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Abstract. The One-Way to Hiding (O2H) Lemma is a central compo-
nent of proofs of chosen-ciphertext attack (CCA) security of practical
public-key encryption schemes using variants of the Fujisaki-Okamoto
(FO) transform in the Quantum Random Oracle Model (QROM). Re-
cently, Kuchta et al. (EUROCRYPT ’20) introduced a new QROM proof
technique, called Measure-Rewind-Measure (MRM), giving an improved
variant of the O2H lemma, with a new security reduction that does not
suffer from a square-root advantage security loss as in the earlier work
of Bindel et al. (TCC ’19).However, the FO transform QROM CCA se-
curity reduction based on the improved MRM O2H lemma still requires
an injectivity assumption on the underlying CPA-secure determinstic
public-key encryption scheme. In particular, the tightness of the con-
crete security reduction relies on a sufficiently small injectivity bound,
and obtaining such bounds for concrete schemes was left as an open
problem by Kuchta et al. (EUROCRYPT ’20).
In this paper, we address the above problem by deriving concrete bounds
on the injectivity of the deterministic CPA-secure variant of CRYSTALS-
Kyber, the public-key encryption scheme selected for standardisation by
the NIST Post-Quantum Cryptograpy (PQC) standardisation process.
We evaluate our bounds numerically for the CRYSTALS-Kyber param-
eter sets, and show that the effect of injectivity on the tightness of the
QROM CCA security of the Fujisaki-Okamoto transformed Kyber KEM
is negligible, i.e. allows for a tight QROM CCA security reduction. Con-
sequently, we give tightest QROM CCA security bounds to date for a
simplified ‘single hashing’ variant of Kyber CCAKEM against attacks
with low quantum circuit depth. Our bounds apply for all the Kyber pa-
rameter sets, based on the hardness of the Module Learning with Errors
(MLWE) problem.

Keywords: post-quantum cryptography · CRYSTALS-Kyber · one-way to hid-
ing · tight security

⋆ A preliminary version of this paper has been presented in ACISP 2022 [8]. This ex-
tended and updated version of the paper contains improved and simplified injectivity
bounds and several corrections.



1 Introduction

Post-quantum cryptography (PQC) has been considered crucial and constantly
developed for the last two decades since the fast database search algorithm by
Grover [11] and the fast integer factorization algorithm by Shor [18] on quan-
tum computers were introduced. When a quantum processor with enough qubits
is built, it will put many current public-key cryptosystems in danger. That is
why in 2016, NIST announced the first round PQC standardization process [14].
Now the result of the third round competition has been announced on July
05, 2022 [23]. CRYSTALS-Kyber [7], which utilises module learning with errors
(MLWE) as its underlying mathematical problem, has been selected to standard-
ize for Public-Key Encryption (PKE)/Key Encapsulation Mechanism (KEM).
There have been many applications of it in the real world. For example, it was
integrated into the CIRCL cryptography library of Cloudflare [21] and is also
supported as one of the post-quantum Transport Layer Security (TLS) protocols
in Amazon Web Services (AWS) key management service [25]. Our paper will
focus on Kyber and investigate the injectivity of its underlying deterministic
PKE and its implications on the chosen-ciphertext attack security of the Kyber
KEM.

CRYSTALS-Kyber uses cryptographic hash functions to achieve indistin-
guishable chosen-ciphertext attack (IND-CCA) security. We model classical (re-
spectively, quantum) attacks on schemes using these hash functions in the Ran-
dom Oracle Model (respectively, the Quantum Random Oracle Model, QROM).
First defined by Bellare and Rogaway in 1993 [4], ROM gives the attacker a
mechanism (oracle) O that takes input query x ∈ {0, 1}∗ and generates ran-
dom output O(x) ∈ {0, 1}n. If query x has appeared before, then O will re-
turn the same result as the first output. This is in contrast to a QROM, Oq,
which was first introduced by Boneh et al. [6]. QROM replaces the query x
and the output O with the qubit query |ψ⟩ =

∑
i αi |ψi⟩ and the qubit out-

put Oq |ψ⟩ =
∑

i αi |Oq (ψi)⟩, where αi ∈ C are the complex coefficients of the

superposition such that
∑

i |αi|2 = 1.
A security reduction proof for a cryptographic scheme relates the security

of the cryptographic scheme to the hardness of an underlying computational
problem. It is desirable to have a tight security reduction, i.e. a reduction which
guarantees that breaking the cryptographic scheme (with respect to some appro-
priate security notion) is almost as hard as solving the underlying computational
problem, to ensure that there are no ‘shortcut’ attacks against the scheme that
bypass solving the underlying hard computational problem. Assume that the suc-
cess probability (or advantage) of an adversary A taking time t to break some
security notion for a cryptographic scheme C is ϵ, and that a security reduction
shows how to use A to construct an algorithm B for solving the underlying hard
computational problem taking time t′ and success probability (or advantage)
ϵ′. Informally, if t′ ≈ t′ and ϵ′ ≈ ϵ, then the reduction is said to be tight. The
concept is widely used in proving the security reductions from indistinguish-
able chosen-plaintext attack (IND-CPA) of a Public-Key Encryption (PKE) to
indistinguishable chosen-ciphertext attack (IND-CCA) of a Key-Encapsulation
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Mechanism (KEM). By applying Fujisaki-Okamoto (FO) transform [9, 10], the
IND-CCA security of a KEM can be reduced from the IND-CPA security of its
underlying PKE in the ROM. However, when the adversary has quantum ac-
cess, all the proof techniques for classical ROM fail because the quantum query
now can evaluate the random oracle in exponentially many points rather than a
polynomial amount in classical ROM [6].

Providing tight security proof of FO transform under QROM has been the
goal of several recent studies. In 2015, Unruh [24] introduced an approach called
One Way to Hiding (O2H) lemma for (a tighter) security proof. Several variants
of O2H have been developed to investigate different aspects in the advantage
of an adversary with the help of various assumptions. Ambainis et al. [1] put
forward a semi-classical O2H to mitigate the problem of measuring in QROM.
Adapting this work, Bindel et al. [5] introduced another O2H variant called
‘double-sided’, which has some additional assumptions compared to the original
O2H [24] but also has a tighter security proof in some particular parameters.
Later, Kuchta et al. [13] introduced and applied a novel measure-rewind-measure
technique for proving a double-sided O2H lemma to obtain a CCA security
reduction for the FO ̸⊥ transform [12] in the QROM that does not suffer a square-
root loss of advantage. In [13], Corollary 4.7, they summarise the CCA advantage
inequality as below:

AdvIND−CCAFO ̸⊥(P,F,G,H)(A) ≤ O(d2Q · Adv
IND−CPA
P (B1)

+Q/|M|+QdQ · δ +Q · √η + AdvPRFF (B2)),
(1)

where A is the IND-CCA adversary against the KEM FO ̸⊥(P,F,G,H) =
U ̸⊥(P′,F, H), obtained by applying the U ̸⊥ Fujisaki-Okamoto (FO) transform,
an implicit rejection variant of FO transform defined in [12] (see also [5]), to
the randomised PKE scheme P, using hash functions G,H modelled as quan-
tum random oracles, and a Pseudo-Random Function F. In this equation, B1 is
the IND-CPA adversary against the randomised PKE scheme P, and B2 is the
Pseudo-Random Function (PRF) adversary against F. Also, in the above equa-
tion, Q denotes the total number of attacker QROM queries, dQ denotes the
attacker QROM query depth, δ is the decryption failure error, |M| is the size of
the message space, and η is the injectivity parameter (non-injectivity probabil-
ity) of the underlying deterministic PKE scheme P′ := T (P, G) scheme obtained
from P by deriving the encryption randomness by applying the hash function G
to the input message. It was left as an open problem in [13] to compute a bound
on the injectivity parameter η of concrete schemes in the NIST PQC process,
namely a bound on the collision probability of the existence of two different
messages generating the same ciphertext. To achieve the goal of a tight reduc-
tion at a λ-bit security level guarantee for small dQ, we would like the bound
on the adversary advantage on the right-hand side of the above equation to be
O(Q · 2−λ) for small dQ. Due to the square-root term

√
η, this implies that we

need injectivity bound to satisfy η = O(2−2λ), (or equivalently,
√
η = O(2−λ)).
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1.1 Our Contribution

Following the work done by Kuchta et al. [13], we initiate the investigation of
the injectivity of concrete schemes. In particular, we present concrete analyti-
cal and numerical upper bounds on η-injectivity of the deterministic variant of
CRYSTALS-Kyber, the public-key encryption scheme selected for standardisa-
tion by the NIST Post-Quantum Cryptograpy (PQC) standardisation process.
Our results give the tightest concrete QROM security guarantees to date for
the QROM CCA security of a variant of CRYSTALS-Kyber, based on MLWE
hardness assumption. Our contributions are summarized as follows:

– Concrete Analytical Injectivity Bound: We divide the injectivity anal-
ysis into two parts contributed by centred binomial distribution and module
short integer solution (MSIS) problem. We then give a concrete analytical
bound (Theorem 2) on the injectivity of CRYSTALS-Kyber PKE/KEM as
a combination of the separate parts.

– Numerical Injectivity Bounds: Using our analytical results, we compute
numerical injectivity bounds for the Kyber parameter sets, and in particular,
the square root of the injectivity term

√
η in (1). We obtain, for Kyber512,√

η = 2−177, for Kyber768,
√
η = 2−467, and for Kyber1024,

√
η = 2−844.

These numerical results, for all three parameter sets, satisfy our requirement√
η ≤ 2−λ, which implies that the effect of injectivity on the tightness of the

QROM CCA security of the Fujisaki-Okamoto transformed Kyber KEM is
negligible, i.e. allows for a tight QROM CCA security reduction.

– Numerical QROM CCA Security Bounds: We analyse the concrete
implications of our numerical injectivity bounds on the INDCCA security
of the Kyber CCAKEM, using the results of [13], and obtain the tightest
QROM CCA security bounds to date for Kyber CCAKEM against attacks
with low quantum circuit depth, for the Kyber parameter sets. Our concrete
bounds are stated for a simplified ‘single hashing’ model of Kyber CCAKEM
(see Sec. 4.2 for further discussion).

2 Preliminaries

Rings, Matrices and Vectors. We use R to represent Z[X]/(Xn + 1) and
Rq to represent Zq[X]/(Xn + 1). The degree n of the monic polynomial is fixed
to 256 in Kyber. Matrices and vectors are represented as bold upper-case and
lower-case letters, respectively. We use vT to represent the transpose of v. We
also set [β] = {−β,−β + 1, . . . , 0, . . . , β − 1, β} ⊆ Zq, with β ≥ 0, to represent a
symmetrical integer set.

Norm and Cardinality. For an element w ∈ Zq, we set l∞-norm of w to be
∥w∥∞ =

∣∣w mod± q
∣∣, where mod± q is the modulo operation that takes w to the

range
(
− q

2 ,
q
2

]
(resp.

[
− q−1

2 , q−12
]
) for an even(resp. odd) q. For a polynomial

element w = w0 + w1X + · · · + wn−1X
n−1 ∈ R, the l∞ and l2 norm can be

defined as the followings:
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∥w∥∞ = max
i
∥wi∥∞, ∥w∥ =

√
∥w0∥2∞ + · · ·+ ∥wn−1∥2∞.

For vector w = (w1, . . . , wk) ∈ Rk, the norms are defined as:

∥w∥∞ = max
1≤i≤k

∥wi∥∞ , ∥w∥ =
√
∥w1∥2 + · · ·+ ∥wk∥2.

As for a finite set S ⊆ Rk, we define |S| as the cardinality of S, and we also
have:

∥S∥∞ = max
w∈S
∥w∥∞ , ∥S∥ = max

w∈S
∥w∥ .

Sampling. Let X be a set or a probability distribution. Then x← X represents
that value x is uniformly sampled from this set or is sampled from this distribu-
tion. For a polynomial f(x) ∈ Rq or a vector of such polynomials, this notation
is defined coefficient-wise. Particularly, we denote βη as the central binomial dis-
tribution over Z with parameter η (see Def. 2) and we extend it to a distribution
over Rq by sampling each polynomial integer coefficient independently.

Rounding. Let x ∈ R be a real number, then ⌈x⌋ means rounding to the closet
integer with ties rounded up. We also use ⌈x⌉ to represent round-up and ⌊x⌋ as
rounding down.

Compress and Decompress. Let x ∈ Zq and d ∈ Z be such that d <
⌈log2(q)⌉. Adapted from [7], the Compress and Decompress functions are:

Compressq(x, d) =
⌈(
2d/q

)
· x
⌋
mod+2d,

Decompressq(x, d) =
⌈(
q/2d

)
· x
⌋
,

where mod+ maps an element to the range [0, 2d).

2.1 Injectivity

Adapted from Definition 6 of [5] and Definition 4.3 of [13], the injectivity that
we will investigate is defined as below:

Definition 1 (Injectivity of a dPKE [5, 13]). Let η ⩾ 0. A dPKE scheme
P = (KeyGen,Encr,Decr) using a random oracle G is η-injective if

Pr
(
Encr(pk, ·) is not injective: (pk, sk)← KeyGen(1λ), G

$← G
)
≤ η,

where G
$← G is sampling a random element G uniformly from a finite set G of

random functions, and a dPKE means PKE that has a deterministic encryption
scheme.
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2.2 CRYSTALS-Kyber Scheme

The PQC scheme that we are going to investigate is CRYSTALS-Kyber [7]. Since
injectivity is defined for a deterministic PKE (see Def. 1), the variant of Kyber
we describe here and study is the deterministic version of Kyber obtained by
applying the T part of the Fujisaki-Okamoto CCA transform to the randomized
Kyber encryption algorithm, i.e. the encryption algorithm randomness r is de-
rived deterministically from the message m by hashing with a function G which
we model in our injectivity analysis as a random oracle (see Sec. 4.2 for further
details on the Fujisaki-Okamoto Transform). Furthermore, we use the CBD dis-
tribution (see Def. 2) parameters η1, η2 as defined in the latest version of the
CRYSTALS-Kyber NIST PQC Round 3 specifications document at the time of
writing [3]. Let q, k, n, dt, du, dv be positive integer parameters and M denotes
the message space with n = 256 bit messages. We put the PKE algorithms of
Kyber here as a reference.

Sam. Let x be a bit string and S be a distribution taking x as the input, then
y ∼ S := Sam (x) represents that the output y generated by distribution S
and input x can be extended to any desired length. We remark that in our
injectivity analysis we model Sam as a random oracle with the indicated output
distributions.

Algorithm 1 Kyber.CPA.KeyGen(1λ): key generation [7], pg.5, Algorithm 1

1: ρ, σ ← {0, 1}256
2: A ∼ Rk×k

q := Sam(ρ)
3: (s, e) ∼ βk

η1 × βk
η1 := Sam(σ)

4: t := Compressq(As + e, dt)
5: return (pk := (t, ρ), sk := s)

Algorithm 2 Kyber.CPA.Enc (pk = (t, ρ),m ∈M) [7], pg. 5, Algorithm 2

1: r := G(m)← {0, 1}256
2: t := Decompressq(t, dt)

3: A ∼ Rk×k
q := Sam(ρ)

4: (r, e1, e2) ∼ βk
η1 × βk

η2 × βk
η2 := Sam(r)

5: u := Compressq(A
T r+ e1, du)

6: v := Compressq(t
T r+ e2 +

⌈
q
2

⌋
·m, dv)

7: return c := (u, v)

Algorithm 3 Kyber.CPA.Dec(sk = s, c = (u, v)) [7], pg.5, Algorithm 3

1: u := Decompressq(u, du)
2: v := Decompressq(v, dv)

3: return Compressq(v − sTu, 1)
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2.3 Methodologies and Techniques

2.3.1 Operations on Probability Adapted from [15], we present some tech-
niques for calculating probability as the multiplication of polynomials.

Law Convolution. Suppose A and B are random variables over [α] and [β],
respectively. Let ai, bj be the probability of A,B being equal to i, j for all i ∈ [α]
and j ∈ [β]. Then we generate two polynomials

A(X) =

α∑
i=−α

aiX
i, B(X) =

β∑
j=−β

bjX
j ,

to represent the probability of all possible outcomes of A and B. Now, define

C(X) = A(X) ·B(X) =

α+β∑
k=−(α+β)

ckX
k,

to be the product of A(X) and B(X), where k = i + j for each i, j. One can
observe that the coefficient ck is the probability of the sum of two independent
random variables A and B is equal to k, i.e.,

Pr (A+B = k) = Ck.

Thus, C(X) in fact, can be used to represent the probability distribution of
A+B. If we want to investigate the probability of independent multivariate, we
can simply repeat the multiplication.

Law Product. Now, we want to calculate the probability of the product of two
independent random variables, A and B. Let A(X) and B(X) be the polynomials
as above. Then, define

D(X) =

α∑
i=−α

β∑
j=−β

aibjX
ij =

αβ∑
k=−αβ

dkX
k

to be the law product of the two distributions, representing the probability
distribution of A ·B.

Union Bound. Let {A1, A2, . . .} be a finite set of events (which are not nec-
essarily independent), then the probability of at least one happening is less or
equal to the summarized probability of every event as described below:

Pr

( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

Pr (Ai) .

This is also called Boole’s inequality.
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2.3.2 Centred Binomial Distribution The coefficient of xk in the binomial

expansion (x+ 1)
η0 is given by

(
η0
k

)
= η0!

k!(η0−k)! . When we investigate the case

(√
x+

1√
x

)2η0

=

2η0∑
i=0

(
2η0
i

)
x(−η0+i),

we can let k = −η0 + i and switch the right hand side to
∑η0

k=−η0

(
2η0
η0 + k

)
xk.

Therefore, a centred binomial distribution is defined as below:

Definition 2 (Centred Binomial Distribution). A discrete random variable
X is said to have centred binomial distribution βη0 with parameter η0, if it follows
probability mass function below:

f(k; η0) = Pr(X = k) =
(2η0)!

(η0 + k)!(η0 − k)!
· 2−2η0 .

If we represent the probability of all outcomes of X in one polynomial:

P (X) =
η0∑

k=−η0

(2η0)!
(η0+k)!(η0−k)! · 2

−2η0 ·Xk,

the polynomial then can be used to calculate the probability of the difference
between 2 independent random variables X1, X2 being some value by combining
techniques in Section 2.3.1. Let X1, X2 ∼ βη0

, the polynomial that represents
the probability distribution of X1 −X2 can be written as:

P(X1 −X2) = P(X1) · P(X2) =

2η0∑
k=−2η0

pkX
k. (2)

2.3.3 Module Short Integer Solution Problem The short integer solution
(SIS) problem can be briefly described as finding a short vector in a random
lattice. When the lattice is defined on a module polynomial ring Rq, we call
finding a short vector in such a lattice a module short integer solution (MSIS)
problem. We adopt the following result (Theorem 1.1 and Corollary 3.9 of [17],
which extends and tightens the previous bounds of [19,20]), giving a probabilistic
lower bound on the norm of the shortest non-zero vector of such lattices.

Theorem 1 (Adapted from [17], Theorem 1.1 and Corollary 3.9). De-
note Sα := {y ∈ Rq : ∥y∥∞ ≤ α} and let l, k, α1, α2 ∈ N, q prime, and assume
that the quotient polynomial of R splits as follows mod q, that is Xn + 1 =∏

i≤d fi(X) mod q, where f1(X), . . . , fd(X) denote irreducible factors in Zq[X],
each of degree n/d. Also, for i = 1, . . . , d, define Wi ⊆ Rq to be a set of polyno-
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mials such that ∀u, v ∈Wi, |Zero(u− v)| < i. Then

Pr
A←Rk×l

q

[
∃(z1, z2) ∈ Sl

α1
\ {0} × Sk

α2
: Az1 + z2 = 0

]
≤ |Sα1

|l · |Sα2
|k

qnk
+

e∑
i=1

(
d
i

)
·
∣∣Sα1+∥Wi∥∞

∣∣l · ∣∣Sα2+∥Wi∥∞

∣∣k
|Wi|l+k · qnk(1−i/d)

,

where e is the largest integer such that α1
√
n ≥ qe/d, and for y ∈ Rq, |Zero(y)|

is the size of the set Zero(y) defined as follows:

Zero (y) := {i : y ≡ 0 (mod (fi (X) , q))}.

3 Theoretical Bounds for CRYSTALS-Kyber

Now we give details of calculating the η-injectivity of Kyber. We remind the
reader that our injectivity result applies to the deterministic variant of Kyber
described in Sec. 2.2, which is obtained from the randomized Kyber scheme
by using the T transform with a random oracle G, i.e. deriving the encryption
scheme randomness by applying G to the input message (this is the deterministic
version of Kyber used in the Fujisaki-Okamoto CCAKEM variant of Kyber;
see Sec. 4.2 for more details). Our injectivity analysis also models the Kyber
probability distribution sampling algorithms Sam as random oracles that output
the ideal distributions as indicated in Algorithms 1 and 2 in Sec. 2.2.

3.1 Main Result

We first give a theorem for Kyber injectivity as below and later demonstrate
some essential lemmas for calculating the final equation.

Theorem 2 (η-injectivity of Kyber). Let positive integers q, k, n, d, η1, η2,
du, dv represent the parameters of Kyber (see Sec. 2.2). Namely q, k, n rep-
resent the prime modulus, module rank, and ring R dimension, respectively,
and d is the number of splitting factors of Rq (see Theorem 1). The param-
eters η1, η2 are the sampling parameters of centered binomial distribution and
1 ≤ du, dv < ⌈log2 (q)⌉ are the scaling parameters of compress function. The
injectivity (Definition 1) of Kyber is upper bounded by:

η ≤
(
2n

2

)
·

r0 · ∑
j∈[γu]

ej

nk

+

{(
(4η1 + 1) (4η2 + 2γu + 1)

q

)nk

+

e∑
i=1

(
d

i

)
· 1

|Wi|2k

·
{
(4η1 + 2 ∥Wi∥∞ + 1) (4η2 + 2γu + 2 ∥Wi∥∞ + 1)

q(1−i/d)

}nk
}
, (3)
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where e =
⌊
d · logq(2η1

√
n)
⌋
, r0 and ej are from (7), (8), respectively. The set

Wi is constructed from (10). The integers γu, γv are defined as γu :=
⌊

q
2du

⌋
and

γv :=
⌊

q
2dv

⌋
.

Proof. Let m,m′ ∈ B32 denote a pair of distinct 32-byte (256-bit) messages.
According to Algorithm 2 and Definition 1, we want to find the upper bound
of the probability that at least one such pair distinct messages m,m′exists such
that the corresponding Kyber ciphertexts c(m), c(m′) for them are the same.
Thus, let

η = Pr (∪m ̸=m′c (m) = c (m′)) .

For each distinct message pair m,m′, we denote the corresponding ciphertexts
by c(m) = (u, v) and c(m′) = (u′, v′), respectively. We first observe that in the
above non-injectivity union event ∪m ̸=m′c (m) = c (m′) (and all the subsequent
union events analyzed below), it is sufficient to consider distinct message pairs
m ̸= m′ with G(m) ̸= G(m′). This is because if G(m) = G(m′), then non-
injectivity is impossible. Indeed, if G(m) = G(m′) then (r, e2) = (r′, e′2), v =
Compressq(x, dv) , v′ = Compressq(x

′, dv) where x := tT r + e2 +
⌈
q
2

⌋
· m and

x′ := tT r′+e′2+
⌈
q
2

⌋
·m′. This would therefore imply that x−x′ =

⌈
q
2

⌋
·(m−m′)

has a coordinate with absolute value ≥
⌈
q
2

⌋
, which implies using Lemma 1 below

and dv ≥ 1 that v ̸= v′ and hence non-injectivity is impossible. Therefore, from
here onwards, in all the events over m,m′ analyzed below, the event is implicitly
over message pairs m ̸= m′ such that G(m) ̸= G(m′), but we do not write the
restriction G(m) ̸= G(m′) for the brevity of notation.

Next, we simplify the non-injectivity probability analysis by analyzing non-
injectivity for the u ciphertext part only (this turns out to be sufficient to obtain
good bounds in practice, see our computed numerical bounds in Sec. 4). Namely,
the bound on η can be written as:

η = Pr (∪m ̸=m′c(m) = c(m′))

≤ Pr (∪m ̸=m′∆u = u− u′ = 0) ,

where

u− u′ := Compressq

(
AT r+ e1, du

)
− Compressq

(
AT r′ + e′1, du

)
. (4)

We now investigate the injectivity brought up by the compress function. By
applying Lemma 1, we get the coefficient-wise equation below:

∆u = 0 =⇒
∥∥∥AT r+ e1 −AT r′ + e′1

∥∥∥
∞

=
∥∥∥AT∆r+∆e1

∥∥∥
∞
<

q

2du
,

where ∆r = r− r′ and ∆e1 = e1 − e′1. It is also noticed that the coefficients are
all integers. Thus, we get:∥∥∥AT∆r+∆e1

∥∥∥
∞
<

q

2du
=⇒ AT∆r+∆e1 ∈ [γu] ,
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where γu :=
⌊

q
2du

⌋
, and the equation is also coefficient-wise. We can further

split these relationships into two situations by letting ∆r = 0 or ∆r ̸= 0, which
defines two parts of probability:

PCBD := max
m ̸=m′

Pr
(
AT∆r+∆e1 ∈ [γu] ∩∆r = 0

)
and

PMSIS := Pr
(
∪m ̸=m′AT∆r+∆e1 ∈ [γu] ∩∆r ̸= 0

)
.

By adapting Lemma 2, we have:

PCBD =

r0 · ∑
j∈[γu]

ej

nk

,

where r0 is the probability of single coefficient in ∆r being 0, and ej is the
probability of single coefficient in ∆e1 having the value j, for all j in range [γu].

And applying Lemma 3 gives:

PMSIS ≤
(
(4η1 + 1) (4η2 + 2γu + 1)

q

)nk

+

e∑
i=1

(
d

i

)
· 1

|Wi|2k

·
{
(4η1 + 2 ∥Wi∥∞ + 1) · (4η2 + 2γu + 2 ∥Wi∥∞ + 1)

q(1−i/d)

}nk

.

Finally, we combine CBD part and MSIS part to derive the theoretical bound
of Kyber injectivity:

η = Pr (∪m ̸=m′c(m) = c(m′))

≤ Pr (∪m ̸=m′∆u = u− u′ = 0)

= Pr
(
∪m̸=m′AT∆r+∆e1 ∈ [γu] ∩∆r = 0

)
+ Pr

(
∪m̸=m′AT∆r+∆e1 ∈ [γu] ∩∆r ̸= 0

)
≤M · max

m̸=m′
Pr
(
AT∆r+∆e1 ∈ [γu] ∩∆r = 0

)
+ Pr

(
∪m̸=m′AT∆r+∆e1 ∈ [γu] ∩∆r ̸= 0

)
=M · PCBD + PMSIS ,

where M =
(
2n

2

)
, which results in (3). ⊓⊔

3.2 Associated Lemmas and their Proofs

Now we demonstrate several lemmas to help us compute each component of
η-injectivity.
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Lemma 1 (Compressq Equality Condition). Let x, x′ ∈ Zq and d ∈ Z be such
that d < ⌈log2(q)⌉, then we have:

Compressq(x, d)− Compressq(x
′, d) = 0⇒ |x− x′| < q

2d
. (5)

Proof. We first look at the rounding of x, x′. If ⌈x⌋ − ⌈x′⌋ = 0, then we have
|x− x′| < 1. If x, x′ are multiplied by a constant c, this can be further written
as:

⌈cx⌋ − ⌈cx′⌋ = 0⇒ |cx− cx′| < 1⇐⇒ |x− x′| < 1

|c|
.

Now, we look at the equation defined by [3]:

Compressq(x, d) =
⌈(
2d/q

)
· x
⌋
mod+2d.

Since
⌈(
2d/q

)
· x
⌋
maps x ∈ Zq to Z2d , the mod+2d operation only shifts the

representatives of Z2d to {0, . . . , 2d − 1}, which means it does not affect the
distance between two scaled elements. Therefore, we can safely remove mod+2d

when calculating the difference between two compressed inputs:

∆Compressq(x, d) := Compressq(x, d)− Compressq(x
′, d)

=
⌈(
2d/q

)
· x
⌋
mod+2d −

⌈(
2d/q

)
· x′
⌋
mod+2d

=
⌈(
2d/q

)
· x
⌋
−
⌈(
2d/q

)
· x′
⌋
.

This is the condition for two compressed inputs being equal as in (5). These
results can be generalised to vectors in a component-wise fashion. ⊓⊔

Lemma 2 (CBD Injectivity). Let r, r′ ∈ Rk
q be samples from βη1

and e1, e
′
1 ∈

Rk
q be samples from βη2

. Let du be a positive integer that du < ⌈log2 (q)⌉. The
probability PCBD is given by:

PCBD =

r0 · ∑
j∈[γu]

ej

nk

, (6)

where γu :=
⌊

q
2du

⌋
, and

2η1∑
j=−2η1

rjX
j =

 η1∑
i=−η1

(2η1)!

(η1 + i)!(η1 − i)!
· 2−2η1 ·Xi

2

, (7)

2η2∑
j=−2η2

ejX
j =

 η2∑
i=−η2

(2η2)!

(η2 + i)!(η2 − i)!
· 2−2η2 ·Xi

2

. (8)

Proof. The probability is an intersection of two independent events, which can
be written as:

12



PCBD = Pr (∆r = 0) · Pr (∆e1 ∈ [γu]).

Let PR (X) ,PR′ (X) ,PE (X) ,PE′ (X) be probability polynomials which repre-
sent the distributions of single coefficients in r, r′, e1, and e′1, respectively. By
applying (2) in Sec. 2.3.2, the probability polynomials of single coefficient ∆r
and ∆e1 in ∆r and ∆e1 are given by:

P∆r (X) = PR (X) · PR′ (X) = PR (X)
2

=

 η1∑
i=−η1

(2η1)!

(η1 + i)!(η1 − i)!
· 2−2η1 ·Xi

2

=

2η1∑
j=−2η1

rjX
j

P∆e1 (X) = PE (X) · PE′ (X) = PE (X)
2

=

 η2∑
i=−η2

(2η2)!

(η2 + i)!(η2 − i)!
· 2−2η2 ·Xi

2

=

2η2∑
j=−2η2

ejX
j .

Finally, the probability for a single coefficient should be raised to the power
of nk to calculate the probability for all the coefficients in ∆r and ∆e1. Thus,
we obtain the total probability of CBD injectivity as in (6), where r0 is from (7)
by setting j = 0 and ej is from (8). ⊓⊔

Lemma 3 (MSIS Injectivity). Let positive integers q, k, n, d, η1, η2, du repre-
sent the parameters of Kyber (see Sec. 2.2), where for each distinct message
pair m ̸= m′ in the message space, we have (r, e1, e2) := Sam(G(m)) and
(r′, e′1, e

′
2) := Sam(G(m′)), where r, r′ ∈ Rk

q are sampled from βk
η1
, e1, e

′
1 ∈ Rk

q

are sampled from βk
η2
, and we define ∆r := r−r′ and ∆e1 := e1−e′1. The proba-

bility PMSIS := Pr
(
∪m ̸=m′AT∆r+∆e1 ∈ [γu] ∩∆r ̸= 0

)
is upper bounded by:

PMSIS ≤
(
(4η1 + 1) (4η2 + 2γu + 1)

q

)nk

+

e∑
i=1

(
d

i

)
· 1

|Wi|2k

·
{
(4η1 + 2 ∥Wi∥∞ + 1) · (4η2 + 2γu + 2 ∥Wi∥∞ + 1)

q(1−i/d)

}nk

, (9)

where γu :=
⌊

q
2du

⌋
, e is the largest number such that 2η1

√
n ≥ qe/d, and Wi is a

finite set defined in (10).

Proof. Let E denote the event ∪m̸=m′AT∆r+∆e1 ∈ [γu]∩∆r ̸= 0. If E occurs,
then there exist a pair of messages m,m′ and corresponding vectors r ̸= r′ (resp.
e1, e

′
1 in the support of the distribution βk

η1
(resp. βk

η2
), and a vector eu ∈ [γu]

such that

AT∆r+ (∆e1 − eu) = 0.
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It follows that PMSIS := Pr[E] is upper bounded by:

Pr
A←Rk×k

q

[
∃(∆r, ∆e1 − eu) ∈ Sk

θ1\ {0} × S
k
θ2 : AT∆r+ (∆e1 − eu) = 0

]
≤ |Sθ1 |

k · |Sθ2 |
k

qnk
+

e∑
i=1

(
d
i

)
·
∣∣Sθ1+∥Wi∥∞

∣∣k · ∣∣Sθ2+∥Wi∥∞

∣∣k
|Wi|k+k · qnk(1−i/d)

=

(
|Sθ1 | · |Sθ2 |

qn

)k

+

e∑
i=1

(
d

i

)
·

(∣∣Sθ1+∥Wi∥∞

∣∣ · ∣∣Sθ2+∥Wi∥∞

∣∣
|Wi|2 · qn(1−i/d)

)k

,

where in the first line, θ1 ∈ N (resp. θ2 ∈ N) represent the maximum absolute
value of coefficients of polynomials in the support set Sk

θ1
(resp. Sk

θ2
) of ∆r

(resp. ∆e1 − eu), and in the second line we apply Theorem 1 with z1, z2 =
(∆r, (∆e1 − eu)). We first construct the sets Sθ1 and Sθ2 , then calculate the
cardinality of the finite sets. For ∆r, since the support of the distribution βη1

of
r, r′ has maximal coefficient absolute value η1, the maximal coefficient absolute
value of ∆r is θ1 = 2η1. Similarly, for ∆e1 − eu, since e1, e

′
1 are sampled from

βη2 and eu ∈ [γu], the maximal coefficient absolute value θ2 = 2η2 + γu.
Thus, we have:

Sk
θ1

= Sk
2η1

:=
{
∆r ∈ Rk

q : ∥∆r∥∞ ≤ 2η1
}
,

Sk
θ2

= Sk
2η2+γu

:=
{
∆e1 − eu ∈ Rk

q : ∥∆e1 − eu∥∞ ≤ 2η2 + γu
}
.

Here, for α ∈ N, as defined in Theorem 1, Sα := {y ∈ Rq : ∥y∥∞ ≤ α}, and
therefore the cardinality of Sα is:

|Sα| = (2α+ 1)
n
,

where n is the number of coefficients in a ring element. Thus, the first component
in the probability bound above becomes:(

|Sθ1 |·|Sθ2 |
qn

)k

=

(
|S2η1 |·|S2η2+γu |

qn

)k

=
(

(4η1+1)(4η2+2γu+1)
q

)nk
.

The second component is dependent on the size of the setWi. In the following,
for each i, we define t :=

⌊
1
2q

i/d
⌋
. We use the construction from Section 3.3 of [17]:

i = 1,

{
|W1| = 2n,

∥W1∥∞ = 1

i ≥ 2,



t <
√
n,

{
|Wi| =

∑t2

j=0

(
n
j

)
· 2j ,

∥Wi∥∞ = 1

t ≥
√
n


Set 1

{
|Wi| ≥ Vn( 12q

i/d −
√
n),

∥Wi∥∞ =
⌊
1
2q

i/d
⌋

Set 2

 |Wi| = (2
⌊

t√
n

⌋
+ 1)n,

∥Wi∥∞ =
⌊

t√
n

⌋
(10)
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where Vn(R) is the volume of n-dim ball with radius r, which can be calculated

by Vn(R) =
(π/2)⌊n

2 ⌋
n!! (2R)n. For t ≥

√
n, we choose the one which can produce

a smaller bound between Set 1 and Set 2. Therefore, the second component is
simplified as:

e∑
i=1

(
d

i

)
·

(∣∣Sθ1+∥Wi∥∞

∣∣ · ∣∣Sθ2+∥Wi∥∞

∣∣
|Wi|2 · qn(1−i/d)

)k

=

e∑
i=1

(
d

i

)
·

[∣∣S2η1+∥Wi∥∞

∣∣ · ∣∣S2η2+γu+∥Wi∥∞

∣∣
|Wi|2 · qn(1−i/d)

]k

=

e∑
i=1

(
d

i

)
· 1

|Wi|2k
·
{
(4η1 + 2 ∥Wi∥∞ + 1) · (4η2 + 2γu + 2 ∥Wi∥∞ + 1)

q(1−i/d)

}nk

.

Now, we summarize the two components to generate our result for MSIS injec-
tivity:

Pr
A←Rk×k

q

[
∃(∆r, ∆e1 − eu) ∈ Sk

θ1\ {0} × S
k
θ2 : AT∆r+ (∆e1 − eu) = 0

]
≤
(
(4η1 + 1) (4η2 + 2γu + 1)

q

)nk

+

e∑
i=1

(
d

i

)
· 1

|Wi|2k

·
{
(4η1 + 2 ∥Wi∥∞ + 1) · (4η2 + 2γu + 2 ∥Wi∥∞ + 1)

q(1−i/d)

}nk

.

This completes the proof. ⊓⊔

4 Numerical Result and Analysis

We now calculate the numerical bounds of injectivity of Kyber1. As mentioned

Table 1: Third Round Kyber Parameters from specification [3].

n d q k η1 η2 (du, dv) δ bit security (λ)

Kyber512 256 128 3329 2 3 2 (10, 4) 2−139 128

Kyber768 256 128 3329 3 2 2 (10, 4) 2−164 192

Kyber1024 256 128 3329 4 2 2 (11, 5) 2−174 256

in Section 2, n = 256 is the fixed degree of the quotient polynomial, q is the mod-
ule number of the module ring Rq, and d is the degree of splitting. The scheme

1 The code can be accessed at https://github.com/RdWeirdo981/Injectivity-paper-
codes.

15

https://github.com/RdWeirdo981/Injectivity-paper-codes
https://github.com/RdWeirdo981/Injectivity-paper-codes


Table 2: Kyber η-Injectivity

M PCBD PMSIS η
√
η

Kyber512 2511 2−1106 2−354 2−354 2−177

Kyber768 2511 2−1445 2−937 2−934 2−467

Kyber1024 2511 2−2420 2−1687 2−1687 2−844

uses k to represent dimension of secrete key vector, η1 and η2 to represent the
sampling parameters for s, e, r and e1, e2 respectively. From a security estimation
perspective, δ is for δ-correctness, which is the probability of a decryption failure
attack successfully happening. The security levels λ defined by Call for Propos-
als [22] of the three parameter sets are consistent with AES128 against 2170

MAXDEPTH quantum gates or 2143 classical gates as level 1, AES192 against
2233 MAXDEPTH quantum gates or 2207 classical gates as level 3, and AES256
against 2298 MAXDEPTH quantum gates or 2272 classical gates as level 5.

4.1 Numerical Analysis of η-injectivity

We first analyze the injectivity itself for concrete parameter sets. Overall, our re-
sult in Table 2 indicates the injectivity assumption in [13] holds for all parameter
sets of CRYSTALS-Kyber by showing that

√
η ≤ 2−λ. We look further at Table

2 to analyze the separated components. Again, M,PCBD, PSIS are consistent
with previous definitions, and η is calculated from η ≤M ·PCBD +PMSIS . The√
η is also calculated because we want to investigate the injectivity assumption

in [13]. Some interesting observations are also summarized as below.

– We remark that the injectivity bounds obtained in this version of the paper
improve upon the bounds in an earlier version [8], removing an extra unnec-
essary union bound for the computation PMSIS , which is already accounted
for in the bound of Theorem 1.

– Theorem 1 of [17] constructs 4 sets of Wi as summarized in (10). In the
numerical calculation, for t ≥

√
n, Set 2 of Wi will always minimize the

probability result rather than Set 1. This is because Set 1 uses the volume of
n-dimensional ball with radius 1

2q
i/d −

√
n. If we take a further look at the

equation of the volume, it can be calculated that the constant part (π/2)⌊n/2⌋

n!!
is really big, which makes Set 1 always to generate the larger result than Set
2. When the iteration of the sum goes up to around 65, we will obtain the
largest single round result as seen in Fig. 1a, Fig. 1c, and Fig. 1e. And that
is why the final cumulative result goes large in Fig. 1b, Fig. 1d, and Fig. 1f.

– We also observed that Kyber512 has an apparent discontinuous point after
round 65. This is due to e =

⌊
d · logq(2η1

√
n)
⌋
. Kyber512 has η1 = 2 rather

than 3 in Kyber768 and Kyber1024.
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(a) Single Result for Kyber512 (b) Cumulative Result for Kyber512

(c) Single Result for Kyber768 (d) Cumulative Result for Kyber768

(e) Single Result for Kyber1024 (f) Cumulative Result for Kyber1024

Fig. 1: Output of τ Function in MSIS Part
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4.2 Implications of the relationship between η-injectivity and
QROM advantage

We now analyze the implications of η-injectivity in Corollary 4.7 in [13]. We
first recall the latter Corollary below. Here, given a randomized public key en-
cryption scheme P and a random oracle G, we denote by P′ = T (P, G) the
deterministic public key encryption scheme obtained from P by deriving the en-
cryption scheme randomness by applying G to the input message. We denote by
FO ̸⊥(P,F,G,H) = U ̸⊥(P′,F, H) the KEM obtained by applying the U̸⊥ Fujisaki-
Okamoto (FO) transform, an implicit rejection variant of FO transform defined
in [12].

Corollary 1 ( [13], Cor. 4.7). Let P be a δ-correct randomized public key en-
cryption scheme with message spaceM and randomness space R. Let G and H be
quantum accessible random oracles, and F be a PRF. Suppose that P′ = T (P, G)
is η-injective and let FO ̸⊥(P,F,G,H) = U ̸⊥(P′,F, H). Let A be an adversary
with run-time TA against the IND-CCA security of FO ̸⊥(P,F,G,H) issuing at
most qG (resp. qH) quantum queries to G (resp. H) with query depth at most
dG (resp. dH) and at most qdec classical queries to the decapsulation oracle of
FO ̸⊥(P,F,G,H). Then, we can construct an IND-CPA adversary B1 against P
and a PRF adversary B2 against F issuing at most qdec queries, satisfying:

AdvIND−CCAFO ̸⊥(P,F,G,H)(A) ≤ 8dH · (dG + 1) ·
(
AdvIND−CPAP (B1) +

8 · (3qG + 1)

|M|

)
+ 6 · (3qG + qdec) ·

(
(8dG + 1) · δ +

√
3η
)

+ (4dH + 12) · η + 2AdvPRFF (B2) . (11)

We note that above, for the QROM queries to G and H, dG (resp. dH) is the
algorithm’s query depth to G (resp. H), consisting of dG (resp. dH) sequential
bunches of nG (resp. nH) parallelized queries to G (resp. H), where nG (resp
nH) is the parallelization factor, and qG = nG · dG (resp. qH = nH · dH) is the
total number of oracle queries to G (resp. H).

In the following analysis of Kyber, we omit the parameter h = H(pk) that is
not needed in the Kyber IND-CCA security reduction (as also noted in [3]), and
is only included for robustness against multi-target attacks. Indeed, note that
pk is fixed anyway throughout the attack for the standard (single target key)
IND-CCA security model, so it does not affect the single target key IND-CCA
security model under the scope in this paper.

To apply Corollary 1 (Corollary 4.7 of [13]) for FO ̸⊥(P,F′, G′, H ′) =
U̸⊥(T (P, G′),F′, H ′) to KYBER.CCAKEM(KDF, G,H) specified in [3], we ob-
serve that KYBER.CCAKEM(KDF, G,H) can be viewed as FO ̸⊥(P,F′,G′, H ′)
with:

G′(m) := G2(m)

H ′(m, c) := KDF(G1(m), H(c))

F′(z, c) := KDF(z,H(c))

(12)
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Here, G(m) := (G1(m), G2(m)) is split into two sub-functions G1, G2 that com-
pute the first and second parts of the output of G in KYBER.CCAKEM.
In the following, we apply Corollary 1 combined with our injectivity re-
sults to analyze the concrete IND-CCA security of the simplified FO ̸⊥ model

K̂YBER.CCAKEM(P,F′,G′, H ′) := FO ̸⊥(P,F′,G′, H ′) (where P denotes the Ky-
ber.CPA scheme) of KYBER.CCAKEM(KDF, G,H). In our simplified model

K̂YBER.CCAKEM(P,F′,G′, H ′) of KYBER.CCAKEM(KDF, G,H), H ′,F′ are
modelled as a fresh quantum random oracle (resp. PRF), rather than being im-
plemented from underlying random oracles KDF, G1, H using ‘double hashing’
as in the right-hand side of (12). We remark that the security of the actual
‘double-hashing’ variant of KYBER.CCAKEM can be related to the security of

the ‘single hashing’ model K̂YBER.CCAKEM we discuss in this Section, either
via indifferentiability arguments in the QROM [26] or via tighter direct reduc-
tions, as analyzed in the very recent work of Maram and Xagawa [16]; however
we do not analyze this relation concretely in this Section.

To summarize, for our simplified FO ̸⊥ model K̂YBER.CCAKEM(P,F′,G′, H ′)
of KYBER.CCAKEM, the IND-CCA attacker advantage bound has the following
form:

AdvIND−CCAFO ̸⊥(P,F′,G′,H′)(A) ≤ 8dH′ · (dG′ + 1) ·
(
AdvIND−CPAP (B1) +

8 · (3qG′ + 1)

2256

)
+ 6 · (3qG′ + qdec) ·

(
(8dG′ + 1) · δ +

√
3η
)

+ (4dH′ + 12) · η + 2AdvPRFF′ (B2) , (13)

where concrete bounds for δ and η for Kyber512, Kyber768 and Kyber1024 are
given in Table 1 and Table 2, respectively.

Note that under the pseudorandomness of G and PRF in the standard model
and the QROM for XOF (that generates the public A matrix from a seed),
there is a straightforward tight reduction from MLWE to IND-CPA security
of KYBER.CCAKEM based on the pseudorandomness of the public key and
ciphertext as in Theorem 1 in [3], with a multiplicative loss factor of 2. Therefore
one can replace AdvIND−CPAKYBER.CPAPKE(B1) by ≈ 2AdvMLWE(B′1) for an attacker B′1
related to B1. We also observe that there is no square-root loss in the advantage,
and for highly parallelized quantum attacks, with dG′ , dH′ = O(1), the result
of (13) is nearly tight. Therefore, against such attacks, there is a nearly tight
QROM security proof for Kyber’s CCA security from MLWE.

Finally, as an illustration, we give a concrete interpretation and example
rough estimates of the reduction loss parameters in (13) for highly parallelised
attacks on Kyber with its realization of random oracles G′, H ′ with concrete
hash functions. We first note that the total quantum attack circuit depth, called
MAXDEPTH in the NIST PQC process [22], is related to parameters in (13) as:

MAXDEPTH = dA + dG′ ·DEPTHG′ + dH′ ·DEPTHH′ ,

where DEPTHG′ (resp. DEPTHH′) is the depth of the quantum circuit im-
plementing G′ (resp. H ′), and dA is the depth of A excluding the cir-
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cuits implementing the random oracle realization. For Kyber, DEPTHG′

and DEPTHH′ are the depth of a quantum circuit for SHA3-512 and
max(DEPTH(SHA3-512, SHA3-256)) + DEPTH(SHAKE-256)), respectively.
Given concrete values for the quantum circuit depth of the hash functions and
total attack MAXDEPTH, one can get concrete estimates for dG′ and dH′ . For
example, MAXDEPTH = 220 and DEPTHG′ ,DEPTHH′ ≈ 213 (the latter ap-
proximate depth estimates are based on the quantum circuit depth estimate for
SHA3-256 in Table 2 of [2]) implies dG′ , dH′ ≤ 27. In this example, we have the
following concrete bound for IND-CCA security of Kyber512:

AdvIND−CCAFO ̸⊥(P,F′,G′,H′)(A) ≤ 217 ·
(
AdvIND−CPAKYBER.CPAPKE(B1) +

qG′

2251

)
+ (9qG′ + 3qdec)

(
2−128 + 2−176

)
+ 2−345 + 2AdvPRFF′ (B2) .

Similarly, for Kyber768 and Kyber1024, respectively:

AdvIND−CCAFO ̸⊥(P,F′,G′,H′)(A) ≤ 217 ·
(
AdvIND−CPAKYBER.CPAPKE(B1) +

qG′

2251

)
+ (9qG′ + 3qdec)

(
2−153 + 2−466

)
+ 2−925 + 2AdvPRFF′ (B2) ,

AdvIND−CCAFO ̸⊥(P,F′,G′,H′)(A) ≤ 217 ·
(
AdvIND−CPAKYBER.CPAPKE(B1) +

qG′

2251

)
+ (9qG′ + 3qdec)

(
2−163 + 2−843

)
+ 2−1678 + 2AdvPRFF′ (B2) .

Note that the above rough estimates may not be very accurate but are included
to give some idea of how our result could be interpreted given concrete assump-
tions on attack MAXDEPTH and hash function realization circuit depth. The
probability of decryption failure error δ also plays a role on the RHS, and in fact,
as can be seen above for the Kyber parameter choices, it becomes the dominant
term compared to the negligible injectivity terms (to clarify the contributions of
decryption error vs. injectivity, we have shown both terms in the above bounds;
the first term in the factor multiplying (9qG′ + 3qdec) is the contribution of the
decryption error δ and the second term is due to the injectivity). We refer the
readers to Sec. 4 and Sec. 5 in Kyber’s Specification document [3] for more details
on the choice of δ in Kyber.

5 Conclusion

We have followed the work of [13] and taken a step further to investigate and an-
alyze the injectivity of CRYSTALS-Kyber, which uses FO transform to convert
an IND-CPA public key encryption into an IND-CCA key encapsulation mech-
anism. The theoretical bound and corresponding numerical results are provided
and have shown that all the parameter sets are reasonably safe with respect to
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the injectivity assumption in [5, 13], which means that the collision probabil-
ity of two different messages having the same output ciphertext is negligible in
these parameter sets. This allows us to obtain the tightest QROM CCA secu-
rity bounds to date for the ‘single hashing’ model of Kyber CCAKEM against
attacks with low quantum circuit depth, for the Kyber parameter sets.

Other schemes using the FO transform like Saber, can be investigated by a
similar method. One main reason why we cannot immediately apply the steps
for calculating Kyber injectivity for Saber is that it uses a power-of-2 rather
than a prime modulus. It makes the approach in [17] not directly applicable for
Saber.
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