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ABSTRACT
An accumulator is a cryptographic primitive that allows a prover

to succinctly commit to a set of values while being able to provide

proofs of (non-)membership. A batch proof is an accumulator proof

that can be used to prove (non-)membership of multiple values

simultaneously.

In this work, we present a zero-knowledge batch proof with

constant proof size and constant verification in the Bilinear Pairings

(BP) setting. Our scheme is 16× to 42× faster than state-of-the-art

SNARK-based zero-knowledge batch proofs in the RSA setting.

Additionally, we propose protocols that allow a prover to aggregate

multiple individual non-membership proofs, in the BP setting, into a

single batch proof of constant size. Our construction for aggregation

satisfies a strong soundness definition—one where the accumulator

value can be chosen arbitrarily.

We evaluate our techniques and systematically compare them

with RSA-based alternatives. Our evaluation results showcase sev-

eral scenarios for which BP accumulators are clearly preferable and

can serve as a guideline when choosing between the two types of

accumulators.
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1 INTRODUCTION
An accumulator is an authenticated data structure for a set of el-

ements. It allows a prover to provide a succinct binding digest to

a set of elements and to generate a short proof of membership or

non-membership for any element in the accumulator domain. A ver-
ifier can efficiently check the proof of (non-)membership using the

digest without requiring access to the entire set. Accumulators have

found numerous applications including timestamping [8], fail-stop

signature schemes [6], anonymous credentials [2, 4, 15, 16], cloud

storage [48, 57] and more recently, stateless and privacy-preserving

cryptocurrencies [10, 21, 35].

Batching and aggregation. In traditional applications, accumu-

lators have been used in a setting where the prover had to pro-

vide (non-)membership proofs for a single element at a time. How-

ever, in emerging applications, such as cryptocurrencies, a prover

must simultaneously prove (non-)membership of multiple elements.

Naively, the prover could include individual proofs for each element,

but this imposes high bandwidth usage and computational cost on

the verifier. A better approach is a batch proof, that is, a succinct
proof for multiple elements, which can be used to efficiently and

simultaneously prove (non-)membership of multiple elements. For

example, in UTXO-based stateless blockchains [10, 21], all trans-

actions are accompanied by a proof of membership in the UTXO

set. If a block proposer naively includes all individual proofs for

validation (instead of a single batch proof), the size of the blocks

transmitted across the network increases along with the computa-

tional overhead on the verifiers.

Let 𝑋 be the set of elements in an accumulator. A batch member-

ship proof for a set of elements 𝐼 ⊆ 𝑋 can be computed: (1) by using

the trapdoor (e.g., factors of the modulus in the RSA setting), or (2)

from scratch using all the elements in 𝑋 , or (3) by aggregating pre-

viously computed individual proofs of elements in 𝐼 . Unfortunately,

computing the batch proof using the trapdoor is impractical as it

requires a trusted accumulator manager to hold the trapdoor. Fur-

thermore, if the trapdoor is compromised, an adversary can forge

proofs at-will. Computing the batch proof using the entire set is also

impractical in a distributed setting, as nodes may not have access

to the entire set or the trapdoor or a trusted accumulator manager.

Moreover, updates to the accumulator arrive in batches (e.g., batch

of transactions in a block). In comparison with other approaches,

computing the batch proof by aggregating individual proofs is use-

ful and relevant in the distributed setting as it does not require the

trapdoor or the entire set. This brings us to the first question: Is it
possible to efficiently aggregate individual (non-)membership proofs?
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Zero-knowledge proofs. Proofs of (non-)membership for accu-

mulators are often required in applications where privacy is critical.

As an example, consider the application of anonymous credentials

for authentication where valid (i.e., non-revoked) credentials are

stored in an accumulator. When users wish to prove something

about their credential embedded attributes, they also need to prove

that their credential is valid via a proof of membership. Such proofs

are usually done in a zero-knowledge (ZK) fashion in order to

guarantee unlinkability between proving sessions and specific user

credentials. More concretely, let 𝑥 be a user credential accumulated

in 𝐴. The user will compute a commitment 𝑐 = Commit(𝑥), and
prove, in zero-knowledge, membership of the committed value 𝑥 .

However, being able to simultaneously prove (non-)membership of

a set of elements, 𝐼 , is an important property in scenarios where

a user/organization controls multiple credentials. Additionally, a

prover may also need to argue that this set 𝐼 is of at least some size

𝑑 while hiding 𝐼 . For instance an organization holding |𝐼 | ≥ 𝑑 valid

credentials might want to prove in ZK that it can cast up to 𝑑 votes.

Such questions become even more relevant in recently developed

decentralized identity systems [1, 30]. This brings us to a second

question: Is it possible to efficiently prove knowledge of a set 𝐼 that is
a subset of/disjoint from X, without revealing 𝐼? And reveal a lower
bound of |𝐼 |, if needed?
Batching, aggregation, and ZK in RSA accumulators. One of
the most popular accumulator instantiations is the RSA accumula-
tor [8, 16, 32]. Given a set𝑋 of prime numbers (𝑥1, . . . , 𝑥𝑛), one can
define the accumulator 𝐴𝑋 as the RSA group element 𝑔

∏
𝑥𝑖 , and a

membership proof𝑤 of 𝑦 ∈ 𝑋 as the accumulator of 𝑋 \ {𝑦}, which
can be verified by checking whether𝑤𝑦

equals𝐴𝑋 . Boneh et al. [10]

defined batch proofs for the RSA accumulator and also provided

aggregation algorithms for both membership and non-membership

RSA proofs. The resulting batch proofs are non-interactive and of

constant size. They also present a Proof-of-Exponentiation protocol

(PoE) to concretely speed up batch verification by reducing the

number of group operations from 𝑂 ( |𝐼 |) to a constant. Without

PoE, the verifier would need to perform a large exponentiation that

grows with the number of elements in the proof. On the ZK front,

Ozdemir et al., introduced improved SNARK-friendly techniques

to batch prove (non-)membership in the RSA setting [39]. Subse-

quently, Campanelli et al. adopted a “hybrid” approach where they

prove the batch membership without SNARKs and prove that ele-

ments of the batch are from the prime domain using SNARKs [18].

However, their accumulator does not support both membership

and non-membership simultaneously.

While RSA accumulators have been used in many applications,

they do present some crucial limitations:

• First, RSA group elements are large and this affects verification

time and proof sizes.

• Second, they only support accumulation of elements that reside

in a prime domain. Thus, they cannot be directly used for the

accumulation of arbitrary elements.
1

These problems are fundamental and limit the use of RSA accumu-

lators in the batch setting regardless of the privacy concerns.

1
While there exist techniques to map arbitrary elements to primes (i.e., hash to

primes [10]), such mappings can harm the soundness of the accumulator if not carefully

implemented during verification, especially if the mappings are not 1-1.

The case for bilinear accumulators. As opposed to RSA accu-

mulators, bilinear-pairing accumulators (BP) [38, 57] have much

smaller proofs and faster exponentiations. Moreover, BP accumula-

tors can support the accumulation of arbitrary elements, making

them directly applicable to a broader set of applications. Given a set

𝑋 of arbitrary numbers (𝑥1, . . . , 𝑥𝑛), the accumulator𝐴 is:𝑔
∏(𝑠+𝑥𝑖 )

,

where 𝑔 is a prime order group generator and 𝑠 is a secret trapdoor.
The membership proof 𝑤 of 𝑦 ∈ 𝑋 is the accumulator of 𝑋 \ {𝑦},
which can be verified by using the 𝐴𝑋 and the pairing operator.

As highlighted above, we are interested in accumulators for the

distributed setting, i.e., where nobody can have access to the secret

trapdoor 𝑠 or the accumulated set 𝑋 . Existing batching approaches

in bilinear setting are only secure under a weak soundness defini-

tion [19, 26, 44] (with [44] additionally missing security proof), or

require large public parameters [57]. Moreover, to the best of our

knowledge, no prior work allows for efficient aggregation of non-

membership proofs or efficient zero-knowledge (non-)membership

proofs in the batch setting for trapdoorless accumulators (no accu-

mulator operation except the setup requires the trapdoor, and the

trapdoor is destroyed after setup if used). This is the main focus of

our work.

Contributions. In the distributed setting, we make the following

contributions to trapdoorless BP accumulators:

(1) We formally prove soundness of batch membership and non-

membership proofs for the Nguyen [38] accumulator under

the Uber assumption [7] (§4). Our proof holds for a stronger
definition of soundness than those considered in prior works,

since we do not assume that the accumulator is well-formed

and we allow the adversary to pick the accumulator value (Def-

inition 3.2). We remark that this strong definition is crucial for
many modern applications of accumulators, especially in the

distributed/blockchain setting, as it is not always realistic to

assume that the accumulator value is well-formed.

(2) We design the first efficient ZK scheme that can prove batch

(non-)membership of BP accumulator using the knowledge-of-

exponent assumption (§7). Moreover, we show how to addi-

tionally reveal a lower bound on the size of the batch witness

without revealing the elements of the batch proof. Asymptoti-

cally, our proof size is constant, the verification cost is constant,

and the prover is𝑂 (𝑑), where 𝑑 is the size of the batched subset.

(3) We propose a new algorithm to aggregate individual non-mem-

bership proofs into a single constant sized proof (§5) and pro-

vide a constant-time algorithm to update the extended Eu-

clidean based individual non-membership proofs (§6).

(4) We perform an experimental evaluation and comparison of the

RSA and BP accumulators in both ZK and non-ZK setting (§9).

Concretely, we observe that in the ZK setting, both the prover

and the verifier is at least 16× and 7× faster than RSA based

baseline, respectively.

In the non-ZK setting, we benchmark the batching and aggre-

gation of accumulator proofs. For the first time, we explicitly

take the mapping cost (from arbitrary domain to accumula-

tor domain) into account. We observe that membership and

non-membership proofs in BP accumulators are 2.5× to 5×
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smaller and 3.5× smaller than the RSA accumulators, respec-

tively. Moreover, verification of aggregated BP accumulator

proofs is on an average 4× faster than the RSA accumulators.

(5) Finally, in §8, we propose a PoE protocol in Elliptic Curve (EC)

groups that help us speed up batch verification. Our PoE can

prove exponentiation of an arbitrary group element and it con-

cretely saves one exponentiation for the prover when compared

to concurrent works [23, 44]. We use our PoE to verify expo-

nentiation of a group element by ℓ-degree polynomial without

having to perform 𝑂 (ℓ) group exponentiations, only 𝑂 (ℓ) op-
erations in the field.

Implications of our results and evaluations.As indicated above,
batch membership proofs in BP accumulators, clearly outperform

their RSA counterparts in the size of the proofs (2.5× to 5×). This
makes our protocols very appealing to applications where commu-

nication cost is critical.

An example of such an application is the extension of ℓ-bit

Byzantine agreement (BA) and broadcast protocols (BB) [37] where

bilinear-accumulators are used to obtain state-of-the-art communi-

cation costs for ℓ-bit BA/BB. Our batching techniques can improve

their so called: “distribute phase” by batching the proofs sent be-

tween the participants which would result in a constant size proof

and significantly reduce their communication costs.

In the ZK setting, the advantages of BP accumulators are appar-

ent in both prover and verification costs. In decentralized identity

systems with privacy, issuers sign the users attributes/identity and

these signatures (aka the credential) are kept in an accumulator.

Later, users should be able to perform batch proofs of (non-)mem-

bership for their stored credentials. Typically, the underlying signa-

ture schemes output integers (dlog, RSA-based schemes) or group

elements that can be trivially mapped to integers (ECC schemes).

Thus, one can immediately utilize a BP accumulator. If an RSA ac-

cumulator is used to hold the credentials, a Hprime function (maps

to prime) needs to be applied to each element individually and a ZK

proof of primality is required. Ozdemir et al. [39] show how the use

of Pocklington certificates reduce the cost of proving primality in

ZK, but it only reduces the number of Miller-Rabin primality tests.

This still results in non-constant verification time. This hashing

operation, along with a primality test, needs to also be included in

the ZK proof. This makes the computation of the ZK proof much

more complex (e.g., if one uses zk-SNARKs or other specialized ZK

proofs for non-algebraic statements [3]).

Limitations. While both BP and RSA accumulators require a

trusted setup phase to compute the public parameters, the size

of BP parameters is significant: 18 MiB for 2
17

elements (although

not necessarily needed for verification). These parameters grow

even more (3×) in our ZK setting due to the use of the knowledge-

of-exponent assumption. Finally, it should be noted that in BP

accumulators (as opposed to RSA), it is unknown how to add or

generate proofs of (non-)membership without the knowledge of

the entire accumulated set 𝑋 .

2 RELATEDWORK
Based on the use of trapdoors for accumulator operations, accumu-

lators can be: trapdoor-based or trapdoorless. In a trapdoor-based

accumulator, a trusted entity, called the accumulator manager, holds
some secret trapdoor information, which allows the entity to effi-

ciently perform accumulator operations. A trapdoorless accumulator

on the other hand, operates without the trapdoor and if a trapdoor

is used during setup, it is later destroyed.

We classify prior works into three broad categories: (1) accumu-

lators based on hash functions, (2) accumulators in hidden-order

groups, and (3) accumulators in known-order groups.

Hash-based. Accumulators built based on Merkle tree [5, 34] or

Bloom-filters [56] do not support batching, aggregation, and ZK

proof of batch (non-)membership without general purpose tools

such as SNARKs, unlike the techniques proposed in this work.

Hidden-order groups. In the single-proof setting, Camenisch and

Lysyanskaya [16] proposed the first dynamic accumulator (sup-

ports both set difference and set union without requiring to fully

recompute the accumulator from scratch) secure under strong RSA
assumption based on prior accumulator constructions [6, 8]. How-

ever, their construction is not in the trapdoorless setting as the trap-

door is used to delete elements from the accumulators. Li et al. [32]

proposed the first universal accumulator (supports both member-

ship and non-membership proofs) by generalizing the Camenisch

and Lysyanskaya accumulators [16] to support non-membership

proofs under the strong RSA assumption. They also provided effi-

cient algorithms to update non-membership proofs on changes to

the accumulated set.

Boneh et al. [10] support batching and aggregation of member-

ship and non-membership proofs in the distributed and trapdoorless

setting. They also leverage their contributions to realize a state-

less blockchain [10, 21] in the UTXO setting. However, RSA based

constructions have larger proof size and verification cost when

compared to the BP-based constructions.

Known-order groups. In the single-proof setting, Nguyen pro-

posed the first accumulator [38] using bilinear-maps and based on

the 𝑡-strong bilinear Diffie-Hellman assumption. In a later work,

Damgård et al. [24] and Au et al. [4] extended the accumulator con-

struction by Nguyen to support constant-sized non-membership

proof for a single element. This non-membership proof scheme

relies on Polynomial Remainder Theorem (PRT) to prove non-

membership [55]. However, this construction does not extend to a

constant-sized batch non-membership proofs or consider efficient

aggregation of non-membership proofs. In our work, we study

constant-sized batch proofs and present aggregation techniques

for the greatest common divisor (GCD) based non-membership

construction, rather than the PRT-based.

Thakur [44] propose batching techniques for BP accumulators

(for weak soundness and without rigorous analysis). In their latest

version (Sept, 2021), they also propose two PoE protocols. However,

one of the PoE approaches assumes that it is possible to exponen-

tiate an arbitrary base to the trapdoor (which is only feasible in

the trapdoor-based setting). Connolly et al. [23] also propose a PoE
protocol based on [44], under a different assumption (q-co-GSDH).

Compared to [44] and [23], our PoE is concretely one exponenti-

ation fewer under the adaptive variant of q-SDH. Finally, neither

[44] nor [23] consider aggregation or ZK batch proofs.
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Prior works [19, 23, 26, 41] define a batch proof for multiple

elements. However, these works either: (1) assume in their sound-

ness definition that the accumulator is well-formed and honestly

computed or (2) does not consider aggregation [26] or (3) rely on

an accumulator manager [49]. On the other hand, our batch proofs

are sound even for an adversarially chosen accumulator value and

our techniques support aggregation in the trapdoorless setting.

Camenisch et al. [15] and Zhang et al. [57] proposed BP accumu-

lators that are algebraically quite different from [38]. These schemes

have parameters that are equal to the size of the accumulator do-

main or more.

Vector Commitment (VC). A VC is a primitive closely related

to accumulators, that provides a succinct commitment and posi-

tional binding to an ordered set of values [20]. Catalano and Fiore

proposed a technique to transform a VC into an accumulator [20].

However, this approach results in an accumulator scheme with

public parameters that are equal to the size of the accumulator

domain [20, 21, 27, 31, 47].

Tomescu et al. proposed aggregatable sub-vector commitments

in the bilinear-map setting based on Lagrange polynomials and

KZG commitments [29, 47]. Their work uses the partial fraction

decomposition technique [53] to aggregate VC proofs. We adopt

techniques to aggregate proofs in BP accumulators. Campanelli

et al. [17] defined incremental aggregation, i.e., aggregation of

aggregated proofs for a RSA-based VC. Although inspired by [10],

their work cannot be efficiently directly applied to accumulators.

Zero-knowledge (ZK). There are known techniques to efficiently

achieve ZK for a single element in the BP [4] and the RSA [9, 16]

setting. Naively, a batch ZK RSA proof corresponds to proving that

the exponent is the product of multiple distinct elements, which

results in a linear size proof. Recent work by Campanelli et al. [18]

constructs ZK proofs of batch membership for RSA using SNARKs

and get a constant size proof. Their construction can be transformed

to prove non-membership (it corresponds to membership of inter-

vals) but it cannot support both membership and non-membership

at the same time without having an accumulator manager holding

the trapdoor.

3 PRELIMINARIES
Let G1,G2,G𝑇 denote groups of prime order 𝑝 and let 𝑔1, 𝑔2 be the

generators of G1 and G2, respectively. Also, let Z𝑝 be a field of

prime order and Z𝑝 [𝑥] be a polynomial ring. We denote the degree

of polynomial 𝐼 (𝑥) ∈ Z𝑝 [𝑥] as deg(𝐼 ).

Bilinear pairing. A bilinear pairing is an efficiently computable

map, 𝑒 : G1 × G2 → G𝑇 , satisfying the following properties:

• bilinearity: ∀(𝑃,𝑄, 𝑎, 𝑏) ∈ (G1×G2×Z𝑝 ×Z𝑝 ): 𝑒 (𝑃𝑎, 𝑄𝑏 ) =
𝑒 (𝑃𝑎, 𝑄)𝑏 = 𝑒 (𝑃,𝑄𝑏 )𝑎 = 𝑒 (𝑃,𝑄)𝑎𝑏
• non-degeneracy: 𝑒 (𝑔1, 𝑔2) ≠ 1

We denote a pairing instance bp = (𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2) ←
BilGen(1_). When G1 = G2 = ⟨𝑔⟩, the pairing is called symmetric
and is denoted as (𝑝,G,G𝑇 , 𝑒, 𝑔).

Partial fraction decomposition (PFD). A rational polynomial

can be decomposed into simpler fractions [53]. Concretely, let

𝐴(𝑥) = ∏
𝑖∈𝐼 (𝑥 + 𝑎𝑖 ) be a polynomial and let 𝐴′ (𝑥) be the first

derivative of 𝐴(𝑥) with respect to 𝑥 . Then,

1

𝐴(𝑥) =
∑︁
𝑖∈𝐼

1

𝐴′ (−𝑎𝑖 ) (𝑥 + 𝑎𝑖 )
.

Polynomial remainder theorem (PRT). When a polynomial

𝐴(𝑥) is divided by (𝑥 + 𝑟 ), the remainder is the evaluation of 𝐴(𝑥)
at −𝑟 . Let 𝑞(𝑥) denote the quotient polynomial [55]. Then,

𝐴(𝑥) = 𝑞(𝑥) (𝑥 + 𝑟 ) +𝐴(−𝑟 ).

Bézout’s theorem (for polynomials). Given 𝑓 (𝑥), 𝑔(𝑥) ∈ F[𝑥],
there exists 𝑝 (𝑥), 𝑞(𝑥), ℎ(𝑥) ∈ F[𝑥] such that [54]:

𝑝 (𝑥) 𝑓 (𝑥) + 𝑞(𝑥)𝑔(𝑥) = gcd(𝑓 (𝑥), 𝑔(𝑥)) = ℎ(𝑥)
Moreover, deg(𝑝) < deg(𝑔)−deg(ℎ) and deg(𝑞) < deg(𝑓 )−deg(ℎ).
Pedersen vector commitment (PVC). Given a group G1 or G2 of
prime order 𝑝 and a vector ®𝑐 = (𝑐0, . . . , 𝑐𝑡 ) ∈ Z𝑡𝑝 . Let (𝑔1, 𝑔2, . . . , 𝑔𝑡 , ℎ)
∈ G𝑡+1

1
or G𝑡+1

2
generators where log𝑔𝑖

𝑔 𝑗 , 𝑖 ≠ 𝑗 relationship is

unknown. In order to commit to the vector ®𝑐 , one has to pick 𝑟 ←$

Z𝑝 and compute PVC(®𝑐, 𝑟 ) = ℎ𝑟𝑔
𝑐0
0
𝑔
𝑐1
1
. . . 𝑔

𝑐𝑡
𝑡 .

The Pedersen commitment scheme [42] (and its vector gener-

alization) is homomorphic, perfectly hiding and computationally

binding under the discrete logarithm assumption.

Zero-knowledge proofs.A ZK proof for a relationR(𝑥 ;𝑤), where
𝑥 is the public statement and𝑤 is the witness, is a set of algorithms

(Setup, Prove, Verify) with the following syntax:

• Setup(1_,R) → pp: given the security parameter _ and the

relation, outputs parameters pp.
• Prove(pp, 𝑥,𝑤) → 𝜋 : given the parameters pp, a statement

𝑥 and a witness𝑤 , it returns a proof 𝜋 for R(𝑥 ;𝑤).
• Verify(pp, x, 𝜋) → 𝑏 ∈ {0, 1}: given the parameters pp, the
statement 𝑥 and the proof 𝜋 , it accepts or rejects the proof.

Properties. A ZK proof has to be correct, sound and zero-knowledge.
Correctness means that if (𝑥,𝑤) ∈ R, then Verify(pp, x, 𝜋) = 1

with overwhelming probability. We support knowledge soundness -
if a proof passes verification, then there exists a polynomial time

algorithm (the extractor) which by interacting with the prover can

extract the witness. Finally, zero-knowledge implies that the proof

leaks nothing about the witness, i.e., there exists a simulator with

access only to the public statement which can output a valid proof.

3.1 Cryptographic accumulators
An accumulator is a cryptographic primitive that supports a suc-

cinct binding commitment to an arbitrary set of values. In this

work, we consider trapdoorless, dynamic, and universal accumula-

tors. Following the definitions and notation from [5] and [10], our

definitions refer to the batch setting, where 𝐼 is a set of elements.

The traditional accumulator algorithms can be derived for 𝐼 = {𝑥}.

Definition 3.1 (Trapdoorless Accumulator). Let D be the domain

of the accumulated elements, and consider set 𝑋 ∈ D |𝑋 | and set

𝐼 ∈ D |𝐼 | (where each element from sets 𝑋 and 𝐼 is in D). An

accumulator consists of the following ppt algorithms:

(1) (pp,D) ← Acc.Setup(1_ ) : Takes security parameter _, returns

the public parameters pp and D of the accumulated set. A trusted
entity may use a secret trapdoor to generate pp. The trapdoor
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is then destroyed by the setup. In the rest of the document, we

assume that pp = (pp,D) .
(2) 𝐴𝑋 ← Acc.Commitpp (𝑋 = {𝑥1, . . . , 𝑥 |𝑋 | }) : Takes set𝑋 ∈ D |𝑋 | ,

outputs the accumulator digest 𝐴𝑋 .

(3) 𝐴′
𝑋
← Acc.Addpp (𝐴𝑋 , 𝑋, 𝐼 ) : Adds set 𝐼 ∈ D |𝐼 | , 𝐼 ∩ 𝑋 = ∅, to

the accumulator and returns the new digest 𝐴′
𝑋
.

(4) 𝐴′
𝑋
← Acc.Delpp (𝐴𝑋 , 𝑋, 𝐼 ) : Removes set 𝐼 , 𝐼 ⊆ 𝑋 , from the

accumulator and returns the new accumulator value, 𝐴′
𝑋
.

(5) 𝜋𝐼 ← Acc.MemProvepp (𝑋, 𝐼 ) : Generates a membership proof

for set 𝐼 , 𝐼 ⊆ 𝑋 .

(6) {0, 1} ← Acc.MemVerifypp (𝐴𝑋 , 𝐼 , 𝜋𝐼 ) : Returns 1 if the member-

ship proof 𝜋𝐼 , for the set 𝐼 , 𝐼 ⊆ 𝑋 , is valid against the accumulator

digest, 𝐴𝑋 .

(7) 𝜋 𝐼 ← Acc.NonMemProvepp (𝑋, 𝐼 ) : Generates non-membership

proof for the set 𝐼 , 𝐼 ∩𝑋 = ∅, disjoint from the accumulated set.

(8) {0, 1} ← Acc.NonMemVerifypp (𝐴𝑋 , 𝐼 , 𝜋 𝐼 ) : Returns 1 if the non-
membership proof 𝜋 𝐼 , of the set 𝐼 , 𝐼 ∩𝑋 = ∅, is valid against the

accumulator digest, 𝐴𝑋 .

(9) 𝜋𝐼 ← Acc.AggMempp (𝐴𝑋 , 𝐼 , {𝜋1, · · · , 𝜋 |𝐼 | }) : Combines individ-

ual membership proofs {𝜋1, · · · , 𝜋 |𝐼 | } into a single aggregated

proof.

(10) 𝜋 𝐼 ← Acc.AggNonMempp (𝐴𝑋 , 𝐼 , {𝜋1, · · · , 𝜋 |𝐼 | }) : Combines in-

dividual non-membership proofs {𝜋1, · · · , 𝜋 |𝐼 | } into a single

aggregated proof.

The following algorithms update a (non-)membership proof of a

single element after changes to the accumulated set.

(11) 𝜋 ′𝑦 ← Acc.MemProofUpdOnAddpp (𝐴𝑋 , 𝑋, 𝑦, 𝜋𝑦, 𝐼 ) : Updates the
membership proof 𝜋𝑦 of element 𝑦 on addition of set 𝐼 (𝑦 ∉

𝐼 , 𝑋 = 𝑋 ∪ 𝐼 ) to the accumulator.

(12) 𝜋 ′𝑦 ← Acc.MemProofUpdOnDelpp (𝐴𝑋 , 𝐴′
𝑋
, 𝑋, 𝐼 , 𝑦, 𝜋𝑦 ) : Updates

the membership proof 𝜋𝑦 of element 𝑦 on deletion of set 𝐼 ,

𝑋 = 𝑋 \ 𝐼 , from the accumulator.

(13) 𝜋 ′𝑦 ← Acc.NonMemProofUpdOnAddpp (𝐴𝑋 , 𝑋, 𝑦, 𝜋𝑦, 𝐼 ) : Updates
the non-membership proof 𝜋𝑦 of element 𝑦 disjoint from set 𝑋

on addition of set 𝐼 (𝑦 ∉ 𝐼 , 𝑋 = 𝑋 ∪ 𝐼 ) to the accumulator.

(14) 𝜋 ′𝑦 ← Acc.NonMemProofUpdOnDelpp (𝐴𝑋 , 𝐴′
𝑋
, 𝑋, 𝐼 , 𝑦, 𝜋𝑦 ) : Up-

dates the non-membership proof𝜋𝑦 of an element 𝑦 disjoint from

set 𝑋 on deletion of set 𝐼 (𝑋 = 𝑋 \ 𝐼 ) from the accumulator.

3.2 Correctness and soundness
The basic security property for accumulators is soundness (some-

times called undeniability [33]) which states that an adversary can-
not construct an accumulator 𝐴 and a set 𝐼 for which both 𝜋𝐼 and

𝜋 𝐼 are simultaneously valid. Below we state strong soundness (also
found in [10]), which allows the adversary to create the accumulator

without revealing the accumulated set 𝑋 to the challenger.

Definition 3.2 (Soundness). For any ppt adversary A, it holds:

Pr


pp← Acc.Setup(1_)
(𝐴, 𝐼, 𝜋𝐼 , 𝜋 𝐼 ) ← A(pp)

Acc.MemVerifypp (𝐴, 𝐼, 𝜋𝐼 ) = 1 ∧
Acc.NonMemVerifypp (𝐴, 𝐼, 𝜋 𝐼 ) = 1

 = negl(_)

Since no trapdoor is needed for algorithmsAcc.Addpp,Acc.Delpp,
Acc.MemProvepp, Acc.NonMemProvepp, A can adaptively update

the accumulator and construct honest proofs during the game be-

fore coming up with the accumulator value 𝐴 and proofs 𝜋𝐼 , 𝜋 𝐼 .

We formally define correctness of (non-)membership proofs, the

correctness of aggregation, and present the accumulator soundness

proof under a weak definition in the extended version of our paper.

This weak soundness definition assumes that the accumulator value

is honestly generated for the set𝑋 . Our construction is secure under

this weak definition of soundness using the 𝑡-SBDH assumption.

The weak soundness definition is useful if one wants to avoid the

Uber assumption [7] (under which our protocols satisfy strong

soundness).

3.3 Accumulator based on bilinear-maps
In this subsection, we review the standard accumulator based on

bilinear-pairing (BP) introduced by Nguyen [38] and improved by

[24, 40]. Here, we present the classic BP construction that operates

on individual proofs. In §4 and §5 we show how to batch and ag-
gregate proofs in the BP setting, and in §6 we present a technique

to efficiently update non-membership proofs.

Let 𝑋 be the accumulator set and 𝑋 (𝑠 ) =
∏

𝑥 ∈𝑋 (𝑠 + 𝑥 ) be the

accumulator polynomial.

pp← Acc.Setup(1_ ) : Let bp = (𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2 ) be the out-
put of BilGen(1_ ) . Assume that 𝑠 is a trapdoor randomly sampled

from Z∗𝑝 . The public parameters are pp = (bp, {𝑔𝑠𝑖
1
, 𝑔𝑠

𝑖

2
| 0 ≤ 𝑖 ≤

𝑡 },D′ = Z𝑝 ) where 𝑡 is the maximum capacity of the accumulator.

𝐴𝑋 ← Acc.Commitpp (𝑋 = {𝑥1, . . . , 𝑥 |𝑋 | }) : The accumulator di-

gest of the set 𝑋 = {𝑥1, · · · , 𝑥𝑛 }, is 𝐴𝑋 = 𝑔
𝑋 (𝑠 )
1

, where the poly-

nomial 𝑋 (𝑠 ) = ∏
𝑥 ∈𝑋 (𝑠 + 𝑥 ) .

𝐴′
𝑋
← Acc.Addpp (𝐴𝑋 , 𝑋, 𝐼 ) : A set of elements 𝐼 , 𝐼 ∩ 𝑋 = ∅, can

be added to the accumulator and the digest can be updated as:

𝐴′
𝑋

= 𝑔
∏

𝑥 ∈𝑋∪𝐼 (𝑠+𝑥 )
1

= 𝐴

∏
𝑥𝑖 ∈𝐼 (𝑠+𝑥𝑖 )

𝑋
.

𝐴′
𝑋
← Acc.Delpp (𝐴𝑋 , 𝑋, 𝐼 ) : A set of elements 𝐼 ⊆ 𝑋 can be deleted

from the accumulator and the digest can be updated as: 𝐴′
𝑋

=

𝑔

∏
𝑥 ∈𝑋 \𝐼 (𝑠+𝑥 )

1
= 𝐴

1/∏𝑥𝑖 ∈𝐼 (𝑠+𝑥𝑖 )
𝑋

.

𝜋𝑦 ← Acc.MemProvepp (𝑋, 𝑦) : The proof of membership of an el-

ement 𝑦 can be computed as 𝜋𝑦 = 𝑔

∏
𝑥 ∈𝑋 \{𝑦} (𝑠+𝑥 )

1
, where 𝑋 is the

accumulated set.

{0, 1} ← Acc.MemVerifypp (𝐴𝑋 , 𝑦, 𝜋𝑦 ) : The membership proof of

an element 𝑦 ∈ 𝑋 in the accumulator can be verified by performing

the following pairing check: 𝑒 (𝜋𝑦, 𝑔
𝑦

2
𝑔𝑠
2
) = 𝑒 (𝐴𝑋 , 𝑔2 ) .

𝜋𝑦 = (𝛼,𝑔𝛽 (𝑠 )
1
) ← Acc.NonMemProvepp (𝑋, 𝑦) : The non-memb-

ership proof of {𝑦} ∩ 𝑋 = ∅ involves computing the Bézout co-

efficients 𝛼 (𝑠 ) and 𝛽 (𝑠 ) s.t. 𝛼 (𝑠 ) · 𝑋 (𝑠 ) + 𝛽 (𝑠 ) · (𝑠 + 𝑦) = 1. As

the monomial (𝑠 + 𝑦) is of degree one, the polynomial 𝛼 (𝑠 ) is
in fact a constant! Thus, the 𝜋𝑦 = (𝛼,𝑔𝛽 (𝑠 )

1
) ∈ (Z𝑝 ,G1 ) is the

non-membership proof of element 𝑦.

{0, 1} ← Acc.NonMemVerifypp (𝐴𝑋 , 𝑦, 𝜋𝑦 ) : The non-membership

proof can be verified by checking 𝑒 (𝐴𝑋 , 𝑔𝛼
2
) · 𝑒 (𝑔𝛽 (𝑠 )

1
, 𝑔𝑠

2
𝑔
𝑦

2
) =

𝑒 (𝑔1, 𝑔2 ) , where 𝜋𝑦 = (𝛼,𝑔𝛽 (𝑠 )
2
) .

𝜋 ′𝑦 ← Acc.MemProofUpdOnAddpp (𝐴𝑋 , 𝑋, 𝑦, 𝜋𝑦, 𝐼 ) : Themember-

ship proof of an element 𝜋𝑦 , can be updated on addition of set 𝐼 , to

the accumulated set, 𝑋 = 𝑋 ∪ 𝐼 , by computing, 𝜋 ′𝑦 = 𝜋
∏

𝑧∈𝐼 (𝑠+𝑧)
𝑦 .

When 𝐼 = {𝑧}, 𝜋 ′𝑦 = 𝐴𝑋 · 𝜋𝑧−𝑦
𝑦 is the updated proof.
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𝜋 ′𝑦 ← Acc.MemProofUpdOnDelpp (𝐴𝑋 , 𝐴′
𝑋
, 𝑋, 𝐼 , 𝑦, 𝜋𝑦 ) : Themem-

bership proof 𝜋𝑦 can be updated on deletion of set 𝐼 from the ac-

cumulated set, 𝑋 = 𝑋 \ 𝐼 , by computing, 𝜋 ′𝑦 = 𝜋

1∏
𝑧∈𝐼 (𝑠+𝑧)

𝑦 . When

𝐼 = {𝑧}, 𝜋 ′𝑦 = ( 𝜋𝑦

𝜋𝑧
)

1

𝑧−𝑦
is the updated proof.

Non-membership in BP accumulator. There are two ways to

prove non-membership in the BP acccumulator: (1) based on the

PRT [4, 24] and (2) based on GCD [40]. The two methods are equiv-

alent, in that they both require𝑂 ( |𝑋 |) field operations. In this work,
we focus on the GCD-based method because it allows for efficient

batching and aggregation as we show in §4.2 and §5.2. Additionally,

we present a new algorithm to update individual non-membership

proofs §6.

BP accumulator soundness. The soundness of the BP construc-

tion relies on the 𝑡-sBDH assumption.

4 BATCHING BP ACCUMULATOR PROOFS
4.1 Membership
Recall that the membership proof of a single element 𝑦 ∈ 𝑋 is

defined as 𝜋𝑦 = 𝑔

∏
𝑥 ∈𝑋 \𝑦 (𝑠+𝑥 )

1
and the membership proof of 𝑦 can

be verified by checking 𝑒 (𝜋𝑦, 𝑔 (𝑠+𝑦)
2

) = 𝑒 (𝐴𝑋 , 𝑔2), where 𝐴𝑋 is the

digest of the accumulator.

Batch proof. A batch membership proof is a single succinct proof

for a set of elements in the accumulator. A batch proof contains

a polynomial in the exponent that includes every element in the

accumulator except the monomials terms that correspond to values

in the set 𝐼 .

𝜋𝐼 ← Acc.MemProvepp (𝑋, 𝐼 ) : A batch membership proof for set 𝐼 ⊆ 𝑋

is computed as follows: 𝜋𝐼 = 𝑔

∏
𝑥𝑖 ∈𝑋 \𝐼 (𝑠+𝑥𝑖 )

1

{0, 1} ← Acc.MemVerifypp (𝐴𝑋 , 𝐼 , 𝜋𝐼 ) : The batch proof can be verified

by checking 𝑒 (𝜋𝐼 , 𝑔
∏

𝑥𝑖 ∈𝐼 (𝑠+𝑥𝑖 )
2

) = 𝑒 (𝐴𝑋 , 𝑔2 ) .

Asymptotics. The batch membership proof for 𝐼 consists only of

one element inG1 (as opposed to |𝐼 | ·G1 elements, if proved individ-

ually). Verifying a batch proof takes 𝑂 ( |𝐼 | log2 |𝐼 |) field operations

to compute the coefficients of polynomial 𝐼 (𝑠) = ∏
𝑥𝑖 ∈𝐼 (𝑠 + 𝑥𝑖 ) us-

ing FFT, one |𝐼 |-sized multi-exponentiation in G2 to compute 𝑔
𝐼 (𝑠 )
2

and 2 pairings. However, verifying |𝐼 | individual proofs requires |𝐼 |
individual exponentiations (cannot use fast multi-exponentiations),

and 2|𝐼 | pairings.

4.2 Non-membership
A non-membership proof of an element 𝑦 ∉ 𝑋 leverages the fact

that gcd(𝑋 (𝑠), (𝑠 +𝑦)) = 1. Thus the Bézout coefficients 𝛼 and 𝛽 (𝑠)
satisfy: 𝛼𝑋 (𝑠) + 𝛽 (𝑠) (𝑠 + 𝑦) = 1. We generalize this observation to

prove the non-membership of set 𝐼 ∩ 𝑋 = ∅.

Batch proof. We define a batch non-membership proof as a single

succinct proof for a set of elements disjoint from the accumulator.

Observe that there are no common roots between polynomials𝑋 (𝑠)
and 𝐼 (𝑠) = ∏

𝑦𝑖 ∈𝐼 (𝑠 + 𝑦𝑖 ), therefore gcd(𝑋 (𝑠), 𝐼 (𝑠)) = 1. Moreover,

the Bézout coefficients 𝛼 (𝑠) and 𝛽 (𝑠) of 𝑋 (𝑠), 𝐼 (𝑠) are non-constant
polynomials.

𝜋 𝐼 ← Acc.NonMemProvepp (𝑋, 𝐼 ) : A batch non-membership proof for

a set 𝐼 , where 𝐼 ∩ 𝑋 = ∅, is 𝜋 𝐼 = (𝑔𝛼 (𝑠 )
2

, 𝑔
𝛽 (𝑠 )
1
) ∈ (G2,G1 ) such that

𝛼 (𝑠 ) · 𝑋 (𝑠 ) + 𝛽 (𝑠 ) ·∏𝑦𝑖 ∈𝐼 (𝑠 + 𝑦𝑖 ) = 1.

{0, 1} ← Acc.NonMemVerifypp (𝐴𝑋 , 𝐼 , 𝜋 𝐼 ) : The batch proof can be ver-

ified by checking 𝑒 (𝐴𝑋 , 𝑔
𝛼 (𝑠 )
2
) · 𝑒 (𝑔𝛽 (𝑠 )

1
, 𝑔

∏
𝑦𝑖 ∈𝐼 (𝑠+𝑦𝑖 )

2
) = 𝑒 (𝑔1, 𝑔2 ) ,

where 𝜋 𝐼 = (𝑔2𝛼 (𝑠 ) , 𝑔1𝛽 (𝑠 ) ) .

Asymptotics. The batch non-membership proof consists of only

one element from G1 and one element from G2. Verifying a batch

proof takes 𝑂 ( |𝐼 | log2 |𝐼 |) field operations to compute the coeffi-

cients of polynomial 𝐼 (𝑠) using FFT, one |𝐼 |-sized multi-expone-

ntiation in G2 to compute 𝑔
𝐼 (𝑠 )
2

and 2 pairings. However, verifying

|𝐼 | individual proofs requires |𝐼 | individual exponentiations (cannot
use fast multi-exponentiations) and 2|𝐼 | pairings. If 𝑒 (𝑔1, 𝑔2) is not
precomputed, then batch verification and individual verification

requires 3 pairings and 2|𝐼 | + 1 pairings, respectively.

4.3 Soundness of batching
Theorem 4.1. Batch membership and non-membership proofs

𝜋𝐼 , 𝜋 𝐼 , are sound, by Definition 3.2, under the adaptive Uber assump-
tion in the AGM.

Proof. Deferred to the extended version of our paper. □

5 AGGREGATION
5.1 Membership
The BP accumulator based on Nguyen et al. resembles the KZG poly-

nomial commitments [29, 38]. As demonstrated in prior works [14,

25, 47], KZG polynomial commitments can be aggregated using the

PFD [53]. We use these techniques to aggregate proofs in the BP

accumulator.

𝜋𝐼 ← Acc.AggMempp (𝐴𝑋 , 𝐼 , {𝜋1, · · · , 𝜋 |𝐼 | }): Let 𝐼 ⊆ 𝑋 be the set

of elements to be aggregated, 𝑋 (𝑠) = ∏
𝑥∈𝑋 (𝑠 + 𝑥) be the accu-

mulator polynomial of 𝑋 , 𝐼 (𝑠) = ∏
𝑥𝑖 ∈𝐼 (𝑠 + 𝑥𝑖 ) be the accumulator

polynomial of 𝐼 , and 𝑋𝑖 (𝑠) =
∏

𝑥∈𝑋\{𝑥𝑖 } (𝑠 + 𝑥). The goal is to com-

pute the polynomial𝑌 (𝑠) = ∏
𝑥𝑖 ∈𝑋\𝐼 (𝑠 +𝑥𝑖 ), which excludes all the

monomials that correspond to values in the set 𝐼 . Using PFD [53]:

𝑌 (𝑠 ) = 𝑋 (𝑠 ) · 1

𝐼 (𝑠 ) = 𝑋 (𝑠 )
∑︁
𝑥𝑖 ∈𝐼

1

𝐼 ′ (−𝑥𝑖 ) (𝑠 + 𝑥𝑖 )
=

∑︁
𝑥𝑖 ∈𝐼

1

𝐼 ′ (−𝑥𝑖 )
· 𝑋𝑖 (𝑠 )

Thus, the aggregated proof, 𝜋𝐼 = 𝑔1
𝑌 (𝑠 ) =

∏
𝑥𝑖 ∈𝐼 𝜋

𝑐𝑖
𝑖
, where 𝑐𝑖 =

1

𝐼 ′ (−𝑥𝑖 ) , 𝐼
′
is the first derivative of 𝐼 w.r.t 𝑠 , and 𝜋𝑖 is the individual

membership proof of element 𝑖 .

Correctness and soundness. We can see that as long as each

individual 𝜋𝑖 ’s are correct, 𝜋𝐼 satisfies aggregation correctness. Note
that Thm. 4.1, is sufficient to argue the soundness of aggregation

(Definition 3.2) since the resulting proof after aggregation is a batch

proof and thus can be verified by runningMemVerify.

Asymptotics. In a field with sufficiently many roots of unity, FFT

based polynomial interpolation and multi-point evaluation tech-

niques can be used to compute the polynomial 𝐼 (𝑠) and evaluate

𝐼 ′ (𝑠) at all 𝑥𝑖 ’s in 𝑂 ( |𝐼 | log2 |𝐼 |) field operations. Asymptotically, it

takes𝑂 ( |𝐼 | log2 |𝐼 |) operations in Z𝑝 (to compute all the 𝑐𝑖 ’s) and |𝐼 |
sized multi-exponentiation in G1 to compute the aggregated proof.



Batching, Aggregation, and Zero-Knowledge Proofs in Bilinear Accumulators CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

The complexity of verifying an aggregated proof is the same

as verifying a batch proof. Note that verification requires a single

multi-exponentiation of size |𝐼 | in G2 to compute 𝑔2
𝐼 (𝑠 )

. However,

using the PoE protocol, we can outsource the exponentiation cost

to an untrusted prover. We discuss this optimization in §8.

5.2 Non-membership
In this section, we give an algorithm to combine multiple individual

non-membership proofs into a single non-membership proof.

𝜋 𝐼 ← Acc.AggNonMempp (𝐴𝑋 , 𝐼 , {𝜋1, · · · , 𝜋 |𝐼 | }): Let 𝐼 be a set of

elements disjoint from the accumulated set 𝑋 , 𝜋𝑖 = (𝛼𝑖 , 𝑔𝛽𝑖 (𝑠 )
1
) ∈

Z𝑝 ×G1 be the non-membership proof of the element𝑦𝑖 ∈ 𝐼 ,𝑋 (𝑠) =∏
𝑥∈𝑋 (𝑠 + 𝑥) be the accumulator polynomial, 𝐼 (𝑠) = ∏

𝑦𝑖 ∈𝐼 (𝑠 +𝑦𝑖 )
be the accumulator polynomial of 𝐼 , and 𝑌𝑖 (𝑠) = 𝐼 (𝑠 )

(𝑠+𝑦𝑖 ) .
Observe that gcd(𝑌1 (𝑠), 𝑌2 (𝑠), . . . , 𝑌|𝐼 | (𝑠)) = 1. By generalization

of Bézout’s identity for polynomials, ∃ polynomials 𝑐𝑖 (𝑠), s.t.:
|𝐼 |∑︁
𝑖=1

𝑐𝑖 (𝑠) · 𝑌𝑖 (𝑠) = gcd(𝑌1 (𝑠), 𝑌2 (𝑠), . . . , 𝑌|𝐼 | (𝑠)) = 1 (1)

Lemma 5.1. The Bézout coefficient polynomials, 𝑐𝑖 (𝑠), of Eq. 1 are
non-zero constants.

Proof. Deferred to the extended version of our paper. □

To compute the non-membership proof of 𝐼 , we need to compute

polynomials 𝛼 (𝑠) and 𝛽 (𝑠) such that:

𝛼 (𝑠) · 𝑋 (𝑠) + 𝛽 (𝑠) ·
∏
𝑦𝑖 ∈𝐼
(𝑠 + 𝑦𝑖 ) = gcd(𝑋 (𝑠),

∏
𝑦𝑖 ∈𝐼
(𝑠 + 𝑦𝑖 )) = 1

Recall that each individual non-membership proof satisfies:

𝛼𝑖 · 𝑋 (𝑠) + 𝛽𝑖 (𝑠) · (𝑠 + 𝑦𝑖 ) = 1,where deg(𝛼𝑖 ) = 0

Multiplying by 𝑐𝑖 ·𝑌𝑖 (𝑠):𝛼𝑖𝑐𝑖𝑌𝑖 (𝑠)𝑋 (𝑠)+𝑐𝑖𝛽𝑖 (𝑠) (𝑠+𝑦𝑖 )𝑌𝑖 (𝑠) = 𝑐𝑖𝑌𝑖 (𝑠)
⇒ 𝛼𝑖𝑐𝑖𝑌𝑖 (𝑠)𝑋 (𝑠) + 𝑐𝑖𝛽𝑖 (𝑠)𝐼 (𝑠) = 𝑐𝑖𝑌𝑖 (𝑠)

Summing over 𝑖 = 1 to |𝐼 |:∑ |𝐼 |
𝑖=1

𝛼𝑖𝑐𝑖𝑌𝑖 (𝑠)𝑋 (𝑠)+
∑ |𝐼 |
𝑖=1

𝑐𝑖𝛽𝑖 (𝑠)𝐼 (𝑠) =∑ |𝐼 |
𝑖=1

𝑐𝑖 · 𝑌𝑖 (𝑠)

Using Eq. 1:

( ∑ |𝐼 |
𝑖=1

𝛼𝑖𝑐𝑖𝑌𝑖 (𝑠)
)
· 𝑋 (𝑠) +

( ∑ |𝐼 |
𝑖=1

𝑐𝑖𝛽𝑖 (𝑠)
)
· 𝐼 (𝑠) = 1

Therefore,

𝛼 (𝑠) =
|𝐼 |∑︁
𝑖=1

𝛼𝑖𝑐𝑖𝑌𝑖 (𝑠) 𝛽 (𝑠) =
|𝐼 |∑︁
𝑖=1

𝑐𝑖𝛽𝑖 (𝑠) (2)

Thus the non-membership of set I is 𝜋 𝐼 = (𝑔2𝛼 (𝑠 ) , 𝑔1𝛽 (𝑠 ) )

Correctness and soundness. We can see that as long as each

individual 𝜋𝑖 ’s are correct, 𝜋 𝐼 satisfies aggregation correctness. The
algorithm AggNonMem always outputs 𝜋 𝐼 because terms 𝑐𝑖 do

not depend on trapdoor 𝑠 (Lemma 5.1), therefore exponentiation

by 𝑐𝑖 is feasible. We remark that Thm. 4.1, is sufficient to argue

the soundness of aggregation (Definition 3.2) since the resulting

proof after aggregation is a batch proof and thus can be verified by

running NonMemVerify.

Asymptotics. The task of computing the aggregated proof can

be divided into: (1) task of computing the Bézout coefficients 𝑐𝑖 ’s,

Scheme RSA BP

Domain Prime Z𝑝

Setup(1_ ) O(1) 𝑂 (𝑡 ) · (G1 + G2 )

Commit 𝑂 ( |𝑋 | ) · G 𝑂 ( |𝑋 | ) · G1 +
𝑂 ( |𝑋 | log2 |𝑋 | ) · Z𝑝

AggMem
𝑂 ( |𝐼 | log |𝐼 | ) · G +

𝑂 ( |𝐼 | log |𝐼 | ) · F
𝑂 ( |𝐼 | ) · G1 +

𝑂 ( |𝐼 | log2 |𝐼 | ) · Z𝑝

MemVerify 𝑂 ( |𝐼 | ) · G 2P +𝑂 ( |𝐼 | ) · G2 +
𝑂 ( |𝐼 | log2 |𝐼 | ) · Z𝑝

MemVerifyPoE
𝑂 (1) · G +

𝑂 ( |𝐼 | ) · F
3P + 1G1 + 1G2+

𝑂 ( |𝐼 | log2 |𝐼 | ) · Z𝑝

AggNonMem
𝑂 ( |𝐼 | log |𝐼 | ) · G +

𝑂 ( |𝐼 | log |𝐼 | ) · F
𝑂 ( |𝐼 | ) · (G1 + G2 ) +
𝑂 ( |𝐼 |2 log |𝐼 | ) · Z𝑝

NonMemVerify 𝑂 ( |𝐼 | ) · G 2P +𝑂 ( |𝐼 | ) · G2 +
𝑂 ( |𝐼 | log2 |𝐼 | ) · Z𝑝

NonMemVerifyPoE
𝑂 (1) · G +

𝑂 ( |𝐼 | ) · F
5P + 1G1 + 1G2+

𝑂 ( |𝐼 | log2 |𝐼 | ) · Z𝑝
Table 1: Set 𝑋 denotes the entire accumulated set and 𝐼 ⊆ 𝑋 . Let𝑂 (𝑌 ) ·
G denotes one large exponentiation to the product of Y elements or Y

exponentiations. All exponentiations in BP can be sped up by a logarithmic

factor using multi-exponentiations.

(2) task of computing the coefficients of each 𝑌𝑖 (𝑠), and (3) task of

computing (𝑔2𝛼 (𝑠 ) , 𝑔1𝛽 (𝑠 ) ).
First, the task of computing the Bézout coefficients in Eq. 1 takes

𝑂 ( |𝐼 | log2 |𝐼 |) field operations. Second, the task of computing all

𝑌𝑖 ’s take 𝑂 ( |𝐼 |2 log |𝐼 |) field operations. This is because computing

each 𝑌𝑖 (𝑠) costs 𝑂 ( |𝐼 | log |𝐼 |) field operations. Third, the task of

computing 𝑔2

∑|𝐼 |
𝑖=1

𝛼𝑖𝑐𝑖𝑌𝑖 (𝑠 )
and 𝑔1

∑|𝐼 |
𝑖=1

𝑐𝑖𝛽𝑖 (𝑠 )
requires a single multi-

exponentiation of size |𝐼 | in G2 and G1, respectively. Thus, in total,

it takes𝑂 ( |𝐼 |2 log |𝐼 |) field operations and multi-exponentiations of

size 𝑂 ( |𝐼 |) in G1,G2 to compute the aggregated non-membership

proof from individual proofs.

The complexity of verifying an aggregated proof is the same

as verifying a batch proof. Note that verification requires a single

multi-exponentiation of size |𝐼 | in G2 to compute 𝑔2
𝐼 (𝑠 )

. However,

using the PoE protocol, we can outsource the exponentiation cost

to an untrusted prover. We discuss this optimization in §8.

6 NON-MEMBERSHIP PROOF UPDATES
In this section, we describe a new protocol that allows to efficiently

update a GCD-based non-membership proof for the BP accumula-

tor after changes (additions/deletions) to the accumulated set. Let

𝑦 ∉ 𝑋 and 𝜋𝑦 = (𝛼,𝑔1𝛽 (𝑠 ) ) ∈ Z𝑝 × G1 s.t. 𝛼𝑋 (𝑠) + 𝛽 (𝑠) (𝑠 + 𝑦) = 1.

𝜋 ′𝑦 ← Acc.NonMemProofUpdOnAddpp (𝐴𝑋 , 𝑋,𝑦, 𝜋𝑦, 𝐼 = {𝑧}): Re-

call that,

𝛼𝑋 (𝑠) + 𝛽 (𝑠) (𝑠 + 𝑦) = 1 (3)

Since 𝑦 ≠ 𝑧, by Bézout’s Identity,

𝑢 (𝑠 + 𝑧) + 𝑣 (𝑠 + 𝑦) = 1, where 𝑢, 𝑣 ∈ Z𝑝 (4)

Goal is to find 𝛼 ′ and 𝛽′ (𝑠) s.t.,
𝛼 ′𝑋 ′ (𝑠) + 𝛽′ (𝑠) (𝑠 + 𝑦) = 1, where 𝑋 ′ (𝑠) = 𝑋 (𝑠) (𝑠 + 𝑧) (5)
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Multiplying Eq. 3 by 𝑢 (𝑠 + 𝑧): 𝑢𝛼𝑋 (𝑠) (𝑠 + 𝑧) +𝑢𝛽 (𝑠) (𝑠 + 𝑧) (𝑠 +𝑦) =
𝑢 (𝑠 + 𝑧).
Using Eq. 4:

𝑢𝛼𝑋 (𝑠) (𝑠 + 𝑧) + 𝑢𝛽 (𝑠) (𝑠 + 𝑧) (𝑠 + 𝑦) = 1 − 𝑣 (𝑠 + 𝑦)
(𝑢𝛼)𝑋 ′ (𝑠) + (𝑣 + 𝑢𝛽 (𝑠) (𝑠 + 𝑧)) (𝑠 + 𝑦) = 1

From Eq. 5 we have: 𝛼 ′ = 𝑢𝛼 and 𝛽′ (𝑠) = 𝑣 + 𝑢𝛽 (𝑠) (𝑠 + 𝑧)
However, it is not possible to compute 𝑔1

𝛽 ′ (𝑠 )
without the coef-

ficients of 𝛽 (𝑠) because individual proofs only contain 𝑔𝛽 (𝑠 ) . Thus,
we simplify 𝛽′ (𝑠)′ = 𝑣 +𝑢𝛽 (𝑠) (𝑠 +𝑧), replace 𝑢 (𝑠 +𝑧) as 1− 𝑣 (𝑠 +𝑦)
from Eq. 4: 𝛽′ (𝑠) = 𝑣 + 𝛽 (𝑠) (1 − 𝑣 (𝑠 + 𝑦)) =𝑣 + 𝛽 (𝑠) − 𝑣𝛽 (𝑠) (𝑠 + 𝑦)
= 𝑣 (1 − 𝛽 (𝑠) (𝑠 + 𝑦)) + 𝛽 (𝑠). Replace 1 − 𝛽 (𝑠) (𝑠 + 𝑦) as 𝛼𝑋 (𝑠) from
Eq. 3: 𝛽′ (𝑠) = 𝑣𝛼𝑋 (𝑠) + 𝛽 (𝑠).

Thus, 𝛼 ′ = 𝑢𝛼 , 𝛽′ (𝑠) = 𝑣𝛼𝑋 (𝑠) + 𝛽 (𝑠) and 𝜋 ′𝑦 = (𝛼 ′, 𝑔1𝛽
′ (𝑠 ) ) =

(𝑢𝛼,𝐴𝑋
𝑣𝛼 · 𝑔1𝛽 (𝑠 ) ).

To compute the updated non-membership proof,𝜋 ′𝑦 = (𝛼 ′, 𝑔1𝛽
′ (𝑠 ) ),

we calculate constants 𝑢, 𝑣 in Eq. 4 by running the extended Eu-

clidean algorithm for degree one polynomials, which takes only

𝑂 (1) operations. We can compute the constant 𝛼 ′ with one mul-

tiplication operation in Z𝑝 . Similarly, we can compute 𝑔1
𝛽 ′ (𝑠 ) =

((𝐴𝑋 )𝛼 )𝑣 · 𝑔1𝛽 (𝑠 ) with one multiplication operation in Z𝑝 , one
exponentiation operation in G1 by Z𝑝 , and one addition in G1.

𝜋 ′𝑦 ← Acc.NonMemProofUpdOnDelpp (𝐴𝑋 , 𝐴
′
𝑋
, 𝑋, 𝐼 = {𝑧}, 𝑦, 𝜋𝑦):

Recall that, 𝛼𝑋 (𝑠)+𝛽 (𝑠) (𝑠+𝑦) = 1. Since𝑦 ≠ 𝑧, by Bézout’s Identity,

𝑢 (𝑠 + 𝑧) + 𝑣 (𝑠 + 𝑦) = 1, where 𝑢, 𝑣 ∈ Z𝑝 (6)

Goal is to find 𝛼 ′ and 𝛽′ (𝑠) s.t.,

𝛼 ′𝑋 ′ (𝑠) + 𝛽′ (𝑠) (𝑠 + 𝑦) = 1, where 𝑋 ′ (𝑠) = 𝑋 (𝑠)
(𝑠 + 𝑧) (7)

𝛼𝑋 (𝑠) + 𝛽 (𝑠) (𝑠 + 𝑦) = 1⇒ 𝛼𝑋 ′ (𝑠) (𝑠 + 𝑧) + 𝛽 (𝑠) (𝑠 + 𝑦) = 1

Replace (𝑠 +𝑧) as 1−𝑣 (𝑠+𝑦)
𝑢 from Eq. 6: 𝛼𝑋 ′ (𝑠)

(
1−𝑣 (𝑠+𝑦)

𝑢

)
+𝛽 (𝑠) (𝑠 +

𝑦) = 1⇒ 𝛼
𝑢𝑋
′ (𝑠) +

(
𝛽 (𝑠) − 𝑣𝛼

𝑢 𝑋 ′ (𝑠)
)
(𝑠 + 𝑦) = 1

Thus, from Eq. 7, 𝛼 ′ = 𝛼
𝑢 , 𝛽

′ (𝑠) = 𝛽 (𝑠) − 𝑣𝛼 ′𝑋 ′ (𝑠) and 𝜋 ′𝑦 =

(𝛼 ′, 𝑔1𝛽
′ (𝑠 ) ) =

(
𝛼
𝑢 ,

𝑔1
𝛽 (𝑠 )

𝐴𝑣𝛼 ′
𝑋 ′

)
.

To compute the updated non-membership proof,𝜋 ′𝑦 = (𝛼 ′, 𝑔1𝛽
′ (𝑠 ) ),

we calculate constants 𝑢, 𝑣 in Eq. 6 by running the extended Eu-

clidean algorithm for degree one polynomials, which takes only

𝑂 (1) operations. We can compute the constant 𝛼 ′ with one inver-

sion operation and one multiplication operation in Z𝑝 . Similarly,

we can compute 𝑔1
𝛽 ′ (𝑠 ) = 𝑔1

𝛽 (𝑠 )

𝐴𝑣𝛼 ′
𝑋 ′

with one multiplication operation

in Z𝑝 , one inversion operation, one exponentiation operation in G1
by Z𝑝 , and one addition operation in G1.

7 ZK BATCH PROOFS
We now show how our batch (non-)membership proofs in BP accu-

mulators can be made zero-knowledge. We consider the following

setting: a set 𝑋 = {𝑥1, . . . , 𝑥𝑛} of elements is accumulated, and a

prover holds witnesses for a subset 𝐼 ⊆ 𝑋 , where |𝐼 | = 𝑑 . We want

to prove that 𝐼 ⊆ 𝑋 (or 𝐼 ∩ 𝑋 = ∅) while hiding the set 𝐼 itself.
Additionally, we want to be able to reveal just the size of 𝐼 or in

other words that it includes “at least 𝑑 elements”. This is important

since typically a batch proof does not hide the number of batched el-

ements and this is useful in identity systems, sanctions/embargoed

lists, e-cash, etc. At the same time, we want to maintain the benefits

of batch proofs: (1) the verifier cost should be constant for both

membership and non-membership proofs, and (2) the size of the

ZK batch proof should remain sublinear.

In the ZK setting, the verifier does not hold the set 𝐼 or the

proof 𝜋𝐼 (or 𝜋 𝐼 ) in order to run the verification algorithm. Instead,

the prover has to prove in ZK that the pairing equations in the

verification algorithm hold. The prover’s witness is the set 𝐼 , the

randomness 𝑟 used in the commitment to 𝐼 , a proof of membership

𝜋𝐼 or a proof of non-membership 𝜋 𝐼 . The inputs known to the

verifier are the public parameters pp, a commitment to the subset

𝐶𝐼 , and the accumulator value 𝐴𝑋 .

More specifically, the prover (that knows the polynomial 𝐼 (𝑥)
and the commitment randomness 𝑟 ) has to compute ZK proofs for

the following relations:

• Rmem (pp,𝐶𝐼 , 𝐴𝑋 ;𝜋𝐼 , 𝑟 ) knowledge of 𝜋𝐼 such that membership

verification holds and knowledge of randomness 𝑟

• Rnonmem (pp,𝐶𝐼 , 𝐴𝑋 ;𝜋 𝐼 , 𝑟 ) knowledge of 𝜋 𝐼 such that non-me-

mbership verification holds and knowledge of randomness 𝑟

• If revealing the size, Rdegcheck (pp,𝐶𝐼 , 𝑑 ; 𝐼 , 𝑟 ) proves that the set
size |𝐼 | = 𝑑 and the set corresponds to𝐶𝐼 . A proof for this relation

is analyzed in the following tasks:

– Proving that 𝐼 (𝑥) = ∏𝑑
𝑖=1 (𝑥+𝑥𝑖 ) = 𝑥𝑑+𝑓 (𝑥), where deg(𝑓 ) ≤

𝑑 − 1 using a hiding commitment 𝐶𝑓 ,

– Proving well-formedness of 𝐶𝑓 in relation to 𝐶𝐼 .

The commitment 𝐶𝐼 allows the prover to later open all elements

in 𝐼 (if needed) by revealing 𝑟 . In the following paragraphs, we

explain in details how these proofs are constructed.

Notation. Let pp be the following public parameters:

• 𝑔1, ℎ1, 𝔤, 𝔤1, 𝔤2 ∈ G1 and 𝑔2, ℎ2, 𝔥, 𝔥1, 𝔥2 ∈ G2
• gs1 = [𝑔1, 𝑔𝑠

1
, . . . , 𝑔𝑠

𝑡

1
] ∈ G𝑡+1

1
, gs2 = [𝑔2, 𝑔𝑠

2
, . . . , 𝑔𝑠

𝑡

2
] ∈ G𝑡+1

2

• a = [𝑔𝑎
2
, 𝑔𝑎𝑠

2
, . . . , 𝑔𝑎𝑠

𝑡

2
] ∈ G𝑡+1

2

We view a polynomial 𝐼 (𝑥) as equivalent to its coefficients that

form a vector, therefore for the rest of the paper, we overload the

Pedersen VC input with both vectors and polynomials.

7.1 Proving membership (Rmem)
The high level idea of the initial proof is the following: Rmem.init
essentially proves that the verification equation holds for 𝐶𝐼ℎ

−𝑟
2

and proves knowledge of 𝑟 .

Rmem.init =

{
(pp,𝐶𝐼 ∈ G2, 𝐴𝑋 ∈ G1;𝜋𝐼 ∈ G1, 𝑟 ∈ Z𝑝 ) :

𝐶𝐼 = ℎ𝑟
2
𝑔
𝐼 (𝑠 )
2
∧ 𝑒 (𝜋𝐼 ,𝐶𝐼 ) · 𝑒 (𝜋𝐼 , ℎ2 )−𝑟 = 𝑒 (𝐴𝑋 , 𝑔2 )

}
However, it still does not hide the witness 𝜋𝐼 . Using techniques

from RingCT [43], Rmem.init can be transformed into Rmem, which

proves the above statement in ZK. Specifically, it adds a proof that

Rmem.init verifies for 𝜋𝐼 ,2𝑔
−𝜏1

and proves knowledge of 𝜏1, where

𝜋1,2 is the blinded version of the batch proof 𝜋𝐼 .
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Rmem =


(pp,𝐶𝐼 ∈ G2, 𝐴𝑋 ∈ G1;𝜋𝐼 ∈ G1, 𝑟 , 𝜏1, 𝜏2 ∈ Z𝑝 ) :

𝐶𝐼 = ℎ𝑟
2
𝑔
𝐼 (𝑠 )
2
∧ 𝛿1 = 𝜏1𝑟 ∧ 𝛿2 = 𝜏2𝑟 ∧

𝜋𝐼 ,1 = 𝑔
𝜏1
1
𝔤𝜏2 ∧ 𝜋𝐼 ,2 = 𝜋𝐼𝔤

𝜏1 ∧
𝑒 (𝜋𝐼 ,2,𝐶𝐼 )
𝑒 (𝐴𝑋 ,𝑔2 ) = 𝑒 (𝔤,𝐶𝐼 )𝜏1 · 𝑒 (𝔤, ℎ2 )−𝛿1 · 𝑒 (𝜋𝐼 ,2, ℎ2 )𝑟


Rmem is instantiated with a generalized version of Schnorr’s

protocol for knowledge of DL as 𝑟, 𝜏1 are scalars.

Protocol for relation Rmem. The interactive version of the pro-

tocol is as follows:

• Prover

– Picks 𝜏1, 𝜏2 ← Z𝑝
– Computes 𝜋𝐼 ,1 = 𝑔

𝜏1
1
𝔤𝜏2 and 𝜋𝐼 ,2 = 𝜋𝐼𝔤

𝜏1

– Picks 𝑟𝑟 , 𝑟𝜏1 , 𝑟𝜏2 , 𝑟𝛿1 , 𝑟𝛿2 ∈ Z𝑝
– Sends:

∗ 𝜋𝐼 ,1, 𝜋𝐼 ,2

∗ 𝑅1 = 𝑔
𝑟𝜏

1

1
𝔤𝑟𝜏2 , 𝑅2 = 𝜋𝐼 ,1

𝑟𝑟 𝑔
−𝑟𝛿

1

1
𝔤
−𝑟𝛿

2

∗ 𝑅3 = 𝑒 (𝔤,𝐶𝐼 )𝑟𝜏1 𝑒 (𝔤, ℎ2 )−𝑟𝛿1 𝑒 (𝜋𝐼 ,2, ℎ2 )𝑟𝑟
• Verifier sends 𝑐 ← Z𝑝
• Prover sends:

– 𝑠𝑟 = 𝑟𝑟 + 𝑐𝑟
– 𝑠𝜏1 = 𝑟𝜏1 + 𝑐𝜏1, 𝑠𝜏2 = 𝑟𝜏2 + 𝑐𝜏2
– 𝑠𝛿1 = 𝑟𝛿1 + 𝑐𝛿1, 𝑠𝛿2 = 𝑟𝛿2 + 𝑐𝛿2

• Verifier checks:

– 𝑅1 = 𝜋−𝑐
𝐼 ,1

𝑔
𝑠𝜏

1

1
𝔤𝑠𝜏2

– 𝑅2 = 𝜋
𝑠𝑟
𝐼 ,1
𝑔
−𝑠𝛿

1

1
𝔤
−𝑠𝛿

2

– 𝑅3 · (
𝑒 (𝜋𝐼 ,2,𝐶𝐼 )
𝑒 (𝐴𝑋 ,𝑔2 ) )

𝑐 = 𝑒 (𝔤,𝐶𝐼 )𝑠𝜏1 𝑒 (𝔤, ℎ2 )−𝑠𝛿1 𝑒 (𝜋𝐼 ,2, ℎ2 )𝑠𝑟

Correctness, soundness, and ZK. We defer the security argu-

ments to the extended version of our paper.

Asymptotics. The instantiation of Rmem consists of 5 group ele-

ments and 5 field elements, and has constant prover and verifier.

7.2 Proving non-membership (Rnonmem)
For non-membership, Rmem.init is replaced by

Rnonmem.init =


(pp,𝐶𝐼 ∈ G2, 𝐴𝑋 ∈ G1;
(𝐴, 𝐵) ∈ G2 × G1, 𝑟 ∈ Z𝑝 ) :

𝐶𝐼 = ℎ𝑟
2
𝑔
𝐼 (𝑠 )
2
∧

𝑒 (𝐴𝑋 , 𝐴) · 𝑒 (𝐵,𝐶𝐼 ) · 𝑒 (𝐵,ℎ)−𝑟 = 𝑒 (𝑔1, 𝑔2 )


Similarly,Rnonmem.init still does not hide thewitness 𝜋𝐼 . Thus, us-

ing techniques from RingCT [43], Rnonmem.init can be transformed

into Rnonmem, which proves the above statement in ZK.

Rnonmem =



(pp,𝐶𝐼 ∈ G2, 𝐴𝑋 ∈ G1; (𝐴, 𝐵) ∈ G2 × G1,
𝑟 , 𝜏1, 𝜏3, 𝜏4 ∈ Z𝑝 ) :

𝐶𝐼 = ℎ𝑟
2
𝑔
𝐼 (𝑠 )
2
∧ 𝛿3 = 𝜏3𝑟 ∧ 𝛿4 = 𝜏4𝑟 ∧

𝐴2 = 𝐴𝔥𝜏1 ∧
𝐵1 = 𝑔

𝜏3
1
𝔤𝜏4 ∧ 𝐵2 = 𝐵𝔤𝜏3 ∧

𝑒 (𝐴𝑋 ,𝐴2 ) ·𝑒 (𝐵2,𝐶𝐼 )
𝑒 (𝑔1,𝑔2 ) =

𝑒 (𝐴𝑋 , 𝔥)𝜏1 · 𝑒 (𝔤,𝐶𝐼 )𝜏3 ·
𝑒 (𝔤, ℎ2 )−𝛿3 · 𝑒 (𝐵2, ℎ2 )𝑟


The rest of the protocol remains the same. We defer the security

arguments to the extended version of our paper.

Protocol for relation Rnonmem. The interactive version of the

protocol is as follows:

• Prover

– Picks 𝜏1, 𝜏3, 𝜏4 ←$ Z𝑝
– Computes

∗ 𝐴2 = 𝐴𝔥𝜏1

∗ 𝐵1 = 𝑔
𝜏3
1
𝔤𝜏4 , 𝐵2 = 𝐵𝔤𝜏3

– Picks 𝑟𝑟 , 𝑟𝜏1 , 𝑟𝜏3 , 𝑟𝜏4 , 𝑟𝛿3 , 𝑟𝛿4 ←$ Z𝑝
– Sends:

∗ 𝐴2, 𝐵1, 𝐵2

∗ 𝑅2,1 = 𝑔
𝑟𝜏

3

1
𝔤𝑟𝜏4 , 𝑅2,2 = (𝐵1 )𝑟𝑟 𝑔1−𝑟𝛿3 𝔤−𝑟𝛿4

∗ 𝑅3 = 𝑒 (𝐴𝑋 , 𝔥)𝑟𝜏1 · 𝑒 (𝔤,𝐶𝐼 )𝑟𝜏3 · 𝑒 (𝔤, ℎ2 )−𝑟𝛿3 · 𝑒 (𝐵2, ℎ2 )𝑟𝑟
• Verifier sends 𝑐 ← Z𝑝
• Prover sends:

– 𝑠𝑟 = 𝑟𝑟 + 𝑐𝑟 , 𝑠𝜏1 = 𝑟𝜏1 + 𝑐𝜏1
– 𝑠𝜏3 = 𝑟𝜏3 + 𝑐𝜏3, 𝑠𝜏4 = 𝑟𝜏4 + 𝑐𝜏4
– 𝑠𝛿3 = 𝑟𝛿3 + 𝑐𝛿3, 𝑠𝛿4 = 𝑟𝛿4 + 𝑐𝛿4

• Verifier checks:

– 𝑅2,1 = (𝐵1 )−𝑐𝑔1𝑠𝜏3 𝔤𝑠𝜏4
– 𝑅2,2 = (𝐵1 )𝑠𝑟 𝑔1−𝑠𝛿3 𝔤−𝑠𝛿4

– 𝑅3 · ( 𝑒 (𝐴𝑋 ,𝐴2 ) ·𝑒 (𝐵2,𝐶𝐼 )
𝑒 (𝑔1,𝑔2 ) )𝑐 = 𝑒 (𝐴𝑋 , 𝔥)𝑠𝜏1 ·𝑒 (𝔤,𝐶𝐼 )𝑠𝜏3 ·𝑒 (𝔤, ℎ2 )−𝑠𝛿3 ·

𝑒 (𝐵2, ℎ2 )𝑠𝑟

7.3 Proving degree bound (Rdegcheck)
We now want to prove in ZK the following statement: The prover
knows at least 𝑑 elements. So far, the verifier only knows that the

verification algorithm holds for some commitment 𝐶𝐼 . In order to

be convinced that 𝐶𝐼 is a commitment to a set 𝐼 = {𝑥1, . . . , 𝑥𝑑 }, the
verifier has to prove knowledge of a polynomial 𝐼 (𝑥) of degree 𝑑 .
It is implied that as long as 𝐼 (𝑥) is a polynomial, it is well-formed

as a product of 𝑑 monomials (𝑥 + 𝑥𝑖 ) (𝐼 (𝑥) is part of the accu-

mulator exponent (membership) or coprime to the accumulator

exponent(non-membership)). We define the following relation:

Rdegcheck =

{
(pp,𝐶𝐼 ∈ G2, 𝑑 ∈ Z𝑝 ; 𝑟 ∈ Z𝑝 , 𝐼 ⊂ Z𝑝 ) :

𝐶𝐼 = ℎ𝑟
2
𝑔
𝐼 (𝑠 )
2
∧ |𝐼 | = 𝑑

}
For proving the above statement with existing protocols (that

prove maximum instead of minimum polynomial degree), we use

the following idea: a correct computation of the polynomial 𝐼 (𝑥)
that corresponds to elements in the set 𝐼 with |𝐼 | = 𝑑 , results to the

following polynomial:

𝐼 (𝑥) =
𝑑∏
𝑖=1

(𝑥 + 𝑥𝑖 ) = 𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + · · · + 𝑎1𝑥 + 𝑎0

Let 𝑓 (𝑥) = 𝑎𝑑−1𝑥
𝑑−1 + · · · + 𝑎1𝑥 + 𝑎0, Thus, 𝐼 (𝑥) = 𝑥𝑑 + 𝑓 (𝑥).

In order to prove that the degree of 𝐼 (𝑥) is at least 𝑑 it suffices

to show that deg(𝑓 (𝑥)) ≤ 𝑑 − 1. This implies that there is no term

of 𝑓 that eliminates 𝑥𝑑 . Therefore, the degree of polynomial 𝐼 is at

least 𝑑 .

Proving that deg(𝒇 )≤ 𝒅−1. In order to prove a polynomial’s max-

imum degree, we follow the technique used in Marlin [22]. Instead

of publishing parameters of degree-specific size, we transform the

proof to use the accumulator’s parameters of size 𝑡 and we shift the

polynomial such that it has degree 𝑡 instead of 𝑑 .

Informally: polynomial 𝑓 (𝑥) gets multiplied with a random poly-

nomial of degree 𝑡 − (𝑑 − 1) (the sparse polynomial 𝑐 · 𝑥𝑡−(𝑑−1)
where 𝑐 is a random scalar would suffice). This is what we call a shift

and can be proven to be computed correctly with the use of pairings.
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Using knowledge assumptions [28] (and commitment to the same

polynomial multiplied with 𝑎) the prover shows knowledge of 𝑓 . In

other words, the prover was able to construct the result polynomial

using public parameters (that consist of generators raised to powers

of 𝑠 up to 𝑡 ), therefore the degree of 𝑓 does not exceed 𝑑 − 1.
Protocol for Rdegcheck. The interactive version of the protocol is

as follows:

• Prover

– Computes: 𝑓 (𝑥 ) as 𝐼 (𝑥 ) = ∏𝑑
𝑖=1 (𝑥 + 𝑥𝑖 ) = 𝑥𝑑 + 𝑓 (𝑥 ) , where

deg(𝑓 ) ≤ 𝑑 − 1

– Sends𝐶𝑓 =
𝐶𝐼

𝑔𝑠
𝑑

2

• Verifier

– Sends: 𝑐 ∈ Z𝑝
• Prover

– Computes: 𝑓 (𝑥 ) · 𝑐𝑥𝑡−𝑑+1 and 𝑟 · 𝑐𝑥𝑡−𝑑+1

– Sends:𝐶 = 𝑔
𝑓 (𝑠 )𝑐𝑠𝑡−𝑑+1
2

ℎ𝑟 ·𝑐𝑠
𝑡−𝑑+1

2
∈ G2,𝐶𝑎 ∈ G2

• Verifier checks:

– 𝑒 (𝑔1,𝐶𝐼 ) = 𝑒 (𝑔1,𝐶𝑓 ) · 𝑒 (𝑔1, ℎ𝑠
𝑑 )

– 𝑒 (𝑔1,𝐶 ) = 𝑒 (𝑔𝑐𝑠𝑡−𝑑+1
1

,𝐶𝑓 ) , 𝑒 (𝑔1,𝐶𝑎 ) = 𝑒 (𝑔𝑎
1
,𝐶 )

Correctness, soundness, and ZK. We defer the security argu-

ments to the extended version of our paper.

Asymptotics. The protocol has 𝑂 (𝑑) prover cost that comes from

multiplying 𝑓 (𝑥) with the polynomial of degree 𝑡 − (𝑑 − 1) and
computing its commitment𝐶 . It can be made non-interactive using

the Fiat-Shamir transformation. The proof size is constant (the

prover has to send over constant sized commitments𝐶𝐼 ,𝐶𝑓 ,𝐶,𝐶
𝑎
: a

commitment to polynomial 𝐼 (𝑥), to polynomial 𝑓 (𝑥), to polynomial

𝑓 (𝑥)·𝑐 ·𝑥𝑡−(𝑑−1) and to polynomial𝑎·𝑓 (𝑥)·𝑐 ·𝑥𝑡−(𝑑−1) respectively)
and verification cost is also constant (7 pairings).

8 PROOF OF EXPONENTIATION
We present the Proof-of-Exponentiation (PoE) protocol in the kno-

wn-order group setting. Informally, the prover can convince the

verifier that the exponentiation of a group element by the evalu-

ation of a known polynomial at a specific point is correct. That

is, given a tuple, (𝐴𝑈 , 𝐴𝑊 ,𝑉 (𝑥)) ∈ (G,G,Z𝑝 [𝑥]), the prover can
convince the verifier that 𝐴𝑊 = 𝐴

𝑉 (𝑠 )
𝑈

, with a constant sized proof

requiring constant number of pairing checks. Given the coefficients

of polynomial 𝑉 (𝑠), naively, computing 𝑔𝑉 (𝑠 ) would require as

many exponentiations as deg(𝑉 (𝑠)). However, with PoE, the veri-
fier has to just perform cheaper polynomial division and constant
pairing computation instead of performing linear number of group

exponentiations.

Since naively verifying batch (non-)membership proofs require

a multi-exponentiation of size |𝐼 |, we can delegate the expensive

exponentiations to the prover using the PoE protocol. Note that

the PoE protocol is of independent interest and can be used as a

building block in other constructions.

For ease of exposition, we present the protocol (Fig. 1) using

symmetric pairings. However, the protocol can be instantiated using

asymmetric pairings.

RPoE =

{
( (𝐴𝑈 , 𝐴𝑊 ∈ G,𝑉 (𝑥 ) ∈ Z𝑝 [𝑥 ] ) ;⊥) :

𝐴𝑊 = 𝐴
𝑉 (𝑠 )
𝑈

∈ G

}

pp← PoE.Setup(1_ ) :

1. (𝑝,G,G𝑇 , 𝑒, 𝑔) ← BilGen(1_ )
2. 𝑠 ←$ Z∗𝑝

3. pp := ( (𝑝,𝑔,G,G𝑇 , 𝑒 ), {𝑔𝑠
𝑖 | 0 ≤ 𝑖 ≤ 𝑡 })

Protocol PoE for RPoE:
Params: pp← PoE.Setup(1_ )
Inputs: (𝐴𝑈 , 𝐴𝑊 ∈ G,𝑉 (𝑥 ) ∈ Z𝑝 [𝑥 ] )
Claim: 𝐴𝑊 = 𝐴

𝑉 (𝑠 )
𝑈

∈ G

1. Verifier sends ℓ ←$ Z𝑝

2. Prover computes:

𝑞 (𝑥 ), 𝑟 s.t.𝑉 (𝑥 ) = 𝑞 (𝑥 ) · (𝑥 + ℓ ) + 𝑟
𝑄1 = 𝑔𝑞 (𝑠 ) using pp
𝑄2 = 𝑔𝑞 (𝑠 ) · (ℓ+𝑠 ) using pp

3. Prover sends𝑄1,𝑄2 to Verifier.

4. Verifier computes: 𝑟 s.t. 𝑟 ≡ 𝑉 (𝑥 ) mod (𝑥 + ℓ )
Accepts if: 𝑒 (𝑄1, 𝑔

(𝑠+ℓ ) ) ?

= 𝑒 (𝑄2, 𝑔) ∧
𝑒 (𝐴𝑈 ,𝑄2 ) · 𝑒 (𝐴𝑈 , 𝑔𝑟 ) ?

= 𝑒 (𝐴𝑊 , 𝑔)

Figure 1: PoE protocol. We use Fiat-Shamir transformation to make this

protocol into non-interactive. For the ease of exposition we present the

construction in the symmetric pairing setting. However, we remark that

our implementation uses asymmetric paring.

Wepresent the interactive version of the protocol for the symmetric

pairing in Fig. 1, which can be made non-interactive using Fiat-

Shamir transformation. The soundness of RPoE is defined similar

to its RSA counterparts as defined in [51] and [10]. We defer the

proof of soundness of our PoE protocol to the extended version of

our paper.

9 EVALUATION
In this section, we experimentally compare the aggregation oper-

ations in the RSA [10] and BP setting. We implement RSA accu-

mulator using C++17, GNU Multiple Precision Arithmetic library

6.2.1 [52], and OpenSSL 3.0.2 [45]. We choose two 1024-bits prime

numbers at random and compute the product to obtain a 2048 RSA

modulus (using OpenSSL [45]). We implement
2
the BP accumula-

tor using Golang bindings of the mcl library [36, 46]. Specifically,

we use BLS12-381, a pairing-friendly elliptic curve. A single group

element G and a field element F in the RSA setting, by the virtue of

the choice of parameters, are 256 and 32 Bytes, respectively. In the

elliptic curve group, a single compressedG1,G2,G𝑇 group element

requires 48, 96, 576 Bytes, respectively. Moreover, an element in

Z𝑝 requires 32 Bytes. A single exponentiation in the RSA group G
by an exponent at most 256-bits takes 449 `s on an average. How-

ever, a single exponentiation in the elliptic curve source groups

take G1 and G2 takes 106 `s and 250 `s, respectively. As BLS12-381
curve contains numerous roots of unity, we implement FFT based

polynomial algorithms to support fast polynomial operations in

go-mcl [46].

Our implementation is single threaded and all our experiments

where performed on an Intel Core i7-4770 CPU @ 3.40GHz with 8

cores and 32 GiB of RAM. Unless stated otherwise, we perform 3

runs of each experiment and report the average.

2
Our code is available at: https://github.com/accumulators-agg/accumulators

https://github.com/accumulators-agg/accumulators
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Batch size
Operation Sch. 29 211 213 215 217

Domain mapping (s)

RSA 0.33 1.31 5.25 20.99 83.95

BP 0 0 0 0 0

Commit (s)
RSA 0.52 2.09 8.38 33.55 134.37

BP 0.05 0.24 1.12 5.17 24.28

AggMem (min)

RSA 0.04 0.17 0.8 3.66 16.49

BP 0 0.01 0.18 2.51 38.35

MemVerify (s)

RSA 0.52 2.1 8.38 33.54 134.37

BP 0.11 0.46 2.0 8.65 38.14

AggMemPoE (min)

RSA 0.04 0.19 0.86 3.87 17.33

BP 0 0.02 0.2 2.58 39.12

MemVerifyPoE (s)

RSA 0.33 1.32 5.32 21.4 86.16

BP 0.03 0.16 0.77 3.8 18.62

AggNonMem (min)

RSA 0.05 0.25 1.16 5.3 23.9

BP 0.1 1.54 24.54 N/A N/A

NonMemVerify (s)

RSA 0.72 2.87 11.49 45.98 184.12

BP 0.11 0.46 2.0 8.65 38.14

AggNonMemPoE (min)

RSA 0.07 0.3 1.37 6.14 27.24

BP 0.1 1.55 24.58 N/A N/A

NonMemVerifyPoE (s)

RSA 0.34 1.34 5.33 21.41 86.17

BP 0.03 0.16 0.77 3.8 18.62

Table 2: Accumulator batching operation costs for different batch sizes. In

the first column, (s) denotes seconds and (min) minutes. The costs for RSA

operations include the computations required to map to the prime domain.

N/A stands for very large costs which are not interesting to compute.

9.1 Aggregation
In Table 1, we present the asymptotic costs for various operations

in the BP setting, and in Table 2 we present our corresponding

evaluation results.

Public parameters. Both the RSA and the BP accumulators require

a trusted setup phase to generate the public parameters. Classgroups

based accumulator constructions [13] do not require trusted setup in

the unknown-order group setting, but they are too slow in practice.

The public parameters in the RSA setting is just the RSA modulus

and the group generator. However, in the BP setting, the public

parameter consists of 𝑛 · G1 + 𝑛 · G2 elements, where 𝑛 is the

maximum size of the accumulated set
3
. For 𝑛 = 2

17
, the public

parameters occupies 18 MiB. With PoE, it is sufficient to store only
constant number of values (𝑔1, 𝑔𝑠

1
, 𝑔2, 𝑔

𝑠
2
) from the public parameter

by the verifier. Recall that 𝑔1, 𝑔2 are the group generators of G1 and
G2, respectively.

Domain mapping. To add values from an arbitrary domain D to

the accumulator set, each element has to be mapped to a value in

the specific accumulator domainD′. Since the RSA accumulator re-

quires a prime domain, we implement the standard “hash to prime"

algorithm [9, 10], where the hash operation is successively applied

on the input until the hash function returns a prime value. We use

Blake2s hash implementation in OpenSSL [45] to convert a value

from arbitrary domain to Prime domain and GMP’s Miller-Rabin’s

3
Rather than relying on a trusted entity, it is possible to use an MPC based setup

ceremony to generate public parameters. We can adopt approaches from real-world

MPC ceremonies of Zcash and AZTEC protocol which have successfully generated

SNARK parameters for circuit sizes 2
21

and 2
27
, respectively [12][50].

primality testing (15 rounds). For the BP setting, as discussed in

§3.3, the specific domain is Z𝑝 . In our implementation we use the

BLS12-381 curve for which the group order is around 256-bits [11].

Thus, we can accumulate any arbitrary string of size up to 256-bits

without the need of any mapping.

In our experiments, we consider the accumulation of arbitrary

256-bit strings. In Table 2, we report the cost mapping these ar-

bitrary strings to the accumulator domain. Mapping an arbitrary

string to the prime domain takes 640 to 894 `s for 15 to 50 rounds of

Miller-Rabin primality testing. Before performing an accumulator

operation, all elements have to be converted to the accumulator

domain. Thus, we include the cost of mapping to the accumulator

domain for all operations in Table 1.

Discussion.We now briefly discuss what could go wrong in a uni-

versal accumulator if we don’t include the mapping process during

verification.

Consider the two most popular Hprime approaches [9, 10]
4
for

mapping a non-prime element 𝑥 to a prime 𝑦: (1) perform repetitive

hashing 𝐻 (𝐻 (. . . 𝐻 (𝑥))) = 𝑦 until a primality test indicates that

the output is a prime, then outputs 𝑥 and 𝑟 where 𝑟 is the number

of hashing rounds required, (2) perform repetitive hashing of the

value (𝑥 | |𝑟 ), where 𝑟 is a random nonce, until 𝐻 (𝑥 | |𝑟 ) = 𝑦 is a

prime. In both cases, when a prover wishes to add element 𝑥 to

the RSA accumulator, it first calculates the mapping 𝑦 and stores

𝑟 . The element 𝑦 is accumulated. When they wish to prove (non-

)membership, they provide 𝑟 as a witness along with the proof to

decrease verification costs. However, if a malicious prover can find

two numbers of hashing rounds 𝑟1, 𝑟2 for the same element 𝑥 , that

correspond to two elements 𝑦1, 𝑦2 in D′, then if say 𝑦1 was the

accumulated value (for 𝑥), the malicious prover could use 𝑦2 to

argue non-membership for 𝑥 .

In order to avoid such attacks in universal accumulators
5
, before

verifying any (non-)membership proof, all verifiers need to check

that the given prime mapping 𝑦 is the first one that corresponds

to the arbitrary element 𝑥 and thus need to run all the repetitive

steps the prover does. If the proof is a batch proof for |𝐼 | elements,

the verifiers need to repeat the process |𝐼 | times individually for

each element. The same holds for updates (addition or deletions)

to ensure primality since they might be initiated by an untrusted

entity.

Commit. To commit to a set 𝐼 in the RSA setting, we first com-

pute the product of the elements in the set. Then, we perform

modular exponentiation of this large product of size 𝑂 (_ · |𝐼 |)-bits.
However, for BP accumulators, we first compute the coefficient of

the accumulator polynomial using the subproduct algorithm and

fast polynomial multiplication. Then, we perform a single multi-

exponentiation of size |𝐼 |. Observe that from Table 2, even after

subtracting the domain mapping costs from the Commit, BP ac-

cumulators are faster! For a set size of 2
15
, it takes around 12.56

seconds to perform Commit, in the RSA setting, whereas it takes

just 5.17 seconds in the BP setting.

4
A recent work [39], attempts to optimize the “hash to prime” approach, by using

Pocklington primality certificates in order to reduce the cost of primality testing on

the side of the verifier. However, it still does not guarantee a deterministic mapping.

5
If the accumulator does not support non-membership, then this attack does not apply.
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Operation
RSA
(Bytes)

BP
(Bytes)

Digest 256 48

Mem. proof 256 48

Non-mem. proof 288 80

Agg. mem. proof (Naive) 256 48

Agg. non-mem. proof (Naive) 3.85∗ MiB 144* Bytes

Agg. mem. proof (PoE) 512 192

Agg. non-mem. proof (PoE) 1312 336

PoE 256 144 or 96

PoKE 544 ×
Table 3: Sizes of accumulator digest and proofs in bytes. Asterisk(*) denotes

a batch size of 2
17
.

Membership aggregation. We implement the membership proof

aggregation algorithm from Boneh et al. to aggregate a set of mem-

bership proofs in RSA accumulators [10]. Aggregating a pair of

membership proofs involves computing Shamir’s trick, which re-

quires computing the Bézout coefficients and performing two ex-

ponentiations. However, aggregating membership proofs in BP

accumulators, involves 𝑂 ( |𝐼 | log2 |𝐼 |) field operations and one |𝐼 |-
sized multi-exponentiation (Table 1). Thus, we observe that the

prover’s cost to aggregate is lower for the BP accumulator for set

sizes up to |𝐼 | = 2
15
. Beyond these set sizes, the field operations in

BP dominates aggregation cost. It is not very common for a prover

to hold (or wish to aggregate) more than 2
15

proofs. Thus, for most

applications BP should be preferable.

We also implement PoE from Boneh et al. [10] and from §8 to

optimize the verification of the aggregated proof in RSA and BP

accumulator, respectively. Since the prover overhead in comput-

ing the aggregated proof is dominated by field operations in both

RSA and BP accumulators, the additional exponentiations over-

head incurred by a PoE enabled prover is limited. We observe this

in our experiments as the prover engaging PoE additional incurs

only around 12.7 and 4.2 seconds for RSA and BP accumulators,

respectively, for 2
15

values (Table 2).

We observe that verifying batch proofs (without PoE) in BP

accumulator is 3.5× to 4.7× faster than RSA accumulators. This

is because the multi-exponentiations in elliptic curve group G1 is
faster than a single large exponentiation in the RSA group G. In
the PoE enabled setting, we observe that BP verification is 4.6× to

11× faster than RSA. In addition to the domain mapping costs, we

also include the overhead to compute the Fiat-Shamir coins in our

experiments.

Non-membership aggregation. The prover’s cost to aggregate
non-membership proofs is better for RSA regardless of the use of

PoE. This is due to BP’s 𝑂 ( |𝐼 |2 log |𝐼 |) field operations that comes

from constructing the 𝑌𝑖 (𝑠) terms (§5.2).

In comparisonwith RSA, verifying batch non-membership proofs

in BP is at least 4.6× faster in any case. Observe that verifying a

batch non-membership is computationally similar to verifying a

Batch size

Operation 2
9

2
11

2
13

2
15

Pedersen

Commitment (s)

0.08 0.31 1.24 4.98

Prover Rmem 2.97 ms

Verifier Rmem 3.66 ms

Proof size Rmem 0.91 KiB

Prover Rnonmem 4.65 ms

Verifier Rnonmem 5.18 ms

Proof size Rnonmem 1.03 KiB

Prover Rdegcheck (s) 0.17 0.64 2.57 11.29

Verifier Rdegcheck 4.49 ms

Proof size Rdegcheck 0.29 KiB

Table 4: Single-threaded microbenchmarks for our ZK constructions.

batch membership proof in the BP setting, regardless of the us-

age of PoE (Table 1). Thus, we observe similar performance num-

bers for NonMemVerify and NonMemVerifyPoE when compared

toMemVerify andMemVerifyPoE, respectively, in the BP setting.

Storage and proof sizes. In Table 3, we present the storage over-

head of proofs in both RSA and BP setting. For a similar level of

security, an RSA group element G is of size 256 bytes as opposed to

an elliptic curve element that is of size 48 Bytes for G1 and 96 Bytes
forG2. The accumulator value and the batch membership proof con-

sist of one group element in both constructions. Non-membership

consists of one group element and one integer for RSA and two

group elements in the BP setting. The integer in RSA batch non-

membership proof grows linear in the batch size. The PoE proof

adds to the proof size one group element in the RSA. However, in

the BP setting PoE adds an overhead of either (G1,G1) or (G1,G2)
depending on whether prover computes a proof for 𝑔

𝐼 (𝑠 )
2

or 𝑔
𝐼 (𝑠 )
1

,

respectively. The RSA non-membership proof can be made succinct

using PoE and PoKE [10]. We note that in BP, non-membership

proofs do not need PoKE as the proofs are already constant sized.

Thus, we observe that membership and non-membership proofs in

BP accumulators are 2.5× to 5× smaller and 3.5× smaller than the

RSA accumulators, respectively.

9.2 Zero-knowledge batch proofs
We microbenchmark our proposed ZK batch proofs in Table 4.

Public parameters. The constructions for Rmem and Rnonmem,

require the prover and the verifier to store additional generators

for Pedersen commitment. However for Rdegcheck, since we rely
on 𝑡-PKE assumption, the prover needs to additionally store 3𝑛 ·G2
elements (36 MiB). Whereas, the verifier needs to store only 2𝑛 · G
elements (24 MiB). When 𝑛 = 2

17
, generating additional 3𝑛 · G2

parameter takes around 98 seconds using a single thread.

Prover overhead. To commit to coefficients of a polynomial using

Pedersen commitment, we use the values 𝑔𝑠
𝑖

2
and an independent

group generator. Using multi-exponentiation, it takes 4.98 seconds

to commit to a batch of size 2
15
. Recall that, given a commitment

to the subset 𝐼 , prover incurs constant overhead to generate a ZK

proof for Rmem and Rnonmem regardless of the batch size. Thus,
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to prove Rmem and Rnonmem, it takes 2.97 and 4.65 milliseconds,

respectively. To prove a lower bound on the degree of 𝐼 (𝑠), the
prover needs to compute Pedersen commitments on 𝐼 (𝑠) with and

without 𝑡-PKE.

Verification time and proof size. The proof of Rmem is (4 · G1 +
G𝑇 + 5 ·Z𝑝 ) and the proof of Rnonmem is (3 ·G1 +G2 +G𝑇 + 6 ·Z𝑝 ).
With a 64-bit integer to denote the degree and three elements inG2,
a prover can prove a lower bound on the degree of a polynomial.

All the proofs in our scheme can be verified with a constant number

of exponentiations and pairing operations.

9.3 Comparison with HARiSA [18]
In this subsection, we argue that our approach to ZK batch proofs

of membership can be at least 16× faster than the current state-

of-the-art approaches to ZK batch membership proofs in the RSA

setting for a reasonable choice of batch size. We also report the

performance of our ZK batch proof of non-membership in Fig. 2.

HARiSA does not support non-membership.

Experimental setup.We fix the maximum size of the set to 2
17

elements and measure the performance of computing the zero-

knowledge proof of batch (non-)membership while revealing the

size of the batched subset. Moreover, we consider an experimen-

tal setup where the prover must do maximal work. That is, we

assume that the prover: (1) has access only to the individual (non-

)membership witness but not the batch membership witness, (2)

does not have access to the commitment to the batched subset,

and (3) has access to the accumulator digest and public parameters.

Thus, the prover incurs the cost of: (1) computing the commitment

to set 𝐼 , (2) aggregating the individual (non-)membership witnesses

to obtain batch witness, (3) proving the relation Rmem or Rnonmem,

and (4) proving the relation Rdegcheck for 𝑑 = |𝐼 |.

Baseline measure.We compare the performance of our scheme

against results of HARiSA [18] by Campanelli et al., which builds a

succinct batch proof of membership while preserving the privacy

of the batched elements. Their work combines proof of knowledge

of exponent (PoKE) along with CP-SNARK for integer arithmetic

relations and bound checks to prove batch membership. They im-

plement their construction using LegoGroth16 in C++. Similar to

our experiments, they require the prover to compute the batch

witness using individual witnesses and their experiments are single

4 6 8 10
Batch size (log2 scale)

100

101

102

P
ro

vi
ng

tim
e

(s
)

Membership
Non-membership
HARiSA (membership)

Figure 2: We extrapolate the proving costs using the numbers reported

in HARiSA [18]. Note that the results in the RSA setting does include the

Hash-to-prime costs.

Scheme Setup Verifier Proof size

HARiSA [18] Mem. Trusted 63 ms 1.14 KiB

This work
Mem.

Trusted

7.94 ms 1.2 KiB

Non-Mem. 9.41 ms 1.32 KiB

Table 5: Verification overhead and proof size.

threaded. Also, recall that in our experiments we reveal the size of

the subset 𝐼 , which is currently not implemented in HARiSA [18].

Proving time. HARiSA reports a prover time of 2.86 and 9.02 sec-

onds for a batch of size 16 and 64, respectively. Recall that their im-

plementation uses LegoGroth16 proof system, thus the prover time

is dominated by large FFTs and exponentiations. The performance

numbers reported by HARiSA uses Amazon EC2 r5.8xlarge [18,

Figure 4], which we extrapolate for various batch sizes in Fig. 2.

However, in Fig. 2, the performance of our scheme is measured

on an Intel Core i7-4770 CPU@ 3.40GHz. We observe that for a

batch size of 16, our approach takes merely 0.18 seconds, whereas

HARiSA takes 2.86 seconds, thus resulting in 16× speed up. Clearly,
our performance is still an order of magnitude faster even when

benchmarked on a much slower machine. Thus, we argue that our

order of magnitude performance gain will carry over even when

we benchmark our scheme and HARiSA on the same machine.

To the best of our knowledge, there are no known sub-linear

proof sized privacy preserving batch non-membership proofs in the

RSA setting without generic arguments such as SNARKs. However,

SNARKs based approaches are too slow in practice. Thus, we report

the performance of our non-membership scheme in the context of

membership scheme due to lack of appropriate baseline.

Verification time and proof size. Our approach has a comparable

proof size and superior verification speed. We report this in Table 5.
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