Zero-Knowledge Protocols for the Subset Sum
Problem from MPC-in-the-Head with Rejection

Thibauld Feneuil'2, Jules Maire?, Matthieu Rivain!, and Damien Vergnaud?®+*

L CryptoExperts, Paris, France
2 Sorbonne Université, CNRS, INRIA, Institut de Mathématiques de Jussieu-Paris
Rive Gauche, Ouragan, Paris, France
3 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
4 Institut Universitaire de France

Abstract. We propose zero-knowledge arguments for the modular sub-
set sum problem. Given a set of integers, this problem asks whether
a subset adds up to a given integer ¢t modulo a given integer g. This
NP-complete problem is considered since the 1980s as an interesting al-
ternative in cryptography to hardness assumptions based on number
theory and it is in particular believed to provide post-quantum security.
Previous combinatorial approaches, notably one due to Shamir, yield ar-
guments with cubic communication complexity (in the security param-
eter). More recent methods, based on the MPC-in-the-head technique,
also produce arguments with cubic communication complexity.

We improve this approach by using a secret-sharing over small integers
(rather than modulo ¢) to reduce the size of the arguments and remove
the prime modulus restriction. Since this sharing may reveal information
on the secret subset, we introduce the idea of rejection to the MPC-in-
the-head paradigm. Special care has to be taken to balance completeness
and soundness and preserve zero-knowledge of our arguments. We com-
bine this idea with two techniques to prove that the secret vector (which
selects the subset) is well made of binary coordinates. Our new techniques
have the significant advantage to result in arguments of size independent
of the modulus gq.

Our new protocols for the subset sum problem achieve an asymptotic im-
provement by producing arguments of quadratic size (against cubic size
for previous proposals). This improvement is also practical: for a 256-
bit modulus ¢, the best variant of our protocols yields 13KB arguments
while previous proposals gave 1180KB arguments, for the best general
protocol, and 122KB, for the best protocol restricted to prime modulus.
Our techniques can also be applied to vectorial variants of the subset
sum problem and in particular the inhomogeneous short integer solution
(ISIS) problem for which they provide an efficient alternative to state-of-
the-art protocols when the underlying ring is not small and NTT-friendly.
We also show the application of our protocol to build efficient zero-
knowledge arguments of plaintext and/or key knowledge in the context of
fully-homomorphic encryption. When applied to the TFHE scheme, the
obtained arguments are more than 20 times smaller than those obtained
with previous protocols. Eventually, we use our technique to construct

an efficient digital signature scheme based on a pseudo-random function
due to Boneh-Halevi-Howgrave-Graham.

1 Introduction

The (modular) subset sum problem is to find, given integers wy, . .., wy,, t and g,
a subset of the w;’s that sum to ¢t modulo ¢, i.e. to find bits x1,...,x, € {0,1}
such that

n
Z z;w; =t mod q. (1)
i=1
It was shown to be NP-complete (in its natural decision variant) in 1972 by
Karp [Kar72] and was considered in cryptography as an interesting alternative
to hardness assumptions based on number theory. Due to its simplicity, it was
notably used in the 1980s, following [MHTS|, for the construction of several
public-key encryption schemes.

Most of these proposals (if not all) were swiftly broken using lattice-based
techniques (see [OdI90]), but the problem itself remains intractable for appro-
priate parameters and is even believed to be so for quantum computers. For
instance, when the so-called density d = n/log,(q) of the subset sum instance
is close to 1 (i.e. ¢ ~ 2™), the fastest known (classical and quantum) algorithms
have complexity 20" (see [BBSS20] and references therein) and one can reach
an alleged security level of A bits with n = ©()\). Many cryptographic construc-
tions were proposed whose security relies on the hardness of the subset sum
problem: pseudo-random generators [IN96], bit commitments [IN96], public-key
encryption [ADITLPSI0], ...

The concept of zero-knowledge proofs and arguments introduced in [GMRS9]
has become a fundamental tool in cryptography. It enables a prover to convince
a verifier that some mathematical statement is true without revealing any addi-
tional information. Zero-knowledge proofs or arguments of knowledge, in which
a prover demonstrates that they knows a “witness” of the validity of the state-
ment, have found numerous applications in cryptography (notably for privacy-
preserving constructions or to enforce honest behaviour of parties in complex
protocols). The main goal of the present paper is to present new efficient zero-
knowledge arguments of knowledge for the subset sum problem.

1.1 Prior Work

Given integers wq, ..., wy,, t and ¢, an elegant zero-knowledge proof system due
to Shamir [Sha86| (see also [BGKW90ISim91IBlo09]) allows a prover to convince
a verifier that they knows x1,...,z, € {0,1} such that the relation holds.
The proof system is combinatorial in nature and it requires ©(\) rounds of com-
munication to achieve soundness error 2~* where each round requires ©(n?)
bits of communication. For an alleged security level of A\ bits, the overall com-
munication complexity of Shamir’s proof system is thus of ©(\3). In [LNSW13],

Ling, Nguyen, Stehlé, and Wang proposed a proof of knowledge of a solution for
the infinity norm inhomogeneous small integer solution (ISIS) problem which
is a vectorial variant of the subset sum problem. It is based on Stern’s zero-
knowledge proof of knowledge for the syndrome decoding problem [Ste94] and
is also combinatorial. It thus requires a large number of rounds of communica-
tion and when specialized to the subset sum problem it also yields proofs with
©(A3)-bit communication complexity for an alleged security level of \ bits.

A secure multi-party computation (MPC) protocol allows a set of mutually
distrusting parties to jointly evaluate a function f over their inputs while keep-
ing those inputs private. An elegant approach to constructing zero-knowledge
protocols has gained particular attention over the last years: the MPC-in-the-
head paradigm of Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOSQ09] in which a
prover secretly shares their secret input, simulates the execution of an MPC pro-
tocol on these shares (in “their head”), commits to this execution and partially
reveals it to the verifier on some challenge subset of parties. The verifier can
then check that the partial execution is consistent and accepts or rejects accord-
ingly. This approach was at first stood in the realm of theoretical cryptography
(with a focus on the asymptotic performance for any problem in NP), but it was
subsequently demonstrated to be also of practical relevance [GMO16/KKW18§].
In [BDI10], Bendlin and Damgard were the first to use the MPC-in-the-head
paradigm in lattice-based cryptography. They proposed a zero-knowledge proof
of knowledge of the plaintext contained in a given ciphertext from Regev’s
cryptosystem [Reg05] (and a variant they proposed). More recently, Baum and
Nof [BN20] proposed an efficient zero-knowledge argument of knowledge of the
short integer solution (SIS) problem (incorporating the sacrificing principle in
the MPC-in-the-head paradigm). Beullens also recently proposed such arguments
obtained from sigma protocols with helper [Beu20]. When applied to the subset
sum problem itself, all (variants of) these protocols yield proofs with ©(\3)-bit
communication complexity for an alleged security level of A bits.

There exist numerous other protocols for (vectorial variants of) the sub-
set sum problem from lattice-based cryptography. Until recently, they all in-
troduce some slack in the proof, i.e. there is a difference between the language
used for completeness and the language that the soundness guarantees (see, e.g.
[BDLN16] for a generic argument of knowledge of a pre-image for hornomorphic
one-way functions over integer vectors). In particular, the witness that can be
extracted from a proof is larger than the one that an honest prover uses (and
in the subset sum problem, the extractor will not output a binary vector). This
slack forces to use larger parameters for the underlying cryptosystem and in-
duces some loss in efficiency. Conversely, we shall only consider exact arguments
for the subset-sum problem in the present paper. Finally, new exact arguments
were proposed recently [BLSTIENS20JLNS21] but they require to use a mod-
ulus ¢ of a special form (namely a prime number as in [BN20/Beu20] but with
additional arithmetic constraints to make it “NTT-friendly”).

1.2 Contributions

In the MPC-in-the-head paradigm, the prover wants to convince a verifier that
they know a (secret) pre-image x of y = f(z) for some one-way function f
where the function f is represented as an arithmetic circuit. For the subset sum
problem, the function f is defined wia and it is thus natural to consider
the simple inner-product arithmetic circuit defined over Z,. The prover’s secret
input is the binary vector z = (x1,...,z,) € {0,1}" and they have to perform
some secret-sharing of x in Z, in such a way that the shares of any unauthorized
set of parties should reveal no information about the secret. This approach has
the major disadvantage that sharing a single bit requires several elements of Z,
each of size O(\) bits.

We adapt this paradigm using a secret sharing scheme done directly over the
integers. This approach was already used in cryptography (e.g. for multi-party
computation modulo a shared secret modulus [CGHO0]). To additively share a
secret t in a given interval [—T,T] for T € N, among n > 2 parties, a dealer

may pick uniformly at random ¢y, ..., ¢, € [=T2”,T2°] under the constraint that
t =t1+---+t, (over the integers), for some parameter p. However, given (n—1)
shares, to,...,t, for instance, the value t; = t — (¢t + - - - ¢,) is not randomly

distributed in [-727,72°] and this may reveal information on the secret ¢. It
is thus necessary to sample the shares in an interval sufficiently large in such a
way that their distributions for distinct secrets are statistically indistinguishable.
For a security level A, this requires p = £2(\) and thus the additive sharing of
bits involves shares of size £2(\). To overcome this limitation and use additive
secret sharing over small integers, we will rely on rejection. The computation
being actually simulated by the prover, they can abort the protocol whenever
the sharing leaks information on the secret vector z = (z1,...,2,) € {0,1}".
In some cases, the prover cannot respond to the challenge from the verifier and
must abort the protocol. A similar idea was used for lattice-based signatures by
Lyubashevsky |[Lyu08/Lyu09]but using different methods.

Our technique also allows overcoming the second disadvantage of the previ-
ous tentatives to use the MPC-in-the-head paradigm for lattice-based problems.
Indeed, using our additive secret sharing over the integers, we can prove the
knowledge of some integer vector z = (x1,...,x,) satisfying relation (for
any ¢) and further prove that z; € {0,1} for ¢ € {1,...,n}. This is achieved by
simulating a (single) non-linear operation modulo some arbitrary prime number
¢ (independent from ¢ and much smaller than ¢). We also introduce another
technique to prove that the solution = (1, ..., 2,) indeed lies in {0,1}" using
some masking and a cut-and-choose strategy. Both methods yield zero-knowledge
proofs with @(\?)-bit communication complexity for an alleged security level of
A bits. This improvement is not only of theoretical interest since for ¢ ~ 22°6, our
protocol can produce proof of size 13KB where Shamir’s protocol [Sha86] (up-
dated with modern tips) produces proof of size 1186 KB and [LNSW13] produces
proofs of size 2350KB.

Our protocols are particularly efficient for the subset sum problem where
the modulus ¢ is large. However, we show that our method has applications in

other contexts in cryptography. We show that it can be used for the (binary)
ISIS problem in lattice-based cryptography and that the resulting protocols are
competitive with state-of-the-art protocols for this problem. We also present
applications of our techniques to the context of fully-homomorphic encryption
(FHE). Specifically, adaptations of our protocols provide efficient zero-knowledge
arguments of plaintext and/or key knowledge for the so-called Torus Fully Ho-
momorphic Encryption (TFHE) scheme from [CGGI20]. Eventually, we use our
technique to construct an efficient digital signature scheme based on a pseudo-
random function due to Boneh, Halevi, and Howgrave-Graham [BHHOI].

2 Preliminaries

2.1 Zero-Knowledge Proofs

A zero-knowledge (ZK) protocol for some polynomial-time decidable binary re-
lation R (i.e., a relation that defines a language in NP) is defined by two proba-
bilistic polynomial time (PPT) interactive algorithms, a prover P and a verifier
V: both V and P are given a common input x and P is given in addition a wit-
ness w such that (z,w) € R. Then, P and V exchange a sequence of messages
alternatively until V outputs a bit b (with b = 1 indicating that V accepts P’s
claim and b = 0 indicating that V rejects the claim). The entire sequence of
messages exchanged by P and V), along with the answer b, is called a transcript.

A zero-knowledge argument for R with soundness error €, completeness error
a and (t,¢)-zero-knowledge satisfies the following properties:

1. Completeness: if (z,w) € R, and P knows a witness w for z, they will
succeed in convincing V (except with probability «), i.e.,

Pr[(P(z,w),V(z))=1]>1-a.
2. Soundness: if there exists a PPT algorithm P such that

€:= Pr [(P(z),V(z)) =1] > ¢,

then there exists a PPT algorithm £ (called the extractor) which, given
rewindable black-box access to P outputs a witness w’ for z in time in time
poly(X, (€ — €)~!) with probability at least 1/2.

3. Zero-knowledge: for every PPT algorithm V), there exists a PPT al-
gorithm S (called the simulator) which, given the input statement x and
rewindable black-box access to f/, outputs a simulated transcript which is
(t, ¢)-indistinguishable from View(P(z,w), V(x)) (see Appendix [B|for a for-

mal definition).

Remark 1. The soundness property ensures that a PPT algorithm P without
knowledge of the witness cannot convince V with probability greater than e
assuming that the underlying problem is hard. Otherwise, the existence of £
implies that P can be used to compute a valid witness w’ for z. If the zero-
knowledge property holds only for the genuine verifier V, then the protocol is
deemed honest-verifier zero-knowledge.

2.2 MPC-in-the-Head and Batch Product Verification

The MPC-in-the-Head (MPCitH) paradigm [IKOS09] constructs ZK proofs from
MPC protocols. Efficient instances of this paradigm have been published for the
first time these last years starting with a protocol called ZKBoo [GMO16|] and
has found numerous applications (e.g. [GMOI6IKKWISIBN20]).

We consider a prover P and a verifier V engaging a two-party interactive
protocol for some public circuit C over a finite field F and some value ¢ € F such
that P wants to convince V that they knows an x € F satisfying C(x) = ¢.

In the MPCitH paradigm, the prover P usually decomposes their secret =
into N shares [z]i, ..., [z]~ using some additive secret sharing over F. Then,
P simulates an N-party MPC protocol for evaluating C. At the end of the
MPC protocol, using a commitment scheme (see Appendix , P commits to
the N views of the parties resulting from the MPC protocol simulation. V then
challenges P to open a subset of the views. P answers by opening these views
and V checks that these views are consistent with the MPC process as well as
valid openings of the commitments. In the basic setting where N — 1 out of NV
parties are opened, the resulting zero-knowledge protocol achieves a soundness
error of 1/N.

Batch Product Verification. Using the MPCitH approach the linear oper-
ations over F (i.e. addition in F and multiplication by constants in F) can be
handled easily and are almost free in terms of computation and communication.
The most cumbersome part of the MPCitH method is to handle non-linear oper-
ations and in particular multiplications in F. The authors of [BN20|] propose an
MPC protocol to verify the correctness of a product in F by “sacrificing” another
one. This construction enables to check that a triple of sharings ([z], [v], [2])
is such that z - y = 2, by using a second random triple ([a], [b], [¢]) satisfying
a-b = c. The second triple can be used a single time (to preserve the zero-
knowledge property), hence the “sacrifice”.

Recently [KZ22] has adapted and optimized this method to build an effi-
cient MPC protocol which check simultaneously many products by sacrificing a
dot-product.Specifically, given n triples ([x;], [y;], [2;]) and a tuple (([a;])je(n) []),
their protocol verifies that (a,y) = ¢ and z; = z; - y; for all j € [N], without
revealing any information on (z,y, z). The protocol runs as follows:

1. The parties get a random € € F" from the verifier;

Each party i locally sets [o,]; = €, - [;]: + [a;]: for all j € [n];
The parties open « by broadcasting their shares;

Each party i locally sets [v]; = (o, [y]) — [c]i — (&, [2]:);

The parties open v by broadcasting their shares;

6. The parties accept iff v = 0.

Gt

If ([2;], [w;], [25])jemn contains an incorrect multiplication triple (i.e. there ex-
ists a jo such that xj, -y, # zj,) or if (([a;]);em), [c]) does not satisfy the
relation (a,y) = ¢, then [KZ22] shows the parties accept with a probability at
most |]F|_1. We will make use of this optimization in one of our protocol.

Additive Sharing. In most recent MPCitH schemes, in order to decrease
the communication costs, when the prover splits their secret z into N shares
[z]1, -, [x] v, the first N — 1 shares are generated using a pseudo-random gen-
erator and only the N-th share [z]x is computed in such a way that =z =
[x]1 + - -+ [z]~; in F. In this paper, since our sharings will not be defined over
some additive group, we will generate the N shares [z]1, ..., [z]n from N seeds
using a pseudo-random generator and we will introduce an auxiliary value Ax
(not distributed over the same set) such that x = [z]; + -+ + [z] 5 + Az over
the integers.

3 General Idea

We consider an instance (w,t) € Z x Z, of the subset sum problem (SSP) and
denote x one solution. We have x € {0,1}" and }°7_, z; - w; = ¢ mod .

We want to use the MPCitH paradigm to build a zero-knowledge protocol
that proves the knowledge of a solution for the instance (w,t). To proceed, we
need to build an MPC protocol with honest-but-curious parties taking as inputs
shares of the secret x, and possibly shares of other data, and which computation
can only succeed if x is a valid solution of the SSP instance. As a first ingredient,
we need a method to share the secret x between the different parties.

3.1 The Naive Approach

The SSP instance is defined on Z,, so a natural sharing of x would be defined as:

[2]: & (Z,)" for all i € [N],
Ax +—x — Zf\; [«]; mod ¢

In the MPCitH paradigm, the communication cost of a sharing is the cost to
send the auxiliary values, i.e. the vector Azx. Here, the natural sharing of = costs

n -log,(q) bits.

If we take n = 256 and ¢ = 22%%, the cost is about 2'® bits = 8 KB. To achieve a
soundness error of 27128 with N = 256, we need to repeat the protocol at least
16 times, so the communication cost of the protocol would be already more than
128 KB for the sole sharing of z (some communication being further required
for the MPCitH protocol). Asymptotically, the parameters for the subset sum
problem are chosen such that n = @(\) and log, ¢ = @()\), the communication
cost of this sharing is thus about @(\?) bytes per protocol repetition. Since we
need to repeat the protocol about ©()) times to achieve a 27* soundness error
the global communication cost is then of at least ©(A3) (for the sharing only).

We present hereafter an alternative strategy for the sharing of x, which
achieves better practical and asymptotic communication costs.

3.2 Sharing on the Integers and Opening with Abort

We propose another way to share the secret « to achieve lower communication.
We know that z is a binary vector (i.e. = € {0,1}"), so instead of the natural
sharing, we suggest to use a sharing defined on the integers, that is

[z]: < {0,...,A—1}" for all i € [N],
Ax +— x — vazl[[x]]l
However, this sharing leaks information about the secret x. The distribution

Az; is not the same depending on whether z; = 0 or z; = 1 as illustrated on
Figure [I] To solve this issue, the prover must abort the protocol in some cases.

----- When x;=0
When x=1
—— With abort

o
o
a

0.04 4

Probability to appear
°
3
2

Probability to appear

°
o
N

Fig. 1: Probability mass function of Az; when z; = 0 and when z; =1 (on the
left) and of Ax; with abort (on the right), for N =3 and A = 9.

To see how this leakage can be effectively exploited to (partly) recover z, let
us recall that at the end of the protocol, the verifier shall ask the prover to open
the views of all parties except one. Let us denote i* the index of the unopened
party. It means the verifier will have access to

{[z]i}izi» and Az .

For the sake of simplicity, let us first consider the case n =1, i.e. € {0,1} and
[«] is the sharing of a single integer. With the opened values, the verifier can
compute
x — [x]i+ as Az + Z[[:cﬂ, .
i
Now let us denote Y = z—[z];+ the underlying random variable over the uniform
random sampling of [x];~. We have

1o .
Pr(Y:—A-l-l):{A itz =0 and Pr(Y:l):{O itz =0

0 ifz=1 4 ifz=1

while

1
Pr(Y:y):Z for every y e {—A+2,...,0} .

So by observing « — [x];» = —A+1 one learns (z, [z];+) = (0, —A+1). Similarly,
by observing « — [z];+ = 1 one learns (z, [z];+) = (1,0). To avoid this flaw, the
prover must abort the protocol before revealing {[z]; }i»;+ and Az whenever one
of these two cases occurs. This notably implies that Az must not be revealed
before receiving the challenge ¢*, but it should still be committed beforehand in
order to ensure the soundness of the protocol. Doing so, we modify the distribu-
tion of the revealed auxiliary value which does not leak any information about
x anymore as illustrated in Figure|l} and the probability to abort does not leak
information about z since it is 1/A in the both cases (x = 0 and = = 1).

Let us now come back to the general case of n > 1. The prover applies the
above abortion strategy for all the coordinates of x, namely

— if there exists j € [n] such that x; = 0 and [z;];+ = A—1, the prover aborts;
— if there exists j € [n] such that ; = 1 and [z;];+ = 0, the prover aborts;
— otherwise the prover proceeds.

The probability to abort, which we call rejection rate, is

1\" n
1—-(1—-— < — .

We note that the rejection rate can be tightly approximated by the n/A upper
bound when A is sufficiently large. In order to achieve a small (constant) rejection
rate, we should hence choose A greater than n. Asymptotically, we then have
A = O(n) = O()), which represents an exponential improvement compared to
g =20,

Let us now analyze the computation cost of our strategy for sharing x. In the
absence of rejection, Ax; belongs to {—N-(A—1)+1,...,0}, therefore sending
the auxiliary value Az would cost n-logy (N - (A — 1)) bits. However, the prover
can save communication by sending x — [];« instead, which is strictly equivalent
in terms of revealed information by the relation x — [z];» = Az + 37, .. [2]:.
Since each coordinate of x — [z];+ is uniformly distributed over {—A+2,...,0},
sending it only costs

n -logy(A — 1) bits.

With z — [x];~, the verifier can recover Az by computing Az = (x — [z];) —
> i [z]:- The cost of this sharing has the advantage of being independent
of the modulus ¢ on which the SSP instance is defined. The value of A will
be chosen according to the desired trade-off between communication cost and
rejection rate. If n = 256 and A = 26, we have a cost of 0.5 KB for a rejection
rate of 0.0038, which is much better than the 8 KB of the naive approach.

Let us remark that adding an abort event does not impact the soundness of
the protocol. A malicious prover can abort as many times she wants claiming
that it would leak information, but an abortion does not help to convince the
verifier. The soundness theorem will state that someone who does not know the

secret can only answer with a probability smaller than the constant value called
soundness error, and adding an abort event cannot increase this probability.
The prover could sample a random party i and give to i’ a wrong share and she
may indeed decide to abort if the verifier challenge is not ¢, but this does not
change the fact that the probability for the prover to convince the verifier is the
probability that the prover guesses the verifier challenge a priori.

Now that we have defined the sharing of x, we need to demonstrate two
properties of the shared SSP instance through multi-party computation. The
first one is the SSP relation which in the shared setting translates to

Z[[wjﬂ w; = [t] mod ¢

for a sharing [[t] of ¢. The linearity of this relation makes it easy to deal with:
the share [t]; can simply be computed as [t]; := > 7_,[;]; - w; mod ¢ and
committed to the verifier by each party. The verifier can then check that the
open parties have correctly computed their shares [t]; and that the relation
Eil[[t]]i = [t] mod ¢ well holds. The second property which must be demon-
strated through multi-party computation is that the solution x corresponding to
the sharing [«] is a binary vector. This is not a priori guaranteed to the verifier
since the shares of the coordinate of x are defined over {0,...,A — 1} and the
correctness of the linear relation does not imply that z is indeed binary. We
present two different solutions to this issue in the following.

3.3 Binarity Proof from Batch Product Verification

Our first solution relies on standard MPC-in-the-Head techniques to prove the
relation
zo(x—1)=0

where o denotes the coordinate-wise product, 0 and 1 are to be interpreted as
the all-0 and all-1 vectors. To this aim, we can use the MPC-in-the-Head batch
product verification suggested in [LNI7/BN20] and recently improved in [KZ22]
(see Section. However, we can do better than a straight application of those
techniques.

The relation zo(x—1) = 0 is defined in Z, and the above techniques imply to
send at least one field element per product, that is n elements from Z,. To save
communication and since the sharing [z] is defined on the integers, we can work
on a smaller field. We previously explained that the verifier receives {[z]; }ixzi-
and Az from the prover, so they can check that, for all j € [n],

—A+2Smj—[[xj]]i* SO

They further trusts [z;];+ € {0,..., A—1} (which is verified for the open parties).
Thus the verifier can deduce that, for all j € [n],

—A+2<z; <A-1. (2)

10

Let ¢’ be a prime such that ¢’ > A. If the prover convinces the verifier that
zj(x; —1) = 0 mod ¢/, then the latter deduces that x; € {0,1} because

dlzj(z; —1) = (d'|x;) or (¢'|x; —1)
= (zj=0)or (z; =1) by @)

The prover hence just needs to prove x o (x — 1) = 0 mod ¢’ for some prime
q' such that ¢’ > A. To this purpose, we apply the batch product verification
of [KZ22] as follows (see also Section [2.2).

The prover first samples a € (Zy)™ with its sharing

lal; & (Zy)™ for i € [N] .

The value a is hence defined as a uniform random element of (Z,)" and no
auxiliary value Aa is necessary. The prover then computes ¢ = (a,x) and its
sharing as

[c]s & Zg for all i € [N],
Acéd o - vazl [c]; mod ¢’

The prover gives the shares of z, a and ¢ as inputs to the parties and runs the
following MPC protocol:

. the parties get a random challenge € € (Z,)™ from the verifier;
. the parties locally set [a] =€ o (1 — [z]) + [a];

. the parties open [a] to get «;

. the parties locally set [v] = {(a, [z]) — [c];

. the parties open [v] to get v;

. the parties accept iff v = 0.

DU W N

Besides the input shares and commitments, the prover-to-verifier communi-
cation cost of the corresponding MPCitH zero-knowledge protocol only results
from the size of [a];- (the broadcasted vector of the unopened party ¢*), which
is of

n -logy(q’) bits.
We stress that the prover does not need to send [v];+ because the verifier knows
that v must be zero and will deduce [v]+ = —Av =37, .. [v];

As described in Section [2:2] the batch product MPC verification produces
false positives with probability 1/¢’. Thus the soundness error of the obtained
zero-knowledge protocol is

1—(1—%)(1—%)<%+$.

On the other hand, the protocol has a rejection rate of 1 — (1 — %)” and a
prover-to-verifier communication cost (in bits) of

2 (2\) +n-logy(A — 1) +n-logy(q") +1ogy(q') +A1logy N + 2 .
—[z]s Aa Ac

11

3.4 Binarity Proof from Masking and Cut-and-Choose Strategy

Our second solution to prove that [z] encodes a binary vector relies on a masking
of z and a cut-and-choose strategy. The idea is to generate a random vector r
from {0, 1}" and to apply the sharing described in Section to r. In addition,
the prover computes (and commits) & := @ r € {0,1}" where @ represents
the XOR operation. Instead of giving the shares [z] of z as inputs of the MPC
protocol, the idea is now to send the shares [r] of r. Then using &, the parties
can locally deduce a sharing of x as

[#] = (1 =@) o [r] + 2o (1 —[r])

which is a linear relation in [r], and the verifier can further deduce the auxiliary
value Az from Ar as

Ar=(1—-2)o Ar+Zo(1— Ar).

By replacing [z] with [r] the parties’ input is made independent of the secret.
The interest of doing so is to enable a cut-and-choose strategy to prove that [r]
encodes a binary vector, which in turns implies that * = & r is a binary
vector. More precisely, at the beginning of the zero-knowledge protocol, the
prover produces M binary vectors ¥ and their corresponding shares [[rm]] (in
practice these vectors and their sharings are pseudo-randomly derived from some
seeds). Then the prover commits those sharings [r¥] as well as the corresponding
masked vectors) := 2 @ 7). Then the verifier asks to open all the sharings
rlf) except one and checks that they correspond to binary vectors. The verifier
will hence trust that the unopened sharing encodes also a binary vector with a
soundness error of 1/M. We stress that all the values !l for which ¥ is opened
must remain hidden (otherwise x could be readily recovered). The obtained zero-
knowledge protocol has a soundness error of

1 1
max{ —, —
M N[~
a rejection rate of 1 — (1 — 4)™ and a prover-to-verifier communication cost (in
bits) of
2-(2\) + Aloga M +n-logy(A—1)+ n +Alogy N + 2X .
// ~

Cost of C&C r—[r];« x

3.5 Asymptotic Analysis

We analyze hereafter the asymptotic complexity of the two variants of our pro-
tocol. We show that for a security parameter A both variants have an asymptotic
communication cost of ©(A?) and an asymptotic computation time of @(*).

For the binarity proof based on masking and cut-and-choose, we assume
M = N (which is optimal for the communication cost given the soundness
error). For the other parameters, let us recall that

12

— for a security parameter A\, one must take n & log, ¢ = O(A),
— the prime ¢’ can be chosen as the smallest prime greater than A, which
implies ¢’ ~ A.

For both variants, the asymptotic communication cost for one repetition of
the protocol is then of
O(Alogy A+ Alogy N) .

Since each repetition has a soundness error of ©(1/N), the protocol must be
repeated 7 = ©(\/logy N) times to reach a global soundness error of 27*. The
probability that any of these 7 repetitions aborts is given by

I\N"" n-r
1—-(1-—= —_—
(-3) =%
where the approximation is tight when A is sufficiently large. Thus for a small

constant rejection probability, one must take A = O(n-7) = O(A\?/log, N). We
have a communication cost for the 7 iterations in

2 logy A 2 A2 A2 2
© ()\ logy N A) =€ (10g2N10g2 (logQN) A)
and we hence obtain a minimal asymptotic communication cost of ©(A\?) by
taking N = O(A).
The asymptotic computation time for one repetition of the protocol is of
O(Nn(log, q)(logy A)), where the term (log, ¢)(log, A) arises from the complex-
ity of the multiplication between an element of Z, and a value smaller than A.

We hence get a computation time of ©@(\3log, \) per repetition which makes
O(\1) for T repetitions.

Q

4 Protocols and Security Proofs

In this section, we formally describe our two protocols and state their security.
We further introduce a method to decrease the rejection rate.

4.1 Protocol with Batch Product Verification

Protocol description. In Section we proposed an MPC protocol that proves
that the sharing [z] encodes a binary vector. We then add the checking of the
linear relation as described in Section [3.2] and we transform the multi-party
computation into a zero-knowledge protocol which proves the knowledge of a
solution of an SSP instance. We give the formal description of our protocol
in Protocol [Il The protocol makes use of a pseudo-random generator PRG, a
tree-based pseudo-random generator TreePRG (see definition in [KKW18]), two
collision-resistant hash functions Hash; for ¢ € {1,2} and a commitment scheme
(Com, Verif) as defined in Appendix In this description, the procedure Check
returns 0 if the evaluated condition is false (i.e. the equality does not hold) and
the execution continues otherwise.

13

Prover P
z € {0,1}"
w € Zy,t = (w,x)

Verifier V

w,t

mseed < {0,1}*

Compute parties’ seeds
(seed1, p1), ..., (seedn, pn)
with TreePRG(mseed)

For each party ¢ € {1,...,N}:
lali, [=]:, [c]: < PRG(seed;)
com; = Com(seed;; p;)

Az =z =3, [=]

Ac = (a,5) — 3, [c]s

h = Hash; (Az, Ac,comy, ..., comy)

The parties locally set

- [t) = {w, [=])

-la] =co(1—[x]) + [d]
The parties open [o] to get a.
The parties locally set

[v] = (o [a]) - []

K’ = Hasha([t], [a], [v])

If there exists j € [n] such that:
- either [z;]i+ =0 with z; = 1
-or [z;]i+ = A—1 with 2; =0,
then abort.
y=z— [a]ir

>a€Zy, c€ELy, [z]i €{0,...,A-1}"

>tEZ
> a € Zy, (computation in Z,)

> v € Zg (computation in Zg)

(seeds, pi)izi=, comg«,
y, Ac, [ofi-

For all i # i,
[ali, [«], [c]s < PRG(seed;)
Av—y-3 .l
Aa=c¢- (1 - Ax)
For all i # i,
Rerun the party 7 as the prover
and compute the commitment com;.
At = (w, Az)
Av = (a, Az) — Ac
[t]i» =t — At =3, [t]s
[l = —Av =32, [v]:
Check h = Hash; (Az, Ac, coms, ..., comy)
Check h' = Hash([t], [o], [v])
Return 1

Protocol 1: Zero-knowledge argument for Subset Sum Problem via MPC-in-the-
head with rejection, using batch product verification to prove binarity.

Security proofs. The following theorems state the completeness, zero-knowledge
and soundness of Protocol [T} The proofs of Theorems and [3 are provided in

appendix.

14

Theorem 1 (Completeness). A prover P who knows a solution x to the subset
sum instance (w,t) € Z7 X Ly and who follows the steps of Protocol convinces

(-3

the verifier V with probability

Theorem 2 (Zero-Knowledge). Let the PRG used in Protocol[]] be (t,£prc)-
secure and the commitment scheme Com be (t, & com)-hiding. There exists an effi-
cient simulator S which outputs a transcript which is (t, € pra+e com)-indistingui-
shable from a real transcript of Protocol [1]

Theorem 3 (Soundness). Suppose that there is an efficient prover P that,
on input (w,t), convinces the honest verifier V on input H,y to accept with
probability

€:=Pr[(P(w,t),V(w,t)) =1] > ¢
for a soundness error € equal to

1 1 1 1

¢ N ¢ N
Then, there exists an efficient probabilistic extraction algorithm & that, given
rewindable black-box access to P, produces either a witness x such that t = (w, x)
and v € {0,1}", or a commitment collision, by making an average number of
calls to P which is upper bounded by

€— € €— €

Proof size. To achieve a targeted soundness error 2~*, we can perform 7 parallel
executions of the protocol such that €7 < 27*. Such parallel repetition does
not preserve (general) zero-knowledge and the resulting scheme achieves honest
verifier zero knowledge. And instead of sending 7 values for h and h’, the prover
can merge them together to send a single h and a single h’. Moreover, instead
to sending the N — 1 seeds and commitment randomness of (seed;, p;);;+ for
each execution, we can instead send the sibling path from (seed;~, p;+) to the
tree root, it costs at most A - log,(IN) bits (we need to reveal log,(N) nodes of
the tree) by execution. The communication cost (in bits) of the protocol with
repetitions is

SIZE = 4\ + 7 - [n- (logy(A — 1) 4+ logy(q")) + logy(q') + Mogy N + 2]

while the soundness error and rejection rate scale as

1 1 1 1\" 1\""
T d 1-(1-=
<Q’+N q N) o (A)

respectively. Let us stress that the obtained size is independent of the modulus
q (and of the size of the integers {w;},1).

15

4.2 Protocol with Cut-and-Choose Strategy

Protocol description. As described in Section [3.4] we can also use a cut-and-
choose strategy to prove that the vector [z] is binary. It is possible since we
can remplace the input [z] of the multi-party computation by a sharing [r]
independent of the secret, where r is a mask uniformly sampled in {0,1}". To
achieve a targeted soundness error 27*, we can perform 7 parallel executions
of the protocol such that €™ < 27*. Like [KKWIS§]|, instead of performing
independent cut-and-choose phases each resulting in trusting one sharing [r]
among M, we can perform a global cut-and-choose phase resulting in 7 trusted
sharings [r] among a larger M (see [KKW18| for more details). We give the
formal description of this zero-knowledge protocol in Protocol |2l The protocol
makes use of a pseudo-random generator PRG, a tree-based pseudo-random
generator TreePRG (see definition in [KKWI18]), four collision-resistant hash
functions Hash; for ¢ € {1,2,3,4} and a commitment scheme (Com, Verif) as
defined in Appendix [B] In this description, the procedure Check returns 0 if the
evaluated condition is false (i.e. the equality does not hold) and the execution
continues otherwise.

Security proofs. The following theorems state the completeness, zero-knowledge
and soundness of Protocol 2 The proofs of Theorems [4] [5] and [6] are provided in
appendix.

Theorem 4 (Completeness). A prover P who knows a solution x to the subset
sum instance (w,t) € Lq x Lq and who follows the steps of Protocol convinces

the verifier ¥V with probability
1 Tn
1—-— .
)

Theorem 5 (Honest-Verifier Zero-Knowledge). Let the PRG used in Pro-
tocol[d be (t,eprg)-secure and the commitment scheme Com be (t, € com)-hiding.
There exists an efficient simulator S which, given random challenges J and L
outputs a transcript which is (t,7-epra + T - € Com)-indistinguishable from a real
transcript of Protocol[3

Theorem 6 (Soundness). Suppose that there is an efficient prover P that,
on input (w,t), convinces the honest verifier V on input H,y to accept with
probability

€ :=Pr[(P(w,t),V(w,t)) =1] > ¢

for a soundness error ¢ equal to

max (Mk—T)
M—7<k<M (MM).Nk*M+T ’

—T

Then, there exists an efficient probabilistic extraction algorithm £ that, given
rewindable black-box access to P, produces either a witness x such that t = (w, x)

16

com!? = Com(seed!); pl!)

Arlel = plel _ Zi[[’"[e]]]i
he = Haushl(Ar[e],com[f"]7 o
h = HaShz(l’Ll7 ey hju)

,comle)

Prover P Verifier V
z e {0,1}"
w € Zy,t = (w,x) w,t
mseed® & {0, 1}*
(mseed[e])ee[M] — TreePRG(mseed[O])
For each e € {1,...,M}:
(¢ « PRG(mseed!®) > 7l e {0,1}"
(seedgc],pge])le[m — TreePRG(mseed!®)
For each i € {1,...,N}:
[rl)]; + PRG(seed!") > [r]: € {0,..., A —1}"

For each e € J:
3l =gyl
The parties locally set
o] = (1 -) o [11]
+il o (1 = [rle])
and they set [t!1] = (w, [z[?)]).
hL = Hashy (£, [t])
h' = Hasha((h¢)eer)

R, (mseed!“) e (ar)\ g

> ¢ is the XOR operation (z € {0,1}")

If there exists (e, j) € J x [n] such that:
- either [[7'][61]]2E = 0 with 7'][.61 =1
_or [[r;e]]]zp = A — 1 with T'J[.C] 0,
then abort.
y=rld — [,

((seed!”, PEH])ﬁec)
y’i[E]’ COm;ﬁ eeJ

JE T M) | =7}

L={t}ees & {1,...,N})"

For each e ¢ J:
Compute h, using mseed!®]
For each e € J:
For all i # £,
com!® = Com(seed!”; pll)
Rerun the party @
as the prover to get [¢)];
Arld = Yy — ZZ#C [[7"[5]]]
he = Hashy (Arl)| com!®),
From Arld, deduce At!®.
(] =t —atd -5, [t
R, = Hashs (!, [t])
Check h = Hashz(h1,. eey hM)
Check h' = Hashy((hL)ees)
Return 1

...,comi)

Protocol 2: Zero-knowledge argument for Subset Sum Problem via MPC-in-the-
head with rejection, using cut-and-choose strategy to prove binarity.

17

and x € {0,1}", or a commitment collision, by making an average number of
calls to P which is upper bounded by

4 (_ 8-M)
~ Sl 14€- = .
E—¢€ €E—¢€

Proof size. Let us recall that the couples (seed;, p;) are sampled using a tree

PRG, sending (seed£6]7p£‘e])l-;,¢gc costs at most A - log,(IN) bits by iteration. The
communication cost (in bits) of the protocol is then

M
SIZE =4A+ A-7-logy, — + 7 [n-logy(A—1) +n+ Alogy N + 2)].
T

Here again, the obtained size is independent of the modulus ¢ (and of the size
of the integers {w;},).

4.3 Decreasing the Rejection Rate

The two above protocols have a rejection rate around 7n/A which implies that
we must take A = ©(7n) to obtain a constant (small) rejection rate. In practice,
this results in a significant increase in the communication cost. Let us for instance
consider Protocolwith (1, N, A) = (16,280, 213). For this setting, the proof size
is about 15.6 KB for a rejection rate of 0.394. If we increased A to get a rejection
rate below 0.003, we should take A = 22! and the proof size would be 23.6 KB.

A better strategy consists in allowing the prover to abort a few of the 7
iterations. Let us assume that the verifier accepts the proof if the prover can
answer to 7 — n challenges among the 7 iterations. This slightly increases the
soundness error, but it can also significantly decrease the global rejection rate. If
we denote po; the probability that an iteration aborts, then the global rejection
rate of this strategy is given by

1= Zn: C) (1= pre) " Pl - (3)

i=0

At the same time, the soundness error for Protocol [1| becomes

> (T> ()i

i=0

where € = % + % — 1. % is the soundness error of a single iteration. Using this
strategy with 7 = 20 and n = 3, the proof size is of 16.7 KB for a rejection rate
of 0.003 (instead of 23.6 KB with the naive strategy).

The same strategy also applies to Protocol [2l The rejection rate is also given

by Equation while the soundness error becomes

e U2 ST -y ()T

18

In any case, the prover always answers to at most 7 — n challenges of the
verifier (even if the prover aborts less than 1 among the 7 iterations) so that the
communication cost is roughly that of 7 — 5 iterations. Additionally, for each
unanswered challenge, the prover must further send two hash digests to enable
the verifier to recompute and check h and h'. Thus the new proof size (in bits)
for Protocol [l is

SIZE, = 4A + 7 - 4)
+ (7= n) - [n- (logy(A — 1) +logy(q')) +logz(q) + Mogy N + 2]
while the new proof size (in bits) for Protocol [2] is

M
SIZE, = 4X+n-4X+ X - 7 -log, —
.

+(r=n)-[n-logy(A—1)+n+ Nogy, N +2)] .

We note that in practice, given a target security level and a target rejection
probability, one needs to use a slightly increased 7 (or V) to compensate for the
loss in terms of soundness. While this shall slightly increase the proof size, the
above approach (with n > 0) still provides better trade-offs than the original
approach (n = 0).

5 Instantiations and Performances

5.1 Subset Sum Instances

We recall in this section known techniques to solve the modular subset sum
problem (SSP) defined by (I)). It is well-known that the hardness of an SSP
instance depends greatly on its density defined as d = n/log, q. If the SSP
instance is too sparse (e.g. d < 1/n) or too dense (e.g. d > n/log*n) then
the problem can be solved in polynomial time (see e.g. [CJLT92] and references
therein). We shall therefore only consider SSP instances with density d ~ 1 (i.e.
g ~ 2™) which are arguably the hardest ones [IN96].

In this case, simple algorithms exist based on brute force enumeration at
O(2") time and constant space, or time-space tradeoff [FIS74] with O(2"/?)
time and space complexities. The first non-trivial algorithm was published by
Schroeppel and Shamir [SS81] with time complexity O(2"/2) and space com-
plexity O(2"/*). Later, faster algorithms were proposed with similar time and
space complexities, e.g. O(20-337") by Howgrave-Graham and Joux [HJ10]and
O(2°2837) by Bonnetain, Bricout, Schrottenloher and Shen [BBSS20]. The lat-
ter algorithms neglect the cost to access an exponential memory but even with
this optimistic assumption, for n = 256, all known algorithms require at least a
time complexity lower-bounded by 2'2® operations or memory of size at least 272
bits. There also exists a vast literature on quantum algorithms for solving the
SSP (see [BBSS20] and references therein). The best (heuristic) quantum com-
plexity from [BBSS20] has time complexity 0(20'216”) and thus requires about
264 quantum operations and quantum memory for n = 256. In the following, we,
the