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Abstract. Since 2016, NIST has been standardrizing Post-Quantum
Cryptosystems, PQCs. Code-Based Cryptosystem, CBC, which is con-
sidered to be one of PQCs, uses the Syndrome Decoding Problem as the
basis for its security. NIST’s PQC standardization project is currently in
its 4th round and some CBC encryption schemes remain there. In this
paper, we consider the quantum security for these cryptosystems.
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1 Introduction

In modern information society, a public-key cryptosystem is one of the tools used
to ensure secure communication. In 1994, Shor proposed the quantum algorithm
to solve the integer factorization problem and the discrete logarithm problem in
polynomial time, and hence once a large quantum computer is built, the RSA
cryptosystems, widely used in our current communication, shall lose its security.
Then, we need to think about Post-Quantum Cryptosystems, PQCs, which are
resistant to the computational power of quantum computers. In fact, recently
quantum computers have been progressing remarkably, so PQC is expected to
be put into early practical use.

1.1 Syndrome Decoding Problem (SDP)

Denote, by wt(x), the number of the non-zero elements for x ∈ Fn
2 .

Definition 1 (SDP). Let n, k and w be positive integers, H be a matrix in
F(n−k)×n
2 , and s be a vector in Fn−k

2 . Then, SDP is the problem to find an
e ∈ Fn

2 such that HeT = s and wt(e) = w, on input n, k, w,H and s.

The SDP is known to be NP-complete [16], so Code-Based Cryptosystem (CBC),
which uses the SDP as the basis for its security, is considerd to be one of PQCs.
NIST has been standardrizing PQCs since 2016, and the project is currently
in its 4th Round. BIKE [13], Classic McEliece [1] and HQC [14] remain as the
candidates for CBC at the 4th Round.
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1.2 Information Set Decoding algorithm (ISD algorithm)

The ISD algorithm is to solve the SDP efficiently. Prange [20] proposed the clas-
sical ISD algorithm with its subsequent derivarations. Also, in 2010, Bernstein
[3] proposed the quantum ISD algorithm. In this paper, we use the MMT [11]
and BJMM [2] as the classical ISD algorithms, and the quantum one. The quan-
tum MMT/BJMM algorithms are proposed by Kachigar and Tillich [9] in 2017.
As far as the authors have surveyed, it is the best quantum ISD algorithm. We
briefly explain the classical MMT/BJMM algorithms in Chapter 2, and give the
quantum MMT/BJMM algorithms in Chapter 4.

1.3 Previous study

CBC is derived from the McEliece cryptosystem [12]. Since the McEliece cryp-
tosystem appeared in 1978, there are a number of studies of security from clas-
sical view. For example, Esser and Bellini [5] proposed an estimator, which is
a more realstic computation of the ISD algorithms. And Narisada et al. intro-
duce, in [15], studies on decoding the high-dimensional SDPs by parallelizing
parts of the ISD algorithm. However, there are not many studies from quantum
view. Perriello et al. [18] proposed an attack by using the Bernstein’s algorithm
for BIKE and Classic McEliece. And they improved that attack by using the
quantum version of the Lee-Brickell algorithm [10], which is one of the ISD al-
gorithms. Also, Esser et al. [6] proposed another atttack method by using the
Bernstein’s algorithm, and extended to all CBC candidates at NIST PQC 4th
Round, also including HQC.

1.4 Our contribution and Organization

In this paper, we propose how to calculate the computational cost on the classical
circuits equivalent to the quantum circuits for the quantum MMT/BJMM algo-
rithms. Also, we consider the security of all CBCs at the 4th Round of the NIST
PQC standardization project against the attack method by using the quantum
MMT/BJMM algorithms. As a result, the computational cost for this attack is
less than that of the attack using the Bernstein’s algorithm. Then, we find that
our result is less than that by the previous study [18].

This paper is constructed as following. First, we have already seen the SDP’s
definition and the abstract of the ISD algorithm. In Chapter 2, we simply explain
the classical MMT/BJMM algorithms. In Chapter 3, we introduce the Grover’s
algorithm [7] and the quantum walk search algorithm [9]. In Chapter 4, based
on the above preparations, we give the quantum MMT/BJMM algorithms. In
Chapter 5, for cryptosystems remaining as the CBC candidates, we consider
the attack strategy, and obtain the result by using the quantum MMT/BJMM
algorithms. Finally, we conclude this paper in Chapter 6.
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Fig. 1. The partitions for the Classical MMT/BJMM algorithms

2 Classical MMT/BJMM algorithms [11] [2]

Suppose that the SDP’s input n, k, w,H, s is given as follows. Let P be an n×n
permutation matrix and U be the matrix to execute the Gaussian Elimination
for HP . Let Q = UHP, ê = P−1e and ŝ = Us, so in the SDP, He = s is an
equivalent to Qê = ŝ. Q, ê and ŝ are described in Fig. 1. It shows that the upper
right (n − k − ℓ) × (n − k − ℓ) block of Q is the identity matrix. Then, for the
lower ℓ× n block of Q, we further take ℓ1 and ℓ2 such that ℓ1 + ℓ2 = ℓ. The left
(n−k)×(k+ℓ) block of Q is partitioned by Q′ with n−k−ℓ rows, Q′′ with ℓ1 rows
and Q′′′ with ℓ2 rows, from top to bottom. Also, for the corresponding (n− k)-
dimensional vector ŝ, we partition it by n − k − ℓ, ℓ1, ℓ2 rows and put ŝ0, ŝ1, ŝ2
respectively. We consider a similar partition for the n-dimensional vector ê. We

put the partitions by
k + ℓ

2
,
k + ℓ

2
, n − k − ℓ columns as ê0, ê1, ê2, respectively.

Also, in the MMT algorithm, the weights of ê0, ê1, ê2 are
p

2
,
p

2
, w−p, respectively.

And in the BJMM algorithm, the weights of ê0, ê1, ê2 are
p

2
+2ε,

p

2
+2ε, w−p−4ε,

respectively.
In the MMT/BJMM algorithms, SDP can be reducted to the generalised

4-sum problem, G4SP for short. Let V11, V12, V21 and V22 be as following (in
BJMM, this p/4 is altered p/4 + ε):

V11 = {(ê11, 0
3(k+ℓ)

4 ) ∈ Fk+ℓ
2 | ê11 ∈ F

k+ℓ
4

2 ,wt(ê11) = p/4},

V12 = {(0
k+ℓ
4 , ê12, 0

k+ℓ
2 ) ∈ Fk+ℓ

2 | ê12 ∈ F
k+ℓ
4

2 ,wt(ê12) = p/4},

V21 = {(0
k+ℓ
2 , ê12, 0

k+ℓ
4 ) ∈ Fk+ℓ

2 | ê21 ∈ F
k+ℓ
4

2 ,wt(ê21) = p/4},

V22 = {(0
3(k+ℓ)

4 , ê22) ∈ Fk+ℓ
2 | ê22 ∈ F

k+ℓ
4

2 ,wt(ê22) = p/4}
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Algorithm 1 Classical MMT/BJMM algorithms
Input: n, k, w,H, s, p, ℓ, ℓ1, ℓ2, ε
Output: e
1: e← 0n

2: while e == 0n do
3: P

$← n× n permutation matrix
4: Q,U ← GE(HP )
5: ŝ← Us
6: ê← G4SP_BD(Q, p, ℓ1, ℓ2, ŝ)
7: if wt(ê) == w − p− 4ε then
8: e← P ê
9: return e

The G4SP is the problem to search (v11, v12, v21, v22) ∈ V11 × V12 × V21 × V22
satisfying as following:

Q′′(v11 + v12) = 0ℓ1

Q′′(v21 + v22) + ŝ2 = 0ℓ1

Q′′′(v11 + v12) +Q′′′(v21 + v22) + ŝ1 = 0ℓ2

Q′(v11 + v12) +Q′(v21 + v22) + ŝ0 = 0n−k−ℓ

(1)

(2)

(3)

(4)

In the classical MMT/BJMM algorithms, we search (v11, v12, v21, v22) by the
Birthday Decoding algorithm. So, the classical MMT/BJMM algorithms are
described in Algorithm 1.

In the MMT algorithm, ε = 0. Here, GE described in Line 4 refers to the
subroutine to execute the Gaussian Elimination. And G4SP_BD in Line 6 is
the subroutine to solve the G4SP using the Birthday Decoding algorithm. We
explain the details of Algorithm 1. First, e is initialised at 0n. Then, this
algorithm halts by updating the value of e in the while sentence of Lines 2-10.
In one iteration, an n×n permutation matrix P is randomly chosen in Line 3. If
both Q and ŝ are formalized in Fig. 1, we can get ê in Fig. 1 in Line 6. That ê
satisfies the condition of the if statement in Line 7, so the value of e is updated
in Line 8. The times of the loop excution during the while sentence of Lines

2-10 is
(
n
w

)(
k+ℓ
p

)(
n−k−ℓ
w−p

) .

3 Grover’s algorithm and Quantum walk

In this chapter, we explain about the Grover’s algorithm [7] and the quantum
walk search algorithm over Johnson graph [9] after the roughly introduction
about the quantum computation.
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3.1 Quantum computation

Let H be an n-dimensional Hilbert space. For each 1 ≤ i ≤ n, we denote, by
|i⟩, the n-length vector in which the i-th element is 1 and the others are 0. In
other words, {|1⟩, |2⟩, · · · , |n⟩} are an orthnormal basis of H. For 1 ≤ i, j ≤ n,
|i⟩ ⊗ |j⟩ is written also as |i⟩|j⟩ or |ij⟩. The quantum state |ϕ⟩ of H can be

represented as |ϕ⟩ =

n∑
i=1

αi|i⟩, where (α1, · · · , αn) ∈ Cn and
n∑

i=1

|αi|2 = 1. A

map f : H → H is said to be an operator if f is linear. We equate an operator
with its representation matrix hereafter. An operator f is said to be unitary if
the representation matrix of f is unitary, and such an f is said to be a quantum
gate. Clifford gate is the set of H gate, S gate and CNOT gate, and each of them
is represented as follows:

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


T gate is the quantum gate represented by T =

(
1 0

0 e
iπ
4

)
, and Clifford+T gate

is Clifford gate plus T gate.

3.2 Grover’s algorithm [7]

Let V be {0, 1}n and M be a non-empty subset of V . And let f : V → {0, 1}
be the function such that f(v) is 1 if v ∈ M and 0 otherwise. The Grover’s
algorithm is the quantum algorithm to search x0 ∈ M taking (V, f) as inputs.

This algorithm has the computational complexity of O

(√
|V |
|M |

)
. Let HV is the

Hilbert space associated with V . Uo and Ud are the unitary operators over HV

and defined as following:

Uo(|i⟩) :=

{
−|i⟩ i ∈M

|i⟩ o.w.

Ud(|i⟩) := (2H⊗n|0⟩⟨0|H⊗n − In)|i⟩

H⊗n denotes H⊗ · · · ⊗H︸ ︷︷ ︸
n

, that is, the Tensor products of n H gates. Uo is called

the oracle operator and Ud is the unitary operator called diffuser. Then, the
Grover’s algorithm is written by Algorithm 2. In Lines 1 and 2, |ψ⟩ is initialised
at 0n and updated by superposition of the quantum states of HV . Then, in Lines
3-6, |ψ⟩ is multiplied by Uo and Ud a specific number of times. Finally we can
get x0 by measuring |ψ⟩.
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Algorithm 2 Grover’s algorithm
Input: V ⊂ {0, 1}n，f : V → {0, 1}
Output: x0 ∈ {0, 1}n s.t. f(x0) = 1
1: |ψ⟩ ← |0n⟩
2: |ψ⟩ ← H⊗n|ψ⟩

3: for i := 1 to

 π

4arcsin(
√

|M|
|V | )

 do

4: |ψ⟩ ← Uo|ψ⟩
5: |ψ⟩ ← Ud|ψ⟩
6: return |ψ⟩

3.3 Quantum walk search algorithm(QW search algorithm) [9]

Definition 2 (Johnson Graph). A Johnson Graph J(x, r) is a graph, in which
every vertex is labeled by an r-element subset V of the set {1, 2, . . . , x}, and in
which two vertices, U and V , are adjacent to each other if and only if |U ∩V | =
r − 1.

In particular, a Johnson Graph is a complete graph when r = 1.
Let G = J(x, r) = (V,E) and let M be a non-empty subset of V . AG denotes

the adjacent matrix of G, and PG denotes the stochastic transition matrix of G.

And we put PG =
AG

r(x− r)
. That is, for each vertex in J(x, r), there are r(x−r)

adjacent vertices in that graph. So the transition probability to each vertex is
1

r(x− r)
. The QW search algorithm is a quantum algorithm that searches for a

vertex v belonging to M taking G,M and PG as the input. While the Grover’s
algorithm can be regarded as a search algorithm for one-dimensional arrays, the
QW search algorithm can be regarded as a search algorithm for two-dimensional
arrays such as graphs. In fact, the QW search algorithm on a complete graph
with a loop at each vertex can be the Grover’s algorithm. And in general, a
Johnson Graph is an undirected graph. We denote, by |i⟩, the quantum state of
a vertex i, and denote by |ij⟩, the quantum state of the edge (i, j). Then we have
to assign, to one edge (i, j), two quantum states |ij⟩ and |ji⟩ which are distinct
in general. Hence here, we identity one undirected edge with two directed edges
which are mutually oriented. Thereby we consider a Johnson Graph to be a
directed graph. For an edge set E, let HE be the Hilbert space associated with
E, and we define the unitary operators Uo and Ud over HE as following:

Uo(|i⟩|j⟩) :=

{
−|i⟩|j⟩ i ∈M

|i⟩|j⟩ o.w.
, Ud(|i⟩|j⟩) := UdL(UdR(|i⟩|j⟩)),

where UdL and UdR are defined as

UdR := 2
∑
x∈V

|Φx⟩⟨Φx| − I|V |2 , UdL := 2
∑
y∈V

|Ψy⟩⟨Ψy| − I|V |2 ,
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Algorithm 3 QW search algorithm
Input: G = J(x, r) = (V,E ⊂ V × V ), PG,M ⊂ V
Output: x ∈M
1: |ψ⟩ ← |0n⟩
2: |ψ⟩ ← H⊗n|ψ⟩

3: for i := 1 to
⌊

1√
εδ

⌋
do

4: |ψ⟩ ← Uo|ψ⟩
5: |ψ⟩ ← Ud|ψ⟩
6: return |ψ⟩

with I|V |2 , the |V |2×|V |2 identity matrix. Furthermore, |Φx⟩ and |Ψy⟩ are defined
as

|Φx⟩ := |x⟩

 ∑
y∈V,(x,y)∈E

√
PG[x][y]|y⟩

 , |Ψy⟩ :=

 ∑
x∈V,(y,x)∈E

√
PG[y][x]|x⟩

 |y⟩,

where PG[x][y] is the (x, y) component of PG. The unitary operator Uo is similar
to the Grover’s algorithm. |Φ⟩x is represented by the Tensor product of the sum
of the quantum states of all adjacent vertices with the quantum state of x. And
the coefficients represent as the root of the transition probability from x. We then
construct the unitary operator UdR from |Φ⟩x. |Φ⟩x is the vector whose length
is |V |, so UdR is the |V | × |V | matrix. Similarly, we consider |Ψ⟩y and construct
the unitary operator UdL from |Ψ⟩y. The QW search algorithm is written in

Algorithm 3. In Algorithm 3, ε is
|M |
|V |

, which is the ratio of the number of

the vertices to be searched out of the total number of vertices. δ =
x

r(x− r)
is

the spectral gap. Lines 1 and 2 are similar to the Grover’s algorithm. Then, in
Lines 3-6, Uo and Ud are in turn multiplied by |ψ⟩ appropriate number of times.
Finally, we can observe |ψ⟩.

4 Quantum MMT/BJMM algorithms [9]

In this chapter, we consider the quantum MMT/BJMM algorithms by combin-
ing the classical MMT/BJMM algorithms, the Grover’s algorithm and the QW
search algorithm. We improve Lines 3 and 6 in Algorithm 1 respectively by
using the Grover’s algorithm and the QW search algorithm as subroutines. We
describe how to incorporate these two algorithms as subroutines.

First, in Line 6, we use the QW search algorithm over the products of Johnson
Graphs.

Definition 3 (The product of graphs). For finite graphs G1 = (V1, E1) and
G2 = (V2, E2), the product G := G1 × G2 = (V,E) of G1 and G2 is given in
V = V1 × V2 and E = {(u1u2, v1v2) | (u1 = v1 ∧ (u2, v2) ∈ E2) ∨ ((u1, v1) ∈
E1 ∧ u2 = v2)}.
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For 0 ≤ i ≤ 3, we consider the whole of the r-element subsets of Vi in the G4SP.
Then such a set is a JG, and can be denoted by Ji(N, r) (i ∈ {11, 12, 21, 22})

where N =

( k+ℓ
4

p
4 + ε

2

)
and r is the number of (v11, v12, v21, v22) satisfying the

G4SP, given in r = N
4
7

(
p
p
2

) 2p
7

. And we put J(N, r) = J11(N, r) × J12(N, r) ×

J21(N, r)× J22(N, r). Therefore, let G = J(N, r), and let PG be the strochastic
transition matrix and M be the set of all vertices on G satisfying the G4SP
condition. Then, we can use the QW search algorithm as a subroutine in Line 6
in Algorithm 1.

Next, we use the Grover’s algorithm in Line 3. Let V be the entire set of
n × n permutation matrix. Also, the function f : V → {0, 1} returns 1 if there
exists a (v11, v12, v21, v22) satisfying the G4SP condition, and otherwise returns
0. In more details, it is as following. When performing the Gaussian Elimination
on HP with P ∈ V and H, Q = UHP has the form shown in Fig. 1. That is,
the upper right (n−k− ℓ)× (n−k− ℓ) block of Q is the identity matrix and the
lower right ℓ× (n−k− ℓ) block of Q is the zero matrix. Using Q and ŝ = Us, we
search for (v11, v12, v21, v22) in the subroutine in Line 6. U,Q and ŝ are uniquely
determined for each P , and it is highly probable that such a (v11, v12, v21, v22)
exists. Therefore, we can use the Grover’s algorithm as subroutine in Line 3 in
Algorithm 1 by constructing V, f as above.

Based on the above preparations, the quantum MMT/BJMM algorithms are
written in Algorithm 4. Grover in Line 3 denotes the subroutine to search for
the permutation matrix P using the Grover’s algorithm. And G4SP_QW in Line
6 denotes the subroutine solving the G4SP by using the QW search algorithm.
Other lines except for Lines 3 and 6 are similar in Algorithm 1. The number

of execution times in Lines 2-8, denoted by ℓGrover, is

√√√√ (
n
w

)(
k+ℓ
p

)(
n−k−ℓ
w−p

) by the

computational complexity of the Grover’s algorithm given in Section 3.2. And the

number of execution times in Line 6, denoted by ℓBJMM_QW, is

( k+ℓ
2

p
4+

ε
2

) 6
5

(
p
p
2

) 1
2
(
k+ℓ−p

ε

) 1
2

[9]. We search for (v11, v12, v21, v22) satisfying the G4SP condition in ℓBJMM_QW

times, and construct ê. The value of e is updated and Algorithm 4 halts if
(v11, v12, v21, v22) found matches the condition of if sentence in Line 7. Hence,
the quantum MMT/BJMM algorithms have the computational cost as much as
the square root of those of the classical MMT/BJMM algorithms.

The key point of the quantum MMT/BJMM algorithms is the use of the
quantum algorithm in Lines 3 and 5. In both the Grover’s algorithm and the
QW search algorithm, a quantum state is initialised to be a superposition of
all quantum states that is H⊗|0n⟩, and it is multiplied by Uo and Ud the pre-
determined times according to the input. We note that quantum states are vec-
tors and unitary operators are matrices. So both algorithms only perform matrix
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Algorithm 4 Quantum MMT/BJMM algorithms
Input: n, k, w,H, s, p, ℓ, ℓ1, ℓ2, ε
Output: e
1: e← 0n

2: while e == 0n do
3: P ← Grover(ℓ,H)
4: Q,U ← GE(HP )
5: ŝ← Us
6: ê← G4SP_QW(Q, p, ℓ1, ℓ2, ŝ)
7: if wt(ê) == w − p− 4ε then
8: e← P ê
9: return e

cryptosystems security bit n k w

128 24646 12323 134
BIKE 192 49318 24659 199

256 81946 40973 264
128 3488 2720 64

Classic McEliece 192 4608 3360 96
256 8192 6528 128
128 35338 17669 132

HQC 192 71702 35851 200
256 115274 57637 262

Table 1. Targeted cryptosystems and security bits

addition and multiplication. And in the quantum MMT/BJMM algorithms, in
Lines 4 and 7, we can see that they essentially only multiply matrices. Thus, the
quantum MMT/BJMM algorithms can be regarded as an algorithm consisting
only of matrix addition and multiplication.

5 Analysis

In this chapter, we discuss the attack method using the quantum MMT/BJMM
algorithms and its result for the SDP with the parameters given in Table. 1. Ta-
ble. 1 shows the SDP instances which correspond to the BIKE, Classic McEliece
and HQC, the cryptosystems remaining at the 4th Round of the NIST PQC
standardization project, with the security leveles of 128, 192 and 256.

First, we introduce the G-cost, D-cost and W-cost as the new computational
costs. Next, we consider the quantum circuit consisting of Clifford+T gates to
simulate the Algorithm 4. We reconstruct the classical circuit to implement
the quantum operator by Clifford+T gates, and verify that each computational
cost is kept within a constant multiple of the number of input qubits. Finally,
we investigate whether each cryptosystem with the parameters (n, k, w) given
by Table. 1 is secure against our atttack, or not.
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Fig. 2. The addition for one qubit

5.1 Introducing the new computational costs

In this section, we introduce the computational costs used in the paper [8] by
Jaque et al. Let C be a quantum circuit consisting of Clifford+T gates. The
G-cost refers to the number of all the quantum gates in C. The D-cost refers to
the depth of C, and the W-cost is the number of the qubits in C. These compu-
tational costs are evaluated by log2. Also, in this paper, we compare the security
bit with the G-cost obtained by our strategy from the parameters (n, k, w) in
Table. 1. These computational costs are based on the computational model,
called the memory peripheral model, in which the quantum gates in the Clif-
ford+T gates are equivalent to the RAM operations in the classical circuit. As
seen in [8] by Jaques et al., also in this paper, we do not consider about the su-
perposition of the quantum states in estimating the G-cost. This is because the
superposition which can be executed in the quantum RAM operations cannot
be executed in the classical ones. Therefore, we do not care the computational
costs of the Grover’s algorithm and the QW search algorithm themselves. In the
following, we consider the G-cost, D-cost and W-cost about the operations in
the quantum MMT/BJMM algorithms.

5.2 The computational cost for the addition of quantum bits

In the following, let ℓ,m, n be positive integers, and let a = a1 · · · am, b =
b1 · · · bm ∈ Fm

2 , A ∈ Fℓ×m
2 and B ∈ Fm×n

2 . Then, |a⟩ = |a1 · · · am⟩ and |b⟩ =
|b1 · · · bm⟩. We define |a⟩+ |b⟩ := |a+ b⟩. In other words, the sum of m-quantum
bits |a⟩ and |b⟩ corresponds to |a+ b⟩, the quantum state of a+ b, as a, b ∈ Fm

2 .
Since |(a + b)[i]⟩ = |ai + bi⟩ for 1 ≤ i ≤ m, we consider the quantum circuit to
calculate |ai + bi⟩ from |ai⟩ and |bi⟩. Such a quantum circuit can be constructed
from two CNOT gates as shown in Fig. 2. That is, the quantum circuit to realize
the sum |a+ b⟩ of m-quantum bits |a⟩ and |b⟩, has the G-cost of 2m, the D-cost
of 2 and the W-cost of 3m.

5.3 The computational cost for the product of matrices

Also, we think the product of |A⟩ and |B⟩, where |A⟩ is the quantum state
corresponding to the ℓ×m matrix A, and |B⟩ is the quantum state corresponding
to the m × n matrix B. |AB⟩ denotes the quantum state of the ℓ × n matrix



Security analysis for BIKE, Classic McEliece and HQC 11

Fig. 3. The matrix products for qubits

AB. Therefore, for 1 ≤ i ≤ ℓ, 1 ≤ j ≤ n, we consider the quantum circuit

to compute |AB[i][j]⟩ =

∣∣∣∣∣
m∑

k=1

A[i][k]B[k][j]

〉
. Such a quantum circuit can be

constructed from m Toffoli gates as shown in Fig. 3. Toffoli gate is a quantum
gate expressed as following:

Toffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


The construction from Toffoli gate by Clifford+T gates is given in the paper
by Shende [21]. The G-cost, D-cost and W-cost of that quantum circuit are
24, 16 and 3 respectively. Hence, the G-cost, D-cost and W-cost of the circuit to
calculate |AB⟩ from |A⟩ and |B⟩ are 24ℓmn, 16m and ℓm+ℓn+mn, respectively.

5.4 The computational cost for the Gaussian Elimination

In this section, we discuss the quantum circuit to output the matrcies U ∈
F(n−k)×(n−k)
2 and Q = UHP ∈ F(n−k)×n

2 , where U is a matrix to execute the
Gaussian Elimination for HP , and P is an n× n permutation matrix. That is,
for |H⟩ corresponding to the quantum state of H, we calculate |U⟩, the quantum
state of U , and |Q⟩. For 1 ≤ i < j ≤ k, we think about the quantum circuit
to do the process in the rows 1 and j of H. Such a quantum circuit can be
realized with (n + 1) Toffoli gates as shown in Fig. 4. Therefore, the total
quantum circuit to execute the Gaussian Elimination can be constructed from
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Fig. 4. The Gaussian Elimination for qubits

n−k−1∑
i=1

(n−k− i)(n+2− i) = 1

6
(n−k−1)(n−k)(2n+k+5) Toffoli gates. The G-

cost, D-cost and W-cost of that quantum circuit are 4(n−k−1)(n−k)(2n+k+5),
16(n− k − 1) and 2(n− k)n+ (n− k)2, respectively.

5.5 The computational cost for calculating the Hamming weight

In this section, for a given quantum state |ψ⟩ = |p1 · · · pn⟩, we calculate the
Hamming weight wt(ψ) of |ψ⟩ as an element ψ in Fm

2 . We consider the operation
which, for a, b, c ∈ F2, computes s and d ∈ F2 with |s⟩|d⟩ = |a + b + c⟩, where
a+ b+ c is done in N not in F2. That operation outputs 2 qubits on input of 3
qubits. Here we call the operation the 3 adder. We discuss the quantum circuit
to execute the quantum state |a⟩+ |b⟩+ |c⟩ = |sd⟩ corresponding to this addition.
The quantum circuit can be constructed from two Toffoli gates and three CNOT
gates as shown in Fig. 6. Hence, the G-cost, D-cost and W-cost of the quantum
circuit realizing the 3 adder are 51, 32 and 5, respectively.

Based on the above preparations, we consider the Hamming weight of the
quantum state. The circuit to calculate the Hamming weight of classical 10 bits
is given in the Brandão et al. [4]. We can construct from the quantum circuit
to calculate the Hamming weight of the quantum state by replacing HA and FA
in the classical circuit with half-adder, 3 adder, respectively. Here, HA and FA
denote ‘the half-adder’3 and ‘the full-adder’ defined by [4]. Here, the quantum
circuit to execute our half-adder is given in Fig. 5. Therefore, the quantum
circuit to calculate the Hamming weight of |ψ⟩ = |p1 · · · pn⟩ can be constructed
using the half-adders and the 3 adders, and the required number of those is
⌈log2 n⌉∑

i=1

⌈ n
2i

⌉
in total. Here, the half-adder in Fig. 5 has the G-cost of 26, the

D-cost of 16 and the W-cost of 4. Since for each of the G, D, W-cost, the 3 adder
requires more gates than the half-adder, the number of gates to calculate the
3 Also in this paper, we define the half-adder operation. Note that ‘the half-adder’

given by [4] is different from ours.
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Fig. 5. Half-adder for qubit Fig. 6. 3 adder for qubit

Hamming weight has the upper bound of n−1, which corresponds to the circuit
in which all the operations are of the 3 adder. So the G-cost, D-cost and W-cost
of the quantum circuit to calculate the Hamming weight of |ψ⟩ are 51(n− 1), 32
and n+ 2(n− 1) + ⌈log2 n⌉, respectively.

5.6 The computational cost for quantum MMT/BJMM algorithms

Table. 2 and Table. 3 show the result up to the previous section. In this section,
we discuss the computational cost for the quantum MMT/BJMM algorithms.
In one iteration of while sentence in Algorithm 4, only one of the operations
up to the previous section has been performed. Therefore, the quantum circuit
to execute the quantum MMT/BJMM algorithms is consisting of Clifford+T
gates, so we can calculate the computational costs of that quantum circuit. The
G-cost, D-cost and W-cost in Line i with 4 ≤ i ≤ 8 in Algorithm 4 are denoted
by Gi, Di and Wi respectively. Let G6,G4SP be the G-cost of the quantum circuit
representing the four conditions of G4SP in Line 6. The overall G-cost G is given
by G = (G4 + G5 + G6,G4SP ℓBJMM_QW + G7)ℓGrover + G8. The overall D-cost
D is D = max{max{D4, D5, D6, D7}ℓGrover, D8}. The overall W-cost W is the
sum of the quantum bits of each parameter and the ancilla bits appearing to the
previous section.

5.7 Evaluation criteria and Parallelizing the quantum algorithm

NIST [17] states that the classical circuit corresponding to the 128, 192 and 256
security bits is equivalent to the classical circuit having the 2143, 2207 and 2272

classical gates respectively. Therefore, by considering a classical gate as a RAM
operation by a classical computer, we can directly compare the G-cost with the
above numbers. For example, for a cryptosystem with 128 security level, if its
G-cost is greater than 143, it is secure against this attack. The constraints for
each parameter follow the conditions in the paper by Becker et al. on the classical
BJMM algorithm [2].

Also, the D-cost is limited to 96 or less under the condition from NIST [17].
If the D-cost exceeds 96, we use the parallel Grover in [8]. This is the technique
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Operation G-cost
Addition 2m

Matrix production 24ℓmn
Gaussian Elmination 4(n− k − 1)(n− k)(2n+ k + 5)

Hamming weight ≤ 51(n− 1)
Table 2. G-cost for quantum operations

Operation D-cost W-cost
Addition 2 3m

Matrix production 16m ℓm+ ℓn+mn
Gaussian Elmination 16(n− k − 1) 2(n− k)n+ (n− k)2

Hamming weight 32 n+ 2(n− 1) + ⌈log2 n⌉
Table 3. D-cost and W-cost for quantum operations

parallelizing Algorithm 2 and Algorithm 3. Let G,D and W be the G-cost,
D-cost and W-cost, respectively, for the entire for statement with one processor.
Then G-cost, D-cost and W-cost for the entire for statement with p processors
are √

pG, 1√
pD and pW . Therefore, if D-cost exceeds 96 with one processor, D-

cost can be reduced to less than 96 by using an appropriate number of processors
for parallelizing.

5.8 Result

Table. 4 lists the computational costs for each encryption scheme and security
level. The upper row for each security level in the table shows the computational
cost of incorporating the Bernstein’s algorithm into our attack scheme. The
lower row shows the computational cost of using the quantum MMT/BJMM
algorithms. In conclusion, the computational cost of the attack is less than that of
the attack. Furthermore, the computational cost of the quantum MMT/BJMM
algorithms is less than that of the Bernstein’s algorithm. And Table. 5 shows
the comparison between the previous study [18] and our method, listing the T-
gate-based DW-costs for the BIKE and Classic McEliece for each security bit
when the Bernstein’s algorithm is applied. Here, the T-gate-based cost is defined
with the number of T-gates used, so-called T-depth and the W-cost, where T-
depth means the number of the sequential gates in the circuit including T gates.
The DW-cost is the product of the D-cost and the W-cost. As a result, our cost
is less than the previous cost in [18].

6 Conclusion

In this paper, for all CBCs remaining at the 4th Round of the NIST PQC stan-
dardization project, we have proposed the attack method with the quantum
MMT/BJMM algorithms. Also, we have discussed the security of their cryp-
tosystems by calculating the G-cost, the D-cost and the W-cost over quantum
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cryptosystems security bit G-cost D-cost W-cost

128(143 gates) 116
113

86
95

31
33

BIKE 192(207 gates) 213
182

84
95

66
88

256(272 gates) 322
251

88
95

102
157

128(143 gates) 110
104

88
93

25
25

Classic McEliece 192(207 gates) 188
145

77
95

52
52

256(272 gates) 384
262

84
95

108
170

128(143 gates) 116
114

86
95

32
35

HQC 192(207 gates) 216
187

85
95

68
93

256(272 gates) 322
252

88
95

105
158

Table 4. Cost for each cryptosystem and security bit

cryptosystems security bit [18] this paper
128 138 115

BIKE 192 176 149
256 212 189
128 124 111

Classic McEliece 192 149 127
256 209 176

Table 5. DW-cost evaluated by the number of T gates

circuits consisting of Clifford+T gates. All of the previous papers on quantum
security for CBCs developed their arguments over those quantum circuits. As
far as we survey, we have never seen discussion on the quantum security of CBC
using the quantum MMT/BJMM algorithms. We cannot take into account the
computational costs of the quantum RAM operations over classical circuits. We
can see from Table. 5 that the computational costs over classical circuits are
less than those on quantum circuits. Therefore, we cannot conclude from Ta-
ble. 4 that the security of each cryptosystem has been weakened. However,
from this result, we have shown the validity of the attack method used in this
paper. So, we calculate the computational costs over quantum circuits for quan-
tum MMT/BJMM algorithms, and consider the cryptanalysis for CBCs by using
those exact costs in the future.
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