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Abstract

The pre-shared key (PSK) handshake modes of TLS 1.3 allow for the performant, low-latency
resumption of previous connections and are widely used on the Web and by resource-constrained
devices, e.g., in the Internet of Things. Taking advantage of these performance benefits with
optimal and theoretically-sound parameters requires tight security proofs. We give the first tight
security proofs for the TLS 1.3 PSK handshake modes.

Our main technical contribution is to address a gap in prior tight security proofs of TLS 1.3
which modeled either the entire key schedule or components thereof as independent random
oracles to enable tight proof techniques. These approaches ignore existing interdependencies in
TLS 1.3’s key schedule, arising from the fact that the same cryptographic hash function is used
in several components of the key schedule and the handshake more generally. We overcome this
gap by proposing a new abstraction for the key schedule and carefully arguing its soundness via
the indifferentiability framework. Interestingly, we observe that for one specific configuration,
PSK-only mode with hash function SHA-384, it seems difficult to argue indifferentiability due
to a lack of domain separation between the various hash function usages. We view this as an
interesting insight for the design of protocols, such as future TLS versions.

For all other configurations however, our proofs significantly tighten the security of the
TLS 1.3 PSK modes, confirming standardized parameters (for which prior bounds provided
subpar or even void guarantees) and enabling a theoretically-sound deployment.
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1 Introduction
The Transport Layer Security (TLS) protocol is probably the most widely-used cryptographic
protocol. It provides a secure channel between two endpoints (client and server) for arbitrary
higher-layer application protocols. Its most recent version, TLS 1.3 [54], specifies two different
“modes” for the initial handshake establishing a secure session key: the main handshake mode
based on a Diffie–Hellman key exchange and public-key authentication via digital signatures, and
a pre-shared key (PSK) mode, which performs authentication based on symmetric keys. The latter
is mainly used for two purposes:

Session resumption. Here, a prior TLS connection established a secure channel along with a
pre-shared key PSK, usually via a full handshake. Subsequent TLS resumption sessions use
this key for authentication and key derivation. For example, modern web browsers typically
establish multiple TLS connections when loading a web site. Using public-key authentication
only in an initial session and PSK-mode in subsequent ones minimizes the number of relatively
expensive public-key computations and significantly improves performance for both clients and
servers.

Out-of-band establishment. PSKs can also be established out-of-band, e.g., by manual con-
figuration of devices or with a separate key establishment protocol. This enables secure com-
munication in settings where a complex public-key infrastructure (PKI) is unsuitable, such as
IoT applications.

TLS 1.3 provides two variants of the PSK handshake mode: PSK-only and PSK-(EC)DHE.
The PSK-only mode is purely based on symmetric-key cryptography. This makes TLS accessible to
resource-constrained low-cost devices, and other applications with strict performance requirements,
but comes at the cost of not providing forward secrecy [34], since the latter is not achievable with
static symmetric keys.1 The PSK-(EC)DHE mode in turn achieves forward secrecy by additionally
performing an (elliptic-curve) Diffie–Hellman key exchange, authenticated via the PSK (i.e., still
avoiding inefficient public-key signatures). This compromise between performance and security is
the suggested choice for TLS 1.3 session resumption on the Internet.

Concrete security and tightness. Classical, complexity-theoretic security proofs considered
the security of cryptosystems asymptotically. They are satisfied with security reductions running
in polynomial time and having non-negligible success probability. However, it is well-known that
this only guarantees that a sufficiently large security parameter exists asymptotically, but it does not
guarantee that a deployed real-world cryptosystem with standardized parameters—such as concrete
key lengths, sizes of algebraic groups, moduli, etc.—can achieve a certain expected security level. In
contrast, a concrete security approach makes all bounds on the running time and success probability
of adversaries explicit, for example, with a bound of the form

Adv(A) ≤ f(A) ·Adv(B),

where f is a function of the adversary’s resources and B is an adversary against some underlying
cryptographic hardness assumption.

The concrete security approach makes it possible to determine concrete deployment parameters
that are supported by a formal security proof. As an intuitive toy example, suppose we want to
achieve “128-bit security”, that is, we want a security proof that guarantees (for any A in a certain

1See [2, 10] for recent work discussing symmetric key exchange and forward secrecy.
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class of adversaries) that Adv(A) ≤ 2−128. Suppose we have a cryptosystem with a reduction
that loses “40 bits of security” because we can only prove a bound of f(A) ≤ 240. This means
that we have to instantiate the scheme with an underlying hardness assumption that achieves
Adv(B) ≤ 2−168 for any B in order to upper bound Adv(A) by 2−128 as desired. Hence, the 40-bit
security loss of the bound is compensated by larger parameters that provide “168-bit security”.

This yields a theoretically-sound choice of deployment parameters, but it might incur a very
significant performance loss, as it requires the choice of larger groups, moduli, or key lengths. For
example, the size of an elliptic curve group scales quadratically with the expected bit security, so
we would have to choose |G| ≈ 22·168 = 2336 instead of the optimal |G| ≈ 22·128 = 2256. The
performance penalty is even more significant for finite field groups, RSA or discrete logarithms
“modulo p”. This could lead to parameters which are either too large for practical use, or too small
to be supported by the formal security analysis of the cryptosystem. We demonstrate this below
for security proofs of TLS.

Even worse, for a given security proof the concrete loss ` may not be a constant, as in the above
example, but very often ` depends on other parameters, such as the number of users or protocol
sessions, for example. This makes it difficult to choose theoretically-sound parameters when bounds
on these other parameters are not exactly known at the time of deployment. If then a concrete
value for ` is estimated too small (e.g., because the number of users is underestimated), then the
derived parameters are not backed by the security analysis. If ` is chosen too large, then it incurs
an unnecessary performance overhead.

Therefore we want to have tight security proofs, where ` is a small constant, independent of
any parameters that are unknown when the cryptosystem is deployed. This holds in particular for
cryptosystems and protocols that are designed to maximize performance, such as the PSK modes
of TLS 1.3 for session resumption or resource-constrained devices.

Previous analyses of the TLS handshake protocol and their tightness. TLS 1.3 is the
first TLS version that was developed in a close collaboration between academia and industry.
Early TLS 1.3 drafts were inspired by the OPTLS design by Krawczyk and Wee [47], and several
draft revisions as well as the final TLS 1.3 standard in RFC 8446 [54] were analyzed by many
different research groups, including computational/reductionist analyses of the full and PSK modes
in [22, 24, 29, 25]. All reductions in these papers are however highly non-tight, having up to
a quadratic security loss in the number of TLS sessions and adversary can interact with. For
example, [19] explains that for “128-bit security” and plausible numbers of users and sessions,
an RSA modulus of more than 10,000 bits would be necessary to compensate the loss of previous
security proofs for TLS, even though 3072 bits are usually considered sufficient for “128-bit security”
when the loss of reductions is not taken into account. Likewise, [15] argues that the tightness loss to
the underlying Diffie–Hellman hardness assumption lets these bounds fail to meet the standardized
elliptic curves’ security target, and for large-scale adversary even yields completely vacuous bounds.

Recently, Davis and Günther [15] and Diemert and Jager [19] gave new, tight security proofs
for the TLS 1.3 full handshake based on Diffie–Hellman key exchange and digital signatures (not
PSKs). However, their results required very strong assumptions. One is that the underlying digital
signature scheme is tightly secure in a multi-user setting with adaptive corruptions. While such
signature schemes do exist [3, 33, 18, 36], this is not known for any of the signature schemes
standardized for TLS 1.3, which are subject to the tightness lower bounds of [4] as their public keys
uniquely determine the matching secret key.

Even more importantly, both [15] and [19] modeled the TLS key schedule or components thereof
as independent random oracles. This was done to overcome the technical challenge that the Diffie–
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Hellman secret and key shares need to be combined in the key derivation to apply their tight
security proof strategy, following Cohn-Gordon et al. [13], yet in TLS 1.3 those values enter key
derivation through separate function calls. But neither work provided formal justification for their
modeling, and both neglected to address potential dependencies between the use of a hash function
in the key schedule and elsewhere in the protocol.

Our contributions

In this paper, we describe a new perspective on TLS 1.3, which enables a modular security analysis
with tight security proofs.

New abstraction of the TLS 1.3 key schedule. We first describe a new abstraction of the
TLS 1.3 key schedule used in the PSK modes (in Section 2), where different steps of the key
schedule are modeled as independent random oracles (12 random oracles in total). This makes it
significantly easier to rigorously analyze the security of TLS 1.3, since it replaces a significant part
of the complexity of the protocol with what the key schedule intuitively provides, namely “as-good-
as-independent cryptographic keys”, deterministically derived from pre-shared keys, Diffie–Hellman
values (in PSK-(EC)DHE mode), protocol messages, and the randomness of communicating parties.

Most importantly, in contrast to prior works on TLS 1.3’s tightness that abstracted (parts
of or the entire) key schedule as random oracles [19, 15] to enable the tight proof technique of
Cohn-Gordon et al. [13], we support this new abstraction formally. Using the indifferentiability
framework of Maurer et al. [51] in its recent adaptation by Bellare et al. [5] that treats multiple
random oracles, in Section 5 we prove our abstraction indifferentiable from TLS 1.3 with only the
underlying cryptographic hash function modeled as a random oracle, and this proof is tight. This
accounts for possible interdependencies between the use of a hash function in multiple contexts,
which were not considered in [19, 15].

Identifying a lack of domain separation. A noteworthy subtlety is that, to our surprise,
we identify that for a certain choice of TLS 1.3 PSK mode and hash function (namely, PSK-only
mode with SHA384), a lack of domain separation [5] in the protocol does not allow us to prove
indifferentiability for this case. We discuss the details of why domain separation is achieved for all
but this case in Appendix B.

This gap could be closed by more careful domain separation in the key schedule, which we
consider an interesting insight for designers of future versions of TLS or other protocols. Concretely,
the ideal domain separation method would be to add a unique prefix or suffix to each hash function
call made by the protocol. However, existing standard primitives like HMAC and HKDF do not
permit the use of such labels, so this advice is not practical for TLS 1.3 or similar protocols. For
these, a combination of labels (where possible) and padding for domain separation seems advisable,
where the padding ensures that the protocol’s direct hash calls have strictly longer inputs than the
internal hash calls in HMAC and HKDF. We outline this method in more detail in Appendix B.5.

Modularization of record layer encryption. Like most of the prior computational TLS 1.3
analyses [22, 29, 25, 19], we use a multi-stage key exchange (MSKE) security model [28] to cap-
ture the complex and fine-grained security aspects of TLS 1.3. These aspects include cleverly
distinguishing between “external” keys established in the handshake for subsequent use (by, e.g.,
application data encryption, resumption, etc.) and “internal” keys, used within the handshake it-
self (in TLS 1.3 for encrypting most of the handshake through the protocol’s record layer) to avoid
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complex security models such as the ACCE model [38] which monolithically treat handshake and
record-layer encryption.

As a generic simplification step for MSKE models, we show (in Section 6) that for a certain class
of transformations using the internal keys, we can even avoid the somewhat involved handling of
internal keys altogether. We use this to simplify our analysis of the TLS 1.3 handshake (treating the
TLS 1.3 record-layer encryption as such transformation). The result itself however is not specific
to TLS 1.3, but general and of independent interest; it furthermore is tight.

Tight security of TLS 1.3 PSK modes. We leverage the new perspective on the TLS 1.3 key
schedule and the fact that we can ignore record-layer encryption to give our main results: the first
tight security proofs for the PSK-only and PSK-(EC)DHE handshake modes of TLS 1.3.

Evaluation. Finally, we evaluate our new bounds and prior ones from [25] over a wide range of
fully concrete resource parameters, following the approach of Davis and Günther [15]. Our bounds
improve on previous analyses of the PSK-only handshake by between 15 and 53 bits of security,
and those of the PSK-(EC)DHE handshake by 60 and 131 bits of security across all our parameters
evaluated.

Further related work and scope of our analysis

Several previous works gave security proofs for the previous protocol version TLS 1.2 [38, 45, 31,
46, 49, 8], including its PSK-modes [49]; all reductions in these works are highly non-tight.

Brzuska et al. [11] recently proposed a stand-alone security model for the TLS 1.3 key schedule,
likewise aiming at a new abstraction perspective on the latter to support formal protocol analysis.
While their treatment focuses solely on the key schedule and only briefly argues its application to
a key exchange security result, it is more general and covers the negotiation of parameters [26, 7]
and agile usage of various algorithms.

Our focus is on the TLS 1.3 PSK modes. Hence, our abstraction of the key schedule and the
careful indifferentiability treatment is tailored to that mode and cannot be directly translated to
the full handshake (without PSKs). We are confident that our approach can be adapted to achieve
similar results for the full handshake, but leave revisiting the results in [19, 15] in that way to future
work.

Like many previous cryptographic analyses [38, 45, 22, 24, 29, 25, 19, 15] of the TLS handshake,
our work focuses on the “cryptographic core” of the TLS 1.3 PSK handshake modes (in particular,
we consider fixed parameters like the Diffie–Hellman group, TLS ciphersuite, etc.). Our abstraction
of the key schedule is designed for easy composition with our tight key exchange proof, and our
indifferentiability treatment is important confirmation of that abstraction’s soundness. We do not
consider, e.g., ciphersuite and version negotiation [26] or backwards compatibility issues in settings
where multiple TLS versions are used in parallel, such as [39]. We also do not treat the security
of the TLS record layer; instead we explain how to avoid the necessity to do so in order to achieve
more modular security analyses, and we refer to compositional results [28, 22, 35, 25, 19] treating
the combined security when subsequent protocols use the session keys established in an MSKE
protocol.

Numerous authenticated key exchange protocols [33, 13, 50, 37, 36] were recently proposed that
can be proven (almost) tightly secure. However, these protocols were specifically designed to be
tightly secure and none is standardized.
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2 The TLS 1.3 Pre-shared Key Handshake Protocol
Overview. We consider the pre-shared key mode of TLS 1.3, used in a setting where both
client and server already share a common secret, a so-called pre-shared key (PSK). A PSK is
a cryptographic key which may either be manually configured, negotiated out-of-band, or (and
most commonly) be obtained from a prior and possibly not PSK-based TLS session to enable fast
session resumption. The TLS 1.3 PSK handshake comes in two flavors: PSK-only, where security
is established from the pre-shared key alone, and PSK-(EC)DHE, which includes an (finite-field
or elliptic-curve) Diffie–Hellman key exchange for added forward secrecy. Both PSK handshakes
essentially consist of two phases (cf. Figure 1).

1. The client sends a random nonce and a list of offered pre-shared keys to the server, where each
key is identified by a (unique) identifier pskid.2 The server then selects one pskid from the list,
and responds with another random nonce and the selected pskid. In PSK-(EC)DHE mode,
client and server additionally perform a Diffie–Hellman key exchange, sending group elements
along with the nonces and PSK identifiers. In both modes, the client also sends a so-called
binder value, which applies a message authentication code (MAC) to the client’s nonce and
pskid (and the Diffie–Hellman share in PSK-(EC)DHE mode) and binds the PSK handshake to
the (potential) prior handshake in which the used pre-shared key was established (see [14, 42]
for analysis rationale behind the binder value).

2. Then client and server derive unauthenticated cryptographic keys from the PSK and the es-
tablished Diffie–Hellman key (the latter only in (EC)DHE mode, of course). This includes,
for instance, the client and server handshake traffic keys (htkC and htkS) used to encrypt the
subsequent handshake messages, as well as finished keys (fkC and fkS) used to compute and
exchange finished messages. The finished messages are MAC tags over all previous messages,
ensuring that client and server have received all previous messages exactly as they were sent.
After verifying the finished messages, client and server “accept” authenticated cryptographic
keys, including the client and server application traffic secret (CATS and SATS), the exporter
master secret (EMS), and the resumption master secret (RMS) for future session resumptions.

Detailed specification. For our proofs we will need fully-specified descriptions for each of the
TLS 1.3 PSK and PSK-(EC)DHE handshake protocols. Pseudocode for these protocols can be
found in Figure 1, where we let (G, p, g) be a cyclic group of prime order p such that G = 〈g〉.

The two descriptions on the left and right in Figure 1 show the same protocol, but they use
different abstractions to highlight how we capture the complex way TLS 1.3 calls its hash function.
This one hash function is used in some places to condense transcripts, in others to help derive
session keys, and in still others as part of a message authentication code. We call this function H,
and let its output length be hl bits so that we have H : {0, 1}∗ → {0, 1}hl . Depending on the choice
of ciphersuite, TLS 1.3 instantiates H with either SHA256 or SHA384 [52]. In our security analysis,
we will model H as a random oracle.

On the left-hand side of Figure 1, we distinguish three named subroutines of TLS 1.3 which use
H for different purposes:

2In this work, we do not consider negotiation of pre-shared keys in situations where client and server share multiple
keys, but focus on the case where client and server share only one PSK and the client therefore offers only a single
pskid. However, we expect that our results extend to the general case as well.
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Client Server

rC
$←− {0, 1}nl

x $←− Zp, X ← gx

ClientHello: rC
[+ ClientKeyShare: X]†

ES← Extract(0,PSK)
dES← Expand(ES, `3 ‖H(""))
BK← Expand(ES, `0 ‖H(""))

fkb ← Expand(BK, `6)
binder ←MAC(fkb,H(CH−))
+ ClientPreSharedKey: pskid, binder

abort if binder 6= MAC(fkb,H(CH−))
accept ETS← Expand(ES, `1 ‖H(CH))

stage 1
accept EEMS← Expand(ES, `2 ‖H(CH))

stage 2

rS
$←− {0, 1}nl

y $←− Zp, Y ← gy

ServerHello: rS
[+ ServerKeyShare: Y ]†

+ ServerPreSharedKey: pskid

[DHE← Y x]† [DHE← Xy]†[DHE← 0]�
HS← Extract(dES,DHE)

CHTS← Expand(HS, `4 ‖H(CH ‖ SH))
SHTS← Expand(HS, `5 ‖H(CH ‖ SH))

dHS← Expand(HS, `3 ‖H(""))
accept htkC ← DeriveTK(CHTS)

stage 3
accept htkS ← DeriveTK(SHTS)

stage 4
{EncryptedExtensions}

fkS ← Expand(SHTS, `6)
finS ←MAC(fkS ,H(CH ‖ · · · ‖ EE))

{ServerFinished}: finS

abort if finS 6= HMAC(fkS ,H(CH ‖ · · · ‖ EE))
MS← Extract(dHS, 0)

accept CATS← Expand(MS, `7 ‖H(CH ‖ · · · ‖ SF))
stage 5

accept SATS← Expand(MS, `8 ‖H(CH ‖ · · · ‖ SF))
stage 6

accept EMS← Expand(MS, `9 ‖H(CH ‖ · · · ‖ SF))
stage 7

fkC ← Expand(CHTS, `6)
finC ←MAC(fkC ,H(CH ‖ · · · ‖ SF))
{ClientFinished}: finC

abort if finC 6= MAC(fkC ,H(CH ‖ · · · ‖ SF))
accept RMS← Expand(MS, `10 ‖H(CH ‖ · · · ‖ CF))

stage 8

Client Server

rC
$←− {0, 1}nl

x $←− Zp, X ← gx

ClientHello: rC
[+ ClientKeyShare: X]†

binder ← TKDFbinder(PSK,H(CH−))
+ ClientPreSharedKey: pskid, binder

abort if binder 6= TKDFbinder(PSK,H(CH−))
accept ETS← TKDFETS(PSK,H(CH))

stage 1
accept EEMS← TKDFEEMS(PSK,H(CH))

stage 2

rS
$←− {0, 1}nl

y $←− Zp, Y ← gy

ServerHello: rS
[+ ServerKeyShare: Y ]†

+ ServerPreSharedKey: pskid

[DHE← Y x]† [DHE← Xy]†[DHE← 0]�

accept htkC ← TKDFhtkC (PSK,DHE,H(CH ‖ SH))
stage 3

accept htkS ← TKDFhtkS (PSK,DHE,H(CH ‖ SH))
stage 4

{EncryptedExtensions}

finS ← TKDFfinS (PSK,DHE,H(CH ‖ SH),H(CH ‖ · · · ‖ EE))
{ServerFinished}: finS

abort if finS 6= TKDFfinS
(PSK,DHE,H(CH ‖ SH),H(CH ‖ · · · ‖ EE))

accept CATS← TKDFCATS(PSK,DHE,H(CH ‖ · · · ‖ SF))
stage 5

accept SATS← TKDFSATS(PSK,DHE,H(CH ‖ · · · ‖ SF))
stage 6

accept EMS← TKDFEMS(PSK,DHE,H(CH ‖ · · · ‖ SF))
stage 7

finC ← TKDFfinC (PSK,DHE,H(CH ‖ SH),H(CH ‖ · · · ‖ SF))
{ClientFinished}: finC

abort if finC 6= TKDFfinC
(PSK,DHE,H(CH ‖ SH),H(CH ‖ · · · ‖ SF))

accept RMS← TKDFRMS(PSK,DHE,H(CH ‖ · · · ‖ CF))
stage 8

Legend
MSG: Y message MSG sent, containing Y
+ MSG extension sent within previous message
{MSG} MSG sent AEAD-encrypted with htkC/htkS
[. . . ]† present only in PSK-(EC)DHE
[. . . ]� present only in PSK

CH− partial ClientHello up to (incl.) pskid
`x label value, distinct for distinct x

DeriveTK(HTS) := Expand(HTS , `11 ‖ Th(""), hl) ‖Expand(HTS , `12 ‖ Th(""), ivl)
(traffic key computation, deriving a hl-bit key and a ivl-bit IV)

Figure 1: TLS 1.3 PSK and PSK-(EC)DHE handshake modes with (optional) 0-RTT keys (stages 1
and 2), with detailed key schedule (left) and our representation of the key schedule through func-
tions TKDFx (right), explained in the text. Centered computations are executed by both client
and server with their respective messages received, and possibly at different points in time. Dotted
lines indicate the derivation of session (stage) keys together with their stage number. The labels
`x are distinct for distinct index x, see Table 1 for their definition.
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Value Label Value Label

dES `3 = "derived" htkC `11 = "key" & `12 = "iv"
BK `0 = "ext binder" / "res binder" htkS `11 = "key" & `12 = "iv"
fkb `6 = "finished" fkS `6 = "finished"
ETS `1 = "c e traffic" CATS `7 = "c ap traffic"
EEMS `2 = "e exp master" SATS `8 = "s ap traffic"
CHTS `4 = "c hs traffic" EMS `9 = "exp master"
SHTS `5 = "s hs traffic" fkC `6 = "finished"
dHS `3 = "derived" RMS `10 = "res master"

Table 1: Definitions of the short labels used in Figure 1. We simplify the labeling of Expand in
our presentation. In the specification each Expand is not only labeled by ` ‖ H for some label
` and some hash H, but it is prefixed by the output length of the respecitive Expand call and
the constant label “tls13 ”. As the output length for all of the above calls is equal (namely, the
output length hl of H), we leave this constant prefix out to reduce complexity.

• A message authentication code MAC : {0, 1}hl × {0, 1}∗ → {0, 1}hl , which calls H via the
HMAC function MAC(K,M) := HMAC[H](K,M) where

HMAC[H](K,M) := H((K ‖ 0bl−hl)⊕ opad) ‖H((K ‖ 0bl−hl ⊕ ipad) ‖M))

Here opad and ipad are bl-bit strings, where each byte of opad and ipad is set to the hexadecimal
value 0x5c, resp. 0x36. We have bl = 512 when SHA256 is used and bl = 512 for SHA384. When
modeling SHA256 resp. SHA384 as a random oracle, we keep the corresponding value of bl.

• Extract,Expand : {0, 1}hl × {0, 1}∗ → {0, 1}hl , two subroutines for extracting and expanding
key material in the key schedule, following the HKDF key derivation paradigm of Krawczyk [41,
44]. These functions are defined

– Extract(K,M) := HKDF.Extract(K,M) = MAC(K,M).
– Expand(K,M) := HKDF.Expand(K,M) = MAC(K,M ‖ 0x01).3

Despite the new naming conventions, this abstraction closely mimics the TLS 1.3 standard: MAC,
Extract, and Expand can be read as more generic ways of referring to the HMAC, HKDF.Extract,
and HKDF.Expand algorithms [43, 44].

The right-hand side of Figure 1 separates the key derivation functions for each first-class key
as well as the binder and finished MAC values derived. This way of modeling TLS 1.3 makes
it easier to establish key independence for the many keys computed in the key schedule, as we
will see in Section 5. We introduce 11 functions TKDFbinder , TKDFETS, TKDFEEMS, TKDFhtkC ,
TKDFfinC , TKDFhtkS , TKDFfinS , TKDFCATS, TKDFSATS, TKDFEMS, and TKDFRMS (indexed by
the value they derive) and use them to abstract away many intermediate computations. Note that
we are not changing the protocol, though: we define each TKDF function to capture the same steps
it replaces.

3HKDF.Expand [44] is defined for any output length (given as third parameter). In TLS 1.3, Expand always
derives at most hl bits, which can be trimmed from a hl-bit output; we hence in most places omit the output length
parameter.
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TKDFfinS
(PSK,DHE, h1, h2):

1 ES← Extract(0,PSK)
2 dES← Expand(ES, `3 ‖ Th(""))
3 HS← Extract(dES,DHE)

4 SHTS← Expand(HS, `5‖h1)
5 fkS ← Expand(SHTS, `6)
6 finS ←MAC(fkS , h2)
7 return finS

Figure 2: Definition of TKDFfinS , deriving the ServerFinished MAC.

Take as an example TKDFfinS , the function used to derive the MAC in the ServerFinished
message. In the prior abstraction, a session would first use the key schedule to derive a finished
key fkS from the hashed transcript and the secrets PSK and DHE. It would then call MAC, keyed
with fkS , to generate the ServerFinished message authentication code on the hashed transcript
and encrypted extensions. Accordingly, we define TKDFfinS : {0, 1}hl × G × {0, 1}hl × {0, 1}hl →
{0, 1}hl as in Figure 2. In the protocol, TKDFfinS takes inputs the pre-shared key PSK and Diffie–
Hellman secret DHE and hash digests h1 = Th(CH ‖ SH) and h2 = Th(CH ‖ · · · ‖ EE), and it outputs
a MAC tag for the ServerFinished message. The remaining key derivation functions are defined
the same way; we give their signatures below for completeness.

1. TKDFbinder [ROHMAC] : {0, 1}hl × {0, 1}hl → {0, 1}hl

2. TKDFETS[ROHMAC] : {0, 1}hl × {0, 1}hl → {0, 1}hl

3. TKDFEEMS[ROHMAC] : {0, 1}hl × {0, 1}hl → {0, 1}hl

4. TKDFhtkC [ROHMAC] : {0, 1}hl ×G× {0, 1}hl → {0, 1}hl+ivl

5. TKDFfinC [ROHMAC] : {0, 1}hl ×G× {0, 1}hl × {0, 1}hl → {0, 1}hl

6. TKDFhtkS [ROHMAC] : {0, 1}hl ×G× {0, 1}hl → {0, 1}hl+ivl

7. TKDFfinS [ROHMAC] : {0, 1}hl ×G× {0, 1}hl × {0, 1}hl → {0, 1}hl

8. TKDFCATS[ROHMAC] : {0, 1}hl ×G× {0, 1}hl → {0, 1}hl

9. TKDFSATS[ROHMAC] : {0, 1}hl ×G× {0, 1}hl → {0, 1}hl

10. TKDFEMS[ROHMAC] : {0, 1}hl ×G× {0, 1}hl → {0, 1}hl

11. TKDFRMS[ROHMAC] : {0, 1}hl ×G× {0, 1}hl → {0, 1}hl

Note that the definition of the 11 functions induces a lot of redundancy as we derive every value
independently and therefore compute intermediate values (e.g., ES, dES, and HS) multiple times
over the execution of the handshake. However, this is only conceptual. Since the computations of
these intermediate values are deterministic, the intermediate values will be the same for the same
inputs and could be cached.

3 Code-based MSKE Model for PSK Modes
We formalize security of the TLS 1.3 PSK modes in a game-based multi-stage key exchange (MSKE)
model, adapted primarily from that of Dowling et al. [25]. We fully specify our model in pseudocode
in Figures 3 and 4. We adopt the explicit authentication property from the model of Davis and
Günther [15] and capture forward secrecy by following the model of Schwabe et al. [56].
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3.1 Key Exchange Syntax

In our security model, the adversary interacts with sessions executing a key exchange protocol KE.
For the definition of the security experiment it will be useful to have a unified, generic interface
to the algorithms implementing KE, which can then be called from the various procedures defining
the security experiment to run KE. Therefore, we first formalize a general syntax for protocols.

We assume that pairs of users share long-term symmetric keys (pre-shared keys), which are
chosen uniformly at random from a set KE.PSKS.4 We allow users to share multiple pre-shared
keys, maintained in a list pskeys, and require that each user uses any key only in a fixed role (i.e.,
as client or server) to avoid the Selfie attack [27]. We do not cover PSK negotiation; each session
will know at the start of the protocol which key it intends to use.

New sessions are created via the algorithm Activate. This algorithm takes as input the new
session’s own user, identified by some ID u, the user ID peerid of the intended communication
partner, a pre-shared key PSK, and a role identifier—initiator (client) or responder (server)—that
determines whether the session will send or receive the first protocol message. It returns the new
session πiu, which is identified by its user ID u and a unique index i so that a single user can execute
many sessions.

Existing sessions send and receive messages by executing the algorithm Run. The inputs to Run
are an existing session πiu and a message m it has received. The algorithm processes the message,
updates the state of πiu, and returns the next protocol message m′ on behalf of the session. Run
also maintains the status of πiu, which can have one of three values: running when it is awaiting the
next protocol message, accepted when it has established a session key, and rejected if the protocol
has terminated in failure.

In a multi-stage protocol, sessions accept multiple session keys while running; we identify each
with a numbered stage. A protocol may accept several stages/keys while processing a single message,
and TLS 1.3 does this. In order to handle each stage individually, our model adds artificial pauses
after each acceptance to allow the adversary to interact with the sessions upon each stage accepting
(beyond, as usual, each message exchanged). When a session πiu accepts in stage s while executing
Run, we require Run to set the status of πiu to accepteds and terminate. We then define a special
“continue” message. When session πiu in state accepteds, receives this message it calls Run again,
updates its status to runnings+1 and continues processing from the point where it left off.

3.2 Key Exchange Security

We define key exchange security via a real-or-random security game, formalized through Figures 3
and 4.

Game oracles. In this security game, the adversary A has access to seven oracles: Initialize,
NewSecret, Send, RevSessionKey, RevLongTermKey, Test, and Finalize, as well as any
random oracles the protocol defines. The game begins with a call to Initialize, which samples a
challenge bit b. It ends when the adversary calls Finalize with a guess b′ at the challenge bit. We
say the adversary “wins” the game if Finalize returns true.

The adversary can establish a random pre-shared key between two users by callingNewSecret.5

4While our results can be generalized to any distribution on KE.PSKS (based on its min-entropy), for simplicity,
we focus on the uniform distribution in this work.

5Our model stipulates that pre-shared keys are sampled uniformly random and honestly. One could additionally
allow the registration of biased or malicious PSKs, akin to models treating, e.g., the certification of public keys [9].
While this would yield a theoretically stronger model, we consider a simpler model reasonable, because we expect
most PSKs used in practice to be random keys established in prior protocol sessions. Furthermore, we consider
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It can corrupt existing users’ pre-shared keys via the oracle RevLongTermKey. The Send oracle
creates new protocol sessions and processes protocol messages on the behalf of existing sessions.
The RevSessionKey oracle reveals a session’s accepted session key. Finally, the Test oracle
servers as the challenge oracle: it returns the real session key of a target session or an independent
one sampled randomly from the session key space KE.KS[s] of the respective stage s, depending on
the value of the challenge bit b.

Protocol properties. Keys established in different stages possess different security attributes,
which are defined as part of the key exchange protocol: replayability, forward secrecy level, and
authentication level. Certain stages, whose indices are tracked in a list INT, produce “internal”
keys intended for use only within the key exchange protocol; these keys may only be Tested at the
time of acceptance of this particular key, but not later. This is because otherwise such keys may
be trivially distinguishable from random, e.g., via trial decryption, due to the fact that they are
used within the protocol. To avoid a trivial distinguishing attack, we force the rest of the protocol
execution to be consistent with the result of such a Test. That is, a tested internal key is replaced
in the protocol with whatever the Test returns to the adversary (which is either the real internal
key or an independent random key). The remaining stages produce “external” keys which may be
tested at any time after acceptance.

For some protocols, it may be possible that a trivial replay attack can achieve that several
sessions agree on the same session key for stage s, but this is not considered an “attack”. For
example, in TLS 1.3 PSK an adversary can always replay the ClientHello message to multiple
sessions of the same server, which then all derive the same ETS and EEMS keys (cf. Figure 1). To
specify that such a replay is not considered a protocol weakness, and thus should not be considered
a valid “attack”, the protocol specification may define REPLAY[s] to true for a stage s. REPLAY[s]
is set to false by default.

As we focus on protocols which rely on (pre-authenticated) pre-shared keys, our model encodes
that all protocol stages are at least implicitly mutually authenticated in the sense of Krawczyk [40],
i.e., a session is guaranteed that any established key can only be known by the intended partner.
Some stages will further be explicitly authenticated, either immediately upon acceptance or retroac-
tively upon acceptance of a later state. Additionally, the stage at which explicit authentication is
achieved may differ between the initiator and responder roles. For each stage s and role r, the key
exchange protocol specification states in EAUTH[r, s] the stage t from whose acceptance stage s de-
rives explicit authentication for the session in role r. Note that the stage-s key is not authenticated
until both stages s and EAUTH[r, s] have been accepted. If the stage-s key will never be explicitly
authenticated for role r, we set EAUTH[r, s] =∞.

We use a predicate ExplicitAuth (cf. Figure 4) to require the existence of an honest partner
for explicitly authenticated stages upon both parties’ completion of the protocol, except when the
session’s pre-shared key was corrupted prior to accepting the explicitly-authenticating stage (as in
that case, we anticipate the adversary can trivially forge any authentication mechanism).

Motivated by TLS 1.3, it might be the case that initiator and responder sessions achieve slightly
different guarantees of authentication. While responders in TLS 1.3 are guaranteed the existence
of an honest partner in any explicitly authenticated stage, initiators cannot guarantee that their
partner has received their final message. This issue was first raised by FGSW [30] and led to
their definitions of “full” and “almost-full” key confirmation; it was then extended to “full” and
“almost-full” explicit authentication by DFW [16]. Our definitions for responders and initiators

tightness as particularly interesting when “good” PSKs are used, since low-entropy PSKs might decrease the security
below what is achieved by (non)-tight security proofs, anyway.
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GMSKE
KE,A

Initialize:
1 time← 0;
2 b $←− {0, 1}

NewSecret(u, v, pskid):
3 time← time + 1
4 if pskeys[(u, v, pskid)] 6= ⊥
5 return ⊥
6 pskeys[(u, v, pskid)] $←− KE.PSKS
7 revpsk(u,v,pskid) ←∞
8 return pskid

Send(u, i,m):
9 time← time + 1

10 if πiu = ⊥ then
11 (peerid, pskid, role)← m

12 if role = initiator
13 then psk ← pskeys[(u, peerid, pskid)]
14 else psk ← pskeys[(peerid, u, pskid)]
15 (πiu,m′) $←− Activate(u, peerid, psk, role)
16 else
17 (πiu,m′) $←− Run(u, πiu.psk, πiu,m)
18 if πiu.status = acceptedπi

u.stage then
19 stage ← πiu.stage
20 πiu.accepted[stage]← time
21 if repr[πiu.sid[stage]] 6= ⊥ then
22 πiu.skey[stage]← repr[πiu.sid[stage]]
23 πiu.untampered[stage] ← ∃πjv with πjv.cidπi

u.role[stage] =
πiu.cidπi

u.role[stage]
24 return m′

RevSessionKey(u, i, s):
25 time← time + 1
26 if πiu = ⊥ or πiu.accepted[s] =∞ then
27 return ⊥
28 πiu.revealed[s]← true
29 return πiu.skey[s]

RevLongTermKey(u, v, pskid):
30 time← time + 1
31 revpsk(u,v,pskid) ← time
32 return pskeys[(u, v, pskid)]

Test(u, i, s):
33 time← time + 1
34 if πiu = ⊥ or πiu.accepted[s] = ∞ or πiu.tested[s]

then
35 return ⊥
36 if s ∈ INT

and ∃πjv : πjv.sid[s] = πiu.sid[s]
and πjv.accepted[s] <∞
and πjv.status 6= accepteds then

37 return ⊥
// can only test internal keys if all sessions having accepted
that key have not moved on with the protocol

38 πiu.tested[s]← time
39 T ← T ∪ {(πiu, s)}
40 k0 ← πiu.skey[s]
41 k1

$←− KE.KS[s]
42 if s ∈ INT then

∀πjv : πjv.sid[s] = πiu.sid[s]
and πjv.status = accepteds

43 πjv.skey[s]← kb

44 repr[πiu.sid[s]]← kb

45 return kb

Finalize(b′):
46 if ¬Sound then
47 return 1
48 if ¬ExplicitAuth then
49 return 1
50 if ¬Fresh then
51 b′ ← 0
52 return [[b = b′]]

RO(i,X):
53 time← time + 1
54 return ROi(X)

Figure 3: Multi-stage key exchange (MSKE) security game for a key exchange protocol KE with pre-
shared keys. Predicates Fresh, ExplicitAuth, and Sound are defined in Figure 4. The functions ROi

correspond to the (independent) random oracles available to the adversary.
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Fresh:
1 for each (πiu, s) ∈ T
2 tTest ← πiu.tested[s]
3 if πiu.revealed[s] then
4 return false // tested session may not be revealed

5 if ∃πjv 6= πiu : πjv.sid[s] = πiu.sid[s]
and (πjv.tested[s] or πjv.revealed[s]) then

6 return false // tested session’s partnered session may not be
tested or revealed

7 if πiu.accepted[FS[s, fs]] < tTest

8 if revpsk(u,πi
u.peerid,πi

u.pskid) < πiu.accepted[FS[s, fs]]
and ¬πiu.untampered[FS[s, fs]] then

9 return false // Sessions with forward secrecy are fresh if
they attained fs before their PSK was corrupted, or if they have a
contributive partner (no tampering).

10 else if πiu.accepted[FS[s,wfs2]] < tTest

11 if revpsk(u,πi
u.peerid,πi

u.pskid) and
¬πiu.untampered[FS[s,wfs2]] then

12 return false // Sessions with weak forward secrecy 2 are
fresh if the PSK was never corrupted, or if they have a contributive
partner.

13 else if revpsk{u,πi
u.peerid},πi

u.pskid then
14 return false // Sessions with no forward secrecy are fresh if

the PSK was never corrupted.

15 return true

ExplicitAuth:

1 if ∀πiu, s:
s′ ← EAUTH[πiu.role, s]

πiu.accepted[s′] <∞
and πiu.accepted[s] <∞
and πiu.accepted[s′] < revpsk(u,πi

u.peerid,πi
u.pskid)

// all sessions accepting in explicitly authenticated stages whose PSK
was not corrupted before acceptance of the stage at which explicit
authentication was (perhaps retroactively) established. . .

=⇒ ∃πjv : πiu.sid[s′] = πjv.sid[s′]
and πiu.peerid = v
and πiu.pskid = πjv.pskid

// . . . have a partnered session in that stage . . .
// . . . agreeing on the peerid and pre-shared key. . .

and (πjv.accepted[s] < time =⇒ πjv.sid[s] =
πiu.sid[s])
// . . . and partnered in stage s (upon acceptance)

2 return true

Sound:
1 if ∃s, distinct πiu, πjv, πkw with πiu.sid[s] = πjv.sid[s] =
πkw.sid[s] 6= ⊥
and REPLAY[s] = false then

2 return false
// no triple sid match, except for replayable stages

3 if ∃πiu, πjv, s with
πiu.sid[s] = πjv.sid[s] 6= ⊥ and
πiu.role = πjv.role and
(REPLAY[s] = false or πiu.role = initiator) then

4 return false
// partnering implies different roles (except for responders in re-
playable stages)

5 if ∃πiu, πjv, s with
πiu.sid[s] = πjv.sid[s] 6= ⊥ and

(πiu.cid initiator[s] 6= πjv.cid initiator[s] or πiu.cid responder[s] 6=
πjv.cid responder[s])

6 return false
// partnering implies matching cids

if ∃πiu, πjv and s 6= t such that
πiu.sid[s] = πjv.sid[t]

7 return false
// different stages implies different sids

8 if ∃πiu, πjv, s with
πiu.sid[s] = πjv.sid[s] 6= ⊥
and πiu.peerid 6= v
or πjv.peerid 6= u or πiu.pskid 6= πjv.pskid then

// partnering implies agreement on peer IDs and PSKs

9 return false
10 if ∃πiu, πjv, s with

πiu.accepted[s] < time
and πjv.accepted[s] < time
and πiu.sid[s] = πjv.sid[s] 6= ⊥,
but πiu.skey[s] 6= πjv.skey[s] then

// partnering implies same key

11 return false
12 return true

Figure 4: Predicates Fresh, ExplicitAuth, and Sound for the MSKE pre-shared key model.
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respectively resemble the latter two notions most closely, but we rely on session identifiers instead
of “key confirmation identifiers”.

We consider three levels of forward secrecy inspired by the KEMTLS work of Schwabe, Stebila,
and Wiggers [56]: no forward secrecy, weak forward secrecy 2 (wfs2), and full forward secrecy (fs).
As for authentication, each stage may retroactively upgrade its level of forward secrecy upon the
acceptance of later stages, and forward secrecy may be established at different stages for each role.
For each stage s and role r, the stage at which wfs2, resp. fs, is achieved is stated in FS[r, s,wfs2],
resp. FS[r, s, fs], by the key exchange protocol.

The definition of weak forward secrecy 2 states that a session key with wfs2 should be indis-
tinguishable as long as (1) that session has received the relevant messages from an honest part-
ner (formalized via matching contributive identifiers below, we say: “has an honest contributive
partner”) or (2) the pre-shared key was never corrupted. Full forward secrecy relaxes condition
(2) to forbid corruption of the pre-shared key only before acceptance of the stage that retroac-
tively provides full forward secrecy. We capture these notions of forward secrecy in a predicate
Fresh(cf. Figure 4), which uses the log of events to check whether any tested session key is trivially
distinguishable (e.g., through the session or its partnered being revealed, or forward secrecy re-
quirements violated). With forward secrecy encoded in Fresh, our long-term key corruption oracle
(RevLongTermKey), unlike in the model of [25], handles all corruptions the same way, regardless
of forward secrecy.

Session and game variables. Sessions πiu and the security game itself maintain several variables;
we indicate the former in italics, the latter in sans-serif font.

The game uses a counter time, initialized to 0 and incremented with any oracle query the
adversary makes, to order events in the game log for later analysis. When we say that an event
happens at a certain “time”, we mean the current value of the time counter. The list pskeys contains,
as discussed above, all pre-shared keys, indexed by a tuple (u, v, pskid) containing the two users’
IDs (u using the key only in the initiator role, v only in the reponder role), and a unique string
identifier. The list revpsk, indexed like pskeys, tracks the time of each pre-shared key corruption,
initialized to revpsk(u,v,pskid) ←∞. (In boolean expressions, we write revpsk(u,v,pskid) as a shorthand
for revpsk(u,v,pskid) 6=∞.)

Each session πiu, identified by (adversarially chosen) user ID and a unique session ID, further-
more tracks the following variables:

• status ∈ {runnings, accepteds, rejecteds | s ∈ [1, . . . ,STAGES]}, where STAGES is the total
number of stages of the considered protocol. The status should be accepteds immediately after
the session accepts the stage-s key, rejecteds after it rejects stage s (but may continue running;
e.g., rejecting 0-RTT data), and runnings for some stage s otherwise.

• peerid. The identity of the session’s intended communication partner.

• pskid. The identifier of the session’s pre-shared key.

• accepted[s]. For each stage s, the time (i.e., the value of the time counter) at which the stage
s key was accepted. Initialized to ∞.

• revealed[s]. A boolean denoting whether the stage s key has been leaked through aRevSessionKey
query. Initialized to false.

• tested[s]. The time at which the stage s key was tested. Initialized to∞ before any Test query
occurs. (In boolean expressions, we write tested[s] as a shorthand for tested[s] 6=∞.)
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• sid[s]. The session identifier for each stage s, used to match honest communication partners
within each stage.

• skey[s]. The key accepted at each stage.

• cid initiator[s] and cidresponder[s]. The contributive identifiers for each stage s, where cidrole[s]
identifies the communication part that a session in role role must have honestly received in
order to be allowed to be tested in certain scenarios (cf. the freshness definition in the Fresh
predicate). Unlike prior models, each session maintains a contributive identifiers for each role;
one for itself and one for its intended partner. This enables more fine-grained testing of session
stages in our model.

The predicate Sound (cf. Figure 4) captures that variables are properly assigned, in particular
that session identifiers uniquely identify a partner session (except for replayable stages) and that
partnering implies agreement on (distinct) roles, contributive identifiers, peer identities and the
pre-shared key used, as well as the established session key.

Definition 3.1 (Multi-stage key exchange security). Let KE be a key exchange protocol and GMSKE
KE,A

be the key exchange security game defined in Figures 3 and 4. We define

AdvMSKE
KE (t, qNS, qS, qRS, qRL, qT, qRO) := 2 ·max

A
Pr
[
GameMSKE

KE,A ⇒ 1
]
− 1,

where the maximum is taken over all adversaries, denoted (t, qNS, qS, qRS, qRL, qT, qRO)-MSKE-
adversaries, running in time at most t and making at most qNS, qS, qRS, qRL, qT, resp. qRO

queries to their respective oracles NewSecret, Send, RevSessionKey, RevLongTermKey,
Test, and RO.

4 Indifferentiability Background
In the random oracle model, we treat hash functions like SHA256 as uniformly sampled random
functions. Honest parties and adversaries alike access these functions via additional oracles in
the security game. These are the random oracles. These random functions will be sampled from
a set called a function space at the start of a security game. Alternatively, the random oracle
can lazily sample responses to each query as they are needed. While we typically use the latter
(lazily-sampled) model in key exchange security proofs, we will focus on the former conceptual view
here.

Let us give an example. When we model the TLS 1.3 protocol in the ROM, we will equip our
protocol definition with a function space parameter FS. We set this parameter according to the
portion of the protocol we wish to model as a random oracle. If we wish to replace the hash function
H with a random oracle ROH, then we would set FS to be the set of all functions the set of all
functions with domain {0, 1}∗ and range {0, 1}hl . The KE security game would sample ROH from
FS in its Initialize routine, then provide oracle access to ROH to all parties. This notation also
captures protocols which use multiple random oracles. If we wish to use two independent random
oracles, say RO1 and RO2, then we would define an arity-2 function space FS, which is a set of
tuples each containing two functions. Let FS1, resp. FS2 be the set from which RO1, RO2 should be
drawn. Then we set FS = {(F1, F2) : F1 ∈ FS1 and F2 ∈ FS2}. We call FS1 and FS2 the subspaces
of FS. A security game provides access to F1 and F2 through a single oracle RO that takes two
arguments; the first is the index of the function to be queried and the second is the contents of the
query. So RO(i,X) will return Fi(X). We can also cast an arity-1 function space in this notation
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Game Gindiff
C,Sim,SS,ES

Initialize():
1 b $←− {0, 1}
2 ROSS

$←− SS
3 ROES

$←− ES
4 state $←− ε

Finalize(b′):
5 return b′

Pub(i,Y ):
6 if b = 0 then
7 (z, state)← Sim[Priv](i,Y , state)
8 return z
9 else return ROSS(i,Y )

Priv(i,X):
10 if b = 0 then return ROSS(i,X)
11 else return C[ROES](i,X)

Figure 5: The game Gindiff
C,Sim,SS,ES measuring indifferentiability of a construct C that transforms

function space SS into ES. The game is parameterized by a simulator Sim.

by identifying each function F with the tuple (F ), but we will typically omit the parentheses and
index argument when only one random oracle is used.

Indifferentiability was originally developed by Maurer, Renner, and Holenstein [51], and it
has been used to prove security for hash functions built from public compression functions. More
generally, it gives a framework to show the security of a transition between any two function spaces.
We’ll call these spaces SS (for “starting space”) and ES (for “ending space”). A construction of
ES from SS is an algorithm C that outputs elements of ES given an oracle ROSS ∈ SS. We may
use the notation C : SS → ES. We then say that C is “indifferentiable” if for any function
ROSS sampled from SS, C[RO] behaves indistinguishably from a function ROES sampled from ES.
Indifferentiability requires this behavior to hold even when the adversary can access both C[ROSS]
and ROSS without any restriction. Once we have an indifferentiable construction between two
function spaces, we can use the indifferentiability “composition theorem” to prove that (almost)
any protocol is as secure when it uses C[ROSS] as its random oracle as when it uses ROES.6

How do we check whether a construction C is indifferentiable? From the earlier intuition, we
set up a security game with two worlds. In one world, often called the “real world”, the adversary
has oracle access to ROSS (drawn from SS) and C[ROSS]. In the other, the “ideal world”, it has
oracle access to ROES, a random oracle sampled from ES. The adversary’s task is then to return a
bit indicating which world it is in.

This intuition is obviously incomplete: the adversary can distinguish between worlds just by
counting its oracles. We need a second oracle in the ideal world. This second oracle, Pub, must
behave indistinguishably from ROSS, but its responses must also be consistent with the view of
ROES (accessed via the first oracle, Priv) as a construction of Pub. The algorithm that does
this is called a “simulator”. Every construction requires a different simulator Sim, so we make it
a parameter of the definition. We can now give pseudocode for the full indifferentiability security
game, shown in Figure 5.

Definition 4.1 (Indifferentiability). Let SS and ES be function spaces, and let C be a construction
of ES from SS. Then for any simulator Sim and any adversary D which makes qPriv queries to the
Priv oracle and qPub queries to the Pub oracle, the indifferentiability advantage of D is

Advindiff
C,Sim,qPriv,qPub

(D) := Pr[Gindiff
C,Sim(D)⇒ 1|b = 1]− Pr[Gindiff

C,Sim(D)⇒ 1|b = 0].
6As Ristenpart, Shacham, and Shrimpton [55] showed, indifferentiability composition does not cover what they

call “multi-stage games,” meaning games in which the adversary is split into distinct algorithms with restricted
communication. Our multi-stage AKE security game is actually a “single-stage” game in the RSS terminology;
indifferentiability composition does apply to our results without issue.
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Indifferentiability is useful because of the following theorem of Maurer et al. [51]. In our pre-
sentation, we consider only the authenticated key exchange game, although the theorem applies
equally well to any single-stage game [55].

Theorem 4.2. Let KE be a key exchange protocol using function space ES. Let C be an indiffer-
entiable construct of ES from SS with respect to simulator Sim, and let t′ be the runtime of Sim
on a single query. We define KE′ to be the following key exchange protocol with function space
SS: KE′ runs KE, but wherever KE would call its random oracle, KE′ instead computes C using its
own random oracle. For any adversary A against the MSKE security of KE′ with runtime tA and
making q random oracle queries, there exists an adversary B and a distinguisher D with runtime
approximately tA + q · t such that

AdvMSKE
KE′ (A) ≤ AdvMSKE

KE (B) + Advindiff
C,Sim(D).

Proof. Adversary B is a wrapper for A whenever A makes a query to its random oracle RO, B
responds by running the simulator with its own random oracle. The distinguisher D simulates the
KE − Sec game of KE for A, with two differences: instead of an RO, it gives A oracle access to
Pub, and where KE would query its own RO, it instead queries Priv. We claim that when b = 1
in the indifferentiability game (the real world), D perfectly simulates the MSKE game of KE′ for
A. This works because the Priv oracle computes C for KE′, and the Pub oracle is indeed an RO
as A expects. When b = 0, D perfectly simulates MSKE of KE for B. The Pub oracle answers all
of A’s queries using the simulator, so it properly executes the wrapper code that makes up B. The
rest of the simulation is honest, down to the random oracle accessed via Priv.

5 Key-Schedule Indifferentiability
In this section we will argue that the key schedule of TLS 1.3 PSK modes, where the underlying
cryptographic hash function is modeled as a random oracle (i.e., the left-hand side of Figure 1
with the underlying hash function modeled as a random oracle), is indifferentiable [51] from a
key schedule that uses independent random oracles for each step of the key derivation (i.e., the
right-hand side of Figure 1 with all TKDFx functions modeled as independent random oracles). We
stress that this step not only makes our main security proof in Section 7 significantly simpler and
cleaner, but also it puts the entire protocol security analysis on a firmer theoretical ground than
previous works.

In their proof of tight security, Diemert and Jager [19] previously modeled the TLS 1.3 key
schedule as four independent random oracles. Davis and Günther [15] concurrently modeled the
functions HKDF.Extract and HKDF.Expand used by the key schedule as two independent random
oracles. Neither work provided formal justification for their modeling. Most importantly, both
neglected potential dependencies between the use of the hash function in multiple contexts in
the key schedule and elsewhere in the protocol. In particular, no construction of HKDF.Extract
and HKDF.Expand as independent ROs from one hash function could be indifferentiable, because
HKDF.Extract and HKDF.Expand both call HMAC directly on their inputs, with HKDF.Expand
only adding a counter byte. Hence, the two functions are inextricably correlated by definition.
We do not claim that the analyses of [19, 15] are incorrect or invalid, but merely point out that
their modeling of independent random oracles is currently not justified and might not be formally
reachable if one only wants to treat the hash function itself as a random oracle. This is undesirable
because the gap between an instantiated protocol and its abstraction in the random oracle model
can camouflage serious attacks, as Bellare et al. [5] found for the NIST PQC KEMs. Their attacks
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exploited dependencies between functions that were also modeled as independent random oracles
but instantiated with a single hash function.

In contrast, in this section we will show that our modeling of the TLS 1.3 key schedule is indif-
ferentiable from the key schedule when the underlying cryptographic hash function is modeled as a
random oracle. To this end, we will require that inputs to the hash function do not appear in multi-
ple contexts. For instance, a protocol transcript might collide with a Diffie–Hellman group element
or an internal key (i.e., both might be represented by exactly the same bit string, but in different
contexts). For most parameter settings, we can rule out such collisions by exploiting serendipitous
formatting, but for one choice of parameters (the PSK-only handshake using SHA384 as hash func-
tion), an adversary could conceivably force this type of collision to occur; see Appendix B for a
detailed discussion. While this does not lead to any known attack on the handshake, it precludes
our indifferentiability approach for that case.

Insights for the design of cryptographic protocols. One interesting insight for protocol
designers that results from our attempt of closing this gap with a careful indifferentiability-based
analysis is that proper domain separation might enable a cleaner and simpler analysis, whereas
a lack of domain separation leads to uncertainty in the security analysis. No domain separation
means stronger assumptions in the best case, and an insecure protocol in the worst case, due to the
potential for overlooked attack vectors in the hash functions. A simple prefix can avoid this with
hardly any performance loss.

Indifferentiability of the TLS 1.3 key schedule. Via the indifferentiability framework, we
replace the complex key schedule of TLS 1.3 with 12 independent random oracles: one for each
first-class key and MAC tag, and one more for computing transcript hashes. In short, we relate
the security of TLS 1.3 as described in the left-hand side of Figure 1 to that of the simplified
protocol on the right side of Figure 1 with the key derivation and MAC functions TKDFx and
modeled as independent random oracles. We prove the following theorem, which formally justifies
our abstraction of the key exchange protocol by reducing its security to that of the original key
exchange game.
Theorem 5.1. Let ROH : {0, 1}∗ → {0, 1}hl be a random oracle. Let KE be the TLS 1.3 PSK-only
or PSK-(EC)DHE handshake protocol described on the left hand side of Figure 1 with H := ROH and
MAC, Extract, and Expand defined from H as in Section 2. Let KE′ be the corresponding (PSK-
only or PSK-(EC)DHE) handshake protocol on the right hand side of Figure 1, with H := ROTh
and TKDFx := ROx, where ROTh, RObinder , . . . , RORMS are random oracles with the appropriate
signatures (cf. Section 5.1.3 for the signature details). Then,

AdvMSKE
KE (t, qNS, qS, qRS, qRL, qT, qRO) ≤ AdvMSKE

KE′ (t, qNS, qS, qRS, qRL, qT, qRO)

+2(12qS + qRO)2

2hl + 2q2
RO

2hl + 8(qRO + 36qS)2

2hl .

We establish this result via three modular steps in the indifferentiability framework introduced
by Maurer, Renner, and Holenstein [51]. More specifically we will leverage a recent generalization
proposed by Bellare, Davis, and Günther (BDG) [5], which in particular formalizes indifferentiability
for constructions of multiple random oracles.

5.1 Indifferentiability for the TLS 1.3 Key Schedule in Three Steps

We move from the left of Figure 1 to the right via three steps. Each step introduces a new variant
of the TLS 1.3 protocol with a different set of random oracles by changing how we implement
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H, MAC, Expand, Extract, and eventually the whole key schedule. Then we view the prior
implementations of these functions as constructions of new, independent random oracles. We prove
security for each intermediate protocol in two parts: first, we bound the indifferentiability advantage
against that step’s construction; then we apply the indifferentiability composition theorem based
on [51] (cf. Section 4, Theorem 4.2) to bound the multi-stage key exchange (MSKE) security of the
new protocol.

We give a brief description of each step; all details and formal theorem statements and proofs
can be found in Sections 5.1.1, 5.1.2, and 5.1.3, respectively.

From one random oracle to two. TLS 1.3 calls its hash function H, which we initially model
as random oracle ROH, for two purposes: to hash protocol transcripts, and as a component
of MAC, Extract, and Expand which are implemented using HMAC[H]. Our eventual key
exchange proof needs to make full use of the random oracle model for the latter category of
hashes, but we require only collision resistance for transcript hashes.
Our first intermediate handshake variant, KE1, replaces H with two new functions: Th for
hashing transcripts, and Ch for use within MAC, Extract, or Expand. While KE uses
the same random oracle ROH to implement Th and Ch, the KE1 protocol instead uses two
independent random oracles ROTh and ROHMAC. To accomplish this without loss in MSKE
security, we exploit some possibly unintentional domain separation in how inputs to these
functions are formatted in TLS 1.3 to define a so-called cloning functor, following BDG [5].
Effectively, we partition the domain {0, 1}∗ of ROH into two sets DTh and DCh such that DTh
contains all valid transcripts and DCh contains all possible inputs to H from HMAC. We then
leverage Theorem 1 of [5] that guarantees composition for any scheme that only queries ROCh
within the set DCh and ROTh within the set DTh.
We defer details on the exact domain separation to Appendix B, but highlight that the PSK-
only handshake with hash function SHA384 fails to achieve this domain separation and conse-
quently this proof step cannot be applied and leaves a gap for that configuration of TLS 1.3.

From SHA to HMAC. Our second variant protocol, KE2, rewrites the MAC function. In-
stead of computing HMAC[ROCh], MAC now directly queries a new random oracle ROHMAC :
{0, 1}hl ×{0, 1}∗ → {0, 1}hl . Since ROCh was only called by MAC, we drop it from the proto-
col, but we do continue to use ROTh, i.e., KE2 uses two random oracles: ROTh and ROHMAC.
The security of this replacement follows directly from Theorem 4.3 of Dodis et al. [21], which
proves the indifferentiability of HMAC with fixed-length keys.7

From two random oracles to 12. Finally, we apply a “big” indifferentiability step which yields
12 independent random oracles and moves us to the right-hand side of Figure 1. The 12 ROs
include the transcript-hash oracle ROTh and 11 oracles that handle each key(-like) output
in TLS 1.3’s key derivation, named RObinder , ROETS, ROEEMS, ROhtkC , ROCF, ROhtkS , ROSF,
ROCATS, ROSATS, ROEMS, and RORMS. (The signatures for these oracles are given in Ap-
pendix 5.1.3.) For this step, we view TKDF as a construction of 11 random oracles from a
single underlying oracle (ROHMAC). We then give our a simulator in pseudocode and prove the
indifferentiability of TKDF with respect to this simulator. Our simulator uses look-up tables to
efficiently identify intermediate values in the key schedule and consistently program the final
keys and MAC tags.

7This requires PSKs to be elements of {0, 1}hl , which is true of resumption keys but possibly not for out-of-band
PSKs.
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Combining these three steps yields the result in Theorem 5.1. In the remainder of the paper, we
can therefore now work with the right-hand side of Figure 1, modeling H and the TKDF functions
as 12 independent random oracles.

5.1.1 Step 1: Domain-separating the Transcript Hash

In the original TLS 1.3 PSK/PSK-(EC)DHE handshake, the hash function H is used in two different
ways. It is used directly to compute digests of a transcript and it is used as a component of MAC,
Extract, and Expand. We will argue now that these two uses are entirely distinct, and we can
accordingly write two functions Th and Ch in place of the two uses of H, and, following BDG [5],
go from modeling H as one random oracle to modeling Th and Ch as two independent random
oracles.

We will refer to our two new random oracles as ROTh (modeling the transcript hash function Th)
and ROCh (modeling the component hash Ch). Because TLS 1.3 fully specifies the inputs to each
hash function call, we can show that in PSK-(EC)DHE mode and in PSK-only mode when hl = 256,
TLS 1.3 will never call the same string as an input to both Th and Ch. This is due to some
fortunate coincidences of formatting in the standard, which we describe in full in Appendix B. We
can therefore define two disjoint sets DTh and DCh such that DTh ∪ DTh = {0, 1}∗ split up H’s
domain.

If we define the domain of ROTh to be DTh and the domain of ROCh to be DCh, we could prove
indifferentiability using a construction called the identity (cloning) functor I from [5]. The identity
functor constructs two or more random oracles RO1,RO2, . . . from ROH by forwarding all ROi

queries to ROH unchanged. However, the definitions of sets DTh and DCh are somewhat complex,
especially in PSK-only mode. We would instead prefer to define both ROTh and ROCh with domains
{0, 1}∗. This would greatly simplify our later use of ROCh as a component of HMAC. Unfortunately,
when the domains of ROTh and ROCh overlap, the identity functor is not indifferentiable. We can
however still provide the desired result by turning to the read-only indifferentiability framework of
Bellare, Davis, and Günther [5].

Read-only indifferentiability (a.k.a. rd-indiff) is similar to standard indifferentiability [51]. One
notable change (and the one we will leverage here) is that it is parameterized by a setW called the
“working domain.” The security game places a restriction on the Priv oracle so that it only responds
to queries within W. Read-only indifferentiability supports a broader composition thoerem than
Theorem 4.2, which covers security games which call their random oracles only within the working
domain. BDG prove [5, Theorem 1], which states that when W consists of disjoint sets like DTh
and DCh, the identity functor is read-only indifferentiable even when the full domains of ROTh and
ROCh are not disjoint. Furthermore, the read-only indifferentiability advantage is upper-bounded
by 0, and BDG give a simulator that runs in linear time on the length of its inputs and makes
at most one query per execution. When we apply the read-only indifferentiability composition
theorem, the adversary’s runtime and query bounds will not increase.

We formalize this with a lemma:

Lemma 5.2. Let KE be the TLS 1.3 key exchange protocol of Theorem 5.1. Let ROTh,ROCh :
{0, 1}∗ → {0, 1}hl be two random oracles, and let KE1 be the protocol on the left-hand side of
Figure 1, where

• H := ROTh

• MAC := HMAC[ROCh]
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and Expand and Extract are as in KE (using the new definition of MAC). Let DTh and DCh
be two disjoint sets such that KE1.Run only queries ROTh, resp. ROCh in DTh, resp. DCh, and
DTh ∪DCh = {0, 1}∗. Furthermore, let DTh have an efficient membership function.

Let A be an adversary against the MSKE security of KE, running in time tA and making qRO

and qS queries to its random oracle resp. Send oracle. Then there exists an adversary B against
the security of KE′, such that

AdvMSKE
KE (A) ≤ AdvMSKE

KE1 (B).

Adversary B’s runtime is O(tA + qRO), and it makes the same number of queries to each of its
oracles as A in the MSKE game.

Proof. The function space of KE is SS = AF({0, 1}∗, {0, 1}hl), and the function space of KE1 is
ES = AF({Th,Ch} × {0, 1}∗, {0, 1}hl). We can construct ES from SS via a construction called
the “identity functor” defined by BDG [5]. This construction is parameterized by a set W :=
({Th}×DTh)∪ ({Ch}×DCh). To answer any query (i, s), the identity functor simply forwards s to
its own oracle, regardless of whether i is Th or Ch. BecauseW is the union of two disjoint sets with
efficient membership functions, the simulator Sim defined by BDG’s Theorem 1 has the property
that for any distinguisher D,

Advrd-indiff
IW ,W,Sim(D) = 0.

Sim works by using the membership function of DTh to check which of the two oracles is being
simulated; then it forwards the query to the appropriate oracle.

For this (or any) simulator, the composition theorem for read-only indifferentiability grants the
existence of adversary B and a distingisher D such that

AdvMSKE
KE (A) ≤ AdvMSKE

KE1 (B) + Advrd-indiff
IW ,W,Sim(D) ≤ AdvMSKE

KE1 (B).

This composition theorem crucially rests on the fact that KE1.Run queries ROTh and ROCh only
within W. The lemma follows.

We require that DTh and DCh are disjoint sets. We define specific choices of DTh and DCh based
on the low-level formatting of TLS 1.3 in Appendix B, and there we give detailed arguments that
the sets are disjoint for 3 of 4 standardized settings of the PSK/PSK-(EC)DHE handshake.

In the fourth setting, PSK-only mode with hash function SHA384, there are no disjoint choices
for DTh and DCh with efficient membership functions. This is due to a lack of careful domain
separation of the hash function calls in TLS 1.3. We therefore cannot apply this indifferentiability
step for the PSK-only/SHA384 handshake protocol. Any security proof of this handshake must
either rely on stronger, possibly falsifiable abstractions in the random oracle model, or use a model
SHA384 as a single random oracle, with no guarantees of independence. We avoid the latter approach
in order to maintain a modular and readable proof.

The second inequality follows from our choice of simulator and Theorem 1 of [5], which makes
at most one query to its random oracle per execution. Their simulator, as mentioned above,
must efficiently determine for every query s whether to query ROTh or ROCh. This induces the
requirement that DTh∪DCh = {0, 1}∗, so every possible query can be routed appropriately, and the
requirement that DTh has an efficient membership function so that the simulator is itself efficient.
DTh and DCh satisfy these requirements thanks to the rules given in Appendix B.

5.1.2 Step 2: Applying the Indifferentiability of HMAC

Our next key exchange protocol, KE2, replaces the construction HMAC[Ch] with a single random
oracle ROHMAC in the implementation of MAC and by extension Extract and Expand. We rely
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on the proof of HMAC’s indifferentiability by Dodis et al. [21, Theorem 3]. As a prerequisite for
this theorem, we need to restrict HMAC to keys of a fixed length less than the block length of
the hash function (512 bits for SHA256 and 1024 bits for SHA384). This is consistent with HMAC’s
usage in TLS 1.3, where the keys are almost always of length hl ∈ {256, 384}. The only exception
is when pre-shared keys of another length are negotiated out-of-band; we exclude this case.

Lemma 5.3. Let ROTh,ROCh : {0, 1}∗ → {0, 1}hl and ROHMAC : {0, 1}hl × {0, 1}∗ → {0, 1}hl be
random oracles. Let KE1 be the TLS 1.3 key exchange protocol described in Theorem 5.2 using
random oracles ROTh and ROCh. Let KE2 be the key exchange protocol given on the left-hand side
of Figure 1, where

• H := ROTh

• MAC := ROHMAC

and Extract and Expand are defined as Section 2. Let A be an adversary against the MSKE
security of KE1, running in time tA and making qRO and qS queries to its random oracle resp.
Send oracle. Then there exists an adversary B against the security of KE2 such that

AdvMSKE
KE1 (A) ≤ AdvMSKE

KE2 (B) + 2(12qS + qRO)2

2hl .

Adversary B has runtime O(tA+ qRO) and makes the same number of queries to each of its oracles
as A in the MSKE game.

Proof. KE1 uses function space ES, defined in the proof of Lemma 5.2, and KE2 uses function space
ES2 = AF(({Th} × {0, 1}∗) ∪ ({HMAC} × {0, 1}hl × {0, 1}∗), {0, 1}hl). The construction C of ES2
from ES simply forwards all queries to ROTh. It answers ROHMAC queries with HMAC[ROCh].

For any simulator Sim, Theorem 5 grants the existence of a distinguisher D and an adversary
B such that

AdvMSKE
KE1 (A) ≤ AdvMSKE

KE2 (B) + Advindiff
C,Sim(D).

The distinguisher D makes up to 12 queries to Priv for each Send query made by A, and makes
one Pub query for each RO query of A.

We consider the simulator Sim2 defined by Dodis et al. for [20, Theorem 4.3] (the full version
of [21, Theorem 3]). This simulator relies on the requirement that HMAC keys are a fixed length,
and shorter than the block length of the underlying hash function. HMAC pads its keys with
zero bits up to the block length, so each hash function call made by HMAC contains a segment
containing the byte 0x36 for the first of the two calls and 0x5c for the second. Sim2 uses this
segment to identify whether a particular query is intended to simulate the first or second hash
function call. It answers the “first” calls with random strings and logs these responses. Then it
programs the “second” calls by using its stored intermediate values to find which ROHMAC query
should be simulated. We augment the simulator to forward all queries to ROTh; this does not
change its runtime or effectiveness. This simulator works perfectly unless there is a collision among
the 2qPriv + qPub intermediate values, which Dodis et al. bound with a birthday bound. That
theorem states that for a distinguisher D making 12qS queries to Priv and qRO queries to Pub,

Advindiff
C,Sim(D) ≤ 2(12qS + qRO)2

2hl .

The lemma follows.
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5.1.3 Step 3: Applying Indifferentiability to the TLS Key Schedule

In the last step, we move to the right-hand side of Figure 1 and introduce 11 new independent
random oracles to model the key schedule. We start by rephrasing the TLS key schedule and
message authentication codes as eleven functions TKDFbinder , . . . , TKDFRMS as in Section 2. This
abstraction does not change any of the operations performed by the key schedule; the TKDF
functions simply rename the key derivation steps already performed by KE2. In our last key
exchange protocol KE′, we model each TKDF function as a independent random oracle. We name
these oracles after the keys or values they derive:

1. RObinder [ROHMAC] : {0, 1}hl × {0, 1}hl → {0, 1}hl

2. ROETS[ROHMAC] : {0, 1}hl × {0, 1}hl → {0, 1}hl

3. ROEEMS[ROHMAC] : {0, 1}hl × {0, 1}hl → {0, 1}hl

4. ROhtkC [ROHMAC] : {0, 1}hl ×G× {0, 1}hl → {0, 1}hl+ivl

5. ROfinC [ROHMAC] : {0, 1}hl ×G× {0, 1}hl × {0, 1}hl → {0, 1}hl

6. ROhtkS [ROHMAC] : {0, 1}hl ×G× {0, 1}hl → {0, 1}hl+ivl

7. ROfinS [ROHMAC] : {0, 1}hl ×G× {0, 1}hl × {0, 1}hl → {0, 1}hl

8. ROCATS[ROHMAC] : {0, 1}hl ×G× {0, 1}hl → {0, 1}hl

9. ROSATS[ROHMAC] : {0, 1}hl ×G× {0, 1}hl → {0, 1}hl

10. ROEMS[ROHMAC] : {0, 1}hl ×G× {0, 1}hl → {0, 1}hl

11. RORMS[ROHMAC] : {0, 1}hl ×G× {0, 1}hl → {0, 1}hl

The 12th random oracle is ROTh, used to hash transcripts as in KE1 and KE2.
Now we can state Lemma 5.4.

Lemma 5.4. Let KE2 be the key exchange protocol of Lemma 5.3, and let KE′ be the key exchange
protocol of Theorem 5.1.

For any adversary A against the MSKE security of KE2, with runtime t and making qRO random
oracle queries and qS queries to Send, there exists adversary B against the MSKE security of KE′
such that

AdvMSKE
KE1 (A) ≤ AdvMSKE

KE2 (B) + 2q2
Pub

2hl + 8(qPub + 6qPriv)2

2hl .

Adversary B runs in time at most t+ qROtG, where tG is the time to perform one group operation
in the Diffie–Hellman group G. It makes no more queries to each of the oracles in the MSKE game
than does A.

Proof. We view TKDF as defined in Section 2 as a construction of the function space ES′ of KE′:
the arity-12 function space whose first subspace is AF({0, 1}∗, {0, 1}hl) and whose remaining 11
subspaces are the spaces of all functions with the domains and ranges specified in the above list.
This TKDF construction takes an oracle from ES2, the function space of KS2.

As in the prior two steps, we consider a particular simulator Sim (cf. Figure 5.1.3) and rely on
Theorem 5 for the existence of a distinguisher D and an adversary B such that

AdvMSKE
KE2 (A) ≤ AdvMSKE

KE′ (B) + Advindiff
TKDF,Sim(D).

The distinguisher D will make no more than 12 queries to Priv for each Send query made by A
and one query to Pub per RO query.

24



Via a sequence of code-based games, we will show that the indifferentiability advantage of any
distinguisher D making qPriv queries to the Priv oracle and qPub queries to the Pub oracle is

Advindiff
TKDF,SS,ES,Sim(D) ≤ 2q2

Pub

2hl + 8(qPub + 6qPriv)2

2hl .

We give fully specified pseudocode for each of our games.
First, we explain the high-level strategy of our simulator. Our simulator takes two inputs: an

index i ∈ {Th,HMAC} and a string s ∈ {0, 1}∗. When i = Th, the simulator simulates ROTh(s)
easily; it simply forwards the query to its own random oracle ROTh. When i = HMAC, the
simulator will parse s into a key K ∈ {0, 1}hl and a context string Y ∈ {0, 1}∗ and simulate
ROHMAC(K,Y ). This simulation should be compatible with a view of the random oracles ROx as
computing TKDFx[ROHMAC].

Initially, Sim randomly samples the response y to any simulated ROHMAC query from {0, 1}hl .
Repeated queries are cached in a table M . Next, Sim checks whether the query could be part of
an attempt to compute TKDFx[Sim] for some x. If so, it may have to program its response for
consistency with ROx, or it may store its response in a lookup table T to enable future programming.

The only values that need programming are the first-class keys and MAC values. These are all
outputs of Expand[ROHMAC]. Sim can tell if a particular ROHMAC query is made by Expand by
checking its formatting. The inputs Y of all Expand’s queries in the key schedule start with 3
bytes of fixed values and a label ` between 8 and 18 bytes long that starts with the string “tls13”.
They end with a 1 byte counter that TLS 1.3 fixes to 0x01. Sim pattern-matches this label to
determine which key is being derived. It has a subroutine L to translate the few labels which are
used in the last derivation step for multiple keys.

Whenever Sim detects the label of an intermediate key derivation query like the Expand calls
used to compute ES, HS, or MS, it stores the response to this query in table T under the name
of the key in question. If D computes TKDF honestly, these tables will allow the simulator to
backtrack through the execution to identify all of the inputs to TKDF. Inputs to ROHMAC queries
made by HKDF.Extract do not contain labels, so some tables contain multiple intermediate values.
Even without labels, each intermediate value should only appear in one key derivation except in
the unlikely event of a collision in ROHMAC.

The first game in our sequence is Game0 which is the “ideal world” setting of the indifferen-
tiability game. Here, Priv queries are answered using a random function RO drawn from ES, and
Pub queries are answered with Sim[RO].

In Game1 (cf. Figure 5.1.3), we set a bad flag badC and abort whenever Sim samples a random
answer y that collides with the input or output of any previous simulator query. We track these
inputs and outputs in a list L. For each new query, there are at most 2qPub points to collide with.
Since y is sampled uniformly from {0, 1}hl , the probability of such a collision over all queries is at
most 2q2

Pub

2hl by a birthday and union bound). Then

|Pr[Game1]− Pr[Game0]| ≤ 2q2
Pub

2hl .

In Game2 (Figure5.1.3), the Finalize oracle computes TKDF[ROHMAC] on the input to every
query to the Priv oracle, using Pub as its hash function. It discards the results of this computation,
so this change can affect the outcome of the game only if one of the additional Pub queries sets
the badC flag. The TKDF function queries its oracle at most 6 times per execution, so there are
no more than 6qPriv new queries. There are now a total of qPub + 6qPriv queries to Pub, so the
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Sim(i, s)
Sim[RO](i, s):
1 if M [s] 6= ⊥
2 then return M [s]
3 if i = Th then return ROTh(K‖Y )

// If not, this query should simulate ROHMAC

4 K, Y ← s
// Randomly sample a response

5 y $←− {0, 1}hl

6 if Y = 0
7 TPSK[y]← K

8 else if K = 0
9 TdHS[y]← Y

10 else if Tfkb/fkC/fkS
[K] 6= ⊥

11 ES← TES[TBK/CHTS/SHTS[K]]
12 PSK← TPSK[ES]
13 if PSK 6= ⊥
14 y ← RObinder(PSK,Y )
15 HTS← TBK/CHTS/SHTS[K]
16 (`′,HS,H2)← THS/d[HTS]
17 (dES,DHE)← TdES/DHE[HS]
18 PSK← TPSK[TES/HS[dES]]
19 if PSK 6= ⊥
20 y ← RO`′[1](PSK,DHE,H2,Y )[L(`)]
21 else TdES/DHE[y]← (K,Y )
22 if (Y [0 . . . 2] 6= hl)

∨Y [2] < 8) ∨ (Y [2] > 18)
∨(Y [3 . . . 9] 6= ”tls13”)
∨(Y [|Y | − 1] 6= 1)
// This query does not match HKDF.Expand formatting.

23 M [s]← y

24 return y
// Parse the Expand formatting to find the label.

25 len` ← Y [2]
26 `← Y [3 . . . (3 + len`)]
27 d← Y [(3 + len`) . . . |Y |]

. . . // continued in next column

Sim[RO](i, s)// continued:
28 if ` = `binder and d = H("")
29 TES[y]← K

30 else if ` = `dES/dHS and d = H("")
31 TES/HS[y]← K

32 else if ` ∈ {`CHTS, `SHTS}
33 THS/d[y]← (L(`),K, d)
34 else if ∃k ∈ {ETS,EEMS} with ` = `k and TPSK[K] 6= ⊥
35 y ← ROk(TPSK[K], d)
36 else if ∃k ∈ {CATS,SATS,EMS,RMS} with ` = `k

37 (dES,DHE)← TdES/DHE[TES/HS[TdHS[K]]]
38 PSK← TPSK[TES/HS[dES]]
39 if PSK 6= ⊥
40 y ← ROk(PSK,DHE, d)
41 else if ` = `fk and d = ""
42 TBK/CHTS/SHTS[y]← K

43 else if ` ∈ {"tls13 key", "tls13 iv"}
44 and d = H("")
45 (`′,HS,H2)← THS/d[K]
46 (dES,DHE)← TdES/DHE[HS]
47 PSK← TPSK[TES/HS[dES]]
48 if PSK 6= ⊥
49 y ← RO`′[0](PSK,DHE,H2)[L(`)]

50 M [s]← y

51 return y

Label translator L(`):
52 if ` = `CHTS

53 return htkC , ClientFinished
54 if ` = `SHTS

55 return htkS , ServerFinished
56 if ` = "tls13 key"
57 return 0
58 if ` = "tls13 iv"
59 return 1
60 return ⊥

Figure 6: Simulator Sim used in the proof of Lemma 5.4.
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probability that badC is set increases by another birthday bound.

|Pr[Game2]− Pr[Game1]| ≤ 2(qPub + 6qPriv)2

2hl .

The next step is the most subtle. In Game3 (Figure 5.1.3), we move the new computations of
TKDF from the Finalize oracle into Priv. When Priv is called with index i and input X, it
still returns ROi(X). First, however, it computes TKDFi[Pub](X). It discards the result of this
computation, so the behavior of the Priv oracle does not change in the adversary’s view.

However, queries to Priv now run the simulator Sim. They can update its state and set the
global badC flag. This has two consequences. First, the changed order of Pub queries may cause
badC to be set in Game3 when it was not set in Game2, or vice versa. Second, queries to Priv in
Game3 can add entries to the reverse lookup table T . These new entries can be used to satisfy the
conditions the simulator uses to check if a full execution of TKDF has been completed. Then the
simulator in Game3 may program responses that were not programmed in Game2.

We claim that despite the changed order of the queries, Game3 and Game2 behave identically
in the adversary’s view except when one of them would set the badC flag, assuming that the same
random coins are used in both games. Let E denote the event that badC is set either when A plays
Game2 or when A plays Game3. Differences between the two games about when this flag is set are
obviously irrelevant unless event E occurs.

The argument that Pub responses are identical in both games except when event E occurs is
more subtle. Assume event E does not occur. There must be a first adversarial query to Pub that
gives different responses in Game3 and Game2, all oracles behave identically in both games. We
name this query Q. Both games sample the same random responses, so query Q has its response
programmed by the simulator in at least one of the two games.

The simulator decides whether to program based on the entries of reverse lookup table T , so
we consider the differences in this table between our two games. Let T2 be the table in Game2 at
the time when Query Q is made, and let T3 be the table at the same point in Game4. Entries in
the reverse lookup table are indexed by randomly sampled values y, so they cannot be overwritten
by later queries unless event E occurs. Furthermore, until query Q is made, every Pub query in
Game2 that updates T gives the identical response in Game3, so every entry in T2 is also an entry
in T3. Therefore any query which is programmed in Game2, up to and including query Q, will be
programmed to the same response in Game3. The contrapositive statement says that any response
which is randomly sampled in Game3 will be also be randomly sampled in Game2.

It follows that query Q must have a randomly sampled response in Game2 but be programmed
in Game3. There must exist a sequence of entries in T3 that correspond to a full execution of
TKDF[Pub] on some input. We name the queries that created these entries Q1, . . . , Qi. In each
execution, our simulator either stores an entry in T , or it programs the response y, never both.
Therefore queries Q1, . . . Qi have randomly sampled responses. By the definition of TKDF, the
output of each query Qj is contained in the input of the next query Qj+1. The output of Qi is
contained in the input of Q, so we identify query Q with Qi+1.

In Game2, one of the entries in the sequence is not present in T2. Therefore one of the queries
Q1, . . . , Qi is not made before queryQ in Game2. This query, Qj must have been one of the Finalize
queries of Game2 that were moved earlier in Game3. It will therefore be made in Finalize, after
all of the other queries, including Qj+1. The randomly sampled output of Qj will collide with the
input of earlier query Qj+1, setting badC and causing event E to occur.

The difference in advantage in Game3 and Game2 is therefore bounded by the probability of
event E. Both games make qPub + 6qPriv queries to Pub, each of which sets badC is set with
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probability at most 2(qPub+6qPriv)
2hl . By a union bound,

|Pr[Game3]− Pr[Game2]| ≤ 4(qPub + 6qPriv)2

2hl .

Pseudocode for the last three games is given in Figure 5.1.3. Now we adjust Priv in Game4
to return the result of C[Pub] instead of querying RO. Unless badC is set, TKDF[Pub](r,X) =
ROr(X). The function TKDF makes sequential queries to Pub that are properly formatted, so our
Sim will program the last query in the sequence for consistency with the appropriate RO. This
programming occurs every time TKDF[Pub] is called, unless the last query is a repeated query. In
that case, it will be answered using table M instead of RO. However, if the queries in the sequence
occur out of order, they will always cause badC to be set because the output of a later query will
match the input to an earlier query. Then the adversary wins in Game4 with the same likelihood
as Game3, unless badC is set. If badC is set, both games have a win probability of 0 thanks to the
check in the Finalize oracle, so

Pr[Game4] = Pr[Game3].

Starting with Game5, we stop returning 0 in Finalize when badC is set. This increases the
win probability by at most Pr[Game4 sets badC ] ≤ 2(qPub+6qPriv)2

2hl , by the same birthday and union
bounds over the qPub + 6qPriv queries to Pub.

|Pr[Game5]− Pr[Game4]| ≤ 2(qPub + 6qPriv)2

2hl .

From Game4 onward, all queries to ROHMAC are made by Sim. In Game6, therefore, we can inline
the lazily sampled ROHMAC oracle as part of the simulator. Repeated queries to Sim are cached,
so the random oracle does not need to maintain its own lookup table. Now all responses from
Pub are randomly sampled from {0, 1}hl , regardless of the contents of table T . The table and the
conditional statements used to maintain it are now redundant bookkeeping, as is the unused badC
flag after Game5. We eliminate all of this code from Game6 without detection by the adversary.
Then

Pr[Game6] = Pr[Game5].

The remaining code of Sim just implements random oracles ROHMAC and ROTh. Consequently
Game6 is identical to the ideal indifferentiability game for the TKDF construction. Collecting
bounds proves the theorem.

We have now established that in order to give a (tight) security proof for TLS 1.3 PSK-only
and PSK-(EC)DHE, it suffices to prove (tight) security of the protocol on the right-hand side of
Figure 1.

6 Modularizing Handshake Encryption
Next will argue that using “internal” keys to encrypt handshake messages on the TLS 1.3 record-
layer does not impact the security of other keys established by the handshake. Theorem 6.2 below
formulates our argument in a general way, applicable to any multi-stage key exchange protocol, so
that future analyses of similar protocols might take advantage of this modularity as well.

Intuitively, we argue as follows. Let KE2 be a protocol that provides multiple different stages
with different external keys (i.e., none of the keys is used in the protocol, e.g., to encrypt messages),
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Game Game0

Initialize():
1 b← 0
2 RO $←− ES
3 state $←− ε

Sim(i, s, state):
1 if i = Th then return ROTh, (s)
2 T,M ← state
3 if M [s] 6= ⊥
4 then return M [s]
5 K,Y ← s

6 y ← Sim[RO](K,Y , T )
7 M [s]← y

8 return y

Sim[RO](K,Y , T ):
// Randomly sample a response

9 y $←− {0, 1}hl

10 if Y = 0
11 TPSK[y]← K

12 else if K = 0
13 TdHS[y]← Y
14 else if Tfkb/fkC/fkS

[K] 6= ⊥
15 ES← TES[TBK/CHTS/SHTS[K]]
16 PSK← TPSK[ES]
17 if PSK 6= ⊥
18 y ← RObinder(PSK,Y )
19 HTS← TBK/CHTS/SHTS[K]
20 (`′,HS,H2)← THS/d[HTS]
21 (dES,DHE)← TdES/DHE[HS]
22 PSK← TPSK[TES/HS[dES]]
23 if PSK 6= ⊥
24 y ← RO`′[1](PSK,DHE,H2,Y )[L(`)]
25 else TdES/DHE[y]← (K,Y )
26 if (Y [0 . . . 2] 6= hl)

∨Y [2] < 8) ∨ (Y [2] > 18)
∨(Y [3 . . . 9] 6= ”tls13”)
∨(Y [|Y | − 1] 6= 1)
// This query does not match HKDF.Expand formatting.

27 return y
// Parse the Expand formatting to find the label.

28 len` ← Y [2]
29 `← Y [3 . . . (3 + len`)]
30 d← Y [(3 + len`) . . . |Y |]

. . . // continued in next column

Sim[RO](K,Y , T )// ...continued:
31 if ` = `binder and d = H("")
32 TES[y]← K

33 else if ` = `dES/dHS and d = H("")
34 TES/HS[y]← K

35 else if ` ∈ {`CHTS, `SHTS}
36 THS/d[y]← (L(`),K, d)
37 else if ∃k ∈ {ETS,EEMS} with ` = `k and TPSK[K] 6=
⊥

38 y ← ROk(TPSK[K], d)
39 else if ∃k ∈ {CATS, SATS,EMS,RMS} with ` = `k

40 (dES,DHE)← TdES/DHE[TES/HS[TdHS[K])]]
41 PSK← TPSK[TES/HS[dES]]
42 if PSK 6= ⊥
43 y ← ROk(PSK,DHE, d)
44 else if ` = `fk and d = ""
45 TBK/CHTS/SHTS[y]← K

46 else if ` ∈ {"tls13 key", "tls13 iv"}
47 and d = H("")
48 (`′,HS,H2)← THS/d[K]
49 (dES,DHE)← TdES/DHE[HS]
50 PSK← TPSK[TES/HS[dES]]
51 if PSK 6= ⊥
52 y ← RO`′[0](PSK,DHE,H2)[L(`)]

53 return y

Pub(i, s):
1 (z, state)← Sim(i, s, state)
2 return z

Priv(r,X):
1 return ROr(X)

Finalize(b′):

1 return b′

Figure 7: Indiff game instantiated with simulator Sim, also Game Game0 in the proof of Lemma 5.4.
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Games Game1

Sim(i, s, state):
1 if i = Th then return ROTh(s)
2 T,M,L← state
3 if M [s] 6= ⊥
4 then return M [s]
5 K,Y ← s

6 y ← Sim[RO](K,Y , T,L)
7 M [s]← y

8 L← L ∪ {y, s}
9 return y

Sim[RO](K,Y , T,L):

10 y $←− {0, 1}hl

11 if y ∈ L or ∃t ∈ L such that y ∈ t
12 badC ← true

. . .

Finalize(b′):
1 if badC then return 0
2 return b′

Figure 8: Game Game1 in the proof of Lemma 5.4.

Game Game2

Priv(r,X):

1 Q← Q
⋃
{(r,X)}

2 return ROr(X)

Finalize(b′):
1 for (r,X) ∈ Q do
2 z ← TKDFr[Pub](X)
3 if badC then return 0
4 return b′

Game Game3

Priv(r,X):
1 z ← TKDFr[Pub](X)
2 return ROr(X)

Finalize(b′):
1 if badC then return 0
2 return b′

Figure 9: Games Game2 and Game3 in the proof of Lemma 5.4.

Games Game4 , Game5

Priv(r,X):
1 z ← TKDFr[Pub](X)
2 return z

Finalize(b′):

1 if badC then return 0
2 return b′

Game Game6

Sim[RO](i, s, T ):

1 y $←− {0, 1}hl

2 return y

Figure 10: Games Game4, Game5, and Game6 in the proof of Lemma 5.4.
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KE1.Run(u, πiu, psk,m):

1 keys ← (πiu.skey[stage] for stage ∈ KTransform)
2 acc ← (πiu.accepted[stage] 6=∞ for stage in [1 . . .STAGES])
3 m̃← TransformRecv(keys, πiu.role, acc,m)
4 (πiu, m̃′)← KE2.Run(u, πiu, psk, m̃)
5 keys ← (πiu.skey[stage] for stage ∈ KTransform)
6 acc ← (πiu.accepted[stage] 6=∞ for stage in [1 . . .STAGES])
7 m′ ← TransformSend(keys, πiu.role, acc, m̃′)
8 return (πiu,m′)

Figure 11: Key exchange KE1 built by transforming protocol messages of KE2.

and let KE1 be the same protocol, except that some keys are “internal” and used, e.g., to encrypt
certain protocol messages. We argue that either using “internal” keys in KE1 does not harm the
security of other keys of KE1, or KE2 cannot be secure in the first place. This will establish that we
can prove security of a variant TLS 1.3 without handshake encryption (in an accordingly simpler
model), and then lift this result to the actual TLS 1.3 protocol with handshake encryption and the
handshake traffic keys treated as “internal” keys.

Theorem 6.1. Let KE1 be the TLS 1.3 PSK-only resp. PSK-(EC)DHE mode with handshake
encryption (i.e., with internal stages KE1.INT = {3, 4}) as specified on the right-hand side in
Figure 1. Let KE2 be the same mode without handshake encryption (i.e., KE1.INT = ∅ and AEAD-
encryption/decryption of messages is omitted). Let TransformSend and TransformRecv be the AEAD
encryption resp. decryption algorithms deployed in TLS 1.3 and KTransform = KE1.INT = {3, 4}.
Then we have

AdvMSKE
KE1 (t, qNS, qS, qRS, qRL, qT, qRO) ≤ AdvMSKE

KE2 (t+ tAEAD · qS, qNS, qS, qRS + qS, qRL, qT, qRO),

where tAEAD is the maximum time required to execute AEAD encryption or decryption of TLS 1.3
messages.

For TLS 1.3 this means that we will not consider any security guarantees provided by the
additional encryption of handshake messages. We consider this as reasonable for PSK-mode ci-
phersuites, because the main purposes of handshake message encryption in TLS 1.3 is to hide the
identities of communicating parties, e.g., in digital certificates, cf. [1]. In PSK mode there are no
such identities. The pskid might be viewed as a string that could identify communicating parties,
but it is sent unencrypted in the ClientHello message, anyway, the encryption of subsequent
handshake messages would not contribute to its protection.

6.1 Handshake Encryption as a Modular Transformation

Formally, let KE2 = (KGen,Activate,Run) be a key exchange protocol with no internal keys. We
define another key exchange protocol KE1 which is parameterized by two functions TransformSend
and TransformRecv and a list KTransform ⊆ {1, . . . ,STAGES}, where STAGES is the number of stages of
KE2. KE1 inherits its key generation and activation algorithms from KE2. In its KE1.Run algorithm,
described in Figure 11, it essentially applies TransformRecv to a message before calling KE2.Run, and
then TransformSend to the returned message, to transform the protocol messages as they pass over
a wire. This transformation may be, for instance, the encryption and decryption of messages of
KE2 using an internal key.
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In addition to the messages, both algorithms take as input the list of stages that have been
accepted by the current session, its role (initiator or responder) in the protocol, and a list of the
keys from all stages in KTransform. In the security game for KE1, the stages in KTransform will produce
internal keys; all other keys remain external.

Although TransformSend and TransformRecv change the messages as they pass over the wire,
the way that the messages are processed after receipt by KE2.Run must not change. In particular,
KE2.Run, internally run within KE1.Run, still expects messages of the same format and content; also,
KE1 defines its session and contributive identifiers, as well as all other session-specific information
in the same way as KE2.

Correctness. Not all choices of TransformSend and TransformRecv are “good choices”. For example,
if mauling overwrites critical pieces of the protocol messages, then no honest session would ever
accept a key. The resulting key exchange KE2 would be vacuously “secure” because it would be
unusable.

For our perspective to be meaningful, we therefore need a correctness property that guarantees
that two honest parties executing KE1 with no adversarial interference will accept at all stages.
Informally, we wish that if two sessions honestly executing KE2 will accept keys for stage s with
probability p, then two sessions honestly executing KE1 will accept keys for stage s with probability
close to p. This property only needs to hold when the protocol messages are relayed honestly,
with no changes or delivery failures beyond those caused by the application of TransformSend and
TransformRecv.

We do not give a formal definition or proof of correctness for TLS 1.3, but we note that in
TLS 1.3, the transformation algorithms are AEAD encryption and decryption. Since decryption
failures cannot occur in the standardized AEAD algorithms if messages are honestly relayed (due
to their perfect correctness), received messages will always match their corresponding sent message,
and correctness of TransformSend and TransformRecv follows.

Security. We wish KE1 to be secure if KE2 is secure. This should be independent of TransformSend
and TransformRecv, i.e., should hold even if TransformSend leaks its keys and fully overwrites all
protocol messages. The following theorem established this result, using that the keys used for the
transformation are internal and TransformSend and TransformRecv have no access to other privileged
information. Therefore, their behavior can be mimicked by a reduction to the security of KE2 as
long as KE2 has “public session matching” for the stages in KTransform of KE1, i.e., session partnering
(or matching) for those stages is decidable from the publicly exchanged messages.8

Theorem 6.2. Let KE2 be a key exchange protocol with STAGES stages, KE2.INT being empty,
and public session matching. Let TransformSend and TransformRecv be algorithms as above and
KTransform ⊆ {1, . . . ,STAGES}. Define key exchange KE1 such that KE1.Run is described in Fig-
ure 11, KE1.INT = KTransform, and all other attributes of KE1 are identical to those of KE2.

Let A be an adversary with running time t against the multi-stage key exchange security of
KE1, making qS queries to the Send oracle. Then there exists an adversary B with running time
≈ t+ qSm, where m is the maximum running time of TransformSend and TransformRecv, such that

AdvMSKE
KE1 (A) ≤ AdvMSKE

KE2 (B).

B makes at most qS queries to RevSessionKey in addition to queries made by A and the same
number of queries as A to all other oracles in the MSKE game.

8The property of “public session matching” has already already come up when considering the composition of
(regular or multi-stage) key exchange protocols with subsequent symmetric-key protocols [12, 22, 23, 35].
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Proof. Adversary B runs adversary A and relays all of its queries to the appropriate oracles in its
own MSKE game, except for Send queries. It maintains the time time of the MSKE game itself,
incrementing it once per query. For each session πiu, it maintains a list keysiu that is initially empty
and a list acciu in which acciu[stage] is initially false for each stage ∈ KTransform.

WhenAmakes a query Send(u, i,m), B first checks for each stage ∈ KTransform with acciu[stage] =
false whether πiu.accepted[stage] 6= ∞. For each stage which satisfies this condition, B checks
whether πiu.tested[stage] or πiu.revealed[stage] is true and if πiu has a partnered session (matching
sid[stage]) which has been tested or revealed. (The latter check for partnering is possible because
KE1 has public session matching.) If any of these conditions is true, then B knows πiu.skey[stage].
Otherwise, it makes an extra query RevSessionKey(u, i, stage) and adds the response to keysiu.
Then it marks acciu[stage] ← true and computes m̃ ← TransformRecv(keysiu, πiu.role, acciu,m). It
queries its own Send oracle on the tuple (u, i, m̃) and captures the response m̃′. Then it returns
m′ ← TransformSend(keysiu, πiu.role, acciu, m̃′) to A.
B perfectly simulates KE1 for A, so we wish that if A wins its simulated game, B should also win

its game. A can win the MSKE game in one of three ways: it can violate the Sound predicate, it can
violate the ExplicitAuth predicate, or it can satisfy the Fresh predicate and guess the secret bit b.
All of the variables tracked by the ExplicitAuth and Sound predicates are maintained by the MSKE
game for KE1, not by B. Therefore A wins the simulated game by violating Sound or ExplicitAuth
only if Sound or ExplicitAuth is violated in the MSKE game for KE2. In this case, B also wins.

If A wins by guessing the secret bit b, the story is more complicated. The bit b is chosen by
the MSKE game, so if A guesses correctly, then so will B. However, a correct guess only matters
if the queries do not violate the Fresh predicate. Even if A did not violate the Fresh predicate, B
makes up to qS additional RevSessionKey queries. Each of these could cause Fresh to be set to
false. We claim that none of these queries violate the Fresh predicate.

The Fresh predicate requires that no session be both tested and revealed. B only reveals keys
that have not already been tested, so the only worry is that A will test this key later. However, all
keys that B reveals are in KTransform, which is a subset of KE1.INT, meaning they are internal keys.
These keys cannot be tested if any session which has accepted it has moved on with the protocol.
Since B only reveals a key when a session has both accepted that key and received the next protocol
message, it will have moved on and A can not make any later Test queries on a key that B has
revealed.

The next condition of Fresh is that a tested session’s partner cannot be tested or revealed. B
ensures that such a Test query does not occur before the RevSessionKey query. Again, the
Test query cannot happen after the RevSessionKey query because the session whose key was
revealed has moved on with the protocol. Since all the revealed keys are internal in the simulated
game, A cannot test them after this point.

The remaining three conditions of the Fresh predicate establish different levels of forward secrecy.
They check for the existence of a contributive partner. We want to exclude the situation that a
contributive partner exists in A’s simulated game, but not in B’s game. However, contributive
identifiers are defined identically in KE1 and KE2. Therefore if two sessions πiu and πjv have matching
contributive identifiers in the simulated game for KE2, they will also have matching identfiers in
the game for KE1.

It is therefore not possible for A to win its simulated MSKE game unless B also wins its MSKE
game, and the theorem follows.
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7 Tight Security of the TLS 1.3 PSK Modes
In this section, we apply the insights gained in Sections 5 and 6 to obtain tight security bounds
for both the PSK-only and the PSK-(EC)DHE mode of TLS 1.3. To that end, we first present the
protocol-specific properties of the TLS 1.3 PSK-only and PSK-(EC)DHE modes such that they can
be viewed as multi-stage key exchange (MSKE) protocols as defined in Section 3. Then, we prove
tight security bounds in the MSKE model in Theorem 7.1 for the TLS 1.3 PSK-(EC)DHE mode
and in Theorem 7.7 for the TLS 1.3 PSK-only mode.

7.1 TLS 1.3 PSK-only/PSK-(EC)DHE as a MSKE Protocol

We begin by capturing the TLS 1.3 PSK-only and PSK-(EC)DHE modes, specified in Figure 1,
formally as MSKE protocols. To this end, we must explicitly define the variables discussed in
Section 3. In particular, we have to define the stages themselves, which stages are internal and which
replayable, the session and contributive identifiers, when stages receive explicit authentication, and
when stages become forward secret.

Stages. The TLS 1.3 PSK-only/PSK-(EC)DHE handshake protocol has eight stages (i.e., STAGES =
8), corresponding to the keys ETS, EEMS, htkS , htkC , CATS, SATS, EMS, and RMS in that order.
The set INT of internal keys contains htkC and htkS , the handshake traffic encryption keys. Stages
ETS and EEMS are replayable: REPLAY[s] is true for s ∈ {1, 2} and false for all others.

Session and contributive identifiers. The session and contributive identifiers for stages are
tuples (labels, ctxt), where labels is a unique label identifying stage s, and ctxt is the transcript that
enters key’s derivation. The session identifiers (sid[s])s∈{1,...,8} are defined as follows:9

sid[1] =
(
“ETS”, (CH, CKS†, CPSK)

)
,

sid[2] =
(
“EEMS”, (CH, CKS†, CPSK)

)
,

sid[3] =
(
“htkC”, (CH, CKS†, CPSK, SH, SKS†, SPSK)

)
,

sid[4] =
(
“htkS”, (CH, CKS†, CPSK, SH, SKS†, SPSK)

)
,

sid[5] =
(
“CATS”, (CH, CKS†, CPSK, SH, SKS†, SPSK, EE, SF)

)
,

sid[6] =
(
“SATS”, (CH, CKS†, CPSK, SH, SKS†, SPSK, EE, SF)

)
,

sid[7] =
(
“EMS”, (CH, CKS†, CPSK, SH, SKS†, SPSK, EE, SF)

)
, and

sid[8] =
(
“RMS”, (CH, CKS†, CPSK, SH, SKS†, SPSK, EE, SF, CF)

)
.

To make sure that a server that received ClientHello, ClientKeyShare†, and ClientPreSharedKey
untampered can be tested in stages 3 and 4, even if the sending client did not receive the server’s
answer, we set the contributive identifiers of stages 3 and 4 such that cidrole reflects the messages
that a session in role role must have honestly received for testing to be allowed. Namely, we let

9Components marked with † are only part of the TLS 1.3 PSK-(EC)DHE handshake.
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clients (resp. servers) upon sending (resp. receving) the messages (CH, CKS†, CPSK) set

cidresponder[3] =
(
“htkC”, (CH, CKS†, CPSK)

)
and

cidresponder[4] =
(
“htkS”, (CH, CKS†, CPSK)

)
.

Further, when the client receives (resp. the server sends) the message (SH, SKS†, SPSK), they set

cid initiator[3] = sid[3] and cid initiator[4] = sid[4].

For all other stages s ∈ {1, 2, 5, 6, 7, 8}, cid initiator[s] = cidresponder[s] = sid[s] is set upon acceptance
of the respective stage (i.e., when sid[s] is set as well).

Explicit authentication. For initiator sessions, all stages achieve explicit authentication when
the ServerFinished message is verified successfully. This happens right before stage 5 (i.e., CATS)
is accepted. That is, upon accepting stage 5 all previous stages receive explicit authentication
retroactively and all following stages are explicitly authenticated upon acceptance. Formally, we
set EAUTH[initiator, s] = 5 for all stages s ∈ {1, . . . , 8}.

For responder session, all stages receive explicit authentication upon (successful) verification
of the ClientFinished message. This occurs right before the acceptance of stage 8 (i.e., RMS).
Similar to initiators, responders receive explicit authentication for all stages upon acceptance of
stage 8 since this is the last stage of the protocol. Accordingly, we set EAUTH[responder, s] = 8 for
all stages s ∈ {1, . . . , 8}.

Forward secrecy. Only keys dependent on a Diffie–Hellman secret achieve forward secrecy, so
all stages s of the PSK-only handshake have FS[r, s, fs] = FS[r, s,wfs2] = ∞ for both roles r ∈
{initiator, responder}. In the PSK-(EC)DHE handshake, full forward secrecy is achieved at the
same stage as explicit authentication for all keys except ETS and EEMS, which are never forward
secret. That is, for both roles r and stages s ∈ {3, . . . , 8} we have FS[r, s, fs] = EAUTH[r, s]. All keys
except ETS and EEMS possess weak forward secrecy 2 upon acceptance, so we set FS[r, s,wfs2] = s
for stages s ∈ {3, . . . , 8}. Finally, as stages 1 and 2 (i.e., ETS and EEMS) never achieve forward
secrecy we set FS[r, s, fs] = FS[r, s,wfs2] =∞ for both roles r and stages s ∈ {1, 2}.

7.2 Tight Security Analysis of TLS 1.3 PSK-(EC)DHE

We now come to the tight MSKE security result for the TLS 1.3 PSK-(EC)DHE handshake.

Theorem 7.1. Let TLS1.3-PSK-(EC)DHE be the TLS 1.3 PSK-(EC)DHE handshake protocol (with
optional 0-RTT) as specified on the right-hand side in Figure 1 without handshake encryption. Let
G be the Diffie–Hellman group of order p. Let nl be the length in bits of the nonce, let hl be the
output length in bits of H, and let the pre-shared key space be KE.PSKS = {0, 1}hl . We model
the functions H and TKDFx for each x ∈ {binder , . . . ,RMS} as 12 independent random oracles
ROTh,RObinder , . . . ,RORMS. Then,

AdvMSKE
TLS1.3-PSK-(EC)DHE(t, qNS, qS, qRS, qRL, qT, qRO) ≤ 2q2

S

2nl · p

+ (qRO + qS)2 + q2
NS + (qRO + 6qS)2 + qRO · qNS + qS

2hl + 4(t+ 4 log(p) · qRO)2

p
.
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Remark 7.2. Our MSKE model from Section 3 assumes pre-shared keys to be uniformly random
sampled from KE.PSKS, where here KE.PSKS = {0, 1}hl . This matches how pre-shared keys are
derived for session resumption, as well as our analysis of domain separation, which assumes pre-
shared keys to be of length hl.
Remark 7.3. Our bound is easily adapted to any distribution on {0, 1}hl in order to accommodate
out-of-band pre-shared keys that satisfy the length requirement but do not have full entropy. Ex-
pectedly, lower-entropy PSK distributions result in weaker bounds, due to the increased chance for
collisions between PSKs as well as the adversary guessing a PSK.
Remark 7.4. In order to deal with small subgroup attacks, note that we assume that implementa-
tions properly validate received key shares by checking for membership in the appropriate prime-
order group. This has to be done explicitly for NIST curves (secp256r1, secp384r1, and secp521r1
in TLS 1.3 [54, Section 4.2.8.2]). Curves like x25519 and x448 rule out small subgroup attacks
implicitly, with a mechanism called “clamping”. In our proof we treat Diffie–Hellman groups as
prime-order groups with uniform exponents in Zp, as common in the cryptographic literature. How-
ever, we stress that clamping as in RFC 7748 [48] makes exponents non-uniform over Zp. Hence,
we implicitly assume that this difference in the DH key generation is indistinguishable for the
adversary.

Proof. To prove our bound, we make an incremental series of changes to the key exchange security
game GTLS1.3-PSK-(EC)DHE,A. We divide the proof into three phases reflecting the three ways of the
adversary to win the security game.

1. We establish that the adversary cannot violate the predicate Sound.

2. We establish the same for the predicate ExplicitAuth.

3. Finally, we ensure that all Test queries return uniformly random keys independent of the
challenge bit b if predicate Fresh is not violated.

We can then conclude that the adversary cannot do better than random guessing to win the game,
i.e., its advantage is 0.

Game 0 (Initial game). The initial game GameA0 is the key exchange security gameGTLS1.3-PSK-(EC)DHE,A
played for the TLS 1.3 PSK-(EC)DHE handshake (with optional 0-RTT) as specified in Fig-
ure 1 (right), but without handshake encryption. Note that the functions H and TKDFx for
x ∈ {binder , . . . ,RMS} are modeled as 12 independent random oracles ROTh,RObinder , . . . ,RORMS.
We implement random oracle ROx by a look-up table ROListx assigning inputs to outputs. We
assume that every look-up table implementing a random oracle is stored in a data structure that
enables constant time access when indexed either by random oracle inputs or by random oracle
outputs, using two hash tables, for instance. By definition, we have

Pr[GameA0 ⇒ 1] = AdvMSKE
TLS1.3-PSK-(EC)DHE(A).

Phase 1: Ensuring Predicate Sound cannot be violated

Game 1 (Exclude collisions of nonces and group elements). In GameA1 , we eliminate collisions
among nonces and group elements computed by honest sessions via two new flags:

• badC is set when two honest sessions choose the same nonce and group element, and
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• badO is set when an honest responder samples some nonce and group element that have already
been received by another session. We view this nonce and group element as having been chosen
by an adversarial session.

If either badC or badO is set, the game returns 0 from Finalize.
By the well-known identical-until-bad-lemma [6, Lemma 2], we get

Pr[GameA0 ⇒ 1] ≤ Pr[GameA1 ⇒ 1] + Pr[GameA1 sets badC ]
+ Pr[GameA1 sets badO]. (1)

Let us separately analyze the probabilities that GameA1 sets the flags badC and badO. Each Send
query causes at most one session to uniformly and independently sample a nonce r $←− {0, 1}nl and
a group element g $←− G. If the badC flag is set, we have that there exists some Send query that
creates a session πiu using Activate. This new session samples nonce and group element(r, g) which
were previously sampled by another session πi′u′ . That is, the probability for badC to be set is the
probability of a collision among the (up to) qS pairs of uniformly and independently sampled nonces
and group elements; we can use the birthday bound to bound the probability of setting badC by

Pr[GameA1 sets badC ] ≤ q2
S

2nl · p
. (2)

where qS is the number of Send queries.
Next, if the game sets badO, we have that there is a Send query which creates a new session

πjv. This session samples a nonce rS $←− {0, 1}nl and a group element Y $←− G, which were already
received by another session πiu. There are at most qS sessions, so there are no more than qS received
pairs which which (rS , Y ) can collide. Since πjv samples its nonce and group element uniformly and
independently at random from {0, 1}nl × G, we get by the union bound that the probability that
πjv samples one of the already received pairs is bounded from above by qS/(2nl · p). Overall, we
again get by the union bound that there is such a collision for any πjv with probability

Pr[GameA1 sets badO] ≤ qS ·
qS

2nl · p
= q2

S

2nl · p
. (3)

Combining Equations (1)–(3), we get

Pr[GameA∗0 ⇒ 1] ≤ Pr[GameA∗1 ⇒ 1] + 2q2
S

2nl · p
. (4)

Game 2 (Exclude binder collisions). In game GameA2 , we let the adversary lose if there is a
collision among the binder values computed by any honest session. Whenever two distinct queries
to RObinder return the same value, we set a flag badbinder and return 0 from Finalize.

To implement this, we add a table CollListbinder to the random oracle RObinder (this table is
currently redundant to the table implementing RObinder , but will be useful in later game hops,
where we will introduce changes such that it is not guaranteed anymore that all binder values will
be contained in the RObinder table). Whenever RObinder computes a binder value b = RObinder(PSK,
ctxt), we log CollListbinder [b] ← (PSK, ctxt). Now, whenever RObinder computes some binder b for
some tuple s and CollListbinder [b] is not empty, there has to be a tuple s′ = (PSK, ctxt) with
RObinder(psk, ctxt) = b queried before and we have found a collision if s 6= s′. In this case we set
badbinder .
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Again by the identical-until-bad-lemma,

Pr[GameA1 ⇒ 1] ≤ Pr[GameA2 ⇒ 1] + Pr[GameA2 sets badbinder ].

To bound the probability that the game sets flag badbinder , we construct a reduction B1 to the
collision-resistance of RObinder . The reduction B1 simulates Game 2 for adversary A. It implements
all oracles itself except for RObinder . B1 will need to query its own oracle RObinder at most once
per RO query and once per Send query, so it makes qRO + qS queries in total. If the flag badbinder
would be set in Game 2, which can be checked efficiently using CollListbinder as described before,
then the reduction has found a collision (s, s′) with s 6= s′ such that RObinder(s) = RObinder(s′).
Reduction B1 then outputs (s, s′) and wins the collision-resistance game.

Therefore, we have that

Pr[GameA1 ⇒ 1] ≤ Pr[GameA2 ⇒ 1] + AdvCR
RObinder (qRO + qS). (5)

Game 3 (Exclude collisions of pre-shared keys). In game GameA3 , we set a flag badPC and return
0 from Finalize whenever the NewSecret oracle samples a previously sampled pre-shared key
(again). Formally, we set badPC if there exist two distinct tuples (u, v, pskid) and (u′, v′, pskid ′)
with pskeys[(u, v, pskid)] = pskeys[(u′, v′, pskid ′)]. By the identical-until-bad-lemma,

Pr[GameA2 ⇒ 1] ≤ Pr[GameA3 ⇒ 1] + Pr[GameA3 sets badPC ].

Since the pre-shared keys are uniformly distributed10 on {0, 1}hl , by the birthday bound

Pr[GameA3 sets badPC ] ≤ q2
NS

2hl .

Conclusion of Phase 1. At this point, we argue that in Game 3 and any subsequent games,
adversary A cannot violate the Sound predicate without also causing Finalize to return 0. If any
Sound check fails, one of the checks we have added to the Finalize oracle will also fail. According to
the definition of the MSKE game, there are six events that cause the predicate Sound to be violated
(see Figure 4). In the following, we argue why each of these events cannot occur in Game 3 and
thus Sound = true needs to hold from Game 3 on.

1. There are three honest sessions that have the same session identifier at any non-replayable
stage.
Since the only replayable stages are stages 1 (ETS) and 2 (EEMS), consider any later stage
s ≥ 3. Recall that session identifiers sid for all stages s ≥ 3 contain a ClientHello message
containing the initiator session’s nonce and group element and a ServerHello message con-
taining the responder session’s nonce and group element (see Section 7.1). Every session’s sid
therefore contains its own randomly sampled nonce-group element pair. For three sessions to
accept the same sid[s] for s ≥ 3, there must be two honest sessions who have sampled the same
nonce and group element. Due to Game 1, this would trigger the badC flag, leading Finalize
to return 0.

2. There are two sessions with the same session identifier in some non-replayable stage that have
the same role.

10As mentioned in Remark 7.3, this term has to be adapted for a different distribution on {0, 1}hl , i.e., for any
distribution D on {0, 1}hl , the denominator would change to 2α, where α is the min-entropy of D.
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Session identifiers sid[s] for s ≥ 3 as defined by TLS 1.3 (see Section 7.1) contain only one pair
of nonce and group element per initiator and responder. If two honest sessions share a sid and
a role, they must also share a nonce and group element. This case would also trigger the badC
flag.

3. There are two sessions with the same session identifier in some stage that do not share the
same contributive identifier in that stage.
Once a session holds both a contributive identifier and a session identifier for the same stage,
both are equal by our definition (see Section 7.1) of the session and contributive identifiers for
TLS 1.3. This case will therefore never occur.

4. There are two sessions that hold the same session identifier for different stages.
This is impossible as the session identifier of stage s begins with the unique label labels for
stage s.

5. There are two honest sessions with the same session identifier in some stage that disagree on
the identity of their peer or their pskid.
Two sessions which hold the same session identifier must necessarily agree on the value of the
binder , which is part of the ClientHello message. In Game 2, we required that Finalize
returns 0 if two queries to the oracle RObinder collide. The two sessions must therefore also
agree on the pre-shared key, which they obtained from the list pskeys. From Game 3, we have
that Finalize returns 0 if any two distinct entries in pskeys contain the same value. Therefore
two sessions can obtain the same pre-shared key from pskeys only if they hold the same tuple
(u, v, pskid), meaning they agree on both the peer identities and the pre-shared key identity.

6. Sessions with the same session identifier in some stage do not hold the same key in that stage.
We have just established that two sessions with the same session identifier must agree on the
peer identities and pskid (contained in CPSK and SPSK), meaning they also share the same
PSK. Session identifiers for stages whose keys are derived from a Diffie–Hellman secret DHE
must include both Diffie–Hellman shares X and Y (contained in CKS and SKS). These shares
uniquely determine DHE. Besides that the session identifier also contains the context required
to derive the respective stage keys, which then uniquely determines the stage key. Therefore,
agreement on a session identifier implies agreement on a stage key.

Phase 2: Ensuring Predicate ExplicitAuth cannot be violated

Game 4 (Exclude transcript hash collisions). In GameA4 , we let the adversary lose if two distinct
queries to ROTh lead to colliding outputs. This ensures that each transcript has a unique hash.
When such a collision occurs, we set a new flag badH and let the game return 0 from Finalize.

As in Game 2, we introduce a table CollListTh to random oracle ROTh. Whenever it computes a
hash d = ROTh(s) for some string s, we log CollListTh[d]← s. This table then is used to set badTh
as in Game 2.

Analogously to Game 2, we can construct a reduction B2 to the collision-resistance of ROTh.
As it simulates Game 4, the adversary B2 will need to make one query to its ROTh oracle for each
ROTh query of A and up to 6 ROTh queries for the up to 6 distinct transcript hash values computed
in a protocol step per Send query of A; in total qRO + 6qS queries.

Therefore, we have that

Pr[GameA4 sets badH] ≤ AdvCR
ROTh(qRO + 6qS)
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and it follows that

Pr[GameA3 ⇒ 1] ≤ Pr[GameA4 ⇒ 1] + AdvCR
ROTh(qRO + 6qS).

Game 5 (Abort if adversary guess a uncorrupted PSK). In GameA5 , we make the adversary lose
when it queries any random oracle on a pre-shared key PSK before that key has been corrupted via
RevLongTermKey.

We introduce some bookkeeping in order to implement this change. First, we add a reverse look-
up table PSKList that is maintained by the NewSecret oracle. When NewSecret(u, v, pskid)
samples a fresh pre-shared key PSK, we log the tuple under index PSK as PSKList[PSK] ←
(u, v, pskid). Note that the pre-shared keys might repeat, so we may have multiple entries in
PSKList indexed by a single PSK. Second, we add a time log T to the 12 random oracles ROx.
Each random oracle query containing a pre-shared key PSK now creates an entry T[PSK]← time,
where time is the counter maintained by the key exchange experiment, unless T[PSK] already exists.

The actual check whether the adversary queries any random oracle with a PSK before it was
corrupted is performed by the Finalize oracle. We set a flag badPSK if T(PSK) ≤ revpsk(u,v,pskid)
for any PSK ∈ T and (u, v, pskid) ∈ P [PSK]. If the badPSK flag was set during this process, the
Finalize oracle returns 0.

Next, let us analyze the probability that the game is lost due to flag badPSK being set. Each
random oracle query could hit one out of qNS many pre-shared keys. Before a given pre-shared key
is corrupted or queried to a random oracle, the adversary knows nothing about its value. Since
we assume that pre-shared keys are sampled uniformly at random from {0, 1}hl , the probability
to hit a specific one is at most 2−hl .11 By the union bound, we obtain that the probability that
the adversary hits any of the pre-shared keys in a single random oracle query is upper-bounded by
qNS · 2−hl . Thus, the probability that badPSK is set in response to any of the qRO many random
oracle queries overall is limited by qRO · qNS · 2−hl . This follows again by applying the union bound.

Hence, we get by the identical-until-bad lemma,

Pr[GameA4 ⇒ 1] ≤ Pr[GameA5 ⇒ 1] + Pr[GameA5 sets badPSK]

≤ Pr[GameA5 ⇒ 1] + qRO · qNS

2hl .

In the next two games, we change the way that partnered sessions compute their session keys,
binder values, and Finished MAC tags. Since we have established in Phase 1 that partnered
sessions will always share the same key, we can compute these keys only once and let partnered
sessions copy the results. This will make it easier to maintain consistency between partners as we
change the way we compute keys and tags. This approach follows the tight key exchange security
proof techniques of Cohn-Gordon et al. [13].

Game 6 (Log session keys and MAC tags). First, we will store all session keys in a look-up table
SKEYS under their session identifiers. Sessions will be able to use this table to easily check if they
share a session identifier with another honest session and thus share a key with a partner.

Honest sessions πiu in the initiator role will derive the keys ETS, EEMS, and RMS before their
partners. In Game 6, when an initiator session accepts in stage 1 (ETS), 2 (EEMS), or 8 (RMS) it
creates a new entry in SKEYS, i.e.,

SKEYS[πiu.sid[s]]← πiu.skey[s]
11Note that at this point, we use that the pre-shared key distribution is uniform. As already mentioned before, for

any distribution D on {0, 1}hl , the probability would be 2−α, where α is the min-entropy of D.
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for s ∈ {1, 2, 8}. Honest responder sessions πjv will derive the keys htkS , htkC , CATS, SATS, and
EMS before their partners. These sessions also log their keys in S under the appropriate session
identifier:

SKEYS[πjv.sid[s]]← πjv.skey[s]

for s ∈ {3, . . . , 7}.
Note that no two sessions will ever log keys in table SKEYS under the same sid. From Sound,

we know that only one initiator and one responder session may have the same session identifier
sid[s] in any stage s. Note that for the replayable stages 1 and 2 (ETS and EEMS) we only log
once because the messages will only be logged by the initiator that output the replayed messages
and not by the receivers that are receiving them.

We also store binder , finC and finS MAC tags. When any honest session queries ROx with
x ∈ {binder ,finC ,finS}, it logs the response in a second look-up table, TAGS, indexed by x and the
inputs to ROx. That is, for a query (PSK,DHE, d1, d2) to ROfinS , we log

TAGS[finS ,PSK,DHE, d1, d2]← ROfinS (PSK,DHE, d1, d2).

Since Game 6 only introduces book-keeping steps, we have that

Pr[GameA5 ⇒ 1] = Pr[GameA6 ⇒ 1].

Game 7 (Copy session keys and MAC tags from partnered session). In this game, we change the
way the sessions compute their keys and MAC tags. Namely, if a session has an honest partner in
stage s, instead of computing a key itself, it copies the stage-s key already computed by the partner
via the table SKEYS introduced in Game 6. Concretely, the sessions compute their keys depending
on their role as follows.

Honest server sessions. An honest server session πjv, upon receiving (CH, CKS, CPSK), sets its
session identifier for stages 1 (ETS) and 2 (EEMS). It then checks whether keys have been logged
in SKEYS under πjv.sid[1] and πjv.sid[2]. If such log entries exist, then πjv has an honest partner
in stages 1 and 2, and copies the keys ETS and EEMS from SKEYS when they would instead be
computed directly.

Analogously, upon receiving CF, πjv uses SKEYS to check whether there is an honest client session
that shares the same stage-8 (RMS) session identifier πjv.sid[8], and it copies the RMS key if this
is the case. If there are no entries in SKEYS under the appropriate session identifiers, πjv proceeds
as in Game 6 and computes its keys using the random oracles.

Honest client sessions. An honest client session πiu, upon receiving (SH, SKS, SPSK), sets its
session identifiers for stages 3–7, which identify the keys htkS , htkC , CATS, SATS and EMS. It
then searches for entries in SKEYS indexed by πiu.sid[s] for s ∈ {3, . . . , 7}. If these entries are
present for stage s, then πiv copies the stage-s keys from SKEYS instead of computing them itself.
Otherwise, πiu proceeds as in Game 6 and computes the keys using the random oracle in each case.

Computation of MAC tags. Finally, all honest sessions (both client and server) which would
query ROx to compute x ∈ {binder ,finC ,finS} in Game 6 first check the look-up table TAGS to see
if their query has already been logged. If so, they copy the response from TAGS instead of making
the query to ROx.

It remains to argue that the procedure of copying the keys in partnered sessions described in this
game is consistent with computing the keys in Game 6. Recall that sessions which are partnered in
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stage s must agree on the stage-s key, since the Sound predicate (Property 6) cannot be violated.
Consider a session πiu which accepts the stage-s key πiu.skey[s]. By Sound, any other session πjv
in Game 6 which accepts in stage s with πjv.sid[s] = πiu.sid[s] must set its stage-s key equal to
πiu.skey[s]. Although in Game 7 the session πjv may copy πiu.skey[s] from table SKEYS instead of
deriving it directly, the value of πjv.skey[s] does not change between the two games.

Sessions may also copy queries from look-up table TAGS instead of making the appropriate
random oracle query themselves. However, table TAGS simply caches the response to random
oracle queries and does not change them. Hence, the view of the adversary is identical. This
implies that

Pr[GameA6 ⇒ 1] = Pr[GameA7 ⇒ 1].

With the next two games, we finalize Phase 2. First, we postpone the sampling of the pre-
shared key to the RevLongTermKey oracle such that only corrupted sessions hold pre-shared
keys. As a consequence of this change, we can no longer compute session keys and MAC tags using
the random oracles. We will instead sample these uniformly at random from their respective range
and only program the random oracles upon corruption of the corresponding pre-shared key. After
this change, we can show that in order to break explicit authentication, the adversary must predict
a uniformly random Finished MAC tag, which is unlikely.

Game 8 (Postpone PSK sampling until after corruption). In this game, we postpone the sampling
of pre-shared keys from theNewSecret oracle to theRevLongTermKey oracle (if the pre-shared
key gets corrupted) or the Finalize oracle (if the key remains uncorrupted).

Since we now do not have a PSK anymore for uncorrupted sessions, we cannot use the ran-
dom oracle to compute keys or MAC tags in those sessions, but instead sample them uniformly
at random. If the corresponding pre-shared key is corrupted later and a PSK is chosen (in
RevLongTermKey), we will retroactively program the affected random oracles to ensure consis-
tency.

Concretely, we change the implementation of the game as follows. When NewSecret receives
a query (u, v, pskid), we set pskeys[(u, v, pskid)] to a special symbol ? instead of a randomly cho-
sen pre-shared key. The ? serves as a placeholder and signalizes that the NewSecret oracle
already received a query (u, v, pskid), but no PSK has been chosen yet. We add (u, v, pskid) to the
set PSKList[?] to keep track of all tuples with an undefined PSK.

We let honest sessions whose pre-shared key has not been sampled (yet) but equals ? sample
their session keys as well as binder and Finished MAC tags uniformly at random. Due to the
changes introduced in Game 7 we do not need to ensure consistency when sampling, as we sample
each value once and partnered sessions copy the suitable value from the tables SKEYS and TAGS.
(When sessions would log MAC tags in TAGS under their pre-shared keys in Game 7, those with
no pre-shared key instead use the tuple (u, v, pskid) in this game.) We further log the respective
random oracle query that sessions would normally have used for the computation in a look-up table
PrgListx for later programming of the respective random oracle ROx. Sessions which would log their
RO-derived values in tables SKEYS and TAGS now log their randomly chosen values instead. That
is, if a session in Game 7 would issue a query (?,DHE, ctxt) (where DHE might be ⊥) to random
oracle ROx to compute a value k, in Game 8 it chooses k uniformly at random from ROx’s range
and logs

PrgListx[(u, v, pskid),DHE, ctxt]← k

in the look-up table PrgListx, where (u, v, pskid) uniquely identifies the used PSK. Note that the
table PrgListx is closely related to the random oracle table ROListx for ROx. Table PrgListx is always
used when there is no PSK defined for a session, i.e., it has not (yet) been corrupted. Therefore,
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we need to make sure that if the PSK (identified by (u, v, pskid)) gets corrupted we are able to
reprogram ROx. Using PrgListx we can upon corruption of the pre-shared key associated with
(u, v, pskid) efficiently look-up the entries we need to program from PrgListx and transfer them to
the random oracle table ROListx after PSK has been set. We will discuss the precise process below
when we describe how to adapt the RevLongTermKey oracle.

We must be particularly careful when x = binder , because we still wish to set the badbinder
flag when two randomly chosen binder values collide. Therefore, honest sessions still record the
sampled binder values in list CollListbinder , so that the badbinder flag is set as before. This ensures
that the probability of setting the flag does not change.

We also need to adapt the corruption oracle RevLongTermKey. Upon a query (u, v, pskid)
for which pskeys[(u, v, pskid)] = ?, we perform the following additional steps: First, we sample a
fresh pre-shared key PSK $←− KE.PSKS and update pskeys, i.e., set pskeys[(u, v, pskid)] ← PSK.
Next, we need to reprogram the random oracles using the lists Rx to ensure consistency. Thus,
for all x we update the random oracle tables ROListx for ROx using PrgListx. For every entry
PrgListx[((u, v, pskid),DHE, ctxt)] = k, we set

ROListx[PSK,DHE, ctxt]← k

where ROListx is the random oracle table of ROx. Lastly, we remove (u, v, pskid) from the set
PSKList[?] and add it to PSKList[PSK].

To be able to still set badPSK, we also make sure that in the Finalize procedure every pre-shared
key is defined before the check against the random oracle time log T introduced in Game 5. We
sample a pre-shared key for every tuple (u, v, pskid) ∈ P [?], setting pskeys[(u, v, pskid)] $←− KE.PSKS,
and update the reverse look-up table PSKList accordingly. As a result, also uncorrupted sessions
now have a pre-shared key defined and we can check the condition for badPSK being set as introduced
in Game 5.

The changes introduced in Game 8 are unobservable for the adversary as it never queries the
random oracle for an uncorrupted pre-shared key, as otherwise the game would be aborted due to
badPSK introduced in Game 5. It hence does not matter whether the pre-shared key is already set
before or upon corruption, because from the view of the adversary the keys (and the pre-shared key)
are uniformly random bitstrings anyway up to this point. Upon corruption of a pre-shared key, we
make sure by reprogramming the random oracle that all session keys and MAC tag computations
are consistent with sessions that would have otherwise used this pre-shared key but derived all
session keys and MAC tags without it. The change to the Finalize procedure does not affect the
view of the adversary as it only retroactively defines keys on which the adversary cannot get any
information about anymore. Consequently,

Pr[GameA7 ⇒ 1] = Pr[GameA8 ⇒ 1].

Game 9 (Exclude that honest sessions accept without a partner). In this game, we set a flag badMAC
and return 0 from Finalize if any session with an uncorrupted pre-shared key accepts stage 5 (htkC)
as initiator, or stage 8 (RMS) as responder, without having a partnered session. Formally, we set
badMAC if there is a session πiu such that πiu.accepted[s] < revpsk(u,v,πiu.pskid) with v = πiu.peerid and

s =
{

5 if πiu.role = initiator
8 if πiu.role = responder

and there is no session πjv with πiu.sid[s] = πjv.sid[s] when πiu accepts stage s.
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Let us analyze the probability Pr[GameA9 sets badMAC]. Consider a session πiu which triggers the
badMAC flag. In the following analysis, let πiu be an initiator. For responder sessions the arguments
are analogous. The pre-shared key of session πiu is uncorrupted, which means that by the changes
of Game 8 it has not been sampled. Therefore πiu either samples the ServerFinished MAC tag
uniformly at random or copies it from table TAGS (in which case the MAC tag was uniformly
sampled and logged by another honest session).

First observe that session πiu will not copy the ServerFinished MAC tag from table TAGS as
this would imply that πiu is partnered when it accepts in stage 5. This in turn contradicts that πiu
has triggered flag badMAC. Namely, if πiu would be able to copy the ServerFinished MAC tag from
table TAGS there must have been another honest session that computed the same ServerFinished
MAC, i.e., using the same tuple (u, v, pskid), DHE secret, and transcript hash. Recall that the
session identifier of stage 5 contains both the ServerFinished message and the transcript hashed
to computed the ServerFinished MAC tag. Further, we have that transcript hashes are unique
due to Game 4. This implies that the session that logged the ServerFinished MAC tag in TAGS
needs to have the same stage-5 session identifier than πiu meaning πiu would be partnered in stage 5.

Thus, if πiu triggers badMAC, it must have sampled its ServerFinished MAC tag at random
and the received ServerFinished message will match this tag with probability no more than 2−hl .

Thus the probability that πiu triggers the flag badMAC is bounded by 2−hl . A union bound over
all sessions gives

Pr[GameA9 sets badMAC] ≤ qS
2hl .

Overall, we get by the identical-until-bad-lemma

Pr[GameA8 ⇒ 1] ≤ Pr[GameA9 ⇒ 1] + Pr[GameA9 sets badMAC]

≤ Pr[GameA9 ⇒ 1] + qS
2hl .

Conclusion of Phase 2. At this point, we argue that in Game 9 and any subsequent games,
adversary A cannot violate the ExplicitAuth predicate without also causing Finalize to return 0.
To this end, we argue that ExplicitAuth = true holds with certainty from Game 9 on.

The predicate ExplicitAuth is set to false if there is a session πiu accepting an explicitly au-
thenticated stage s, whose pre-shared key was not corrupted before accepting the stage s′ ≥ s in
which it received (perhaps retroactively) explicit authentication, and (1) there is no honest ses-
sion πjv partnered to πiu in stage s′, or (2) there is an honest partner session πjv for πiu in stage s′
but it accepts with a peer identity w 6= u, with a different pre-shared key identity than πiu, i.e.
πjv.pskid 6= πiu.pskid, or with a different stage-s session identifier, i.e. πjv.sid[s] 6= πiu.sid[s].

Recall that initiator (resp. responder) sessions receive explicit authentication with acceptance
of stage 5 (resp. stage 8) meaning that all previous stages 1–4 (resp. stages 1–7) receive explicit
authentication retroactively and all future stages 6–8 upon their acceptance. From Game 9, we
have that any initiator session πiu accepting stage 5 (resp. any responder session accepting stage
8) with uncorrupted PSK must have a partnered session in that stage. Consequently, case (1) is
impossible to achieve.

We next address the possibility of case (2). To achieve explicit authentication for stage s ≤ 8,
a responder session must have accepted stage 8. From Game 9 on, we know that πiu must have
a partner with the same stage 8 session identifier. Observe that the transcripts contained in πiu’s
session identifiers for all stages are “sub-transcripts” of the transcript contained in the session
identifier of stage 8. Therefore the partner must also have the same stage s session identifier.
Property 5 of the Sound predicate then ensures that all partnered sessions agree on the peer identity
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and the pre-shared key identity, so ExplicitAuth is not violated by session πiu. The same property
holds for initiator sessions accepting stages s ≤ 5. So ExplicitAuth can only be violated if an
initiator session’s stage-5 partner accepts in stage s > 5 with a different peer identity, pre-shared
key identifier, or session ID. Since peer and pre-shared key identifiers do not change after they
are set, only the session identifiers may not match in stage s. The “sub-transcripts” of stage 6
(CATS) and 7 (SATS) session identifiers are identical to those of stage 5, so a partner in stage 5
will also be a partner in stages 6 and 7. Then the only way to violate predicate ExplicitAuth is
to convince the stage-5 partner, a responder session, to accept a forged ClientFinished message
and accept stage 8. This is impossible because the partner will verify the received ClientFinished
message against the message sent by πiu, which it copies from table TAGS. It follows that no session,
responder or initiator, can violate the ExplicitAuth predicate.

Phase 3: Ensuring that the Challenge Bit is Idependently Random

Game 10. In this game, we rule out that the adversary manages to guess the DHE secret of
two honestly partnered session to learn about the keys they are computing. Here, we only look at
those session that have a corrupted pre-shared key, because we already ruled out in Game 5 that
the adversary learns something about the keys computed by these sessions. To that end, we add
another flag badDHE to the game and return 0 from Finalize when it is set. Flag badDHE is set if
the adversary ever queries a random oracle

ROx(PSK,DHE,ROTh(sid[s]))

for (x, s) ∈ {(htkC , 3), (htkS , 4), (finS , 5)(CATS, 5), (SATS, 6), (EMS, 7), (finC , 8), (RMS, 8)} such that

• PSK is corrupted, i.e., the adversary made a prior query RevLongTermKey(u, v, pskid) with
pskeys[(u, v, pskid)] = PSK,

• there are honest sessions πiu and πjv that are contributively partnered in stage s with πjv.cidπiu.role[s] =
πiu.cidπiu.role[s] = (CH, CKS, CPSK, SH, SKS, SPSK, . . . ), and

• DHE = gxy such that CKS = gx and SKS = gy.12

We bound the probability of flag badDHE being set via a reduction BDHE to the strong Diffie–
Hellman assumption in group G. Reduction BDHE simulates Game 10 for A, and it wins the strong
Diffie–Hellman whenever the simulated game would set the badDHE flag.

Definition 7.5. Let G be a group of order p generated by g. We define

AdvstDH
G (tBDHE , 2qRO) := Pr

[
gab $←− BstDHa(·,·)

DHE (ga, gb) : a, b $←− Zp
]

where stDHa is a special “fixed-exponent DDH oracle” that on input (B,C) returns 1 if and only if
C = Ba.

12Note that the game knows the exponents x and y used by the sessions, but the reduction constructed in the
remainder will not.
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Construction of reduction BDHE. The reduction BDHE gets as input a strong DH challenge
(A = ga, B = gb) as well as access to the oracle stDHa for the Decisional Diffie–Hellman problem
with the first argument fixed. Adversary BDHE then honestly executes the oracles Initialize,
RevSessionKey, Test, and NewSecret as Game 10 would, managing all game variables itself.
We explain in more detail how BDHE answers Send, RevLongTermKey, and random oracle
queries.

When A makes a query to the Send oracle, BDHE delivers the message to a protocol session in
the same way as Game 10. However, the sessions themselves handle messages quite differently. At
a high level, BDHE embeds its strong DH challenges into the key shares of every initiator session
and every partnered responder session. When badDHE is triggered, BDHE learns the Diffie–Hellman
secret DHE associated with two of these embedded key shares, and it can extract a solution to the
strong DH challenge using some basic algebra. However, BDHE must take care to appropriately
program random oracles queries after corruptions, since it cannot compute Diffie–Hellman secrets
for embedded key shares as it does not know the corresponding exponents. Next, we describe how
client and server sessions are implemented in Game 10.

But first we explain the (constant-time accessible) look-up tables that are used (or defined) by
reduction BDHE to ensure an efficient implementation:

• The look-up table KSRnd is maintained for all sessions. It holds the random exponent τ used
by the honest sessions to randomize their key share G, indexed by the session’s nonce and key
share (r,G) (see the implementation of the session for further details). To identify a session
uniquely we use its nonce r and key share G as the index.

• Each random oracle ROx maintains a look-up table DHEListx. For each query ROx(PSK, Z, d),
the table stores the group element Z indexed by PSK and d.

• Each random oracle ROx maintains a look-up table RndListx. It holds a tuple (τ, τ ′, ctxt, key)
indexed by the pair (PSK, d). The table holds all necessary information that is required to
reprogram of the random oracle ROx. The fields PSK and key can hold special values. If a PSK
is uncorrupted, we cannot log the information under it because it is not defined. Therefore, we
can use the tuple (u, v, pskid) uniquely identifying PSK instead. Moreover, key can sometimes
be an empty field, because reprogramming of that value will never occur. When this field is
empty, it will not be accessed as we instead use the remaining information of RndListx to solve
the stDH challenge. See the remainder of the proof for details.

Implementation of honest server sessions. Consider any server session πjv.

1. Upon receiving (CH, CKS, CPSK), the reduction BDHE first checks whether πjv has an honest
partner in stages 1 (ETS) and 2 (EEMS) by checking for entries indexed by πjv.sid[1] and
πjv.sid[2] in the look-up table SKEYS introduced in Game 6. If no such entries exist, then
BDHE answers this and all future Send queries just as specified in Game 10. For the rest of
the discussion, we assume the entries do exist.
Session πjv generates its key share SKS by randomizing the challenge key share B. Namely, it
chooses a randomizer τ jv $←− Zp uniformly at random and sets Y ← B · gτ

j
v . Then, it logs τ jv

under index (rS , Y ) in the look-up table KSRnd.

2. Before πjv outputs (SH, SKS, SPSK), it computes the keys htkC and htkS . By Game 8, these keys
are sampled randomly when PSK is uncorrupted and computed using ROhtkC , resp. ROhtkS
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otherwise. In both cases, BDHE needs to know the Diffie–Hellman secret DHE to log in ta-
ble PrgListx or to query ROx for x ∈ {htkC , htkS}. However, BDHE cannot compute DHE
because it does not know the discrete logarithms of either CKS or SKS.
Therefore, BDHE needs to compute the keys without knowing the DHE key using the control
over the random oracles.
If the pre-shared key has been corrupted, the adversary could potentially have already queried
the random oracle ROhtkC with the query πjv should make. To that end, BDHE first checks
whether the corresponding query for htkC was already made to ROhtkC . Concretely, BDHE
computes the context hash d = ROTh(CH ‖ · · · ‖ SPSK) and checks for a suitable ROhtkC query
using the look-up table DHEListhtkC [PSK, d] maintained in ROhtkC (see above for the definition).
Reduction BDHE queries stDHa(Y, Z · Y −τ

i
u) for all Z ∈ DHEListhtkC [PSK, d], where τ iu is the

randomizer used by the honest partner of πjv, which can be looked up from KSRnd[rC , X] using
πiu’s nonce and key share. (Although this may cause several stDHa queries in response to a
single Send query, BDHE is still efficient because it only checks random oracle queries whose
context is d, and due to the lack of both nonce/group element and hash collisions d is unique
to session πiu and its partner. Therefore each entry in DHEListhtkC [PSK, d] will be checked at
most twice over the course of the entire reduction.)
If any one of these queries is answered positively, we have by the definition of stDHa that
Z · Y −τ iu = Y a, which implies that Z = Y a+τ iu = Xb+τ jv by definition of Y and X, which
was computed by the honest partner πiu that has output the CH message received by πjv. This
exactly is the DHE value that πjv would have computed if we would have known the discrete
logarithm of B. Hence, we have found the right Z value and only need to derandomize it to
win the challenge. Therefore, we let BDHE submit the value

Z · Y −τ iu ·A−τ
j
v = Y a ·A−τ

j
v = (ga)b+τ

j
v · (ga)−τ

j
v = gab

to the Finalize oracle as a solution to the strong Diffie–Hellman problem.
Observe that if badDHE is set due to a query to ROhtkC in Game 10, there is a random oracle
query such that one of the above stDHa queries will be answered positively. Thus, BDHE will
win if badDHE is set. We do the same for htkS with ROhtkS .
If in the above process no query is answered positively, i.e., badDHE will also not be set, then
πjv samples the key htkC $←− KE.KS[3] itself and logs the following information so that future
RO queries can be answered appropriately:

RndListhtkC (PSK, d = H(CH ‖ · · · ‖ SPSK))←
(
τ iu, τ

j
v , (CH ‖ · · · ‖ SPSK),⊥

)
.

Again, we do the same for htkS .
If PSK is not corrupted, then badDHE cannot possibly have been set and we do not need to
worry about consistency with earlier random oracle queries. Therefore, we do not need to do
the process described above and immediately sample htkC and htkS randomly as in Game 10.
It logs the keys in table SKEYS under their respective session identifiers, which do not contain
DHE or any unknown values. In Game 10, we added entries to PrgListhtkC and PrgListhtkS in
order to program future random oracle queries upon corruption. The reduction cannot do this
here as it does not know DHE; instead, it logs

RndListx[((u, v, pskid), d = H(CH ‖ · · · ‖ SPSK))]←
(
τ iu, τ

j
v , (CH ‖ · · · ‖ SPSK),⊥

)
.
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for x ∈ {htkC , htkS}. This will allow BDHE to win if a later RevLongTermKey or random
oracle query triggers badDHE.

3. To compute the ServerFinished message BDHE proceeds exactly as in Step 2 except that it
uses the random oracle ROfinS and context CH ‖ · · · ‖ EE through the EncryptedExtensions.
Also, the ServerFinished message is computed first by the server, so BDHE does not check
table SKEYS or TAGS for any entries. Reduction BDHE also cannot log the inputs to random
oracle query ROfinS in table TAGS (as done since game Game 6) because it does not know
DHE. Instead, it logs the derived value of finS in table TAGS and replaces DHE in the index
of TAGS by

(
τ iu, τ

j
v , (CH ‖ · · · ‖ EE)

)
. That is, if it computes finS for inputs PSK, d1, and d2, it

logs
TAGS[finS ,PSK, (τ iu, τ jv , (CH ‖ · · · ‖ EE)), d1, d2]← finS .

That way, it is possible to identify DHE without knowing it. For finS , we keep the same
notation for the sets DHEListx, RndListx and ROListx numbered as the corresponding random
oracle ROx.

4. Reduction BDHE proceeds exactly as for finS above, except that we again use different random
oracles and the context cidCATS = CH ‖ · · · ‖ SF = cidSATS = cidEMS, where cidx denotes
transcript contained in the contributive identifier which is prefixed by “x”, and thus the hash
d = ROTh(CH ‖ · · · ‖ SF). With respect to random oracles, we have ROCATS for CATS, ROSATS
for SATS and ROEMS for EMS, respectively. Reduction BDHE logs the keys in table SKEYS
under their respective session identifiers, which do not contain DHE or any unknown values.
After this is done, πjv outputs (EE, SF).

5. Upon receiving CF, BDHE looks for a suitable entry for finC in TAGS. If there is a value finC
consistent with πjv’s view, BDHE terminates the session as specified if CF does not match the
looked-up value of finC . Otherwise, BDHE continues to compute RMS. To this end, BDHE
checks whether there is an entry in SKEYS that matches the stage-8 session identifier of πjv, if
yes πjv simply copies that entry. If not, first observe that if there is no entry in SKEYS there
is no honest stage-8 partner, which implies that PSK needs to be corrupted as otherwise the
game would have been aborted due to badMAC introduced in Game 9. Therefore, the adversary
also would be allowed to query RORMS to compute RMS. Thus, BDHE needs to check whether
the value for RMS is already set. Here, we need to distinguish two cases. Namely, whether
there is an honest contributive stage-3 partner or not.
First note that as described in Step 1, BDHE does not embed its challenge in SKS if there is no
honest session output the ClientHello received, i.e., there is no honest contributive stage-3
partner. Therefore, here BDHE can simply implement πjv as specified in Game 10.
In case there is an honest contributive stage-3 partner, then BDHE proceeds as described in
Step 2 for oracle RORMS and context hash d = ROTh(cidRMS) = ROTh(CH ‖ · · · ‖ CF) to check
whether the adversary already solved the stDH challenge for BDHE. Note that the stage-3
session identifier uniquely defines the DHE key, thus if there is an honest partner and there is
a respective RORMS query, the adversary has to break stDH to submit the query.

Implementation of honest client sessions. Consider any client session πiu.

1. The reduction B4 proceeds exactly as in Game 10 until the session chooses its key share. Instead
of choosing a fresh exponent as specified in Figure 1, it chooses a value τ iu $←− Zp uniformly at
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random and sets X ← A · gτ iu as its key share in the ClientKeyShare message. Further, it
logs τ iu in KSRnd indexed with (rC , X). The rest is exactly as specified in Game 10. That is,
it computes ETS and EEMS and outputs (CH, CKS, CPSK).

2. Upon receiving (SH, SKS, SPSK), πiu checks whether there is an entry

SKEYS[(”htkC”, CH, . . . , SPSK)] 6= ⊥.

If this is the case, πiu knows that there is an honest stage-3 partner, and it copies all the keys
stored under πiu’s session identifier as defined in Game 10. If there is no suitable entry, BDHE
faces the problem that it already “committed” to not knowing the discrete logarithm of πiu’s
key share X by embedding A into it and thus we are not able to compute the DHE value. Since
there is no entry in SKEYS for htkC , we know that there is no honest stage-3 partner session
by definition of SKEYS. That is, no honest server session computed SKS and thus it must have
been chosen by the adversary. If the pre-shared key is corrupted, BDHE needs to use the stDHa

oracle to check whether there already was a query issued to ROx for x ∈ {htkC , htkS}. If this
is not the case, πiu freshly samples random keys and remembers them for possible retroactive
reprogramming of the random oracle. Concretely, we do the following for each random oracle
ROx for x ∈ {htkC , htkS}:
First compute d = ROTh(CH ‖ . . . ‖ SPSK) and then query the stDHa oracle for all Z ∈
DHEListx[PSK, d], where PSK is the pre-shared key used by πiu, as

stDHa(Y,Z · Y −τ
i
u) = 1 ⇐⇒ Z = Y a,

where Y is the DH key share contained in SPSK. See the server session implementation above
for further explanation. If there is any of these queries is answered positively, let the respective
key be ROx(PSK, Z, d). If there is no Z that results in a positive query, let key $←− KE.KS[x] be
sampled at random, and BDHE logs the value for possible later reprogramming of the random
oracle ROx, i.e.,

RndListx[(PSK, d = ROTh(CH ‖ · · · ‖ SPSK))]←
(
τ iu,⊥, (CH ‖ · · · ‖ SPSK), key

)
.

After that πiv either has copied the keys or chose them itself and will accept all of the stage
keys among these keys.
If the PSK of πiu has not been corrupted, then no “right” query can have been made and the
keys be sampled randomly. However, we still need to program future “right” RO queries after
a corruption. Therefore set

RndListx[(PSK, d = ROTh(CH ‖ · · · ‖ SPSK))]←
(
τ iu,⊥, (CH ‖ · · · ‖ SPSK), key

)
.

PrgListx is not updated as in Game 10, because DHE is unknown.

3. Upon receiving (EE, SF), similar to the previous step, πjv checks whether there is an entry in
SKEYS and TAGS (to verify SF) corresponding to its stage-5 session identifier. If this is the
case, it copies the keys from that list. In case there is none, we have that there is no honest
stage-5 partner. Here, we need to distinguish the case whether there was an honest stage-3
partner before or not.
Namely, the adversary could corrupt the PSK, then change the EE output by an honest session
and then compute a new SF message for the changed transcript. Hence, there is an honest
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stage-3 partner, but no stage-5 partner. In this case, BDHE again applies the approach from
above (see implementation of server session, Step 2) for the random oracles ROx for x ∈
{CATS,SATS,EMS} and the context d = ROTh(CH ‖ · · · ‖ SF) checking whether the random
oracles received already a correct query which set the keys CATS, SATS and EMS. If this
is the case and since there was a stage-3 partner, BDHE has embedded the DH challenge in
both the client and the server, this solves the strong Diffie–Hellman problem. When there is no
such query the keys are chosen at random and all necessary information for possible retroactive
programming of the random oracles ROx is logged in the table RndListx. Please see above for
details.
However, if there is no honest stage-3 partner, SKS was chosen by the adversary. Hence, BDHE
needs to apply the procedure described in the previous step (Step 2) and use the oracle stDHa

to check the random oracles ROx for x ∈ {CATS,SATS,EMS} whether they already set the
keys. The important difference here is that a positive answer of the stDHa oracle does not solve
stDH, as SKS was chosen by the adversary. Note that BDHE again needs to make sure that
it gathers all the information needed to make retroactive programming of the random oracles
possible by logging information in RndListx as before.

4. πiu computes finC using the same process as above: if PSK is corrupted, it checks for RO
queries in DHEListfinC [PSK, d] that could set badDHE when πiu has an honest partner in stage
8 or fix the value of finC when no honest partner exists. It then calls Finalize or sets finC
accordingly. If no earlier RO query matches finC , then we sample finC randomly and log τ iu,
finC , and the transcript in table RndListfinC under PSK and the transcript hash d. If PSK is
uncorrupted, πiu immediately samples finC randomly and logs τ iu, finC , and the transcript in
RndListfinC under index ((u, v, pskid), d).
Next we compute RMS. As πiu is not able to compute DHE independent of there being a
honest stage-3 partner or not, BDHE need to apply the same procedure that was described
before in Step 3, when there was no stage-5 partner for random oracle RORMS and context
d = ROTh(CH ‖ · · · ‖ CF). The only difference is that in case there was a stage-3 partner,
Finalize is queried when the stDH oracle returns true, and if there is no stage-3 partner, RMS
is only programmed. Then, πiu outputs CF.

Besides changing the implementation of the session oracles, we also need to adapt the ran-
dom oracles ROx for x ∈ {htkC , . . . ,RMS} to make sure (1) BDHE§ programs the random oracle
retroactively if the random oracle receives the right query and (2) to check whether the adversary
computed DHE for BDHE for honestly partnered sessions.

Implementation of random oracle ROx. If ROx receives a query that was already answered,
it answers consistently. However, if there is a new query of the form (PSK, Z, d), it appends Z to
the set DHEListk[PSK, d]. If RndListk[PSK, d] 6= ⊥, then there already was a session using PSK
and context hash d trying to compute a key without knowing the correct DHE secret. Therefore,
BDHE uses the stDHa oracle to check whether Z is that secret. Let (τ iu, τ jv , ctxt, key) be the entry
of RndListk[PSK, d], where τ iu and τ jv denote the randomness used by the client and the server to
randomize the stDH challenge, respectively, ctxt = CH‖CKS‖CPSK‖SH‖SKS‖SPSK‖ · · · denotes the
context such that d = ROTh(ctxt) and key denotes the key chosen by the session since there was no
random oracle fixing it. Using this information, it fetches SKS = Y and queries stDHa(Y,Z ·Y −τ

i
u).

If this query is answered positively, BDHE knows that the right DH value Z was queried. If τ ju = ⊥,
i.e., the log in RndListk was set by a client without an honestly partnered server, BDHE needs to
program the random oracle to be consistent. That is, ROListk[PSK, Z, d]← key. Otherwise, BDHE
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knows that the PrgListx entry was set by an honestly partnered session, and thus Z is a randomized
solution to the stDH challenge. Thus, BDHE submits the solution Z · Y −τ iu · A−τ

j
v to its stDH

Finalize oracle.
Unless BDHE solved the stDH challenge, the oracle outputs ROListx[PSK, Z, d].

Implementation of corruption oracle RevLongTermKey. Finally, BDHE needs to handle
corruptions via the RevLongTermKey oracle. Since Game 8, the RevLongTermKey oracle
upon input (u, v, pskid) samples a fresh PSK. It then uses lists PrgListx to program all the random
oracles ROx for consistency with any sessions whose pre-shared key is now PSK. Reduction BDHE
still does this, but in our reduction, the lists PrgListx are no longer comprehensive. Some sessions
fix the outputs of ROx on some query without knowing the DHE input to that query. These sessions
create log entries in RndListx, not PrgListx, and the entries have indices of the form ((u, v, pskid), d).
BDHE cannot use these entries to program past ROx queries, but this is not necessary since any
past ROx query containing PSK would set the badPSK flag and cause the game to abort. BDHE
also cannot program future queries because we still do not know DHE. Instead, BDHE just updates
each matching entry in PrgListx so that its index is (PSK, d) instead of ((u, v, pskid), d). Future
ROx queries containing PSK will then handle strong DH checking and programming for BDHE.

By the considerations above, we have that if badDHE is set the BDHE wins the strong DH
challenge. The identical-until-bad-lemma gives us that

Pr[GameA9 ⇒ 1] ≤ Pr[GameA10 ⇒ 1] + Pr[badDHE]
≤ Pr[GameA10 ⇒ 1] + AdvstDH

G (tBDHE , 2qRO), (6)

where the number of stDHa oracle queries is no greater than 2qRO, since BDHE will query the oracle
at most twice (once for each partner) for every random oracle query issued by the adversary, and
tBDHE with tBDHE ≈ t+ 4 log(p) · qRO is the running time of BDHE. Note that for every stDHa query,
BDHE needs to perform one group operation and one exponentiation in G, the latter can be done
in 2 log(p) many group operations using, e.g., the square-and-multiply algorithm. Thus, the time
to answer a single stDHa query take approximately time 2 log(p) and taking this together with the
bound on the number of stDHa yields the approximate runtime tBDHE .

Conclusion of Phase 3. We finally argue that the adversary’s probability in determining the
challenge bit b in Game 10 is at most 1

2 if the Fresh predicate is true. First, recall that Fresh = true
implies no session can be tested and revealed in the same stage, and a tested session’s partner may
also be neither tested nor revealed in that stage. In the following, we refer to a session being “fresh”
in a stage if this session does not violate the conditions defined in the predicate Fresh in that stage.
The Fresh predicate depends on the level of forward secrecy reached at the time of each Test
query. First, if a session is tested in a non-forward secret stage, it remains only fresh if the PSK
was never corrupted. Second, if a session is tested in a weak forward secret 2 stage s, it remains
fresh if the PSK was never corrupted or if there is a contributive partner in stage s. Lastly, if a
session is tested on a forward secret stage s, it remains fresh the PSK was corrupted after forward
secrecy was established for that stage (perhaps retroactively) or if there is a contributive partner.

Next, we argue for each level of forward secrecy that all tested keys in Game 10 which do not
violate Fresh are uniformly and independently distributed from the view of the adversary. For the
non-forward secret stages 1 (ETS) and 2 (EEMS), the adversary cannot corrupt the PSK of all
sessions that it queried Test on stage 1 or 2. Since Game 8, we sample all session keys derived
from uncorrupted pre-shared keys uniformly at random, or copy uniformly random keys from
SKEYS. That is, the key returned by the Test query is a uniformly random key independent of
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the challenge bit b. Therefore, it cannot learn anything about either ETS nor EEMS of any session
with an uncorrupted key, and thus the response of a Test query will be a uniformly random string
independent of the challenge bit b from the view of the adversary.

All other stages, i.e., stages 3–8, are weak forward secret 2 upon acceptance and become forward
secret as soon as the session achieves explicit authentication. If the pre-shared key is never cor-
rupted, we have by the same arguments given for the non-forward secret stages that the adversary
receives a uniformly random key in response to the Test query independent of the challenge bit.

It remains to argue that the same is true if there is a contributive partner and the PSK is
corrupted. In this case, the adversary would need to make a random oracle query that triggers
badDHE introduced in Game 10 and would cause Finalize to return 0. Without such a query
the respective key is just a uniformly and independently distributed bitstring from the adversary’s
view. Hence, without losing the game, the adversary cannot learn anything about a weak forward
secret 2 key, and thus it does not learn anything from the response of the Test query.

Since forward secret stages are weak forward secret 2 until explicit authentication is established,
we only consider the case that a session that is tested on a weak forward secret 2 stage was corrupted
after forward secrecy has been (retroactively) established. As we only establish forward secrecy
after explicit authentication has been achieved, we can be sure due to ExplicitAuth never beeing
violated that there is a partnered session for that stage. Hence, there also is a contributive partner
and by the same arguments as given before the adversary would trigger badDHE and lose the game
before it can learn something about the session.

Overall, we have that the adversary in Game 10 cannot gain any information on the challenge
bit b without violating any of the predicates Sound, ExplicitAuth, or Fresh. Thus, the probability
that Finalize and thus Game 10 returns 1 is no greater than 1/2. Formally,

Pr[GameA10 ⇒ 1] ≤ 1
2 .

Collecting all the terms, we get the final bound

AdvMSKE
TLS1.3-PSK-(EC)DHE(t, qNS, qS, qRS, qRL, qT, qRO)

≤ 2q2
S

2nl · p
+ AdvCR

RObinder (qRO + qS) + q2
NS

2hl + AdvCR
ROTh(qRO + 6qS)

+ qRO · qNS

2hl + qS
2hl + AdvstDH

G (tBDHE , 2qRO).

Applying the result of Appendix A, we can make the collision resistance terms explicit

AdvMSKE
TLS1.3-PSK-(EC)DHE(t, qNS, qS, qRS, qRL, qT, qRO)

≤ 2q2
S

2nl · p
+ (qRO + qS)2

2hl + q2
NS

2hl + (qRO + 6qS)2

2hl + qRO · qNS

2hl + qS
2hl

+ AdvstDH
G (tBDHE , 2qRO).

Further, applying the GGM bound for the strong Diffie–Hellman problem proven by Davis and
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Günther in [15], we get the final result

AdvMSKE
TLS1.3-PSK-(EC)DHE(t, qNS, qS, qRS, qRL, qT, qRO)

≤ 2q2
S

2nl · p
+ (qRO + qS)2

2hl + q2
NS

2hl + (qRO + 6qS)2

2hl + qRO · qNS

2hl + qS
2hl

+ 4(t+ 4 log(p) · qRO)2

p

= 2q2
S

2nl · p
+ (qRO + qS)2 + q2

NS + (qRO + 6qS)2 + qRO · qNS + qS
2hl

+ 4(t+ 4 log(p) · qRO)2

p
.

7.3 Full Security Bound for TLS 1.3 PSK-(EC)DHE and PSK-only

We can finally combine the results of Sections 5, 6, and our key exchange bound above to produce
fully concrete bounds for the TLS 1.3 PSK-(EC)DHE and PSK-only handshake protocols as spec-
ified on the left-hand side of Figure 1. This bound applies to the protocol with handshake traffic
encryption and internal keys when only modeling as random oracle ROH the hash function H.

First, we define three variants of the TLS 1.3 PSK handshake:

• KE0, as defined in Theorem 5.1 with handshake traffic encryption and one random oracle ROH.
(This is the variant we want to obtain our overall result for.)

• KE1, as defined in Theorem 5.1 with handshake traffic encryption and 12 random oracles ROTh,
RObinder , . . . , RORMS.

• KE2: as defined in Theorem 6.1, with no handshake traffic encryption and 12 random oracles
ROTh, RObinder , . . . , RORMS.

Theorem 5.1 grants that

AdvMSKE
KE0 (t, qNS, qS, qRS, qRL, qT, qRO) ≤ AdvMSKE

KE1 (t, qNS, qS, qRS, qRL, qT, qRO)

+ 2(12qS + qRO)2

2hl + 2q2
RO

2hl + 8(qRO + 36qS)2

2hl .

Next, we apply Theorem 6.1, yielding the bound

AdvMSKE
KE1 (t, qNS, qS, qRS, qRL, qT, qRO) ≤ AdvMSKE

KE2 (t+ tAEAD · qS, qNS, qS, qRS + qS, qRL, qT, qRO),

where tAEAD is the maximum time required to execute AEAD encryption or decryption of TLS 1.3
messages.

Theorem 7.1 then finally and entirely bounds the advantage against the MSKE security of KE2.
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Collecting these bounds gives

AdvMSKE
KE0 (t, qNS, qS, qRS, qRL, qT, qRO) ≤ AdvMSKE

KE1 (t, qNS, qS, qRS, qRL, qT, qRO)

+ 2(12qS + qRO)2

2hl + 2q2
RO

2hl + 8(qRO + 36qS)2

2hl

≤ AdvMSKE
KE2 (t+ tAEAD · qS, qNS, qS, qRS + qS, qRL, qT, qRO)

+ 2(12qS + qRO)2 + 2q2
RO + 8(qRO + 36qS)2

2hl

≤ 2q2
S

2nl · p
+ (qRO + qS)2 + q2

NS + (qRO + 6qS)2 + qRO · qNS + qS
2hl

+ 4(t+ tAEAD · qS + 4 log(p) · qRO)2

p

+ 2(12qS + qRO)2 + 2q2
RO + 8(qRO + 36qS)2

2hl .

This yields the following overall result for the MSKE security of the TLS 1.3 PSK-(EC)DHE
handshake protocol.

Corollary 7.6. Let TLS1.3-PSK-(EC)DHE be the TLS 1.3 PSK-(EC)DHE handshake protocol as
specified on the left-hand side in Figure 1. Let G be the Diffie–Hellman group of order p. Let nl be
the length in bits of the nonce, let hl be the output length in bits of H, and let the pre-shared key
space be KE.PSKS = {0, 1}hl . Let H be modeled as a random oracle ROH. Then,

AdvMSKE
TLS1.3-PSK-(EC)DHE(t, qNS, qS, qRS, qRL, qT, qRO)

≤ 2q2
S

2nl · p
+ (qRO + qS)2 + q2

NS + (qRO + 6qS)2 + qRO · qNS + qS
2hl

+ 4(t+ tAEAD · qS + 4 log(p) · qRO)2

p

+ 2(12qS + qRO)2 + 2q2
RO + 8(qRO + 36qS)2

2hl .

Our tight security proof for the TLS 1.3 PSK-(EC)DHE handshake given in Section 7.2 can
be adapted to the PSK-only handshake. The structure and resulting bounds are largely the same
between the two modes, with a couple of significant changes. Naturally, we have no Diffie–Hellman
group, no key shares in the ClientHello or ServerHello messages, and no reduction to the strong
Diffie–Hellman problem. Without the reduction to stDH, we cannot achieve forward secrecy for
any key: an adversary in possession of the pre-shared key can compute all session keys.

The security proof for the TLS 1.3 PSK-only handshake uses the same sequence of games Game0
to Game9 (excluding the reduction to the strong Diffie–Hellman problem in Game10). There only
is a difference in Game1, in which we exclude collisions of nonces and group elements sampled by
honest session to compute there Hello messages. Since we do not have any key shares in the
PSK-only mode, the session will consequently also not sample a group elements. Thus, the bound
for Game0 changes to

Pr[Game0 ⇒ 1] ≤ Pr[Game1 ⇒ 1] + 2q2
S

2nl .

The rest of the arguments follow similarly as given in Section 7.2. We obtain the following result.

54



Theorem 7.7. Let TLS1.3-PSK be the TLS 1.3 PSK-only handshake protocol as specified on the
right-hand side in Figure 1 without handshake encryption. Let functions H and TKDFx for each
x ∈ {binder , . . . ,RMS} be modeled as 12 independent random oracles ROTh,RObinder , . . . ,RORMS.
Let nl be the length in bits of the nonce, let hl be the output length in bits of H, and let the pre-shared
key space KE.PSKS be the set {0, 1}hl . Then,

AdvMSKE
TLS1.3-PSK(t, qNS, qS, qRS, qRL, qT, qRO)

≤ 2q2
S

2nl + (qRO + qS)2 + q2
NS + (qRO + 6qS)2 + qRO · qNS + qS

2hl .

From this we obtain the following overall result for the TLS 1.3 PSK-only mode via the same
series of arguments as in Section 7.3.

Corollary 7.8. Let TLS1.3-PSK be the TLS 1.3 PSK-only handshake protocol as specified on the
left-hand side in Figure 1. Let nl be the length in bits of the nonce, let hl be the output length in
bits of H, and let the pre-shared key space be KE.PSKS = {0, 1}hl . Let H be modeled as a random
oracle ROH. Then,

AdvMSKE
TLS1.3-PSK(t, qNS, qS, qRS, qRL, qT, qRO)

≤ 2q2
S

2nl + (qRO + qS)2 + q2
NS + (qRO + 6qS)2 + qRO · qNS + qS

2hl

+ 2(12qS + qRO)2 + 2q2
RO + 8(qRO + 36qS)2

2hl .

8 Evaluation
Asymptotically, our tighter security bounds improve on prior analysis of TLS 1.3 by a quadratic
factor. We evaluate ours and prior bounds over a wide range of fully concrete resource parameters,
following the approach of Davis and Günther [15]. The full range of evaluated parameters is given
in Tables 2 and 3 below, along with reasoning for how we chose the various ranges of resource
parameters. The tables show that while the prior PSK-(EC)DHE bound by Dowling et al. [25]
meets the target security goals in a number of configurations, there are at least some settings for all
elliptic-curve groups in which the targeted security is not met. Our bounds do significantly better
than the target in all configurations we considered. The gap for the PSK-only handshake is less
significant as the loosest prior reduction for TLS 1.3 was to the Diffie–Hellman problem.

Overall, our bounds improve on previous analyses of the PSK-only handshake by 15 to 53 bits
of security, and those of the PSK-(EC)DHE handshake by 60 to 131 bits of security, across all our
parameters evaluated.

8.1 Evaluation Details

We will briefly explain the reasoning behind each of our specific resource parameter estimates.
An adversary in the MSKE game (cf. Definition 3.1) is limited in its runtime t, the number of
pre-shared keys #N and protocol sessions #S it can interact with, and the number of random
oracle queries #RO it can make. This last quantity captures offline work the adversary spends on
computing the hash function H, which in our analysis we model as random oracle. The choice of
ciphersuite enters the bound through the length of symmetric session keys and pre-shared keys. For
the PSK-(EC)DHE handshake, the bound also depends on the underlying Diffie–Hellman group.
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Runtime t ∈ {240, 260, 280}. We consider a range of adversarial runtimes from easily achievable
(240 operations) to state-scaled computational power (280 operations).

Random oracle queries #RO ∈ {240, 260, 280}. The number of random oracle queries models
the number of hash function computations an adversary is capable of computing. Accordingly, we
scale the number of RO queries with the runtime, always setting #RO = t/210.

Number of pre-shared keys #N ∈ {225, 235}. The world’s largest certificate authority Let’s En-
crypt reports ≈ 227.5 active certificates for fully-qualified domains.13 While not every user of
TLS 1.3 will perform resumption, our model counts the number of pre-shared keys, where typically
users may hold many pre-shared keys, with servers regularly issuing several PSKs per full-handshake
connection for later resumption. We hence estimate that the number of pre-shared keys accessible
to a globally-scaled adversary may well exceed the reported number of (server) certificates.

Number of sessions #S ∈ {235, 245, 255}. We use the same estimates as Davis and Günther [15],
based on Google’s and Firefox’s usage reports.14 With a daily browser user base of 2 billion (≈ 231)
and an HTTPS traffic encryption rate in the range of 76–98%, we estimate an adversary could
encounter up to 255 distinct sessions over an extended time period. Note that although the PSK
handshakes are less commonly used by browsers than the full TLS 1.3 handshake, they are frequently
used by embedded and low-powered devices which do not appear in these reports. Naturally, we
do not allow the number of sessions to exceed the adversary’s runtime t.

Diffie–Hellman groups. There are ten Diffie–Hellman groups standardized for use with the
PSK-(EC)DHE handshake: five elliptic-curve groups and five finite-field groups. We reduce to
the security of the strong Diffie–Hellman assumption in each of these groups. Davis and Günther
gave a proof of hardness in the generic group model (GGM) for the strong DH problem. This
result is a good heuristic for elliptic-curve groups, but not for finite-field ones because they are
vulnerable to index-calculus based attacks not covered by the GGM. The elliptic-curve groups are
more efficient and more widely used than finite-field groups, so we restrict our analysis to these
groups: secp256r1, x25519, secp384r1, x448, secp521r1. For each group, we give in Table 3 the
order p and the expected security level b in bits. We use the security level b to determine the choice
of hash function and the target security level for the entire PSK-(EC)DHE handshake.

Ciphersuite and symmetric lengths. Our bounds reduce to the collision resistance of the
random oracle ROTh, which models the handshake’s hash function. The choice of hash function
also determines the length of the session and resumption keys. TLS 1.3 has five ciphersuites, all of
which set the hash function to be either SHA256 or SHA384. For PSK-(EC)DHE mode, we select
SHA256 as the hash function whenever a curve with 128-bit security is used and we select SHA384
for higher-security curves. As our results of Section 5 only apply to PSK-only mode when SHA256
is the hash function, we always use SHA256 and a target-security level of 128 bits.
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Adversary resources PSK-only
t #N #S #RO Target t/2b DFGS [25] Us (Cor. 7.8)
240 225 235 230 2−88 ≈ 2−158 ≈ 2−173

240 235 235 230 2−88 ≈ 2−150 ≈ 2−173

260 225 235 250 2−68 ≈ 2−119 ≈ 2−152

260 225 245 250 2−68 ≈ 2−109 ≈ 2−151

260 225 255 250 2−68 ≈ 2−99 ≈ 2−133

260 235 235 250 2−68 ≈ 2−119 ≈ 2−152

260 235 245 250 2−68 ≈ 2−109 ≈ 2−151

260 235 255 250 2−68 ≈ 2−99 ≈ 2−133

280 225 235 270 2−48 ≈ 2−79 ≈ 2−112

280 225 245 270 2−48 ≈ 2−69 ≈ 2−112

280 225 255 270 2−48 ≈ 2−59 ≈ 2−112

280 235 235 270 2−48 ≈ 2−79 ≈ 2−112

280 235 245 270 2−48 ≈ 2−69 ≈ 2−112

280 235 255 270 2−48 ≈ 2−59 ≈ 2−112

Table 2: Concrete advantages of a key exchange adversary with given resources t (running time),
#N (number of pre-shared keys), #S (number of sessions), and #RO (number of random oracle
queries) in breaking the security of the TLS 1.3 PSK-only handshake protocol with a ciphersuite
targeting 128-bit security. Numbers based on the prior bounds by Dowling et al. [25] and our bound
for PSK-only in Corollary 7.8. “Target” indicates the maximal advantage t/2b tolerable for a given
bound on t when aiming for the bit security level b = 128; entries in green -shaded cells meet
that target. We assume that the ciphersuite uses SHA256 as its hash function (see Appendix B for
further explanation).

separation in an earlier version of this work, cf. Appendix B.
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Adversary resources PSK-(EC)DHE
t #N #S #RO Curve (bit security b, group order p) Target t/2b DFGS [25] Us (Cor. 7.6)
240 225 235 230 secp256r1 (b=128, p≈2256) 2−88 ≈ 2−92 ≈ 2−167

240 235 235 230 secp256r1 (b=128, p≈2256) 2−88 ≈ 2−82 ≈ 2−167

240 225 235 230 x25519 (b=128, p≈2252) 2−88 ≈ 2−92 ≈ 2−163

240 235 235 230 x25519 (b=128, p≈2252) 2−88 ≈ 2−82 ≈ 2−163

240 225 235 230 secp384r1 (b=192, p≈2384) 2−152 ≈ 2−220 ≈ 2−294

240 235 235 230 secp384r1 (b=192, p≈2384) 2−152 ≈ 2−210 ≈ 2−294

240 225 235 230 x448 (b=224, p≈2446) 2−184 ≈ 2−220 ≈ 2−301

240 235 235 230 x448 (b=224, p≈2446) 2−184 ≈ 2−210 ≈ 2−301

240 225 235 230 secp521r1 (b=256, p≈2521) 2−216 ≈ 2−220 ≈ 2−301

240 235 235 230 secp521r1 (b=256, p≈2521) 2−216 ≈ 2−210 ≈ 2−301

260 225 235 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−61 ≈ 2−132

260 225 245 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−40 ≈ 2−132

260 225 255 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−12 ≈ 2−127

260 235 235 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−60 ≈ 2−132

260 235 245 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−32 ≈ 2−132

260 235 255 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−2 ≈ 2−127

260 225 235 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−57 ≈ 2−128

260 225 245 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−37 ≈ 2−128

260 225 255 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−12 ≈ 2−123

260 235 235 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−57 ≈ 2−128

260 235 245 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−32 ≈ 2−128

260 235 255 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−2 ≈ 2−123

260 225 235 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−189 ≈ 2−259

260 225 245 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−168 ≈ 2−259

260 225 255 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−140 ≈ 2−254

260 235 235 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−188 ≈ 2−259

260 235 245 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−160 ≈ 2−259

260 235 255 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−130 ≈ 2−254

260 225 235 250 x448 (b=224, p≈2446) 2−164 ≈ 2−200 ≈ 2−280

260 225 245 250 x448 (b=224, p≈2446) 2−164 ≈ 2−170 ≈ 2−279

260 225 255 250 x448 (b=224, p≈2446) 2−164 ≈ 2−140 ≈ 2−261

260 235 235 250 x448 (b=224, p≈2446) 2−164 ≈ 2−190 ≈ 2−280

260 235 245 250 x448 (b=224, p≈2446) 2−164 ≈ 2−160 ≈ 2−279

260 235 255 250 x448 (b=224, p≈2446) 2−164 ≈ 2−130 ≈ 2−261

260 225 235 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−200 ≈ 2−280

260 225 245 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−170 ≈ 2−279

260 225 255 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−140 ≈ 2−261

260 235 235 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−190 ≈ 2−280

260 235 245 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−160 ≈ 2−279

260 235 255 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−130 ≈ 2−261

280 225 235 270 secp256r1 (b=128, p≈2256) 2−48 ≈ 2−21 ≈ 2−92

280 225 245 270 secp256r1 (b=128, p≈2256) 2−48 ≈ 2−1 ≈ 2−92

280 225 255 270 secp256r1 (b=128, p≈2256) 2−48 ≈ 219 ≈ 2−92

280 235 235 270 secp256r1 (b=128, p≈2256) 2−48 ≈ 2−21 ≈ 2−92

280 235 245 270 secp256r1 (b=128, p≈2256) 2−48 ≈ 2−1 ≈ 2−92

280 235 255 270 secp256r1 (b=128, p≈2256) 2−48 ≈ 220 ≈ 2−92

280 225 235 270 x25519 (b=128, p≈2252) 2−48 ≈ 2−17 ≈ 2−88

280 225 245 270 x25519 (b=128, p≈2252) 2−48 ≈ 23 ≈ 2−88

280 225 255 270 x25519 (b=128, p≈2252) 2−48 ≈ 223 ≈ 2−88

280 235 235 270 x25519 (b=128, p≈2252) 2−48 ≈ 2−17 ≈ 2−88

280 235 245 270 x25519 (b=128, p≈2252) 2−48 ≈ 23 ≈ 2−88

280 235 255 270 x25519 (b=128, p≈2252) 2−48 ≈ 223 ≈ 2−88

280 225 235 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−149 ≈ 2−219

280 225 245 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−129 ≈ 2−219

280 225 255 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−109 ≈ 2−219

280 235 235 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−149 ≈ 2−219

280 235 245 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−129 ≈ 2−219

280 235 255 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−108 ≈ 2−219

280 225 235 270 x448 (b=224, p≈2446) 2−144 ≈ 2−180 ≈ 2−240

280 225 245 270 x448 (b=224, p≈2446) 2−144 ≈ 2−150 ≈ 2−240

280 225 255 270 x448 (b=224, p≈2446) 2−144 ≈ 2−120 ≈ 2−240

280 235 235 270 x448 (b=224, p≈2446) 2−144 ≈ 2−170 ≈ 2−240

280 235 245 270 x448 (b=224, p≈2446) 2−144 ≈ 2−140 ≈ 2−240

280 235 255 270 x448 (b=224, p≈2446) 2−144 ≈ 2−110 ≈ 2−240

280 225 235 270 secp521r1 (b=256, p≈2521) 2−176 ≈ 2−180 ≈ 2−240

280 225 245 270 secp521r1 (b=256, p≈2521) 2−176 ≈ 2−150 ≈ 2−240

280 225 255 270 secp521r1 (b=256, p≈2521) 2−176 ≈ 2−120 ≈ 2−240
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Table 3: Concrete advantages of a key exchange adversary with given resources t (running time),
#N (number of pre-shared keys), #S (number of sessions), and #RO (number of random oracle
queries) in breaking the security of the TLS 1.3 PSK-(EC)DH handshake protocol. Numbers based
on the prior bounds by Dowling et al. [25] and our bound for PSK-(EC)DHE in Corollary 7.6.
“Target” indicates the maximal advantage t/2b tolerable for a given bound on t when aiming for
the respective curve’s bit security level b; entries in green -shaded cells meet that target. See
Section 8 and Appendix 8.1 for further details.
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Appendix

A Collision Resistance of Random Oracles
Theorem A.1. Let RO be a random oracle with output length hl and let A be any adversary issuing
at most qRO many queries to RO. Then,

AdvCR
RO(qRO) ≤ q2

RO

2hl .

Proof. The above theorem follows from the birthday bound. Since there are at most qRO queries
issued to RO, in the worst case each of these queries is distinct. That is, the random oracle RO has
to sample qRO many uniform and independent bit strings from {0, 1}hl . The probability that two
of these bit strings collide can be limited using the birthday bound by q2

RO · 2−hl .

B A Careful Discussion of Domain Separation
In our indifferentiability treatment of the TLS 1.3 key schedule (cf. Section 5), we change what we
capture as random oracles in the key exchange model. We start with one random oracle, ROH, used
wherever the hash function H would be called in the protocol. We change this to classify queries
to ROH into two types:

Type 1 queries: component hashes (via function Ch) used within Extract, Expand, and
MAC to compute HKDF.Extract, HKDF.Expand, resp. HMAC.

Type 2 queries: transcript hashes (via function Th) computing hash values of protocol tran-
scripts (or empty strings).

We wish to model Ch and Th now as two independent random oracles: ROCh resp. ROTh.
To change the model, we can just change the pseudocode of the protocol to replace ROH with

whichever of ROCh and ROTh seems more appropriate. However, we must define an explicit con-
struction that performs this substitution in a systematic way in order to give a formal proof of
security. This construction needs a Boolean condition to determine which of ROCh and ROTh
should be queried, and this condition cannot be dependent on the higher-level context of the pro-
tocol’s usage. Instead, we must define two disjoint sets DCh and DTh such that honest executions
of TLS 1.3 only query ROH on inputs in DCh when computing HKDF.Extract, HKDF.Expand, or
HMAC, and it otherwise only queries ROH on inputs in DTh.

This separation must hold even when an honest session is responding to adversarially-chosen
messages. We do make some assumptions about the way that honest sessions process incoming
messages. We assume that a server receiving a first ClientHello message from a client will not re-
spond or execute the protocol unless the message contains correct encodings of all of the mandatory
parameters for TLS 1.3. If the client fails to specify a valid group and key share in PSK-(EC)DHE
mode, or version number, mode, and pre-shared key in any mode, the server should abort. Of
course, the ClientHello message may also contain invalid encodings of these values or even arbi-
trary data; we do not exclude this possibility. Note that our conditions apply only to random-oracle
queries made by honest executions of the protocol. An adversary may of course call ROH on any
input it chooses in either DCh or DTh.

The TLS 1.3 handshake protocol does not provide any intentional domain separation between
Type 1 and Type 2 queries. We therefore turn to the formatting of queries to ROH in the hopes
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of finding some unintentional separation. We identify seven subtypes of query: five subtypes of
Type 1 and two subtypes of Type 2. Queries of each subtype have some unique formatting: a fixed
length, a byte with a particular value, an encoded label. These attributes are heavily dependent
on the specific configuration of the TLS 1.3 protocol; we therefore analyze four separate cases: two
modes of operation (PSK-(EC)DHE and PSK-only mode) and two ciphersuites defining ROH as
SHA256 and SHA384 respectively. Throughout, we will assume that any pre-shared-keys are the
same length as the output length of ROH, i.e., hl bits. This is true of resumption keys, but may
not be true in general for pre-shared keys negotiated out-of-band. As TLS 1.3 fields length are
given in (full) bytes, we will be talking about byte lengths if not otherwise stated in the following
and use the shorthand Hl := hl/8 for the output length of ROH in bytes. We also assume that if a
Diffie–Hellman group is used, it is one of the standardized elliptic curve or finite field groups.

All Type 1 queries to ROH are intermediate steps in the computation of HMAC, HKDF.Extract,
and HKDF.Expand. They consequently share some formatting which we discuss here before ad-
dressing each subtype individually. HKDF.Extract and HMAC are two names for the same function.
Given a key K and input s, HKDF.Expand(K, s) pads s with a single trailing counter byte with
value 0x01, then returns HMAC(K, s ‖ 0x01). Therefore all Type 1 queries to ROH arise in the
computation of HMAC. HMAC[ROH](K, s) takes a key K of length Hl bytes. It then pads this
key with zeroes up to the block length Bl of its hash function. The block lengths of SHA256 and
SHA384 are 64 and 128 bytes respectively. We call the padded key K ′. Then HMAC[ROH] makes
two queries to ROH:

1. d← ROH(K ′ ⊕ ipad ‖ s),

2. ROH(K ′ ⊕ opad ‖ d).

The values ipad and opad are strings of Bl bytes. Each byte in ipad is fixed to 0x36, and each byte
in opad is fixed to 0x5c. The padded key K ′ is Bl long, longer than K, so every Type 1 query has
a segment of length Bl−Hl bytes in which each byte equals one of 0x36 and 0x5c. We refer to this
segment as the “fixed region”. When the hash function is SHA256, resp. SHA384, the fixed region is
32, resp 80 bytes long.

Now we can present the seven subtypes of queries made by TLS 1.3. The first five types are
Type 1 queries, and the last two (Empty and Transcript) are Type 2 queries.

The seven subtypes of queries are:

1. Outer HMAC queries. These queries are the second query made in the computation of
HMAC. Its key has length Hl, and the digest d also has length Hl. In between these is the
fixed region, in which every byte contains 0x5c. The total query is 96, resp. 176 bytes long.

2. Inner HMAC queries. We divide the first ROH query made by HMAC into several subtypes;
this type includes only those where the input to HMAC is an arbitrary string of length Hl.
This subtype is formatted identically to an outer HMAC query, except that the bytes of the
fixed region are fixed to the value 0x36 instead of 0x5c. TLS 1.3 makes inner HMAC queries
while computing Finished and binder messages (where the input is a hashed transcript), the
early and master secrets, and in PSK-only mode, also the handshake secret.

3. Diffie–Hellman HMAC query. In PSK-(EC)DHE mode, TLS 1.3 computes the handshake
secret by calling HMAC on an encoded Diffie–Hellman key share. HMAC’s first query is a
Diffie–Hellman HMAC query. The formatting is the same as an inner HMAC hash except that
the segment following the fixed region has a different length. Namely, the byte length (denoted
by |G|/8) of the encoding of an element of a standardized Diffie–Hellman group. The actual
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byte length for each standardized Diffie–Hellman group can be found in Table 4. The total
query length is then Bl + |G|/8 bytes, which is 64 + |G|/8 bytes if the hash function is SHA256
and 128 + |G|/8 bytes if the hash function is SHA384.

4. Derive-Secret hashes. The Derive-Secret function is a component of the TLS key sched-
ule [54, Section 7.1]. Its inputs are a key of length Hl, a label string of 2 to 12-bytes in length,
and an input Messages string.
Derive-Secret queries ROH three times: once to hash the Messages string, and twice as part
of HKDF.Expand. The first of these three queries is a transcript query, and the third is an Outer
HMAC query. The second query we call a Derive-Secret query. The Derive-Secret query
has the same formatting as Inner HMAC queries and Diffie–Hellman queries, but the segment
following the fixed region contains a strictly formatted HkdfLabel struct [54, Section 7.1].
This struct begins with a two-byte field encoding the integer value Hl. This is followed by a
variable-length vector with a 1-byte length field containing the string ”tls13 ” followed by a
label string with length between 2 and 12 bytes. Lastly comes a vector of length Hl, prefixed
with a 1-byte field encoding its length. The last byte in the input contains the 0x01. This
byte is the counter mandated by the definition of HKDF.Expand; however since HKDF.Expand
is never called on inputs longer than Hl, the counter never reaches a value higher than 1.
The total length of the label struct, including the counter byte, is at least Hl + 13 bytes and
at most Hl + 23 bytes. The total query is thus in the range of Bl + Hl + 13 and Bl + Hl + 23
bytes, which is 109–119 bytes if the hash function is SHA256 and 189–199 bytes if the hash
function is SHA384.

5. Finished hash. The HKDF-Expand-Label function is a subroutine of the Derive-Secret func-
tion, but also called during the computation of Finished messages and the binder value [54,
Section 4.4.4]. HKDF-Expand-Label makes two calls to ROH. The second is an Outer HMAC
hash; we call the first a Finished hash. A Finished hash is identical to a Derive-Secret
hash, except that the label string is fixed to finished and the final vector has length 0. The
counter byte is still present. In total, the label struct occupies 19 bytes. The total query is
thus Bl + 19 bytes, which is 83 bytes if the hash function is SHA256 and 147 bytes if the hash
function is SHA384.

6. Empty hashes. Occasionally in the key schedule, TLS 1.3 calls ROH on the empty string.

7. Transcript hashes. The last use of ROH is to condense partial transcripts. Each transcript
includes at least a partial ClientHello message. We assume calling ROH on a transcript
which includes at least a partial ClientHello. The minimum length of a partial ClientHello
message in PSK-only mode is 73 bytes. This includes the following fields15 [54, Section 4.1.2]:

• 1 byte message type fixed to 0x01

• 3 bytes encoded message length
• 2 bytes legacy_version fixed to 0x0303

• 32 bytes random
• 1 byte legacy_session_id (for an empty vector with 1-byte length field)

15An earlier version omitted the leading 1-byte message type and 3-byte message length encoding. We thank Robert
Merget for pointing this out, which leads to an accordingly modified domain separation analysis. In brief, domain
separation for SHA384 is still lacking, unless one assumes parties only accept defined extensions and ciphersuites;
see [17].
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Group name NamedGroup enum value Encoding length |G|/8
secp256r1 [53] 0x0017 32
secp384r1 [53] 0x0018 48
secp521r1 [53] 0x0019 66
x25519 [48] 0x001d 32
x448 [48] 0x001E 56
ffdhe2048 [32] 0x0100 128
ffdhe3072 [32] 0x0101 192
ffdhe4096 [32] 0x0102 256
ffdhe6144 [32] 0x0103 384
ffdhe8192 [32] 0x0104 512

Table 4: Table displaying the standardized groups for use with TLS 1.3, their encodings in the
NamedGroup enum, and the length of an encoded group element in bytes.

• 4 bytes ciphersuites (must include a 2-byte length field and at least one value)
• 2 bytes legacy_compression_methods (must include a 1-byte length field and the value

0x00)
• 2 bytes encoded length of extensions field
• 7 bytes supported_versions extension extension [54, Section 4.2.1] (must start with

0x002b and include 0x0304)
• 6 bytes psk_key_exchange_modes extension [54, Section 4.2.9] (must start with 0x002d

and include 0x00)
• 13 bytes pre_shared_key extension [54, Section 4.2.11] (partial: excluding the binder list;

must come last, must start with 0x0029)

The first 47 bytes (through the extensions’ length encoding), must appear in the order dis-
played, although the legacy_session_id, ciphersuites, and legacy_compression_methods
fields can be longer than the lengths given above. We will occasionally refer to this segment
as the “fixed preface” of a ClientHello because it must appear at the beginning of every
well-formed ClientHello message. The extensions can be reordered arbitrarily (except for
the pre_shared_key extension) and additional extensions and ciphersuites can be added or
repeated, up to a maximum length of 216− 2 bytes of ciphersuites and 216− 1 bytes for exten-
sions. The vectors legacy_session_id and legacy_compression_methods have a maximum
length of 32 bytes and 28 − 1 bytes, respectively. The overall maximum length of a truncated
ClientHello is then 2 · 216 + 328 bytes. A full ClientHello in PSK-only mode, including the
binder list, adds at least another 3 + Hl bytes for a binders vector with 3 bytes of encoded
length. The binders vector has a maximum length of 216 − 1 bytes with a 2-byte length
field. The ClientHello message thus contains a minimum of 76 + Hl bytes and a maximum
of 3 · 216 + 329 bytes.
In PSK-(EC)DHE mode, two additional extensions are also mandatory: the key_share and
supported_groups extensions [54, Section 9.2], so the minimum ClientHello length increases
by at least 18+|G|/8 bytes, cf. Table 416. This increase occurs for both truncated and full

16This includes 8 bytes for supported_groups and 10 + |G|/8 bytes for key_share. An standard-compliant
key_share extension may be empty and thus only 6 bytes if the client is requesting a HelloRetryRequest message;
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Type Minimum length (bytes) Maximum length (bytes)
Outer HMAC 96 96
Inner HMAC 96 96
Derive-Secret 109 119
Finished 83 83
Empty 0 0
Transcript 73 2 · 216 + 328

Table 5: Table showing input lengths for hash function calls made by TLS 1.3 in PSK-only mode
with SHA256.

ClientHello messages. In this mode, a truncated ClientHello message is at least 91 + |G|/8
bytes long, and a full ClientHello is at least 94 + Hl + |G|/8 bytes long. The maximum
lengths are identical to those in PSK-only mode as the two additional mandatory extensions
key_share and supported_groups were only accounted for in the maximum length of the
extensions field.

B.1 PSK-only mode with SHA256

The block length of this hash function is 64 bytes, and the output length is 32 bytes. In Table 5,
we give the minimum and maximum input lengths for each of the six call types. (Diffie–Hellman
HMAC calls do not occur in this mode.)

In Table 5 we note the minimum and maximum input lengths of each type of message. For those
types with overlapping length ranges, we must show they have separate domains by other means.
Outer and Inner HMAC hashes have identical lengths; however each of them has a 32-byte fixed
region. In outer HMAC hashes, the fixed region contains opad; in inner HMAC hashes, it contains
ipad. These are distinct values, so no string can be both an outer and an inner HMAC hash.

Transcript hashes are not domain-separated by length from any hash except the empty hashes.
We therefore turn to formatting to separate these from other types. In the following, we visually
lay out each byte of potentially overlapping inputs.

For a string to be both a transcript and an HMAC hash (outer or inner), it must be 96 bytes
(cf. Table 5) long. We diagram and compare a transcript hash containing a partial ClientHello17

and an HMAC hash (outer or inner) in Figure 12.
We can see that the fixed preface of the transcript hash overlaps the fixed region of the HMAC

hash that is fixed to either ipad or opad. Consequently, the legacy_session_id vector must begin
within the fixed region (at byte 39). This is a variable-length vector preceded by a 1-byte length
field, and its maximum length is 32 bytes [54, Section 4.1.2]. Therefore the maximum value of the
length field is 0x20 and it cannot contain either byte 0x36 or 0x5c. Any string containing a valid
partial ClientHello therefore cannot also be a correctly formatted HMAC hash.

The same argument applies to Finished and Derive-Secret hashes, both of which contain the
same fixed region in the same location as inner HMAC hashes.

however in this case the subsequent transcript hash will contain two ClientHello messages and a HelloRetryRequest;
the second ClientHello in the transcript must contain a non-empty key_share extension along with the other manda-
tory extensions; thus the total length of the transcript will increase by more than 10 + |G|/8 bytes even if the first
key_share extension is empty.

17A full ClientHello contains at least 76 + Hl ≥ 108 bytes, which is too long to be an HMAC hash.

67



Fixed preface: 47 B Extension data: 36 B End
PSK:
13 B

Key: 32 B Fixed ipad/opad:
32 B

Arbitrary string:
32 B

Figure 12: Domain separation in PSK-only mode with SHA256: Transcript hash containing a
partial ClientHello (top) vs. (outer or inner) HMAC hash (bottom). “End PSK” is the end of the
pre_shared_key extension.

Type Minimum length (bytes) Maximum length (bytes)
Outer HMAC 96 96
Inner HMAC 96 96
Diffie–Hellman HMAC 64 + |G|/8 64 + |G|/8
Derive-Secret 109 119
Finished 83 83
Empty 0 0
Transcript 91 + |G|/8 2 · 216 + 328

Table 6: Table showing input lengths for hash function calls made by TLS 1.3 in PSK-(EC)DHE
mode with SHA256. For transcript hashes, the encoding lengths |G|/8 can be found in Table 4.

For this mode, we define the set DTh to include of the empty string and all strings of length
greater than or equal to 69 bytes for which the 39th byte is not equal to ipad or opad. We let DCh
contain all other elements of {0, 1}∗.

B.2 Pre-shared key with Diffie–Hellmann mode with SHA256

Again, we present the minimum and maximum lengths of each hash type; see Table 6. We now in-
clude Diffie–Hellman HMAC hashes, and transcript hashes include additional mandatory extensions
for PSK-(EC)DHE mode.

In this mode, Diffie–Hellman HMAC hashes may collide with Inner HMAC or Derive-Secret
hashes for certain choices of G. This is not a failure of domain separation because these inputs
to these three types will all belong to DCh. Transcript hashes now only have length overlaps with
Diffie–Hellman HMAC and Derive-Secret hashes. In both cases, however, the same argument
about the 39th byte containing the length of legacy_session_id applies, and no string can be two
different types.

For this mode, the set DTh consists of the empty string and all strings of length greater than
or equal to 91 + |G| bytes for which the 39th byte is not equal to ipad or opad. DCh contains all
other elements of {0, 1}∗.

B.3 Pre-shared key with Diffie–Hellmann mode with SHA384

Table 7 shows the minimum and maximum lengths of each hash type for this configuration. The
hash function SHA384 has 48-byte output and 128-byte block length, so the fixed region in HMAC,
Finished, and Derive-Secret hashes will be 80 bytes long.

Unlike the PSK modes with SHA256, we cannot rely on the distinction between legacy_session
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Type Minimum length (bytes) Maximum length (bytes)
Outer HMAC 176 176
Inner HMAC 176 176
Diffie–Hellman HMAC 128 + |G|/8 128 + |G|/8
Derive-Secret 189 199
Finished 147 147
Empty 0 0
Transcript 91 + |G|/8 2 · 216 + 328

Table 7: Table showing input lengths for hash function calls made by TLS 1.3 in PSK-(EC)DHE
mode with SHA384.

_id length field and the fixed region for domain separation, because the 48-byte HMAC keys for
SHA384 already reach past the position of the legacy_session_id length field at byte 39. Instead,
we consider whether a minimum-length ClientHello can accommodate the mandatory extensions
for this mode.

We worry only about possible collisions between transcript hashes and the other types: Finished,
(outer and inner) HMAC, and Derive-Secret. We diagram a transcript hash of 176 bytes together
with an outer HMAC hash as a demonstration of the domain-separation argument in Figure 13, but
the same argument applies to all.

Fixed preface: 47 B Extension data: 116 B End
PSK:
13 B

Key: 48 B Fixed region (opad): 80 B Arbitrary string:
48 B

Figure 13: Domain separation in PSK-(EC)DHE mode with SHA384: Transcript hash of 176 bytes
(top) vs. outer HMAC hash (bottom). “End PSK” is the end of the pre_shared_key extension.

There are no obvious conflicts here: the fixed preface of a ClientHello message is covered by the
key section of the HMAC hash, and the pre_shared_key extension is covered by the arbitrary string
at the end. However, notice that of the 116 bytes available for extension data in the ClientHello,
80 of them must be fixed to opad to allow a collision. Even including the 1 byte immediately after
the fixed preface and 13 bytes reserved for the pre_shared_key extension, this leaves only 50 bytes.
In PSK-(EC)DHE mode, five extensions are mandatory even for truncated ClientHello messages.
They are supported_versions [54, Section 4.2.1] (minimum 7 bytes), supported_groups [54,
Section 4.2.7] (minimum 8 bytes), key_share [54, Section 4.2.8] (minimum 10 + |G|/8 bytes),
psk_key_exchange_modes [54, Section 4.2.9] (minimum 6 bytes), and pre_shared_key [54, Section
4.2.11] (minimum 13 bytes). Even for the smallest choice of G, at least 76 bytes are required to
contain these extensions. At least one of the extensions must overlap with the fixed field, and will
differ from opad in at least one byte.

Any valid transcript hash will need at least 91+|G|/8 bytes outside the fixed region: 47 bytes for
the preface and 44+ |G|/8 for the mandatory extensions. An outer HMAC hash has only 96 unfixed
bytes and cannot meet this threshold. This is true also for inner HMAC hashes (96 unfixed bytes),
and Diffie–Hellman HMAC hashes, which have 48 + |G|/8 unfixed bytes. It is true for Finished
hashes, which have 48 unfixed bytes, because of the 80-byte fixed region and the fixed 19-byte label
struct for the finished label. And it is true for Derive-Secret hashes, which have at most 119
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unfixed bytes.
Let us be even more clear about why this overlap means no collision is possible. We cannot

fit all of the mandatory extensions in the segment after the fixed region. Therefore one of the
extensions must start either in the fixed region, or before the fixed region. None of these extensions
can start in the fixed region because they all begin with an extension type different from ipad or
opad (cf. [54, Section 4.2]). Therefore one of them must start before the fixed region and continue
into the fixed region. We call this the “first extension”. The pre_shared_key extension must
be the last extension, so it cannot be the first extension. Therefore the first extension is one of
key_share, supported_groups, and psk_key_exchange_modes, and supported_versions. All
extensions start with a 4 byte encoding of their type and length. Since the fixed preface is already
47 bytes, the second extension type byte of the first extension would need to be either 0x5c or
0x36. However, none of the aforementioned extensions contains these bytes on the second position
of its extension type. Consequently, the extensions can neither start before nor in the fixed region.
Moreover, we outline above that the space after the fixed region alone is too tight to fit all of the
mandatory extensions.

To be precise, the mandatory extensions must occupy no more than 71 bytes after the fixed
region (for the longest possible Derive-Secret hash) or |G|/8 bytes after (for an inner HMAC hash).
But summing their minimum lengths gives 44+ |G|/8 bytes. Even for the smallest possible |G|/8 =
32, the extensions just do not fit in the given space. It is therefore impossible to construct a valid
ClientHello message, truncated or otherwise, that collides with a possible HMAC, Derive-Secret,
or Finished hash.

Consequently we can set DTh to contain the empty string and all strings of at least 86 bytes for
which at least one of bytes 49 through 128 does not equal either ipad or opad. Again, we set DCh
to be all other elements of {0, 1}∗.

B.4 PSK-only mode with SHA384

In this mode/hash function combination, the transcript hash can collide with outer HMAC hashes.
There are other collisions as well, but one is sufficient to demonstrate the lack of domain separation.
We illustrate this via a 176-byte transcript hash (containing a truncated ClientHello) and an outer
HMAC hash, shown in Figure 14.

Fixed preface: 39 B ciphersuites: 0x0058 ‖ 0x1301 ‖ (opad)43: 90 B cookie: 19 B Mandatory
extensions:
26 B

Key: 48 bytes Fixed region (opad): 80 bytes Arbitrary string: 48 bytes

Figure 14: Failing domain separation in PSK-only mode with SHA384: Transcript hash of 176 bytes,
containing a truncated ClientHello (top) vs. outer HMAC hash (bottom).

We construct the following message, which is both a truncated ClientHello (and therefore a
transcript hash) and an outer HMAC hash. The message starts with the fixed 39 bytes through the
legacy_session_id. That is, 1 byte message type fixed to 0x01, 3 bytes encoding the message
length 176 (i.e., 0x0000B0), 2 bytes legacy_version fixed to 0x0303, 32 arbitrary bytes for random,
and 1 byte encoding the legacy_session_id length fixed 0x00 followed by the empty vector. The
next segment of the preface is the ciphersuites. To construct the collision, we use that the
standard RFC8446 mandates that servers must ignore ciphersuite values that it does not recognize
(e.g., undefined) and must process only the recognized ones as usual (cf. [54, Section 4.1.2]). This
means that a ciphersuites vector containing at least one standardized ciphersuite is well-formed.
We let the ciphersuites contain 44 ciphersuites, where the first ciphersuite is the valid, mandatory
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0x1301, and the remaining (undefined) 43 are opad (= 0x5c5c). Thus, the 39 bytes described
above are followed by the length field of the ciphersuites vector encoding 88 in 2 bytes, i.e.,
0x0058, and the ciphersuites vector 0x1301 ‖ (opad)43. This ciphersuites field is followed
by the legacy_compression_methods vector (with 1-byte length field), which must contain a
single null byte. We now have fixed 131 bytes of the message, which means that there are still
176−131 = 45 bytes to define. In particular, we need to define 45 bytes of extensions. Therefore, the
legacy_compression_methods vector is followed by 2 bytes encoding 45, which is the length of the
extensions vector. In PSK-only mode, the mandatory extensions are only supported_versions,
psk_key_exchange_modes, and (the truncated) pre_shared_key, and they take up 26 bytes. Since
pre_shared_key always has to be the last extension, we set these 26 bytes at the end of the message.
Finally, there are 19 bytes left undefined between the extension length field and the mandatory
extensions. We can fill these with a cookie [54, Section 4.2.2] extension with arbitrary content.
Like every extension this starts with 4 bytes of extension type (0x0068) and length (0x00FF), and
is then followed by 15 bytes of arbitrary content. (We could also fill these bytes without including
additional extensions.)

The 0x5c5c extension values in the constructed message match the HMAC opad key padding
in the format-restricted portion of the outer HMAC hash, the remainder lies in the unrestricted
portion. This type of collision is unavoidable, so there are no disjoint setsDTh and DCh that capture
the way TLS 1.3 calls SHA384 in pre-shared key only mode. Consequently the indifferentiability
step of Section 5.1.1 does not apply to this mode.

We remark that if one is willing to accept the additional assumption (for PSK-only with SHA384)
that client and servers only consider Hello messages valid that solely use standardized ciphersuite
values and extension types, meaning that the above collision would be discarded as a malformed
ClientHello, one can show domain-separation for this mode/hash function combination as well,
as demonstrated in [17]. The author of [17] considers this assumption reasonable as honest client
implementations would never use undefined values in their Hello messages. That is, the presence of
undefined values would inherently uncover tampering with a message. Since for domain separation
only queries from honest executions are of interest, considering only messages that might be output
by honest parties is only a mild assumption even though this is not standard-compliant.

B.5 Repairing Domain Separation for TLS 1.3-like Protocols

The above analysis demonstrates that complete domain separation is nontrivial to achieve for a
protocol like TLS 1.3 which uses a hash function for multiple purposes and at multiple levels
of abstraction. We would like to present our suggestions for how this could be achieved most
simply and efficiently in future iterations of TLS and other schemes. As discussed by Bellare et
al. [5], the most well-known method of domain separation is the inclusion of distinct labels into
each hash function call; this is precisely the method adopted by TLS 1.3 to distinguish calls to
its Derive-Secret function. Ideally, a future scheme could specify a unique label string for each
purpose: not only the various derived secrets, but also each time the transcript is hashed and each
internal call made by HMAC, HKDF.Extract, and HKDF.Expand.

Unfortunately, this ideal method is not compatible with the existing specifications of HMAC
and HKDF. Both of these functions make “outer HMAC queries” as discussed above; these calls
have a fixed input length of Bl + Hl bytes and this input does not include a label. A protocol could
avoid this roadblock by using an implementation of HMAC or HKDF with a custom underlying hash
function that prepends an HMAC-specific label to its input. This approach would be both standard-
compliant and efficient, but we do not recommend it because existing cryptographic libraries already
have trustworthy HMAC and HKDF functionality and encouraging custom implementations for every
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new protocol increases the probability of accidental errors in these new implementations. Instead,
we suggest making no adjustments to the internal execution of HMAC or HKDF and instead altering
direct hash function calls (the other six subtypes we discuss) to avoid collisions.

In practice, this means that under our recommendation, all hash function calls which are not
outer HMAC queries should obey two simple rules: first, they should end with a unique label and
second, that their input must not be Bl + Hl long. To conform with the first rule, TLS 1.3 would
need to make the following changes.

1. Add distinct labels to the end of each transcript before hashing; for clarity we suggest using
the names of the last message in the transcript; i.e. “PartialClientHello”, “ClientHello”,
“ServerHello”, etc. If HKDF is used, we would also recommend that these labels should not
end with the byte 0x01.

2. Add distinct labels to the end of the input each time HMAC is called; this would include inner
HMAC queries, Diffie–Hellman HMAC queries, Finished queries, and Derive-Secret queries.
Note that the labels should be postpended to the HMAC payload and not the key. The labels
used by Derive-Secret could then be omitted, although this is not necessary.

3. Ensure that none of the labels used is a suffix of another; this can introduce collisions even if
the labels are distinct.

We encourage using suffixes for domain separation, although prefixes are more commonly-used,
because they are easier to use in conjunction with HMAC and HKDF. Although we are not applying
labels to outer HMAC queries, we would still like to use them to domain separate inner HMAC queries
(and the other subtypes). The inputs to these queries begin with the HMAC key, which undergoes
an XOR operation with ipad before it is hashed. So prefixed labels would need to remain unique
and prefix-free after this XOR operation; this introduces some confusion that we prefer to avoid.
Additionally, the second step of our indifferentiability proof relies crucially on the fact that HMAC
uses fixed-length keys shorter than Bl; prefixed labels would therefore need to share a fixed length
shorter than Bl − Hl bytes. With suffixes, we still need to contend with the counter byte that
HKDF.Expand appends to its input, but in TLS 1.3 where this byte is always 0x01, this presents
less of a restriction.

To conform with the second rule, TLS 1.3 would need to enforce that it never hashes a string
of Bl + Hl except as an outer HMAC query. The easiest and least error-prone way to do this would
be to pad every non-empty hash function call and input to HMAC and HKDF with exactly Bl + Hl
bytes (before the suffixed labels); all calls would then be strictly longer than Bl + Hl. This method
adds two additional compression function calls to each hash function execution. There are some
ways to lessen this requirement without impacting the effectiveness of the length-based domain
separation. Calls which already have input longer than Bl + Hl bytes can omit the padding; so can
calls which have strictly shorter input. It would also be possible to use only as much padding is
needed to make inputs at least Bl + Hl + 1 bytes long. However, non-uniform padding should be
done carefully so that, for example, two previously distinct ClientHello messages do not collide
after being padded.
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