
SuperNova: Proving universal machine
executions without universal circuits

Abhiram Kothapalli† Srinath Setty?

†Carnegie Mellon University ?Microsoft Research

Abstract. This paper introduces SuperNova, a new recursive proof
system for incrementally producing succinct proofs of correct execution
of programs on a stateful machine with a particular instruction set (e.g.,
EVM, RISC-V). A distinguishing aspect of SuperNova is that the cost
of proving a step of a program is proportional only to the size of the
circuit representing the instruction invoked by the program step. This
is a stark departure from prior works that employ universal circuits
where the cost of proving a program step is proportional at least to the
sum of sizes of circuits representing each supported instruction—even
though a particular program step invokes only one of the supported
instructions. Naturally, SuperNova can support a rich instruction set
without affecting the per-step proving costs. SuperNova achieves its cost
profile by building on Nova, a prior high-speed recursive proof system, and
leveraging its internal building block, folding schemes, in a new manner.
We formalize SuperNova’s approach as a way to realize non-uniform IVC,
a generalization of IVC. Furthermore, SuperNova’s prover costs and the
recursion overhead are the same as Nova’s, and in fact, SuperNova is
equivalent to Nova for machines that support a single instruction.

1 Introduction

We study the problem of producing succinct cryptographic proofs of correct
execution of programs on a stateful machine with a particular instruction set (e.g.,
EVM, RISC-V, Wasm).1

As a motivating example, such a proof system enables “replicated systems
without replicated execution” or “rollups” [22,25,36]. In particular, it enables
replicated systems such as blockchains to safely “outsource” transaction processing
to centralized infrastructure (e.g., the cloud) without trust: the cloud executes
the blockchain’s virtual machine with a batch of transactions and then produces
a succinct proof that it correctly executed the virtual machine. The replicated
system only needs to replicate the verification of proofs, which reduces per-
transaction costs as long as the cost of producing a proof for a batch of transactions
and the replicated verification of the proof is cheaper than the replicated execution
of the batch of transactions.

1 The paper uses “proofs” and “arguments” interchangeably. In both cases, we mean
an argument where soundness holds only under cryptographic hardness assumptions.

In more detail, we seek a cryptographic proof system consisting of a prover
and a verifier, where given the specification of a (virtual) machine and a program
designed to run on such a machine, the prover can produce a proof to convince the
correct execution of the program to the verifier, with the following requirements
(the program can potentially take a secret, non-deterministic witness from the
prover and some public inputs from the verifier).

– Succinctness: The size of a proof and the time to verify a proof are at most
polylogarithmic in the time to execute the program.

– Zero-knowledge: The proof does not reveal anything beyond what is implied
by the correct execution of a specified program.

– “A la carte” cost profile: The cost of proving a step of a program execution
is proportional only to the size of the circuit representing the instruction
invoked by the program step.

– Incremental proof generation: The prover can produce a separate proof for
each step of the program execution independently (and potentially in parallel),
and then recursively combine those proofs into a single proof (as we discuss
next, this offers substantial benefits).

Benefits of incremental proof systems. As a core advantage, incremental
proofs do not require static bounds on loop iterations in a program and therefore
are well-suited for stateful computations with dynamic control flow. Furthermore,
incremental proof generation imposes minimal memory overhead: at each step
of a program execution, the prover only needs space proportional to the space
needed to execute that particular step.

Moreover, incremental proof systems can enable distribution and paralleliza-
tion of proof generation. Specifically, the prover can first execute a desired
program on a machine, recording inputs, outputs, and state changes. Then, in
parallel and on different CPUs, for each step in the execution, the prover can
produce a separate proof proving the correct execution of the step. The prover can
then use the incremental capabilities of the proof system to aggregate different
proofs (e.g., in a binary tree style manner) into a single proof to be checked by the
verifier. Such parallel proving is especially important for large-scale applications
of proof systems such as rollups [22, 25, 36] where the size of the circuit whose
satisfiability is proven can be on the order of a billion gates or more.

Finally, state-of-the-art incremental proof systems, such as Nova [21], offer a
new paradigm for reducing proof generation costs [12]. Specifically, to prove an
iterative computation consisting of N steps, Nova recursively folds together N
circuit satisfiability instances into one instance, and then invokes a general-purpose
proof system (e.g., [29]) to prove that folded instance. Compared to directly
applying a general-purpose proof system to prove N steps, Nova’s approach to
apply the fold operation and then invoke a general-purpose proof system incurs
at least an order of magnitude lower resource costs.2

2 This assumes a sufficiently large computation (e.g., at least 10,000 constraints)
performed at each step to amortize recursion overheads.

2

1.1 Prior approaches and challenges

A classic approach to prove machine executions is based on incrementally ver-
ifiable computation (IVC) [33]. In this approach, one first designs a universal
circuit (e.g., [1, 4, 16,23,28]) that can execute any instruction supported by the
machine (the circuit implements the fetch-decode-execute loop of the correspond-
ing machine). To prove the correct execution of programs on the corresponding
machine, it suffices to recursively prove repeated invocations of this circuit on
an input program and memory state [3]. In more detail, at each step of the
program execution, the prover employs a succinct non-interactive argument of
knowledge (SNARK) [5,15,19,24] to prove the correct execution of an augmented
circuit, where the augmented circuit contains an invocation of the universal
circuit and a verifier circuit that verifies the SNARK produced by the prover
for the previous step of program execution. Unfortunately, the cost of proving a
program’s step is proportional to the size of the universal circuit—even though
the corresponding program step invokes only one of the supported instructions.

Given the high costs imposed by universal circuits, designers of these machines
aim to employ a minimal instruction set, to keep the size of the universal circuit
and thereby the cost of proving a program step minimal [2,4,16]. However, this is
a not a panacea: for real applications, one needs to execute an enormous number
of iterations of the minimal circuit (e.g., billions of iterations), making the prover’s
work largely untenable. This also means that emulating real programs that target
existing virtual machines with rich instruction sets (e.g., EVM, RISC-V, Wasm)
via a machine with a minimal instruction sets would incur enormous costs.

Buffet [34], building on Pantry [10] and Ben-Sasson et al. [4], avoids the
high cost of universal circuits yet supports a general class of programs. For
example, Buffet supports any program in the C programming language as long as
it neither invokes goto statements nor uses function pointers. Furthermore, Buffet
provides an “a la carte” cost profile where the prover’s proof generation costs
are proportional only to the sum of sizes of circuits of the operations invoked
by the program execution. However, Buffet adopts a “line-by-line compilation”
approach [9, 10, 26, 32], where it unrolls programs into non-uniform circuits by
translating each program statement into a concise set of constraints. Unfortu-
nately, this approach requires static bounds on program execution lengths. More
importantly, it is unclear how to prove the satisfiability of unrolled non-uniform
circuits in an incremental fashion. Furthermore, although general, it is unclear
how to use Buffet’s approach to prove program executions on a stateful machine
without producing a non-uniform circuit for each program. Having a separate
circuit for each program is undesirable in practice as it is not clear how in that
model one program can invoke another program (a la “composability”).

A subsequent work, called vRAM [37], achieves Buffet-like costs for program
executions on vnTinyRAM [3], a RAM machine with a minimal instruction set.
In particular, during program execution, at the granularity of a processor cycle,
vRAM uses a “trimmed” version of the vnTinyRAM universal circuit where the
trimmed version eliminates circuit elements corresponding to instructions that
were not invoked. Unfortunately, like Buffet, this approach is not incremental.

3

Specifically, it requires proving that certain global invariants hold over the entire
trace of program execution (e.g., to prove that the trimmed version of the circuit
is correct), using randomized fingerprinting techniques. As with Buffet, it is
unclear how to prove these global invariants hold in an incremental fashion.
Furthermore, this approach reveals, for each program execution, the number
of invocations of each instruction supported by the machine to the verifier, so
vRAM’s approach does not ensure zero-knowledge.

MIRAGE [20] adapts vRAM’s techniques in the context of Groth’s SNARK [17]
(vRAM uses a CMT-based argument [11]). Like vRAM, MIRAGE still relies on
proving invariants over the entire execution trace via fingerprinting techniques,
making its techniques incompatible with incremental proof systems.

Our solution: SuperNova We describe SuperNova, a new incremental proof
system for proving arbitrary stateful machine executions, where the cost of proving
a step of a program is proportional only to size of the circuit representing the
requested instruction. SuperNova can be viewed as a way to achieve Buffet’s and
vRAM’s “a la carte” cost profile (i.e., pay the prover’s costs only for instructions
that were executed) in the context of incremental proof systems but without any
of their downsides.

SuperNova achieves these results by leveraging folding schemes, a crypto-
graphic primitive introduced and employed by Nova [21] to construct IVC [33].
We formalize SuperNova’s approach as a way to realize non-uniform IVC, a
generalization of IVC that formally captures the “a la carte” cost profile. Indeed,
SuperNova can be viewed as a generalization of Nova: whereas Nova supports ma-
chines with a single instruction, SuperNova supports machines with an arbitrary
instruction set. Perhaps surprisingly, this generality does not add (substantial)
overheads: SuperNova’s recursion overhead and the prover’s costs are the similar
to that of Nova. Furthermore, the prover’s cost at each step is dominated by two
multiexponentiations of size proportional to the size of the circuit representing
the executed instruction.

As presented in this paper, SuperNova does not immediately support parallel
proof generation. There exists a generic compiler [6] to transform constructions
such as SuperNova into a form that does support parallel proving. We leave it to
the near-term future work to provide a solution tailored to SuperNova.

1.2 A technical overview of SuperNova

SuperNova provides a realization of non-uniform IVC, a generalization of IVC [33]
that we introduce. As we discuss below, non-uniform IVC implies succinct proofs
of program execution on a specified machine. In particular, one can define the
behavior of the stateful machine by specifying its instruction set and state passed
from one instruction to the next. SuperNova can then prove correct executions
of programs designed to run on such a stateful machine.

Below, we first provide an overview of the computational model supported
by non-uniform IVC. We then describe how that computational model can be
used to build stateful machines ranging from “ASICs” that perform a highly

4

specific task (e.g., execute or verify certain iterations of a delay function, verify
cryptocurrency payment operations) to general-purpose CPUs (e.g., RISC-V)
and virtual machines (e.g., EVM). Finally, we discuss how to achieve non-uniform
IVC by extending Nova.

Computational model of non-uniform IVC. Consider a collection of `+ 1
non-deterministic, polynomial time computable functions ({F1, . . . , F`}, ϕ), where
` ≥ 1. Suppose that each function Fj , where 1 ≤ j ≤ ` takes s inputs and produces
s outputs, where s > 0; Fj can additionally take arbitrary non-deterministic
input. Furthermore, ϕ is a function that takes s inputs and arbitrary non-
deterministic input and produces an element of Z∗`+1 (i.e., the set {1, . . . , `}).
In SuperNova’s realization of non-uniform IVC, each of these ` + 1 functions
are specified with R1CS, a popular NP-complete problem that is implicit in the
QAPs formalism [14,31].

A non-uniform IVC scheme enables a prover to incrementally prove that it has
performed an n-step computation with an initial input z0 to produce an output
zn. In particular, at step i, the prover proves that it has applied Fj on input
(zi−1, ωi−1) to produce an output zi, where zi−1 is output of step i− 1, ωi−1 is
a (potentially secret) non-deterministic input from the prover for step i, and
j = ϕ(zi−1, ωi−1). That is, ϕ selects one of the possible ` functions to apply at
step i using inputs to step i. A bit more concisely, for a specified ({F1, . . . , F`}, ϕ)
and (n, z0, zn), the prover proves the knowledge of a set of non-deterministic
values {ω0, . . . , ωn−1} and {z1, . . . , zn−1} such that ∀i ∈ {0, . . . , n− 1}, we have
that zi+1 = Fϕ(zi,ωi)(zi, ωi).

Devising stateful machines using non-uniform IVC. We now describe how
one can use non-uniform IVC to prove program executions on stateful machine.

In general, with SuperNova, one can build a machine with a custom instruc-
tion set and then prove program executions on such a machine. For example, one
can build a RAM machine where one of the instructions performs an application-
specific task such as validating a cryptocurrency transaction and appropriately
updating balances in a Merkle tree based key-value store. More generally, one can
support an instruction that performs certain expensive operations (e.g., a signa-
ture verification, a hash computation, etc.). Fortunately, because of SuperNova’s
cost profile, the prover’s cost at a particular step is proportional only to the
size of the circuit to encode the invoked instruction. In particular, the per-step
proving cost is independent of the sizes of circuits of “uninvoked” instructions.

A VDF machine. As a warm-up, we use non-uniform IVC to prove execu-
tions of a machine whose instruction set includes invocations of a delay function (a
function that takes non-trivial sequential time to compute). This realizes a veri-
fiable delay function (VDF) [8,35]. In more detail, consider a stateful machine
that supports a single instruction i.e., ` = 1. In particular, F1 executes a certain,
fixed number of iterations of a delay function (e.g., MinRoot [18]).3 Furthermore,

3 For MinRoot [18], the instruction verifies that the function was executed correctly with
3 arithmetic constraints and some non-deterministic advice; executing the MinRoot
computation itself would need hundreds of constraints, which is unnecessary.

5

ϕ(,) = 1 since there is only one instruction. Finally, z0 is the initial input to
the VDF and zi is the output the VDF after i executions of the delay instruction.

A RAM machine. We now show how to use non-uniform IVC to prove
program executions on a RAM machine (e.g., RISC-V).

Let the RAM machine support ` instructions, s registers of width w bits, and
a memory of size 2w. Let {F1, . . . , F`} denote a collection of non-deterministic
functions, where a function Fj verifies the input/output behavior of instruction j
supported by the machine. Each instruction takes certain input values (which we
specify next) and arbitrary non-deterministic input, and outputs certain values.
In particular, the input of each Fj consists of s+ 1 field elements, where the first
entry holds a commitment to a memory (e.g., the root of a Merkle tree with 2w

leaves) that stores both a program and its state, and the remaining entries are
the values of s registers. Furthermore, the output of each Fj consists of s + 1
field elements that are updated values of the provided input.

Without loss of generality, let the first of the s registers be designated as
the “program counter”. We define ϕ as follows: For step i, given input zi−1
and the non-deterministic input ωi−1, ϕ(zi−1, ωi−1) picks the instruction in the
memory (whose commitment is at zi−1[1]) at address in the program counter
register zi−1[2]. The initial state z0[1] holds a commitment to the verifier’s desired
memory of size 2w with its program stored in it and the rest of z0 contains the
verifier’s desired initial values of the machine’s registers.

SuperNova’s mechanisms to achieve non-uniform IVC. SuperNova lever-
ages folding schemes [21], a cryptographic primitive that enables a prover and a
verifier to fold two N -sized NP instances into a single N -sized NP instance such
that the folded instance is satisfiable only if the original instances are satisfiable.
In particular, SuperNova leverages a folding scheme for (a variant of) R1CS.

At each step, SuperNova’s prover folds an R1CS instance (and its associated
witness) representing the prior step of the program execution into a running
instance (and running witness). Furthermore, the prover feeds that instance and
certain advice generated by the folding scheme to an augmented circuit, which
contains a verifier circuit in addition to one of the ` functions in {F1, . . . , F`}.
In particular, the verifier circuit contains two components: (1) the verifier of the
non-interactive folding scheme for R1CS (to fold the incoming instance into a
running instance); and (2) a circuit for computing ϕ.

In more detail, SuperNova uses multiple running instances, one for each
instruction supported by the machine. As such, the verifier circuit folds an
incoming instance into an appropriate running instance. The choice of which
running instance to use is constrained by ϕ embedded in the verifier circuit.
A natural design of the verifier circuit makes the size of the verifier circuit
scale linearly with `. We later discuss how to use offline memory checking
techniques [7, 22,30] to make the verifier circuit size independent of `.

At the end of N steps, the prover holds ` running instances and an R1CS
instance that represents the last step of the program execution. To prove these,
the prover can send the associated witnesses, which the verifier can check. Un-
fortunately, the proof size, while not dependent on the number of steps of the

6

program execution, it is proportional to the sum of sizes of circuits for func-
tions in ({F1, . . . , F`}, ϕ), so it is not concretely small. Furthermore, the proof is
not zero-knowledge. As in Nova, one can obtain compressed proofs and achieve
zero-knowledge by invoking a general-purpose zkSNARK (e.g., Spartan [29]).

2 Preliminaries and prior results

Let F denote a finite field with |F | = 2Θ(λ), where λ is the security parameter.
Let ∼= denote computational indistinguishability with respect to a PPT adversary.
We globally assume that generator algorithms that produce public parameters
are additionally provided appropriate size bounds.

2.1 Incrementally verifiable computation (IVC)

IVC [33] is a cryptographic proof system that allows producing proofs of knowledge
of witnesses to a non-deterministic computation in an incremental fashion. We
provide a formal definition below.

Definition 1 (Incrementally verifiable computation (IVC)). An incre-
mentally verifiable computation (IVC) scheme is defined by PPT algorithms
(G,P,V) and deterministic K denoting the generator, the prover, the verifier,
and the encoder respectively, with the following interface

– G(1λ)→ pp: on input security parameter λ, samples public parameters pp.
– K(pp, F) → (pk, vk): on input public parameters pp, and polynomial-time

function F , deterministically produces a prover key pk and a verifier key vk.
– P(pk, (i, z0, zi), ωi, Πi) → Πi+1: on input a prover key pk, a counter i, an

initial input z0, a claimed output after i iterations zi, a non-deterministic
advice ωi, and an IVC proof Πi attesting to zi, produces a new proof Πi+1

attesting to zi+1 = F (zi, ωi).
– V(vk, (i, z0, zi), Πi)→ {0, 1}: on input a verifier key vk, a counter i, an initial

input z0, a claimed output after i iterations zi, and an IVC proof Πi attesting
to zi, outputs 1 if Πi is accepting, and 0 otherwise.

An IVC scheme (G,K,P,V) satisfies the following requirements.

(i) Perfect Completeness: For any PPT adversary A

Pr

V(vk, (i+ 1, z0, zi+1), Πi+1) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ),
F, (i, z0, zi, Πi)← A(pp),
(pk, vk)← K(pp, F),
zi+1 ← F (zi, ωi),
V(vk, i, z0, zi, Πi) = 1,
Πi+1 ← P(pk, (i, z0, zi), ωi, Πi)

 = 1

where F is a polynomial-time computable function.

7

(ii) Knowledge Soundness: For any constant n ∈ N, and expected polynomial-
time adversaries P∗ there exists expected polynomial-time extractor E such
that

Pr

 zn 6= z,
V(vk, n, z0, z,Π) = 1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
F, (z0, z,Π)← P∗(pp),
(pk, vk)← K(pp, F),
(ω0, . . . , ωn−1)← E(pp, z0, z),
zi+1 ← F (zi, ωi) ∀i ∈ {0, . . . , n− 1}

 ≤ negl(λ).

(iii) Succinctness: The size of an IVC proof Π is independent of the number of
iterations n.

2.2 A commitment scheme for vectors

Throughout this paper, we employ a commitment scheme for vectors over F

that is additively homomorphic and provides succinct commitments. Below, we
provide a formal definition.

Definition 2 (A commitment scheme for vectors). A commitment scheme
for Fm is a tuple of three protocols with the following interface:

– ← Gen(1λ,m)→ pp: on input security parameter λ, and a length parameter
m ∈ N, produces public parameters pp.

– Com(pp, x, r) → C: on input pp, a vector x ∈ Fm, and randomness r ∈ F ,
produces a commitment C.

– Open(pp, C, x, r)→ {0, 1}: on input pp, a commitment C, a vector x ∈ Fm,
and randomness r ∈ F verifies the opening of commitment C to x ∈ Fm and
r ∈ F ; outputs 1 if verification passes and 0 otherwise.

A commitment scheme (Gen,Com,Open) satisfies the following requirements

(i) Binding: For any PPT adversary A, the following probability is negl(λ):

Pr

 b0 = b1 = 1,
x0 6= x1

∣∣∣∣∣∣∣∣
pp← Gen(1λ,m),
(C, x0, x1, r0, r1)← A(pp),
b0 ← Open(pp, C, x0, r0),
b1 ← Open(pp, C, x1, r1)

(ii) Hiding: For all PPT adversaries A = (A0,A1), the following probability is

negl(λ): ∣∣∣∣∣∣∣∣
1

2
− Pr

 b = b̄

∣∣∣∣∣∣∣∣
(x0, x1, st)← A0(pp),
b←R {0, 1}, r ←R F ,
C ← Com(pp, xb, r),
b̄← A1(st, C)

∣∣∣∣∣∣∣∣

If hiding holds for all adversaries, then the commitment is statistically
hiding.

8

Definition 3 (Additive homomorphism). A commitment scheme for vectors
over Fm, (Gen,Com,Open), is additively homomorphic if for all public parameters
pp produced from Gen(1λ,m), and for any x1, x2 ∈ Fm and for any r1, r2 ∈ F ,
Com(pp, x1, r1) + Com(pp, x2, r2) = Com(pp, x1 + x2, r1 + r2).

Definition 4 (Succinctness). A commitment scheme for vectors over Fm,
(Gen,Com,Open), provides succinct commitments if for all public parameters
pp produced from Gen(1λ,m), and any x ∈ Fm and r ∈ F , |Com(pp, x, r)| =
Oλ(polylog(|x|)).

Remark 1 (Pedersen commitment scheme). An example commitment scheme is
Pedersen’s commitment scheme [27], which relies on cryptographic groups where
the discrete logarithm problem is hard. It provides a commitment scheme where
a commitment to a vector is a single group element.

2.3 Folding schemes

A folding scheme for a relation R is a protocol between a prover and verifier in
which the prover and the verifier reduce the task of checking two instances in R
with the same structure into the task of checking a single instance in R.

Kothapalli et al. [21] devise a folding scheme for a variant of a popular NP-
complete relation, which they call committed relaxed R1CS, and use it to build
an IVC scheme. Similarly, as we discuss later, SuperNova uses the same folding
scheme to realize a generalization of IVC.

Below, we first formally define folding schemes and then state prior construc-
tions of folding schemes that SuperNova builds upon.

Definition 5 (Folding scheme). Consider a relation R over public parameters,
structure, instance, and witness tuples. A folding scheme for R consists of a PPT
generator algorithm G, a deterministic encoder algorithm K, and a pair of PPT
algorithms P and V denoting the prover and the verifier respectively, with the
following interface:

– G(1λ)→ pp: on input security parameter λ, samples public parameters pp.
– K(pp,S) → (pk, vk): on input pp, and a common structure S between the

instances to be folded, outputs a prover key pk and a verifier key vk.
– P(pk, (u1, w1), (u2, w2))→ (u,w): on input instance-witness tuples (u1, w1)

and (u2, w2), outputs a new instance-witness tuple (u,w) of the same size.
– V(vk, u1, u2)→ u: on input instances u1 and u2, outputs a new instance u.

Let

(u,w)← 〈P(pk, w1, w2),V(vk)〉(u1, u2)

denote the the verifier’s output instance u and the prover’s output witness w from
the interaction of P and V on witnesses (w1, w2), prover key pk, verifier key vk
and instances (u1, u2). Likewise, let

tr = 〈P(pk, w1, w2),V(vk)〉(u1, u2)

9

denote the corresponding interaction transcript. We call a transcript an accepting
transcript if P outputs a satisfying folded witness w for the folded instance u. A
folding scheme satisfies the following requirements.

(i) Perfect Completeness: For all PPT adversaries A

Pr

 (pp,S, u, w) ∈ R

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
(S, (u1, w1), (u2, w2))← A(pp),
(pp,S, u1, w1), (pp,S, u2, w2) ∈ R,
(pk, vk)← K(pp,S),
(u,w)← 〈P(pk, w1, w2),V(vk)〉(u1, u2)

 = 1.

(ii) Knowledge Soundness: For any expected polynomial-time adversary P∗ there
is an expected polynomial-time extractor E such that

Pr

 (pp,S, u1, w1) ∈ R,
(pp,S, u2, w2) ∈ R

∣∣∣∣∣∣
pp← G(1λ),
(S, (u1, u2))← P∗(pp),
(w1, w2)← E(pp)

 ≥
Pr

 (pp,S, u, w) ∈ R

∣∣∣∣∣∣∣∣
pp← G(1λ),
(S, (u1, u2))← P∗(pp),
(pk, vk)← K(pp,S),
(u,w)← 〈P∗(pk),V(vk)〉(u1, u2)

− negl(λ)

(iii) Efficiency: The communication costs and V’s computation are lower in the
case where V participates in the folding scheme and then checks a witness
sent by P for the folded instance than the case where V checks witnesses
sent by P for each of the original instances.

A folding scheme is secure in the random oracle model if the above requirements
hold when all parties are provided access to a random oracle.

Definition 6 (Non-interactive). A folding scheme (G,K,P,V) is non-interactive
if the interaction between P and V consists of a single message from P to V.
This single message is denoted as an output of P and as an input to V.

Definition 7 (Public coin). A folding scheme (G,K,P,V) is called public coin
if all the messages sent from V to P are sampled from a uniform distribution.

R1CS is an NP-complete problem implicit in the work of GGPR [14]. Below,
we recall its definition and its folding-friendly variant, committed relaxed R1CS.

Definition 8 (R1CS). Consider a finite field F . Let the public parameters
consist of size bounds m,n, ` ∈ N where m > `. The R1CS structure consists of
sparse matrices A,B,C ∈ Fm×m with at most n = Ω(m) non-zero entries in each
matrix. An instance x ∈ F ` consists of public inputs and outputs and is satisfied
by a witness W ∈ Fm−`−1 if (A · Z) ◦ (B · Z) = C · Z, where Z = (W, x, 1).

10

Definition 9 (Committed relaxed R1CS). Consider a finite field F and a
commitment scheme Com over F . Let the public parameters consist of size bounds
m,n, ` ∈ N where m > `, and commitment parameters ppW and ppE for vectors of
size m and m−`−1 respectively. The committed relaxed R1CS structure consists of
sparse matrices A,B,C ∈ Fm×m with at most n = Ω(m) non-zero entries in each
matrix. A committed relaxed R1CS instance is a tuple (E, u,W, x), where E and
W are commitments, u ∈ F , and x ∈ F ` are public inputs and outputs. An instance
(E, u,W, x) is satisfied by a witness (E, rE ,W, rW) ∈ (Fm, F , Fm−`−1, F) if E =
Com(ppE , E, rE), W = Com(ppW ,W, rW), and (A ·Z) ◦ (B ·Z) = u · (C ·Z) +E,
where Z = (W, x, u).

Below, we state a key prior result on folding schemes for NP. We first describe
the result in the random oracle model, and then describe the result that is
heuristically secure in the plain model.

Lemma 1 (A folding scheme for committed relaxed R1CS [21]). Con-
sider n ∈ N and security parameter λ. Consider an additively homomorphic
commitment scheme Com over F n with Oλ(1)-sized commitments. There exists a
non-interactive folding scheme for committed relaxed R1CS with respect to Com
in the random oracle model. For an n-sized committed relaxed R1CS instances
over a finite field F , the prover’s time complexity is Oλ(n), the verifier’s time
complexity is Oλ(1), and the communication complexity is Oλ(1).

Assumption 1 (Random oracle instantiation [21]). Consider n ∈ N and
security parameter λ. Consider an additively homomorphic commitment scheme
Com over F n with Oλ(1)-sized commitments. There exists a non-interactive
folding scheme for committed relaxed R1CS with respect to Com in the plain
model. For n-sized committed relaxed R1CS instances over a finite field F , the
prover’s time complexity is Oλ(n), the verifier’s time complexity is Oλ(1), and
the communication complexity is Oλ(1).

Justification. We apply the Fiat-Shamir transformation [13]. In particular, we
heuristically instantiate the random oracle in Lemma 1 with a concrete crypto-
graphic hash function.

3 Non-uniform incrementally verifiable computation

This section introduces non-uniform IVC (NIVC), a generalization of IVC [33],
where at each step of an incremental computation, the prover proves the satisfia-
bility of a relation chosen from a set of possible relations (the choice of which
relation to use is made by an additional designated relation), whereas in the
standard IVC, there is only one possible relation. As a result of this generalization,
the overall relation proven by non-uniform IVC can be a non-uniform circuit,
which motivates its name.

As detailed in the introduction, non-uniform IVC implies proofs of program
executions on machines with a pre-defined custom instruction set. In the next
section, we construct SuperNova, an efficient NIVC scheme.

11

Overview. To formally define NIVC, we extend standard definitions of IVC. In
particular, we extend the definitions provided by Kothapalli et al. [21] in a recent
work. Below, we review the definition of IVC (Definition 1) before introducing
NIVC.

In the standard IVC, for some polynomial-time function F , the prover takes
as input a claim/statement (i, z0, z) and a corresponding proof Πi that proves
the knowledge of witnesses (ω0, . . . , ωi−1) such that by computing

zj+1 ← F (zj , ωj)

for all j ∈ {0, . . . , i− 1} we have that z = zi. To incrementally update a proof,
the prover additionally takes as input a new witness ωi and computes a new
proof Πi+1 which attests to the statement (i+ 1, z0, zi+1) for zi+1 = F (zi, ωi).
A key requirement is that proofs are succinct, that is, they do not grow in size
with each incremental update.

Informally, completeness holds if given an accepting proof Πi for a statement
(i, z0, zi) and a witness ωi such that zi+1 = F (zi, ωi), the prover is guaranteed
to produce an accepting proof Πi+1 for statement (i + 1, z0, zi+1). Similarly,
knowledge soundness holds if for any malicious prover P∗ that is able to produce
an accepting proof Πi for statement (i, z0, zi), there exists a corresponding
extractor E that can produce the corresponding witnesses (ω0, . . . , ωi+1).

In the setting of NIVC, we extend IVC to handle a number of arbitrary
polynomial-time functions (F1, . . . , F`). The choice of which function Fj for
j ∈ [`] is executed at a particular step in the incremental computation is handled
by an additional polynomial-time function ϕ. In more detail, NIVC captures an
incremental proof system for the following augmented statement: There exists
(ω0, . . . , ωi−1) such that on initial input z0 and claimed output z, by computing

zj+1 ← Fϕ(zj ,ωj)(zj , ωj)

for all j ∈ {0, . . . , i− 1}, we have that z = zi.
We adapt the above succinctness, completeness and knowledge soundness

definitions of IVC for the setting of NIVC. Moreover, for NIVC to be a meaningful
notion, we stipulate an additional efficiency requirement: the prover’s work at
each step scales only with the size of the function executed at that step. Without
such a requirement, IVC immediately implies NIVC with the use of a single
universal circuit that embeds all functions (F1, . . . , F`).

Below, we formally define NIVC in the common reference string (CRS) with
preprocessing model. We consider an adaptive adversary that can pick functions
(F1, . . . , F`) and ϕ as well as the statement after seeing the CRS.

Definition 10 (Non-uniform IVC). A non-uniform incrementally verifiable
computation (NIVC) scheme is defined by PPT algorithms (G,P,V) and a de-
terministic K denoting the generator, the prover, the verifier, and the encoder
respectively, with the following interface

– G(1λ)→ pp: on input security parameter λ, samples public parameters pp.

12

– K(pp, (ϕ, (F1, . . . , F`)))→ (pk, vk): on input public parameters pp, a control
function ϕ, and functions F1, . . . , F` deterministically produces a prover key
pk and a verifier key vk.

– P(pk, (i, z0, zi), ωi, Πi)→ Πi+1: on input a prover key pk, a counter i, initial
input z0, claimed output after i applications zi, a non-deterministic advice ωi,
and an NIVC proof Πi attesting to zi, produces a new proof Πi+1 attesting
to zi+1 = Fϕ(zi,ωi)(zi, ωi).

– V(vk, (i, z0, zi), Πi)→ {0, 1}: on input a verifier key vk, a counter i, an initial
input z0, a claimed output after i applications zi, and an NIVC proof Πi

attesting to zi, outputs 1 if Πi is accepting, 0 otherwise.

An NIVC scheme (G,K,P,V) satisfies following requirements.

(i) Perfect completeness: for any PPT adversary A

Pr

V(vk, (i+ 1, z0, zi+1), Πi+1) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ),
(ϕ, (F1, . . . , F`), (i, z0, zi, ωi, Πi))← A(pp),
(pk, vk)← K(pp, (ϕ, (F1, . . . , F`))),
V(vk, (i, z0, zi), Πi) = 1,
zi+1 ← Fϕ(zi,ωi)(zi, ωi),
Πi+1 ← P(pk, (i, z0, zi), ωi, Πi)

 = 1

where ` ≥ 1 and ϕ produces an element in Z∗`+1. Moreover, ϕ and each Fj
for j ∈ {1, . . . , `} are a polynomial-time computable function.

(ii) Knowledge soundness: For any constant n ∈ N, and expected polynomial
time adversaries P∗ there exists an expected polynomial-time extractor E
such that

Pr

 zn 6= z,
V(vk, (n, z0, z), Π) = 1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
(ϕ, (F1, . . . , F`), (z0, z,Π))← P∗(pp),
(pk, vk)← K(pp, (ϕ, (F1, . . . , F`))),
(ω0, . . . , ωn−1)← E(pp),
zi+1 ← Fϕ(zi,ωi)(zi, ωi) ∀i ∈ {0, . . . , n− 1}

 ≤ negl(λ).

(iii) Succinctness: The size of an NIVC proof Π is independent of the number
of iterations n.

(iv) Efficiency: The prover’s space and time complexity at any step i is linear
in the size of the function applied at step i, i.e., Oλ(|Fϕ(zi−1,ωi−1)|).

Remark 2 (NIVC implies IVC). Observe that if one restricts the above definition
to the setting where ` = 1 and ϕ outputs 1, one recovers the definition of
IVC (Section 2.1). This means that any NIVC scheme is also an IVC scheme.

4 SuperNova: Non-uniform IVC from folding schemes

This section describes SuperNova, a non-uniform IVC scheme designed from a non-
interactive folding scheme. When instantiated with any additively-homomorphic

13

commitment scheme with succinct commitments, the scheme achieves the claimed
efficiency (Lemma 4). In addition, like Nova [21], SuperNova can incorporate
a zkSNARK (e.g., Spartan [29]) to prove the knowledge of valid NIVC proofs,
providing a succinct, zero-knowledge proof of knowledge of a valid NIVC proof.

Below, we first provide an overview of SuperNova’s NIVC scheme. We then
describe SuperNova’s NIVC scheme formally and optimizations. We defer formal
details of zkSNARK of valid NIVC proofs to near-term work.

4.1 Overview of SuperNova

We intentionally overlook certain minor complications. We then address these
complications before providing a formal construction.

Consider polynomial-time computable functions F1, . . . , F` and ϕ. Recall that
the NIVC statement (i, z0, zi) claims the knowledge of (ω0, . . . , ωi−1) such that
by computing for all k ∈ {0, . . . , i− 1}

z′k+1 ← F (z′k, ωk)

for z′0 = z0 we have that z′i = zi.
We now describe a single iterative step of the prover’s work. That is, we

explain how the prover can take a proof Πi for the NIVC statement (i, z0, zi) and
efficiently produce an updated proof Πi+1 for the NIVC statement (i+1, z0, zi+1).

At a high level, instead of directly proving the knowledge of satisfying witness
to some prescribed Fj for j ∈ {1, . . . , `} in each step, the prover proves the
knowledge of a satisfying witness to an augmented function F ′j . The augmented
function F ′j , in addition to running Fj , performs additional bookkeeping using a
folding scheme to help verifiably update the NIVC proof.

At first glance, a straw-man approach is to have each F ′j take as input a
relaxed R1CS instance that claims the correct execution of all prior iterations
and then fold that instance into a running instance using the folding scheme
as stated in Lemma 1 (this is the approach taken by Nova [21]). However, the
folding scheme for relaxed R1CS requires that both instances have the same
structure (i.e., represent the same computation). In the case of standard IVC, as
there is only one function that can be applied at each iterative step, this holds
naturally. However, this is not the case for non-uniform IVC.

To address this, F ′j instead takes a list Ui of running instances, where Ui[j]
attests to all prior iterations of F ′j up to i− 1 steps. As such, checking all of Ui is
equivalent to checking i− 1 steps. In addition, F ′j takes as input a new instance
ui, which claims the correctness of the i’th step. Instead of directly checking this
instance (which would be concretely expensive), F ′j folds ui into the appropriate
instance in Ui according to ϕ to produce a new list of running instances Ui+1.
To claim the correctness of F ′j itself, the prover produces a new instance ui+1.

We let the NIVC proof Πi contain the list Ui, the fresh instance ui, and the
corresponding witnesses. Thus, the prover can use parts of Πi as input to the
appropriate function F ′j to produce Ui+1 and ui+1, and separately compute the
corresponding witnesses. These terms together define Πi+1. At the end of the

14

iterative computation (or at any intermediate step, if necessary), the verifier can
check i steps by checking proof Πi directly.

We now provide additional details.

The augmented function. The function F ′j takes as non-deterministic input
the statement so far (i, z0, zi), the auxiliary witness ωi, the index of the previously
executed function pci, a relaxed R1CS instance that claims that the step i was
executed correctly ui, and a list of ` running relaxed R1CS instances Ui, where for
j ∈ {1, . . . , `}, Ui[j] is a relaxed R1CS instance attesting to all prior executions of
of F ′j . Function F ′j first runs Fj on input (zi, ωi) to compute zi+1. As additional
bookkeeping, F ′j runs a verifier circuit that does the following.

1. Checks that Ui and pci are contained in the public output of the instance ui.
This enforces that Ui and pci are indeed produced by the prior step.

2. Runs the non-interactive folding scheme’s verifier to fold an instance that
claims the correct execution of the previous step, ui, into Ui[pci] to produce
an updated list of running instances Ui+1. This ensures that checking Ui+1

implies checking Ui and ui while maintaining that Ui+1 does not grow in size
with respect to Ui.

3. Invokes the function ϕ on input (zi, ωi) to compute pci+1, which represents
the index of the function Fj currently being run. pci+1 is then sent to the
next invocation of an augmented circuit (which contains a verifier circuit).

F ′j produces as public output the new statement (i + 1, z0, zi+1), the updated
list of running instances Ui+1, and the updated index pci+1.

Structure of a SuperNova proof. We now discuss the structure of an NIVC
proof and how it can be checked. Consider an NIVC statement (i, z0, zi). Let the
corresponding NIVC proof be Πi, which consists of a vector of ` instances Ui,
the corresponding vector of ` witnesses Wi, an instance that claims the correct
execution of the latest iteration ui, the corresponding witness wi, and pci.

Suppose, we have the following: So long as (ui,wi) is a satisfying instance-
witness pair with respect to augmented function F ′pci and contains Ui and pci
in the public output we have that checking all instances in Ui implies checking
all prior iterations and correct sequencing. So, the verifier can check the NIVC
statement (i, z0, zi) by checking the following: (ui,wi) is a satisfying instance-
witness pair with respect to function F ′pci , the public IO of ui contains Ui and pci,
and for each j ∈ {1, . . . , `} check that (Ui[j],Wi[j]) is a satisfying instance-witness
pair with respect to function F ′j .

Updating a SuperNova proof. Given a proof Πi of i steps, the prover can
efficiently produce a proof Πi+1 of i+ 1 steps. The core invariant we maintain is
as follows: If checking Πi indeed attests to i steps we must have that Πi+1 attests
to i+ 1 steps while maintaining that Πi+1 does not grow in size. Indeed, assume
that checking Πi = (Ui,Wi, ui,wi, pci) is sufficient to verify the NIVC claim
(i, z0, zi). Suppose the prover is provided as input proof Πi, a claim (i, z0, zi),
and an auxiliary witness ωi.

15

The prover proceeds as follows: Using the non-interactive folding scheme,
the prover first folds the instance-witness pair (ui,wi), which attests to the
correctness of the last step into index pci of Ui and Wi respectively. Let Ui+1

and Wi+1 denote the updated list of running instances and witnesses respectively.
Now, by assumption, so long as ui and contains Ui and pci, we have that
that checking (Ui+1,Wi+1) is equivalent to checking Πi while maintaining that
|(Ui+1,Wi+1)| = |(Ui,Wi)|. To account for the next step of execution, the prover
first computes the updated index pci+1 ← ϕ(zi, ωi). The prover then computes

((i+ 1, z0, zi+1),Ui+1, pci+1)← F ′pci+1
(Ui, ui, pci, (i, z0, zi), ωi)

and computes the corresponding claim of correct execution ui+1 and witness
wi+1. Now we have that checking ui+1 attests to the following.

1. Fpci+1
produces zi+1 on input (zi, ωi).

2. The public IO of ui contains Ui and pci, and therefore Ui indeed attests to i
steps so long as ui is valid and ui is designated to be folded into Ui[pci].

3. Ui+1 was computed by folding ui into Ui[pci] and therefore checking Ui+1 is
equivalent to checking Πi.

4. pci+1 was computed correctly and therefore ui+1 is indeed designated to be
checked against F ′pci+1

Therefore, so long as ui+1 is valid, we have that checking Ui+1 attests to i steps.
Moreover, because ui+1 attests to the correctness of the latest step, checking ui+1

against F ′pci+1
is sufficient to attest to i+ 1 iterations. This means that checking

Πi+1 = (Ui+1,Wi+1, ui+1,wi+1, pci+1) is sufficient to check the NIVC statement
(i+ 1, z0, zi+1).

Fixing minor complications. The prior description overlooks the following
minor issues. Prior work [21] addresses these, and we now provide an overview of
these in light of the above overview.

First, we describe how to update a proof Πi to produce a proof Πi+1. However,
we did not define a base case proof Π0 and how the prover, verifier, and each
function F ′j handles the base case. At a high level, we have F ′j produce trivial
running instances in the base case.

Second, the non-interactive folding scheme’s verifier run by F ′j needs additional
advice generated by the non-interactive folding scheme’s prover. To address this,
the prover provides additional non-deterministic input to F ′j .

Finally, there is a subtle sizing issue in the above description: in each step,
because Ui+1 is produced as the public IO of F ′pci+1

, it must be contained in

the public IO of instance ui+1. In the next iteration, because ui+1 is folded
into Ui+1[pci+1], this means that Ui+1[pci+1] is at least as large as Ui by the
properties of the folding scheme. This means that the list of running instances
grows in each step. To alleviate this issue, we have each F ′j only produce a hash
of its outputs as public output. In the subsequent step, the next augmented
function takes as non-deterministic input a preimage to this hash.

16

4.2 Core construction

We formally describe our construction below and then prove that it meets the
requirements of an NIVC scheme.

Construction 1 (Non-uniform IVC (NIVC)). Let NIFS = (G,K,P,V) be
the non-interactive folding scheme for committed relaxed R1CS implied by
Assumption 1. Let hash denote a cryptographic hash function.

Let ϕ denote a polynomial time function, and let (F1, . . . F`) denote a collection
of ` polynomial time functions. Without loss of generality, assume that these
functions have identical input/output sizes and circuit sizes. We define a collection
of augmented functions as follows (all arguments to an augmented function are
provided as non-deterministic advice). There are ` augmented functions, where
F ′j is hardwired with Fj , j ∈ [`]. Furthermore, F ′j can be computed in polynomial
time because Fj , ϕ, and the additional bookkeeping in F ′j can be computed in
polynomial time. So, each F ′j can be represented with committed relaxed R1CS
and let S(F ′j) denote its structure. Let (u⊥,w⊥) denote a trivial instance-witness
pair for any of these committed relaxed R1CS structures.

F ′j(vk,Ui, ui, pci, (i, z0, zi), ωi, T)→ x:

(1) Compute the next program counter pci+1 ∈ Z∗`+1 ← ϕ(zi, ωi).
(2) Compute the next output zi+1 ← Fj(zi, ωi).
(3) If i is 0:

(a) Instantiate the running instance Ui+1 ← [u⊥]`.
(b) Check that z0 = zi to ensure the statement holds in the base case.
Otherwise:
(a) Check that ui.x = hash(vk, i, pci, z0, zi,Ui) where ui.x is ui’s public IO.
(b) Check that 1 ≤ pci ≤ `.
(c) Check that (ui.E, ui.u) = (u⊥.E, 1) to ensure that ui is an R1CS instance.
(d) Set Ui+1 ← Ui and update Ui+1[pci]← NIFS.V(vk[pci],Ui[pci], ui, T).

(4) Output x← hash(vk, i+ 1, pci+1, z0, zi+1,Ui+1).

Let (ui+1,wi+1) ← trace(F ′j , (vk,Ui, ui, pci, (i, z0, zi), ωi, T)) denote a com-
mitted relaxed R1CS instance-witness pair (ui+1,wi+1) (such that ui+1.u = 1,
wi+1.E = 0, and wi+1.rE = 0) for the execution of F ′j on non-deterministic

advice (vk,Ui, ui, pci, (i, z0, zi), ωi, T). Note that the committed relaxed R1CS
structure for this instance-witness pair is S(F ′j) where j = ϕ(zi, ωi).

We construct a non-uniform IVC scheme (G,K,P,V) as follows.

G(1λ)→ pp: Output NIFS.G(1λ).

K(pp, (ϕ, (F1, . . . , F`)))→ (pk, vk):

(1) Compute (pkfsi , vkfsi)← NIFS.K(pp,S(F ′i)) for all i ∈ [`].
(2) Output (pk, vk)← (((F1, pkfs1), . . . , (F`, pkfs`)), ((F1, vkfs1), . . . , (F`, vkfs`))).

17

P(pk, (i, z0, zi), ωi, Πi)→ Πi+1:

(1) Parse Πi as ((Ui,Wi), (ui,wi), pci).
(2) if i is 0:

(a) Compute (Ui+1,Wi+1, T)← ([u⊥]`, [w⊥]`, u⊥.E).
Otherwise:
(a) Set Ui+1 ← Ui,Wi+1 ←Wi.
(b) Update (Ui+1[pci],Wi+1[pci], T)← NIFS.P(pk[pci], (Ui[pci],Wi[pci]), (ui,wi)).

(3) Compute pci+1 ∈ Z∗`+1 ← ϕ(zi, ωi).

(4) Compute (ui+1,wi+1)← trace(F ′pci+1
, (vk,Ui, ui, pci, (i, z0, zi), ωi, T)).

(5) Output Πi+1 ← ((Ui+1,Wi+1), (ui+1,wi+1), pci+1).

V(vk, (i, z0, zi), Πi)→ {0, 1}:

If i is 0:
(a) Check that zi = z0.
Otherwise:
(a) Parse Πi as ((Ui,Wi), (ui,wi), pci).
(b) Check that ui.x = hash(vk, i, pci, z0, zi,Ui).
(c) Check that 1 ≤ pci ≤ `.
(d) Check that (ui.E, u.u) = (u⊥.E, 1).
(e) ∀j ∈ [`], check that (Ui[j],Wi[j]) are satisfying instance-witness pairs with

structure S(F ′j).
(f) check that wi is a satisfying witness to instance ui with structure S(F ′pci).

4.3 Proofs of SuperNova’s properties

Lemma 2 (Completeness). Construction 1 is an NIVC scheme that satisfies
perfect completeness.

Proof. Let pp← G(1λ) denote the public parameters. Consider arbitrary polynomial-
time functions (ϕ, (F1, . . . , F`)), and let (pk, vk)← K(pp, (ϕ, {F1, . . . , F`})). Con-
sider an arbitrary statement (i, z0, zi), a witness ωi, and a proof Πi such that

V(vk, (i, z0, zi), Πi) = 1. (1)

Let pci+1 ← ϕ(zi, ωi) and zi+1 ← Fpci+1
(zi, ωi), and let

Πi+1 ← P(pk, (i, z0, zi), ωi, Πi).

We must show that

V(vk, (i+ 1, z0, zi+1), Πi+1) = 1 (2)

with probability 1.
We show this by considering the case when i = 0 and the case when i > 0.

18

Suppose that i = 0 (we refer to this case as the “base case” for ease of
reference). First, we show that the prover can compute a proof Πi+1. By Equa-
tion (1), we have that V accepts Πi on input (i, z0, zi). Because i = 0, by the base
case check of V, we have that z0 = zi. Thus, we have that the base case check
of F ′pci+1

passes on input (vk, , , pci, (i, z0, zi), ωi,), where pci+1 = ϕ(zi, ωi),

and denotes an arbitrary argument. This ensures that P can compute satisfy-
ing instance-witness pair (ui+1,wi+1) with respect to committed relaxed R1CS
structure S(F ′pci+1

). Then, by the base case specification of P, we have:

Πi+1 = ((u⊥,w⊥)`, (ui+1,wi+1), pci+1).

Next, we show that that the verifier accepts Πi+1 by demonstrating that all
of its checks pass. First, by the construction of P and F ′pci+1

, we have that

ui+1.x = hash(vk, i+ 1, pci+1, z0, Fpci+1
(zi, ωi), [u⊥]`).

Second, by the definition of ϕ, we have that 1 ≤ pci+1 ≤ `. Third, by the
construction of P (specifically, the definition of trace), we have wi+1.E = 0 and
wi+1.rE = 0 (implying that ui+1.E = 0), and ui+1.u = 1. Fourth, by definition,
the k’th instance-witness pair in (u⊥,w⊥)` satisfies F ′k, for all k ∈ {1, . . . , `}.
Finally, we have that (ui+1,wi+1) is satisfying with respect to S(F ′pci+1

) from

above. Therefore, we have that Equation (2) holds.

Now, suppose i > 0. Let ((Ui,Wi), (ui,wi), pci) be the result of parsing
Πi. First, we show that the prover can compute a proof Πi+1. Because the
verifier accepts Πi (Equation 1), we have that ui.x = hash(vk, i, pci, z0, zi) and
(ui.E, ui.u) = (u⊥.E, 1). As these are precisely the checks performed by F ′pci+1

for pci+1 = ϕ(zi, ωi), we have that P can compute satisfying instance-witness
pair (ui+1,wi+1) with respect to committed relaxed R1CS structure S(F ′pci+1

).

Then, by the construction of P, we have

Πi+1 = ((Ui+1,Wi+1), (ui+1,wi+1), pci+1)

for some (Ui+1,Wi+1).
Next, we show that the verifier accepts Πi+1. First, by the construction of P

and F ′pci+1
we have that

ui+1.x = hash(vk, i+ 1, pci+1, z0, zi+1,Ui+1) (3)

Second, by definition of ϕ we have that 1 ≤ pci+1 ≤ `. Third, as in the base case,

by the construction of P, we have ui+1.E = 0 and ui+1.u = 1. Fourth, by the
construction of P, we have for all k ∈ [`] (for notational convenience ignoring
that NIFS.P additionally outputs a cross-term):

(Ui+1[k],Wi+1[k]) =

{
NIFS.P(pk[k], (Ui[k],Wi[k]), (ui,wi)) if k = pci
(Ui[k],Wi[k]) otherwise

19

Then, by the premise that the verifier acceptsΠi, we already have that (Ui+1[k],Wi+1[k])
is a satisfying instance-witness pair for structure S(Fk) for all k ∈ {1, . . . , pci −
1, pci + 1, . . . , `}. Moreover, by the premise, (Ui[pci],Wi[pci]) and (ui,wi) are
satisfying instance-witness pairs for committed relaxed R1CS structure S(Fpci).
Thus, by the completeness of the underlying non-interactive folding scheme,
we have that (Ui+1[pci],Wi+1[pci]) is also a satisfying instance-witness pair for
structure S(Fpci). Fourth, we have that (ui+1,wi+1) is satisfying with respect to
S(F ′pci+1

) from above. Therefore, we have that Equation (2) holds.

Lemma 3 (Knowledge soundness). Construction 1 is an NIVC scheme that
satisfies knowledge soundness.

Proof. Let n be a global constant. Consider an expected polynomial-time ad-
versary P∗. Suppose that pp← G(1λ). Suppose that on input pp, P∗ produces,
for some ` ≥ 1, a polynomial-time control function ϕ that maps into Z∗`+1,
polynomial-time functions (F1, . . . , F`), an input z0, an output z, and an NIVC
proof Π. Suppose that on input (pp, (ϕ, {F1, . . . , F`})), K produces prover key
pk, and verifier key vk.

Suppose that

V(vk, (n, z0, z), Π) = 1 (4)

with probability ε. We must construct an expected polynomial-time extractor E
that on input (pp, z0, z), outputs (ω0, . . . , ωn−1) such that by computing

pci+1 ← ϕ(zi, ωi)

zi+1 ← Fpci+1
(zi, ωi)

we have that zn = z with probability ε− negl(λ).
We show inductively that we can construct an expected polynomial-time

extractor Ei that on input pp outputs ((zi, . . . , zn−1), (ωi, . . . , ωn−1), Πi) such for
all j ∈ {i, . . . , n− 1}, given pcj+1 ← ϕ(zj , ωj), we have that

zj+1 = Fpcj+1
(zj , ωj)

and zn = z, and that

V(vk, (i, z0, zi), Πi) = 1

with probability ε− negl(λ). Then, because in the base case when i = 0, V checks
that z0 = zi, the values (ω0, . . . , ωn−1) retrieved by E0 are such that computing
pci+1 ← ϕ(zi, ωi) and zi+1 ← Fpci+1

(zi, ωi) for all i ≥ 0 gives zn = z. Thus, by
setting E = E0 we are done.

At a high level, to construct an extractor Ei−1, we first assume the existence
of Ei that satisfies the inductive hypothesis. We then use Ei to construct an
adversary for the non-interactive folding scheme, which we denote as P̃i−1. This

in turn guarantees a corresponding extractor Ẽi−1 by the knowledge soundness

20

of the non-interactive folding scheme. We then use Ẽi−1 to construct Ei−1 that
satisfies the inductive hypothesis.

In the base case, for i = n, let En(pp) output (⊥,⊥, Πn) where ⊥ represents
the empty list and Πn is the output of P∗(pp). By the precondition (Equation (4)),
En succeeds with probability ε in expected polynomial-time.

For i ≥ 1, suppose that we can construct an expected polynomial-time ex-
tractor Ei that outputs ((zi, . . . , zn−1), (ωi, . . . , ωn−1)), and Πi that satisfies the
inductive hypothesis. To construct an extractor Ei−1, we first construct an adver-

sary P̃i−1 for the non-interactive folding scheme that outputs an adversarially
chosen structure and instances to be folded followed by a folded instance-witness
pair and a folding proof:

P̃i−1(pp):

(1) Let ((zi, . . . , zn−1), (ωi, . . . , ωn−1), Πi)← Ei(pp).
(2) Parse Πi as ((Ui,Wi), (ui,wi), pci).
(3) Parse wi to retrieve Ui−1, ui−1, T i−1, pci−1.

(4) Output (S(F ′pci−1
), (Ui−1[pci−1], ui−1)) and ((Ui[pci−1],Wi[pci−1]), T i−1).

We now analyze the success probability of P̃i−1. Suppose that P̃i−1 retrieves
proof Πi = ((Ui,Wi), (ui,wi), pci) as a result of running Ei internally and retrieves
(Ui−1, ui−1, T i−1, pci−1) from parsing wi. By the inductive hypothesis, we have
that V(vk, (i, z0, zi), Πi) = 1 with probability ε − negl(λ). This implies that
1 ≤ pci ≤ ` and that (ui,wi) is a satisfying instance-witness pair for committed
relaxed R1CS structure S(F ′pci). Because V ensures that (ui.E, ui.u) = (0, 1)
we have that wi is indeed a satisfying assignment for F ′pci (and not just a
trivially satisfying witness). Therefore, because pci−1 was parsed from wi, by
the construction of S(F ′pci), this implies that 1 ≤ pci−1 ≤ `. Then, by the the
verifier’s checks on Ui and Wi, we have that (Ui[pci−1],Wi[pci−1]) is a satisfying
instance-witness pair for committed relaxed R1CS structure S(F ′pci−1

). By the

verifier’s checks, we additionally have that

ui.x = hash(vk, i, pci, z0, zi,Ui)

Then, by the construction of F ′pci and the binding property of the hash function,
we have that

Ui[pci−1] = NIFS.V(vk[pci−1],Ui−1[pci−1], ui−1, T i−1)

with probability ε − negl(λ). Thus, P̃i−1 succeeds in producing an accepting
folded instance-witness pair (Ui[pci−1],Wi[pci−1]) for instances Ui−1[pci−1] and
ui−1 with probability ε− negl(λ) in expected polynomial-time.

Then, by the knowledge soundness of the underlying non-interactive folding
scheme, there exists an extractor Ẽi−1 that outputs satisfying witnesses for
instances Ui−1[pci−1] and ui−1 with respect to S(F ′pci−1

) with probability ε −
negl(λ) in expected polynomial-time.

21

Given P̃i−1 and Ẽi−1, we construct an expected polynomial time extractor
Ei−1 as follows

Ei−1(pp):

(1) Run P̃i−1 to retrieve the output (u′i−1, ui−1) and retrieve

((zi, . . . , zn−1), (ωi, . . . , ωn−1), Πi)

from its internal state.
(2) Parse Πi as ((Ui,Wi), (ui,wi), pci) and parse wi to retrieve zi−1, ωi−1, and

pci−1.

(3) Let (w′i−1,wi−1)← Ẽi−1(pp).
(4) Compute (Ui−1,Wi−1)← (Ui,Wi) and update

(Ui−1[pci−1],Wi−1[pci−1])← (u′i−1,w
′
i−1)

(5) Let Πi−1 ← ((Ui−1,Wi−1), (ui−1,wi−1), pci−1).
(6) Output ((zi−1, . . . , zn−1), (ωi−1, . . . , ωn−1), Πi−1).

We now analyze the success probability of Ei−1. Suppose that Ei−1 retrieves

Πi = ((Ui,Wi), (ui,wi), pci) from the internal state of P̃i−1 and outputs

((zi−1, . . . , zn−1), (ωi−1, . . . , ωn−1), Πi−1).

Suppose that Πi−1 is parsed as ((Ui−1,Wi−1), (ui−1,wi−1), pci−1). We first reason
that the output (zi−1, . . . , zn−1) and (ωi−1, . . . , ωn−1) are valid. By the inductive
hypothesis, we already have that for all j ∈ {i, . . . , n−1}, given pcj+1 ← ϕ(zj , ωj),

zj+1 = Fpcj+1
(zj , ωj),

and zn = z, and that V(vk, (i, z0, zi), Πi) = 1 with probability ε− negl(λ). By the
verifier’s checks, we have that 1 ≤ pci ≤ `, that (ui,wi) is a non-trivial satisfying
instance witness pair for F ′pci , and that

ui.x = hash(vk, i, pci, z0, zi,Ui). (5)

Then, because zi−1 and ωi−1 were parsed from wi, by the construction of F ′pci
and the binding property of the hash function, we have

pci = ϕ(zi−1, ωi−1)

zi = Fpci(zi−1, ωi−1)

Therefore we have that (zi−1, . . . , zn−1) and (ωi−1, . . . , ωn−1) satisfy the inductive
hypothesis with probability ε− negl(λ).

Next, we argue thatΠi−1 is valid. Because (ui,wi) satisfies F ′pci , and (Ui−1, ui−1)
were retrieved from wi, by the binding property of the hash function, and by
Equation (5), we have that

ui−1.x = hash(vk, i− 1, pci−1, z0, zi−1,Ui−1)

22

(ui−1.E, ui−1.u) = (0, 1)

By the inductive hypothesis that Πi is accepting, by construction, we have that
(Ui−1[k],Wi−1[k]) is a satisfying instance-witness pair for all k ∈ {1, . . . , pci−1 −
1, pci−1+1, . . . , `}. Moreover, by the construction of F ′pci we have that 1 ≤ pci−1 ≤
`. Thus, we have that (Ui−1[pci−1],Wi−1[pci−1]) and (ui−1,wi−1) are accepting
instance-witness pairs with respect to structure S(F ′pci−1

) with probability ε−
negl(λ) due to the success probability of Ẽi−1. Therefore, we have that

V(vk, (i− 1, z0, zi−1), Πi−1) = 1

with probability ε− negl(λ).

Lemma 4 (Efficiency). When instantiated with the Pedersen commitment
scheme, we have that for each j ∈ {1, . . . , `}, |F ′j | = |ϕ|+ |Fj |+o(2 ·G+2 ·H+R),
where |Fj | and |ϕ| denote the number of R1CS constraints to encode functions
Fj and ϕ respectively, G is the number of constraints required to encode a group
scalar multiplication, H is the number of constraints required to encode hash, and
R is the number of constraints to encode the RO ρ.

Proof. On input instances U and u, NIFS.V computes E ← U.E + r · T + r2 · u.E
and W ← U.W + r · u.W . However, by construction, u.E = u⊥.E = 0. So, NIFS.V
computes two group scalar multiplications, as it does not need to compute r2 ·u.E.
NIFS.V additionally invokes the RO once to obtain a random scalar. Finally, F ′j
makes two additional calls to hash and a call to ϕ (details are in the description
of F ′j).

4.4 Optimizations

In the construction of F ′j from the previous subsection, the cost of hash scales
with ` since the circuit takes as non-deterministic input ` running instances.
However, at each invocation, the circuit updates only one of them. Thus, one can
employ standard memory-checking techniques [7]. More specifically, by encoding
Merkle proofs in a circuit [10], one can reduce dependence of F ′j ’s circuit size on
` from Oλ(`) to Oλ(log `). This can be reduced to Oλ(1) constraints by using
multiset-based offline memory checking inside a circuit [22,30].

Acknowledgments

We thank Justin Drake, Chhi’mèd Künzang, Bryan Parno, Justin Thaler, Ioanna Tzialla,

and Michael Walfish for helpful conversations and comments on a prior version of this

paper. Abhiram Kothapalli was supported by a gift from Bosch, NSF Grant No. 1801369,

and by the CONIX Research Center, one of six centers in JUMP, a Semiconductor

Research Corporation (SRC) program sponsored by DARPA.

23

References

[1] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from
RAMs to delegatable succinct constraint satisfaction problems: Extended
abstract. In: ITCS (2013)

[2] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs
for C: Verifying program executions succinctly and in zero knowledge. In:
CRYPTO (Aug 2013)

[3] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge
via cycles of elliptic curves. In: CRYPTO (2014)

[4] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive
zero knowledge for a von Neumann architecture. In: USENIX Security (2014)

[5] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back
again. In: ITCS (2012)

[6] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition
and bootstrapping for SNARKs and proof-carrying data. In: STOC (2013)

[7] Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the
correctness of memories. In: FOCS (1991)

[8] Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions.
Cryptology ePrint Archive, Report 2018/712 (2018)

[9] Braun, B.: Compiling computations to constraints for verified computation.
Tech. rep., UT Austin Honors thesis HR-12-10 (Dec 2012)

[10] Braun, B., Feldman, A.J., Ren, Z., Setty, S., Blumberg, A.J., Walfish, M.:
Verifying computations with state. In: SOSP (2013)

[11] Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation
with streaming interactive proofs. In: ITCS (2012)

[12] Drake, J.: ZK Whiteboard Sessions – Module Fourteen: Nova Crash Course
with Justin Drake. https://www.youtube.com/watch?v=SwonTtOQzAk

[13] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identifica-
tion and signature problems. In: CRYPTO. pp. 186–194 (1986)

[14] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs
and succinct NIZKs without PCPs. In: EUROCRYPT (2013)

[15] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: STOC. pp. 99–108 (2011)

[16] Goldberg, L., Papini, S., Riabzev, M.: Cairo – a Turing-complete STARK-
friendly CPU architecture. Cryptology ePrint Archive (2021)

[17] Groth, J.: On the size of pairing-based non-interactive arguments. In: EU-
ROCRYPT (2016)

[18] Khovratovich, D., Maller, M., Tiwari, P.R.: Minroot: Candidate sequential
function for Ethereum VDF. Cryptology ePrint Archive, Paper 2022/1626
(2022)

[19] Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: STOC (1992)

https://www.youtube.com/watch?v=SwonTtOQzAk

[20] Kosba, A., Papadopoulos, D., Papamanthou, C., Song, D.: MIRAGE: succinct
arguments for randomized algorithms with applications to universal zk-
SNARKs. In: USENIX Security (2020)

[21] Kothapalli, A., Setty, S., Tzialla, I.: Nova: Recursive Zero-Knowledge Argu-
ments from Folding Schemes. In: CRYPTO (2022)

[22] Lee, J., Nikitin, K., Setty, S.: Replicated state machines without replicated
execution. In: S&P (2020)

[23] Lurk: https://github.com/lurk-lang
[24] Micali, S.: CS proofs. In: FOCS (1994)
[25] Ozdemir, A., Wahby, R.S., Boneh, D.: Scaling verifiable computation using

efficient set accumulators. In: USENIX Security (2020)
[26] Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: Nearly practical

verifiable computation. In: S&P (May 2013)
[27] Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable

secret sharing. In: CRYPTO (1991)
[28] RISC ZERO: https://www.risczero.com/
[29] Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without trusted

setup. In: CRYPTO (2020)
[30] Setty, S., Angel, S., Gupta, T., Lee, J.: Proving the correct execution of

concurrent services in zero-knowledge. In: OSDI (Oct 2018)
[31] Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolv-

ing the conflict between generality and plausibility in verified computation.
In: EuroSys (Apr 2013)

[32] Setty, S., Vu, V., Panpalia, N., Braun, B., Blumberg, A.J., Walfish, M.:
Taking proof-based verified computation a few steps closer to practicality.
In: USENIX Security (Aug 2012)

[33] Valiant, P.: Incrementally verifiable computation or proofs of knowledge
imply time/space efficiency. In: TCC. pp. 552–576 (2008)

[34] Wahby, R.S., Setty, S., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM
and control flow in verifiable outsourced computation. In: NDSS (2015)

[35] Wesolowski, B.: Efficient verifiable delay functions. In: EUROCRYPT. pp.
379–407 (2019)

[36] WhiteHat, B., Gluchowski, A., HarryR, Fu, Y., Castonguay, P.:
Roll up / roll back snark side chain ˜17000 tps. https://ethresear.ch/t/
roll-up-roll-back-snark-side-chain-17000-tps/3675 (Oct 2018)

[37] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vRAM:
Faster verifiable RAM with program-independent preprocessing. In: S&P
(2018)

25

https://github.com/lurk-lang
https://www.risczero.com/
https://ethresear.ch/t/roll-up-roll-back-snark-side-chain-17000-tps/3675
https://ethresear.ch/t/roll-up-roll-back-snark-side-chain-17000-tps/3675

	SuperNova: Proving universal machine executions without universal circuits
	References

