
You Can Sign but Not Decrypt:
Hierarchical Integrated Encryption and Signature

Min Zhang1,2,3,4,5, Binbin Tu1,2,3,4,5, and Yu Chen1,2,3,4,5(B)

1 School of Cyber Science and Technology, Shandong University, Qingdao 266237, China
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Key Laboratory of Cryptologic Technology and Information Security of Ministry of Education, Shandong
University, Qingdao 266237, China

4 Quancheng Laboratory, Jinan, 250103. China
5 Shandong Institute of Block-chain, Jinan, 250101, China

{zm min,tubinbin}@mail.sdu.edu.cn
yuchen@sdu.edu.cn

Abstract. Recently, Chen et al. (ASIACRYPT 2021) introduced a notion called hierarchical integrated
signature and encryption (HISE), which provides a new principle for combining public key schemes. It
uses a single public key for both signature and encryption schemes, and one can derive a decryption
key from the signing key but not vice versa. Whereas, they left the dual notion where the signing key
can be derived from the decryption key as an open problem.
In this paper, we resolve the problem by formalizing the notion called hierarchical integrated encryption
and signature (HIES). Similar to HISE, it features a unique public key for both encryption and signature
components and has a two-level key derivation mechanism, but reverses the hierarchy between signing
key and decryption key, i.e. one can derive a signing key from the decryption key but not vice versa.
This property enables secure delegation of signing capacity in the public key reuse setting. We present a
generic construction of HIES from constrained identity-based encryption. Furthermore, we instantiate
our generic HIES construction and implement it. The experimental result demonstrates that our HIES
scheme is comparable to the best Cartesian product combined public-key scheme in terms of efficiency,
and is superior in having richer functionality as well as retaining merits of key reuse.

Keywords: Hierarchical integrated signature and encryption · Hierarchical identity-based encryption
· Key delegation

1 Introduction

Combined usage of public key schemes is a practically relevant topic in the context of public key cryptogra-
phy, especially combining public key encryption (PKE) and signature schemes. In many real-word applica-
tions, the two primitives are commomly used in combination to guarantee confidentiality and authenticity
simultaneously, such as secure communication software (like PGP [2], WhatsApp [5]) and privacy-preserving
cryptocurrency (like Zether [10], PGC [13]).

Typically, there are two principles for combining these two schemes, key separation and key reuse, each
of which has its own strengths and weaknesses. Key separation, which means using two independent key
pairs for two schemes, supports secure escrow6 for both signing key and decryption key, while the key
management and certificate costs7 are doubled. Key reuse, which means using a unique key pair for both
PKE and signature schemes, can reduce key management and certificate costs, but it does not support secure
key escrow, and its joint security is not immediate.

6 Key escrow means that the owner delegates his decryption/signing capacity to the escrow agent simply through
sharing his decryption/signing key with the agent.

7 A public key certificate which signed by a certificate authority (CA) is an electronic document used to validate
the public key. Its costs include but not limited to registration, issuing, storage, transmission, verification, and
building/recurring fees.

Recently, Chen et al. [14] proposed a new notion called hierarchical integrated signature and encryption
(HISE), which strikes a sweet balance between key separation and key reuse. It employs a single public key
for both encryption and signature schemes, and allows one to derive a decryption key from signing key. This
feature gives HISE advantages that (i) key management and certificate costs are reduced by half and (ii)
secure delegation of decryption capacity is admitted.

Nevertheless, since the signing key is regarded as the master key in HISE, it is not applicable to some
scenarios such as where one wants to delegate his signing capacity while retaining his decryption capacity.
Chen et al. remarked that it is possible to consider a dual version of HISE, and it could be useful in scenarios
where decryption capability is a first priority. However, they did not give the formal definition, construction
and applications of it, and left it as an open problem. Therefore, the motivation for this work is two-fold:
(i) find a proper key usage strategy for scenarios where key management costs are desired to be cheap, and
signature delegation is needed; (ii) solve the open problem left in [14], and complete the key usage strategies.

1.1 Our Contributions

In this work, we resolve the open problem in [14] and our contributions can be summarized as follows:

Formal definition of HIES. We start off by formalizing the definition and the joint security of the dual
notion of HISE, called hierarchical integrated encryption and signature (HIES). It allows one to derive a
signing key from the decryption key, such that secure delegation of signature capacity is allowed. In terms
of joint security, the PKE component is IND-CCA secure even when the adversary is given the signing key
and the signature component is EUF-CMA secure in the presence of an additional decryption oracle.

Generic construction from CIBE. We present a generic construction of HIES from constrained identity-
based encryption (CIBE) and give a rigorous proof of its joint security.

msk → sk

skf1 → dk
0 1

PKESignature

reverse

(a) HISE from CIBE

msk → dk

skf1 → sk
0 1

SignaturePKE

(b) HIES from CIBE

Fig. 1: HISE and HIES from CIBE

Our generic construction is inspired by HISE from CIBE. We notice that CIBE inherently implies a
binary tree, where the root node is served as Private Key Generator (PKG) who possesses the master secret
key, and each leaf node is viewed as a user, specified by an ID, who owns an ID-based private key. Indeed,
each ID can be interpreted as identifying a unique path from root node to corresponding leaf node. We refer
the reader to Section 2.3 for formal definition of CIBE. As for HISE from CIBE (shown as Figure 1(a)),
users each forms a CIBE binary tree, employs the master secret key of the root node as the signing key, and
lets the secret key of its right child node be the decryption key, i.e. skf1 , the secret key for prefix predicate
f1, from which all secret keys for ID prefixed with “1” can be derived (we use skfv to denote the constrained
secret key for prefix predicate fv, where fv(ID) = 1 iff ID prefixed with v). Thus, the whole tree is divided
into two parts. The left one containing IDs prefixed with “0” is used for PKE component and the right one

2

containing IDs prefixed with “1” is used for signature component. Based on above observations, we naturally
get a construction of HIES by switching the roles the two secret keys play (shown in Figure 1(b)).

Extensions. We propose three extensions with different purposes. The first one is for flexible delegation,
with which the user is able to delegate his/her decryption and signing capacities separately to different
entities. It is actually the combination of HISE and HIES. The second is for limited delegation, with which
the user can limit the decryption or signing capacity given to the escrow. The last one is for finegrained
delegation, which is designed to generate keys labeled by time or identifier information. We believe these
extensions is useful in scenarios where delegation is not straightforward.

Applications. We give several scenarios where HIES is useful. The first one is a concern reported in [7]. In
a confidential payment system like Zether [10] and PGC [13], which currently is equipped with a key reuse
mechanism, if the signing key needs to be revoked or rotated, then all encrypted assets of an account need
to be transferred to a new account, which leads to high overhead. While there is no such trouble if HIES is
used, in which one can derive time labeled signing keys. The second one is the following scenario discussed
in Viafirma [4]. In a company, the president needs to deal with multifarious documents everyday, including
but not limited to commercial contracts, applications for the procurement of goods and so on. It is quite
necessary to delegate his signing right to assistant presidents so that they can help settle documents which
are less important. Meanwhile, the president may require keeping the decryption key secret for the security
of some confidential business documents. Many similar scenarios where signature delegation is needed widely
appear in other institutions, such as schools and government departments [1, 3].

Indeed, signature delegation, also known as Proxy Signature which was first introduced by Mambo et al.
[28], has numerous applications, such as distributed systems [29], mobile agent [26] and electronic commerce
[16]. Various schemes and extensions of it were proposed during the last few decades [8, 12, 22–24, 34]. In
contrast to these schemes, HIES not only considers delegating signing right, but also combines an additional
PKE scheme without increasing the size of public key, yielding a scheme with richer functionality. In general,
HIES is suitable for the scenarios where low key management costs are desired, while the signing key is not
permanent, or the signature delegation is needed.

Instantiation and implementation. We instantiate our HIES and implement it with 128-bit security.
The performance of our HIES scheme is comparable to the best Cartesian product combined public-key
scheme [30] in terms of efficiency, and is superior in having richer functionality as well as retaining merits of
key reuse.

1.2 Related Works

Here we briefly review the works related to combined usage of public key schemes.

Key separation. It is the folklore principle for combining PKE and signature schemes, which indicates
using two independent key pairs for two public key schemes. Paterson et al. formalized it via the notion of
“Cartesian product” combined public key scheme (CP-CPK) [30], which means using arbitrary encryption
and signature schemes as components, and combining two key pairs into one simply through concatenating
the public/private keys of the component schemes. They pointed out that CP-CPK provides a benchmark
by which other constructions can be judged, so we use it as a baseline.

Key reuse. The first work to formally study the security of key reuse was by Haber and Pinkas [20]. They
introduced the concept of a combined public key (CPK) scheme, where an encryption scheme and a signature
scheme are combined. CPK preserves the existing algorithms of sign, verify, encrypt and decrypt, while the
two key generation algorithms are modified into a single algorithm, which outputs two key pairs for PKE and
signature components respectively, with the key pairs no longer necessarily being independent. In addition,
they formalized the joint security of CPK scheme, i.e., the encryption component is IND-CCA secure even
in the presence of an additional signing oracle, and the signature component is EUF-CMA secure even in
the presence of an additional decryption oracle. Integrated signature and encryption (ISE) is an extreme
case of CPK. It uses an identical key pair for both PKE and signature components, which in turn makes it
not support key delegation. In subsequent works, both Coron et al. [15] and Komano et al. [25] considered

3

building ISE from trapdoor permutations in the random oracle model. Paterson et al. [30] gave an ISE
construction from identity-based encryption.

Hierarchical integrated signature and encryption. It is a new notion presented by Chen et al. in [14].
HISE employs a unique public key for both PKE and signature components, and serves the signing key as
the master secret key from which the decryption key can be derived. Thus, HIES supports secure delegation
of decryption power and achieves stronger joint security than ISE, that is, the encryption component is
IND-CCA secure even in the presence of an additional signing oracle, while the signature component is
EUF-CMA secure even in the presence of the decryption key.

Our notion is dual to HISE, where the hierarchy between signing key and decryption key is reversed. It
completes the last piece of the key usage strategy puzzle, as shown in Figure 2. We use index e to indicate
keys for PKE component and s to signature component.

pke ske

pks sks

CP-CPK

pk sk

ISE

pk

ske

sks

HISE

pk

ske

sks

HIES (this work)

Fig. 2: Different key usage strategies

2 Preliminaries

Notations. We use m
R←−M to denote that m is sampled uniformly at random from a set M and y ← A(x)

to denote the algorithm A that on input x outputs y. We use the abbreviation PPT to indicate probabilistic
polynomial-time. We denote by negl(λ) a negligible function in λ. Let tuple (G1,G2,GT , p, g1, g2, e) denote
the descriptions of asymmetric pairing groups where G1, G2 and GT are cyclic groups of the same prime
order p, and g1, g2 are generators of G1,G2 respectively, and e : G1 ×G2 → GT is the bilinear map.

2.1 Public Key Encryption

Definition 1. A public key encryption (PKE) scheme consists of four polynomial-time algorithms:

– Setup(1λ): on input a security parameter λ, outputs public parameters pp, including the descriptions of
plaintext spaceM, ciphertext space C, and randomness space R.

– KeyGen(pp): on input public parameters pp, outputs a public encryption key ek and a secret decryption
key dk.

– Enc(ek,m): on input an encryption key ek and a plaintext m, outputs a ciphertext c.

– Dec(dk, c): on input a decryption key dk and a ciphertext c, outputs a plaintext m or a special reject
symbol ⊥ denoting failure. This algorithm is typically deterministic.

Correctness. For any pp ← Setup(1λ), any (ek, dk) ← KeyGen(pp), any m ∈ M and any c ← Enc(ek,m),
it holds that Dec(dk, c) = m.

4

Security. Let Odec be a decryption oracle that on input a ciphertext, outputs a plaintext. A public key
encryption scheme is IND-CCA secure if for any PPT adversary A, it holds that

Pr

β = β′ :

pp← Setup(1λ);
(ek, dk)← KeyGen(pp);
(m0,m1)← AOdec(pp, ek);

β
R←− {0, 1}, c∗ ← Enc(ek,mβ);

β′ ← AOdec(c∗);

 ≤ 1

2
+ negl(λ).

A is not allowed to query Odec for c∗ in the guess stage. The IND-CPA security can be defined similarly by
denying the decryption oracle.

2.2 Digital Signature

Definition 2. A digital signature scheme consists of four polynomial-time algorithms:

– Setup(1λ): on input the security parameter λ, outputs public parameters pp, including the descriptions of
message spaceM and signature space Σ.

– KeyGen(pp): on input pp, outputs a public verification key vk and a secret signing key sk.

– Sign(sk,m): on input a signing key sk and a message m, outputs a signature σ.

– Vrfy(vk,m, σ): on input a verification key vk, a message m, and a signature σ, outputs a bit b, with b = 1
meaning valid and b = 0 meaning invalid.

Correctness. For any (vk, sk) ← KeyGen(pp), any m ∈ M and any σ ← Sign(sk,m), it holds that
Vrfy(pk,m, σ) = 1.

Security. Let Osign be a signing oracle that on input a message, outputs a signature. A digital signature
scheme is EUF-CMA secure if for any PPT adversary A there is a negligible function negl(λ) such that:

Pr

Vrfy(vk,m∗, σ∗) = 1
∧ m∗ /∈ Q :

pp← Setup(1λ);
(vk, sk)← KeyGen(pp);
(m∗, σ∗)← AOdec(pp, vk);

 ≤ negl(λ).

The set Q records queries to Osign. The strong EUF-CMA security can be defined similarly by asking A
to output a fresh valid message-signature tuple. The one-time signature can also be defined similarly by
restricting the adversary to access Osign only once.

2.3 Constrained Identity-Based Encryption

We recall the definition of constrained IBE introduced by Chen et al. [14] below.

Definition 3. A constrained identity-based encryption (CIBE) scheme consists of seven polynomial-time
algorithms:

– Setup(1λ): on input a security parameter λ, outputs public parameters pp. Let F be a family of predicates
over identity space I.

– KeyGen(pp): on input public parameters pp, outputs a master public key mpk and a master secret key
msk.

– Extract(msk, id): on input a master secret key msk and an identity id ∈ I, outputs a user secret key
skid.

– Constrain(msk, f): on input a master secret key msk and a predicate f ∈ F , outputs a constrained secret
key skf .

– Derive(skf , id): on input a constrained secret key skf and an identity id ∈ I, outputs a user secret key
skid if f(id) = 1 or ⊥ otherwise.

5

– Enc(mpk, id,m): on input mpk, an identity id ∈ I, and a message m, outputs a ciphertext c.

– Dec(skid, c): on input a user secret key skid and a ciphertext c, outputs a message m or a special reject
symbol ⊥ denoting failure.

Correctness. For any pp ← Setup(1λ), any (mpk,msk) ← KeyGen(pp), any identity id ∈ I, any skid ←
Extract(msk, id), any message m, and any c ← Enc(mpk, id,m), it always holds that Dec(skid, c) = m.
Besides, for any f ∈ F such that f(id) = 1, the outputs of Extract(msk, id) and Derive(skf , id) have the
same distribution.

Security. Let Oextract be an oracle of Extract that on input an identity id outputs skid. Let Oconstrain be an
oracle of Constrain that on input a predicate f outputs skf . A CIBE scheme is IND-CPA secure, if for all
PPT adversary A there is a negligible function negl(λ) suth that:

Pr

β = β′ :

pp← Setup(1λ);
(mpk,msk)← KeyGen(pp);
(id∗, (m0,m1))← AOextract,Oconstrain(pp,mpk);

β
R← {0, 1}, c∗ ← Enc(mpk, id∗,mβ);

β′ ← AOextract,Oconstrain(c∗);

 ≤ 1

2
+ negl(λ).

A is not allowed to query the Oextract with id∗ or query the Oconstrain with f such that f(id∗) = 1. Meanwhile,
two weaker security notions can be defined similarly. One is OW-CPA security, in which the adversary is
required to recover the plaintext from a random ciphertext. The other is selective-identity IND-CPA security,
in which the adversary must commit ahead of time (non-adaptively) to the identity it intends to attack before
seeing the mpk.

3 Hierarchical Integrated Encryption and Signature

3.1 Definition of HIES

As mentioned in the introduction, HIES allows one to derive the signing key from the decryption key, which
is opposite to HISE. Next, we give a self-contained description of the formal definition of HIES.

Definition 4. A hierarchical integrated encryption and signature (HIES) scheme is defined by seven polynomial-
time algorithms:

– Setup(1λ): on input a security parameter λ, outputs public parameters pp including the description of

plaintext spaceM and message space M̃.

– KeyGen(pp): on input public parameters pp, outputs a public key pk and a decryption key dk. Here, dk
serves as a master secret key, which can be used to derive signing key.

– Derive(dk): on input a decryption key dk, outputs a signing key sk.

– Enc(pk,m): on input a public key pk and a plaintext m ∈M, outputs a ciphertext c.

– Dec(dk, c): on input a decryption key dk and a ciphertext c, outputs a plaintext m or a special reject
symbol ⊥ denoting failure.

– Sign(sk, m̃): on input a signing key sk and a message m̃ ∈ M̃, outputs a signature σ.

– Vrfy(pk, m̃, σ): on input a public key pk, a message m̃, and a signature σ, outputs a bit b, with b = 1
meaning valid and b = 0 meaning invalid.

Correctness. The correctness of HIES is divided into two parts, the correctness of PKE and signature com-
ponents: (i) the PKE component satisfies correctness if for any pp← Setup(1λ), any (pk, dk)← KeyGen(pp),
any m ∈ M and any c ← Enc(pk,m), it holds that Dec(dk, c) = m; (ii) the signature component satisfies

correctness if for any pp ← Setup(1λ), any (pk, dk) ← KeyGen(pp), any sk ← Derive(dk), any m̃ ∈ M̃ and
any σ ← Sign(sk, m̃), it holds that Very(pk, m̃, σ) = 1.

6

Security. (Joint security) The joint security for HIES needs to be considered from two aspects as well.
The PKE component requires to satisfy IND-CCA security in the presence of a signing key and the signature
component requires to satisfy EUF-CMA security in the presence of a decryption oracle. Let Odec be the
decryption oracle and Osign be the signing oracle. The formal security notion is defined as below.

Definition 5. HIES is joint secure if its encryption and signature components satisfy the following security
notions:

(i) The PKE component is IND-CCA secure in the presence of a signing key, if for any PPT adversary A
there is a negligible function negl(λ) such that:

Pr

β = β′ :

pp← Setup(1λ);
(pk, dk)← KeyGen(pp);
sk ← Derive(dk);
(m0,m1)← AOdec(pp, pk, sk);

β
R← {0, 1}, c∗ ← Enc(pk,mβ);

β′ ← AOdec(c∗);

 ≤
1

2
+ negl(λ).

A is not allowed to query Odec with c∗ in the guess stage.
(ii) The signature component is EUF-CMA secure in the presence of a decryption oracle, if for all PPT

adversary A there is a negligible function negl(λ) such that:

Pr

Vrfy(pk,m∗, σ∗) = 1
∧m∗ /∈ Q :

pp← Setup(1λ);
(pk, dk)← KeyGen(pp);
(m∗, σ∗)← AOdec,Osign(pp, pk);

 ≤ negl(λ).

The set Q records queries to Osign.

3.2 HIES from Constrained IBE

In this section, we give a generic construction of HIES from constrained identity-based encryption. Let CIBE
be a constrained IBE scheme and OTS be a strong one-time signature scheme, then an HIES scheme can
be created as Figure 3. We assume the identity space of CIBE is I = {0, 1}ℓ+1, and the verification space of
OTS is {0, 1}ℓ.

The correctness of the scheme follows directly from the correctness of CIBE and OTS. The joint security
of the HIES scheme is formalized as below.

Theorem 1. Assume CIBE satisfies IND-CPA security and OTS satisfies strong EUF-CMA security, then
the HIES scheme constructed as Figure 3 satisfies joint security.

This theorem comes straightforwardly from two lemmas.

Lemma 1. If CIBE scheme is OW-CPA secure, then the signature component is EUF-CMA secure in the
presence of the decryption oracle.

Proof. If there exists a PPT adversary A against the signature component, we can construct a PPT adversary
B that uses A as a subroutine and attacks the CIBE. B is given public parameters ppcibe, public key mpk
and access to Oextract and Oconstrain by its own challenger CHcibe, then it simulates A’s challenger CHsign as
below.

– Setup: B runs ppots ← OTS.Setup(1λ), sets pp = (ppcibe, ppots) and pk = mpk, then sends (pp, pk) to A.
– Signing query: when A requests a signature on message m̃, B queries Oextract with identity id = 1||m̃ to

obtain skid, outputs σ = skid.

7

Setup(1λ) :
ppcibe ← CIBE.Setup(1λ)
ppots ← OTS.Setup(1λ)
Return pp = (ppcibe, ppots)

KeyGen(pp) :
Parse pp = (ppcibe, ppots)
(mpk,msk)← CIBE.KeyGen(ppcibe)
Return (pk, dk) = (mpk,msk)

Derive(dk) :
Parse dk = msk
skf1 ← CIBE.Constrain(msk, f1)
(f1(id) = 1 iff id[1] = 1)
Return sk = skf1

Enc(pk,m) :
Parse pk = mpk
(ovk, osk)← OTS.KeyGen(ppots)
Set id = 0||ovk
ccibe ← CIBE.Enc(mpk, id,m)
σots ← OTS.Sign(osk, ccibe)
Return c = (ovk, ccibe, σots)

Dec(dk, c) :
Parse c = (ovk, ccibe, σots)
If OTS.Vrfy(ovk, ccibe, σots) ̸= 1
return ⊥
Parse dk = msk
Set id = 0||ovk
skid ← CIBE.Extract(msk, id)
m← CIBE.Dec(skid, ccibe)
Return m

Sign(sk, m̃) :
Parse sk = skf1
Set id = 1||m̃
skid ← CIBE.Derive(skf1 , id)
Return σ = skid

Vrfy(pk, m̃, σ) :
Parse pk = mpk and σ = skid
Set id = 1||m̃
m

R←−M
ccibe ← CIBE.Enc(mpk, id,m)
If CIBE.Dec(ccibe, skid) = m
Return 1, else return 0

Fig. 3: A generic construction of HIES from CIBE

– Decryption query: when A requests the plaintext of a ciphertext c, B first parses c as (ovk, ccibe, σots),
then checks whether OTS.Vrfy(ovk, ccibe, σots) = 1, and returns ⊥ if not; else it queries Oextract for
id = 0||ovk to obtain skid and returns the plaintext m← CIBE.Dec(skid, ccibe) to A.

– Forgery: when A outputs a forged message-signature pair (m̃∗, σ∗), B first submits id∗ = 1||m̃ as the

target identity to CHcibe and receives back c∗cibe ← CIBE.Enc(mpk, id∗,m) for a random plaintext m
R←−

M, then it parses σ∗ = skid∗ , and computes m′ ← CIBE.Dec(skid∗ , c∗cibe). B wins if m′ = m.

The view of A when it interacts with B is identical to the view of A interacting with a real challenger,
which implies the simulation of B is perfect. If no PPT adversary B has non-negligible probability to break
the OW-CPA security of the CIBE scheme, then no PPT adversary A has non-negligible probability to break
the EUF-CMA security of signature component. This proves Lemma 1.

Lemma 2. If the OTS scheme satisfies strong EUF-CMA security and the CIBE scheme satisfies selective-
identity IND-CPA security, then the encryption component PKE satisfies IND-CCA security even in the
presence of signing key.

Proof. Consider following games. Let A be an adversary against the PKE component and Si be the event
that A wins in Game i.

Game 0. This is the standard IND-CCA security experiment for PKE component in the presence of a
signing key, CHpke interacts with A as below.

– Setup: CHpke runs ppcibe ← CIBE.Setup(1λ) and ppots ← OTS.Setup(1λ), sets pp = (ppcibe, ppots), then
runs (mpk,msk) ← CIBE.KeyGen(ppcibe) , sets pk = mpk and dk = msk, runs sk ← Derive(dk), and
gives (pp, pk, sk) to A.

8

– Decryption query: upon receiving a ciphertext c, CHpke first parses c = (ovk, ccibe, σ), then checks if
OTS.Vrfy(ovk, ccibe, σ) = 1, outputs ⊥ if not; else sets id = 0||ovk, parses dk = msk, runs skid ←
CIBE.Extract(msk, id) and outputs m← CIBE.Dec(skid, ccibe).

– Challenge: A outputs a pair of messages (m0,m1). CHpke chooses a random bit b
R←− {0, 1}, runs

(ovk∗, osk∗) ← OTS.KeyGen(ppots), sets id∗ = 0||ovk∗, computes c∗cibe ← CIBE.Enc(mpk, id∗,mb), and
σ∗ ← OTS.Sign(osk∗, c∗cibe), outputs c∗ = (ovk∗, c∗cibe, σ

∗) to A. Then A can continue to query the
decryption oracle, but it is not allowed to query for c∗.

– Guess: Eventually, A outputs a bit b′. A wins if b′ = b.

Game 1. Same as Game 0 except that CHpke generates the OTS keypair (ovk∗, osk∗)← OTS.KeyGen(ppots)
in the setup stage rather than in the challenge stage. The modification is only conceptual and does not affect
the advantage of A, so we have:

Pr [S1] = Pr [S0].

Game 2. Same as Game 1 except that the experiment directly aborts when one of following two events
happens:

E1 : in phase 1,A queries the decryption oracle with c = (ovk∗, ccibe, σ) such that OTS.Vrfy(ovk∗, ccibe, σ) =
1.

E2 : in phase 2,A queries the decryption oracle with c = (ovk∗, c∗cibe, σ) such that OTS.Vrfy(ovk∗, c∗cibe, σ) =
1 and σ ̸= σ∗.

Let E be the event that E1 or E2 happens, then we have (Game 1 ∧ ¬E) = (Game 2 ∧ ¬E). According to
the difference lemma, we have:

|Pr [S2]− Pr [S1]| ≤ Pr [E].

Actually, the two events mean a successful attack on the OTS, while the strong EUF-CMA security of OTS
ensures that for any PPT A, it holds that Pr [E] = negl(λ).

Claim 1 If the CIBE scheme is selective-identity IND-CPA secure, then for any PPT adversary A, there
is a negligible function negl(λ) such that: ∣∣Pr [S2]− 1

2

∣∣ ≤ negl(λ).

Proof. Let B be an adversary against CIBE scheme. It is given public parameters ppcibe and access to Oextract

and Oconstrain by its own challenger CHcibe. B simulates A’s challenger as below.

– Setup: B runs ppots ← OTS.Setup(1λ), (ovk∗, osk∗) ← OTS.KeyGen(ppots), sets id∗ = 0||ovk∗, then
commits to id∗ and sends the commitment to its own challenger CHcibe as the target identity and
receives back public key pk = mpk. Next, B queries Oconstrain with f1, and obtains the signing key
sk = skf1 . B gives pp = (ppcibe, ppots), pk = mpk and sk = skf1 to A.

– Decryption query: WhenA queries for a ciphertext c = (ovk, ccibe, σ), B checks if OTS.Vrfy(ovk, ccibe, σ) =
1 at first, and outputs ⊥ if not; else if ovk = ovk∗ which means event E1 happens, B aborts; oth-
erwise it must have ovk ̸= ovk∗, B queries Oextract with id = 0||ovk to obtain skid, and outputs
m← CIBE.Dec(skid, ccibe).

– Challenge: A submits two messages (m0,m1) to B. B sends the two messages to its own challenger and
receives back a ciphertext c∗cibe which is a ciphertext of mb under the target identity id∗ = 0||ovk∗. B
proceeds to compute a signature σ∗ on c∗cibe, then sends c∗ = (ovk∗, c∗cibe, σ

∗) to A.
– Guess: Upon receiving c∗, A continues to query decryption oracle but is not allowed to query it with c∗.

If E2 happens, B aborts. Else it answers the query as before. Finally, A outputs b′, and B uses b′ as its
own guess.

The view of A when it interacts with B is identical to the view of A in experiment Game 2 which implies
the simulation of B is perfect. Due to the selective-identity IND-CPA security of CIBE, the advantage of A
wins in Game 2 is negligible. This proves Claim 1.

9

Therefore, the proof of Lemma 2 is completed.

Remark 1. We strengthen PKE component to IND-CCA security via the Canetti-Halevi-Katz (CHK) trans-
form [11] with the help of a one-time signature. To enhance the efficiency, we can get rid of OTS and use an
id0 = 0ℓ+1 as a fixed target identity for encryption, then apply the Fujisaki-Okamoto transformation [17] to
achieve the IND-CCA security in the random oracle model.

4 Further Discussion

In this section, we discuss three simple extensions of HIES for different delegation purposes and each of them
is in the public key reuse setting. The key observation is that the prefix predicates in a constrained IBE can
be assigned different and specific meanings.

Flexible delegation. One delegation function is insufficient sometimes, such as the cases when the president
wants to give his signing right to his assistants and give his decryption right to vice president. Thus, it is
attractive to give a more flexible notion that enables the secret key owner to delegate these two types of
authorities to different entities. The key technique is equalizing two secret keys by deriving them both from
the master secret key as shown in Figure 4(a). It is evident that the extended version satisfies united joint
security as long as the two agents are not in collusion, namely the PKE/signature component is IND-CCA
secure even when the adversary is given the signing/decryption key.

Limited delegation. In the signature proxy function introduced by Mambo et al. [27], the full delegation
(giving the full original secret key to the proxy signer) requests the proxy is authentic, since the proxy
signer has the ability to sign any message and the proxy signature is indistinguishable from the created by
the original signer. The decryption proxy suffers the similar discomfort if the decryption key is disclosed. In
order to limit the decryption and signing capacity of proxy, we consider an extension which supports partial
delegation. It divides the decryption/signing capacity into two parts so that the original user can retain the
higher power while delegating partial power to agents as shown in Figure 4(b).

Finegrained delegation. Giving the prefix predicates with more specific meanings such as the ID (identifier
information such as email address) of a person or the number of a department, more finegrained delegation
keys can be derived.

msk

dk ← skf0 skf1 → sk
0 1

SignaturePKE

(a) Flexible delegation

msk

dk ← skf0 skf1 → sk

pdk ← skf01 skf11 → psk

0 1

SignaturePKE

(b) Limited delegation

Fig. 4: Extensions of HIES from constrained IBE

5 Instantiation and Implementation

5.1 Instantiation of HIES

Towards efficient realizations, we choose the hierarchical IBE (cf. Appendix A.1) rather than the constrained
IBE to instantiate our HIES scheme, where the security can be similarly demonstrated. By choosing Boneh-

10

Boyen two-level hierarchical IBE scheme (BB1-IBE, cf. Appendix A.2), we instantiate our HIES scheme as
below.

– Setup(1λ): on input the security parameter λ, generates an asymmetric pairing tuple (G1,G2,GT , p, g1, g2, e),
picks two collision resistant hash functions Hj : {0, 1}∗ → G2 for j = 1, 2, sets ID0 = 0n and ID1 = 1n

with n = Θ(λ). The public parameter pp = ((G1,G2,GT , p, g1, g2, e) ,H1,H2, ID0, ID1). The plaintext
space is GT . The message space is {0, 1}∗.

– KeyGen(pp): on input the public parameters pp, picks a random α ∈ Zp, sets f1 = gα1 and f2 = gα2 , sets
public key mpk = f1 = gα1 and decryption key dk = msk = f2 = gα2 .

– Derive(dk): on input the decryption key dk, picks a random r′ ∈ Zp, computes d′0 = dk · H1(ID1)
r′ and

d′1 = gr
′

1 , outputs sk = (d′0, d
′
1) ∈ (G2,G1).

– Enc(pk,m): on input the public key pk = mpk and a plaintext m ∈ GT , firstly picks a random s ∈ Zp

and computes A = e(f1, g2)
s ·m, B = gs1 and C1 = H1(ID0)

s, outputs c = (A,B,C1) ∈ (GT ,G1,G2).

– Dec(dk, c): on input dk = f2 = gα2 and a ciphertext c = (A,B,C1), picks a random r′′ ∈ Zp, computes

d′′0 = dk · H1(ID0)
r′′ and d′′1 = gr

′′

1 , outputs A · e(d′′1 , C1)/e(B, d′′0) = m.

– Sign(sk, m̃): on input a signing key sk = skID1
= (d′0, d

′
1) and a message m̃ ∈ {0, 1}∗, first picks a random

r ∈ Zp, computes d0 = d′0 · H2(m̃)r, d1 = d′1 and d2 = gr1, outputs σ = skID = (d0, d1, d2) ∈ (G2,G1,G1).

– Vrfy(pk, m̃, σ): on input the public key pk = mpk = f1, a message m̃ ∈ {0, 1}∗ and a signature σ =
skID = (d0, d1, d2), outputs 1 if following equation holds, otherwise outputs 0.

e (f1, g2) · e (d1,H1(ID1)) · e (d2,H2(m̃)) = e (g1, d0).

Remark 2. We simplify the Vrfy algorithm based on the fact that if σ is a valid signature for m̃, then it can
be used as the secret key for user ID = ⟨ID1, m̃⟩ to successfully decrypt any ciphertext c = (A,B,C1, C2)
for any plaintext m encrypted by mpk via BB1-IBE. Specifically, for any randomness s, it always holds that
e (f1, g2)

s · e (d1, C1) · e (d2, C2) = e (B, d0).

5.2 Implementation

Since our HIES is a newly proposed notion, there is no similar schemes can be used to judge its performance.
As mentioned before (see Section 1.2), the “Cartesian product” construction of combined public key (CP-
CPK) scheme introduced by Paterson et al. [30], which uses arbitrary public key encryption and signature
schemes as components, provides a benchmark for any bespoke construction. Thus, we build a concrete
CP-CPK scheme by choosing the most efficient encryption and signature schemes, i.e. ElGamal PKE and
Schnorr signature and use it as a baseline.

We implement the concrete CP-CPK scheme atop elliptic curve secp256k1 with 128-bit security in which
|G| = 256 bits and |Zp| = 256 bits, and implement our HIES scheme atop pairing-friendly curve bls12-381
with 128-bit security level [32] in which |G1| = 381 bits, |G2| = 762 bits, |Zp| = 256 bits, and |GT | = 1524
bits (by exploiting compression techniques [31]).

Both of them are implemented in C++ based on the mcl library [33], and all the experiments are carried
out on a MacBook Pro with Intel i7-9750H CPU (2.6GHz) and 16GB of RAM. Our implementation is
released on GitHub and is available on https://github.com/yuchen1024/HISE/tree/master/hies. The
code follows KEM-DEM paradigm.

Table 1 offers a comparison of HIES against the previous CP-CPK. In terms of functionality, it shows that
HIES is in the public key reuse setting while CP-CPK is not. Moreover, HIES reduces the key management
and key certificate costs. In terms of the experimental results, we admit the efficiency of our HIES scheme
is slower than CP-CPK, but it is fortunately still considerable.

11

https://github.com/yuchen1024/HISE/tree/master/hies

Table 1: Efficiency comparison between CP-CPK and our HIES scheme

Functionality
strong

joint security
individual
escrow

key reuse
certificate

costs

CP-CPK ✓ ✓ ✗ ×2
HIES ✓ ✓ ✓ ×1

Sizes (bits) |pk| |sk| |c| |σ|
CP-CPK 512 512 512 512

HIES 381 762 2667 1524

Efficiency (ms) KeyGen Derive Enc Dec Sign Vrfy

CP-CPK 0.015 ⊘ 0.118 0.056 0.064 0.120

HIES 0.111 0.116 0.500 0.621 0.117 1.022

In the paradigm of KEM-DEM, we test the efficiency of algorithms of key generation, key derivation, encryption, decryption, signing
and verification as well as the sizes of public key, secret key, ciphertext and signature. Symbol ⊘ means no corresponding algorithm.

6 Conclusion

In this work, we resolve the problem left in [14] by formalizing the definition and the joint security of HIES.
Similar to HISE, HIES also has a two-level key derive system, but the hierarchy between signing key and
decryption key are reversed, thus it enables secure delegation of signature capacity. In addition, we present a
generic construction of HIES from constrained identity-based encryption and give a rigorous proof of its joint
security. Furthermore, we discuss three simple extensions of HIES for different delegation purposes. In the
end, we implement our HIES scheme with 128-bit security. Though the construction here is a straightforward
variant of HISE from constrained IBE, we emphasize the theoretical significance of HIES for completing the
last piece of the key usage strategy puzzle. We leave the more ingenious and efficient constructions for future
work.

Acknowledgements. We thank the anonymous reviewers for their helpful feedback. This work is supported
by the National Key Research and Development Program of China (Grant No. 2021YFA1000600), the Na-
tional Natural Science Foundation of China (Grant No. 62272269), and the Taishan scholar program of
Shandong Province.

References

1. Government of Canada, https://www.canada.ca/en/shared-services/corporate/transparency/

briefing-documents/ministerial-briefing-book/delegation.html

2. PGP, https://www.openpgp.org
3. The University of Iowa, https://opsmanual.uiowa.edu/administrative-financial-and-facilities-policies/

facsimile-signatures-and-signature-assignment-2

4. Viafirma, https://www.viafirma.com/blog-xnoccio/en/signature-delegation/
5. WhatsApp, https://www.whatsapp.com
6. Akinyele, J.A., Garman, C., Hohenberger, S.: Automating fast and secure translations from type-i to type-iii

pairing schemes. In: ACM CCS 2015. pp. 1370–1381 (2015)
7. Alimi, P.: On the use of pedersen commitments for confidential payments, https://research.nccgroup.com/

2021/06/15/on-the-use-of-pedersen-commitments-for-confidential-payments/

8. Boldyreva, A.: Secure proxy signature scheme for delegation of signing rights. http://eprint. iacr. org/2003/096/
(2003)

9. Boneh, D., Boyen, X.: Efficient selective-id secure identity based encryption without random oracles. Cryptology
ePrint Archive, Report 2004/172 (2004), https://ia.cr/2004/172

12

https://www.canada.ca/en/shared-services/corporate/transparency/briefing-documents/ministerial-briefing-book/delegation.html
https://www.canada.ca/en/shared-services/corporate/transparency/briefing-documents/ministerial-briefing-book/delegation.html
https://www.openpgp.org
https://opsmanual.uiowa.edu/administrative-financial-and-facilities-policies/facsimile-signatures-and-signature-assignment-2
https://opsmanual.uiowa.edu/administrative-financial-and-facilities-policies/facsimile-signatures-and-signature-assignment-2
https://www.viafirma.com/blog-xnoccio/en/signature-delegation/
https://www.whatsapp.com
https://research.nccgroup.com/2021/06/15/on-the-use-of-pedersen-commitments-for-confidential-payments/
https://research.nccgroup.com/2021/06/15/on-the-use-of-pedersen-commitments-for-confidential-payments/
https://ia.cr/2004/172

10. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: Towards privacy in a smart contract world. In: FC 2020.
pp. 423–443 (2020)

11. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: EUROCRYPT 2003. pp.
255–271 (2003)

12. Cao, F., Cao, Z.: A secure identity-based multi-proxy signature scheme. Computers & Electrical Engineering
35(1), 86–95 (2009)

13. Chen, Y., Ma, X., Tang, C., Au, M.H.: PGC: Pretty Good Confidential Transaction System with Auditability.
In: ESORICS 2020. pp. 591–610 (2020)

14. Chen, Y., Tang, Q., Wang, Y.: Hierarchical integrated signature and encryption. Cryptology ePrint Archive,
Report 2021/1237 (2021), https://ia.cr/2021/1237

15. Coron, J., Joye, M., Naccache, D., Paillier, P.: Universal padding schemes for RSA. In: CRYPTO 2002. vol. 2442,
pp. 226–241 (2002)

16. Dai, J.Z., Yang, X.H., Dong, J.X.: Designated-receiver proxy signature scheme for electronic commerce. In:
SMC’03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Con-
ference Theme - System Security and Assurance (Cat. No.03CH37483) (2003)

17. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: CRYPTO
1999. pp. 537–554 (1999)

18. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Applied Mathematics (16),
3113–3121 (2008)

19. Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: International conference on the theory and
application of cryptology and information security. pp. 548–566. Springer (2002)

20. Haber, S., Pinkas, B.: Securely combining public-key cryptosystems. In: ACM CCS 2001. pp. 215–224 (2001)
21. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen, L.R. (ed.) Advances in Cryp-

tology — EUROCRYPT 2002. pp. 466–481. Springer Berlin Heidelberg, Berlin, Heidelberg (2002)
22. Huang, X., Mu, Y., Susilo, W., Zhang, F., Chen, X.: A short proxy signature scheme: efficient authentication

in the ubiquitous world. In: International Conference on Embedded and Ubiquitous Computing. pp. 480–489.
Springer (2005)

23. Huang, X., Susilo, W., Mu, Y., Wu, W.: Proxy signature without random oracles. In: International Conference
on Mobile Ad-Hoc and Sensor Networks. pp. 473–484. Springer (2006)

24. Kim, S., Park, S., Won, D.: Proxy signatures, revisited. In: International Conference on Information and Com-
munications Security. pp. 223–232. Springer (1997)

25. Komano, Y., Ohta, K.: Efficient universal padding techniques for multiplicative trapdoor one-way permutation.
In: CRYPTO 2003. pp. 366–382 (2003)

26. Lee, B., Kim, H., Kim, K.: Secure mobile agent using strong non-designated proxy signature. vol. 2119 (01 2002)
27. Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures: Delegation of the power to sign messages. IEICE trans-

actions on fundamentals of electronics, communications and computer sciences 79(9), 1338–1354 (1996)
28. Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing operation. In: Proceedings of the

3rd ACM Conference on Computer and Communications Security. p. 48–57. CCS ’96, Association for Computing
Machinery, New York, NY, USA (1996)

29. Neuman, B.: Proxy-based authorization and accounting for distributed systems. In: [1993] Proceedings. The 13th
International Conference on Distributed Computing Systems. pp. 283–291 (1993)

30. Paterson, K.G., Schuldt, J.C.N., Stam, M., Thomson, S.: On the joint security of encryption and signature,
revisited. In: ASIACRYPT 2011. pp. 161–178 (2011)

31. Rubin, K., Silverberg, A.: Compression in finite fields and torus-based cryptography. SIAM J. Comput. 37(5),
1401–1428 (2008)

32. Sakemi, Y., Kobayashi, T., Saito, T., Wahby, R.S.: Pairing-Friendly Curves. Internet-Draft draft-irtf-cfrg-
pairing-friendly-curves-09, Internet Engineering Task Force (2020), https://datatracker.ietf.org/doc/html/
draft-irtf-cfrg-pairing-friendly-curves-09

33. Shigeo, M.: A portable and fast pairing-based cryptography library. https://github.com/herumi/mcl
34. Shim, K.A.: Short designated verifier proxy signatures. Computers & Electrical Engineering 37(2), 180–186 (2011)

A Hierarchical Identity-Based Encryption

Hierarchical identity-based encryption (HIBE) is first introduced in [19, 21]. We formally describe the def-
inition of HIBE below. In an HIBE scheme, users having a position in the hierarchy, are specified by an
ID-tuple ID = (I1, · · · , Ij), where Ii corresponds to the identity at level i.

13

https://ia.cr/2021/1237
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-09
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-09
https://github.com/herumi/mcl

A.1 Definition of HIBE

Definition 6. A hierarchical identity-based encryption scheme consists of five polynomial-time algorithms:

– Setup(1λ): on input a security parameter λ, outputs public parameters pp, including the plaintext space
M, the ciphertext space C and the identity space I in every level.

– KeyGen(pp): on input the public parameters pp, outputs a public key mpk and a master secret key msk
(i.e. root secret in level-0).

– Extract(mpk, skID, ⟨ID, I⟩): on input the public key mpk, a secret key for ID-tuple ID, and an ID-tuple
⟨ID, I⟩ which is a child node of ID, outputs sk⟨ID,I⟩.

– Enc(mpk, ID,m): on input public key mpk, the ID-tuple of the intended message recipient ID and a
message m ∈M, outputs a ciphertext c ∈ C.

– Dec(skID, c): on input a secret key skID and a ciphertext c, outputs a message m or a special reject symbol
⊥ denoting failure.

Correctness. An HIBE scheme is correct, if encryption algorithm Enc and decryption algorithm Dec satisfy
the standard consistency constraint, namely, when skID is the secret key generated by the extraction algorithm
Extract for user ID, then for any m ∈M and c← Enc(mpk, ID,m), it always holds that Dec(skID, c) = m.

Security. Let Oextract be an oracle of Extract that on input an ID-tuple ID and outputs skID. An HIBE
scheme is IND-CPA secure, if for all PPT adversary A there is a negligible function negl(λ) such that:

Pr

b = b′ :

pp← Setup(1λ);
(mpk,msk)← KeyGen(pp);
(ID∗, (m0,m1))← AOextract(pp,mpk);

b
R← {0, 1}, c∗ ← Enc(mpk, ID∗,mb);

b′ ← AOextract(c∗);

 ≤ 1

2
+ negl(λ).

In guess stage, A is not allowed to query the Oextract for ID∗ or the ancestor nodes of it (i.e. IDs which
are prefixed with ID∗). Meanwhile, two weaker security notions can be defined similarly. One is OW-CPA
security, in which the adversary is required to recover the plaintext from a random ciphertext. The other is
selective-identity IND-CPA security, in which the adversary must commit ahead of time (non-adaptively) to
the identity it intends to attack before seeing the mpk.

A.2 Boneh-Boyen HIBE Scheme

We review the ℓ-HIBE scheme of Boneh-Boyen (BB1-IBE) [9] as below. As [6, 18] noticed, compared to
symmetric pairings, asymmetric pairings yield schemes having more efficiency in terms of both bandwidth
and computation time. Therefore, we adjust the original Boneh-Boyen HIBE with asymmetric pairings.

– Setup(1λ): on input the security parameter λ, generates an asymmetric pairings tuple (G1,G2,GT , p, g1, g2, e),
and picks a family of collision resistant hash functions Hj : {0, 1}∗ → G2 for j ∈ [0, ℓ]. The public param-
eters pp include the description of bilinear groups and the hash functions {Hj}j∈[0,ℓ]. The ID at level-j
is Ij = ({0, 1}∗)j . The plaintext space isM = GT .

– KeyGen(pp): on input the public parameters pp, picks a random α ∈ Zp, sets f1 = gα1 and f2 = gα2 , sets
public key mpk = f1 = gα1 and master secret key msk = f2 = gα2 .

– Extract(mpk, skID, ⟨ID, I⟩): on input the public key mpk, a level-j private key skID = (d0, . . . , dj) ∈(
G2,Gj

1

)
and a level-(j + 1) ID-tuple ⟨ID, I⟩ = (I1, . . . , Ij , Ij+1) ∈ ({0, 1}∗)j+1, first picks a random

r ∈ Zp and outputs

sk⟨ID,I⟩ = (d0 · Hj+1(Ij+1)
r, d1, . . . , dj , g

r
2) ∈

(
G2,Gj+1

1

)
14

Note that (1) when ID is an empty set denoted as ϵ, skID is exactly the master secret key msk, that is
skϵ = f2 = gα2 . (2) all the private keys can be also extracted directly from the master secret key msk

through computing sk⟨ID,I⟩ =
(
gα2 ·

∏j+1
k=1 Hk(Ik)

rk , gr11 , . . . , g
rj+1

1

)
with random elements r1, . . . , rj+1 ∈

Zp.

– Enc(mpk, ID,m): on input the public key mpk, an ID-tuple ID = (I1, . . . , Ij) ∈ ({0, 1}∗)j and a message
m ∈ GT , picks a random s ∈ Zp and outputs

C = (e(f1, g2)
s ·m, gs1,H1(I1)

s, . . . ,Hj(Ij)
s) ∈

(
GT ,G1,Gj

2

)
.

– Dec(skID, c): on input a private key skID = (d0, d1, . . . , dj) and a ciphertext C = (A,B,C1, . . . , Cj),
outputs

A ·
∏j

k=1 e (dk, Ck)

e (B, d0)
= m.

15

	You Can Sign but Not Decrypt: Hierarchical Integrated Encryption and Signature

