | SF) |
| accep | (ISF) |
| $\begin{aligned} & \qquad f k_{C} \leftarrow \text { Expand }\left(\mathrm{CHTS}, \ell_{6}\right) \\ & f i n_{C} \leftarrow \mathbf{M A C}^{\prime}\left(f k_{C}, \mathbf{H}(\mathrm{CH}\\|\cdots\\| \mathrm{SF})\right) \\ & \{\text { ClientFinished }\}: f i n_{C} \\ & \hline \end{aligned}$ | |
| abort if $f i_{C} \neq \mathbf{M A C}\left(f k_{C}, \mathbf{H}(\mathrm{CH}\\|\cdots\\| \mathrm{SF})\right)$ accept RMS $\leftarrow \operatorname{Expand}\left(\mathrm{MS}, \ell_{10} \\| \mathbf{H}(\mathrm{CH}\\|\cdots\\| \mathrm{CF})\right)$ | |

Legend

MSG: Y message MSG sent, containing $Y \quad \mathrm{CH}^{-} \quad$ partial ClientHello up to (incl.) pskid

+ MSG extension sent within previous message
\{MSG\} MSG sent AEAD-encrypted with $h t k_{C} / h t k_{S}$
$[\ldots]^{\dagger}$ present only in PSK-(EC)DHE
$[\ldots]^{\diamond}$ present only in PSK
DeriveTK $(H T S):=\operatorname{Expand}\left(H T S, \ell_{11} \| \operatorname{Th}(" "), h l\right) \| \operatorname{Expand}\left(H T S, \ell_{12} \| \operatorname{Th}(" ")\right.$, ivl) (traffic key computation, deriving a $h l$-bit key and a ivl-bit IV)

Figure 1: TLS 1.3 PSK and PSK-(EC)DHE handshake modes with (optional) 0-RTT keys (stages 1 and 2), with detailed key schedule (left) and our representation of the key schedule through functions TKDF $_{x}$ (right), explained in the text. Centered computations are executed by both client and server with their respective messages received, and possibly at different points in time. Dotted lines indicate the derivation of session (stage) keys together with their stage number. The labels ℓ_{x} are distinct for distinct index x, see Table 1 for their definition.

Value	Label	Value	Label
dES	$\ell_{3}=$ "derived"	${ }^{h}+k_{C}$	$\ell_{11}=$ "key" \& $\ell_{12}=$ "iv"
BK	$\ell_{0}=$ "ext binder" / "res binder"	${ }^{\text {tr }} k_{S}$	$\ell_{11}=$ "key" \& $\ell_{12}=$ "iv"
$f k_{b}$	$\ell_{6}=$ "finished"	${ }^{\prime k} k_{S}$	$\ell_{6}=$ "finished"
ETS	$\ell_{1}=$ "c e traffic"	CATS	$\ell_{7}=$ "c ap traffic"
EEMS	$\ell_{2}=$ "e exp master"	SATS	$\ell_{8}=$ "s ap traffic"
CHTS	$\ell_{4}=$ "c hs traffic"	EMS	$\ell_{9}=$ "exp master"
SHTS	$\ell_{5}=$ "s hs traffic"	$f k_{C}$	$\ell_{6}=$ "finished"
dHS	$\ell_{3}=$ "derived"	RMS	$\ell_{10}=$ "res master"

Table 1: Definitions of the short labels used in Figure 1. We simplify the labeling of Expand in our presentation. In the specification each Expand is not only labeled by $\ell \| H$ for some label ℓ and some hash H, but it is prefixed by the output length of the respecitive Expand call and the constant label "tls13 ". As the output length for all of the above calls is equal (namely, the output length $h l$ of \mathbf{H}), we leave this constant prefix out to reduce complexity.

- A message authentication code MAC: $\{0,1\}^{h l} \times\{0,1\}^{*} \rightarrow\{0,1\}^{h l}$, which calls \mathbf{H} via the HMAC function $\operatorname{MAC}(K, M):=\operatorname{HMAC}[\mathbf{H}](K, M)$ where

$$
\left.\operatorname{HMAC}[\mathbf{H}](K, M):=\mathbf{H}\left(\left(K \| 0^{b l-h l}\right) \oplus \mathrm{opad}\right) \| \mathbf{H}\left(\left(K \| 0^{b l-h l} \oplus \mathrm{ipad}\right) \| M\right)\right)
$$

Here opad and ipad are $b l$-bit strings, where each byte of opad and ipad is set to the hexadecimal value $0 \times 5 \mathrm{c}$, resp. 0×36. We have $b l=512$ when SHA256 is used and $b l=512$ for SHA384. When modeling SHA256 resp. SHA384 as a random oracle, we keep the corresponding value of bl.

- Extract, Expand: $\{0,1\}^{h l} \times\{0,1\}^{*} \rightarrow\{0,1\}^{h l}$, two subroutines for extracting and expanding key material in the key schedule, following the HKDF key derivation paradigm of Krawczyk [41, 44]. These functions are defined

$$
\begin{aligned}
& -\operatorname{Extract}(K, M):=\operatorname{HKDF} . \operatorname{Extract}(K, M)=\operatorname{MAC}(K, M) \\
& -\operatorname{Expand}(K, M):=\operatorname{HKDF} . \operatorname{Expand}(K, M)=\operatorname{MAC}(K, M \| 0 \times 01) .{ }^{3}
\end{aligned}
$$

Despite the new naming conventions, this abstraction closely mimics the TLS 1.3 standard: MAC, Extract, and Expand can be read as more generic ways of referring to the HMAC, HKDF.Extract, and HKDF.Expand algorithms [43, 44].

The right-hand side of Figure 1 separates the key derivation functions for each first-class key as well as the binder and finished MAC values derived. This way of modeling TLS 1.3 makes it easier to establish key independence for the many keys computed in the key schedule, as we will see in Section 5. We introduce 11 functions TKDF $_{\text {binder }}$, TKDF $_{\text {ETS }}$, TKDF $_{\text {EEMS }}$, TKDF $_{h t k_{C}}$, $\mathrm{TKDF}_{f i_{C}}, \mathrm{TKDF}_{h t k_{S}}, \mathrm{TKDF}_{f i_{S}}, \mathrm{TKDF}_{\mathrm{CATS}}, \mathrm{TKDF}_{\text {SATS }}, \mathrm{TKDF}_{\mathrm{EMS}}$, and $\mathrm{TKDF}_{\mathrm{RMS}}$ (indexed by the value they derive) and use them to abstract away many intermediate computations. Note that we are not changing the protocol, though: we define each TKDF function to capture the same steps it replaces.

[^3]| $\mathrm{TKDF}_{\text {fins }}\left(\mathrm{PSK}, \mathrm{DHE}, \mathrm{h}_{1}, \mathrm{~h}_{2}\right):$ | ${ }_{4}$ SHTS $\leftarrow \operatorname{Expand}\left(\mathrm{HS}, \ell_{5} \\| \mathrm{h}_{1}\right)$ |
| :---: | :---: |
| $1 \mathrm{ES} \leftarrow \operatorname{Extract}(0, \mathrm{PSK})$ | ${ }_{5} f k_{S} \leftarrow \operatorname{Expand}\left(\mathrm{SHTS}, \ell_{6}\right)$ |
| $2 \mathrm{dES} \leftarrow \operatorname{Expand}\left(\mathrm{ES}, \ell_{3} \\| \mathrm{Th}\left({ }^{\text {c }}\right.\right.$) $)$ | ${ }^{6} f i n_{S} \leftarrow \mathbf{M A C}\left(f k_{S}, \mathrm{~h}_{2}\right)$ |
| $3 \mathrm{HS} \leftarrow \operatorname{Extract}(\mathrm{dES}, \mathrm{DHE})$ | 7 return fin ${ }_{S}$ |

Figure 2: Definition of $\mathrm{TKDF}_{\text {fin }_{S}}$, deriving the ServerFinished MAC.

Take as an example $\operatorname{TKDF}_{f i_{S}}$, the function used to derive the MAC in the ServerFinished message. In the prior abstraction, a session would first use the key schedule to derive a finished key $f k_{S}$ from the hashed transcript and the secrets PSK and DHE. It would then call MAC, keyed with $f k_{S}$, to generate the ServerFinished message authentication code on the hashed transcript and encrypted extensions. Accordingly, we define $\operatorname{TKDF}_{\text {fin }_{S}}:\{0,1\}^{h l} \times \mathbb{G} \times\{0,1\}^{h l} \times\{0,1\}^{h l} \rightarrow$ $\{0,1\}^{h l}$ as in Figure 2. In the protocol, TKDF $_{\text {fin }_{S}}$ takes inputs the pre-shared key PSK and DiffieHellman secret DHE and hash digests $h_{1}=\operatorname{Th}(\mathrm{CH} \| \mathrm{SH})$ and $\mathrm{h}_{2}=\operatorname{Th}(\mathrm{CH}\|\cdots\| E E)$, and it outputs a MAC tag for the ServerFinished message. The remaining key derivation functions are defined the same way; we give their signatures below for completeness.

$$
\begin{array}{ll}
\text { 1. } \text { TKDF }_{\text {binder }}\left[\mathrm{RO}_{\mathrm{HMAC}}\right] & :\{0,1\}^{h l} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l} \\
\text { 2. } \text { TKDF }_{\text {ETS }}\left[\mathrm{RO}_{\mathrm{HMAC}}\right] & :\{0,1\}^{h l} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l} \\
\text { 3. } \text { TKDF }_{\text {EEMS }}\left[\mathrm{RO}_{\mathrm{HMAC}}\right] & :\{0,1\}^{h l} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l} \\
\text { 4. } \text { TKDF }_{h t k_{C}}\left[\mathrm{RO}_{\mathrm{HMAC}}\right] & :\{0,1\}^{h l} \times \mathbb{G} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l+i v l} \\
\text { 5. } \text { TKDF }_{\text {finC }}\left[\mathrm{RO}_{\mathrm{HMAC}}\right] & :\{0,1\}^{h l} \times \mathbb{G} \times\{0,1\}^{h l} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l} \\
\text { 6. } \text { TKDF }_{\text {htks }}\left[\mathrm{RO}_{\mathrm{HMAC}}\right] & :\{0,1\}^{h l} \times \mathbb{G} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l+i v l} \\
\text { 7. } \text { TKDF }_{\text {fin }}\left[\mathrm{RO}_{\text {HMAC }}\right] & :\{0,1\}^{h l} \times \mathbb{G} \times\{0,1\}^{h l} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l} \\
\text { 8. } \text { TKDF }_{\text {CATS }}\left[\mathrm{RO}_{\text {HMAC }}\right] & :\{0,1\}^{h l} \times \mathbb{G} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l} \\
\text { 9. } \text { TKDF }_{\text {SATS }}\left[\mathrm{RO}_{\text {HMAC }}\right] & :\{0,1\}^{h l} \times \mathbb{G} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l} \\
\text { 10. } \text { TKDF }_{\text {EMS }}\left[\mathrm{RO}_{\text {HMAC }}\right] & :\{0,1\}^{h l} \times \mathbb{G} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l} \\
\text { 11. } \text { TKDF }_{\text {RMS }}\left[\mathrm{RO}_{\text {HMAC }}\right] & :\{0,1\}^{h l} \times \mathbb{G} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l}
\end{array}
$$

Note that the definition of the 11 functions induces a lot of redundancy as we derive every value independently and therefore compute intermediate values (e.g., ES, dES, and HS) multiple times over the execution of the handshake. However, this is only conceptual. Since the computations of these intermediate values are deterministic, the intermediate values will be the same for the same inputs and could be cached.

3 Code-based MSKE Model for PSK Modes

We formalize security of the TLS 1.3 PSK modes in a game-based multi-stage key exchange (MSKE) model, adapted primarily from that of Dowling et al. [25]. We fully specify our model in pseudocode in Figures 3 and 4. We adopt the explicit authentication property from the model of Davis and Günther [15] and capture forward secrecy by following the model of Schwabe et al. [56].

3.1 Key Exchange Syntax

In our security model, the adversary interacts with sessions executing a key exchange protocol KE . For the definition of the security experiment it will be useful to have a unified, generic interface to the algorithms implementing KE, which can then be called from the various procedures defining the security experiment to run KE. Therefore, we first formalize a general syntax for protocols.

We assume that pairs of users share long-term symmetric keys (pre-shared keys), which are chosen uniformly at random from a set KE.PSKS. ${ }^{4}$ We allow users to share multiple pre-shared keys, maintained in a list pskeys, and require that each user uses any key only in a fixed role (i.e., as client or server) to avoid the Selfie attack [27]. We do not cover PSK negotiation; each session will know at the start of the protocol which key it intends to use.

New sessions are created via the algorithm Activate. This algorithm takes as input the new session's own user, identified by some ID u, the user ID peerid of the intended communication partner, a pre-shared key PSK, and a role identifier-initiator (client) or responder (server) - that determines whether the session will send or receive the first protocol message. It returns the new session π_{u}^{i}, which is identified by its user ID u and a unique index i so that a single user can execute many sessions.

Existing sessions send and receive messages by executing the algorithm Run. The inputs to Run are an existing session π_{u}^{i} and a message m it has received. The algorithm processes the message, updates the state of π_{u}^{i}, and returns the next protocol message m^{\prime} on behalf of the session. Run also maintains the status of π_{u}^{i}, which can have one of three values: running when it is awaiting the next protocol message, accepted when it has established a session key, and rejected if the protocol has terminated in failure.

In a multi-stage protocol, sessions accept multiple session keys while running; we identify each with a numbered stage. A protocol may accept several stages/keys while processing a single message, and TLS 1.3 does this. In order to handle each stage individually, our model adds artificial pauses after each acceptance to allow the adversary to interact with the sessions upon each stage accepting (beyond, as usual, each message exchanged). When a session π_{u}^{i} accepts in stage s while executing Run, we require Run to set the status of π_{u}^{i} to $\operatorname{accepted}_{s}$ and terminate. We then define a special "continue" message. When session π_{u}^{i} in state accepted $_{s}$, receives this message it calls Run again, updates its status to running s_{s+1} and continues processing from the point where it left off.

3.2 Key Exchange Security

We define key exchange security via a real-or-random security game, formalized through Figures 3 and 4.

Game oracles. In this security game, the adversary \mathcal{A} has access to seven oracles: Initialize, NewSecret, Send, RevSessionKey, RevLongTermKey, Test, and Finalize, as well as any random oracles the protocol defines. The game begins with a call to Initialize, which samples a challenge bit b. It ends when the adversary calls Finalize with a guess b^{\prime} at the challenge bit. We say the adversary "wins" the game if Finalize returns true.

The adversary can establish a random pre-shared key between two users by calling NewSecret. ${ }^{5}$

[^4]It can corrupt existing users' pre-shared keys via the oracle RevLongTermKey. The Send oracle creates new protocol sessions and processes protocol messages on the behalf of existing sessions. The RevSessionKey oracle reveals a session's accepted session key. Finally, the Test oracle servers as the challenge oracle: it returns the real session key of a target session or an independent one sampled randomly from the session key space $\mathrm{KE} . \mathrm{KS}[s]$ of the respective stage s, depending on the value of the challenge bit b.

Protocol properties. Keys established in different stages possess different security attributes, which are defined as part of the key exchange protocol: replayability, forward secrecy level, and authentication level. Certain stages, whose indices are tracked in a list INT, produce "internal" keys intended for use only within the key exchange protocol; these keys may only be Tested at the time of acceptance of this particular key, but not later. This is because otherwise such keys may be trivially distinguishable from random, e.g., via trial decryption, due to the fact that they are used within the protocol. To avoid a trivial distinguishing attack, we force the rest of the protocol execution to be consistent with the result of such a Test. That is, a tested internal key is replaced in the protocol with whatever the Test returns to the adversary (which is either the real internal key or an independent random key). The remaining stages produce "external" keys which may be tested at any time after acceptance.

For some protocols, it may be possible that a trivial replay attack can achieve that several sessions agree on the same session key for stage s, but this is not considered an "attack". For example, in TLS 1.3 PSK an adversary can always replay the ClientHello message to multiple sessions of the same server, which then all derive the same ETS and EEMS keys (cf. Figure 1). To specify that such a replay is not considered a protocol weakness, and thus should not be considered a valid "attack", the protocol specification may define REPLAY $[s]$ to true for a stage s. REPLAY $[s]$ is set to false by default.

As we focus on protocols which rely on (pre-authenticated) pre-shared keys, our model encodes that all protocol stages are at least implicitly mutually authenticated in the sense of Krawczyk [40], i.e., a session is guaranteed that any established key can only be known by the intended partner. Some stages will further be explicitly authenticated, either immediately upon acceptance or retroactively upon acceptance of a later state. Additionally, the stage at which explicit authentication is achieved may differ between the initiator and responder roles. For each stage s and role r, the key exchange protocol specification states in EAUTH $[r, s]$ the stage t from whose acceptance stage s derives explicit authentication for the session in role r. Note that the stage- s key is not authenticated until both stages s and $\operatorname{EAUTH}[r, s]$ have been accepted. If the stage- s key will never be explicitly authenticated for role r, we set EAUTH $[r, s]=\infty$.

We use a predicate ExplicitAuth (cf. Figure 4) to require the existence of an honest partner for explicitly authenticated stages upon both parties' completion of the protocol, except when the session's pre-shared key was corrupted prior to accepting the explicitly-authenticating stage (as in that case, we anticipate the adversary can trivially forge any authentication mechanism).

Motivated by TLS 1.3, it might be the case that initiator and responder sessions achieve slightly different guarantees of authentication. While responders in TLS 1.3 are guaranteed the existence of an honest partner in any explicitly authenticated stage, initiators cannot guarantee that their partner has received their final message. This issue was first raised by FGSW [30] and led to their definitions of "full" and "almost-full" key confirmation; it was then extended to "full" and "almost-full" explicit authentication by DFW [16]. Our definitions for responders and initiators
tightness as particularly interesting when "good" PSKs are used, since low-entropy PSKs might decrease the security below what is achieved by (non)-tight security proofs, anyway.
$G_{\mathrm{KE}, \mathcal{A}}^{\mathrm{MSKE}}$
Initialize:
time $\leftarrow 0$;
$b \stackrel{\&}{\leftarrow}\{0,1\}$
(
(
time \leftarrow time +1
time \leftarrow time +1
if pskeys $[(u, v, p s k i d)] \neq \perp$
if pskeys $[(u, v, p s k i d)] \neq \perp$
return \perp
return \perp
pskeys $[(u, v, p s k i d)] \stackrel{\oplus}{\leftarrow}$ KE.PSKS
pskeys $[(u, v, p s k i d)] \stackrel{\oplus}{\leftarrow}$ KE.PSKS
$\operatorname{revpsk}_{(u, v, p s k i d)} \leftarrow \infty$
$\operatorname{revpsk}_{(u, v, p s k i d)} \leftarrow \infty$
return pskid
return pskid
End (u, i, m) :
time \leftarrow time +1
if $\pi_{u}^{i}=\perp$ then
(peerid, pskid, role $) \leftarrow m$
if role $=$ initiator
then $p s k \leftarrow$ pskeys $[(u$, peerid, pskid $)]$
else $p s k \leftarrow \operatorname{pskeys}[($ peerid $, u, p s k i d)]$
$\left(\pi_{u}^{i}, m^{\prime}\right) \stackrel{\oplus}{\leftarrow}$ Activate $(u$, peerid, psk, role)
else
$\left(\pi_{u}^{i}, m^{\prime}\right) \stackrel{\&}{\leftarrow} \operatorname{Run}\left(u, \pi_{u}^{i} \cdot p s k, \pi_{u}^{i}, m\right)$
if π_{u}^{i}.status $=$ accepted $_{\pi_{u}^{i} \cdot \text { stage }}$ then
stage $\leftarrow \pi_{u}^{i}$.stage
π_{u}^{i}. accepted $[$ stage $] \leftarrow$ time
if $\operatorname{repr}\left[\pi_{u}^{i} . \operatorname{sid}[\right.$ stage $\left.]\right] \neq \perp$ then
π_{u}^{i}.skey $[$ stage $] \leftarrow \operatorname{repr}\left[\pi_{u}^{i}\right.$.sid $[$ stage $\left.]\right]$
π_{u}^{i}.untampered $[$ stage $] \leftarrow \exists \pi_{v}^{j}$ with π_{v}^{j}.cid ${\pi_{u}^{i} \cdot \text {.role }}[$ stage $]=$
π_{u}^{i}.cid $d_{\pi_{u}^{i} \text {.role }}[$ stage $]$
return m^{\prime}
evSessionKey (u, i, s) :
time \leftarrow time +1
if $\pi_{u}^{i}=\perp$ or π_{u}^{i}.accepted $[s]=\infty$ then
return \perp
π_{u}^{i}.revealed $[s] \leftarrow$ true
return π_{u}^{i}.skey $[s]$
$\underline{\text { RevLongTermKey }(u, v, p s k i d):}$
30 time \leftarrow time +1
30 time \leftarrow time +1
$31 \operatorname{revpsk}_{(u, v, p s k i d)} \leftarrow$ time
$31 \operatorname{revpsk}_{(u, v, p s k i d)} \leftarrow$ time
32 return pskeys[(u,v,pskid)]
32 return pskeys[(u,v,pskid)]
$\operatorname{TEST}(u, i, s)$:
$\operatorname{TEST}(u, i, s)$:
time \leftarrow time +1
time \leftarrow time +1
if $\pi_{u}^{i}=\perp$ or π_{u}^{i}.accepted $[s]=\infty$ or π_{u}^{i}.tested $[s]$
if $\pi_{u}^{i}=\perp$ or π_{u}^{i}.accepted $[s]=\infty$ or π_{u}^{i}.tested $[s]$
then
then
return \perp
return \perp
if $s \in \mathrm{INT}$
if $s \in \mathrm{INT}$
and $\exists \pi_{v}^{j}: \pi_{v}^{j} . \operatorname{sid}[s]=\pi_{u}^{i} . \operatorname{sid}[s]$
and $\exists \pi_{v}^{j}: \pi_{v}^{j} . \operatorname{sid}[s]=\pi_{u}^{i} . \operatorname{sid}[s]$
and π_{v}^{j}.accepted $[s]<\infty$
and π_{v}^{j}.accepted $[s]<\infty$
and π_{v}^{j}.status $\neq \operatorname{accepted}_{s}$ then
and π_{v}^{j}.status $\neq \operatorname{accepted}_{s}$ then
return \perp
return \perp
// can only test internal keys if all sessions having accepted
// can only test internal keys if all sessions having accepted
that key have not moved on with the protocol
that key have not moved on with the protocol
π_{u}^{i}.tested $[s] \leftarrow$ time
π_{u}^{i}.tested $[s] \leftarrow$ time
$\mathcal{T} \leftarrow \mathcal{T} \cup\left\{\left(\pi_{u}^{i}, s\right)\right\}$
$\mathcal{T} \leftarrow \mathcal{T} \cup\left\{\left(\pi_{u}^{i}, s\right)\right\}$
$k_{0} \leftarrow \pi_{u}^{i} . s k e y[s]$
$k_{0} \leftarrow \pi_{u}^{i} . s k e y[s]$
$k_{1} \stackrel{\oplus}{\leftarrow} \mathrm{KE} . \mathrm{KS}[s]$
$k_{1} \stackrel{\oplus}{\leftarrow} \mathrm{KE} . \mathrm{KS}[s]$
if $s \in \operatorname{INT}$ then
if $s \in \operatorname{INT}$ then
$\forall \pi_{v}^{j}: \pi_{v}^{j} \cdot \operatorname{sid}[s]=\pi_{u}^{i} \cdot \operatorname{sid}[s]$
$\forall \pi_{v}^{j}: \pi_{v}^{j} \cdot \operatorname{sid}[s]=\pi_{u}^{i} \cdot \operatorname{sid}[s]$
and π_{v}^{j}.status $=$ accepted $_{s}$
and π_{v}^{j}.status $=$ accepted $_{s}$
π_{v}^{j}.skey $[s] \leftarrow k_{b}$
π_{v}^{j}.skey $[s] \leftarrow k_{b}$
$\operatorname{repr}\left[\pi_{u}^{i} . \operatorname{sid}[s]\right] \leftarrow k_{b}$
$\operatorname{repr}\left[\pi_{u}^{i} . \operatorname{sid}[s]\right] \leftarrow k_{b}$
return k_{b}
return k_{b}
Finalize (b^{\prime}):
Finalize (b^{\prime}):
if \neg Sound then
if \neg Sound then
return 1
return 1
if \neg ExplicitAuth then
if \neg ExplicitAuth then
return 1
return 1
if \neg Fresh then
if \neg Fresh then
$b^{\prime} \leftarrow 0$
$b^{\prime} \leftarrow 0$
return $\left[\left[b=b^{\prime}\right]\right]$
return $\left[\left[b=b^{\prime}\right]\right]$
$\underline{\mathrm{RO}(i, X)}$:
$\underline{\mathrm{RO}(i, X)}$:
53 time \leftarrow time +1
53 time \leftarrow time +1
54 return $\mathrm{RO}_{i}(X)$
54 return $\mathrm{RO}_{i}(X)$
SECRET $(u, v, p s k i d)$:
SECRET $(u, v, p s k i d)$:

Figure 3: Multi-stage key exchange (MSKE) security game for a key exchange protocol KE with preshared keys. Predicates Fresh, ExplicitAuth, and Sound are defined in Figure 4. The functions RO_{i} correspond to the (independent) random oracles available to the adversary.

Fresh:

for each $\left(\pi_{u}^{i}, s\right) \in \mathcal{T}$
$\mathrm{t}_{\text {Test }} \leftarrow \pi_{u}^{i}$.tested $[s]$
if π_{u}^{i}.revealed $[s]$ then
return false // tested session may not be revealed
if $\exists \pi_{v}^{j} \neq \pi_{u}^{i}: \pi_{v}^{j} . \operatorname{sid}[s]=\pi_{u}^{i} . \operatorname{sid}[s]$ and (π_{v}^{j}.tested $[s]$ or π_{v}^{j}.revealed $[s]$) then return false // tested session's partnered session may not be tested or revealed
if π_{u}^{i}.accepted $[\mathrm{FS}[s, \mathrm{fs}]]<\mathrm{t}_{\text {Test }}$ if revpsk ${ }_{\left(u, \pi_{u}^{i} \cdot \text { peerid }, \pi_{u}^{i} \cdot \text { pskid }\right)}<\pi_{u}^{i}$.accepted $[\mathrm{FS}[s, \mathrm{fs}]]$ and $\neg \pi_{u}^{i}$.untampered $[\mathrm{FS}[s, \mathrm{fs}]]$ then return false // Sessions with forward secrecy are fresh if they attained fs before their PSK was corrupted, or if they have a contributive partner (no tampering).
else if π_{u}^{i}.accepted $[\mathrm{FS}[s, \mathrm{wfs} 2]]<\mathrm{t}_{\text {Test }}$ if revpsk ${ }_{\left(u, \pi_{u}^{i} \cdot \text {.peerid }, \pi_{u}^{i} . p s k i d\right)}$ and $\neg \pi_{u}^{i}$. untampered $[\mathrm{FS}[s$, wfs2]] then
return false // Sessions with weak forward secrecy 2 are fresh if the PSK was never corrupted, or if they have a contributive partner.
else if $\operatorname{revpsk}_{\left\{u, \pi_{u}^{i} \text {.peerid }\right\}, \pi_{u}^{i} \cdot p s k i d}$ then
return false // Sessions with no forward secrecy are fresh if
the PSK was never corrupted
15 return true

ExplicitAuth:

if $\forall \pi_{u}^{i}$, s :
$s^{\prime} \leftarrow \mathrm{EAUTH}\left[\pi_{u}^{i}\right.$.role, $\left.s\right]$
π_{u}^{i}.accepted $\left[s^{\prime}\right]<\infty$
and π_{u}^{i}.accepted $[s]<\infty$
and π_{u}^{i}.accepted $\left[s^{\prime}\right]<\operatorname{revpsk}_{\left(u, \pi_{u}^{i} \cdot \text { peerid }, \pi_{u}^{i} \cdot p s k i d\right)}$
// all sessions accepting in explicitly authenticated stages whose PSK
was not corrupted before acceptance of the stage at which explicit
authentication was (perhaps retroactively) established.
$\Longrightarrow \exists \pi_{v}^{j}: \pi_{u}^{i} . \operatorname{sid}\left[s^{\prime}\right]=\pi_{v}^{j} . \operatorname{sid}\left[s^{\prime}\right]$
and $\pi_{u}^{i} \cdot$ peerid $=v$
and $\pi_{u}^{i} \cdot$ pskid $=\pi_{v}^{j}$. pskid
// ... have a partnered session in that stage .
// ... agreeing on the peerid and pre-shared key..
and $\left(\pi_{v}^{j}\right.$.accepted $[s]<$ time $\Longrightarrow \pi_{v}^{j} \cdot \operatorname{sid}[s]=$
$\left.\pi_{u}^{i} \cdot \operatorname{sid}[s]\right)$
// ... and partnered in stage s (upon acceptance)
2 return true

Sound:

1 if $\exists s$, distinct $\pi_{u}^{i}, \pi_{v}^{j}, \pi_{w}^{k}$ with $\pi_{u}^{i} . \operatorname{sid}[s]=\pi_{v}^{j} . \operatorname{sid}[s]=$ $\pi_{w}^{k} \cdot \operatorname{sid}[s] \neq \perp$
and REPLAY $[s]=$ false then
2 return false
// no triple sid match, except for replayable stages
3 if $\exists \pi_{u}^{i}, \pi_{v}^{j}$, s with $\pi_{u}^{i} . \operatorname{sid}[s]=\pi_{v}^{j} . \operatorname{sid}[s] \neq \perp$ and π_{u}^{i}.role $=\pi_{v}^{j}$.role and $\left(\operatorname{REPLAY}[s]=\right.$ false or $\pi_{u}^{i} \cdot$ role $=$ initiator $)$ then
4 return false
// partnering implies different roles (except for responders in replayable stages)
5 if $\exists \pi_{u}^{i}, \pi_{v}^{j}, s$ with π_{u}^{i}.sid $[s]=\pi_{v}^{j} . \operatorname{sid}[s] \neq \perp$ and
 $\left.\pi_{v}^{j} \cdot . c i d_{\text {responder }}[s]\right)$
6 return false // partnering implies matching cids
if $\exists \pi_{u}^{i}, \pi_{v}^{j}$ and $s \neq t$ such that $\pi_{u}^{i} \cdot \operatorname{sid}[s]=\pi_{v}^{j} \cdot \operatorname{sid}[t]$
7 return false
// different stages implies different sids
8 if $\exists \pi_{u}^{i}, \pi_{v}^{j}$, s with $\pi_{u}^{i} \cdot \operatorname{sid}[s]=\pi_{v}^{j} . \operatorname{sid}[s] \neq \perp$
and π_{u}^{i}.peerid $\neq v$
or π_{v}^{j}.peerid $\neq u$ or π_{u}^{i}.pskid $\neq \pi_{v}^{j}$.pskid then
// partnering implies agreement on peer IDs and PSKs
return false
0 if $\exists \pi_{u}^{i}, \pi_{v}^{j}$, s with π_{u}^{i}.accepted $[s]<$ time and π_{v}^{j}.accepted $[s]<$ time and $\pi_{u}^{i} . \operatorname{sid}[s]=\pi_{v}^{j} . \operatorname{sid}[s] \neq \perp$, but π_{u}^{i}.skey $[s] \neq \pi_{v}^{j}$.skey $[s]$ then // partnering implies same key
return false
12 return true

Figure 4: Predicates Fresh, ExplicitAuth, and Sound for the MSKE pre-shared key model.
respectively resemble the latter two notions most closely, but we rely on session identifiers instead of "key confirmation identifiers".

We consider three levels of forward secrecy inspired by the KEMTLS work of Schwabe, Stebila, and Wiggers [56]: no forward secrecy, weak forward secrecy 2 (wfs2), and full forward secrecy (fs). As for authentication, each stage may retroactively upgrade its level of forward secrecy upon the acceptance of later stages, and forward secrecy may be established at different stages for each role. For each stage s and role r, the stage at which wfs2, resp. fs, is achieved is stated in $\mathrm{FS}[r, s$, wfs2], resp. $\mathrm{FS}[r, s, \mathrm{fs}]$, by the key exchange protocol.

The definition of weak forward secrecy 2 states that a session key with wfs2 should be indistinguishable as long as (1) that session has received the relevant messages from an honest partner (formalized via matching contributive identifiers below, we say: "has an honest contributive partner") or (2) the pre-shared key was never corrupted. Full forward secrecy relaxes condition (2) to forbid corruption of the pre-shared key only before acceptance of the stage that retroactively provides full forward secrecy. We capture these notions of forward secrecy in a predicate Fresh (cf. Figure 4), which uses the log of events to check whether any tested session key is trivially distinguishable (e.g., through the session or its partnered being revealed, or forward secrecy requirements violated). With forward secrecy encoded in Fresh, our long-term key corruption oracle (RevLongTermKey), unlike in the model of [25], handles all corruptions the same way, regardless of forward secrecy.

Session and game variables. Sessions π_{u}^{i} and the security game itself maintain several variables; we indicate the former in italics, the latter in sans-serif font.

The game uses a counter time, initialized to 0 and incremented with any oracle query the adversary makes, to order events in the game log for later analysis. When we say that an event happens at a certain "time", we mean the current value of the time counter. The list pskeys contains, as discussed above, all pre-shared keys, indexed by a tuple ($u, v, p s k i d$) containing the two users' IDs (u using the key only in the initiator role, v only in the reponder role), and a unique string identifier. The list revpsk, indexed like pskeys, tracks the time of each pre-shared key corruption, initialized to revpsk ${ }_{(u, v, p s k i d)} \leftarrow \infty$. (In boolean expressions, we write revpsk ${ }_{(u, v, p s k i d)}$ as a shorthand for revpsk $(u, v, p s k i d) \neq \infty$.)

Each session π_{u}^{i}, identified by (adversarially chosen) user ID and a unique session ID, furthermore tracks the following variables:

- status $\in\left\{\right.$ running $_{s}$, accepted $_{s}$, rejected $_{s} \mid s \in[1, \ldots$, STAGES $\left.]\right\}$, where STAGES is the total number of stages of the considered protocol. The status should be accepted ${ }_{s}$ immediately after 2 the session accepts the stage- s key, rejected ${ }_{s}$ after it rejects stage s (but may continue running; e.g., rejecting 0 -RTT data), and running ${ }_{s}$ for some stage s otherwise.
- peerid. The identity of the session's intended communication partner.
- pskid. The identifier of the session's pre-shared key.
- accepted $[s]$. For each stage s, the time (i.e., the value of the time counter) at which the stage s key was accepted. Initialized to ∞.
- revealed $[s]$. A boolean denoting whether the stage s key has been leaked through a RevSessionKey query. Initialized to false.
- tested $[s]$. The time at which the stage s key was tested. Initialized to ∞ before any Test query occurs. (In boolean expressions, we write tested $[s]$ as a shorthand for tested $[s] \neq \infty$.)
- $\operatorname{sid}[s]$. The session identifier for each stage s, used to match honest communication partners within each stage.
- skey $[s]$. The key accepted at each stage.
- $c i d_{\text {initiator }}[s]$ and $c i d_{\text {responder }}[s]$. The contributive identifiers for each stage s, where $c i d_{\text {role }}[s]$ identifies the communication part that a session in role role must have honestly received in order to be allowed to be tested in certain scenarios (cf. the freshness definition in the Fresh predicate). Unlike prior models, each session maintains a contributive identifiers for each role; one for itself and one for its intended partner. This enables more fine-grained testing of session stages in our model.

The predicate Sound (cf. Figure 4) captures that variables are properly assigned, in particular that session identifiers uniquely identify a partner session (except for replayable stages) and that partnering implies agreement on (distinct) roles, contributive identifiers, peer identities and the pre-shared key used, as well as the established session key.

Definition 3.1 (Multi-stage key exchange security). Let KE be a key exchange protocol and $G_{\mathrm{KE}, \mathcal{A}}^{\mathrm{MSK}}$ be the key exchange security game defined in Figures 3 and 4. We define

$$
\operatorname{Adv}_{\mathrm{KE}}^{\operatorname{MSKE}}\left(t, q_{\mathrm{NS}}, q_{\mathrm{S}}, q_{\mathrm{RS}}, q_{\mathrm{RL}}, q_{\mathrm{T}}, q_{\mathrm{RO}}\right):=2 \cdot \max _{\mathcal{A}} \operatorname{Pr}\left[\operatorname{Game}_{\mathrm{KE}, \mathcal{A}}^{\mathrm{MSKE}} \Rightarrow 1\right]-1,
$$

where the maximum is taken over all adversaries, denoted ($t, q_{\mathrm{NS}}, q_{\mathrm{S}}, q_{\mathrm{RS}}, q_{\mathrm{RL}}, q_{\mathrm{T}}, q_{\mathrm{RO}}$)-MSKEadversaries, running in time at most t and making at most $q_{\mathrm{NS}}, q_{\mathrm{S}}, q_{\mathrm{RS}}, q_{\mathrm{RL}}, q_{\mathrm{T}}$, resp. q_{RO} queries to their respective oracles NewSecret, Send, RevSessionKey, RevLongTermKey, Test, and RO.

4 Indifferentiability Background

In the random oracle model, we treat hash functions like SHA256 as uniformly sampled random functions. Honest parties and adversaries alike access these functions via additional oracles in the security game. These are the random oracles. These random functions will be sampled from a set called a function space at the start of a security game. Alternatively, the random oracle can lazily sample responses to each query as they are needed. While we typically use the latter (lazily-sampled) model in key exchange security proofs, we will focus on the former conceptual view here.

Let us give an example. When we model the TLS 1.3 protocol in the ROM, we will equip our protocol definition with a function space parameter FS. We set this parameter according to the portion of the protocol we wish to model as a random oracle. If we wish to replace the hash function H with a random oracle RO_{H}, then we would set FS to be the set of all functions the set of all functions with domain $\{0,1\}^{*}$ and range $\{0,1\}^{h l}$. The KE security game would sample RO_{H} from FS in its Initialize routine, then provide oracle access to RO_{H} to all parties. This notation also captures protocols which use multiple random oracles. If we wish to use two independent random oracles, say RO_{1} and RO_{2}, then we would define an arity-2 function space FS , which is a set of tuples each containing two functions. Let FS_{1}, resp. FS_{2} be the set from which $\mathrm{RO}_{1}, \mathrm{RO}_{2}$ should be drawn. Then we set $\mathrm{FS}=\left\{\left(F_{1}, F_{2}\right): F_{1} \in \mathrm{FS}_{1}\right.$ and $\left.F_{2} \in \mathrm{FS}_{2}\right\}$. We call FS_{1} and FS_{2} the subspaces of FS. A security game provides access to F_{1} and F_{2} through a single oracle RO that takes two arguments; the first is the index of the function to be queried and the second is the contents of the query. So $\mathrm{RO}(i, X)$ will return $F_{i}(X)$. We can also cast an arity-1 function space in this notation

Game $\mathrm{G}_{\mathbf{C}, \text { Sim }}^{\text {indif }}$ SS,ES
Initialize():
$1 b \leftarrow^{\oplus}\{0,1\}$
$2 \mathrm{RO}_{\text {SS }} \leftarrow$ ¢S
$3 \mathrm{RO}_{\mathrm{ES}} \stackrel{\leftarrow}{\leftarrow} \mathrm{ES}$
4 state ${ }_{\text {¢ }}{ }^{\oplus}$
$\underline{\text { Finalize }\left(b^{\prime}\right)}$:
5 return b^{\prime}

$\operatorname{Pub}(i, Y)$:
$\operatorname{Pub}(i, Y)$:
if $b=0$ then
if $b=0$ then
$(z$, state $) \leftarrow \operatorname{Sim}[\operatorname{PRIV}](i, Y$, state $)$
$(z$, state $) \leftarrow \operatorname{Sim}[\operatorname{PRIV}](i, Y$, state $)$
return z
return z
else return $\mathrm{RO}_{\mathrm{ss}}(i, Y)$
else return $\mathrm{RO}_{\mathrm{ss}}(i, Y)$
$\operatorname{Priv}(i, X)$:
$\operatorname{Priv}(i, X)$:
0 if $b=0$ then return $\mathrm{RO}_{\mathrm{ss}}(i, X)$
0 if $b=0$ then return $\mathrm{RO}_{\mathrm{ss}}(i, X)$
11 else return $\mathbf{C}\left[\mathrm{RO}_{\mathrm{ES}}\right](i, X)$
11 else return $\mathbf{C}\left[\mathrm{RO}_{\mathrm{ES}}\right](i, X)$

Figure 5: The game $\mathrm{G}_{\mathrm{C}, \mathrm{Sim}, \mathrm{SS}, \mathrm{ES}}^{\mathrm{ind}}$ measuring indifferentiability of a construct \mathbf{C} that transforms function space SS into ES. The game is parameterized by a simulator Sim.
by identifying each function F with the tuple (F), but we will typically omit the parentheses and index argument when only one random oracle is used.

Indifferentiability was originally developed by Maurer, Renner, and Holenstein [51], and it has been used to prove security for hash functions built from public compression functions. More generally, it gives a framework to show the security of a transition between any two function spaces. We'll call these spaces SS (for "starting space") and ES (for "ending space"). A construction of ES from SS is an algorithm \mathbf{C} that outputs elements of $E S$ given an oracle $\mathrm{RO}_{S S} \in S S$. We may use the notation $\mathbf{C}: S S \rightarrow E S$. We then say that \mathbf{C} is "indifferentiable" if for any function $R O_{S S}$ sampled from $S S, \mathbf{C}[R O]$ behaves indistinguishably from a function $R O_{E S}$ sampled from $E S$. Indifferentiability requires this behavior to hold even when the adversary can access both $\mathbf{C}\left[\mathrm{RO}_{\mathrm{Ss}}\right]$ and $\mathrm{RO}_{\text {ss }}$ without any restriction. Once we have an indifferentiable construction between two function spaces, we can use the indifferentiability "composition theorem" to prove that (almost) any protocol is as secure when it uses $\mathbf{C}\left[\mathrm{RO}_{\mathrm{SS}}\right]$ as its random oracle as when it uses $\mathrm{RO}_{\mathrm{ES}} .{ }^{6}$

How do we check whether a construction \mathbf{C} is indifferentiable? From the earlier intuition, we set up a security game with two worlds. In one world, often called the "real world", the adversary has oracle access to $\mathrm{RO}_{S S}$ (drawn from SS) and $\mathbf{C}\left[\mathrm{RO}_{S S}\right]$. In the other, the "ideal world", it has oracle access to $\mathrm{RO}_{\mathrm{ES}}$, a random oracle sampled from ES. The adversary's task is then to return a bit indicating which world it is in.

This intuition is obviously incomplete: the adversary can distinguish between worlds just by counting its oracles. We need a second oracle in the ideal world. This second oracle, Pub, must behave indistinguishably from $\mathrm{RO}_{\text {sS }}$, but its responses must also be consistent with the view of $\mathrm{RO}_{\text {ES }}$ (accessed via the first oracle, Priv) as a construction of Pub. The algorithm that does this is called a "simulator". Every construction requires a different simulator Sim, so we make it a parameter of the definition. We can now give pseudocode for the full indifferentiability security game, shown in Figure 5.

Definition 4.1 (Indifferentiability). Let SS and ES be function spaces, and let \mathbf{C} be a construction
 Priv oracle and $\mathrm{q}_{\mathrm{Pub}}$ queries to the P UB oracle, the indifferentiability advantage of \mathcal{D} is

$$
\operatorname{Adv}_{\mathbf{C}, S i m, \mathbf{q P}_{\text {Priv }}, \mathrm{q}_{\mathrm{PUB}}}^{\text {indiff }}(\mathcal{D}):=\operatorname{Pr}\left[\operatorname{G}_{\mathbf{C}, \text { Sim }}^{\text {indiff }}(\mathcal{D}) \Rightarrow 1 \mid b=1\right]-\operatorname{Pr}\left[\mathrm{G}_{\mathbf{C}, \text { Sim }}^{\text {indif }}(\mathcal{D}) \Rightarrow 1 \mid b=0\right] .
$$

[^5]Indifferentiability is useful because of the following theorem of Maurer et al. [51]. In our presentation, we consider only the authenticated key exchange game, although the theorem applies equally well to any single-stage game [55].

Theorem 4.2. Let KE be a key exchange protocol using function space ES. Let \mathbf{C} be an indifferentiable construct of ES from SS with respect to simulator Sim, and let t^{\prime} be the runtime of Sim on a single query. We define KE^{\prime} to be the following key exchange protocol with function space SS : KE^{\prime} runs KE , but wherever KE would call its random oracle, KE^{\prime} instead computes \mathbf{C} using its own random oracle. For any adversary \mathcal{A} against the MSKE security of KE^{\prime} with runtime $t_{\mathcal{A}}$ and making q random oracle queries, there exists an adversary \mathcal{B} and a distinguisher \mathcal{D} with runtime approximately $t_{\mathcal{A}}+q \cdot t$ such that

$$
\operatorname{Adv}_{\mathrm{KE}^{\prime}}^{\operatorname{MSE}}(\mathcal{A}) \leq \operatorname{Adv}_{\mathrm{KE}}^{\operatorname{MSKE}}(\mathcal{B})+\operatorname{Adv}_{\mathbf{C}, \operatorname{Sim}}^{\text {indiff }}(\mathcal{D})
$$

Proof. Adversary \mathcal{B} is a wrapper for \mathcal{A} whenever \mathcal{A} makes a query to its random oracle RO, \mathcal{B} responds by running the simulator with its own random oracle. The distinguisher \mathcal{D} simulates the KE - Sec game of KE for \mathcal{A}, with two differences: instead of an RO, it gives \mathcal{A} oracle access to Pub, and where KE would query its own RO, it instead queries Priv. We claim that when $b=1$ in the indifferentiability game (the real world), \mathcal{D} perfectly simulates the MSKE game of K^{\prime} for \mathcal{A}. This works because the Priv oracle computes \mathbf{C} for K^{\prime}, and the Pub oracle is indeed an RO as \mathcal{A} expects. When $b=0, \mathcal{D}$ perfectly simulates MSKE of KE for \mathcal{B}. The Pub oracle answers all of \mathcal{A} 's queries using the simulator, so it properly executes the wrapper code that makes up \mathcal{B}. The rest of the simulation is honest, down to the random oracle accessed via Priv.

5 Key-Schedule Indifferentiability

In this section we will argue that the key schedule of TLS 1.3 PSK modes, where the underlying cryptographic hash function is modeled as a random oracle (i.e., the left-hand side of Figure 1 with the underlying hash function modeled as a random oracle), is indifferentiable [51] from a key schedule that uses independent random oracles for each step of the key derivation (i.e., the right-hand side of Figure 1 with all TKDF_{x} functions modeled as independent random oracles). We stress that this step not only makes our main security proof in Section 7 significantly simpler and cleaner, but also it puts the entire protocol security analysis on a firmer theoretical ground than previous works.

In their proof of tight security, Diemert and Jager [19] previously modeled the TLS 1.3 key schedule as four independent random oracles. Davis and Günther [15] concurrently modeled the functions HKDF.Extract and HKDF.Expand used by the key schedule as two independent random oracles. Neither work provided formal justification for their modeling. Most importantly, both neglected potential dependencies between the use of the hash function in multiple contexts in the key schedule and elsewhere in the protocol. In particular, no construction of HKDF.Extract and HKDF.Expand as independent ROs from one hash function could be indifferentiable, because HKDF.Extract and HKDF.Expand both call HMAC directly on their inputs, with HKDF.Expand only adding a counter byte. Hence, the two functions are inextricably correlated by definition. We do not claim that the analyses of $[19,15]$ are incorrect or invalid, but merely point out that their modeling of independent random oracles is currently not justified and might not be formally reachable if one only wants to treat the hash function itself as a random oracle. This is undesirable because the gap between an instantiated protocol and its abstraction in the random oracle model can camouflage serious attacks, as Bellare et al. [5] found for the NIST PQC KEMs. Their attacks
exploited dependencies between functions that were also modeled as independent random oracles but instantiated with a single hash function.

In contrast, in this section we will show that our modeling of the TLS 1.3 key schedule is indifferentiable from the key schedule when the underlying cryptographic hash function is modeled as a random oracle. To this end, we will require that inputs to the hash function do not appear in multiple contexts. For instance, a protocol transcript might collide with a Diffie-Hellman group element or an internal key (i.e., both might be represented by exactly the same bit string, but in different contexts). For most parameter settings, we can rule out such collisions by exploiting serendipitous formatting, but for one choice of parameters (the PSK-only handshake using SHA384 as hash function), an adversary could conceivably force this type of collision to occur; see Appendix B for a detailed discussion. While this does not lead to any known attack on the handshake, it precludes our indifferentiability approach for that case.

Insights for the design of cryptographic protocols. One interesting insight for protocol designers that results from our attempt of closing this gap with a careful indifferentiability-based analysis is that proper domain separation might enable a cleaner and simpler analysis, whereas a lack of domain separation leads to uncertainty in the security analysis. No domain separation means stronger assumptions in the best case, and an insecure protocol in the worst case, due to the potential for overlooked attack vectors in the hash functions. A simple prefix can avoid this with hardly any performance loss.

Indifferentiability of the TLS 1.3 key schedule. Via the indifferentiability framework, we replace the complex key schedule of TLS 1.3 with 12 independent random oracles: one for each first-class key and MAC tag, and one more for computing transcript hashes. In short, we relate the security of TLS 1.3 as described in the left-hand side of Figure 1 to that of the simplified protocol on the right side of Figure 1 with the key derivation and MAC functions TKDF $_{x}$ and modeled as independent random oracles. We prove the following theorem, which formally justifies our abstraction of the key exchange protocol by reducing its security to that of the original key exchange game.
Theorem 5.1. Let $\mathrm{RO}_{\mathrm{H}}:\{0,1\}^{*} \rightarrow\{0,1\}^{\text {hl }}$ be a random oracle. Let KE be the TLS 1.3 PSK-only or PSK-(EC)DHE handshake protocol described on the left hand side of Figure 1 with $\mathbf{H}:=\mathrm{RO}_{\mathrm{H}}$ and MAC, Extract, and Expand defined from \mathbf{H} as in Section 2. Let KE' be the corresponding (PSKonly or PSK-(EC)DHE) handshake protocol on the right hand side of Figure 1, with $\mathbf{H}:=\mathrm{RO}_{\mathrm{Th}}$ and $\mathrm{TKDF}_{x}:=\mathrm{RO}_{x}$, where $\mathrm{RO}_{\mathrm{Th}}, \mathrm{RO}_{\text {binder }}, \ldots, \mathrm{RO}_{\mathrm{RMS}}$ are random oracles with the appropriate signatures (cf. Section 5.1.3 for the signature details). Then,

$$
\begin{array}{r}
\operatorname{Adv}_{\mathrm{KE}}^{\operatorname{MSE}}\left(t, q_{\mathrm{NS}}, q_{\mathrm{S}}, q_{\mathrm{RS}}, q_{\mathrm{RL}}, q_{\mathrm{T}}, q_{\mathrm{RO}}\right) \leq \operatorname{Adv}_{\mathrm{KE}^{\prime}}^{\mathrm{MSE}}\left(t, q_{\mathrm{NS}}, q_{\mathrm{S}}, q_{\mathrm{RS}}, q_{\mathrm{RL}}, q_{\mathrm{T}}, q_{\mathrm{RO}}\right) \\
+\frac{2\left(12 q_{\mathrm{S}}+q_{\mathrm{RO}}\right)^{2}}{2^{h l}}+\frac{2 q_{\mathrm{RO}}^{2}}{2^{h l}}+\frac{8\left(q_{\mathrm{RO}}+36 q_{\mathrm{S}}\right)^{2}}{2^{h l}} .
\end{array}
$$

We establish this result via three modular steps in the indifferentiability framework introduced by Maurer, Renner, and Holenstein [51]. More specifically we will leverage a recent generalization proposed by Bellare, Davis, and Günther (BDG) [5], which in particular formalizes indifferentiability for constructions of multiple random oracles.

5.1 Indifferentiability for the TLS 1.3 Key Schedule in Three Steps

We move from the left of Figure 1 to the right via three steps. Each step introduces a new variant of the TLS 1.3 protocol with a different set of random oracles by changing how we implement

H, MAC, Expand, Extract, and eventually the whole key schedule. Then we view the prior implementations of these functions as constructions of new, independent random oracles. We prove security for each intermediate protocol in two parts: first, we bound the indifferentiability advantage against that step's construction; then we apply the indifferentiability composition theorem based on [51] (cf. Section 4, Theorem 4.2) to bound the multi-stage key exchange (MSKE) security of the new protocol.

We give a brief description of each step; all details and formal theorem statements and proofs can be found in Sections 5.1.1, 5.1.2, and 5.1.3, respectively.

From one random oracle to two. TLS 1.3 calls its hash function \mathbf{H}, which we initially model as random oracle RO_{H}, for two purposes: to hash protocol transcripts, and as a component of MAC, Extract, and Expand which are implemented using HMAC $[\mathbf{H}]$. Our eventual key exchange proof needs to make full use of the random oracle model for the latter category of hashes, but we require only collision resistance for transcript hashes.
Our first intermediate handshake variant, KE_{1}, replaces \mathbf{H} with two new functions: Th for hashing transcripts, and Ch for use within MAC, Extract, or Expand. While KE uses the same random oracle RO_{H} to implement Th and Ch , the KE_{1} protocol instead uses two independent random oracles $\mathrm{RO}_{\text {Th }}$ and $\mathrm{RO}_{\text {HMAC. }}$. To accomplish this without loss in MSKE security, we exploit some possibly unintentional domain separation in how inputs to these functions are formatted in TLS 1.3 to define a so-called cloning functor, following BDG [5]. Effectively, we partition the domain $\{0,1\}^{*}$ of RO_{H} into two sets D_{Th} and D_{Ch} such that $D_{\text {Th }}$ contains all valid transcripts and $D_{\text {Ch }}$ contains all possible inputs to \mathbf{H} from HMAC. We then leverage Theorem 1 of [5] that guarantees composition for any scheme that only queries $\mathrm{RO}_{\mathrm{Ch}}$ within the set D_{Ch} and $\mathrm{RO}_{\mathrm{Th}}$ within the set $D_{\text {Th }}$.
We defer details on the exact domain separation to Appendix B, but highlight that the PSKonly handshake with hash function SHA384 fails to achieve this domain separation and consequently this proof step cannot be applied and leaves a gap for that configuration of TLS 1.3.

From SHA to HMAC. Our second variant protocol, KE_{2}, rewrites the MAC function. Instead of computing HMAC $\left[\mathrm{RO}_{C h}\right]$, MAC now directly queries a new random oracle RO_{H} AC : $\{0,1\}^{h l} \times\{0,1\}^{*} \rightarrow\{0,1\}^{h l}$. Since $\mathrm{RO}_{\text {Ch }}$ was only called by MAC, we drop it from the protocol, but we do continue to use $R O_{T h}$, i.e., $K E_{2}$ uses two random oracles: $\mathrm{RO}_{\mathrm{Th}}$ and $\mathrm{RO}_{\text {HMAC }}$. The security of this replacement follows directly from Theorem 4.3 of Dodis et al. [21], which proves the indifferentiability of HMAC with fixed-length keys. ${ }^{7}$

From two random oracles to 12. Finally, we apply a "big" indifferentiability step which yields 12 independent random oracles and moves us to the right-hand side of Figure 1. The 12 ROs include the transcript-hash oracle $\mathrm{RO}_{\text {Th }}$ and 11 oracles that handle each key(-like) output in TLS 1.3's key derivation, named $\mathrm{RO}_{\text {binder }}, \mathrm{RO}_{\text {ETS }}, \mathrm{RO}_{\text {EEMS }}, \mathrm{RO}_{h t k_{C}}, \mathrm{RO}_{\text {CF }}, \mathrm{RO}_{h t k_{S}}, \mathrm{RO}_{\mathrm{SF}}$, $\mathrm{RO}_{\text {CATS }}, \mathrm{RO}_{\text {SATS }}, \mathrm{RO}_{\text {EMS }}$, and $\mathrm{RO}_{\text {RMS }}$. (The signatures for these oracles are given in Appendix 5.1.3.) For this step, we view TKDF as a construction of 11 random oracles from a single underlying oracle ($\mathrm{RO}_{\text {HMAC }}$). We then give our a simulator in pseudocode and prove the indifferentiability of TKDF with respect to this simulator. Our simulator uses look-up tables to efficiently identify intermediate values in the key schedule and consistently program the final keys and MAC tags.

[^6]Combining these three steps yields the result in Theorem 5.1. In the remainder of the paper, we can therefore now work with the right-hand side of Figure 1, modeling \mathbf{H} and the TKDF functions as 12 independent random oracles.

5.1.1 Step 1: Domain-separating the Transcript Hash

In the original TLS 1.3 PSK/PSK-(EC)DHE handshake, the hash function \mathbf{H} is used in two different ways. It is used directly to compute digests of a transcript and it is used as a component of MAC, Extract, and Expand. We will argue now that these two uses are entirely distinct, and we can accordingly write two functions Th and Ch in place of the two uses of \mathbf{H}, and, following BDG [5], go from modeling \mathbf{H} as one random oracle to modeling Th and Ch as two independent random oracles.

We will refer to our two new random oracles as $\mathrm{RO}_{\mathrm{Th}}$ (modeling the transcript hash function Th) and $\mathrm{RO}_{\mathrm{Ch}}$ (modeling the component hash Ch). Because TLS 1.3 fully specifies the inputs to each hash function call, we can show that in PSK-(EC)DHE mode and in PSK-only mode when $h l=256$, TLS 1.3 will never call the same string as an input to both Th and Ch. This is due to some fortunate coincidences of formatting in the standard, which we describe in full in Appendix B. We can therefore define two disjoint sets D_{Th} and D_{Ch} such that $D_{\mathrm{Th}} \cup D_{\mathrm{Th}}=\{0,1\}^{*}$ split up H's domain.

If we define the domain of $\mathrm{RO}_{\mathrm{Th}}$ to be D_{Th} and the domain of $\mathrm{RO}_{\mathrm{Ch}}$ to be D_{Ch}, we could prove indifferentiability using a construction called the identity (cloning) functor \mathbf{I} from [5]. The identity functor constructs two or more random oracles $\mathrm{RO}_{1}, \mathrm{RO}_{2}, \ldots$ from RO_{H} by forwarding all RO_{i} queries to RO_{H} unchanged. However, the definitions of sets $D_{\text {Th }}$ and $D_{\text {Ch }}$ are somewhat complex, especially in PSK-only mode. We would instead prefer to define both $\mathrm{RO}_{\text {Th }}$ and $\mathrm{RO}_{\mathrm{Ch}}$ with domains $\{0,1\}^{*}$. This would greatly simplify our later use of $\mathrm{RO}_{\mathrm{Ch}}$ as a component of HMAC. Unfortunately, when the domains of $\mathrm{RO}_{\mathrm{Th}}$ and $\mathrm{RO}_{\mathrm{Ch}}$ overlap, the identity functor is not indifferentiable. We can however still provide the desired result by turning to the read-only indifferentiability framework of Bellare, Davis, and Günther [5].

Read-only indifferentiability (a.k.a. rd-indiff) is similar to standard indifferentiability [51]. One notable change (and the one we will leverage here) is that it is parameterized by a set \mathcal{W} called the "working domain." The security game places a restriction on the Priv oracle so that it only responds to queries within \mathcal{W}. Read-only indifferentiability supports a broader composition thoerem than Theorem 4.2 , which covers security games which call their random oracles only within the working domain. BDG prove [5, Theorem 1], which states that when \mathcal{W} consists of disjoint sets like $D_{\text {Th }}$ and D_{Ch}, the identity functor is read-only indifferentiable even when the full domains of $\mathrm{RO}_{\mathrm{Th}}$ and $\mathrm{RO}_{\mathrm{Ch}}$ are not disjoint. Furthermore, the read-only indifferentiability advantage is upper-bounded by 0 , and BDG give a simulator that runs in linear time on the length of its inputs and makes at most one query per execution. When we apply the read-only indifferentiability composition theorem, the adversary's runtime and query bounds will not increase.

We formalize this with a lemma:
Lemma 5.2. Let KE be the TLS 1.3 key exchange protocol of Theorem 5.1. Let $\mathrm{RO}_{\mathrm{Th}}, \mathrm{RO}_{\mathrm{Ch}}$: $\{0,1\}^{*} \rightarrow\{0,1\}^{\text {hl }}$ be two random oracles, and let KE_{1} be the protocol on the left-hand side of Figure 1, where

- $\mathbf{H}:=\mathrm{RO}_{\mathrm{Th}}$
- $M A C:=H M A C\left[\mathrm{RO}_{\mathrm{Ch}}\right]$
and Expand and Extract are as in KE (using the new definition of MAC). Let $D_{\text {Th }}$ and $D_{\text {Ch }}$ be two disjoint sets such that KE_{1}. Run only queries $\mathrm{RO}_{\mathrm{Th}}$, resp. $\mathrm{RO}_{\mathrm{Ch}}$ in D_{Th}, resp. D_{Ch}, and $D_{\mathrm{Th}} \cup D_{\mathrm{Ch}}=\{0,1\}^{*}$. Furthermore, let D_{Th} have an efficient membership function.

Let \mathcal{A} be an adversary against the MSKE security of KE, running in time $t_{\mathcal{A}}$ and making q_{RO} and q_{S} queries to its random oracle resp. SEND oracle. Then there exists an adversary \mathcal{B} against the security of KE^{\prime}, such that

$$
\operatorname{Adv}_{\mathrm{KE}}^{\operatorname{MSKE}}(\mathcal{A}) \leq \operatorname{Adv}_{\mathrm{KE}_{1}}^{\operatorname{MSKE}}(\mathcal{B}) .
$$

Adversary \mathcal{B} 's runtime is $\mathcal{O}\left(t_{\mathcal{A}}+q_{\mathrm{RO}}\right)$, and it makes the same number of queries to each of its oracles as \mathcal{A} in the MSKE game.

Proof. The function space of KE is $\operatorname{SS}=\operatorname{AF}\left(\{0,1\}^{*},\{0,1\}^{h l}\right)$, and the function space of KE_{1} is $\mathrm{ES}=\mathrm{AF}\left(\{\mathrm{Th}, \mathrm{Ch}\} \times\{0,1\}^{*},\{0,1\}^{h l}\right)$. We can construct ES from SS via a construction called the "identity functor" defined by BDG [5]. This construction is parameterized by a set $\mathcal{W}:=$ $\left(\{\mathrm{Th}\} \times D_{\mathrm{Th}}\right) \cup\left(\{\mathrm{Ch}\} \times D_{\mathrm{Ch}}\right)$. To answer any query (i, s), the identity functor simply forwards s to its own oracle, regardless of whether i is Th or Ch . Because \mathcal{W} is the union of two disjoint sets with efficient membership functions, the simulator Sim defined by BDG's Theorem 1 has the property that for any distinguisher \mathcal{D},

$$
\operatorname{Adv}_{\mathbf{I}_{\mathcal{W}}, \mathcal{W}, \operatorname{Sim}}^{\text {rdindiff }}(\mathcal{D})=0
$$

Sim works by using the membership function of $D_{\text {Th }}$ to check which of the two oracles is being simulated; then it forwards the query to the appropriate oracle.

For this (or any) simulator, the composition theorem for read-only indifferentiability grants the existence of adversary \mathcal{B} and a distingisher \mathcal{D} such that

This composition theorem crucially rests on the fact that $K E_{1}$. Run queries $\mathrm{RO}_{\text {Th }}$ and $\mathrm{RO}_{\mathrm{Ch}}$ only within \mathcal{W}. The lemma follows.

We require that $D_{\text {Th }}$ and D_{Ch} are disjoint sets. We define specific choices of D_{Th} and D_{Ch} based on the low-level formatting of TLS 1.3 in Appendix B, and there we give detailed arguments that the sets are disjoint for 3 of 4 standardized settings of the PSK/PSK-(EC)DHE handshake.

In the fourth setting, PSK-only mode with hash function SHA384, there are no disjoint choices for $D_{\text {Th }}$ and D_{Ch} with efficient membership functions. This is due to a lack of careful domain separation of the hash function calls in TLS 1.3. We therefore cannot apply this indifferentiability step for the PSK-only/SHA384 handshake protocol. Any security proof of this handshake must either rely on stronger, possibly falsifiable abstractions in the random oracle model, or use a model SHA384 as a single random oracle, with no guarantees of independence. We avoid the latter approach in order to maintain a modular and readable proof.

The second inequality follows from our choice of simulator and Theorem 1 of [5], which makes at most one query to its random oracle per execution. Their simulator, as mentioned above, must efficiently determine for every query s whether to query $\mathrm{RO}_{\mathrm{Th}}$ or $\mathrm{RO}_{\mathrm{Ch}}$. This induces the requirement that $D_{\mathrm{Th}} \cup D_{\mathrm{Ch}}=\{0,1\}^{*}$, so every possible query can be routed appropriately, and the requirement that $D_{\text {Th }}$ has an efficient membership function so that the simulator is itself efficient. $D_{\text {Th }}$ and $D_{\text {Ch }}$ satisfy these requirements thanks to the rules given in Appendix B.

5.1.2 Step 2: Applying the Indifferentiability of HMAC

Our next key exchange protocol, KE_{2}, replaces the construction $\mathrm{HMAC}[\mathrm{Ch}]$ with a single random oracle $\mathrm{RO}_{\text {HMAC }}$ in the implementation of MAC and by extension Extract and Expand. We rely
on the proof of HMAC's indifferentiability by Dodis et al. [21, Theorem 3]. As a prerequisite for this theorem, we need to restrict HMAC to keys of a fixed length less than the block length of the hash function (512 bits for SHA256 and 1024 bits for SHA384). This is consistent with HMAC's usage in TLS 1.3, where the keys are almost always of length $h l \in\{256,384\}$. The only exception is when pre-shared keys of another length are negotiated out-of-band; we exclude this case.

Lemma 5.3. Let $\operatorname{RO}_{\text {Th }}, \operatorname{RO}_{\mathrm{Ch}}:\{0,1\}^{*} \rightarrow\{0,1\}^{h l}$ and $\operatorname{RO}_{\text {HMAC }}:\{0,1\}^{h l} \times\{0,1\}^{*} \rightarrow\{0,1\}^{h l}$ be random oracles. Let KE_{1} be the TLS 1.3 key exchange protocol described in Theorem 5.2 using random oracles $\mathrm{RO}_{\text {Th }}$ and $\mathrm{RO}_{\mathrm{Ch}}$. Let KE_{2} be the key exchange protocol given on the left-hand side of Figure 1, where

- $\mathbf{H}:=\mathrm{RO}_{\text {Th }}$
- $\mathrm{MAC}:=\mathrm{RO}_{\text {hmac }}$
and Extract and Expand are defined as Section 2. Let \mathcal{A} be an adversary against the MSKE security of KE_{1}, running in time $t_{\mathcal{A}}$ and making q_{RO} and q_{S} queries to its random oracle resp. SEnD oracle. Then there exists an adversary \mathcal{B} against the security of KE_{2} such that

$$
\operatorname{Adv}_{\mathrm{KE}_{1}}^{\operatorname{MSE}}(\mathcal{A}) \leq \operatorname{Adv}_{\mathrm{KE}_{2}}^{\operatorname{MSE}}(\mathcal{B})+\frac{2\left(12 q_{\mathrm{S}}+q_{\mathrm{RO}}\right)^{2}}{2^{h l}}
$$

Adversary \mathcal{B} has runtime $\mathcal{O}\left(t_{\mathcal{A}}+q_{\mathrm{RO}}\right)$ and makes the same number of queries to each of its oracles as \mathcal{A} in the MSKE game.

Proof. KE_{1} uses function space ES , defined in the proof of Lemma 5.2, and KE_{2} uses function space $\mathrm{ES}_{2}=\operatorname{AF}\left(\left(\{\mathrm{Th}\} \times\{0,1\}^{*}\right) \cup\left(\{\mathrm{HMAC}\} \times\{0,1\}^{h l} \times\{0,1\}^{*}\right),\{0,1\}^{h l}\right)$. The construction \mathbf{C} of ES_{2} from ES simply forwards all queries to $\mathrm{RO}_{\text {Th }}$. It answers $\mathrm{RO}_{\text {HMAC }}$ queries with $\mathrm{HMAC}\left[\mathrm{RO}_{\mathrm{Ch}}\right]$.

For any simulator Sim, Theorem 5 grants the existence of a distinguisher \mathcal{D} and an adversary \mathcal{B} such that

$$
\operatorname{Adv}_{\operatorname{ME}_{1}}^{\operatorname{MSE}}(\mathcal{A}) \leq \operatorname{Adv}_{\mathrm{KE}_{2}}^{\operatorname{MSE}}(\mathcal{B})+\operatorname{Adv}_{\mathbf{C}, \operatorname{Sim}}^{\text {indiff }}(\mathcal{D})
$$

The distinguisher \mathcal{D} makes up to 12 queries to Priv for each Send query made by \mathcal{A}, and makes one Pub query for each RO query of \mathcal{A}.

We consider the simulator Sim_{2} defined by Dodis et al. for [20, Theorem 4.3] (the full version of [21, Theorem 3]). This simulator relies on the requirement that HMAC keys are a fixed length, and shorter than the block length of the underlying hash function. HMAC pads its keys with zero bits up to the block length, so each hash function call made by HMAC contains a segment containing the byte 0×36 for the first of the two calls and $0 \times 5 \mathrm{c}$ for the second. Sim_{2} uses this segment to identify whether a particular query is intended to simulate the first or second hash function call. It answers the "first" calls with random strings and logs these responses. Then it programs the "second" calls by using its stored intermediate values to find which $\mathrm{RO}_{\text {HMAC }}$ query should be simulated. We augment the simulator to forward all queries to $\mathrm{RO}_{\mathrm{Th}}$; this does not change its runtime or effectiveness. This simulator works perfectly unless there is a collision among the $2 \mathrm{q}_{\text {Priv }}+\mathrm{q}_{\text {Pub }}$ intermediate values, which Dodis et al. bound with a birthday bound. That theorem states that for a distinguisher \mathcal{D} making $12 q_{\mathrm{S}}$ queries to PRIV and $q_{\text {RO }}$ queries to PUB,

$$
\operatorname{Adv}_{\mathbf{C}, \mathrm{Sim}}^{\text {indif }}(\mathcal{D}) \leq \frac{2\left(12 q_{\mathrm{S}}+q_{\mathrm{RO}}\right)^{2}}{2^{h l}}
$$

The lemma follows.

5.1.3 Step 3: Applying Indifferentiability to the TLS Key Schedule

In the last step, we move to the right-hand side of Figure 1 and introduce 11 new independent random oracles to model the key schedule. We start by rephrasing the TLS key schedule and message authentication codes as eleven functions $\mathrm{TKDF}_{\text {binder }}, \ldots, \mathrm{TKDF}_{\text {RMS }}$ as in Section 2. This abstraction does not change any of the operations performed by the key schedule; the TKDF functions simply rename the key derivation steps already performed by KE_{2}. In our last key exchange protocol KE^{\prime}, we model each TKDF function as a independent random oracle. We name these oracles after the keys or values they derive:

$$
\begin{array}{ll}
\text { 1. } \mathrm{RO}_{\text {binder }}[\mathrm{RO} & :\{0,1\}^{h l} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l} \\
\text { 2. } \mathrm{RO}_{\mathrm{ETS}}\left[\mathrm{RO} \mathrm{RO}_{\mathrm{HACC}}\right] & :\{0,1\}^{h l} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l} \\
\text { 3. } \mathrm{RO}_{\mathrm{EEMS}}\left[\mathrm{RO}_{\mathrm{HMAC}}\right] & :\{0,1\}^{h l} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l} \\
\text { 4. } \mathrm{RO}_{h t k_{C}}\left[\mathrm{RO}_{\mathrm{HMAC}}\right] & :\{0,1\}^{h l} \times \mathbb{G} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l+i v l} \\
\text { 5. } \mathrm{RO}_{\text {fin }}\left[\mathrm{RO}_{\mathrm{HMAC}}\right] & :\{0,1\}^{h l} \times \mathbb{G} \times\{0,1\}^{h l} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l} \\
\text { 6. } \mathrm{RO}_{h t k_{S}}\left[\mathrm{RO}_{\mathrm{HMAC}}\right] & :\{0,1\}^{h l} \times \mathbb{G} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l+i v l} \\
\text { 7. } \mathrm{RO}_{\text {fin }}\left[\mathrm{RO}_{\mathrm{HMAC}}\right] & :\{0,1\}^{h l} \times \mathbb{G} \times\{0,1\}^{h l} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l} \\
\text { 8. } \mathrm{RO}_{\mathrm{CATS}}\left[\mathrm{RO}_{\mathrm{HMAC}}\right] & :\{0,1\}^{h l} \times \mathbb{G} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l} \\
\text { 9. } \mathrm{RO}_{\mathrm{SATS}}\left[\mathrm{RO}_{\mathrm{HMAC}}\right] & :\{0,1\}^{h l} \times \mathbb{G} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l} \\
\text { 10. } \mathrm{RO}_{\mathrm{EMS}}\left[\mathrm{RO}_{\mathrm{HMAC}}\right] & :\{0,1\}^{h l} \times \mathbb{G} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l} \\
\text { 11. } \mathrm{RO}_{\mathrm{RMS}}\left[\mathrm{RO}_{\mathrm{HMAC}}\right] & :\{0,1\}^{h l} \times \mathbb{G} \times\{0,1\}^{h l} \rightarrow\{0,1\}^{h l}
\end{array}
$$

The $12^{\text {th }}$ random oracle is $\mathrm{RO}_{\text {Th }}$, used to hash transcripts as in $K E_{1}$ and $K E_{2}$.
Now we can state Lemma 5.4.
Lemma 5.4. Let KE_{2} be the key exchange protocol of Lemma 5.3, and let KE^{\prime} be the key exchange protocol of Theorem 5.1.

For any adversary \mathcal{A} against the MSKE security of KE_{2}, with runtime t and making q_{RO} random oracle queries and q_{S} queries to SEND, there exists adversary \mathcal{B} against the MSKE security of KE^{\prime} such that

$$
\operatorname{Adv}_{\mathrm{KE}_{1}}^{\operatorname{MSKE}}(\mathcal{A}) \leq \operatorname{Adv}_{\mathrm{KE}_{2}}^{\operatorname{MSKE}}(\mathcal{B})+\frac{2 \mathrm{q}_{\text {PUB }}^{2}}{2^{h l}}+\frac{8\left(\mathrm{q}_{\text {PUB }}+6 \mathrm{q}_{\text {PRIV }}\right)^{2}}{2^{h l}}
$$

Adversary \mathcal{B} runs in time at most $t+q_{\mathrm{RO}} t_{\mathbb{G}}$, where $t_{\mathbb{G}}$ is the time to perform one group operation in the Diffie-Hellman group \mathbb{G}. It makes no more queries to each of the oracles in the MSKE game than does \mathcal{A}.

Proof. We view TKDF as defined in Section 2 as a construction of the function space ES^{\prime} of KE^{\prime} : the arity-12 function space whose first subspace is $\operatorname{AF}\left(\{0,1\}^{*},\{0,1\}^{h l}\right)$ and whose remaining 11 subspaces are the spaces of all functions with the domains and ranges specified in the above list. This TKDF construction takes an oracle from ES_{2}, the function space of KS_{2}.

As in the prior two steps, we consider a particular simulator Sim (cf. Figure 5.1.3) and rely on Theorem 5 for the existence of a distinguisher \mathcal{D} and an adversary \mathcal{B} such that

$$
\operatorname{Adv}_{K E_{2}}^{\operatorname{MSKE}}(\mathcal{A}) \leq \operatorname{Adv}_{\mathrm{KE}^{\prime}}^{\mathrm{MSKE}}(\mathcal{B})+\operatorname{Adv}_{T K D F, \text { Sim }}^{\text {indiff }}(\mathcal{D})
$$

The distinguisher \mathcal{D} will make no more than 12 queries to Priv for each Send query made by \mathcal{A} and one query to PuB per RO query.

Via a sequence of code-based games, we will show that the indifferentiability advantage of any distinguisher \mathcal{D} making $\mathrm{q}_{\text {Priv }}$ queries to the Priv oracle and $\mathrm{q}_{\text {Pub }}$ queries to the Pub oracle is

$$
\operatorname{Adv}_{\mathrm{TKDF}, \mathrm{SS}, \mathrm{ES}, \operatorname{Sim}}^{\mathrm{indiff}}(\mathcal{D}) \leq \frac{2 \mathrm{q}_{\text {PUB }}^{2}}{2^{h l}}+\frac{8\left(\mathrm{q}_{\mathrm{PuB}}+6 \mathrm{q}_{\text {PRIV }}\right)^{2}}{2^{h l}}
$$

We give fully specified pseudocode for each of our games.
First, we explain the high-level strategy of our simulator. Our simulator takes two inputs: an index $i \in\{T h, \operatorname{HMAC}\}$ and a string $s \in\{0,1\}^{*}$. When $i=\mathrm{Th}$, the simulator simulates $\mathrm{RO}_{\mathrm{Th}}(s)$ easily; it simply forwards the query to its own random oracle $\mathrm{RO}_{\text {Th }}$. When $i=\mathrm{HMAC}$, the simulator will parse s into a key $K \in\{0,1\}^{h l}$ and a context string $Y \in\{0,1\}^{*}$ and simulate $\mathrm{RO}_{\text {HMAC }}(K, Y)$. This simulation should be compatible with a view of the random oracles RO_{x} as computing $\operatorname{TKDF}_{x}\left[\mathrm{RO}_{\mathrm{HMAC}}\right]$.

Initially, Sim randomly samples the response y to any simulated $\mathrm{RO}_{\text {HMAC }}$ query from $\{0,1\}^{h l}$. Repeated queries are cached in a table M. Next, Sim checks whether the query could be part of an attempt to compute $\operatorname{TKDF}_{x}[\operatorname{Sim}]$ for some x. If so, it may have to program its response for consistency with RO_{x}, or it may store its response in a lookup table T to enable future programming.

The only values that need programming are the first-class keys and MAC values. These are all outputs of Expand $\left[\mathrm{RO}_{\text {hmac }}\right]$. Sim can tell if a particular $\mathrm{RO}_{\text {hmac }}$ query is made by Expand by checking its formatting. The inputs Y of all Expand's queries in the key schedule start with 3 bytes of fixed values and a label ℓ between 8 and 18 bytes long that starts with the string "tls13". They end with a 1 byte counter that TLS 1.3 fixes to 0×01. Sim pattern-matches this label to determine which key is being derived. It has a subroutine \mathcal{L} to translate the few labels which are used in the last derivation step for multiple keys.

Whenever Sim detects the label of an intermediate key derivation query like the Expand calls used to compute ES, HS, or MS, it stores the response to this query in table T under the name of the key in question. If \mathcal{D} computes TKDF honestly, these tables will allow the simulator to backtrack through the execution to identify all of the inputs to TKDF. Inputs to $\mathrm{RO}_{\text {hmac }}$ queries made by HKDF.Extract do not contain labels, so some tables contain multiple intermediate values. Even without labels, each intermediate value should only appear in one key derivation except in the unlikely event of a collision in $\mathrm{RO}_{\text {HMAC }}$.

The first game in our sequence is Game_{0} which is the "ideal world" setting of the indifferentiability game. Here, Priv queries are answered using a random function RO drawn from ES, and Pub queries are answered with Sim[RO].

In Game ${ }_{1}$ (cf. Figure 5.1.3), we set a bad flag bad ${ }_{C}$ and abort whenever Sim samples a random answer y that collides with the input or output of any previous simulator query. We track these inputs and outputs in a list L. For each new query, there are at most $2 \mathrm{q}_{\text {Pub }}$ points to collide with. Since y is sampled uniformly from $\{0,1\}^{h l}$, the probability of such a collision over all queries is at most $\frac{2 \mathrm{q}_{\mathrm{pug}}^{2}}{2^{h l}}$ by a birthday and union bound). Then

$$
\mid \operatorname{Pr}\left[\text { Game }_{1}\right]-\operatorname{Pr}\left[\text { Game }_{0}\right] \left\lvert\, \leq \frac{2 \mathrm{q}_{\mathrm{PUB}}^{2}}{2^{h l}} .\right.
$$

In Game 2 (Figure5.1.3), the Finalize oracle computes TKDF[ROHmac] on the input to every query to the Priv oracle, using Pub as its hash function. It discards the results of this computation, so this change can affect the outcome of the game only if one of the additional Pub queries sets the bad_{C} flag. The TKDF function queries its oracle at most 6 times per execution, so there are no more than $6 \mathrm{q}_{\text {Priv }}$ new queries. There are now a total of $\mathrm{q}_{\text {Pub }}+6 \mathrm{q}_{\text {Priv }}$ queries to Pub , so the

```
\(\operatorname{Sim}(i, s)\)
\(\frac{\operatorname{Sim}[\mathrm{RO}](i, s):}{}\)
    if \(M[s] \neq \perp\)
        then return \(M[s]\)
    if \(i=\mathrm{Th}\) then return \(\mathrm{RO}_{\mathrm{Th}}(K \| Y)\)
    // If not, this query should simulate \(\mathrm{RO}_{\text {нмас }}\)
    \(K, Y \leftarrow s\)
    // Randomly sample a response
    \(y \leftarrow\{0,1\}^{h l}\)
    if \(Y=0\)
        \(T_{\mathrm{PSK}}[y] \leftarrow K\)
    else if \(K=0\)
        \(T_{\mathrm{dHS}}[y] \leftarrow Y\)
    else if \(T_{f k_{b} / f k_{C} / f k_{S}}[K] \neq \perp\)
        \(\mathrm{ES} \leftarrow T_{\mathrm{ES}}\left[T_{\mathrm{BK} / \mathrm{CHTS} / \mathrm{SHTS}}[K]\right]\)
        \(\mathrm{PSK} \leftarrow T_{\mathrm{PSK}}[\mathrm{ES}]\)
        if PSK \(\neq \perp\)
            \(y \leftarrow \mathrm{RO}_{\text {binder }}(\mathrm{PSK}, Y)\)
            \(\mathrm{HTS} \leftarrow T_{\mathrm{BK} / \mathrm{CHTS} / \mathrm{SHTS}}[K]\)
        \(\left(\ell^{\prime}, \mathrm{HS}, \mathrm{H}_{2}\right) \leftarrow T_{\mathrm{HS} / d}[\mathrm{HTS}]\)
        \((\mathrm{dES}, \mathrm{DHE}) \leftarrow T_{\mathrm{dES} / \mathrm{DHE}}[\mathrm{HS}]\)
        \(\mathrm{PSK} \leftarrow T_{\mathrm{PSK}}\left[T_{\mathrm{ES} / \mathrm{HS}}[\mathrm{dES}]\right]\)
        if \(\operatorname{PSK} \neq \perp\)
            \(y \leftarrow \mathrm{RO}_{\ell^{\prime}[1]}\left(\mathrm{PSK}, \mathrm{DHE}, \mathrm{H}_{2}, Y\right)[\mathcal{L}(\ell)]\)
    else \(T_{\mathrm{dES} / \mathrm{DHE}}[y] \leftarrow(K, Y)\)
    if \((Y[0 \ldots 2] \neq h l)\)
        \(\vee Y[2]<8) \vee(Y[2]>18)\)
        \(\vee(Y[3 \ldots 9] \neq "\) tls \(13 "\) " \()\)
        \(\vee(Y[|Y|-1] \neq 1)\)
        // This query does not match HKDF.Expand formatting.
            \(M[s] \leftarrow y\)
            return \(y\)
    // Parse the Expand formatting to find the label.
    \(\operatorname{len}_{\ell} \leftarrow Y[2]\)
    \(\ell \leftarrow Y\left[3 \ldots\left(3+\right.\right.\) len \(\left.\left._{\ell}\right)\right]\)
\(d \leftarrow Y\left[\left(3+\operatorname{len}_{\ell}\right) \ldots|Y|\right]\)
```

```
\(\underline{\operatorname{Sim}[\mathrm{RO}](i, s) / / \text { continued: }}\)
```

$\underline{\operatorname{Sim}[\mathrm{RO}](i, s) / / \text { continued: }}$

```
\(\underline{\operatorname{Sim}[\mathrm{RO}](i, s) / / \text { continued: }}\)
    if \(\ell=\ell_{\text {binder }}\) and \(d=\mathrm{H}(" ")\)
    if \(\ell=\ell_{\text {binder }}\) and \(d=\mathrm{H}(" ")\)
    if \(\ell=\ell_{\text {binder }}\) and \(d=\mathrm{H}(" ")\)
        \(T_{\mathrm{ES}}[y] \leftarrow K\)
        \(T_{\mathrm{ES}}[y] \leftarrow K\)
        \(T_{\mathrm{ES}}[y] \leftarrow K\)
    else if \(\ell=\ell_{\mathrm{dES} / \mathrm{dHS}}\) and \(d=\mathrm{H}(" ")\)
    else if \(\ell=\ell_{\mathrm{dES} / \mathrm{dHS}}\) and \(d=\mathrm{H}(" ")\)
    else if \(\ell=\ell_{\mathrm{dES} / \mathrm{dHS}}\) and \(d=\mathrm{H}(" ")\)
        \(T_{\text {ES/HS }}[y] \leftarrow K\)
        \(T_{\text {ES/HS }}[y] \leftarrow K\)
        \(T_{\text {ES/HS }}[y] \leftarrow K\)
    else if \(\ell \in\left\{\ell_{\text {CHTS }}, \ell_{\text {SHTS }}\right\}\)
    else if \(\ell \in\left\{\ell_{\text {CHTS }}, \ell_{\text {SHTS }}\right\}\)
    else if \(\ell \in\left\{\ell_{\text {CHTS }}, \ell_{\text {SHTS }}\right\}\)
        \(T_{\mathrm{HS} / d}[y] \leftarrow(\mathcal{L}(\ell), K, d)\)
        \(T_{\mathrm{HS} / d}[y] \leftarrow(\mathcal{L}(\ell), K, d)\)
        \(T_{\mathrm{HS} / d}[y] \leftarrow(\mathcal{L}(\ell), K, d)\)
    else if \(\exists k \in\{\) ETS, EEMS \(\}\) with \(\ell=\ell_{k}\) and \(T_{\mathrm{PSK}}[K] \neq \perp\)
    else if \(\exists k \in\{\) ETS, EEMS \(\}\) with \(\ell=\ell_{k}\) and \(T_{\mathrm{PSK}}[K] \neq \perp\)
    else if \(\exists k \in\{\) ETS, EEMS \(\}\) with \(\ell=\ell_{k}\) and \(T_{\mathrm{PSK}}[K] \neq \perp\)
        \(y \leftarrow \mathrm{RO}_{k}\left(T_{\mathrm{PSK}}[K], d\right)\)
        \(y \leftarrow \mathrm{RO}_{k}\left(T_{\mathrm{PSK}}[K], d\right)\)
        \(y \leftarrow \mathrm{RO}_{k}\left(T_{\mathrm{PSK}}[K], d\right)\)
    else if \(\exists k \in\{\) CATS, SATS, EMS, RMS \(\}\) with \(\ell=\ell_{k}\)
    else if \(\exists k \in\{\) CATS, SATS, EMS, RMS \(\}\) with \(\ell=\ell_{k}\)
    else if \(\exists k \in\{\) CATS, SATS, EMS, RMS \(\}\) with \(\ell=\ell_{k}\)
        \((\mathrm{dES}, \mathrm{DHE}) \leftarrow T_{\mathrm{dES} / \mathrm{DHE}}\left[T_{\mathrm{ES} / \mathrm{HS}}\left[T_{\mathrm{dHS}}[K]\right]\right]\)
        \((\mathrm{dES}, \mathrm{DHE}) \leftarrow T_{\mathrm{dES} / \mathrm{DHE}}\left[T_{\mathrm{ES} / \mathrm{HS}}\left[T_{\mathrm{dHS}}[K]\right]\right]\)
        \((\mathrm{dES}, \mathrm{DHE}) \leftarrow T_{\mathrm{dES} / \mathrm{DHE}}\left[T_{\mathrm{ES} / \mathrm{HS}}\left[T_{\mathrm{dHS}}[K]\right]\right]\)
        \(\mathrm{PSK} \leftarrow T_{\mathrm{PSK}}\left[T_{\mathrm{ES} / \mathrm{HS}}[\mathrm{dES}]\right]\)
        \(\mathrm{PSK} \leftarrow T_{\mathrm{PSK}}\left[T_{\mathrm{ES} / \mathrm{HS}}[\mathrm{dES}]\right]\)
        \(\mathrm{PSK} \leftarrow T_{\mathrm{PSK}}\left[T_{\mathrm{ES} / \mathrm{HS}}[\mathrm{dES}]\right]\)
        if \(\operatorname{PSK} \neq \perp\)
        if \(\operatorname{PSK} \neq \perp\)
        if \(\operatorname{PSK} \neq \perp\)
        \(y \leftarrow \mathrm{RO}_{k}(\mathrm{PSK}, \mathrm{DHE}, d)\)
        \(y \leftarrow \mathrm{RO}_{k}(\mathrm{PSK}, \mathrm{DHE}, d)\)
        \(y \leftarrow \mathrm{RO}_{k}(\mathrm{PSK}, \mathrm{DHE}, d)\)
    else if \(\ell=\ell_{f k}\) and \(d=" "\)
    else if \(\ell=\ell_{f k}\) and \(d=" "\)
    else if \(\ell=\ell_{f k}\) and \(d=" "\)
    \(T_{\mathrm{BK} / \mathrm{ChTS} / \mathrm{ShTS}}[y] \leftarrow K\)
    \(T_{\mathrm{BK} / \mathrm{ChTS} / \mathrm{ShTS}}[y] \leftarrow K\)
    \(T_{\mathrm{BK} / \mathrm{ChTS} / \mathrm{ShTS}}[y] \leftarrow K\)
    else if \(\ell \in\{\) "tls13 key", "tls13 iv"\}
    else if \(\ell \in\{\) "tls13 key", "tls13 iv"\}
    else if \(\ell \in\{\) "tls13 key", "tls13 iv"\}
        and \(d=\mathrm{H}(" ")\)
        and \(d=\mathrm{H}(" ")\)
        and \(d=\mathrm{H}(" ")\)
        \(\left(\ell^{\prime}, \mathrm{HS}, \mathrm{H}_{2}\right) \leftarrow T_{\mathrm{HS} / d}[K]\)
        \(\left(\ell^{\prime}, \mathrm{HS}, \mathrm{H}_{2}\right) \leftarrow T_{\mathrm{HS} / d}[K]\)
        \(\left(\ell^{\prime}, \mathrm{HS}, \mathrm{H}_{2}\right) \leftarrow T_{\mathrm{HS} / d}[K]\)
        \((\mathrm{dES}, \mathrm{DHE}) \leftarrow T_{\mathrm{dES} / \mathrm{DHE}}[\mathrm{HS}]\)
        \((\mathrm{dES}, \mathrm{DHE}) \leftarrow T_{\mathrm{dES} / \mathrm{DHE}}[\mathrm{HS}]\)
        \((\mathrm{dES}, \mathrm{DHE}) \leftarrow T_{\mathrm{dES} / \mathrm{DHE}}[\mathrm{HS}]\)
        \(\mathrm{PSK} \leftarrow T_{\mathrm{PSK}}\left[T_{\mathrm{ES} / \mathrm{HS}}[\mathrm{dES}]\right]\)
        \(\mathrm{PSK} \leftarrow T_{\mathrm{PSK}}\left[T_{\mathrm{ES} / \mathrm{HS}}[\mathrm{dES}]\right]\)
        \(\mathrm{PSK} \leftarrow T_{\mathrm{PSK}}\left[T_{\mathrm{ES} / \mathrm{HS}}[\mathrm{dES}]\right]\)
        if \(\operatorname{PSK} \neq \perp\)
        if \(\operatorname{PSK} \neq \perp\)
        if \(\operatorname{PSK} \neq \perp\)
            \(y \leftarrow \mathrm{RO}_{\ell^{\prime}[0]}\left(\mathrm{PSK}, \mathrm{DHE}, \mathrm{H}_{2}\right)[\mathcal{L}(\ell)]\)
            \(y \leftarrow \mathrm{RO}_{\ell^{\prime}[0]}\left(\mathrm{PSK}, \mathrm{DHE}, \mathrm{H}_{2}\right)[\mathcal{L}(\ell)]\)
            \(y \leftarrow \mathrm{RO}_{\ell^{\prime}[0]}\left(\mathrm{PSK}, \mathrm{DHE}, \mathrm{H}_{2}\right)[\mathcal{L}(\ell)]\)
    \(M[s] \leftarrow y\)
    \(M[s] \leftarrow y\)
    \(M[s] \leftarrow y\)
    return \(y\)
    return \(y\)
    return \(y\)
Label translator \(\mathcal{L}(\ell)\) :
Label translator \(\mathcal{L}(\ell)\) :
Label translator \(\mathcal{L}(\ell)\) :
    if \(\ell=\ell_{\text {CHTS }}\)
    if \(\ell=\ell_{\text {CHTS }}\)
    if \(\ell=\ell_{\text {CHTS }}\)
        return \(h t k_{C}\), ClientFinished
        return \(h t k_{C}\), ClientFinished
        return \(h t k_{C}\), ClientFinished
    if \(\ell=\ell_{\text {SHTS }}\)
    if \(\ell=\ell_{\text {SHTS }}\)
    if \(\ell=\ell_{\text {SHTS }}\)
        return \(h t k_{S}\), ServerFinished
        return \(h t k_{S}\), ServerFinished
        return \(h t k_{S}\), ServerFinished
    if \(\ell=\) "tls13 key"
    if \(\ell=\) "tls13 key"
    if \(\ell=\) "tls13 key"
        return 0
        return 0
        return 0
    if \(\ell=\) "tls13 iv"
    if \(\ell=\) "tls13 iv"
    if \(\ell=\) "tls13 iv"
    return 1
    return 1
    return 1
    return \(\perp\)
```

 return \(\perp\)
    ```
    return \(\perp\)
```

Figure 6: Simulator Sim used in the proof of Lemma 5.4.
probability that bad $_{C}$ is set increases by another birthday bound.

$$
\mid \operatorname{Pr}\left[\text { Game }_{2}\right]-\operatorname{Pr}\left[\text { Game }_{1}\right] \left\lvert\, \leq \frac{2\left(\mathrm{qPub}+6 \mathrm{q}_{\text {Priv }}\right)^{2}}{2^{h l}}\right.
$$

The next step is the most subtle. In Game 3_{3} (Figure 5.1.3), we move the new computations of TKDF from the Finalize oracle into Priv. When Priv is called with index i and input X, it still returns $\mathrm{RO}_{i}(X)$. First, however, it computes $\operatorname{TKDF}_{i}[\mathrm{Pub}](X)$. It discards the result of this computation, so the behavior of the Priv oracle does not change in the adversary's view.

However, queries to Priv now run the simulator Sim. They can update its state and set the global bad_{C} flag. This has two consequences. First, the changed order of Pub queries may cause bad_{C} to be set in Game_{3} when it was not set in Game_{2}, or vice versa. Second, queries to Priv in Game $_{3}$ can add entries to the reverse lookup table T. These new entries can be used to satisfy the conditions the simulator uses to check if a full execution of TKDF has been completed. Then the simulator in Game_{3} may program responses that were not programmed in Game ${ }_{2}$.

We claim that despite the changed order of the queries, Game_{3} and Game_{2} behave identically in the adversary's view except when one of them would set the bad ${ }_{C}$ flag, assuming that the same random coins are used in both games. Let E denote the event that bad_{C} is set either when \mathcal{A} plays Game_{2} or when \mathcal{A} plays Game_{3}. Differences between the two games about when this flag is set are obviously irrelevant unless event E occurs.

The argument that Pub responses are identical in both games except when event E occurs is more subtle. Assume event E does not occur. There must be a first adversarial query to Pub that gives different responses in Game_{3} and Game_{2}, all oracles behave identically in both games. We name this query Q. Both games sample the same random responses, so query Q has its response programmed by the simulator in at least one of the two games.

The simulator decides whether to program based on the entries of reverse lookup table T, so we consider the differences in this table between our two games. Let T_{2} be the table in Game_{2} at the time when Query Q is made, and let T_{3} be the table at the same point in Game ${ }_{4}$. Entries in the reverse lookup table are indexed by randomly sampled values y, so they cannot be overwritten by later queries unless event E occurs. Furthermore, until query Q is made, every Pub query in Game $_{2}$ that updates T gives the identical response in Game $_{3}$, so every entry in T_{2} is also an entry in T_{3}. Therefore any query which is programmed in Game_{2}, up to and including query Q, will be programmed to the same response in Game ${ }_{3}$. The contrapositive statement says that any response which is randomly sampled in Game_{3} will be also be randomly sampled in Game_{2}.

It follows that query Q must have a randomly sampled response in $G^{-2 m e} e_{2}$ but be programmed in Game_{3}. There must exist a sequence of entries in T_{3} that correspond to a full execution of TKDF[PUB] on some input. We name the queries that created these entries Q_{1}, \ldots, Q_{i}. In each execution, our simulator either stores an entry in T, or it programs the response y, never both. Therefore queries $Q_{1}, \ldots Q_{i}$ have randomly sampled responses. By the definition of TKDF, the output of each query Q_{j} is contained in the input of the next query Q_{j+1}. The output of Q_{i} is contained in the input of Q, so we identify query Q with Q_{i+1}.

In Game 2 , one of the entries in the sequence is not present in T_{2}. Therefore one of the queries Q_{1}, \ldots, Q_{i} is not made before query Q in Game ${ }_{2}$. This query, Q_{j} must have been one of the Finalize queries of Game_{2} that were moved earlier in Game_{3}. It will therefore be made in Finalize, after all of the other queries, including Q_{j+1}. The randomly sampled output of Q_{j} will collide with the input of earlier query Q_{j+1}, setting bad ${ }_{C}$ and causing event E to occur.

The difference in advantage in Game_{3} and Game_{2} is therefore bounded by the probability of event E. Both games make $q_{\text {Pub }}+6 q_{\text {Priv }}$ queries to Pub, each of which sets bad_{C} is set with
probability at most $\frac{2\left(\mathrm{q}_{\text {PuB }}+6 \mathrm{q}_{\text {Priv }}\right)}{2^{h l}}$. By a union bound,

$$
\left|\operatorname{Pr}\left[\mathrm{Game}_{3}\right]-\operatorname{Pr}\left[\mathrm{Game}_{2}\right]\right| \leq \frac{4\left(\mathrm{q}_{\mathrm{PuB}}+6 \mathrm{q}_{\mathrm{PrIV}}\right)^{2}}{2^{h l}}
$$

Pseudocode for the last three games is given in Figure 5.1.3. Now we adjust Priv in Game 4 to return the result of $\mathbf{C}[\mathrm{PUB}]$ instead of querying RO. Unless bad_{C} is set, $\operatorname{TKDF}[\mathrm{PUB}](r, X)=$ $\mathrm{RO}_{r}(X)$. The function TKDF makes sequential queries to PUB that are properly formatted, so our Sim will program the last query in the sequence for consistency with the appropriate RO. This programming occurs every time $\operatorname{TKDF}[\mathrm{PUB}]$ is called, unless the last query is a repeated query. In that case, it will be answered using table M instead of RO. However, if the queries in the sequence occur out of order, they will always cause bad_{C} to be set because the output of a later query will match the input to an earlier query. Then the adversary wins in Game ${ }_{4}$ with the same likelihood as $G^{2 m e} e_{3}$, unless bad $_{C}$ is set. If bad $_{C}$ is set, both games have a win probability of 0 thanks to the check in the Finalize oracle, so

$$
\operatorname{Pr}\left[\text { Game }_{4}\right]=\operatorname{Pr}\left[\mathrm{Game}_{3}\right] .
$$

Starting with $G a m e_{5}$, we stop returning 0 in FinALIZE when bad ${ }_{C}$ is set. This increases the win probability by at most $\operatorname{Pr}\left[\mathrm{Game}_{4}\right.$ sets $\left.\operatorname{bad}_{C}\right] \leq \frac{2\left(\mathrm{q}_{\text {PuB }}+6 \mathrm{q}_{\text {Priv }}\right)^{2}}{2^{h l}}$, by the same birthday and union bounds over the $\mathrm{q}_{\text {Pub }}+6 \mathrm{q}_{\text {Priv }}$ queries to PUB .

$$
\left|\operatorname{Pr}\left[\mathrm{Game}_{5}\right]-\operatorname{Pr}\left[\mathrm{Game}_{4}\right]\right| \leq \frac{2\left(\mathrm{q}_{\mathrm{PuB}}+6 \mathrm{q}_{\mathrm{PRIV}}\right)^{2}}{2^{h l}}
$$

From Game_{4} onward, all queries to $\mathrm{RO}_{\text {HMAC }}$ are made by Sim. In Game_{6}, therefore, we can inline the lazily sampled $\mathrm{RO}_{\text {HMAC }}$ oracle as part of the simulator. Repeated queries to Sim are cached, so the random oracle does not need to maintain its own lookup table. Now all responses from PUB are randomly sampled from $\{0,1\}^{h l}$, regardless of the contents of table T. The table and the conditional statements used to maintain it are now redundant bookkeeping, as is the unused bad C_{C} flag after $G^{\prime} \mathrm{me}_{5}$. We eliminate all of this code from Game_{6} without detection by the adversary. Then

$$
\operatorname{Pr}\left[\mathrm{Game}_{6}\right]=\operatorname{Pr}\left[\mathrm{Game}_{5}\right] .
$$

The remaining code of Sim just implements random oracles $\mathrm{RO}_{\text {HMAC }}$ and $\mathrm{RO}_{\text {Th }}$. Consequently $G^{-2 m e}{ }_{6}$ is identical to the ideal indifferentiability game for the TKDF construction. Collecting bounds proves the theorem.

We have now established that in order to give a (tight) security proof for TLS 1.3 PSK-only and PSK-(EC)DHE, it suffices to prove (tight) security of the protocol on the right-hand side of Figure 1.

6 Modularizing Handshake Encryption

Next will argue that using "internal" keys to encrypt handshake messages on the TLS 1.3 recordlayer does not impact the security of other keys established by the handshake. Theorem 6.2 below formulates our argument in a general way, applicable to any multi-stage key exchange protocol, so that future analyses of similar protocols might take advantage of this modularity as well.

Intuitively, we argue as follows. Let KE_{2} be a protocol that provides multiple different stages with different external keys (i.e., none of the keys is used in the protocol, e.g., to encrypt messages),

```
Game Game \({ }_{0}\)
Initialize():
    \(b \leftarrow 0\)
    \(\mathrm{RO} \stackrel{\oplus}{\leftarrow} \mathrm{ES}\)
    state \(\stackrel{\&}{\leftarrow} \varepsilon\)
\(\operatorname{Sim}(i, s\), state \()\) :
    if \(i=\mathrm{Th}\) then return \(\mathrm{RO}_{\mathrm{Th}},(s)\)
    \(T, M \leftarrow\) state
    if \(M[s] \neq \perp\)
        then return \(M[s]\)
    \(K, Y \leftarrow s\)
    \(y \leftarrow \operatorname{Sim}[\mathrm{RO}](K, Y, T)\)
    \(M[s] \leftarrow y\)
    return \(y\)
im [RO] \((K, Y, T)\) :
    // Randomly sample a response
    \(y \leftarrow{ }_{\leftarrow}^{\&}\{0,1\}^{h l}\)
    if \(Y=0\)
        \(T_{\text {PSK }}[y] \leftarrow K\)
    else if \(K=0\)
        \(T_{\mathrm{dHS}}[y] \leftarrow Y\)
    else if \(T_{f k_{b} / f k_{C} / f k_{S}}[K] \neq \perp\)
        \(\mathrm{ES} \leftarrow T_{\mathrm{ES}}\left[T_{\mathrm{BK} / \mathrm{CHTS} / \mathrm{SHTS}}[K]\right]\)
        \(\mathrm{PSK} \leftarrow T_{\mathrm{PSK}}[\mathrm{ES}]\)
        if PSK \(\neq \perp\)
            \(y \leftarrow \mathrm{RO}_{\text {binder }}(\mathrm{PSK}, Y)\)
            \(\mathrm{HTS} \leftarrow T_{\mathrm{BK} / \mathrm{CHTS} / \mathrm{SHTS}}[K]\)
        \(\left(\ell^{\prime}, \mathrm{HS}, \mathrm{H}_{2}\right) \leftarrow T_{\mathrm{HS} / d}[\mathrm{HTS}]\)
        \((\mathrm{dES}, \mathrm{DHE}) \leftarrow T_{\mathrm{dES} / \mathrm{DHE}}[\mathrm{HS}]\)
        \(\mathrm{PSK} \leftarrow T_{\mathrm{PSK}}\left[T_{\mathrm{ES} / \mathrm{HS}}[\mathrm{dES}]\right]\)
        if PSK \(\neq \perp\)
            \(y \leftarrow \mathrm{RO}_{\ell^{\prime}[1]}\left(\mathrm{PSK}, \mathrm{DHE}, \mathrm{H}_{2}, Y\right)[\mathcal{L}(\ell)]\)
else \(T_{\text {dES } / \mathrm{DHE}}[y] \leftarrow(K, Y)\)
    if \((Y[0 \ldots 2] \neq h l)\)
        \(\vee Y[2]<8) \vee(Y[2]>18)\)
        \(\vee(Y[3 \ldots 9] \neq " t \mathrm{ls} 13 ")\)
        \(\vee(Y[|Y|-1] \neq 1)\)
        // This query does not match HKDF.Expand formatting
            return \(y\)
    // Parse the Expand formatting to find the label.
    \(\operatorname{len}_{\ell} \leftarrow Y[2]\)
    \(\ell \leftarrow Y\left[3 \ldots\left(3+\right.\right.\) len \(\left.\left._{\ell}\right)\right]\)
    \(d \leftarrow Y\left[\left(3+\operatorname{len}_{\ell}\right) \ldots|Y|\right]\)
    ...// continued in next column
```

Figure 7: Indiff game instantiated with simulator Sim, also Game Game ${ }_{0}$ in the proof of Lemma 5.4.

Games Game

| Sim(i, s, state): |
| :---: |
| 1 if $i=\mathrm{Th}$ then return $\mathrm{RO}_{\text {Th }}(s)$ |
| $2 T, M, \mathrm{~L} \leftarrow$ state |
| 3 if $M[s] \neq \perp$ |
| 4 then return $M[s]$ |
| ${ }_{5} K, Y \leftarrow s$ |
| $6 y \leftarrow \operatorname{Sim}[\mathrm{RO}](K, Y, T, \mathrm{~L})$ |
| $7 M[s] \leftarrow y$ |
| $8 L \leftarrow L \cup\{y, s\}$ |
| 9 return y |

$\underline{\operatorname{Sim}[\mathrm{RO}](K, Y, T, \mathrm{~L}):}$
if $i=\mathrm{Th}$ then return $\mathrm{RO}_{\mathrm{Th}}(s)$
$y \stackrel{\&}{\leftarrow}\{0,1\}^{h l}$
if $y \in L$ or $\exists t \in L$ such that $y \in t$
$\operatorname{bad}_{C} \leftarrow$ true

Figure 8: Game Game ${ }_{1}$ in the proof of Lemma 5.4.

Game Game ${ }_{2}$
$\underline{\operatorname{Priv}(r, X):}$
$Q \leftarrow Q \bigcup\{(r, X)\}$
2 return $\mathrm{RO}_{r}(X)$
Finalize $\left(b^{\prime}\right)$:
1 for $(r, X) \in Q$ do
$z \leftarrow \operatorname{TKDF}_{r}[\mathrm{PuB}](X)$
3 if bad_{C} then return 0
4 return b^{\prime}
$\underline{\text { Game Game }}$
$\underline{\operatorname{Priv}(r, X):}$
$1 z \leftarrow \operatorname{TKDF}_{r}[\mathrm{PUB}](X)$
2 return $\mathrm{RO}_{r}(X)$
Finalize $\left(b^{\prime}\right)$:
1 if bad_{C} then return 0
2 return b^{\prime}

Figure 9: Games Game_{2} and Game_{3} in the proof of Lemma 5.4.

| Games Game $_{4}$, Game $_{5}$ |
| :--- | :--- |

$\underline{\operatorname{Priv}(r, X):}$
$1 z \leftarrow \operatorname{TKDF}_{r}[\mathrm{PuB}](X)$
2 return z
Finalize (b^{\prime}):
1 if bad ${ }_{C}$ then return 0
2 return b^{\prime}

$$
\begin{aligned}
& \frac{\text { Game Game }}{6} \\
& \frac{\operatorname{Sim}[\operatorname{RO}](i, s, T):}{1 y \hookleftarrow\{0,1\}^{h l}} \\
& 2 \text { return } y
\end{aligned}
$$

Figure 10: Games Game $_{4}$, Game $_{5}$, and Game $_{6}$ in the proof of Lemma 5.4.

```
\(\underline{\mathrm{KE}_{1}} \cdot \operatorname{Run}\left(u, \pi_{u}^{i}, p s k, m\right):\)
    keys \(\leftarrow\left(\pi_{u}^{i}\right.\).skey \([\) stage \(]\) for stage \(\left.\in \mathrm{K}_{\text {Transform }}\right)\)
    acc \(\leftarrow\left(\pi_{u}^{i}\right.\).accepted \([\) stage \(] \neq \infty\) for stage in [1...STAGES])
    \(\tilde{m} \leftarrow \operatorname{Transform}_{\text {Recv }}\left(\right.\) keys, \(\pi_{u}^{i}\).role, acc, \(m\) )
    \(\left(\pi_{u}^{i}, \tilde{m}^{\prime}\right) \leftarrow \mathrm{KE}_{2} \cdot \operatorname{Run}\left(u, \pi_{u}^{i}, p s k, \tilde{m}\right)\)
    keys \(\leftarrow\left(\pi_{u}^{i}\right.\).skey \([\) stage \(]\) for stage \(\left.\in \mathrm{K}_{\text {Transform }}\right)\)
    acc \(\leftarrow\left(\pi_{u}^{i}\right.\).accepted \([\) stage \(] \neq \infty\) for stage in [1...STAGES])
    \(m^{\prime} \leftarrow\) Transform \(_{\text {Send }}\left(\right.\) keys, \(\pi_{u}^{i}\).role, acc, \(\left.\tilde{m}^{\prime}\right)\)
    return \(\left(\pi_{u}^{i}, m^{\prime}\right)\)
```

Figure 11: Key exchange KE_{1} built by transforming protocol messages of KE_{2}.
and let KE_{1} be the same protocol, except that some keys are "internal" and used, e.g., to encrypt certain protocol messages. We argue that either using "internal" keys in KE_{1} does not harm the security of other keys of KE_{1}, or KE_{2} cannot be secure in the first place. This will establish that we can prove security of a variant TLS 1.3 without handshake encryption (in an accordingly simpler model), and then lift this result to the actual TLS 1.3 protocol with handshake encryption and the handshake traffic keys treated as "internal" keys.

Theorem 6.1. Let KE_{1} be the TLS 1.3 PSK-only resp. PSK-(EC)DHE mode with handshake encryption (i.e., with internal stages $\mathrm{KE}_{1} . \mathrm{INT}=\{3,4\}$) as specified on the right-hand side in Figure 1. Let KE_{2} be the same mode without handshake encryption (i.e., $\mathrm{KE}_{1} . \mathrm{INT}=\emptyset$ and $A E A D$ encryption/decryption of messages is omitted). Let Transformsend and $_{\text {Transform }}^{\text {Recv }}$ be the $A E A D$ encryption resp. decryption algorithms deployed in TLS 1.3 and $\mathrm{K}_{\text {Transform }}=\mathrm{KE}_{1}$. INT $=\{3,4\}$. Then we have

$$
\operatorname{Adv}_{\mathrm{KE}_{1}}^{\operatorname{MSE}}\left(t, q_{\mathrm{NS}}, q_{\mathrm{S}}, q_{\mathrm{RS}}, q_{\mathrm{RL}}, q_{\mathrm{T}}, q_{\mathrm{RO}}\right) \leq \operatorname{Adv}_{\mathrm{KE}_{2}}^{\mathrm{MSE}}\left(t+t_{\mathrm{AEAD}} \cdot q_{\mathrm{S}}, q_{\mathrm{NS}}, q_{\mathrm{S}}, q_{\mathrm{RS}}+q_{\mathrm{S}}, q_{\mathrm{RL}}, q_{\mathrm{T}}, q_{\mathrm{RO}}\right)
$$

where $t_{\text {AEAD }}$ is the maximum time required to execute AEAD encryption or decryption of TLS 1.3 messages.

For TLS 1.3 this means that we will not consider any security guarantees provided by the additional encryption of handshake messages. We consider this as reasonable for PSK-mode ciphersuites, because the main purposes of handshake message encryption in TLS 1.3 is to hide the identities of communicating parties, e.g., in digital certificates, cf. [1]. In PSK mode there are no such identities. The pskid might be viewed as a string that could identify communicating parties, but it is sent unencrypted in the ClientHello message, anyway, the encryption of subsequent handshake messages would not contribute to its protection.

6.1 Handshake Encryption as a Modular Transformation

Formally, let $\mathrm{KE}_{2}=(\mathrm{KGen}$, Activate, Run) be a key exchange protocol with no internal keys. We define another key exchange protocol KE_{1} which is parameterized by two functions Transformsend and Transform Recv and a list $\mathrm{K}_{\text {Transform }} \subseteq\{1, \ldots$, STAGES $\}$, where STAGES is the number of stages of $K E_{2} . \mathrm{KE}_{1}$ inherits its key generation and activation algorithms from $K E_{2}$. In its $K E_{1}$. Run algorithm, described in Figure 11, it essentially applies Transform ${ }_{\text {Recv }}$ to a message before calling KE_{2}. Run, and then Transform ${ }_{\text {Send }}$ to the returned message, to transform the protocol messages as they pass over a wire. This transformation may be, for instance, the encryption and decryption of messages of KE_{2} using an internal key.

In addition to the messages, both algorithms take as input the list of stages that have been accepted by the current session, its role (initiator or responder) in the protocol, and a list of the keys from all stages in $\mathrm{K}_{\text {Transform }}$. In the security game for KE_{1}, the stages in $\mathrm{K}_{\text {Transform }}$ will produce internal keys; all other keys remain external.

Although Transform Send and Transform $_{\text {Recv }}$ change the messages as they pass over the wire, the way that the messages are processed after receipt by KE_{2}. Run must not change. In particular, KE_{2}. Run, internally run within KE_{1}. Run, still expects messages of the same format and content; also, KE_{1} defines its session and contributive identifiers, as well as all other session-specific information in the same way as KE_{2}.

Correctness. Not all choices of Transform Send and Transform Recv are "good choices". For example, if mauling overwrites critical pieces of the protocol messages, then no honest session would ever accept a key. The resulting key exchange KE_{2} would be vacuously "secure" because it would be unusable.

For our perspective to be meaningful, we therefore need a correctness property that guarantees that two honest parties executing KE_{1} with no adversarial interference will accept at all stages. Informally, we wish that if two sessions honestly executing KE_{2} will accept keys for stage s with probability p, then two sessions honestly executing KE_{1} will accept keys for stage s with probability close to p. This property only needs to hold when the protocol messages are relayed honestly, with no changes or delivery failures beyond those caused by the application of Transform ${ }_{\text {Send }}$ and Transform Recv.

We do not give a formal definition or proof of correctness for TLS 1.3, but we note that in TLS 1.3, the transformation algorithms are AEAD encryption and decryption. Since decryption failures cannot occur in the standardized AEAD algorithms if messages are honestly relayed (due to their perfect correctness), received messages will always match their corresponding sent message, and correctness of Transform Send and Transform Recv follows.

Security. We wish KE_{1} to be secure if KE_{2} is secure. This should be independent of Transform $S_{\text {Send }}$ and Transform Recv, i.e., should hold even if Transform ${ }_{\text {Send }}$ leaks its keys and fully overwrites all protocol messages. The following theorem established this result, using that the keys used for the transformation are internal and Transform Send and Transform $_{\text {Recv }}$ have no access to other privileged information. Therefore, their behavior can be mimicked by a reduction to the security of K_{2} as long as KE_{2} has "public session matching" for the stages in $\mathrm{K}_{\text {Transform }}$ of KE_{1}, i.e., session partnering (or matching) for those stages is decidable from the publicly exchanged messages. ${ }^{8}$

Theorem 6.2. Let KE_{2} be a key exchange protocol with STAGES stages, KE_{2}.INT being empty, and public session matching. Let Transform Send and Transform $_{\text {Recv }}$ be algorithms as above and $\mathrm{K}_{\text {Transform }} \subseteq\{1, \ldots$, STAGES $\}$. Define key exchange KE_{1} such that KE_{1}. Run is described in Figure 11, $\mathrm{KE}_{1} \cdot \mathrm{INT}=\mathrm{K}_{\text {Transform }}$, and all other attributes of KE_{1} are identical to those of KE_{2}.

Let \mathcal{A} be an adversary with running time t against the multi-stage key exchange security of KE_{1}, making q_{S} queries to the SEND oracle. Then there exists an adversary \mathcal{B} with running time $\approx t+q_{\mathrm{S}} m$, where m is the maximum running time of Transform $_{\text {Send }}$ and Transform $_{\text {Recv }}$, such that

$$
\operatorname{Adv}_{\mathrm{KE}_{1}}^{\operatorname{MSKE}_{1}}(\mathcal{A}) \leq \operatorname{Adv}_{\mathrm{KE}_{2}}^{\operatorname{MSKE}}(\mathcal{B})
$$

\mathcal{B} makes at most q_{S} queries to RevSessionKey in addition to queries made by \mathcal{A} and the same number of queries as \mathcal{A} to all other oracles in the MSKE game.

[^7]Proof. Adversary \mathcal{B} runs adversary \mathcal{A} and relays all of its queries to the appropriate oracles in its own MSKE game, except for SEnd queries. It maintains the time time of the MSKE game itself, incrementing it once per query. For each session π_{u}^{i}, it maintains a list keys ${ }_{u}^{i}$ that is initially empty and a list $a c c_{u}^{i}$ in which $a c c_{u}^{i}[$ stage $]$ is initially false for each stage $\in \mathrm{K}_{\text {Transform }}$.

When \mathcal{A} makes a query $\operatorname{SEND}(u, i, m), \mathcal{B}$ first checks for each stage $\in \mathrm{K}_{\text {Transform }}$ with $a c c_{u}^{i}[$ stage $]=$ false whether π_{u}^{i}.accepted $[$ stage $] \neq \infty$. For each stage which satisfies this condition, \mathcal{B} checks whether π_{u}^{i}.tested $[$ stage $]$ or π_{u}^{i}. .evealed [stage] is true and if π_{u}^{i} has a partnered session (matching sid[stage]) which has been tested or revealed. (The latter check for partnering is possible because KE_{1} has public session matching.) If any of these conditions is true, then \mathcal{B} knows π_{u}^{i}.skey[stage]. Otherwise, it makes an extra query $\operatorname{RevSessionKey}(u, i$, stage $)$ and adds the response to keys ${ }_{u}^{i}$. Then it marks acc ${ }_{u}^{i}[$ stage $] \leftarrow$ true and computes $\tilde{m} \leftarrow \operatorname{Transform}_{\operatorname{Recv}}\left(k e y s_{u}^{i}, \pi_{\tilde{u}}^{i}\right.$.role, acc ${ }_{u}^{i}, m$. It queries its own Send oracle on the tuple (u, i, \tilde{m}) and captures the response m^{\prime}. Then it returns $m^{\prime} \leftarrow$ Transform $_{\text {Send }}\left(\right.$ keys $_{u}^{i}, \pi_{u}^{i}$. role, acc $\left.c_{u}^{i}, \tilde{m}^{\prime}\right)$ to \mathcal{A}.
\mathcal{B} perfectly simulates KE_{1} for \mathcal{A}, so we wish that if \mathcal{A} wins its simulated game, \mathcal{B} should also win its game. \mathcal{A} can win the MSKE game in one of three ways: it can violate the Sound predicate, it can violate the ExplicitAuth predicate, or it can satisfy the Fresh predicate and guess the secret bit b. All of the variables tracked by the ExplicitAuth and Sound predicates are maintained by the MSKE game for KE_{1}, not by \mathcal{B}. Therefore \mathcal{A} wins the simulated game by violating Sound or ExplicitAuth only if Sound or ExplicitAuth is violated in the MSKE game for KE_{2}. In this case, \mathcal{B} also wins.

If \mathcal{A} wins by guessing the secret bit b, the story is more complicated. The bit b is chosen by the MSKE game, so if \mathcal{A} guesses correctly, then so will \mathcal{B}. However, a correct guess only matters if the queries do not violate the Fresh predicate. Even if \mathcal{A} did not violate the Fresh predicate, \mathcal{B} makes up to q_{S} additional RevSessionKey queries. Each of these could cause Fresh to be set to false. We claim that none of these queries violate the Fresh predicate.

The Fresh predicate requires that no session be both tested and revealed. \mathcal{B} only reveals keys that have not already been tested, so the only worry is that \mathcal{A} will test this key later. However, all keys that \mathcal{B} reveals are in $\mathrm{K}_{\text {Transform }}$, which is a subset of KE_{1}.INT, meaning they are internal keys. These keys cannot be tested if any session which has accepted it has moved on with the protocol. Since \mathcal{B} only reveals a key when a session has both accepted that key and received the next protocol message, it will have moved on and \mathcal{A} can not make any later Test queries on a key that \mathcal{B} has revealed.

The next condition of Fresh is that a tested session's partner cannot be tested or revealed. \mathcal{B} ensures that such a Test query does not occur before the RevSessionKey query. Again, the Test query cannot happen after the RevSessionKey query because the session whose key was revealed has moved on with the protocol. Since all the revealed keys are internal in the simulated game, \mathcal{A} cannot test them after this point.

The remaining three conditions of the Fresh predicate establish different levels of forward secrecy. They check for the existence of a contributive partner. We want to exclude the situation that a contributive partner exists in \mathcal{A} 's simulated game, but not in \mathcal{B} 's game. However, contributive identifiers are defined identically in KE_{1} and KE_{2}. Therefore if two sessions π_{u}^{i} and π_{v}^{j} have matching contributive identifiers in the simulated game for KE_{2}, they will also have matching identfiers in the game for KE_{1}.

It is therefore not possible for \mathcal{A} to win its simulated MSKE game unless \mathcal{B} also wins its MSKE game, and the theorem follows.

7 Tight Security of the TLS 1.3 PSK Modes

In this section, we apply the insights gained in Sections 5 and 6 to obtain tight security bounds for both the PSK-only and the PSK-(EC)DHE mode of TLS 1.3. To that end, we first present the protocol-specific properties of the TLS 1.3 PSK-only and PSK-(EC)DHE modes such that they can be viewed as multi-stage key exchange (MSKE) protocols as defined in Section 3. Then, we prove tight security bounds in the MSKE model in Theorem 7.1 for the TLS 1.3 PSK-(EC)DHE mode and in Theorem 7.7 for the TLS 1.3 PSK-only mode.

7.1 TLS 1.3 PSK-only/PSK-(EC)DHE as a MSKE Protocol

We begin by capturing the TLS 1.3 PSK-only and PSK-(EC)DHE modes, specified in Figure 1, formally as MSKE protocols. To this end, we must explicitly define the variables discussed in Section 3. In particular, we have to define the stages themselves, which stages are internal and which replayable, the session and contributive identifiers, when stages receive explicit authentication, and when stages become forward secret.

Stages. The TLS 1.3 PSK-only/PSK-(EC)DHE handshake protocol has eight stages (i.e., STAGES $=$ 8), corresponding to the keys ETS, EEMS, $h t k_{S}, h t k_{C}$, CATS, SATS, EMS, and RMS in that order. The set INT of internal keys contains $h t k_{C}$ and $h t k_{S}$, the handshake traffic encryption keys. Stages ETS and EEMS are replayable: $\operatorname{REPLAY}[s]$ is true for $s \in\{1,2\}$ and false for all others.

Session and contributive identifiers. The session and contributive identifiers for stages are tuples (label $l_{s}, c t x t$), where $l a b e l_{s}$ is a unique label identifying stage s, and $c t x t$ is the transcript that enters key's derivation. The session identifiers $(\operatorname{sid}[s])_{s \in\{1, \ldots, 8\}}$ are defined as follows: ${ }^{9}$

$$
\begin{aligned}
& \operatorname{sid}[1]=\left(" \mathrm{ETS} ",\left(\mathrm{CH}, \mathrm{CKS}^{\dagger}, \mathrm{CPSK}\right)\right), \\
& \operatorname{sid}[2]=\left(" \mathrm{EEMS} ",\left(\mathrm{CH}, \mathrm{CKS}^{\dagger}, \mathrm{CPSK}\right)\right), \\
& \operatorname{sid}[3]=\left(" h t k_{C} ",\left(\mathrm{CH}, \mathrm{CKS}^{\dagger}, \mathrm{CPSK}, \mathrm{SH}, \mathrm{SKS}^{\dagger}, \mathrm{SPSK}\right)\right), \\
& \operatorname{sid}[4]=\left(" h t k_{S} ",\left(\mathrm{CH}, \mathrm{CKS}^{\dagger}, \mathrm{CPSK}, \mathrm{SH}, \mathrm{SKS}^{\dagger}, \mathrm{SPSK}\right)\right), \\
& \operatorname{sid}[5]=\left(" \mathrm{CATS} ",\left(\mathrm{CH}, \mathrm{CKS}^{\dagger}, \mathrm{CPSK}, \mathrm{SH}, \mathrm{SKS}^{\dagger}, \mathrm{SPSK}, \mathrm{EE}, \mathrm{SF}\right)\right), \\
& \left.\operatorname{sid}[6]=(" \mathrm{SATS}),\left(\mathrm{CH}, \mathrm{CKS}^{\dagger}, \mathrm{CPSK}, \mathrm{SH}, \mathrm{SKS}^{\dagger}, \mathrm{SPSK}, \mathrm{EE}, \mathrm{SF}\right)\right), \\
& \left.\operatorname{sid}[7]=(" \mathrm{EMS}],\left(\mathrm{CH}, \mathrm{CKS}^{\dagger}, \mathrm{CPSK}, \mathrm{SH}, \mathrm{SKS}^{\dagger}, \mathrm{SPSK}, \mathrm{EE}, \mathrm{SF}\right)\right), \text { and } \\
& \operatorname{sid}[8]=\left(" \mathrm{RMS} ",\left(\mathrm{CH}, \mathrm{CKS}^{\dagger}, \mathrm{CPSK}, \mathrm{SH}, \mathrm{SKS}^{\dagger}, \mathrm{SPSK}, \mathrm{EE}, \mathrm{SF}, \mathrm{CF}\right)\right) .
\end{aligned}
$$

To make sure that a server that received ClientHello, ClientKeyShare ${ }^{\dagger}$, and ClientPreSharedKey untampered can be tested in stages 3 and 4 , even if the sending client did not receive the server's answer, we set the contributive identifiers of stages 3 and 4 such that $c i d_{\text {role }}$ reflects the messages that a session in role role must have honestly received for testing to be allowed. Namely, we let

[^8]clients (resp. servers) upon sending (resp. receving) the messages (CH, CKS^{\dagger}, CPSK) set
\[

$$
\begin{aligned}
& c i d_{\text {responder }}[3]=\left(" h t k_{C} ",\left(\mathrm{CH}, \mathrm{CKS}^{\dagger}, \mathrm{CPSK}\right)\right) \text { and } \\
& c i d_{\text {responder }}[4]=\left(" h t k_{S} ",\left(\mathrm{CH}, \mathrm{CKS}^{\dagger}, \mathrm{CPSK}\right)\right) .
\end{aligned}
$$
\]

Further, when the client receives (resp. the server sends) the message (SH, SKS ${ }^{\dagger}$, SPSK), they set

$$
\operatorname{cid}_{\text {initiator }}[3]=\operatorname{sid}[3] \quad \text { and } \quad \operatorname{cid} d_{\text {initiator }}[4]=\operatorname{sid}[4] .
$$

For all other stages $s \in\{1,2,5,6,7,8\}$, $\operatorname{cid}_{\text {initiator }}[s]=\operatorname{cid}_{\text {responder }}[s]=\operatorname{sid}[s]$ is set upon acceptance of the respective stage (i.e., when $\operatorname{sid}[s]$ is set as well).

Explicit authentication. For initiator sessions, all stages achieve explicit authentication when the ServerFinished message is verified successfully. This happens right before stage 5 (i.e., CATS) is accepted. That is, upon accepting stage 5 all previous stages receive explicit authentication retroactively and all following stages are explicitly authenticated upon acceptance. Formally, we set EAUTH[initiator, s] $=5$ for all stages $s \in\{1, \ldots, 8\}$.

For responder session, all stages receive explicit authentication upon (successful) verification of the ClientFinished message. This occurs right before the acceptance of stage 8 (i.e., RMS). Similar to initiators, responders receive explicit authentication for all stages upon acceptance of stage 8 since this is the last stage of the protocol. Accordingly, we set EAUTH[responder, s] $=8$ for all stages $s \in\{1, \ldots, 8\}$.

Forward secrecy. Only keys dependent on a Diffie-Hellman secret achieve forward secrecy, so all stages s of the PSK-only handshake have $\mathrm{FS}[r, s, \mathrm{fs}]=\mathrm{FS}[r, s, \mathrm{wfs} 2]=\infty$ for both roles $r \in$ \{initiator, responder\}. In the PSK-(EC)DHE handshake, full forward secrecy is achieved at the same stage as explicit authentication for all keys except ETS and EEMS, which are never forward secret. That is, for both roles r and stages $s \in\{3, \ldots, 8\}$ we have $\mathrm{FS}[r, s, \mathrm{fs}]=\mathrm{EAUTH}[r, s]$. All keys except ETS and EEMS possess weak forward secrecy 2 upon acceptance, so we set $\mathrm{FS}[r, s$, wfs2 $2=s$ for stages $s \in\{3, \ldots, 8\}$. Finally, as stages 1 and 2 (i.e., ETS and EEMS) never achieve forward secrecy we set $\mathrm{FS}[r, s, \mathrm{fs}]=\mathrm{FS}[r, s, \mathrm{wfs} 2]=\infty$ for both roles r and stages $s \in\{1,2\}$.

7.2 Tight Security Analysis of TLS 1.3 PSK-(EC)DHE

We now come to the tight MSKE security result for the TLS 1.3 PSK-(EC)DHE handshake.
Theorem 7.1. Let TLS1.3-PSK-(EC)DHE be the TLS 1.3 PSK-(EC)DHE handshake protocol (with optional 0-RTT) as specified on the right-hand side in Figure 1 without handshake encryption. Let \mathbb{G} be the Diffie-Hellman group of order p. Let nl be the length in bits of the nonce, let hl be the output length in bits of \mathbf{H}, and let the pre-shared key space be $\mathrm{KE} . \mathrm{PSKS}=\{0,1\}^{h l}$. We model the functions \mathbf{H} and TKDF_{x} for each $x \in\{$ binder, ..., RMS $\}$ as 12 independent random oracles $\mathrm{RO}_{\mathrm{Th}}, \mathrm{RO}_{\text {binder }}, \ldots, \mathrm{RO}_{\mathrm{RMS}}$. Then,

$$
\begin{aligned}
& \operatorname{Adv}_{\mathrm{TLSL} 1.3-\mathrm{PSK} \text {-(EC)DHE }}^{\operatorname{MSE}}\left(t, q_{\mathrm{NS}}, q_{\mathrm{S}}, q_{\mathrm{RS}}, q_{\mathrm{RL}}, q_{\mathrm{T}}, q_{\mathrm{RO}}\right) \leq \frac{2 q_{\mathrm{S}}^{2}}{2^{n l} \cdot p} \\
& +\frac{\left(q_{\mathrm{RO}}+q_{\mathrm{S}}\right)^{2}+q_{\mathrm{NS}}^{2}+\left(q_{\mathrm{RO}}+6 q_{\mathrm{S}}\right)^{2}+q_{\mathrm{RO}} \cdot q_{\mathrm{NS}}+q_{\mathrm{S}}}{2^{h l}}+\frac{4\left(t+4 \log (p) \cdot q_{\mathrm{RO}}\right)^{2}}{p}
\end{aligned}
$$

Remark 7.2. Our MSKE model from Section 3 assumes pre-shared keys to be uniformly random sampled from KE.PSKS, where here KE.PSKS $=\{0,1\}^{h l}$. This matches how pre-shared keys are derived for session resumption, as well as our analysis of domain separation, which assumes preshared keys to be of length $h l$.
Remark 7.3. Our bound is easily adapted to any distribution on $\{0,1\}^{h l}$ in order to accommodate out-of-band pre-shared keys that satisfy the length requirement but do not have full entropy. Expectedly, lower-entropy PSK distributions result in weaker bounds, due to the increased chance for collisions between PSKs as well as the adversary guessing a PSK.
Remark 7.4. In order to deal with small subgroup attacks, note that we assume that implementations properly validate received key shares by checking for membership in the appropriate primeorder group. This has to be done explicitly for NIST curves (secp256r1, secp384r1, and secp521r1 in TLS 1.3 [54, Section 4.2.8.2]). Curves like x25519 and x448 rule out small subgroup attacks implicitly, with a mechanism called "clamping". In our proof we treat Diffie-Hellman groups as prime-order groups with uniform exponents in \mathbb{Z}_{p}, as common in the cryptographic literature. However, we stress that clamping as in RFC 7748 [48] makes exponents non-uniform over \mathbb{Z}_{p}. Hence, we implicitly assume that this difference in the DH key generation is indistinguishable for the adversary.

Proof. To prove our bound, we make an incremental series of changes to the key exchange security game $G_{\text {TLS1.3-PSK-(EC)DHE, } \mathcal{A}}$. We divide the proof into three phases reflecting the three ways of the adversary to win the security game.

1. We establish that the adversary cannot violate the predicate Sound.
2. We establish the same for the predicate ExplicitAuth.
3. Finally, we ensure that all Test queries return uniformly random keys independent of the challenge bit b if predicate Fresh is not violated.

We can then conclude that the adversary cannot do better than random guessing to win the game, i.e., its advantage is 0 .

Game 0 (Initial game). The initial game $G a m e{ }_{0}^{\mathcal{A}}$ is the key exchange security game $G_{\text {TLS1.3-PSK-(EC)DHE, } \mathcal{A}}$ played for the TLS 1.3 PSK-(EC)DHE handshake (with optional 0-RTT) as specified in Figure 1 (right), but without handshake encryption. Note that the functions \mathbf{H} and TKDF_{x} for $x \in\{$ binder $, \ldots, \mathrm{RMS}\}$ are modeled as 12 independent random oracles $\mathrm{RO}_{\mathrm{Th}}, \mathrm{RO}_{\text {binder }}, \ldots, \mathrm{RO}_{\text {RMS }}$. We implement random oracle RO_{x} by a look-up table $\mathrm{ROList} t_{x}$ assigning inputs to outputs. We assume that every look-up table implementing a random oracle is stored in a data structure that enables constant time access when indexed either by random oracle inputs or by random oracle outputs, using two hash tables, for instance. By definition, we have

$$
\operatorname{Pr}\left[\operatorname{Game}_{0}^{\mathcal{A}} \Rightarrow 1\right]=\operatorname{Adv}_{\mathrm{TLS} 1.3-\mathrm{PSK}-(\mathrm{EC}) \mathrm{DHE}}^{\mathrm{MSE}}(\mathcal{A}) .
$$

Phase 1: Ensuring Predicate Sound cannot be violated

Game 1 (Exclude collisions of nonces and group elements). In Game ${ }_{1}^{\mathcal{A}}$, we eliminate collisions among nonces and group elements computed by honest sessions via two new flags:

- bad_{C} is set when two honest sessions choose the same nonce and group element, and
- bad_{O} is set when an honest responder samples some nonce and group element that have already been received by another session. We view this nonce and group element as having been chosen by an adversarial session.

If either bad_{C} or bad_{O} is set, the game returns 0 from Finalize.
By the well-known identical-until-bad-lemma [6, Lemma 2], we get

$$
\left.\begin{array}{rl}
\operatorname{Pr}\left[\operatorname{Game}_{0}^{\mathcal{A}} \Rightarrow 1\right] \leq & \operatorname{Pr}\left[\operatorname{Game}_{1}^{\mathcal{A}} \Rightarrow 1\right]+\operatorname{Pr}\left[\text { Game }_{1}^{\mathcal{A}}\right. \text { sets bad } \\
C \tag{1}
\end{array}\right] .
$$

Let us separately analyze the probabilities that Game ${ }_{1}^{\mathcal{A}}$ sets the flags bad ${ }_{C}$ and bad ${ }_{O}$. Each SEND query causes at most one session to uniformly and independently sample a nonce $r \leftarrow_{\leftarrow}^{\&}\{0,1\}^{n l}$ and a group element $g \leftrightarrow \mathbb{G}$. If the bad_{C} flag is set, we have that there exists some SEnD query that creates a session π_{u}^{i} using Activate. This new session samples nonce and group element (r, g) which were previously sampled by another session $\pi_{u^{\prime}}^{i^{\prime}}$. That is, the probability for bad_{C} to be set is the probability of a collision among the (up to) q_{S} pairs of uniformly and independently sampled nonces and group elements; we can use the birthday bound to bound the probability of setting bad ${ }_{C}$ by

$$
\begin{equation*}
\operatorname{Pr}\left[\operatorname{Game}_{1}^{\mathcal{A}} \text { sets bad }{ }_{C}\right] \leq \frac{q_{\mathrm{S}}^{2}}{2^{n l} \cdot p} \tag{2}
\end{equation*}
$$

where q_{S} is the number of Send queries.
Next, if the game sets bad $_{O}$, we have that there is a Send query which creates a new session π_{v}^{j}. This session samples a nonce $r_{S} \stackrel{\&}{\&}_{\leftarrow}\{0,1\}^{n l}$ and a group element $Y \stackrel{\&}{\leftarrow} \mathbb{G}$, which were already received by another session π_{u}^{i}. There are at most q_{S} sessions, so there are no more than q_{S} received pairs which which $\left(r_{S}, Y\right)$ can collide. Since π_{v}^{j} samples its nonce and group element uniformly and independently at random from $\{0,1\}^{n l} \times \mathbb{G}$, we get by the union bound that the probability that π_{v}^{j} samples one of the already received pairs is bounded from above by $q_{\mathrm{S}} /\left(2^{n l} \cdot p\right)$. Overall, we again get by the union bound that there is such a collision for any π_{v}^{j} with probability

$$
\begin{equation*}
\operatorname{Pr}\left[\operatorname{Game}_{1}^{\mathcal{A}} \text { sets bad }{ }_{O}\right] \leq q_{\mathrm{S}} \cdot \frac{q_{\mathrm{S}}}{2^{n l} \cdot p}=\frac{q_{\mathrm{S}}^{2}}{2^{n l} \cdot p} . \tag{3}
\end{equation*}
$$

Combining Equations (1)-(3), we get

$$
\begin{equation*}
\operatorname{Pr}\left[\operatorname{Game}_{0}^{\mathcal{A}^{*}} \Rightarrow 1\right] \leq \operatorname{Pr}\left[\operatorname{Game}_{1}^{\mathcal{A}^{*}} \Rightarrow 1\right]+\frac{2 q_{\mathrm{S}}^{2}}{2^{n l} \cdot p} . \tag{4}
\end{equation*}
$$

Game 2 (Exclude binder collisions). In game $\mathrm{Game}_{2}^{\mathcal{A}}$, we let the adversary lose if there is a collision among the binder values computed by any honest session. Whenever two distinct queries to $\mathrm{RO}_{\text {binder }}$ return the same value, we set a flag bad ${ }_{\text {binder }}$ and return 0 from Finalize.

To implement this, we add a table CollList ${ }_{\text {binder }}$ to the random oracle $\mathrm{RO}_{\text {binder }}$ (this table is currently redundant to the table implementing $\mathrm{RO}_{\text {binder }}$, but will be useful in later game hops, where we will introduce changes such that it is not guaranteed anymore that all binder values will be contained in the $\mathrm{RO}_{\text {binder }}$ table). Whenever $\mathrm{RO}_{\text {binder }}$ computes a binder value $b=\mathrm{RO}_{\text {binder }}(\mathrm{PSK}$, $c t x t)$, we log CollList ${ }_{\text {binder }}[b] \leftarrow($ PSK, $c t x t)$. Now, whenever $\mathrm{RO}_{\text {binder }}$ computes some binder b for some tuple s and CollList ${ }_{b i n d e r}[b]$ is not empty, there has to be a tuple $s^{\prime}=(\mathrm{PSK}, c t x t)$ with $\mathrm{RO}_{\text {binder }}(p s k, c t x t)=b$ queried before and we have found a collision if $s \neq s^{\prime}$. In this case we set $\operatorname{bad}_{\text {binder }}$.

Again by the identical-until-bad-lemma,

$$
\operatorname{Pr}\left[\text { Game }_{1}^{\mathcal{A}} \Rightarrow 1\right] \leq \operatorname{Pr}\left[\text { Game }_{2}^{\mathcal{A}} \Rightarrow 1\right]+\operatorname{Pr}\left[\text { Game }_{2}^{\mathcal{A}} \text { sets bad }{ }_{\text {binder }}\right] .
$$

To bound the probability that the game sets flag bad ${ }_{\text {binder }}$, we construct a reduction \mathcal{B}_{1} to the collision-resistance of $\mathrm{RO}_{\text {binder }}$. The reduction \mathcal{B}_{1} simulates Game 2 for adversary \mathcal{A}. It implements all oracles itself except for $\mathrm{RO}_{\text {binder }}$. \mathcal{B}_{1} will need to query its own oracle $\mathrm{RO}_{\text {binder }}$ at most once per RO query and once per Send query, so it makes $q_{\mathrm{RO}}+q_{\mathrm{S}}$ queries in total. If the flag bad ${ }_{\text {binder }}$ would be set in Game 2, which can be checked efficiently using CollList ${ }_{\text {binder }}$ as described before, then the reduction has found a collision $\left(s, s^{\prime}\right)$ with $s \neq s^{\prime}$ such that $\mathrm{RO}_{\text {binder }}(s)=\mathrm{RO}_{\text {binder }}\left(s^{\prime}\right)$. Reduction \mathcal{B}_{1} then outputs (s, s^{\prime}) and wins the collision-resistance game.

Therefore, we have that

$$
\begin{equation*}
\operatorname{Pr}\left[\operatorname{Game}_{1}^{\mathcal{A}} \Rightarrow 1\right] \leq \operatorname{Pr}\left[\operatorname{Game}_{2}^{\mathcal{A}} \Rightarrow 1\right]+\operatorname{Adv}_{\mathrm{RO}_{\text {binder }}}^{\mathrm{CR}}\left(q_{\mathrm{RO}}+q_{\mathrm{S}}\right) . \tag{5}
\end{equation*}
$$

Game 3 (Exclude collisions of pre-shared keys). In game Game ${ }_{3}^{\mathcal{A}}$, we set a flag bad ${ }_{P C}$ and return 0 from Finalize whenever the NewSecret oracle samples a previously sampled pre-shared key (again). Formally, we set $\operatorname{bad}_{P C}$ if there exist two distinct tuples (u, v, pskid) and (u^{\prime}, v^{\prime}, pskid $)$ with pskeys $[(u, v, p s k i d)]=\operatorname{pskeys}\left[\left(u^{\prime}, v^{\prime}, p s k i d^{\prime}\right)\right]$. By the identical-until-bad-lemma,

$$
\operatorname{Pr}\left[\operatorname{Game}_{2}^{\mathcal{A}} \Rightarrow 1\right] \leq \operatorname{Pr}\left[\operatorname{Game}_{3}^{\mathcal{A}} \Rightarrow 1\right]+\operatorname{Pr}\left[\operatorname{Game}_{3}^{\mathcal{A}} \text { sets bad } P_{P C}\right] .
$$

Since the pre-shared keys are uniformly distributed ${ }^{10}$ on $\{0,1\}^{h l}$, by the birthday bound

$$
\operatorname{Pr}\left[\operatorname{Game}_{3}^{\mathcal{A}} \text { sets } \operatorname{bad}_{P C}\right] \leq \frac{q_{\mathrm{NS}}^{2}}{2^{h l}} .
$$

Conclusion of Phase 1. At this point, we argue that in Game 3 and any subsequent games, adversary \mathcal{A} cannot violate the Sound predicate without also causing Finalize to return 0. If any Sound check fails, one of the checks we have added to the Finalize oracle will also fail. According to the definition of the MSKE game, there are six events that cause the predicate Sound to be violated (see Figure 4). In the following, we argue why each of these events cannot occur in Game 3 and thus Sound $=$ true needs to hold from Game 3 on.

1. There are three honest sessions that have the same session identifier at any non-replayable stage.

Since the only replayable stages are stages 1 (ETS) and 2 (EEMS), consider any later stage $s \geq 3$. Recall that session identifiers sid for all stages $s \geq 3$ contain a ClientHello message containing the initiator session's nonce and group element and a ServerHello message containing the responder session's nonce and group element (see Section 7.1). Every session's sid therefore contains its own randomly sampled nonce-group element pair. For three sessions to accept the same $\operatorname{sid}[s]$ for $s \geq 3$, there must be two honest sessions who have sampled the same nonce and group element. Due to Game 1, this would trigger the bad ${ }_{C}$ flag, leading Finalize to return 0 .
2. There are two sessions with the same session identifier in some non-replayable stage that have the same role.

[^9]Session identifiers $\operatorname{sid}[s]$ for $s \geq 3$ as defined by TLS 1.3 (see Section 7.1) contain only one pair of nonce and group element per initiator and responder. If two honest sessions share a sid and a role, they must also share a nonce and group element. This case would also trigger the bad C_{C} flag.
3. There are two sessions with the same session identifier in some stage that do not share the same contributive identifier in that stage.
Once a session holds both a contributive identifier and a session identifier for the same stage, both are equal by our definition (see Section 7.1) of the session and contributive identifiers for TLS 1.3. This case will therefore never occur.
4. There are two sessions that hold the same session identifier for different stages.

This is impossible as the session identifier of stage s begins with the unique label $l a b e l_{s}$ for stage s.
5. There are two honest sessions with the same session identifier in some stage that disagree on the identity of their peer or their pskid.
Two sessions which hold the same session identifier must necessarily agree on the value of the binder, which is part of the ClientHello message. In Game 2, we required that Finalize returns 0 if two queries to the oracle $\mathrm{RO}_{\text {binder }}$ collide. The two sessions must therefore also agree on the pre-shared key, which they obtained from the list pskeys. From Game 3, we have that Finalize returns 0 if any two distinct entries in pskeys contain the same value. Therefore two sessions can obtain the same pre-shared key from pskeys only if they hold the same tuple ($u, v, p s k i d)$, meaning they agree on both the peer identities and the pre-shared key identity.
6. Sessions with the same session identifier in some stage do not hold the same key in that stage.

We have just established that two sessions with the same session identifier must agree on the peer identities and pskid (contained in CPSK and SPSK), meaning they also share the same PSK. Session identifiers for stages whose keys are derived from a Diffie-Hellman secret DHE must include both Diffie-Hellman shares X and Y (contained in CKS and SKS). These shares uniquely determine DHE. Besides that the session identifier also contains the context required to derive the respective stage keys, which then uniquely determines the stage key. Therefore, agreement on a session identifier implies agreement on a stage key.

Phase 2: Ensuring Predicate ExplicitAuth cannot be violated

Game 4 (Exclude transcript hash collisions). In $\mathrm{Game}_{4}^{\mathcal{A}}$, we let the adversary lose if two distinct queries to $\mathrm{RO}_{\text {Th }}$ lead to colliding outputs. This ensures that each transcript has a unique hash. When such a collision occurs, we set a new flag bad $_{H}$ and let the game return 0 from Finalize.

As in Game 2, we introduce a table CollList T_{h} to random oracle $\mathrm{RO}_{\text {Th }}$. Whenever it computes a hash $d=\mathrm{RO}_{\mathrm{Th}}(s)$ for some string s, we \log CollList $_{\mathrm{Th}}[d] \leftarrow s$. This table then is used to set bad ${ }_{\mathrm{Th}}$ as in Game 2.

Analogously to Game 2 , we can construct a reduction \mathcal{B}_{2} to the collision-resistance of $\mathrm{RO}_{\text {Th }}$. As it simulates Game 4 , the adversary \mathcal{B}_{2} will need to make one query to its $\mathrm{RO}_{\text {Th }}$ oracle for each $\mathrm{RO}_{\text {Th }}$ query of \mathcal{A} and up to $6 \mathrm{RO}_{\text {Th }}$ queries for the up to 6 distinct transcript hash values computed in a protocol step per SEND query of \mathcal{A}; in total $q_{\mathrm{RO}}+6 q_{\mathrm{S}}$ queries.

Therefore, we have that

$$
\operatorname{Pr}\left[\operatorname{Game}_{4}^{\mathcal{A}} \text { sets bad }_{\mathrm{H}}\right] \leq \operatorname{Adv}_{\mathrm{RO}_{\text {Th }}}^{\mathrm{CR}}\left(q_{\mathrm{RO}}+6 q_{\mathrm{S}}\right)
$$

and it follows that

$$
\operatorname{Pr}\left[\operatorname{Game}_{3}^{\mathcal{A}} \Rightarrow 1\right] \leq \operatorname{Pr}\left[\operatorname{Game}_{4}^{\mathcal{A}} \Rightarrow 1\right]+\operatorname{Adv}_{\mathrm{RO}_{\mathrm{Th}}}^{\mathrm{CR}}\left(q_{\mathrm{RO}}+6 q_{\mathrm{S}}\right) .
$$

Game 5 (Abort if adversary guess a uncorrupted PSK). In $\mathrm{Game}_{5}^{\mathcal{A}}$, we make the adversary lose when it queries any random oracle on a pre-shared key PSK before that key has been corrupted via RevLongTermKey.

We introduce some bookkeeping in order to implement this change. First, we add a reverse lookup table PSKList that is maintained by the NewSecret oracle. When NewSecret ($u, v, p s k i d$) samples a fresh pre-shared key PSK, we log the tuple under index PSK as PSKList[PSK] \leftarrow $(u, v, p s k i d)$. Note that the pre-shared keys might repeat, so we may have multiple entries in PSKList indexed by a single PSK. Second, we add a time $\log \mathrm{T}$ to the 12 random oracles RO_{x}. Each random oracle query containing a pre-shared key PSK now creates an entry $\mathrm{T}[\mathrm{PSK}] \leftarrow$ time, where time is the counter maintained by the key exchange experiment, unless T[PSK] already exists.

The actual check whether the adversary queries any random oracle with a PSK before it was corrupted is performed by the Finalize oracle. We set a flag bad ${ }_{\text {PSK }}$ if $\mathrm{T}(\mathrm{PSK}) \leq$ revpsk $_{(u, v, p s k i d)}$ for any PSK $\in \mathrm{T}$ and $(u, v, p s k i d) \in P[\mathrm{PSK}]$. If the $\operatorname{bad}_{\text {PSK }}$ flag was set during this process, the Finalize oracle returns 0 .

Next, let us analyze the probability that the game is lost due to flag badPSK being set. Each random oracle query could hit one out of q_{NS} many pre-shared keys. Before a given pre-shared key is corrupted or queried to a random oracle, the adversary knows nothing about its value. Since we assume that pre-shared keys are sampled uniformly at random from $\{0,1\}^{h l}$, the probability to hit a specific one is at most $2^{-h l} .{ }^{11}$ By the union bound, we obtain that the probability that the adversary hits any of the pre-shared keys in a single random oracle query is upper-bounded by $q_{\mathrm{NS}} \cdot 2^{-h l}$. Thus, the probability that bad PSK is set in response to any of the q_{RO} many random oracle queries overall is limited by $q_{\mathrm{RO}} \cdot q_{\mathrm{NS}} \cdot 2^{-h l}$. This follows again by applying the union bound.

Hence, we get by the identical-until-bad lemma,

$$
\begin{aligned}
\operatorname{Pr}\left[\text { Game }_{4}^{\mathcal{A}} \Rightarrow 1\right] & \leq \operatorname{Pr}\left[\text { Game }_{5}^{\mathcal{A}} \Rightarrow 1\right]+\operatorname{Pr}\left[\operatorname{Game}_{5}^{\mathcal{A}}\right. \text { sets bad } \\
& \leq \operatorname{Pr}\left[\text { Game }_{5}^{\mathcal{A}} \Rightarrow 1\right]+\frac{q_{\mathrm{RO}} \cdot q_{\mathrm{NS}}}{2^{h l}} .
\end{aligned}
$$

In the next two games, we change the way that partnered sessions compute their session keys, binder values, and Finished MAC tags. Since we have established in Phase 1 that partnered sessions will always share the same key, we can compute these keys only once and let partnered sessions copy the results. This will make it easier to maintain consistency between partners as we change the way we compute keys and tags. This approach follows the tight key exchange security proof techniques of Cohn-Gordon et al. [13].

Game 6 (Log session keys and MAC tags). First, we will store all session keys in a look-up table SKEYS under their session identifiers. Sessions will be able to use this table to easily check if they share a session identifier with another honest session and thus share a key with a partner.

Honest sessions π_{u}^{i} in the initiator role will derive the keys ETS, EEMS, and RMS before their partners. In Game 6, when an initiator session accepts in stage 1 (ETS), 2 (EEMS), or 8 (RMS) it creates a new entry in SKEYS, i.e.,

$$
\operatorname{SKEYS}\left[\pi_{u}^{i} \cdot \operatorname{sid}[s]\right] \leftarrow \pi_{u}^{i} \cdot \operatorname{skey}[s]
$$

[^10]for $s \in\{1,2,8\}$. Honest responder sessions π_{v}^{j} will derive the keys $h t k_{S}, h t k_{C}$, CATS, SATS, and EMS before their partners. These sessions also log their keys in S under the appropriate session identifier:
$$
\operatorname{SKEYS}\left[\pi_{v}^{j} \cdot \operatorname{sid}[s]\right] \leftarrow \pi_{v}^{j} . s k e y[s]
$$
for $s \in\{3, \ldots, 7\}$.
Note that no two sessions will ever log keys in table SKEYS under the same sid. From Sound, we know that only one initiator and one responder session may have the same session identifier $\operatorname{sid}[s]$ in any stage s. Note that for the replayable stages 1 and 2 (ETS and EEMS) we only log once because the messages will only be logged by the initiator that output the replayed messages and not by the receivers that are receiving them.

We also store binder, $f i n_{C}$ and $f i n_{S}$ MAC tags. When any honest session queries RO_{x} with $x \in\left\{b i n d e r, f i n_{C}, f i n_{S}\right\}$, it logs the response in a second look-up table, TAGS, indexed by x and the inputs to RO_{x}. That is, for a query (PSK, DHE, d_{1}, d_{2}) to $\mathrm{RO}_{f i n}$, we log

$$
\operatorname{TAGS}\left[f i n_{S}, \mathrm{PSK}, \mathrm{DHE}, d_{1}, d_{2}\right] \leftarrow \mathrm{RO}_{f i_{S}}\left(\mathrm{PSK}, \mathrm{DHE}, d_{1}, d_{2}\right) .
$$

Since Game 6 only introduces book-keeping steps, we have that

$$
\operatorname{Pr}\left[\operatorname{Game}_{5}^{\mathcal{A}} \Rightarrow 1\right]=\operatorname{Pr}\left[\operatorname{Game}_{6}^{\mathcal{A}} \Rightarrow 1\right] .
$$

Game 7 (Copy session keys and MAC tags from partnered session). In this game, we change the way the sessions compute their keys and MAC tags. Namely, if a session has an honest partner in stage s, instead of computing a key itself, it copies the stage- s key already computed by the partner via the table SKEYS introduced in Game 6. Concretely, the sessions compute their keys depending on their role as follows.

Honest server sessions. An honest server session π_{v}^{j}, upon receiving (CH, CKS, CPSK), sets its session identifier for stages 1 (ETS) and 2 (EEMS). It then checks whether keys have been logged in SKEYS under π_{v}^{j}.sid[1] and π_{v}^{j}.sid[2]. If such \log entries exist, then π_{v}^{j} has an honest partner in stages 1 and 2, and copies the keys ETS and EEMS from SKEYS when they would instead be computed directly.

Analogously, upon receiving CF, π_{v}^{j} uses SKEYS to check whether there is an honest client session that shares the same stage- 8 (RMS) session identifier π_{v}^{j}.sid[8], and it copies the RMS key if this is the case. If there are no entries in SKEYS under the appropriate session identifiers, π_{v}^{j} proceeds as in Game 6 and computes its keys using the random oracles.

Honest client sessions. An honest client session π_{u}^{i}, upon receiving (SH, SKS, SPSK), sets its session identifiers for stages $3-7$, which identify the keys $h t k_{S}, h t k_{C}$, CATS, SATS and EMS. It then searches for entries in SKEYS indexed by π_{u}^{i}.sid $[s]$ for $s \in\{3, \ldots, 7\}$. If these entries are present for stage s, then π_{v}^{i} copies the stage- s keys from SKEYS instead of computing them itself. Otherwise, π_{u}^{i} proceeds as in Game 6 and computes the keys using the random oracle in each case.

Computation of MAC tags. Finally, all honest sessions (both client and server) which would query RO_{x} to compute $x \in\left\{\right.$ binder, $\left.f i n_{C}, f i n_{S}\right\}$ in Game 6 first check the look-up table TAGS to see if their query has already been logged. If so, they copy the response from TAGS instead of making the query to RO_{x}.

It remains to argue that the procedure of copying the keys in partnered sessions described in this game is consistent with computing the keys in Game 6. Recall that sessions which are partnered in
stage s must agree on the stage- s key, since the Sound predicate (Property 6) cannot be violated. Consider a session π_{u}^{i} which accepts the stage- s key $\pi_{u}^{i} . s k e y[s]$. By Sound, any other session π_{v}^{j} in Game 6 which accepts in stage s with $\pi_{v}^{j} . \operatorname{sid}[s]=\pi_{u}^{i} . \operatorname{sid}[s]$ must set its stage- s key equal to $\pi_{u}^{i} . s k e y[s]$. Although in Game 7 the session π_{v}^{j} may copy π_{u}^{i}.skey[s] from table SKEYS instead of deriving it directly, the value of π_{v}^{j}.skey[s] does not change between the two games.

Sessions may also copy queries from look-up table TAGS instead of making the appropriate random oracle query themselves. However, table TAGS simply caches the response to random oracle queries and does not change them. Hence, the view of the adversary is identical. This implies that

$$
\operatorname{Pr}\left[\text { Game }_{6}^{\mathcal{A}} \Rightarrow 1\right]=\operatorname{Pr}\left[\mathrm{Game}_{7}^{\mathcal{A}} \Rightarrow 1\right]
$$

With the next two games, we finalize Phase 2. First, we postpone the sampling of the preshared key to the RevLongTermKey oracle such that only corrupted sessions hold pre-shared keys. As a consequence of this change, we can no longer compute session keys and MAC tags using the random oracles. We will instead sample these uniformly at random from their respective range and only program the random oracles upon corruption of the corresponding pre-shared key. After this change, we can show that in order to break explicit authentication, the adversary must predict a uniformly random Finished MAC tag, which is unlikely.

Game 8 (Postpone PSK sampling until after corruption). In this game, we postpone the sampling of pre-shared keys from the NEwSECRET oracle to the REvLongTERMKEY oracle (if the pre-shared key gets corrupted) or the FinALIZE oracle (if the key remains uncorrupted).

Since we now do not have a PSK anymore for uncorrupted sessions, we cannot use the random oracle to compute keys or MAC tags in those sessions, but instead sample them uniformly at random. If the corresponding pre-shared key is corrupted later and a PSK is chosen (in REvLongTERMKEy), we will retroactively program the affected random oracles to ensure consistency.

Concretely, we change the implementation of the game as follows. When NewSecret receives a query $(u, v, p s k i d)$, we set pskeys $[(u, v, p s k i d)]$ to a special symbol \star instead of a randomly chosen pre-shared key. The \star serves as a placeholder and signalizes that the NewSecret oracle already received a query $(u, v, p s k i d)$, but no PSK has been chosen yet. We add $(u, v, p s k i d)$ to the set PSKList $[\star]$ to keep track of all tuples with an undefined PSK.

We let honest sessions whose pre-shared key has not been sampled (yet) but equals \star sample their session keys as well as binder and Finished MAC tags uniformly at random. Due to the changes introduced in Game 7 we do not need to ensure consistency when sampling, as we sample each value once and partnered sessions copy the suitable value from the tables SKEYS and TAGS. (When sessions would \log MAC tags in TAGS under their pre-shared keys in Game 7, those with no pre-shared key instead use the tuple ($u, v, p s k i d$) in this game.) We further log the respective random oracle query that sessions would normally have used for the computation in a look-up table $\operatorname{PrgList}_{x}$ for later programming of the respective random oracle RO_{x}. Sessions which would log their RO-derived values in tables SKEYS and TAGS now log their randomly chosen values instead. That is, if a session in Game 7 would issue a query (\star, DHE, ctxt) (where DHE might be \perp) to random oracle RO_{x} to compute a value k, in Game 8 it chooses k uniformly at random from RO_{x} 's range and logs

$$
\operatorname{PrgList}_{x}[(u, v, p s k i d), \mathrm{DHE}, c t x t] \leftarrow k
$$

in the look-up table $\operatorname{PrgList}_{x}$, where ($u, v, p s k i d$) uniquely identifies the used PSK. Note that the table $\mathrm{PrgList}_{x}$ is closely related to the random oracle table ROList ${ }_{x}$ for RO_{x}. Table $\mathrm{PrgList}_{x}$ is always used when there is no PSK defined for a session, i.e., it has not (yet) been corrupted. Therefore,
we need to make sure that if the PSK (identified by ($u, v, p s k i d$)) gets corrupted we are able to reprogram RO_{x}. Using $\operatorname{PrgList}_{x}$ we can upon corruption of the pre-shared key associated with ($u, v, p s k i d)$ efficiently look-up the entries we need to program from PrgList ${ }_{x}$ and transfer them to the random oracle table ROList ${ }_{x}$ after PSK has been set. We will discuss the precise process below when we describe how to adapt the RevLongTERMKEY oracle.

We must be particularly careful when $x=$ binder, because we still wish to set the bad ${ }_{b i n d e r}$ flag when two randomly chosen binder values collide. Therefore, honest sessions still record the sampled binder values in list CollList ${ }_{\text {binder }}$, so that the bad ${ }_{\text {binder }}$ flag is set as before. This ensures that the probability of setting the flag does not change.

We also need to adapt the corruption oracle REvLongTERMKEY. Upon a query ($u, v, p s k i d)$ for which pskeys $[(u, v, p s k i d)]=\star$, we perform the following additional steps: First, we sample a fresh pre-shared key PSK \leftarrow KE.PSKS and update pskeys, i.e., set pskeys $[(u, v, p s k i d)] \leftarrow$ PSK. Next, we need to reprogram the random oracles using the lists R_{x} to ensure consistency. Thus, for all x we update the random oracle tables ROList ${ }_{x}$ for RO_{x} using $\mathrm{PrgList}_{x}$. For every entry $\operatorname{PrgList}_{x}[((u, v, p s k i d), \mathrm{DHE}, c t x t)]=k$, we set

$$
\mathrm{ROList}_{x}[\mathrm{PSK}, \mathrm{DHE}, c t x t] \leftarrow k
$$

where ROList_{x} is the random oracle table of RO_{x}. Lastly, we remove ($\left.u, v, p s k i d\right)$ from the set PSKList $[\star]$ and add it to PSKList[PSK].

To be able to still set bad ${ }_{\mathrm{PSK}}$, we also make sure that in the FinALIZE procedure every pre-shared key is defined before the check against the random oracle time $\log \mathrm{T}$ introduced in Game 5 . We sample a pre-shared key for every tuple $(u, v, p s k i d) \in P[\star]$, setting pskeys $[(u, v, p s k i d)] \stackrel{\$}{\leftarrow}$ KE.PSKS, and update the reverse look-up table PSKList accordingly. As a result, also uncorrupted sessions now have a pre-shared key defined and we can check the condition for bad ${ }_{\text {PSK }}$ being set as introduced in Game 5.

The changes introduced in Game 8 are unobservable for the adversary as it never queries the random oracle for an uncorrupted pre-shared key, as otherwise the game would be aborted due to bad $_{\text {PSK }}$ introduced in Game 5. It hence does not matter whether the pre-shared key is already set before or upon corruption, because from the view of the adversary the keys (and the pre-shared key) are uniformly random bitstrings anyway up to this point. Upon corruption of a pre-shared key, we make sure by reprogramming the random oracle that all session keys and MAC tag computations are consistent with sessions that would have otherwise used this pre-shared key but derived all session keys and MAC tags without it. The change to the Finalize procedure does not affect the view of the adversary as it only retroactively defines keys on which the adversary cannot get any information about anymore. Consequently,

$$
\operatorname{Pr}\left[\operatorname{Game}_{7}^{\mathcal{A}} \Rightarrow 1\right]=\operatorname{Pr}\left[\operatorname{Game}_{8}^{\mathcal{A}} \Rightarrow 1\right]
$$

Game 9 (Exclude that honest sessions accept without a partner). In this game, we set a flag bad MAC and return 0 from FinALIzE if any session with an uncorrupted pre-shared key accepts stage $5\left(h t k_{C}\right)$ as initiator, or stage $8(\mathrm{RMS})$ as responder, without having a partnered session. Formally, we set $\operatorname{bad}_{\text {MAC }}$ if there is a session π_{u}^{i} such that π_{u}^{i}. accepted $[s]<\operatorname{revpsk}_{\left(u, v, \pi_{u}^{i} \cdot p s k i d\right)}$ with $v=\pi_{u}^{i}$.peerid and

$$
s= \begin{cases}5 & \text { if } \pi_{u}^{i} \cdot \text { role }=\text { initiator } \\ 8 & \text { if } \pi_{u}^{i} \cdot \text { role }=\text { responder }\end{cases}
$$

and there is no session π_{v}^{j} with $\pi_{u}^{i} . \operatorname{sid}[s]=\pi_{v}^{j} . \operatorname{sid}[s]$ when π_{u}^{i} accepts stage s.

Let us analyze the probability $\operatorname{Pr}\left[\mathrm{Game}_{9}^{\mathcal{A}}\right.$ sets bad $\left.{ }_{\mathrm{MAC}}\right]$. Consider a session π_{u}^{i} which triggers the bad $_{\text {MAC }}$ flag. In the following analysis, let π_{u}^{i} be an initiator. For responder sessions the arguments are analogous. The pre-shared key of session π_{u}^{i} is uncorrupted, which means that by the changes of Game 8 it has not been sampled. Therefore π_{u}^{i} either samples the ServerFinished MAC tag uniformly at random or copies it from table TAGS (in which case the MAC tag was uniformly sampled and logged by another honest session).

First observe that session π_{u}^{i} will not copy the ServerFinished MAC tag from table TAGS as this would imply that π_{u}^{i} is partnered when it accepts in stage 5 . This in turn contradicts that π_{u}^{i} has triggered flag bad MAC. Namely, if π_{u}^{i} would be able to copy the ServerFinished MAC tag from table TAGS there must have been another honest session that computed the same ServerFinished MAC, i.e., using the same tuple ($u, v, p s k i d$), DHE secret, and transcript hash. Recall that the session identifier of stage 5 contains both the ServerFinished message and the transcript hashed to computed the ServerFinished MAC tag. Further, we have that transcript hashes are unique due to Game 4. This implies that the session that logged the ServerFinished MAC tag in TAGS needs to have the same stage- 5 session identifier than π_{u}^{i} meaning π_{u}^{i} would be partnered in stage 5 .

Thus, if π_{u}^{i} triggers bad ${ }_{\mathrm{MAC}}$, it must have sampled its ServerFinished MAC tag at random and the received ServerFinished message will match this tag with probability no more than $2^{-h l}$.

Thus the probability that π_{u}^{i} triggers the flag bad MAC is bounded by $2^{-h l}$. A union bound over all sessions gives

$$
\operatorname{Pr}\left[\text { Game }_{9}^{\mathcal{A}} \text { sets bad }{ }_{\mathrm{MAC}}\right] \leq \frac{q_{\mathrm{S}}}{2^{h l}} .
$$

Overall, we get by the identical-until-bad-lemma

$$
\left.\begin{array}{rl}
\operatorname{Pr}\left[\text { Game }_{8}^{\mathcal{A}} \Rightarrow 1\right] & \leq \operatorname{Pr}\left[\text { Game }_{9}^{\mathcal{A}} \Rightarrow 1\right]+\operatorname{Pr}\left[\mathrm{Game}_{9}^{\mathcal{A}}\right. \text { sets bad } \\
\mathrm{MAC}
\end{array}\right] \quad \text { } \quad \leq \operatorname{Pr}\left[\text { Game }_{9}^{\mathcal{A}} \Rightarrow 1\right]+\frac{q_{\mathrm{S}}}{2^{h l}} .
$$

Conclusion of Phase 2. At this point, we argue that in Game 9 and any subsequent games, adversary \mathcal{A} cannot violate the ExplicitAuth predicate without also causing Finalize to return 0. To this end, we argue that ExplicitAuth = true holds with certainty from Game 9 on.

The predicate ExplicitAuth is set to false if there is a session π_{u}^{i} accepting an explicitly authenticated stage s, whose pre-shared key was not corrupted before accepting the stage $s^{\prime} \geq s$ in which it received (perhaps retroactively) explicit authentication, and (1) there is no honest session π_{v}^{j} partnered to π_{u}^{i} in stage s^{\prime}, or (2) there is an honest partner session π_{v}^{j} for π_{u}^{i} in stage s^{\prime} but it accepts with a peer identity $w \neq u$, with a different pre-shared key identity than π_{u}^{i}, i.e. $\pi_{v}^{j} . p s k i d \neq \pi_{u}^{i}$.pskid, or with a different stage-s session identifier, i.e. π_{v}^{j}. sid $[s] \neq \pi_{u}^{i}$.sid $[s]$.

Recall that initiator (resp. responder) sessions receive explicit authentication with acceptance of stage 5 (resp. stage 8) meaning that all previous stages $1-4$ (resp. stages $1-7$) receive explicit authentication retroactively and all future stages $6-8$ upon their acceptance. From Game 9, we have that any initiator session π_{u}^{i} accepting stage 5 (resp. any responder session accepting stage 8) with uncorrupted PSK must have a partnered session in that stage. Consequently, case (1) is impossible to achieve.

We next address the possibility of case (2). To achieve explicit authentication for stage $s \leq 8$, a responder session must have accepted stage 8 . From Game 9 on, we know that π_{u}^{i} must have a partner with the same stage 8 session identifier. Observe that the transcripts contained in π_{u}^{i} 's session identifiers for all stages are "sub-transcripts" of the transcript contained in the session identifier of stage 8. Therefore the partner must also have the same stage s session identifier. Property 5 of the Sound predicate then ensures that all partnered sessions agree on the peer identity
and the pre-shared key identity, so ExplicitAuth is not violated by session π_{u}^{i}. The same property holds for initiator sessions accepting stages $s \leq 5$. So ExplicitAuth can only be violated if an initiator session's stage- 5 partner accepts in stage $s>5$ with a different peer identity, pre-shared key identifier, or session ID. Since peer and pre-shared key identifiers do not change after they are set, only the session identifiers may not match in stage s. The "sub-transcripts" of stage 6 (CATS) and 7 (SATS) session identifiers are identical to those of stage 5 , so a partner in stage 5 will also be a partner in stages 6 and 7 . Then the only way to violate predicate ExplicitAuth is to convince the stage- 5 partner, a responder session, to accept a forged ClientFinished message and accept stage 8 . This is impossible because the partner will verify the received ClientFinished message against the message sent by π_{u}^{i}, which it copies from table TAGS. It follows that no session, responder or initiator, can violate the ExplicitAuth predicate.

Phase 3: Ensuring that the Challenge Bit is Idependently Random

Game 10. In this game, we rule out that the adversary manages to guess the DHE secret of two honestly partnered session to learn about the keys they are computing. Here, we only look at those session that have a corrupted pre-shared key, because we already ruled out in Game 5 that the adversary learns something about the keys computed by these sessions. To that end, we add another flag bad DHE to the game and return 0 from Finalize when it is set. Flag bad ${ }_{\text {DHE }}$ is set if the adversary ever queries a random oracle

$$
\mathrm{RO}_{x}\left(\mathrm{PSK}, \mathrm{DHE}, \mathrm{RO}_{\mathrm{Th}}(s i d[s])\right)
$$

for $(x, s) \in\left\{\left(h t k_{C}, 3\right),\left(h t k_{S}, 4\right),\left(f i n_{S}, 5\right)(\mathrm{CATS}, 5),(\mathrm{SATS}, 6),(\mathrm{EMS}, 7),\left(f i n_{C}, 8\right),(\mathrm{RMS}, 8)\right\}$ such that

- PSK is corrupted, i.e., the adversary made a prior query RevLongTermKey (u,v,pskid) with pskeys $[(u, v, p s k i d)]=$ PSK,
- there are honest sessions π_{u}^{i} and π_{v}^{j} that are contributively partnered in stage s with π_{v}^{j}.cid $\pi_{\pi_{u}^{i}}$.role $[s]=$ π_{u}^{i}. cid $_{\pi_{u}^{i} \text {.role }}[s]=(\mathrm{CH}, \mathrm{CKS}, \mathrm{CPSK}, \mathrm{SH}, \mathrm{SKS}, \mathrm{SPSK}, \ldots)$, and
- DHE $=g^{x y}$ such that CKS $=g^{x}$ and SKS $=g^{y} .{ }^{12}$

We bound the probability of flag bad ${ }_{\text {DHE }}$ being set via a reduction $\mathcal{B}_{\text {DHE }}$ to the strong DiffieHellman assumption in group \mathbb{G}. Reduction $\mathcal{B}_{\text {DHE }}$ simulates Game 10 for \mathcal{A}, and it wins the strong Diffie-Hellman whenever the simulated game would set the bad ${ }_{\text {DHE }}$ flag.
Definition 7.5. Let \mathbb{G} be a group of order p generated by g. We define

$$
\operatorname{Adv}_{\mathbb{G}}^{\mathrm{stDH}}\left(t_{\mathcal{B}_{\mathrm{DHE}}}, 2 q_{\mathrm{RO}}\right):=\operatorname{Pr}\left[g^{a b} \stackrel{\leftrightarrow}{\leftarrow} \mathcal{B}_{\mathrm{DHE}}^{\mathrm{stDH}}(\cdot, \cdot)\left(g^{a}, g^{b}\right): a, b \stackrel{\leftrightarrow}{\leftarrow} \mathbb{Z}_{p}\right]
$$

where stDH_{a} is a special "fixed-exponent DDH oracle" that on input (B, C) returns 1 if and only if $C=B^{a}$.

[^11]Construction of reduction $\mathcal{B}_{\text {DHE }}$. The reduction $\mathcal{B}_{\text {DHE }}$ gets as input a strong DH challenge $\left(A=g^{a}, B=g^{b}\right)$ as well as access to the oracle stDH ${ }_{a}$ for the Decisional Diffie-Hellman problem with the first argument fixed. Adversary $\mathcal{B}_{\text {DHE }}$ then honestly executes the oracles Initialize, RevSessionKey, Test, and NewSecret as Game 10 would, managing all game variables itself. We explain in more detail how $\mathcal{B}_{\text {Dhe }}$ answers Send, RevLongTermKey, and random oracle queries.

When \mathcal{A} makes a query to the SEnD oracle, $\mathcal{B}_{\text {DHE }}$ delivers the message to a protocol session in the same way as Game 10. However, the sessions themselves handle messages quite differently. At a high level, $\mathcal{B}_{\text {DHE }}$ embeds its strong DH challenges into the key shares of every initiator session and every partnered responder session. When bad ${ }_{\text {DHE }}$ is triggered, $\mathcal{B}_{\text {DHE }}$ learns the Diffie-Hellman secret DHE associated with two of these embedded key shares, and it can extract a solution to the strong DH challenge using some basic algebra. However, $\mathcal{B}_{\text {DHE }}$ must take care to appropriately program random oracles queries after corruptions, since it cannot compute Diffie-Hellman secrets for embedded key shares as it does not know the corresponding exponents. Next, we describe how client and server sessions are implemented in Game 10.

But first we explain the (constant-time accessible) look-up tables that are used (or defined) by reduction $\mathcal{B}_{\text {DHE }}$ to ensure an efficient implementation:

- The look-up table KSRnd is maintained for all sessions. It holds the random exponent τ used by the honest sessions to randomize their key share G, indexed by the session's nonce and key share (r, G) (see the implementation of the session for further details). To identify a session uniquely we use its nonce r and key share G as the index.
- Each random oracle RO_{x} maintains a look-up table DHEList ${ }_{x}$. For each query $R O_{x}(\mathrm{PSK}, Z, d)$, the table stores the group element Z indexed by PSK and d.
- Each random oracle RO_{x} maintains a look-up table RndList ${ }_{x}$. It holds a tuple (τ, τ^{\prime}, ctxt, key) indexed by the pair (PSK, d). The table holds all necessary information that is required to reprogram of the random oracle RO_{x}. The fields PSK and key can hold special values. If a PSK is uncorrupted, we cannot log the information under it because it is not defined. Therefore, we can use the tuple ($u, v, p s k i d$) uniquely identifying PSK instead. Moreover, key can sometimes be an empty field, because reprogramming of that value will never occur. When this field is empty, it will not be accessed as we instead use the remaining information of RndList ${ }_{x}$ to solve the stDH challenge. See the remainder of the proof for details.

Implementation of honest server sessions. Consider any server session π_{v}^{j}.

1. Upon receiving (CH, CKS , CPSK), the reduction $\mathcal{B}_{\text {DHE }}$ first checks whether π_{v}^{j} has an honest partner in stages 1 (ETS) and 2 (EEMS) by checking for entries indexed by π_{v}^{j}.sid[1] and π_{v}^{j}.sid[2] in the look-up table SKEYS introduced in Game 6. If no such entries exist, then $\mathcal{B}_{\text {DHE }}$ answers this and all future SEnd queries just as specified in Game 10. For the rest of the discussion, we assume the entries do exist.
Session π_{v}^{j} generates its key share SKS by randomizing the challenge key share B. Namely, it chooses a randomizer $\tau_{v}^{j} \leftrightarrow \mathbb{Z}_{p}$ uniformly at random and sets $Y \leftarrow B \cdot g^{\tau_{v}^{j}}$. Then, it $\operatorname{logs} \tau_{v}^{j}$ under index $\left(r_{S}, Y\right)$ in the look-up table KSRnd.
2. Before π_{v}^{j} outputs (SH, SKS, SPSK), it computes the keys $h t k_{C}$ and $h t k_{S}$. By Game 8, these keys are sampled randomly when PSK is uncorrupted and computed using $\mathrm{RO}_{h t k_{C}}$, resp. $\mathrm{RO}_{h t k_{S}}$
otherwise. In both cases, $\mathcal{B}_{\text {DHE }}$ needs to know the Diffie-Hellman secret DHE to \log in table $\operatorname{PrgList}_{x}$ or to query RO_{x} for $x \in\left\{h t k_{C}, h t k_{S}\right\}$. However, $\mathcal{B}_{\text {DHE }}$ cannot compute DHE because it does not know the discrete logarithms of either CKS or SKS.

Therefore, $\mathcal{B}_{\text {DHE }}$ needs to compute the keys without knowing the DHE key using the control over the random oracles.

If the pre-shared key has been corrupted, the adversary could potentially have already queried the random oracle $\mathrm{RO}_{h t k_{C}}$ with the query π_{v}^{j} should make. To that end, $\mathcal{B}_{\text {DHE }}$ first checks whether the corresponding query for $h t k_{C}$ was already made to $\mathrm{RO}_{h t k_{C}}$. Concretely, $\mathcal{B}_{\text {DHE }}$ computes the context hash $d=\mathrm{RO}_{\mathrm{Th}}\left(\mathrm{CH}\|\cdots\|\right.$ SPSK) and checks for a suitable $\mathrm{RO}_{h t k_{C}}$ query using the look-up table DHEList ${ }_{h t k_{C}}[\mathrm{PSK}, d]$ maintained in $\mathrm{RO}_{h t k_{C}}$ (see above for the definition). Reduction $\mathcal{B}_{\text {DHE }}$ queries $\operatorname{stDH}_{a}\left(Y, Z \cdot Y^{-\tau_{u}^{i}}\right)$ for all $Z \in \operatorname{DHEList}_{h t k_{C}}$ [PSK, $\left.d\right]$, where τ_{u}^{i} is the randomizer used by the honest partner of π_{v}^{j}, which can be looked up from $\operatorname{KSRnd}\left[r_{C}, X\right]$ using π_{u}^{i} 's nonce and key share. (Although this may cause several stDH ${ }_{a}$ queries in response to a single SEND query, $\mathcal{B}_{\text {DHE }}$ is still efficient because it only checks random oracle queries whose context is d, and due to the lack of both nonce/group element and hash collisions d is unique to session π_{u}^{i} and its partner. Therefore each entry in DHEList ${ }_{h t k_{C}}[\mathrm{PSK}, d]$ will be checked at most twice over the course of the entire reduction.)

If any one of these queries is answered positively, we have by the definition of stDH ${ }_{a}$ that $Z \cdot Y^{-\tau_{u}^{i}}=Y^{a}$, which implies that $Z=Y^{a+\tau_{u}^{i}}=X^{b+\tau_{v}^{j}}$ by definition of Y and X, which was computed by the honest partner π_{u}^{i} that has output the CH message received by π_{v}^{j}. This exactly is the DHE value that π_{v}^{j} would have computed if we would have known the discrete logarithm of B. Hence, we have found the right Z value and only need to derandomize it to win the challenge. Therefore, we let $\mathcal{B}_{\text {DHE }}$ submit the value

$$
Z \cdot Y^{-\tau_{u}^{i}} \cdot A^{-\tau_{v}^{j}}=Y^{a} \cdot A^{-\tau_{v}^{j}}=\left(g^{a}\right)^{b+\tau_{v}^{j}} \cdot\left(g^{a}\right)^{-\tau_{v}^{j}}=g^{a b}
$$

to the Finalize oracle as a solution to the strong Diffie-Hellman problem.
Observe that if bad DHE is set due to a query to $\mathrm{RO}_{h t k_{C}}$ in Game 10, there is a random oracle query such that one of the above $\operatorname{stDH}{ }_{a}$ queries will be answered positively. Thus, $\mathcal{B}_{\text {DHE }}$ will win if $\operatorname{bad}_{\text {DHE }}$ is set. We do the same for $h t k_{S}$ with $\mathrm{RO}_{h t k_{S}}$.
If in the above process no query is answered positively, i.e., bad $_{\text {DHE }}$ will also not be set, then π_{v}^{j} samples the key $h t k_{C} \stackrel{\leftrightarrow}{\leftarrow}$ KE.KS[3] itself and logs the following information so that future RO queries can be answered appropriately:

$$
\operatorname{RndList}_{h t k_{C}}(\mathrm{PSK}, d=\mathrm{H}(\mathrm{CH}\|\cdots\| \mathrm{SPSK})) \leftarrow\left(\tau_{u}^{i}, \tau_{v}^{j},(\mathrm{CH}\|\cdots\| \text { SPSK }), \perp\right)
$$

Again, we do the same for $h t k_{S}$.
If PSK is not corrupted, then bad ${ }_{\text {DHE }}$ cannot possibly have been set and we do not need to worry about consistency with earlier random oracle queries. Therefore, we do not need to do the process described above and immediately sample $h t k_{C}$ and $h t k_{S}$ randomly as in Game 10. It logs the keys in table SKEYS under their respective session identifiers, which do not contain DHE or any unknown values. In Game 10, we added entries to PrgList $_{h t k_{C}}$ and PrgList ${ }_{h t k_{S}}$ in order to program future random oracle queries upon corruption. The reduction cannot do this here as it does not know DHE; instead, it logs

$$
\operatorname{RndList}_{x}[((u, v, p s k i d), d=\mathrm{H}(\mathrm{CH}\|\cdots\| \text { SPSK }))] \leftarrow\left(\tau_{u}^{i}, \tau_{v}^{j},(\mathrm{CH}\|\cdots\| \text { SPSK }), \perp\right)
$$

for $x \in\left\{h t k_{C}, h t k_{S}\right\}$. This will allow $\mathcal{B}_{\text {DHE }}$ to win if a later RevLongTermKey or random oracle query triggers bad ${ }_{\text {DHE }}$.
3. To compute the ServerFinished message $\mathcal{B}_{\text {DHE }}$ proceeds exactly as in Step 2 except that it uses the random oracle $\mathrm{RO}_{f i n_{S}}$ and context CH $\|\cdots\|$ EE through the EncryptedExtensions. Also, the ServerFinished message is computed first by the server, so $\mathcal{B}_{\text {DHE }}$ does not check table SKEYS or TAGS for any entries. Reduction $\mathcal{B}_{\text {DHE }}$ also cannot log the inputs to random oracle query $\mathrm{RO}_{f i_{S}}$ in table TAGS (as done since game Game 6) because it does not know DHE. Instead, it logs the derived value of $f i n_{S}$ in table TAGS and replaces DHE in the index of TAGS by $\left(\tau_{u}^{i}, \tau_{v}^{j},(\mathrm{CH}\|\cdots\| \mathrm{EE})\right)$. That is, if it computes $f n_{S}$ for inputs PSK, d_{1}, and d_{2}, it logs

$$
\operatorname{TAGS}\left[f i n_{S}, \operatorname{PSK},\left(\tau_{u}^{i}, \tau_{v}^{j},(\mathrm{CH}\|\cdots\| \mathrm{EE})\right), d_{1}, d_{2}\right] \leftarrow f i n_{S} .
$$

That way, it is possible to identify DHE without knowing it. For $f i n_{S}$, we keep the same notation for the sets DHEList ${ }_{x}$, RndList $_{x}$ and ROList ${ }_{x}$ numbered as the corresponding random oracle RO_{x}.
4. Reduction $\mathcal{B}_{\text {DHE }}$ proceeds exactly as for $f i n_{S}$ above, except that we again use different random oracles and the context $c i d_{\mathrm{CATS}}=\mathrm{CH}\|\cdots\| \mathrm{SF}=c i d_{\mathrm{SATS}}=c i d_{\mathrm{EMS}}$, where $c i d_{x}$ denotes transcript contained in the contributive identifier which is prefixed by " x ", and thus the hash $d=\mathrm{RO}_{\mathrm{Th}}(\mathrm{CH}\|\cdots\| \mathrm{SF})$. With respect to random oracles, we have $\mathrm{RO}_{\mathrm{CATS}}$ for CATS, $\mathrm{RO}_{\mathrm{SATS}}$ for SATS and $\mathrm{RO}_{\text {EMS }}$ for EMS, respectively. Reduction $\mathcal{B}_{\text {DHE }}$ logs the keys in table SKEYS under their respective session identifiers, which do not contain DHE or any unknown values.
After this is done, π_{v}^{j} outputs (EE, SF).
5. Upon receiving CF, $\mathcal{B}_{\text {DHE }}$ looks for a suitable entry for $f i n_{C}$ in TAGS. If there is a value $f i n_{C}$ consistent with π_{v}^{j},s view, $\mathcal{B}_{\text {DHE }}$ terminates the session as specified if CF does not match the looked-up value of $f i n_{C}$. Otherwise, $\mathcal{B}_{\text {DHE }}$ continues to compute RMS. To this end, $\mathcal{B}_{\text {DHE }}$ checks whether there is an entry in SKEYS that matches the stage- 8 session identifier of π_{v}^{j}, if yes π_{v}^{j} simply copies that entry. If not, first observe that if there is no entry in SKEYS there is no honest stage-8 partner, which implies that PSK needs to be corrupted as otherwise the game would have been aborted due to bad $_{\text {MAC }}$ introduced in Game 9. Therefore, the adversary also would be allowed to query $\mathrm{RO}_{\text {RMS }}$ to compute RMS. Thus, $\mathcal{B}_{\text {DHE }}$ needs to check whether the value for RMS is already set. Here, we need to distinguish two cases. Namely, whether there is an honest contributive stage- 3 partner or not.
First note that as described in Step $1, \mathcal{B}_{\text {DHE }}$ does not embed its challenge in SKS if there is no honest session output the ClientHello received, i.e., there is no honest contributive stage- 3 partner. Therefore, here $\mathcal{B}_{\text {DHE }}$ can simply implement π_{v}^{j} as specified in Game 10.
In case there is an honest contributive stage-3 partner, then $\mathcal{B}_{\text {DHE }}$ proceeds as described in Step 2 for oracle $\mathrm{RO}_{\mathrm{RMS}}$ and context hash $d=\mathrm{RO}_{\mathrm{Th}}\left(\operatorname{cid}_{\mathrm{RMS}}\right)=\mathrm{RO}_{\mathrm{Th}}(\mathrm{CH}\|\cdots\| \mathrm{CF})$ to check whether the adversary already solved the stDH challenge for $\mathcal{B}_{\text {DHE }}$. Note that the stage- 3 session identifier uniquely defines the DHE key, thus if there is an honest partner and there is a respective $\mathrm{RO}_{\mathrm{RMS}}$ query, the adversary has to break stDH to submit the query.

Implementation of honest client sessions. Consider any client session π_{u}^{i}.

1. The reduction \mathcal{B}_{4} proceeds exactly as in Game 10 until the session chooses its key share. Instead of choosing a fresh exponent as specified in Figure 1, it chooses a value $\tau_{u}^{i} \not{ }^{\circledR} \mathbb{Z}_{p}$ uniformly at
random and sets $X \leftarrow A \cdot g^{\tau_{u}^{i}}$ as its key share in the ClientKeyShare message. Further, it $\operatorname{logs} \tau_{u}^{i}$ in KSRnd indexed with $\left(r_{C}, X\right)$. The rest is exactly as specified in Game 10. That is, it computes ETS and EEMS and outputs (CH, CKS, CPSK).
2. Upon receiving (SH, SKS, SPSK), π_{u}^{i} checks whether there is an entry

$$
\operatorname{SKEYS}\left[\left(" h t k_{C} ", \mathrm{CH}, \ldots, \mathrm{SPSK}\right)\right] \neq \perp
$$

If this is the case, π_{u}^{i} knows that there is an honest stage- 3 partner, and it copies all the keys stored under π_{u}^{i} 's session identifier as defined in Game 10. If there is no suitable entry, $\mathcal{B}_{\text {DHE }}$ faces the problem that it already "committed" to not knowing the discrete logarithm of π_{u}^{i} 's key share X by embedding A into it and thus we are not able to compute the DHE value. Since there is no entry in SKEYS for $h t k_{C}$, we know that there is no honest stage-3 partner session by definition of SKEYS. That is, no honest server session computed SKS and thus it must have been chosen by the adversary. If the pre-shared key is corrupted, $\mathcal{B}_{\text {DHE }}$ needs to use the stDH ${ }_{a}$ oracle to check whether there already was a query issued to RO_{x} for $x \in\left\{h t k_{C}, h t k_{S}\right\}$. If this is not the case, π_{u}^{i} freshly samples random keys and remembers them for possible retroactive reprogramming of the random oracle. Concretely, we do the following for each random oracle RO_{x} for $x \in\left\{h t k_{C}, h t k_{S}\right\}:$
First compute $d=\mathrm{RO}_{\text {Th }}(\mathrm{CH}\|\ldots\| \mathrm{SPSK})$ and then query the stDH_{a} oracle for all $Z \in$ DHEList ${ }_{x}[\mathrm{PSK}, d]$, where PSK is the pre-shared key used by π_{u}^{i}, as

$$
\operatorname{stDH}_{a}\left(Y, Z \cdot Y^{-\tau_{u}^{i}}\right)=1 \Longleftrightarrow Z=Y^{a},
$$

where Y is the DH key share contained in SPSK. See the server session implementation above for further explanation. If there is any of these queries is answered positively, let the respective key be $\mathrm{RO}_{x}(\mathrm{PSK}, Z, d)$. If there is no Z that results in a positive query, let $k e y \leftarrow \mathbb{} \leftarrow E . \mathrm{KS}[x]$ be sampled at random, and $\mathcal{B}_{\text {DHE }}$ logs the value for possible later reprogramming of the random oracle RO_{x}, i.e.,

$$
\operatorname{RndList}_{x}\left[\left(\mathrm{PSK}, d=\mathrm{RO}_{\text {Th }}(\mathrm{CH}\|\cdots\| \operatorname{SPSK})\right)\right] \leftarrow\left(\tau_{u}^{i}, \perp,(\mathrm{CH}\|\cdots\| \text { SPSK }), k e y\right) .
$$

After that π_{v}^{i} either has copied the keys or chose them itself and will accept all of the stage keys among these keys.
If the PSK of π_{u}^{i} has not been corrupted, then no "right" query can have been made and the keys be sampled randomly. However, we still need to program future "right" RO queries after a corruption. Therefore set

$$
\operatorname{RndList}_{x}\left[\left(\mathrm{PSK}, d=\mathrm{RO}_{\mathrm{Th}}(\mathrm{CH}\|\cdots\| \text { SPSK })\right)\right] \leftarrow\left(\tau_{u}^{i}, \perp,(\mathrm{CH}\|\cdots\| \text { SPSK }), \text { key }\right)
$$

$\operatorname{PrgList}_{x}$ is not updated as in Game 10, because DHE is unknown.
3. Upon receiving (EE, SF), similar to the previous step, π_{v}^{j} checks whether there is an entry in SKEYS and TAGS (to verify SF) corresponding to its stage- 5 session identifier. If this is the case, it copies the keys from that list. In case there is none, we have that there is no honest stage-5 partner. Here, we need to distinguish the case whether there was an honest stage-3 partner before or not.
Namely, the adversary could corrupt the PSK, then change the EE output by an honest session and then compute a new SF message for the changed transcript. Hence, there is an honest
stage-3 partner, but no stage-5 partner. In this case, $\mathcal{B}_{\text {DHE }}$ again applies the approach from above (see implementation of server session, Step 2) for the random oracles RO_{x} for $x \in$ $\{$ CATS, SATS, EMS $\}$ and the context $d=\mathrm{RO}_{\mathrm{Th}}(\mathrm{CH}\|\cdots\| \mathrm{SF})$ checking whether the random oracles received already a correct query which set the keys CATS, SATS and EMS. If this is the case and since there was a stage- 3 partner, $\mathcal{B}_{\text {DHE }}$ has embedded the DH challenge in both the client and the server, this solves the strong Diffie-Hellman problem. When there is no such query the keys are chosen at random and all necessary information for possible retroactive programming of the random oracles RO_{x} is logged in the table $\mathrm{RndList}_{x}$. Please see above for details.

However, if there is no honest stage- 3 partner, SKS was chosen by the adversary. Hence, $\mathcal{B}_{\text {DHE }}$ needs to apply the procedure described in the previous step (Step 2) and use the oracle stDH ${ }_{a}$ to check the random oracles RO_{x} for $x \in\{$ CATS, SATS, EMS $\}$ whether they already set the keys. The important difference here is that a positive answer of the $s t D H_{a}$ oracle does not solve stDH, as SKS was chosen by the adversary. Note that $\mathcal{B}_{\text {DHE }}$ again needs to make sure that it gathers all the information needed to make retroactive programming of the random oracles possible by logging information in RndList ${ }_{x}$ as before.
4. π_{u}^{i} computes $f i n_{C}$ using the same process as above: if PSK is corrupted, it checks for RO queries in DHEList $f_{f n_{C}}[\mathrm{PSK}, d]$ that could set bad ${ }_{\text {DHE }}$ when π_{u}^{i} has an honest partner in stage 8 or fix the value of $f i n_{C}$ when no honest partner exists. It then calls Finalize or sets $f i n_{C}$ accordingly. If no earlier RO query matches $f i n_{C}$, then we sample $f i n_{C}$ randomly and $\log \tau_{u}^{i}$, fin_{C}, and the transcript in table RndList ${ }_{f i n}$, under PSK and the transcript hash d. If PSK is uncorrupted, π_{u}^{i} immediately samples $f i n_{C}$ randomly and $\operatorname{logs} \tau_{u}^{i}$, $f i n_{C}$, and the transcript in RndList $_{f i_{C}}$ under index $((u, v, p s k i d), d)$.
Next we compute RMS. As π_{u}^{i} is not able to compute DHE independent of there being a honest stage- 3 partner or not, $\mathcal{B}_{\text {DHE }}$ need to apply the same procedure that was described before in Step 3, when there was no stage- 5 partner for random oracle $\mathrm{RO}_{\text {RMS }}$ and context $d=\mathrm{RO}_{\mathrm{Th}}(\mathrm{CH}\|\cdots\| \mathrm{CF})$. The only difference is that in case there was a stage-3 partner, Finalize is queried when the stDH oracle returns true, and if there is no stage-3 partner, RMS is only programmed. Then, π_{u}^{i} outputs CF.

Besides changing the implementation of the session oracles, we also need to adapt the random oracles RO_{x} for $x \in\left\{h t k_{C}, \ldots, \mathrm{RMS}\right\}$ to make sure (1) $\mathcal{B}_{\text {DHE }} \S$ programs the random oracle retroactively if the random oracle receives the right query and (2) to check whether the adversary computed DHE for $\mathcal{B}_{\text {DHE }}$ for honestly partnered sessions.

Implementation of random oracle RO_{x}. If RO_{x} receives a query that was already answered, it answers consistently. However, if there is a new query of the form (PSK, Z, d), it appends Z to the set $\mathrm{DHEList}_{k}[\mathrm{PSK}, d]$. If RndList ${ }_{k}[\mathrm{PSK}, d] \neq \perp$, then there already was a session using PSK and context hash d trying to compute a key without knowing the correct DHE secret. Therefore, $\mathcal{B}_{\text {DHE }}$ uses the stDH ${ }_{a}$ oracle to check whether Z is that secret. Let ($\tau_{u}^{i}, \tau_{v}^{j}$, ctxt, key) be the entry of $\operatorname{RndList}_{k}[\mathrm{PSK}, d]$, where τ_{u}^{i} and τ_{v}^{j} denote the randomness used by the client and the server to randomize the stDH challenge, respectively, ctxt $=\mathrm{CH} \|$ CKS || CPSK || SH || SKS || SPSK $\| \cdots$ denotes the context such that $d=\mathrm{RO}_{\mathrm{Th}}(c t x t)$ and key denotes the key chosen by the session since there was no random oracle fixing it. Using this information, it fetches $\mathrm{SKS}=Y$ and queries $\operatorname{stDH}_{a}\left(Y, Z \cdot Y^{-\tau_{u}^{i}}\right)$. If this query is answered positively, $\mathcal{B}_{\text {DHE }}$ knows that the right DH value Z was queried. If $\tau_{u}^{j}=\perp$, i.e., the \log in RndList $_{k}$ was set by a client without an honestly partnered server, $\mathcal{B}_{\text {DHE }}$ needs to program the random oracle to be consistent. That is, $\mathrm{ROList}_{k}[\mathrm{PSK}, Z, d] \leftarrow k e y$. Otherwise, $\mathcal{B}_{\text {DHE }}$
knows that the $\operatorname{PrgList}_{x}$ entry was set by an honestly partnered session, and thus Z is a randomized solution to the stDH challenge. Thus, $\mathcal{B}_{\text {DHE }}$ submits the solution $Z \cdot Y^{-\tau_{u}^{i}} \cdot A^{-\tau_{v}^{j}}$ to its stDH Finalize oracle.

Unless $\mathcal{B}_{\text {DHE }}$ solved the stDH challenge, the oracle outputs $\mathrm{ROList}_{x}[\mathrm{PSK}, Z, d]$.
Implementation of corruption oracle RevLongTermKey. Finally, $\mathcal{B}_{\text {Dhe }}$ needs to handle corruptions via the RevLongTermKey oracle. Since Game 8, the RevLongTermKey oracle upon input ($u, v, p s k i d$) samples a fresh PSK. It then uses lists $\operatorname{PrgList}_{x}$ to program all the random oracles RO_{x} for consistency with any sessions whose pre-shared key is now PSK. Reduction $\mathcal{B}_{\text {DHE }}$ still does this, but in our reduction, the lists $\mathrm{PrgList}_{x}$ are no longer comprehensive. Some sessions fix the outputs of RO_{x} on some query without knowing the DHE input to that query. These sessions create log entries in RndList $_{x}$, not PrgList ${ }_{x}$, and the entries have indices of the form $((u, v, p s k i d), d)$. $\mathcal{B}_{\text {DHE }}$ cannot use these entries to program past RO_{x} queries, but this is not necessary since any past RO_{x} query containing PSK would set the bad ${ }_{\text {PSK }}$ flag and cause the game to abort. $\mathcal{B}_{\text {DHE }}$ also cannot program future queries because we still do not know DHE. Instead, $\mathcal{B}_{\text {DHE }}$ just updates each matching entry in $\operatorname{PrgList}_{x}$ so that its index is (PSK, d) instead of $((u, v, p s k i d), d)$. Future RO_{x} queries containing PSK will then handle strong DH checking and programming for $\mathcal{B}_{\text {DHE }}$.

By the considerations above, we have that if bad DHE is set the $\mathcal{B}_{\text {DHE }}$ wins the strong DH challenge. The identical-until-bad-lemma gives us that

$$
\begin{align*}
\operatorname{Pr}\left[\text { Game }_{9}^{\mathcal{A}} \Rightarrow 1\right] & \leq \operatorname{Pr}\left[\operatorname{Game}_{10}^{\mathcal{A}} \Rightarrow 1\right]+\operatorname{Pr}\left[\operatorname{bad}_{\mathrm{DHE}}\right] \\
& \leq \operatorname{Pr}\left[\operatorname{Game}_{10}^{\mathcal{A}} \Rightarrow 1\right]+\operatorname{Adv}_{\mathbb{G}}^{\text {stDH }}\left(t_{\mathcal{B}_{\mathrm{DHE}}}, 2 q_{\mathrm{RO}}\right), \tag{6}
\end{align*}
$$

where the number of stDH ${ }_{a}$ oracle queries is no greater than $2 q_{\mathrm{RO}}$, since $\mathcal{B}_{\text {DHE }}$ will query the oracle at most twice (once for each partner) for every random oracle query issued by the adversary, and $t_{\mathcal{B}_{\text {DHE }}}$ with $t_{\mathcal{B}_{\text {DHE }}} \approx t+4 \log (p) \cdot q_{\mathrm{RO}}$ is the running time of $\mathcal{B}_{\text {DHE }}$. Note that for every stDH ${ }_{a}$ query, $\mathcal{B}_{\text {DHE }}$ needs to perform one group operation and one exponentiation in \mathbb{G}, the latter can be done in $2 \log (p)$ many group operations using, e.g., the square-and-multiply algorithm. Thus, the time to answer a single stDH ${ }_{a}$ query take approximately time $2 \log (p)$ and taking this together with the bound on the number of stDH ${ }_{a}$ yields the approximate runtime $t_{\mathcal{B}_{\text {DHE }}}$.

Conclusion of Phase 3. We finally argue that the adversary's probability in determining the challenge bit b in Game 10 is at most $\frac{1}{2}$ if the Fresh predicate is true. First, recall that Fresh $=$ true implies no session can be tested and revealed in the same stage, and a tested session's partner may also be neither tested nor revealed in that stage. In the following, we refer to a session being "fresh" in a stage if this session does not violate the conditions defined in the predicate Fresh in that stage. The Fresh predicate depends on the level of forward secrecy reached at the time of each Test query. First, if a session is tested in a non-forward secret stage, it remains only fresh if the PSK was never corrupted. Second, if a session is tested in a weak forward secret 2 stage s, it remains fresh if the PSK was never corrupted or if there is a contributive partner in stage s. Lastly, if a session is tested on a forward secret stage s, it remains fresh the PSK was corrupted after forward secrecy was established for that stage (perhaps retroactively) or if there is a contributive partner.

Next, we argue for each level of forward secrecy that all tested keys in Game 10 which do not violate Fresh are uniformly and independently distributed from the view of the adversary. For the non-forward secret stages 1 (ETS) and 2 (EEMS), the adversary cannot corrupt the PSK of all sessions that it queried Test on stage 1 or 2 . Since Game 8, we sample all session keys derived from uncorrupted pre-shared keys uniformly at random, or copy uniformly random keys from SKEYS. That is, the key returned by the Test query is a uniformly random key independent of
the challenge bit b. Therefore, it cannot learn anything about either ETS nor EEMS of any session with an uncorrupted key, and thus the response of a TEST query will be a uniformly random string independent of the challenge bit b from the view of the adversary.

All other stages, i.e., stages 3-8, are weak forward secret 2 upon acceptance and become forward secret as soon as the session achieves explicit authentication. If the pre-shared key is never corrupted, we have by the same arguments given for the non-forward secret stages that the adversary receives a uniformly random key in response to the Test query independent of the challenge bit.

It remains to argue that the same is true if there is a contributive partner and the PSK is corrupted. In this case, the adversary would need to make a random oracle query that triggers bad $_{\text {DHE }}$ introduced in Game 10 and would cause Finalize to return 0. Without such a query the respective key is just a uniformly and independently distributed bitstring from the adversary's view. Hence, without losing the game, the adversary cannot learn anything about a weak forward secret 2 key, and thus it does not learn anything from the response of the Test query.

Since forward secret stages are weak forward secret 2 until explicit authentication is established, we only consider the case that a session that is tested on a weak forward secret 2 stage was corrupted after forward secrecy has been (retroactively) established. As we only establish forward secrecy after explicit authentication has been achieved, we can be sure due to ExplicitAuth never beeing violated that there is a partnered session for that stage. Hence, there also is a contributive partner and by the same arguments as given before the adversary would trigger bad ${ }_{\text {DHE }}$ and lose the game before it can learn something about the session.

Overall, we have that the adversary in Game 10 cannot gain any information on the challenge bit b without violating any of the predicates Sound, ExplicitAuth, or Fresh. Thus, the probability that Finalize and thus Game 10 returns 1 is no greater than $1 / 2$. Formally,

$$
\operatorname{Pr}\left[\operatorname{Game}_{10}^{\mathcal{A}} \Rightarrow 1\right] \leq \frac{1}{2} .
$$

Collecting all the terms, we get the final bound

$$
\begin{aligned}
& \operatorname{Adv}_{\mathrm{TLS} 1.3-\mathrm{PSK}-(\mathrm{EC}) \mathrm{DHE}}^{\mathrm{MSE}}\left(t, q_{\mathrm{NS}}, q_{\mathrm{S}}, q_{\mathrm{RS}}, q_{\mathrm{RL}}, q_{\mathrm{T}}, q_{\mathrm{RO}}\right) \\
& \leq \frac{2 q_{\mathrm{S}}^{2}}{2^{n l} \cdot p}+\operatorname{Adv}_{\mathrm{RR}}^{\mathrm{CR}}{ }_{\text {binder }}\left(q_{\mathrm{RO}}+q_{\mathrm{S}}\right)+\frac{q_{\mathrm{NS}}^{2}}{2^{h l}}+\operatorname{Adv}_{\mathrm{RO}}^{\mathrm{CR}}\left(q_{\mathrm{RO}}+6 q_{\mathrm{S}}\right) \\
& \quad \quad+\frac{q_{\mathrm{RO}} \cdot q_{\mathrm{NS}}}{2^{h l}}+\frac{q_{\mathrm{S}}}{2^{h l}}+\operatorname{Adv}_{\mathbb{G}}^{\mathrm{stDH}}\left(t_{\mathcal{B}_{\mathrm{DHE}}}, 2 q_{\mathrm{RO}}\right) .
\end{aligned}
$$

Applying the result of Appendix A, we can make the collision resistance terms explicit

$$
\begin{aligned}
& \operatorname{Adv}_{\mathrm{TLS} 1.3-\mathrm{PSK}-(\mathrm{EC}) \mathrm{DHE}}^{\mathrm{MSKE}}\left(t, q_{\mathrm{NS}}, q_{\mathrm{S}}, q_{\mathrm{RS}}, q_{\mathrm{RL}}, q_{\mathrm{T}}, q_{\mathrm{RO}}\right) \\
& \quad \leq \frac{2 q_{\mathrm{S}}^{2}}{2^{n l} \cdot p}+\frac{\left(q_{\mathrm{RO}}+q_{\mathrm{S}}\right)^{2}}{2^{h l}}+\frac{q_{\mathrm{NS}}^{2}}{2^{h l}}+\frac{\left(q_{\mathrm{RO}}+6 q_{\mathrm{S}}\right)^{2}}{2^{h l}}+\frac{q_{\mathrm{RO}} \cdot q_{\mathrm{NS}}}{2^{h l}}+\frac{q_{\mathrm{S}}}{2^{h l}} \\
& \quad \quad+\operatorname{Adv}_{\mathbb{G}}^{\mathrm{stDH}}\left(t_{\mathcal{B}_{\mathrm{DHE}}}, 2 q_{\mathrm{RO}}\right) .
\end{aligned}
$$

Further, applying the GGM bound for the strong Diffie-Hellman problem proven by Davis and

Günther in [15], we get the final result

$$
\begin{aligned}
& \operatorname{Adv}_{\mathrm{TLSE} 1.3-\mathrm{PSK}-(\mathrm{EC}) \mathrm{DHE}}\left(t, q_{\mathrm{NS}}, q_{\mathrm{S}}, q_{\mathrm{RS}}, q_{\mathrm{RL}}, q_{\mathrm{T}}, q_{\mathrm{RO}}\right) \\
& \begin{aligned}
\leq & \frac{2 q_{\mathrm{S}}^{2}}{2^{n l} \cdot p}+\frac{\left(q_{\mathrm{RO}}+q_{\mathrm{S}}\right)^{2}}{2^{h l}}+\frac{q_{\mathrm{NS}}^{2}}{2^{h l}}+\frac{\left(q_{\mathrm{RO}}+6 q_{\mathrm{S}}\right)^{2}}{2^{h l}}+\frac{q_{\mathrm{RO}} \cdot q_{\mathrm{NS}}}{2^{h l}}+\frac{q_{\mathrm{S}}}{2^{h l}} \\
\quad & \quad+\frac{4\left(t+4 \log (p) \cdot q_{\mathrm{RO}}\right)^{2}}{p} \\
= & \frac{2 q_{\mathrm{S}}^{2}}{2^{n l} \cdot p}+\frac{\left(q_{\mathrm{RO}}+q_{\mathrm{S}}\right)^{2}+q_{\mathrm{NS}}^{2}+\left(q_{\mathrm{RO}}+6 q_{\mathrm{S}}\right)^{2}+q_{\mathrm{RO}} \cdot q_{\mathrm{NS}}+q_{\mathrm{S}}}{2^{h l}} \\
\quad & \quad+\frac{4\left(t+4 \log (p) \cdot q_{\mathrm{RO}}\right)^{2}}{p} .
\end{aligned}
\end{aligned}
$$

7.3 Full Security Bound for TLS 1.3 PSK-(EC)DHE and PSK-only

We can finally combine the results of Sections 5,6 , and our key exchange bound above to produce fully concrete bounds for the TLS 1.3 PSK-(EC)DHE and PSK-only handshake protocols as specified on the left-hand side of Figure 1. This bound applies to the protocol with handshake traffic encryption and internal keys when only modeling as random oracle RO_{H} the hash function \mathbf{H}.

First, we define three variants of the TLS 1.3 PSK handshake:

- KE_{0}, as defined in Theorem 5.1 with handshake traffic encryption and one random oracle RO_{H}. (This is the variant we want to obtain our overall result for.)
- KE_{1}, as defined in Theorem 5.1 with handshake traffic encryption and 12 random oracles $\mathrm{RO}_{\text {Th }}$, $\mathrm{RO}_{\text {binder }}, \ldots, \mathrm{RO}_{\text {RMS }}$.
- KE_{2} : as defined in Theorem 6.1, with no handshake traffic encryption and 12 random oracles $\mathrm{RO}_{\text {Th }}, \mathrm{RO}_{\text {binder }}, \ldots, \mathrm{RO}_{\mathrm{RMS}}$.

Theorem 5.1 grants that

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{KE}_{0}}^{\operatorname{MSKE}}\left(t, q_{\mathrm{NS}}, q_{\mathrm{S}}, q_{\mathrm{RS}}, q_{\mathrm{RL}}, q_{\mathrm{T}}, q_{\mathrm{RO}}\right) \leq & \operatorname{Adv}_{\mathrm{KE}}^{\mathrm{MSE}}\left(t, q_{\mathrm{NS}}, q_{\mathrm{S}}, q_{\mathrm{RS}}, q_{\mathrm{RL}}, q_{\mathrm{T}}, q_{\mathrm{RO}}\right) \\
& +\frac{2\left(12 q_{\mathrm{S}}+q_{\mathrm{RO}}\right)^{2}}{2^{h l}}+\frac{2 q_{\mathrm{RO}}^{2}}{2^{h l}}+\frac{8\left(q_{\mathrm{RO}}+36 q_{\mathrm{S}}\right)^{2}}{2^{h l}} .
\end{aligned}
$$

Next, we apply Theorem 6.1, yielding the bound

$$
\operatorname{Adv}_{\mathrm{KE}_{1}}^{\operatorname{MSE}}\left(t, q_{\mathrm{NS}}, q_{\mathrm{S}}, q_{\mathrm{RS}}, q_{\mathrm{RL}}, q_{\mathrm{T}}, q_{\mathrm{RO}}\right) \leq \operatorname{Adv}_{\mathrm{KE}_{2}}^{\operatorname{MSE}}\left(t+t_{\mathrm{AEAD}} \cdot q_{\mathrm{S}}, q_{\mathrm{NS}}, q_{\mathrm{S}}, q_{\mathrm{RS}}+q_{\mathrm{S}}, q_{\mathrm{RL}}, q_{\mathrm{T}}, q_{\mathrm{RO}}\right),
$$

where $t_{\text {AEAD }}$ is the maximum time required to execute AEAD encryption or decryption of TLS 1.3 messages.

Theorem 7.1 then finally and entirely bounds the advantage against the MSKE security of KE_{2}.

Collecting these bounds gives

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{KE}_{0}}^{\operatorname{MSE}}\left(t, q_{\mathrm{NS}}, q_{\mathrm{S}}, q_{\mathrm{RS}}, q_{\mathrm{RL}}, q_{\mathrm{T}}, q_{\mathrm{RO}}\right) \leq & \operatorname{Adv}_{\mathrm{KE}_{1}}^{\operatorname{MsK}}\left(t, q_{\mathrm{NS}}, q_{\mathrm{S}}, q_{\mathrm{RS}}, q_{\mathrm{RL}}, q_{\mathrm{T}}, q_{\mathrm{RO}}\right) \\
& +\frac{2\left(12 q_{\mathrm{S}}+q_{\mathrm{RO}}\right)^{2}}{2^{h l}}+\frac{2 q_{\mathrm{RO}}^{2}}{2^{h l}}+\frac{8\left(q_{\mathrm{RO}}+36 q_{\mathrm{S}}\right)^{2}}{2^{h l}} \\
\leq & \operatorname{Adv}_{\mathrm{ME}_{2}}\left(t+t_{\mathrm{AEAD}} \cdot q_{\mathrm{S}}, q_{\mathrm{NS}}, q_{\mathrm{S}}, q_{\mathrm{RS}}+q_{\mathrm{S}}, q_{\mathrm{RL}}, q_{\mathrm{T}}, q_{\mathrm{RO}}\right) \\
& +\frac{2\left(12 q_{\mathrm{S}}+q_{\mathrm{RO}}\right)^{2}+2 q_{\mathrm{RO}}^{2}+8\left(q_{\mathrm{RO}}+36 q_{\mathrm{S}}\right)^{2}}{2^{h l}} \\
\leq & \frac{2 q_{\mathrm{S}}^{2}}{2^{n l} \cdot p}+\frac{\left(q_{\mathrm{RO}}+q_{\mathrm{S}}\right)^{2}+q_{\mathrm{NS}}^{2}+\left(q_{\mathrm{RO}}+6 q_{\mathrm{S}}\right)^{2}+q_{\mathrm{RO}} \cdot q_{\mathrm{NS}}+q_{\mathrm{S}}}{2^{h l}} \\
& +\frac{4\left(t+t_{\mathrm{AEAD}} \cdot q_{\mathrm{S}}+4 \log (p) \cdot q_{\mathrm{RO}}\right)^{2}}{p} \\
& +\frac{2\left(12 q_{\mathrm{S}}+q_{\mathrm{RO}}\right)^{2}+2 q_{\mathrm{RO}}^{2}+8\left(q_{\mathrm{RO}}+36 q_{\mathrm{S}}\right)^{2}}{2^{h l}} .
\end{aligned}
$$

This yields the following overall result for the MSKE security of the TLS 1.3 PSK-(EC)DHE handshake protocol.

Corollary 7.6. Let TLS1.3-PSK-(EC)DHE be the TLS 1.3 PSK-(EC)DHE handshake protocol as specified on the left-hand side in Figure 1. Let \mathbb{G} be the Diffie-Hellman group of order p. Let nl be the length in bits of the nonce, let hl be the output length in bits of \mathbf{H}, and let the pre-shared key space be KE.PSKS $=\{0,1\}^{h l}$. Let \mathbf{H} be modeled as a random oracle RO_{H}. Then,

$$
\begin{aligned}
& \operatorname{Adv}_{\mathrm{TLS} 1.3-\mathrm{PSK}-(\mathrm{EC}) \mathrm{DHE}}^{\mathrm{MSKE}}\left(t, q_{\mathrm{NS}}, q_{\mathrm{S}}, q_{\mathrm{RS}}, q_{\mathrm{RL}}, q_{\mathrm{T}}, q_{\mathrm{RO}}\right) \\
& \leq \frac{2 q_{\mathrm{S}}^{2}}{2^{n l} \cdot p}+\frac{\left(q_{\mathrm{RO}}+q_{\mathrm{S}}\right)^{2}+q_{\mathrm{NS}}^{2}+\left(q_{\mathrm{RO}}+6 q_{\mathrm{S}}\right)^{2}+q_{\mathrm{RO}} \cdot q_{\mathrm{NS}}+q_{\mathrm{S}}}{2^{h l}} \\
& \quad+\frac{4\left(t+t_{\mathrm{AEAD}} \cdot q_{\mathrm{S}}+4 \log (p) \cdot q_{\mathrm{RO}}\right)^{2}}{p} \\
& \quad+\frac{2\left(12 q_{\mathrm{S}}+q_{\mathrm{RO}}\right)^{2}+2 q_{\mathrm{RO}}^{2}+8\left(q_{\mathrm{RO}}+36 q_{\mathrm{S}}\right)^{2}}{2^{h l}} .
\end{aligned}
$$

Our tight security proof for the TLS 1.3 PSK-(EC)DHE handshake given in Section 7.2 can be adapted to the PSK-only handshake. The structure and resulting bounds are largely the same between the two modes, with a couple of significant changes. Naturally, we have no Diffie-Hellman group, no key shares in the ClientHello or ServerHello messages, and no reduction to the strong Diffie-Hellman problem. Without the reduction to stDH, we cannot achieve forward secrecy for any key: an adversary in possession of the pre-shared key can compute all session keys.

The security proof for the TLS 1.3 PSK-only handshake uses the same sequence of games Game ${ }_{0}$ to Game ${ }_{9}$ (excluding the reduction to the strong Diffie-Hellman problem in Game ${ }_{10}$). There only is a difference in $G_{a m e}^{1}$, in which we exclude collisions of nonces and group elements sampled by honest session to compute there Hello messages. Since we do not have any key shares in the PSK-only mode, the session will consequently also not sample a group elements. Thus, the bound for Game_{0} changes to

$$
\operatorname{Pr}\left[\text { Game }_{0} \Rightarrow 1\right] \leq \operatorname{Pr}\left[\text { Game }_{1} \Rightarrow 1\right]+\frac{2 q_{\mathrm{S}}^{2}}{2^{n l}}
$$

The rest of the arguments follow similarly as given in Section 7.2. We obtain the following result.

Theorem 7.7. Let TLS1.3-PSK be the TLS 1.3 PSK-only handshake protocol as specified on the right-hand side in Figure 1 without handshake encryption. Let functions \mathbf{H} and TKDF $_{x}$ for each $x \in\{$ binder $, \ldots, \mathrm{RMS}\}$ be modeled as 12 independent random oracles $\mathrm{RO}_{\mathrm{Th}}, \mathrm{RO}_{\text {binder }}, \ldots, \mathrm{RO}_{\mathrm{RMS}}$. Let nl be the length in bits of the nonce, let hl be the output length in bits of \mathbf{H}, and let the pre-shared key space KE.PSKS be the set $\{0,1\}^{h l}$. Then,

$$
\begin{aligned}
& \operatorname{Adv}_{\mathrm{TLS} 1.3-\mathrm{PSK}}^{\mathrm{MSKE}}\left(t, q_{\mathrm{NS}}, q_{\mathrm{S}}, q_{\mathrm{RS}}, q_{\mathrm{RL}}, q_{\mathrm{T}}, q_{\mathrm{RO}}\right) \\
& \quad \leq \frac{2 q_{\mathrm{S}}^{2}}{2^{n l}}+\frac{\left(q_{\mathrm{RO}}+q_{\mathrm{S}}\right)^{2}+q_{\mathrm{NS}}^{2}+\left(q_{\mathrm{RO}}+6 q_{\mathrm{S}}\right)^{2}+q_{\mathrm{RO}} \cdot q_{\mathrm{NS}}+q_{\mathrm{S}}}{2^{h l}}
\end{aligned}
$$

From this we obtain the following overall result for the TLS 1.3 PSK-only mode via the same series of arguments as in Section 7.3.

Corollary 7.8. Let TLS1.3-PSK be the TLS 1.3 PSK-only handshake protocol as specified on the left-hand side in Figure 1. Let nl be the length in bits of the nonce, let hl be the output length in bits of \mathbf{H}, and let the pre-shared key space be $\mathrm{KE} . \mathrm{PSKS}=\{0,1\}^{h l}$. Let \mathbf{H} be modeled as a random oracle RO_{H}. Then,

$$
\begin{aligned}
& \operatorname{Adv}_{\mathrm{TLS} 1.3-\mathrm{PSK}}^{\mathrm{MSKE}}\left(t, q_{\mathrm{NS}}, q_{\mathrm{S}}, q_{\mathrm{RS}}, q_{\mathrm{RL}}, q_{\mathrm{T}}, q_{\mathrm{RO}}\right) \\
& \quad \leq \frac{2 q_{\mathrm{S}}^{2}}{2^{n l}}+\frac{\left(q_{\mathrm{RO}}+q_{\mathrm{S}}\right)^{2}+q_{\mathrm{NS}}^{2}+\left(q_{\mathrm{RO}}+6 q_{\mathrm{S}}\right)^{2}+q_{\mathrm{RO}} \cdot q_{\mathrm{NS}}+q_{\mathrm{S}}}{2^{h l}} \\
& \quad+\frac{2\left(12 q_{\mathrm{S}}+q_{\mathrm{RO}}\right)^{2}+2 q_{\mathrm{RO}}^{2}+8\left(q_{\mathrm{RO}}+36 q_{\mathrm{S}}\right)^{2}}{2^{h l}}
\end{aligned}
$$

8 Evaluation

Asymptotically, our tighter security bounds improve on prior analysis of TLS 1.3 by a quadratic factor. We evaluate ours and prior bounds over a wide range of fully concrete resource parameters, following the approach of Davis and Günther [15]. The full range of evaluated parameters is given in Tables 2 and 3 below, along with reasoning for how we chose the various ranges of resource parameters. The tables show that while the prior PSK-(EC)DHE bound by Dowling et al. [25] meets the target security goals in a number of configurations, there are at least some settings for all elliptic-curve groups in which the targeted security is not met. Our bounds do significantly better than the target in all configurations we considered. The gap for the PSK-only handshake is less significant as the loosest prior reduction for TLS 1.3 was to the Diffie-Hellman problem.

Overall, our bounds improve on previous analyses of the PSK-only handshake by 15 to 53 bits of security, and those of the PSK-(EC)DHE handshake by 60 to 131 bits of security, across all our parameters evaluated.

8.1 Evaluation Details

We will briefly explain the reasoning behind each of our specific resource parameter estimates. An adversary in the MSKE game (cf. Definition 3.1) is limited in its runtime t, the number of pre-shared keys $\# N$ and protocol sessions $\# S$ it can interact with, and the number of random oracle queries $\# R O$ it can make. This last quantity captures offline work the adversary spends on computing the hash function \mathbf{H}, which in our analysis we model as random oracle. The choice of ciphersuite enters the bound through the length of symmetric session keys and pre-shared keys. For the PSK-(EC)DHE handshake, the bound also depends on the underlying Diffie-Hellman group.

Runtime $t \in\left\{2^{40}, 2^{60}, 2^{80}\right\}$. We consider a range of adversarial runtimes from easily achievable (2^{40} operations) to state-scaled computational power (2^{80} operations).

Random oracle queries $\# R O \in\left\{2^{40}, 2^{60}, 2^{80}\right\}$. The number of random oracle queries models the number of hash function computations an adversary is capable of computing. Accordingly, we scale the number of RO queries with the runtime, always setting $\# R O=t / 2^{10}$.

Number of pre-shared keys $\# N \in\left\{2^{25}, 2^{35}\right\}$. The world's largest certificate authority Let's Encrypt reports $\approx 2^{27.5}$ active certificates for fully-qualified domains. ${ }^{13}$ While not every user of TLS 1.3 will perform resumption, our model counts the number of pre-shared keys, where typically users may hold many pre-shared keys, with servers regularly issuing several PSKs per full-handshake connection for later resumption. We hence estimate that the number of pre-shared keys accessible to a globally-scaled adversary may well exceed the reported number of (server) certificates.

Number of sessions $\# S \in\left\{2^{35}, 2^{45}, 2^{55}\right\}$. We use the same estimates as Davis and Günther [15], based on Google's and Firefox's usage reports. ${ }^{14}$ With a daily browser user base of 2 billion ($\approx 2^{31}$) and an HTTPS traffic encryption rate in the range of $76-98 \%$, we estimate an adversary could encounter up to 2^{55} distinct sessions over an extended time period. Note that although the PSK handshakes are less commonly used by browsers than the full TLS 1.3 handshake, they are frequently used by embedded and low-powered devices which do not appear in these reports. Naturally, we do not allow the number of sessions to exceed the adversary's runtime t.

Diffie-Hellman groups. There are ten Diffie-Hellman groups standardized for use with the PSK-(EC)DHE handshake: five elliptic-curve groups and five finite-field groups. We reduce to the security of the strong Diffie-Hellman assumption in each of these groups. Davis and Günther gave a proof of hardness in the generic group model (GGM) for the strong DH problem. This result is a good heuristic for elliptic-curve groups, but not for finite-field ones because they are vulnerable to index-calculus based attacks not covered by the GGM. The elliptic-curve groups are more efficient and more widely used than finite-field groups, so we restrict our analysis to these groups: secp256r1, x25519, secp384r1, x448, secp521r1. For each group, we give in Table 3 the order p and the expected security level b in bits. We use the security level b to determine the choice of hash function and the target security level for the entire PSK-(EC)DHE handshake.

Ciphersuite and symmetric lengths. Our bounds reduce to the collision resistance of the random oracle $\mathrm{RO}_{\text {Th }}$, which models the handshake's hash function. The choice of hash function also determines the length of the session and resumption keys. TLS 1.3 has five ciphersuites, all of which set the hash function to be either SHA256 or SHA384. For PSK-(EC)DHE mode, we select SHA256 as the hash function whenever a curve with 128 -bit security is used and we select SHA384 for higher-security curves. As our results of Section 5 only apply to PSK-only mode when SHA256 is the hash function, we always use SHA256 and a target-security level of 128 bits.

Acknowledgments

We thank the anonymous reviewers of Eurocrypt 2022 for their helpful comments. We thank Robert Merget for pointing out an omission of ClientHello message fields when discussing domain

[^12]| Adversary resources | | | | | PSK-only | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| t | $\# N$ | $\# S$ | $\# R O$ | Target $t / 2^{b}$ | DFGS $[25]$ | Us (Cor. 7.8$)$ |
| 2^{40} | 2^{25} | 2^{35} | 2^{30} | 2^{-88} | $\approx 2^{-158}$ | $\approx 2^{-173}$ |
| 2^{40} | 2^{35} | 2^{35} | 2^{30} | 2^{-88} | $\approx 2^{-150}$ | $\approx 2^{-173}$ |
| 2^{60} | 2^{25} | 2^{35} | 2^{50} | 2^{-68} | $\approx 2^{-119}$ | $\approx 2^{-152}$ |
| 2^{60} | 2^{25} | 2^{45} | 2^{50} | 2^{-68} | $\approx 2^{-109}$ | $\approx 2^{-151}$ |
| 2^{60} | 2^{25} | 2^{55} | 2^{50} | 2^{-68} | $\approx 2^{-99}$ | $\approx 2^{-133}$ |
| 2^{60} | 2^{35} | 2^{35} | 2^{50} | 2^{-68} | $\approx 2^{-119}$ | $\approx 2^{-152}$ |
| 2^{60} | 2^{35} | 2^{45} | 2^{50} | 2^{-68} | $\approx 2^{-109}$ | $\approx 2^{-151}$ |
| 2^{60} | 2^{35} | 2^{55} | 2^{50} | 2^{-68} | $\approx 2^{-99}$ | $\approx 2^{-133}$ |
| 2^{80} | 2^{25} | 2^{35} | 2^{70} | 2^{-48} | $\approx 2^{-79}$ | $\approx 2^{-112}$ |
| 2^{80} | 2^{25} | 2^{45} | 2^{70} | 2^{-48} | $\approx 2^{-69}$ | $\approx 2^{-112}$ |
| 2^{80} | 2^{25} | 2^{55} | 2^{70} | 2^{-48} | $\approx 2^{-59}$ | $\approx 2^{-112}$ |
| 2^{80} | 2^{35} | 2^{35} | 2^{30} | 2^{-48} | $\approx 2^{-79}$ | $\approx 2^{-112}$ |
| 2^{80} | 2^{35} | 2^{45} | 2^{55} | 2^{70} | 2^{-48} | 2^{-48} |

Table 2: Concrete advantages of a key exchange adversary with given resources t (running time), $\# N$ (number of pre-shared keys), $\# S$ (number of sessions), and $\# R O$ (number of random oracle queries) in breaking the security of the TLS 1.3 PSK-only handshake protocol with a ciphersuite targeting 128-bit security. Numbers based on the prior bounds by Dowling et al. [25] and our bound for PSK-only in Corollary 7.8. "Target" indicates the maximal advantage $t / 2^{b}$ tolerable for a given bound on t when aiming for the bit security level $b=128$; entries in green-shaded cells meet that target. We assume that the ciphersuite uses SHA256 as its hash function (see Appendix B for further explanation).
separation in an earlier version of this work, cf. Appendix B.

References

[1] G. Arfaoui, X. Bultel, P.-A. Fouque, A. Nedelcu, and C. Onete. The privacy of the TLS 1.3 protocol. PoPETs, 2019(4):190-210, Oct. 2019. 31
[2] G. Avoine, S. Canard, and L. Ferreira. Symmetric-key authenticated key exchange (SAKE) with perfect forward secrecy. In S. Jarecki, editor, CT-RSA 2020, volume 12006 of LNCS, pages 199-224. Springer, Heidelberg, Feb. 2020. 3
[3] C. Bader, D. Hofheinz, T. Jager, E. Kiltz, and Y. Li. Tightly-secure authenticated key exchange. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part I, volume 9014 of LNCS, pages 629-658. Springer, Heidelberg, Mar. 2015. 4
[4] C. Bader, T. Jager, Y. Li, and S. Schäge. On the impossibility of tight cryptographic reductions. In M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 273-304. Springer, Heidelberg, May 2016. 4
[5] M. Bellare, H. Davis, and F. Günther. Separate your domains: NIST PQC KEMs, oracle cloning and read-only indifferentiability. In A. Canteaut and Y. Ishai, editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 3-32. Springer, Heidelberg, May 2020. $5,18,19,20,21,22,71$
[6] M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of triple encryption. Cryptology ePrint Archive, Report 2004/331, 2004. https://eprint.iacr.org/2004/ 331. 37

| Adversary resources | | | | Curve (bit security b, group order p) | Target $t / 2^{b}$ | PSK-(EC)DHE | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| t | \#N | \#S | \# RO | | | DFGS [25] | Us (Cor. 7.6) |
| 2^{40} | 2^{25} | 2^{35} | 2^{30} | secp256r1 $\left(b=128, p \approx 2^{256}\right)$ | 2^{-88} | $\approx 2^{-92}$ | $\approx 2^{-167}$ |
| 2^{40} | 2^{35} | 2^{35} | 2^{30} | secp256r1 $\left(b=128, p \approx 2^{256}\right)$ | 2^{-88} | $\approx 2^{-82}$ | $\approx 2^{-167}$ |
| 2^{40} | 2^{25} | 2^{35} | 2^{30} | $\mathrm{x} 25519\left(b=128, p \approx 2^{252}\right)$ | 2^{-88} | $\approx 2^{-92}$ | $\approx 2^{-163}$ |
| 2^{40} | 2^{35} | 2^{35} | 2^{30} | $\mathrm{x} 25519\left(b=128, p \approx 2^{252}\right)$ | 2^{-88} | $\approx 2^{-82}$ | $\approx 2^{-163}$ |
| 2^{40} | 2^{25} | 2^{35} | 2^{30} | secp384r1 $\left(b=192, p \approx 2^{384}\right)$ | 2^{-152} | $\approx 2^{-220}$ | $\approx 2^{-294}$ |
| 2^{40} | 2^{35} | 2^{35} | 2^{30} | secp384r1 $\left(b=192, p \approx 2^{384}\right)$ | 2^{-152} | $\approx 2^{-210}$ | $\approx 2^{-294}$ |
| 2^{40} | 2^{25} | 2^{35} | 2^{30} | $\times 448\left(b=224, p \approx 2^{446}\right)$ | 2^{-184} | $\approx 2^{-220}$ | $\approx 2^{-301}$ |
| 2^{40} | 2^{35} | 2^{35} | 2^{30} | $\mathrm{x} 448\left(b=224, p \approx 2^{446}\right)$ | 2^{-184} | $\approx 2^{-210}$ | $\approx 2^{-301}$ |
| 2^{40} | 2^{25} | 2^{35} | 2^{30} | secp521r1 $\left(b=256, p \approx 2^{521}\right)$ | 2^{-216} | $\approx 2^{-220}$ | $\approx 2^{-301}$ |
| 2^{40} | 2^{35} | 2^{35} | 2^{30} | secp521r1 $\left(b=256, p \approx 2^{521}\right)$ | 2^{-216} | $\approx 2^{-210}$ | $\approx 2^{-301}$ |
| 2^{60} | 2^{25} | 2^{35} | 2^{50} | secp256r1 $\left(b=128, p \approx 2^{256}\right)$ | 2^{-68} | $\approx 2^{-61}$ | $\approx 2^{-132}$ |
| 2^{60} | 2^{25} | $2{ }^{45}$ | 2^{50} | secp256r1 $\left(b=128, p \approx 2^{256}\right)$ | 2^{-68} | $\approx 2^{-40}$ | $\approx 2^{-132}$ |
| 2^{60} | 2^{25} | 2^{55} | 2^{50} | secp256r1 $\left(b=128, p \approx 2^{256}\right)$ | 2^{-68} | $\approx 2^{-12}$ | $\approx 2^{-127}$ |
| 2^{60} | 2^{35} | 2^{35} | 2^{50} | secp256r1 $\left(b=128, p \approx 2^{256}\right)$ | 2^{-68} | $\approx 2^{-60}$ | $\approx 2^{-132}$ |
| 2^{60} | 2^{35} | 2^{45} | 2^{50} | secp256r1 $\left(b=128, p \approx 2^{256}\right)$ | 2^{-68} | $\approx 2^{-32}$ | $\approx 2^{-132}$ |
| 2^{60} | 2^{35} | 2^{55} | 2^{50} | secp256r1 $\left(b=128, p \approx 2^{256}\right)$ | 2^{-68} | $\approx 2^{-2}$ | $\approx 2^{-127}$ |
| 2^{60} | 2^{25} | 2^{35} | 2^{50} | $\mathrm{x} 25519\left(b=128, p \approx 2^{252}\right)$ | 2^{-68} | $\approx 2^{-57}$ | $\approx 2^{-128}$ |
| 2^{60} | 2^{25} | 2^{45} | 2^{50} | $\mathrm{x} 25519\left(b=128, p \approx 2^{252}\right)$ | 2^{-68} | $\approx 2^{-37}$ | $\approx 2^{-128}$ |
| 2^{60} | 2^{25} | 2^{55} | 2^{50} | $\mathrm{x} 25519\left(b=128, p \approx 2^{252}\right)$ | 2^{-68} | $\approx 2^{-12}$ | $\approx 2^{-123}$ |
| 2^{60} | 2^{35} | 2^{35} | 2^{50} | $\times 25519\left(b=128, p \approx 2^{252}\right)$ | 2^{-68} | $\approx 2^{-57}$ | $\approx 2^{-128}$ |
| 2^{60} | 2^{35} | 2^{45} | 2^{50} | x 25519 ($b=128, p \approx 2^{252}$) | 2^{-68} | $\approx 2^{-32}$ | $\approx 2^{-128}$ |
| 2^{60} | 2^{35} | 2^{55} | 2^{50} | x 25519 ($b=128, p \approx 2^{252}$) | 2^{-68} | $\approx 2^{-2}$ | $\approx 2^{-123}$ |
| 2^{60} | 2^{25} | 2^{35} | 2^{50} | secp384r1 $\left(b=192, p \approx 2^{384}\right)$ | 2^{-132} | $\approx 2^{-189}$ | $\approx 2^{-259}$ |
| 2^{60} | 2^{25} | $2{ }^{45}$ | 2^{50} | secp384r1 $\left(b=192, p \approx 2^{384}\right)$ | 2^{-132} | $\approx 2^{-168}$ | $\approx 2^{-259}$ |
| 2^{60} | 2^{25} | 2^{55} | 2^{50} | secp384r1 $\left(b=192, p \approx 2^{384}\right)$ | 2^{-132} | $\approx 2^{-140}$ | $\approx 2^{-254}$ |
| 2^{60} | 2^{35} | 2^{35} | 2^{50} | secp384r1 $\left(b=192, p \approx 2^{384}\right)$ | 2^{-132} | $\approx 2^{-188}$ | $\approx 2^{-259}$ |
| 2^{60} | 2^{35} | 2^{45} | 2^{50} | secp384r1 $\left(b=192, p \approx 2^{384}\right)$ | 2^{-132} | $\approx 2^{-160}$ | $\approx 2^{-259}$ |
| 2^{60} | 2^{35} | 2^{55} | 2^{50} | secp384r1 $\left(b=192, p \approx 2^{384}\right)$ | 2^{-132} | $\approx 2^{-130}$ | $\approx 2^{-254}$ |
| 2^{60} | 2^{25} | 2^{35} | 2^{50} | $\times 448\left(b=224, p \approx 2^{446}\right)$ | 2^{-164} | $\approx 2^{-200}$ | $\approx 2^{-280}$ |
| 2^{60} | 2^{25} | 2^{45} | 2^{50} | $\times 448\left(b=224, p \approx 2^{446}\right)$ | 2^{-164} | $\approx 2^{-170}$ | $\approx 2^{-279}$ |
| 2^{60} | 2^{25} | 2^{55} | 2^{50} | $\times 448\left(b=224, p \approx 2^{446}\right)$ | 2^{-164} | $\approx 2^{-140}$ | $\approx 2^{-261}$ |
| 2^{60} | 2^{35} | 2^{35} | 2^{50} | $\times 448$ ($\left.b=224, p \approx 2^{446}\right)$ | 2^{-164} | $\approx 2^{-190}$ | $\approx 2^{-280}$ |
| 2^{60} | 2^{35} | 2^{45} | 2^{50} | $\times 448\left(b=224, p \approx 2^{446}\right)$ | 2^{-164} | $\approx 2^{-160}$ | $\approx 2^{-279}$ |
| 2^{60} | 2^{35} | 2^{55} | 2^{50} | $\mathrm{x} 448\left(b=224, p \approx 2^{446}\right)$ | 2^{-164} | $\approx 2^{-130}$ | $\approx 2^{-261}$ |
| 2^{60} | 2^{25} | 2^{35} | 2^{50} | secp521r1 $\left(b=256, p \approx 2^{521}\right)$ | 2^{-196} | $\approx 2^{-200}$ | $\approx 2^{-280}$ |
| 2^{60} | 2^{25} | 2^{45} | 2^{50} | secp521r1 $\left(b=256, p \approx 2^{521}\right)$ | 2^{-196} | $\approx 2^{-170}$ | $\approx 2^{-279}$ |
| 2^{60} | 2^{25} | 2^{55} | 2^{50} | secp521r1 $\left(b=256, p \approx 2^{521}\right)$ | 2^{-196} | $\approx 2^{-140}$ | $\approx 2^{-261}$ |
| 2^{60} | 2^{35} | 2^{35} | 2^{50} | secp521r1 $\left(b=256, p \approx 2^{521}\right)$ | 2^{-196} | $\approx 2^{-190}$ | $\approx 2^{-280}$ |
| 2^{60} | 2^{35} | 2^{45} | 2^{50} | secp521r1 $\left(b=256, p \approx 2^{521}\right)$ | 2^{-196} | $\approx 2^{-160}$ | $\approx 2^{-279}$ |
| 2^{60} | 2^{35} | 2^{55} | 2^{50} | secp521r1 $\left(b=256, p \approx 2^{521}\right)$ | 2^{-196} | $\approx 2^{-130}$ | $\approx 2^{-261}$ |
| 2^{80} | 2^{25} | 2^{35} | 2^{70} | secp256r1 $\left(b=128, p \approx 2^{256}\right)$ | 2^{-48} | $\approx 2^{-21}$ | $\approx 2^{-92}$ |
| 2^{80} | 2^{25} | 2^{45} | 2^{70} | secp256r1 $\left(b=128, p \approx 2^{256}\right)$ | 2^{-48} | $\approx 2^{-1}$ | $\approx 2^{-92}$ |
| 2^{80} | 2^{25} | 2^{55} | 2^{70} | secp256r1 $\left(b=128, p \approx 2^{256}\right)$ | 2^{-48} | $\approx 2^{19}$ | $\approx 2^{-92}$ |
| 2^{80} | 2^{35} | 2^{35} | 2^{70} | secp256r1 $\left(b=128, p \approx 2^{256}\right)$ | 2^{-48} | $\approx 2^{-21}$ | $\approx 2^{-92}$ |
| 2^{80} | 2^{35} | 2^{45} | 2^{70} | secp256r1 $\left(b=128, p \approx 2^{256}\right)$ | 2^{-48} | $\approx 2^{-1}$ | $\approx 2^{-92}$ |
| 2^{80} | 2^{35} | 2^{55} | 2^{70} | secp256r1 $\left(b=128, p \approx 2^{256}\right)$ | 2^{-48} | $\approx 2^{20}$ | $\approx 2^{-92}$ |
| 2^{80} | 2^{25} | 2^{35} | 2^{70} | $\mathrm{x} 25519\left(b=128, p \approx 2^{252}\right)$ | 2^{-48} | $\approx 2^{-17}$ | $\approx 2^{-88}$ |
| 2^{80} | 2^{25} | 2^{45} | 2^{70} | $\mathrm{x} 25519\left(b=128, p \approx 2^{252}\right)$ | 2^{-48} | $\approx 2^{3}$ | $\approx 2^{-88}$ |
| $2{ }^{80}$ | 2^{25} | 2^{55} | 2^{70} | $\times 25519\left(b=128, p \approx 2^{252}\right)$ | 2^{-48} | $\approx 2^{23}$ | $\approx 2^{-88}$ |
| 2^{80} | 2^{35} | 2^{35} | 2^{70} | $\mathrm{x} 25519\left(b=128, p \approx 2^{252}\right)$ | 2^{-48} | $\approx 2^{-17}$ | $\approx 2^{-88}$ |
| 2^{80} | 2^{35} | 2^{45} | 2^{70} | x 25519 ($b=128, p \approx 2^{252}$) | 2^{-48} | $\approx 2^{3}$ | $\approx 2^{-88}$ |
| 2^{80} | 2^{35} | 2^{55} | 2^{70} | $\mathrm{x} 25519\left(b=128, p \approx 2^{252}\right)$ | 2^{-48} | $\approx 2^{23}$ | $\approx 2^{-88}$ |
| 2^{80} | 2^{25} | 2^{35} | 2^{70} | secp384r1 $\left(b=192, p \approx 2^{384}\right)$ | 2^{-112} | $\approx 2^{-149}$ | $\approx 2^{-219}$ |
| 2^{80} | 2^{25} | 2^{45} | 2^{70} | secp384r1 $\left(b=192, p \approx 2^{384}\right)$ | 2^{-112} | $\approx 2^{-129}$ | $\approx 2^{-219}$ |
| 2^{80} | 2^{25} | 2^{55} | 2^{70} | secp384r1 $\left(b=192, p \approx 2^{384}\right)$ | 2^{-112} | $\approx 2^{-109}$ | $\approx 2^{-219}$ |
| 2^{80} | 2^{35} | 2^{35} | 2^{70} | secp384r1 $\left(b=192, p \approx 2^{384}\right)$ | 2^{-112} | $\approx 2^{-149}$ | $\approx 2^{-219}$ |
| 2^{80} | 2^{35} | 2^{45} | 2^{70} | secp384r1 $\left(b=192, p \approx 2^{384}\right)$ | 2^{-112} | $\approx 2^{-129}$ | $\approx 2^{-219}$ |
| 2^{80} | 2^{35} | 2^{55} | 2^{70} | secp384r1 $\left(b=192, p \approx 2^{384}\right)$ | 2^{-112} | $\approx 2^{-108}$ | $\approx 2^{-219}$ |
| 2^{80} | 2^{25} | 2^{35} | 2^{70} | $\times 448\left(b=224, p \approx 2^{446}\right)$ | 2^{-144} | $\approx 2^{-180}$ | $\approx 2^{-240}$ |
| 2^{80} | 2^{25} | 2^{45} | 2^{70} | $\times 448\left(b=224, p \approx 2^{446}\right)$ | 2^{-144} | $\approx 2^{-150}$ | $\approx 2^{-240}$ |
| 2^{80} | 2^{25} | 2^{55} | 2^{70} | $\times 448$ ($b=224, p \approx 2^{446}$) | 2^{-144} | $\approx 2^{-120}$ | $\approx 2^{-240}$ |
| 2^{80} | 2^{35} | 2^{35} | 2^{70} | $\times 448$ ($b=224, p \approx 2^{446}$) | 2^{-144} | $\approx 2^{-170}$ | $\approx 2^{-240}$ |
| 2^{80} | 2^{35} | 2^{45} | 2^{70} | $\times 448$ ($b=224, p \approx 2^{446}$) | 2^{-144} | $\approx 2^{-140}$ | $\approx 2^{-240}$ |
| 2^{80} | 2^{35} | 2^{55} | 2^{70} | x 448 ($b=224, p \approx 2^{446}$) | 2^{-144} | $\approx 2^{-110}$ | $\approx 2^{-240}$ |
| 2^{80} | 2^{25} | 2^{35} | 2^{70} | secp521r1 $\left(b=256, p \approx 2^{521}\right)$ | 2^{-176} | $\approx 2^{-180}$ | $\approx 2^{-240}$ |
| 2^{80} | 2^{25} | 2^{45} | 2^{70} | secp521r1 $\left(b=256, p \approx 2^{521}\right)$ | 2^{-176} | $\approx 2^{-150}$ | $\approx 2^{-240}$ |
| $2{ }^{80}$ | 2^{25} | 2^{55} | 2^{70} | secp521r1 $\left(b=256, p \approx 2^{521}\right)$ | 2^{-176} | $\approx 2^{-120}$ | $\approx 2^{-240}$ |
| 2^{80} | 2^{35} | 2^{35} | 2^{70} | secp521r1 $\left(b=256, p \approx 2^{521}\right)$ | 2^{-176} | $\approx 2^{-170}$ | $\approx 2^{-240}$ |
| 2^{80} | 2^{35} | 2^{45} | 2^{70} | secp521r1 $\left(b=256, p \approx 2^{521}\right)$ | 2^{-176} | $\approx 2^{-140}$ | $\approx 2^{-240}$ |
| 2^{80} | 2^{35} | 2^{55} | 2^{70} | secp521r1 $\left(b=256, p \approx 2^{521}\right)$ | 2^{-176} | $\approx 2^{-110}$ | $\approx 2^{-240}$ |

Table 3: Concrete advantages of a key exchange adversary with given resources t (running time), $\# N$ (number of pre-shared keys), $\# S$ (number of sessions), and $\# R O$ (number of random oracle queries) in breaking the security of the TLS 1.3 PSK-(EC)DH handshake protocol. Numbers based on the prior bounds by Dowling et al. [25] and our bound for PSK-(EC)DHE in Corollary 7.6. "Target" indicates the maximal advantage $t / 2^{b}$ tolerable for a given bound on t when aiming for the respective curve's bit security level b; entries in green-shaded cells meet that target. See Section 8 and Appendix 8.1 for further details.
[7] K. Bhargavan, C. Brzuska, C. Fournet, M. Green, M. Kohlweiss, and S. Zanella-Béguelin. Downgrade resilience in key-exchange protocols. In 2016 IEEE Symposium on Security and Privacy, pages 506-525. IEEE Computer Society Press, May 2016. 6
[8] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, and S. Zanella Béguelin. Proving the TLS handshake secure (as it is). In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 235-255. Springer, Heidelberg, Aug. 2014. 6
[9] C. Boyd, C. Cremers, M. Feltz, K. G. Paterson, B. Poettering, and D. Stebila. ASICS: Authenticated key exchange security incorporating certification systems. In J. Crampton, S. Jajodia, and K. Mayes, editors, ESORICS 2013, volume 8134 of $L N C S$, pages 381-399. Springer, Heidelberg, Sept. 2013. 11
[10] C. Boyd, G. T. Davies, B. de Kock, K. Gellert, T. Jager, and L. Millerjord. Symmetric key exchange with full forward security and robust synchronization. In ASIACRYPT 2021, 2021. To appear. Available as Cryptology ePrint Archive, Report 2021/702. https://ia.cr/2021/ 702. 3
[11] C. Brzuska, A. Delignat-Lavaud, C. Egger, C. Fournet, K. Kohbrok, and M. Kohlweiss. Keyschedule security for the TLS 1.3 standard. Cryptology ePrint Archive, Report 2021/467, 2021. https://eprint.iacr.org/2021/467. 6
[12] C. Brzuska, M. Fischlin, B. Warinschi, and S. C. Williams. Composability of Bellare-Rogaway key exchange protocols. In Y. Chen, G. Danezis, and V. Shmatikov, editors, ACM CCS 2011, pages 51-62. ACM Press, Oct. 2011. 32
[13] K. Cohn-Gordon, C. Cremers, K. Gjøsteen, H. Jacobsen, and T. Jager. Highly efficient key exchange protocols with optimal tightness. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 767-797. Springer, Heidelberg, Aug. 2019. 5, 6, 40
[14] C. Cremers, M. Horvat, S. Scott, and T. van der Merwe. Automated analysis and verification of TLS 1.3: 0-RTT, resumption and delayed authentication. In 2016 IEEE Symposium on Security and Privacy, pages 470-485. IEEE Computer Society Press, May 2016. 7
[15] H. Davis and F. Günther. Tighter proofs for the SIGMA and TLS 1.3 key exchange protocols. In 19th International Conference on Applied Cryptography and Network Security (ACNS 2021), 2021. 4, 5, 6, 10, 18, 53, 55, 56
[16] C. de Saint Guilhem, M. Fischlin, and B. Warinschi. Authentication in key-exchange: Definitions, relations and composition. In L. Jia and R. Küsters, editors, CSF 2020 Computer Security Foundations Symposium, pages 288-303. IEEE Computer Society Press, 2020. 12
[17] D. Diemert. On the Tight Security of the Transport Layer Security (TLS) Protocol Version 1.3. PhD thesis, Bergische Universität Wuppertal, Wuppertal, Germany, 2023. https://doi. org/ 10.25926/BUW/0-98. 65, 71
[18] D. Diemert, K. Gellert, T. Jager, and L. Lyu. More efficient digital signatures with tight multi-user security. In J. Garay, editor, PKC 2021, Part II, volume 12711 of LNCS, pages 1-31. Springer, Heidelberg, May 2021. 4
[19] D. Diemert and T. Jager. On the tight security of TLS 1.3: Theoretically sound cryptographic parameters for real-world deployments. Journal of Cryptology, 34(3):30, July 2021. 4, 5, 6, 18
[20] Y. Dodis, T. Ristenpart, J. Steinberger, and S. Tessaro. To hash or not to hash again? (In)differentiability results for H^{2} and HMAC. Cryptology ePrint Archive, Report 2013/382, 2013. https://eprint.iacr.org/2013/382. 23
[21] Y. Dodis, T. Ristenpart, J. P. Steinberger, and S. Tessaro. To hash or not to hash again? (In)differentiability results for H^{2} and HMAC. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of $L N C S$, pages 348-366. Springer, Heidelberg, Aug. 2012. 20, 23
[22] B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A cryptographic analysis of the TLS 1.3 handshake protocol candidates. In I. Ray, N. Li, and C. Kruegel, editors, ACM CCS 2015, pages 1197-1210. ACM Press, Oct. 2015. 4, 5, 6, 32
[23] B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A cryptographic analysis of the TLS 1.3 handshake protocol candidates. Cryptology ePrint Archive, Report 2015/914, 2015. https: //eprint.iacr.org/2015/914. 32
[24] B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A cryptographic analysis of the TLS 1.3 draft-10 full and pre-shared key handshake protocol. Cryptology ePrint Archive, Report 2016/081, 2016. https://eprint.iacr.org/2016/081. 4, 6
[25] B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A cryptographic analysis of the TLS 1.3 handshake protocol. Journal of Cryptology, 34(4):37, Oct. 2021. 4, 5, 6, 10, 15, 55, 57, 58
[26] B. Dowling and D. Stebila. Modelling ciphersuite and version negotiation in the TLS protocol. In E. Foo and D. Stebila, editors, ACISP 15, volume 9144 of $L N C S$, pages 270-288. Springer, Heidelberg, June / July 2015. 6
[27] N. Drucker and S. Gueron. Selfie: reflections on TLS 1.3 with PSK. Journal of Cryptology, 34(3):27, July 2021. 11
[28] M. Fischlin and F. Günther. Multi-stage key exchange and the case of Google's QUIC protocol. In G.-J. Ahn, M. Yung, and N. Li, editors, ACM CCS 2014, pages 1193-1204. ACM Press, Nov. 2014. 5, 6
[29] M. Fischlin and F. Günther. Replay attacks on zero round-trip time: The case of the TLS 1.3 handshake candidates. In 2017 IEEE European Symposium on Security and Privacy, EuroS\&P 2017, pages 60-75. IEEE, Apr. 2017. 4, 5, 6
[30] M. Fischlin, F. Günther, B. Schmidt, and B. Warinschi. Key confirmation in key exchange: A formal treatment and implications for TLS 1.3. In 2016 IEEE Symposium on Security and Privacy, pages 452-469. IEEE Computer Society Press, May 2016. 12
[31] F. Giesen, F. Kohlar, and D. Stebila. On the security of TLS renegotiation. In A.-R. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM CCS 2013, pages 387-398. ACM Press, Nov. 2013. 6
[32] D. K. Gillmor. Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer Security (TLS). RFC 7919, Aug. 2016. 66
[33] K. Gjøsteen and T. Jager. Practical and tightly-secure digital signatures and authenticated key exchange. In H. Shacham and A. Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of $L N C S$, pages $95-125$. Springer, Heidelberg, Aug. 2018. 4, 6
[34] C. G. Günther. An identity-based key-exchange protocol. In J.-J. Quisquater and J. Vandewalle, editors, EUROCRYPT'89, volume 434 of LNCS, pages 29-37. Springer, Heidelberg, Apr. 1990. 3
[35] F. Günther. Modeling Advanced Security Aspects of Key Exchange and Secure Channel Protocols. PhD thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2018. http: //tuprints.ulb.tu-darmstadt.de/7162/. 6, 32
[36] S. Han, T. Jager, E. Kiltz, S. Liu, J. Pan, D. Riepel, and S. Schäge. Authenticated key exchange and signatures with tight security in the standard model. In T. Malkin and C. Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 670-700, Virtual Event, Aug. 2021. Springer, Heidelberg. 4, 6
[37] T. Jager, E. Kiltz, D. Riepel, and S. Schäge. Tightly-secure authenticated key exchange, revisited. In A. Canteaut and F.-X. Standaert, editors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 117-146. Springer, Heidelberg, Oct. 2021. 6
[38] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk. On the security of TLS-DHE in the standard model. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 273-293. Springer, Heidelberg, Aug. 2012. 6
[39] T. Jager, J. Schwenk, and J. Somorovsky. On the security of TLS 1.3 and QUIC against weaknesses in PKCS\#1 v1.5 encryption. In I. Ray, N. Li, and C. Kruegel, editors, ACM CCS 2015, pages 1185-1196. ACM Press, Oct. 2015. 6
[40] H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. Cryptology ePrint Archive, Report 2005/176, 2005. https://eprint.iacr.org/2005/176. 12
[41] H. Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In T. Rabin, editor, CRYPTO 2010, volume 6223 of $L N C S$, pages 631-648. Springer, Heidelberg, Aug. 2010. 9
[42] H. Krawczyk. A unilateral-to-mutual authentication compiler for key exchange (with applications to client authentication in TLS 1.3). In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM CCS 2016, pages 1438-1450. ACM Press, Oct. 2016. 7
[43] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authentication. RFC 2104 (Informational), Feb. 1997. Updated by RFC 6151. 9
[44] H. Krawczyk and P. Eronen. HMAC-based Extract-and-Expand Key Derivation Function (HKDF). RFC 5869 (Informational), May 2010. 9
[45] H. Krawczyk, K. G. Paterson, and H. Wee. On the security of the TLS protocol: A systematic analysis. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 429-448. Springer, Heidelberg, Aug. 2013. 6
[46] H. Krawczyk, K. G. Paterson, and H. Wee. On the security of the TLS protocol: A systematic analysis. Cryptology ePrint Archive, Report 2013/339, 2013. https://eprint.iacr.org/ 2013/339. 6
[47] H. Krawczyk and H. Wee. The OPTLS protocol and TLS 1.3. In 2016 IEEE European Symposium on Security and Privacy, pages 81-96. IEEE, Mar. 2016. 4
[48] A. Langley, M. Hamburg, and S. Turner. Elliptic Curves for Security. RFC 7748 (Informational), Jan. 2016. 36, 66
[49] Y. Li, S. Schäge, Z. Yang, F. Kohlar, and J. Schwenk. On the security of the pre-shared key ciphersuites of TLS. In H. Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 669-684. Springer, Heidelberg, Mar. 2014. 6
[50] X. Liu, S. Liu, D. Gu, and J. Weng. Two-pass authenticated key exchange with explicit authentication and tight security. In S. Moriai and H. Wang, editors, ASIACRYPT 2020, Part II, volume 12492 of LNCS, pages 785-814. Springer, Heidelberg, Dec. 2020. 6
[51] U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on reductions, and applications to the random oracle methodology. In M. Naor, editor, TCC 2004, volume 2951 of $L N C S$, pages 21-39. Springer, Heidelberg, Feb. 2004. 5, 17, 18, 19, 20, 21
[52] National Institute of Standards and Technology. FIPS PUB 180-4: Secure Hash Standard (SHS), 2012. 7
[53] National Institute of Standards and Technology. FIPS PUB 186-4: Digital Signature Standard (DSS), 2013. 66
[54] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (Proposed Standard), Aug. 2018. 3, 4, 36, 65, 66, 67, 69, 70, 71
[55] T. Ristenpart, H. Shacham, and T. Shrimpton. Careful with composition: Limitations of the indifferentiability framework. In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 487-506. Springer, Heidelberg, May 2011. 17, 18
[56] P. Schwabe, D. Stebila, and T. Wiggers. Post-quantum TLS without handshake signatures. In J. Ligatti, X. Ou, J. Katz, and G. Vigna, editors, ACM CCS 2020, pages 1461-1480. ACM Press, Nov. 2020. 10, 15

Appendix

A Collision Resistance of Random Oracles

Theorem A.1. Let RO be a random oracle with output length hl and let \mathcal{A} be any adversary issuing at most q_{RO} many queries to RO. Then,

$$
\operatorname{Adv}_{\mathrm{RO}}^{\mathrm{CR}}\left(q_{\mathrm{RO}}\right) \leq \frac{q_{\mathrm{RO}}^{2}}{2^{h l}} .
$$

Proof. The above theorem follows from the birthday bound. Since there are at most q_{RO} queries issued to RO, in the worst case each of these queries is distinct. That is, the random oracle RO has to sample $q_{\text {RO }}$ many uniform and independent bit strings from $\{0,1\}^{h l}$. The probability that two of these bit strings collide can be limited using the birthday bound by $q_{\mathrm{RO}}^{2} \cdot 2^{-h l}$.

B A Careful Discussion of Domain Separation

In our indifferentiability treatment of the TLS 1.3 key schedule (cf. Section 5), we change what we capture as random oracles in the key exchange model. We start with one random oracle, RO_{H}, used wherever the hash function \mathbf{H} would be called in the protocol. We change this to classify queries to RO_{H} into two types:

Type 1 queries: component hashes (via function Ch) used within Extract, Expand, and MAC to compute HKDF.Extract, HKDF.Expand, resp. HMAC.

Type 2 queries: transcript hashes (via function Th) computing hash values of protocol transcripts (or empty strings).

We wish to model Ch and Th now as two independent random oracles: $\mathrm{RO}_{\mathrm{Ch}}$ resp. $\mathrm{RO}_{\text {Th }}$.
To change the model, we can just change the pseudocode of the protocol to replace RO_{H} with whichever of $\mathrm{RO}_{\mathrm{Ch}}$ and $\mathrm{RO}_{\text {th }}$ seems more appropriate. However, we must define an explicit construction that performs this substitution in a systematic way in order to give a formal proof of security. This construction needs a Boolean condition to determine which of $\mathrm{RO}_{\mathrm{Ch}}$ and $\mathrm{RO}_{\text {Th }}$ should be queried, and this condition cannot be dependent on the higher-level context of the protocol's usage. Instead, we must define two disjoint sets $D_{\text {Ch }}$ and $D_{\text {Th }}$ such that honest executions of TLS 1.3 only query RO_{H} on inputs in D_{Ch} when computing HKDF.Extract, HKDF.Expand, or HMAC, and it otherwise only queries RO_{H} on inputs in $D_{\text {Th }}$.

This separation must hold even when an honest session is responding to adversarially-chosen messages. We do make some assumptions about the way that honest sessions process incoming messages. We assume that a server receiving a first ClientHello message from a client will not respond or execute the protocol unless the message contains correct encodings of all of the mandatory parameters for TLS 1.3. If the client fails to specify a valid group and key share in PSK-(EC)DHE mode, or version number, mode, and pre-shared key in any mode, the server should abort. Of course, the ClientHello message may also contain invalid encodings of these values or even arbitrary data; we do not exclude this possibility. Note that our conditions apply only to random-oracle queries made by honest executions of the protocol. An adversary may of course call RO_{H} on any input it chooses in either D_{Ch} or D_{Th}.

The TLS 1.3 handshake protocol does not provide any intentional domain separation between Type 1 and Type 2 queries. We therefore turn to the formatting of queries to RO_{H} in the hopes
of finding some unintentional separation. We identify seven subtypes of query: five subtypes of Type 1 and two subtypes of Type 2. Queries of each subtype have some unique formatting: a fixed length, a byte with a particular value, an encoded label. These attributes are heavily dependent on the specific configuration of the TLS 1.3 protocol; we therefore analyze four separate cases: two modes of operation (PSK-(EC)DHE and PSK-only mode) and two ciphersuites defining RO_{H} as SHA256 and SHA384 respectively. Throughout, we will assume that any pre-shared-keys are the same length as the output length of RO_{H}, i.e., $h l$ bits. This is true of resumption keys, but may not be true in general for pre-shared keys negotiated out-of-band. As TLS 1.3 fields length are given in (full) bytes, we will be talking about byte lengths if not otherwise stated in the following and use the shorthand $H l:=h l / 8$ for the output length of RO_{H} in bytes. We also assume that if a Diffie-Hellman group is used, it is one of the standardized elliptic curve or finite field groups.

All Type 1 queries to RO_{H} are intermediate steps in the computation of HMAC, HKDF.Extract, and HKDF.Expand. They consequently share some formatting which we discuss here before addressing each subtype individually. HKDF.Extract and HMAC are two names for the same function. Given a key K and input s, HKDF.Expand (K, s) pads s with a single trailing counter byte with value 0×01, then returns $\operatorname{HMAC}(K, s \| 0 \times 01)$. Therefore all Type 1 queries to RO_{H} arise in the computation of HMAC. HMAC $\left[\mathrm{RO}_{H}\right](K, s)$ takes a key K of length $H l$ bytes. It then pads this key with zeroes up to the block length Bl of its hash function. The block lengths of SHA256 and SHA384 are 64 and 128 bytes respectively. We call the padded key K^{\prime}. Then $\mathrm{HMAC}\left[\mathrm{RO}_{\mathrm{H}}\right]$ makes two queries to RO_{H} :

1. $d \leftarrow \mathrm{RO}_{\mathrm{H}}\left(K^{\prime} \oplus \operatorname{ipad} \| s\right)$,
2. $\mathrm{RO}_{\mathrm{H}}\left(K^{\prime} \oplus\right.$ opad $\left.\| d\right)$.

The values ipad and opad are strings of $B l$ bytes. Each byte in ipad is fixed to 0×36, and each byte in opad is fixed to $0 \times 5 \mathrm{c}$. The padded key K^{\prime} is $B l$ long, longer than K, so every Type 1 query has a segment of length $B l-H l$ bytes in which each byte equals one of $0 x 36$ and $0 x 5 c$. We refer to this segment as the "fixed region". When the hash function is SHA256, resp. SHA384, the fixed region is 32 , resp 80 bytes long.

Now we can present the seven subtypes of queries made by TLS 1.3. The first five types are Type 1 queries, and the last two (Empty and Transcript) are Type 2 queries.

The seven subtypes of queries are:

1. Outer HMAC queries. These queries are the second query made in the computation of HMAC. Its key has length $H l$, and the digest d also has length $H l$. In between these is the fixed region, in which every byte contains 0×5 c. The total query is 96 , resp. 176 bytes long.
2. Inner HMAC queries. We divide the first $\mathrm{RO}_{\boldsymbol{H}}$ query made by HMAC into several subtypes; this type includes only those where the input to HMAC is an arbitrary string of length Hl . This subtype is formatted identically to an outer HMAC query, except that the bytes of the fixed region are fixed to the value 0×36 instead of 0×5 c. TLS 1.3 makes inner HMAC queries while computing Finished and binder messages (where the input is a hashed transcript), the early and master secrets, and in PSK-only mode, also the handshake secret.
3. Diffie-Hellman HMAC query. In PSK-(EC)DHE mode, TLS 1.3 computes the handshake secret by calling HMAC on an encoded Diffie-Hellman key share. HMAC's first query is a Diffie-Hellman HMAC query. The formatting is the same as an inner HMAC hash except that the segment following the fixed region has a different length. Namely, the byte length (denoted by $|\mathbb{G}| / 8)$ of the encoding of an element of a standardized Diffie-Hellman group. The actual
byte length for each standardized Diffie-Hellman group can be found in Table 4. The total query length is then $B l+|\mathbb{G}| / 8$ bytes, which is $64+|\mathbb{G}| / 8$ bytes if the hash function is SHA256 and $128+|\mathbb{G}| / 8$ bytes if the hash function is SHA384.
4. Derive-Secret hashes. The Derive-Secret function is a component of the TLS key schedule [54, Section 7.1]. Its inputs are a key of length $H l$, a label string of 2 to 12 -bytes in length, and an input Messages string.
Derive-Secret queries RO_{H} three times: once to hash the Messages string, and twice as part of HKDF.Expand. The first of these three queries is a transcript query, and the third is an Outer HMAC query. The second query we call a Derive-Secret query. The Derive-Secret query has the same formatting as Inner HMAC queries and Diffie-Hellman queries, but the segment following the fixed region contains a strictly formatted HkdfLabel struct [54, Section 7.1].
This struct begins with a two-byte field encoding the integer value $H l$. This is followed by a variable-length vector with a 1-byte length field containing the string "tls13 " followed by a label string with length between 2 and 12 bytes. Lastly comes a vector of length $H l$, prefixed with a 1 -byte field encoding its length. The last byte in the input contains the $0 x 01$. This byte is the counter mandated by the definition of HKDF.Expand; however since HKDF.Expand is never called on inputs longer than $H l$, the counter never reaches a value higher than 1 .
The total length of the label struct, including the counter byte, is at least $\mathrm{Hl}+13$ bytes and at most $\mathrm{Hl}+23$ bytes. The total query is thus in the range of $\mathrm{Bl}+\mathrm{Hl}+13$ and $\mathrm{Bl}+\mathrm{Hl}+23$ bytes, which is 109-119 bytes if the hash function is SHA256 and 189-199 bytes if the hash function is SHA384.
5. Finished hash. The HKDF-Expand-Label function is a subroutine of the Derive-Secret function, but also called during the computation of Finished messages and the binder value [54, Section 4.4.4]. HKDF-Expand-Label makes two calls to RO_{H}. The second is an Outer HMAC hash; we call the first a Finished hash. A Finished hash is identical to a Derive-Secret hash, except that the label string is fixed to finished and the final vector has length 0 . The counter byte is still present. In total, the label struct occupies 19 bytes. The total query is thus $B l+19$ bytes, which is 83 bytes if the hash function is SHA256 and 147 bytes if the hash function is SHA384.
6. Empty hashes. Occasionally in the key schedule, TLS 1.3 calls RO_{H} on the empty string.
7. Transcript hashes. The last use of RO_{H} is to condense partial transcripts. Each transcript includes at least a partial ClientHello message. We assume calling RO_{H} on a transcript which includes at least a partial ClientHello. The minimum length of a partial ClientHello message in PSK-only mode is 73 bytes. This includes the following fields ${ }^{15}$ [54, Section 4.1.2]:

- 1 byte message type fixed to $0 x 01$
- 3 bytes encoded message length
- 2 bytes legacy_version fixed to 0x0303
- 32 bytes random
- 1 byte legacy_session_id (for an empty vector with 1-byte length field)

[^13]| Group name | NamedGroup enum value | Encoding length $\|\mathbb{G}\| / 8$ |
| :--- | :---: | :---: |
| secp256r1 [53] | 0×0017 | 32 |
| secp384r1 [53] | 0×0018 | 48 |
| secp521r1 [53] | 0×0019 | 66 |
| x25519 [48] | 0x001d | 32 |
| x448 [48] | 0x001E | 56 |
| ffdhe2048 [32] | 0×100 | 128 |
| ffdhe3072 [32] | 0x0101 | 192 |
| ffdhe4096 [32] | 0x0102 | 256 |
| ffdhe6144 [32] | 0x0103 | 384 |
| ffdhe8192 [32] | 0x0104 | 512 |

Table 4: Table displaying the standardized groups for use with TLS 1.3, their encodings in the NamedGroup enum, and the length of an encoded group element in bytes.

- 4 bytes ciphersuites (must include a 2 -byte length field and at least one value)
- 2 bytes legacy_compression_methods (must include a 1-byte length field and the value 0×00)
- 2 bytes encoded length of extensions field
- 7 bytes supported_versions extension extension [54, Section 4.2.1] (must start with $0 x 002 \mathrm{~b}$ and include 0×0304)
- 6 bytes psk_key_exchange_modes extension [54, Section 4.2.9] (must start with 0x002d and include 0×00)
- 13 bytes pre_shared_key extension [54, Section 4.2.11] (partial: excluding the binder list; must come last, must start with 0×0029)

The first 47 bytes (through the extensions' length encoding), must appear in the order displayed, although the legacy_session_id, ciphersuites, and legacy_compression_methods fields can be longer than the lengths given above. We will occasionally refer to this segment as the "fixed preface" of a ClientHello because it must appear at the beginning of every well-formed ClientHello message. The extensions can be reordered arbitrarily (except for the pre_shared_key extension) and additional extensions and ciphersuites can be added or repeated, up to a maximum length of $2^{16}-2$ bytes of ciphersuites and $2^{16}-1$ bytes for extensions. The vectors legacy_session_id and legacy_compression_methods have a maximum length of 32 bytes and $2^{8}-1$ bytes, respectively. The overall maximum length of a truncated ClientHello is then $2 \cdot 2^{16}+328$ bytes. A full ClientHello in PSK-only mode, including the binder list, adds at least another $3+H l$ bytes for a binders vector with 3 bytes of encoded length. The binders vector has a maximum length of $2^{16}-1$ bytes with a 2 -byte length field. The ClientHello message thus contains a minimum of $76+H l$ bytes and a maximum of $3 \cdot 2^{16}+329$ bytes.

In PSK-(EC)DHE mode, two additional extensions are also mandatory: the key_share and supported_groups extensions [54, Section 9.2], so the minimum ClientHello length increases by at least $18+|\mathbb{G}| / 8$ bytes, cf. Table 4^{16}. This increase occurs for both truncated and full

[^14]| Type | Minimum length (bytes) | Maximum length (bytes) |
| :--- | :---: | :---: |
| Outer HMAC | 96 | 96 |
| Inner HMAC | 96 | 96 |
| Derive-Secret | 109 | 119 |
| Finished | 83 | 83 |
| Empty | 0 | 0 |
| Transcript | 73 | $2 \cdot 2^{16}+328$ |

Table 5: Table showing input lengths for hash function calls made by TLS 1.3 in PSK-only mode with SHA256.

ClientHello messages. In this mode, a truncated ClientHello message is at least $91+|\mathbb{G}| / 8$ bytes long, and a full ClientHello is at least $94+H l+|\mathbb{G}| / 8$ bytes long. The maximum lengths are identical to those in PSK-only mode as the two additional mandatory extensions key_share and supported_groups were only accounted for in the maximum length of the extensions field.

B. 1 PSK-only mode with SHA256

The block length of this hash function is 64 bytes, and the output length is 32 bytes. In Table 5, we give the minimum and maximum input lengths for each of the six call types. (Diffie-Hellman HMAC calls do not occur in this mode.)

In Table 5 we note the minimum and maximum input lengths of each type of message. For those types with overlapping length ranges, we must show they have separate domains by other means. Outer and Inner HMAC hashes have identical lengths; however each of them has a 32 -byte fixed region. In outer HMAC hashes, the fixed region contains opad; in inner HMAC hashes, it contains ipad. These are distinct values, so no string can be both an outer and an inner HMAC hash.

Transcript hashes are not domain-separated by length from any hash except the empty hashes. We therefore turn to formatting to separate these from other types. In the following, we visually lay out each byte of potentially overlapping inputs.

For a string to be both a transcript and an HMAC hash (outer or inner), it must be 96 bytes (cf. Table 5) long. We diagram and compare a transcript hash containing a partial ClientHello ${ }^{17}$ and an HMAC hash (outer or inner) in Figure 12.

We can see that the fixed preface of the transcript hash overlaps the fixed region of the HMAC hash that is fixed to either ipad or opad. Consequently, the legacy_session_id vector must begin within the fixed region (at byte 39). This is a variable-length vector preceded by a 1 -byte length field, and its maximum length is 32 bytes [54, Section 4.1.2]. Therefore the maximum value of the length field is 0 x 20 and it cannot contain either byte 0 x 36 or 0 x 5 c . Any string containing a valid partial ClientHello therefore cannot also be a correctly formatted HMAC hash.

The same argument applies to Finished and Derive-Secret hashes, both of which contain the same fixed region in the same location as inner HMAC hashes.

[^15]| Fixed preface: 47 B | Extension data: 36 B | | End
 PSK:
 13 |
| :--- | :--- | :--- | :--- | :--- |
| Key: 32 B | Fixed
 $32 ~ B ~$ | | Arbad/opad:
 $32 ~ B ~$ |

Figure 12: Domain separation in PSK-only mode with SHA256: Transcript hash containing a partial ClientHello (top) vs. (outer or inner) HMAC hash (bottom). "End PSK" is the end of the pre_shared_key extension.

| Type | Minimum length (bytes) | Maximum length (bytes) |
| :--- | :---: | :---: |
| Outer HMAC | 96 | 96 |
| Inner HMAC | 96 | 96 |
| Diffie-Hellman HMAC | $64+\|\mathbb{G}\| / 8$ | $64+\|\mathbb{G}\| / 8$ |
| Derive-Secret | 109 | 119 |
| Finished | 83 | 83 |
| Empty | 0 | 0 |
| Transcript | $91+\|\mathbb{G}\| / 8$ | $2 \cdot 2^{26}+328$ |

Table 6: Table showing input lengths for hash function calls made by TLS 1.3 in PSK-(EC)DHE mode with SHA256. For transcript hashes, the encoding lengths $|\mathbb{G}| / 8$ can be found in Table 4.

For this mode, we define the set $D_{\text {Th }}$ to include of the empty string and all strings of length greater than or equal to 69 bytes for which the $39^{\text {th }}$ byte is not equal to ipad or opad. We let D_{Ch} contain all other elements of $\{0,1\}^{*}$.

B. 2 Pre-shared key with Diffie-Hellmann mode with SHA256

Again, we present the minimum and maximum lengths of each hash type; see Table 6. We now include Diffie-Hellman HMAC hashes, and transcript hashes include additional mandatory extensions for PSK-(EC)DHE mode.

In this mode, Diffie-Hellman HMAC hashes may collide with Inner HMAC or Derive-Secret hashes for certain choices of \mathbb{G}. This is not a failure of domain separation because these inputs to these three types will all belong to $D_{\text {Ch }}$. Transcript hashes now only have length overlaps with Diffie-Hellman HMAC and Derive-Secret hashes. In both cases, however, the same argument about the $39^{\text {th }}$ byte containing the length of legacy_session_id applies, and no string can be two different types.

For this mode, the set $D_{\text {Th }}$ consists of the empty string and all strings of length greater than or equal to $91+|\mathbb{G}|$ bytes for which the $39^{\text {th }}$ byte is not equal to ipad or opad. $D_{\text {Ch }}$ contains all other elements of $\{0,1\}^{*}$.

B. 3 Pre-shared key with Diffie-Hellmann mode with SHA384

Table 7 shows the minimum and maximum lengths of each hash type for this configuration. The hash function SHA384 has 48 -byte output and 128 -byte block length, so the fixed region in HMAC, Finished, and Derive-Secret hashes will be 80 bytes long.

Unlike the PSK modes with SHA256, we cannot rely on the distinction between legacy_session

| Type | Minimum length (bytes) | Maximum length (bytes) |
| :--- | :---: | :---: |
| Outer HMAC | 176 | 176 |
| Inner HMAC | 176 | 176 |
| Diffie-Hellman HMAC | $128+\|\mathbb{G}\| / 8$ | $128+\|\mathbb{G}\| / 8$ |
| Derive-Secret | 189 | 199 |
| Finished | 147 | 147 |
| Empty | 0 | 0 |
| Transcript | $91+\|\mathbb{G}\| / 8$ | $2 \cdot 2^{16}+328$ |

Table 7: Table showing input lengths for hash function calls made by TLS 1.3 in PSK-(EC)DHE mode with SHA384.
_id length field and the fixed region for domain separation, because the 48-byte HMAC keys for SHA384 already reach past the position of the legacy_session_id length field at byte 39. Instead, we consider whether a minimum-length ClientHello can accommodate the mandatory extensions for this mode.

We worry only about possible collisions between transcript hashes and the other types: Finished, (outer and inner) HMAC, and Derive-Secret. We diagram a transcript hash of 176 bytes together with an outer HMAC hash as a demonstration of the domain-separation argument in Figure 13, but the same argument applies to all.

| Fixed preface: 47 B | Extension data: 116 B | End
 PSK:
 13 B | |
| :--- | :--- | :--- | :--- |
| Key: 48 B | | Arbitrary | string: |
| | Fixed region (opad): 80 B | 48 B | |

Figure 13: Domain separation in PSK-(EC)DHE mode with SHA384: Transcript hash of 176 bytes (top) vs. outer HMAC hash (bottom). "End PSK" is the end of the pre_shared_key extension.

There are no obvious conflicts here: the fixed preface of a ClientHello message is covered by the key section of the HMAC hash, and the pre_shared_key extension is covered by the arbitrary string at the end. However, notice that of the 116 bytes available for extension data in the ClientHello, 80 of them must be fixed to opad to allow a collision. Even including the 1 byte immediately after the fixed preface and 13 bytes reserved for the pre_shared_key extension, this leaves only 50 bytes. In PSK-(EC)DHE mode, five extensions are mandatory even for truncated ClientHello messages. They are supported_versions [54, Section 4.2.1] (minimum 7 bytes), supported_groups [54, Section 4.2.7] (minimum 8 bytes), key_share [54, Section 4.2.8] (minimum $10+|\mathbb{G}| / 8$ bytes), psk_key_exchange_modes [54, Section 4.2.9] (minimum 6 bytes), and pre_shared_key [54, Section 4.2.11] (minimum 13 bytes). Even for the smallest choice of \mathbb{G}, at least 76 bytes are required to contain these extensions. At least one of the extensions must overlap with the fixed field, and will differ from opad in at least one byte.

Any valid transcript hash will need at least $91+|\mathbb{G}| / 8$ bytes outside the fixed region: 47 bytes for the preface and $44+|\mathbb{G}| / 8$ for the mandatory extensions. An outer HMAC hash has only 96 unfixed bytes and cannot meet this threshold. This is true also for inner HMAC hashes (96 unfixed bytes), and Diffie-Hellman HMAC hashes, which have $48+|\mathbb{G}| / 8$ unfixed bytes. It is true for Finished hashes, which have 48 unfixed bytes, because of the 80 -byte fixed region and the fixed 19-byte label struct for the finished label. And it is true for Derive-Secret hashes, which have at most 119
unfixed bytes.
Let us be even more clear about why this overlap means no collision is possible. We cannot fit all of the mandatory extensions in the segment after the fixed region. Therefore one of the extensions must start either in the fixed region, or before the fixed region. None of these extensions can start in the fixed region because they all begin with an extension type different from ipad or opad (cf. [54, Section 4.2]). Therefore one of them must start before the fixed region and continue into the fixed region. We call this the "first extension". The pre_shared_key extension must be the last extension, so it cannot be the first extension. Therefore the first extension is one of key_share, supported_groups, and psk_key_exchange_modes, and supported_versions. All extensions start with a 4 byte encoding of their type and length. Since the fixed preface is already 47 bytes, the second extension type byte of the first extension would need to be either $0 \times 5 \mathrm{c}$ or $0 x 36$. However, none of the aforementioned extensions contains these bytes on the second position of its extension type. Consequently, the extensions can neither start before nor in the fixed region. Moreover, we outline above that the space after the fixed region alone is too tight to fit all of the mandatory extensions.

To be precise, the mandatory extensions must occupy no more than 71 bytes after the fixed region (for the longest possible Derive-Secret hash) or $|\mathbb{G}| / 8$ bytes after (for an inner HMAC hash). But summing their minimum lengths gives $44+|\mathbb{G}| / 8$ bytes. Even for the smallest possible $|\mathbb{G}| / 8=$ 32 , the extensions just do not fit in the given space. It is therefore impossible to construct a valid ClientHello message, truncated or otherwise, that collides with a possible HMAC, Derive-Secret, or Finished hash.

Consequently we can set $D_{\text {Th }}$ to contain the empty string and all strings of at least 86 bytes for which at least one of bytes 49 through 128 does not equal either ipad or opad. Again, we set $D_{\text {Ch }}$ to be all other elements of $\{0,1\}^{*}$.

B. 4 PSK-only mode with SHA384

In this mode/hash function combination, the transcript hash can collide with outer HMAC hashes. There are other collisions as well, but one is sufficient to demonstrate the lack of domain separation. We illustrate this via a 176 -byte transcript hash (containing a truncated ClientHello) and an outer HMAC hash, shown in Figure 14.

Figure 14: Failing domain separation in PSK-only mode with SHA384: Transcript hash of 176 bytes, containing a truncated ClientHello (top) vs. outer HMAC hash (bottom).

We construct the following message, which is both a truncated ClientHello (and therefore a transcript hash) and an outer HMAC hash. The message starts with the fixed 39 bytes through the legacy_session_id. That is, 1 byte message type fixed to $0 x 01,3$ bytes encoding the message length 176 (i.e., $0 \times 0000 \mathrm{BO}$), 2 bytes legacy_version fixed to $0 x 0303,32$ arbitrary bytes for random, and 1 byte encoding the legacy_session_id length fixed $0 x 00$ followed by the empty vector. The next segment of the preface is the ciphersuites. To construct the collision, we use that the standard RFC8446 mandates that servers must ignore ciphersuite values that it does not recognize (e.g., undefined) and must process only the recognized ones as usual (cf. [54, Section 4.1.2]). This means that a ciphersuites vector containing at least one standardized ciphersuite is well-formed. We let the ciphersuites contain 44 ciphersuites, where the first ciphersuite is the valid, mandatory
$0 x 1301$, and the remaining (undefined) 43 are opad ($=0 \times 5 \mathrm{c} 5 \mathrm{c}$). Thus, the 39 bytes described above are followed by the length field of the ciphersuites vector encoding 88 in 2 bytes, i.e., 0×0058, and the ciphersuites vector $0 \times 1301 \|(\mathrm{opad})^{43}$. This ciphersuites field is followed by the legacy_compression_methods vector (with 1-byte length field), which must contain a single null byte. We now have fixed 131 bytes of the message, which means that there are still $176-131=45$ bytes to define. In particular, we need to define 45 bytes of extensions. Therefore, the legacy_compression_methods vector is followed by 2 bytes encoding 45 , which is the length of the extensions vector. In PSK-only mode, the mandatory extensions are only supported_versions, psk_key_exchange_modes, and (the truncated) pre_shared_key, and they take up 26 bytes. Since pre_shared_key always has to be the last extension, we set these 26 bytes at the end of the message. Finally, there are 19 bytes left undefined between the extension length field and the mandatory extensions. We can fill these with a cookie [54, Section 4.2.2] extension with arbitrary content. Like every extension this starts with 4 bytes of extension type (0×0068) and length ($0 \times 00 \mathrm{FF}$), and is then followed by 15 bytes of arbitrary content. (We could also fill these bytes without including additional extensions.)

The $0 x 5 c 5 c$ extension values in the constructed message match the HMAC opad key padding in the format-restricted portion of the outer HMAC hash, the remainder lies in the unrestricted portion. This type of collision is unavoidable, so there are no disjoint sets $D_{\text {Th }}$ and D_{Ch} that capture the way TLS 1.3 calls SHA384 in pre-shared key only mode. Consequently the indifferentiability step of Section 5.1.1 does not apply to this mode.

We remark that if one is willing to accept the additional assumption (for PSK-only with SHA384) that client and servers only consider Hello messages valid that solely use standardized ciphersuite values and extension types, meaning that the above collision would be discarded as a malformed ClientHello, one can show domain-separation for this mode/hash function combination as well, as demonstrated in [17]. The author of [17] considers this assumption reasonable as honest client implementations would never use undefined values in their Hello messages. That is, the presence of undefined values would inherently uncover tampering with a message. Since for domain separation only queries from honest executions are of interest, considering only messages that might be output by honest parties is only a mild assumption even though this is not standard-compliant.

B. 5 Repairing Domain Separation for TLS 1.3-like Protocols

The above analysis demonstrates that complete domain separation is nontrivial to achieve for a protocol like TLS 1.3 which uses a hash function for multiple purposes and at multiple levels of abstraction. We would like to present our suggestions for how this could be achieved most simply and efficiently in future iterations of TLS and other schemes. As discussed by Bellare et al. [5], the most well-known method of domain separation is the inclusion of distinct labels into each hash function call; this is precisely the method adopted by TLS 1.3 to distinguish calls to its Derive-Secret function. Ideally, a future scheme could specify a unique label string for each purpose: not only the various derived secrets, but also each time the transcript is hashed and each internal call made by HMAC, HKDF.Extract, and HKDF.Expand.

Unfortunately, this ideal method is not compatible with the existing specifications of HMAC and HKDF. Both of these functions make "outer HMAC queries" as discussed above; these calls have a fixed input length of $B l+H l$ bytes and this input does not include a label. A protocol could avoid this roadblock by using an implementation of HMAC or HKDF with a custom underlying hash function that prepends an HMAC-specific label to its input. This approach would be both standardcompliant and efficient, but we do not recommend it because existing cryptographic libraries already have trustworthy HMAC and HKDF functionality and encouraging custom implementations for every
new protocol increases the probability of accidental errors in these new implementations. Instead, we suggest making no adjustments to the internal execution of HMAC or HKDF and instead altering direct hash function calls (the other six subtypes we discuss) to avoid collisions.

In practice, this means that under our recommendation, all hash function calls which are not outer HMAC queries should obey two simple rules: first, they should end with a unique label and second, that their input must not be $B l+H l$ long. To conform with the first rule, TLS 1.3 would need to make the following changes.

1. Add distinct labels to the end of each transcript before hashing; for clarity we suggest using the names of the last message in the transcript; i.e. "PartialClientHello", "ClientHello", "ServerHello", etc. If HKDF is used, we would also recommend that these labels should not end with the byte 0×01.
2. Add distinct labels to the end of the input each time HMAC is called; this would include inner HMAC queries, Diffie-Hellman HMAC queries, Finished queries, and Derive-Secret queries. Note that the labels should be postpended to the HMAC payload and not the key. The labels used by Derive-Secret could then be omitted, although this is not necessary.
3. Ensure that none of the labels used is a suffix of another; this can introduce collisions even if the labels are distinct.

We encourage using suffixes for domain separation, although prefixes are more commonly-used, because they are easier to use in conjunction with HMAC and HKDF. Although we are not applying labels to outer HMAC queries, we would still like to use them to domain separate inner HMAC queries (and the other subtypes). The inputs to these queries begin with the HMAC key, which undergoes an XOR operation with ipad before it is hashed. So prefixed labels would need to remain unique and prefix-free after this XOR operation; this introduces some confusion that we prefer to avoid. Additionally, the second step of our indifferentiability proof relies crucially on the fact that HMAC uses fixed-length keys shorter than $B l$; prefixed labels would therefore need to share a fixed length shorter than $B l-H l$ bytes. With suffixes, we still need to contend with the counter byte that HKDF.Expand appends to its input, but in TLS 1.3 where this byte is always 0×01, this presents less of a restriction.

To conform with the second rule, TLS 1.3 would need to enforce that it never hashes a string of $B l+H l$ except as an outer HMAC query. The easiest and least error-prone way to do this would be to pad every non-empty hash function call and input to HMAC and HKDF with exactly $\mathrm{Bl}+\mathrm{Hl}$ bytes (before the suffixed labels); all calls would then be strictly longer than $B l+H l$. This method adds two additional compression function calls to each hash function execution. There are some ways to lessen this requirement without impacting the effectiveness of the length-based domain separation. Calls which already have input longer than $B l+H l$ bytes can omit the padding; so can calls which have strictly shorter input. It would also be possible to use only as much padding is needed to make inputs at least $B l+H l+1$ bytes long. However, non-uniform padding should be done carefully so that, for example, two previously distinct ClientHello messages do not collide after being padded.

[^0]: * Department of Computer Science \& Engineering, University of California San Diego, La Jolla, CA, USA. Email: h3davis@eng.ucsd.edu. URL: https://cseweb.ucsd.edu/~h3davis/. Supported in part by NSF grant CNS-1717640. Some of this work was done while Hannah Davis was visiting ETH Zurich.
 \dagger Chair for IT Security and Cryptography, Bergische Universität Wuppertal, Wuppertal, Germany. Email: denis.diemert@uni-wuppertal.de. URL: https://itsc.uni-wuppertal.de/en/group-members/denis-diemert. html.
 \ddagger Department of Computer Science, ETH Zürich, Zürich, Switzerland. Email: mail@felixguenther.info. URL: https://www.felixguenther.info. Supported in part by Research Fellowship grant GU 1859/1-1 of the German Research Foundation (DFG).
 § Chair for IT Security and Cryptography, Bergische Universität Wuppertal, Wuppertal, Germany. Email: tibor.jager@uni-wuppertal.de. URL: https://www.tiborjager.de. Supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme, grant agreement 802823.

[^1]: ${ }^{1}$ See $[2,10]$ for recent work discussing symmetric key exchange and forward secrecy.

[^2]: ${ }^{2}$ In this work, we do not consider negotiation of pre-shared keys in situations where client and server share multiple keys, but focus on the case where client and server share only one PSK and the client therefore offers only a single pskid. However, we expect that our results extend to the general case as well.

[^3]: ${ }^{3}$ HKDF.Expand [44] is defined for any output length (given as third parameter). In TLS 1.3, Expand always derives at most $h l$ bits, which can be trimmed from a $h l$-bit output; we hence in most places omit the output length parameter.

[^4]: ${ }^{4}$ While our results can be generalized to any distribution on KE.PSKS (based on its min-entropy), for simplicity, we focus on the uniform distribution in this work.
 ${ }^{5}$ Our model stipulates that pre-shared keys are sampled uniformly random and honestly. One could additionally allow the registration of biased or malicious PSKs, akin to models treating, e.g., the certification of public keys [9]. While this would yield a theoretically stronger model, we consider a simpler model reasonable, because we expect most PSKs used in practice to be random keys established in prior protocol sessions. Furthermore, we consider

[^5]: ${ }^{6}$ As Ristenpart, Shacham, and Shrimpton [55] showed, indifferentiability composition does not cover what they call "multi-stage games," meaning games in which the adversary is split into distinct algorithms with restricted communication. Our multi-stage AKE security game is actually a "single-stage" game in the RSS terminology; indifferentiability composition does apply to our results without issue.

[^6]: ${ }^{7}$ This requires PSKs to be elements of $\{0,1\}^{h l}$, which is true of resumption keys but possibly not for out-of-band PSKs.

[^7]: ${ }^{8}$ The property of "public session matching" has already already come up when considering the composition of (regular or multi-stage) key exchange protocols with subsequent symmetric-key protocols [12, 22, 23, 35].

[^8]: ${ }^{9}$ Components marked with ${ }^{\dagger}$ are only part of the TLS 1.3 PSK-(EC)DHE handshake.

[^9]: ${ }^{10}$ As mentioned in Remark 7.3, this term has to be adapted for a different distribution on $\{0,1\}^{h l}$, i.e., for any distribution \mathcal{D} on $\{0,1\}^{h l}$, the denominator would change to 2^{α}, where α is the min-entropy of \mathcal{D}.

[^10]: ${ }^{11}$ Note that at this point, we use that the pre-shared key distribution is uniform. As already mentioned before, for any distribution \mathcal{D} on $\{0,1\}^{h l}$, the probability would be $2^{-\alpha}$, where α is the min-entropy of \mathcal{D}.

[^11]: ${ }^{12}$ Note that the game knows the exponents x and y used by the sessions, but the reduction constructed in the remainder will not.

[^12]: ${ }^{13}$ https://letsencrypt.org/stats/
 ${ }^{14}$ https://transparencyreport.google.com/, https://telemetry.mozilla.org/

[^13]: ${ }^{15}$ An earlier version omitted the leading 1-byte message type and 3-byte message length encoding. We thank Robert Merget for pointing this out, which leads to an accordingly modified domain separation analysis. In brief, domain separation for SHA384 is still lacking, unless one assumes parties only accept defined extensions and ciphersuites; see [17].

[^14]: ${ }^{16}$ This includes 8 bytes for supported_groups and $10+|\mathbb{G}| / 8$ bytes for key_share. An standard-compliant key_share extension may be empty and thus only 6 bytes if the client is requesting a HelloRetryRequest message;

[^15]: however in this case the subsequent transcript hash will contain two ClientHello messages and a HelloRetryRequest; the second ClientHello in the transcript must contain a non-empty key_share extension along with the other mandatory extensions; thus the total length of the transcript will increase by more than $10+|\mathbb{G}| / 8$ bytes even if the first key_share extension is empty.
 ${ }^{17}$ A full ClientHello contains at least $76+H l \geq 108$ bytes, which is too long to be an HMAC hash.

