
Clipaha: A Scheme to Perform Password Stretching on the Client

Francisco Blas Izquierdo Riera1 a, Magnus Almgren1 b, Pablo Picazo-Sanchez2 c and Christian
Rohner3 d

1Chalmers University of Technology, 412 96 Göteborg, Sweden
2School of Information Technology, Halmstad University, Sweden

3Uppsala University, Box 534, 751 21 Uppsala, Sweden
{francisco.izquierdo, magnus.almgren}@chalmers.se, ppicazo@hh.se, christian.rohner@it.uu.se

Keywords: Password Stretching, Password-based Authentication, IoT Security, Server Relief, Web Security, Argon2

Abstract: Password security relies heavily on the choice of password by the user but also on the one-way hash functions
used to protect stored passwords. To compensate for the increased computing power of attackers, modern
password hash functions like Argon2, have been made more complex in terms of computational power and
memory requirements. Nowadays, the computation of such hash functions is performed usually by the server
(or authenticator) instead of the client. Therefore, constrained Internet of Things devices cannot use such
functions when authenticating users. Additionally, the load of computing such functions may expose servers to
denial of service attacks. In this work, we discuss client-side hashing as an alternative. We propose Clipaha, a
client-side hashing scheme that allows using high-security password hashing even on highly constrained server
devices. Clipaha is robust to a broader range of attacks compared to previous work and covers important and
complex usage scenarios. Our evaluation discusses critical aspects involved in client-side hashing. We also
provide an implementation of Clipaha in the form of a web library1 and benchmark the library on different
systems to understand its mixed JavaScript and WebAssembly approach’s limitations. Benchmarks show that
our library is 50% faster than similar libraries and can run on some devices where previous work fails.

1 Introduction

Despite being around for sixty years and having many
issues, passwords are still a prevalent authentica-
tion method (Corbató, 1963; Bauman et al., 2015;
Van Acker et al., 2017). Conceptually, a client pro-
vides its identity (username u) and a secret (password
p) which is matched against a database entry on the
server to be accessed. Getting access to passwords has
ever since been a target for attacks (Lee et al., 1992).
Because users tend to reuse the same password on
different systems, a breach in one system can have
consequences over a much larger scope.

In particular, with the advent of the Internet of
Things (IoT), where potentially every embedded low-
power device acts as a server, the issues with pass-
words have become a dilemma. As IoT devices are
usually more vulnerable, getting access to their pass-

a https://orcid.org/0000-0003-1509-142X
b https://orcid.org/0000-0002-3383-9617
c https://orcid.org/0000-0002-0303-3858
d https://orcid.org/0000-0002-1527-734X

word database is relatively easy. Also, their ability
to handle password authentication is significantly hin-
dered compared to traditional client/server systems
due to limited computation, energy and amounts of
memory available for code and data.

Nowadays, database breaches do not reveal the
password per se since stored passwords are protected
by a secure one-way function f (.) (e.g., a crypto-
graphic hash). f (.) includes a random salt s prepended
to the password to make the password unique and
avoid that equal passwords are easily recognized dur-
ing dictionary attacks. Since the database stores the
triplet ⟨u,s, f (s||p)⟩, the hash function has to be com-
puted at every authentication. To prevent dictionary
attacks from being accelerated after a breach using
powerful GPU, FPGA, or ASIC implementations; pass-
word hashing functions have increased their complex-
ity.

Modern password hashing algorithms (e.g., Ar-
gon2 (Biryukov et al., 2017)) are specifically designed
to eliminate the possible attacker advantage gained
from accelerators. Removing such advantage comes at
the cost of excessive computation and memory usage

Client Server

f (s∗||p) h(.)u, p,s∗ [u : h]

JavaScript Embedded

f (s||p)u, p [u : f ,s]

Figure 1: Clipaha moves the resource-intensive hash func-
tion f (s||p) to the client. The salt s∗ is a deterministic string
derived from the username u and the server’s domain name.

(e.g., the specification recommends 1 GiB memory and
0.5 s runtime for front-end authentication (Biryukov
et al., 2016)). However, there is still a lack of use of
such algorithms with strong security parameters on
regular systems and more so on resource-constrained
systems (Eliasen, 2019; Ntantogian et al., 2019).

Currently, most devices perform the password hash-
ing step in the server (or authenticator) (Blanchard
et al., 2019). This prevents low-power IoT devices
lacking either the memory or the power for running
the CPU long enough from using modern hash func-
tions with strong hash parameters. The huge resource
demand may also open non IoT devices to Denial
of Service attacks by allowing resource exhaustion
through multiple login attempts.

Clipaha To address the security versus complexity
challenge in highly-constrained devices, we propose
moving the resource-hungry password hashing step to
the client. We propose Clipaha, a Client-side Password
Hashing scheme, based on Argon2, that allows user
authentication in highly-constrained devices. Figure 1
illustrates the concept of Clipaha in comparison to
server-side hashing. By moving the resource intensive
operation f (s∗||p) to the client, the server only needs
to compute a low cost one-way hash function h(.) (e.g.,
SHA-256) to prevent that leaked database entries can
directly be used to access the server. We provide an
implementation of Clipaha in the form of a web li-
brary1 and benchmark it on different systems to under-
stand the limitations that its mixed JavaScript and We-
bAssembly implementation faces. Benchmarks show
that our library is 50% faster than similar libraries and
can even run on some devices where others fail. We

1Artifact available at: https://github.com/clipaha/clipaha
/releases/tag/ICISSP_2023.

also provide a proof-of-concept of the server-side of
the code for the ESP8266,1 an embedded wireless de-
vice popular on Do It Yourself (DIY) environments
featuring an 80 MHz processor and 80 KiB of memory
for user data (Espressif Systems, 2020), and show that
also constrained server devices can benefit from mod-
ern password hashing algorithms with their increased
security against brute force attacks.

Contributions We summarize our contributions as
follows:

• We present Clipaha, a Client-side Password Hash-
ing scheme that does not compromise on the
security compared with server-side approaches
and allows stronger user authentication in highly-
constrained devices. Clipaha is robust against a
wider range of attacks than existing client-side ap-
proaches.

• We implement, test, and publicly release an imple-
mentation of Clipaha in the form of a Javascript
library.1 Our prototype is 50% faster than existing
approaches.

• We thoroughly evaluate Clipaha and demonstrate,
based on a set of eight scenarios, that it is ready to
be deployed in practical settings.
The rest of the paper is structured as follows. Sec-

tion 2 covers the related work. Section 3 introduces the
adversarial model. We present the objectives and mo-
tivation for Clipaha in Section 4. Section 5 describes
the implementation while in Section 6 we evaluate the
library. Finally, Section 7 concludes the paper.

2 Background and Related Work

Modern password hashing schemes use three tech-
niques to slow down attackers. First, they combine a
unique string, i.e., the salt, with the password before
using a one-way function (e.g., a cryptographic hash)
to make each password entry unique so that offline
attackers performing a dictionary attack have to exe-
cute the hash once per guess and entry (Wilkes, 1968).
Second, significant processing power is used to ensure
each hash execution is slow to execute (Morris and
Thompson, 1979). Third, significant amounts of mem-
ory space and bandwidth are utilized in a way that
prevents efficient use of GPUs, FPGAs, or ASICs to
compute the hash (Hatzivasilis, 2017).

In 2013, Argon2 (Biryukov et al., 2016) won a
competition aiming to modernize one-way functions
for hashing passwords concerning new attack method-
ologies (Aumasson et al., 2013). Argon2 has two main
variants, Argon2d and Argon2i, and various supple-
mentary variants, including Argon2id.

https://github.com/clipaha/clipaha/releases/tag/ICISSP_2023
https://github.com/clipaha/clipaha/releases/tag/ICISSP_2023

Table 1: Impact of security and functional issues over crack-
station, libsodium and Clipaha’s approaches. ✓ means the
approach is not affected; ✗ means it is, and; (✓) means it is
partially affected.

Salt User Ref.
Coll. Enum. Lib.

Crackstation ✓ ✗ ✗
Libsodium ✗ ✓ (✓)

Clipaha ✓ ✓ ✓1

Argon2d uses data-dependent memory accesses,
whereas Argon2i uses data-independent memory ac-
cesses. The consequence is that Argon2d is vulnerable
to side-channel attacks but offers the best resistance to
Time-Memory Trade-Offs (TMTOs), while Argon2i
is secure against side-channel timing attacks but is
weaker against TMTOs (Alwen and Blocki, 2017;
Biryukov et al., 2017).

Argon2id works as Argon2i for the first half of
the first iteration over the memory and as Argon2d
for the rest, thus providing both protection against
side-channel attacks and against cost savings due to
TMTOs (Biryukov et al., 2017).

Inherent to Argon2, and modern password hashing
functions in general, is that one can parametrize the
“hardness” of the hash function in different ways to
make it more resistant to attacks, e.g., by specifying
the needed memory and iterations to create the hash.
In particular, Argon2 has various input parameters
relevant to our use: password, salt, memory required,
execution time (iterations), the maximum degree of
parallelism allowed (lanes), and hash length.

The high memory and execution time parameters
needed to deter attackers using powerful systems en-
tail that constrained IoT systems cannot run the al-
gorithm natively. A possible solution is using server
relief, one of the evaluation criteria of PHC, so that
the server can offload the computation to the client.
Thus, more constrained systems can benefit from these
algorithms. However, server relief is not commonly
deployed (Blanchard et al., 2019).

There are two mechanisms to implement server re-
lief: crackstation (Security, 2019) and libsodium (De-
nis, 2019). Crackstation’s approach (Security, 2019)
does not recommend separating nor distinguishing the
parameters used to generate the hash’s salt, which
could result in the same salt value being used for dif-
ferent accounts on different sites. In Clipaha we ensure
a unique salt is used; we provide a comparison with
Clipaha in Table 1.

Libsodium’s approach (Denis, 2019) has three
main issues. First, compared to Crackstation’s and
Clipaha, it introduces an additional step (and the cor-
responding round trip time) to obtain the user’s salt.

Second, it is prone to user enumeration attacks. For
example, an attacker can detect a registration by notic-
ing the change in the salt belonging to the user. Fur-
thermore, when following the recommendations, an
attacker may also guess whether users are registered on
systems where usernames are canonicalized (converted
into a standard representation) when the pseudoran-
dom salt remains the same for different inputs resulting
in the same canonical username. In Clipaha, we re-
move the risk for user enumeration. Third, libsodium
only provides the tools to perform the authentication
flow but has no recommendations on parameter values.
We provide a user-friendly API with preset parameters
and a security analysis of several use cases. We have
also compared the client performance of Clipaha with
Libsodium and can show that the former is 25%–50%
faster.

Aside from modern password hashes, other tech-
niques to protect password-based authentication ex-
ist, such as Multi-Factor Authentication (MFA) and
Password-Authenticated Key Exchange (PAKE). MFA
uses factors other than the user’s knowledge of a pass-
word to protect an account. Similarly, PAKE is com-
plementary to Clipaha in that it protects against an
attacker sniffing the password in transit or imperson-
ating the authentication server. Clipaha is compatible
with MFA and PAKE and can be combined with them
(see Subsection 6.5).

3 Threat Model

In our adversarial model, the attackers’ primary ob-
jective is obtaining valid user credentials. This would
give them access to the system and the ability to move
laterally to other systems where the credentials have
been reused. In most cases, attackers also have as an
objective to access the service without authorization.

Our model considers both online attackers and of-
fline attackers. Online attackers have access to the
login system (Ntantogian et al., 2019). Offline attack-
ers have read access to the entire database of users’
password hashes (Bai and Blocki, 2021). They may
also have write access to the database or access to the
service. However, in this case, their objective is not
accessing the service, which would be trivial, but re-
covering the original credentials. We explain below
the concrete attacks these attackers can perform.

In credential bruteforcing, online attackers make
requests to the server to find a valid <user, password>
pair (Saad and Mitchell, 2020). Offline attackers
have full read access to the user database, including
their hashed passwords, and therefore can utilize opti-
mizations, e.g., TMTO techniques like rainbow tables

Table 2: The security (S), functional (F) and performance
(P) objectives for Clipaha.

Label Description

RQ-S1 Resistance to salt collisions
RQ-S2 Resistance to user enumeration
RQ-S3 Resistance to pass-the-hash attacks
RQ-S4 Ensure the algorithm is at least as

secure as if performed by the server
RQ-F1 Not require software developers to

choose security relevant parameters
RQ-F2 Suitable for the many contexts where

passwords are used
RQ-P1 Limit the delay of the authentication

process for legitimate users

(Oechslin, 2003). This is particularly relevant because
it allows them to exploit salt collisions. In general, the
effort for successful credential bruteforcing depends
linearly on the computational cost of the hash function
and exponentially on the entropy of the passwords.

In salt collisions, two or more passwords are
hashed using the same salt, hash function, and hash
parameters. Such collisions are problematic because
attackers can test all colliding accounts performing
only one hash operation per guess. This cost reduction
makes affected accounts more likely to be targeted by
attackers who try to minimize the economic costs of
their attack. Also, salt collisions allow an attacker to
see if various accounts have the same password since
the resulting hash will be the same in that case.

In user enumeration, attackers check for the ex-
istence of users in the system by directly querying
the targeted system or detecting differences in re-
sponses (Skowron et al., 2021).

Client-side approaches, including server relief, in-
troduce the risk for so-called pass-the-hash attacks. In
a pass-the-hash attack, the (offline) attacker tries to use
the already hashed credential stored in the breached
database. Such an attack would work not only on the
site but also on other sites with the same salt, password,
and hash parameters.

4 Design of Clipaha

In this section, we discuss the requirements behind
our work and then present the design of Clipaha, a
Client-side Password Hashing scheme that allows user
authentication in highly-constrained devices.

Algorithm 1 Clipaha’s client-side password hashing
process

function CLIPAHAHASH(Domain, Username, Pass-
word)

NUsername← CANONICALIZE(Username)
Salt← DELIMIT(Domain,NUsername)
return PASSWORDHASH(Salt,Password)

end function

Algorithm 2 Clipaha’s server-side hashing process

function CLIPAHASERVERHASH(ClipahaHash)
return HASH(ClipahaHash)

end function

4.1 Objectives

In Table 2, we list the main objectives of Clipaha.
We sorted them into three categories: security-related,
functional, and performance-related. The first three
security-related objectives are related to the threat
model: guarantee password hashes are unique across
accounts and systems (RQ-S1), ensure server behav-
ior does not allow to find if users are present or not
(RQ-S2), and make sure the hash stored in the database
cannot be used directly as input for authentication (RQ-
S3). As for credential bruteforcing, we assume that an
attacker cannot circumvent the limitations imposed by
the hashing algorithm but is not limited otherwise.

To guarantee overall security, the algorithm needs
to be at least as secure as if performed by a server
(RQ-S4). This objective implies that we consider
a use case with constrained servers but sufficiently
powerful clients. This aspect is closely related to the
performance-related objective that the adopted library
must keep a reasonable delay (RQ-P1) no matter which
type of client device they use.

To increase the use and deployment of modern
password hashing techniques without putting security
at risk, we need to provide a reference library which is
easy-to-use for software developers who may not be
security experts (RQ-F1). Clipaha should work with
other techniques (MFA, PAKE) and be compatible
with a range of important use cases, e.g., changing
the passwords or authentication of non-human devices
(RQ-F2).

4.2 Password Hashing Algorithm

We propose an algorithm to perform password hash-
ing on the client. With server relief, the client will
provide the brunt of the work to hash the password.
Hence, the client must be provided with all necessary
parameters, including the salt. Traditionally, said salt

would be stored in the password database on the server
and looked up when the client provides the username.
However, this would open the system to enumeration
attacks, as online attackers can easily detect the lack
of salt for unregistered users or see how they change
over time.

To circumvent enumeration attacks (RQ-S2), as
well as avoiding salt collisions (RQ-S1), Clipaha does
not involve the server in the hashing process and lets
the client calculate the salt locally based on a determin-
istic database identifier (e.g., the server’s domain) and
the username. This choice deviates from the standard
approach of using a random salt. We argue that only
uniqueness, and not randomness, is required to avoid
salt collisions. Therefore, credential bruteforcing will
not gain a significant structural advantage by having
a predictable, low-entropy salt compared to the case
where it has access to a random, high-entropy one.

Figure 1 depicts the general idea behind Clipaha’s
design while Algorithms 1 and 2 describe respectively
the client- and server-side hash more formally.

As can be seen on Algorithm 1, CLIPAHAHASH
performs three steps. First, the function translates the
username into its canonical representation using the
CANONICALIZEUSERNAME function (e.g., lowering
the case to attain case-insensitive usernames). This
ensures the system will return the same hash for user-
names that should be considered equivalent. Second,
to further reduce the risk of salt collisions, the func-
tion DELIMIT must ensure the database identifier and
the canonical username cannot be mixed when their
strings are concatenated (RQ-S1). Clipaha does so by
prepending the 32-bit Little Endian representation of
the size of the strings. Finally, it computes and returns
the hash of the password and the salt using a strong
hash function PASSWORDHASH.

Continuing with Algorithm 2, the input to CLI-
PAHASERVERHASH would be the output of CLIPA-
HAHASH. This function only performs a call to a
one-way function HASH, which does not need to be
computationally expensive. This prevents pass-the-
hash attacks (RQ-S3). Otherwise, an offline attacker
(with read-only access to the database) could replay
the entry in the database to access the service.

4.3 Client API and Security Levels

We implemented a JavaScript server relief library
called clipaha.js that developers can include in their
projects on the client side.1 We used the Ar-
gon2id (Biryukov et al., 2017) hash algorithm to
demonstrate that state-of-the-art algorithms can be
moved from the server to the client side. Depend-
ing on the parameters’ configuration, Argon2id can

Table 3: Proposed security levels. Iterations is the number of
rounds the algorithm runs; Memory is the amount of memory
used by the hash function.

Level low medium high ultra

Iterations 6 5 3 3
Memory (MiB) 192 384 1024 2016

run on a wide range of devices. However, the choice
of these parameters directly impacts the security level
and is, therefore, sensitive.

Our library, clipaha.js, leverages the lessons
learned from (Wijayarathna and Arachchilage, 2018)
to provide a developer-friendly API (RQ-F1). We
simplify the usage by hidding the parameters of the un-
derlying hash function and instead provide four secu-
rity levels (RQ-P1 and RQ-S4) which allow balancing
between security and compatibility. The four levels
represent parameter settings to target different classes
of devices:

low is intended to maximize the support for ancient
devices, like smartphones, ebook readers, or even
computers from the early 2000s.

medium targets all computers from the mid-2000s and
most smartphones and ebooks from the last 5 years.

high is the value that we would recommend for new
developments where only computers from the last
5 years are considered.

ultra uses the maximum amount of RAM possible
currently (a bit less than 2 GiB due to browser
limits as explained on Subsection 5.1) and will run
flawlessly on most modern laptops with at least
3 GiB of RAM.

The parameters used when hashing the password
with Argon2id in the current implementation of cli-
paha.js are chosen to fit the memory of the device
class and use as many/few iterations to keep the exe-
cution time below 20 seconds (RQ-P1). Since higher
memory requirements involve more computation per
iteration, the number of iterations needed in lower
security levels is higher (see Table 3).

Introducing security levels represents a potential
security threat. An attacker preferably targets sys-
tems using the low security level, which has lower
requirements on computation and memory. Therefore,
allowing a powerful offline attacker to execute cre-
dential bruteforcing at a higher rate. However, the
execution time on the low security level still requires a
non-trivial amount of computing time (e.g., 200 ms on
a Core i7-7700k) compared to conventional server-side
hash functions. Also, the legacy devices targeted with
the low security level are expected to be phased out,
increasing security requirements over time.

5 Implementing the Clipaha Library

We implemented and publicly released an implemen-
tation of Clipaha.1 We briefly describe the server im-
plementation in MicroPython, followed by a more
detailed discussion of the challenges for the client im-
plementation in Javascript/WebAssembly.

Server implementation We implemented a proof-
of-concept of the server part of Clipaha on an ESP8266
with 80 KiB of user data SRAM using MicroPython
1.11.0 and created a web interface for user login.

Client implementation One critical objective of Cli-
paha is to keep authentication times reasonable (RQ-
P1). Our implementation of the client side is based on
the Emscripten framework (Zakai, 2011) to use We-
bAssembly (Haas et al., 2017), when available, and fall
back to JavaScript otherwise. Clipaha also leverages
workers, when available, to ensure the main thread
can process events as the hashing proceeds. Perform-
ing password hashing in JavaScript presents various
challenges which arise mainly because we aim for our
library to be compatible with various devices.

Below, we discuss the four major challenges we
found while implementing the library: memory, multi-
threading, performance, and data remanence.

5.1 Memory

Most JavaScript virtual machines limit the program-
mer’s ability to make huge allocations, e.g., for Array-
Buffers, the size is limited to 232− 1 bytes (Pierron
et al., 2020). However, a paging approach could help
overcome the limitation. On WebAssembly, work is
in progress to support 64-bit addressing (Smith et al.,
2020).

In any case, manual testing in conjunction with our
evaluation (Subsection 6.3) shows that those memory
limits are more stringent in reality. On desktops, the
limit is 2 GiB for the whole memory stack (reason
behind our use of 2016 MiB of memory instead of
2048 MiB for ultra in Table 3) on both Firefox and
Chrome. On mobile phones, the limits are significantly
lower. For example, the mobile version of Chrome
limits available memory to a bit over 1 GiB even if
the device has more. On such devices, the memory
requirements for high, 1 GiB, or ultra, almost 2 GiB,
cannot be attained even when allocating memory early.

Instead of a statically allocated buffer, we also use
malloc because the generated code will otherwise in-
clude very large memory files (Zakai, 2017), which are
undesirable. Providing the statically allocated buffer
would allow for disabling malloc and reduce the risk

of an allocation failure caused by fragmentation. How-
ever, as we did not see fragmentation issues on any
browsers in our evaluation, and the only malloc al-
location done is the huge buffer used by Argon2, we
have opted for not using a statically allocated buffer.

5.2 Multithreading

After discovering the SPECTRE vulnerability (Kocher
et al., 2019), some browsers disabled the possibility
of using shared memory buffers across web workers
to avoid side-channel attacks. The situation has now
improved, with some browsers allowing their usage
under certain specific conditions (van Kesteren, 2020).
Even in such cases, to allow threads to share memory,
it is necessary to send specific headers on the web
application which isolate the application and restrict
its ability to add external resources. Not all browsers,
e.g., Safari, support this currently. Nevertheless, to
prepare for future threading support, we raised the
number of parallelizable work units (called lanes by
Argon2) to allow for up to 256 simultaneous threads.

5.3 Performance

JavaScript supports only 32-bit integer operations.
This conflicts with the core of Argon2: Lyra2’s
BlaMka hash function (Andrade et al., 2016), which
heavily uses 64-bit arithmetic. This, together with
the fact that JavaScript is usually interpreted by the
browser, makes the pure Javascript implementation of
Clipaha slow (see Subsection 6.3).

To address this, Clipaha relies on WebAssembly,
which increases the performance by providing 64-bit
integer support and compilation into native code. Nev-
ertheless, WebAssembly presents certain performance
limitations over native code. As it becomes more
widely available, SIMD support and other similar im-
provements will bring WebAssembly’s performance
more on par (Rossberg et al., 2018). For example, pre-
liminary testing hints that support for 128-bit vector
SIMD provides an improvement in run time of around
20%.

5.4 Data remanence

JavaScript does not provide any guarantees regarding
the lifetime of variables and handles strings as im-
mutable objects. Consequently, the password to be
hashed may remain unmodified on memory over a
large period of time until it is eventually overwritten.
Overwritting the memory ourselves is also unfeasible
since the password is provided as an immutable ob-
ject. Consequently, trying to reduce the lifetime in

Table 4: An overview of the evaluations of Clipaha.

Label Description

Eval-1: Security analysis
Eval-2: Server-side: Proof-of-concept with a

microcontroller
Eval-3: Client-side: performance comparison of

WebAssembly vs Javascript
Eval-4: Client-side: baseline performance

comparison in 35 settings
Eval-5: Analysis of Clipaha in real scenarios

memory of intermediate results by overwritting them
is futile as it will not necessarily reduce the amount of
time during which password derived data will remain
in memory but will impact performance significantly.
Therefore, Clipaha does not clean-up the stack nor the
allocated hash memory after a computation as doing
so will not improve security.

6 Evaluation

To comprehensively evaluate Clipaha, we have consid-
ered the work from four complementary perspectives
with a total of five parts, as shown in Table 4. Eval-1
analyzes the security of Clipaha according to our threat
model. Eval-2 focuses on the server, with a proof-of-
concept of Clipaha running on very constrained hard-
ware (as found on certain IoT devices) with appropriate
measurements. Eval-3 provides a comparison between
WebAssembly and Javascript. Eval-4 is a performance
comparison between the state-of-the-art and Clipaha
on a total of 35 devices/softwares grouped into three ca-
pability classes: phone, tablet, and computer. Finally,
Eval-5, considers the deployment requirements of pass-
word systems and discuss how Clipaha addresses them
in several scenarios.

The experiments on Eval-3 and Eval-4 were run
five times on each setup, using different salt and pass-
word values on each run. We used the median to repre-
sent each setup’s result.

6.1 Security Analysis

In the following, we discuss the security requirements
presented in our threat model.

Regarding Salt collisions (RQ-S1), Clipaha’s se-
curity stems from its salt components being unam-
biguously delimited (see Subsection 4.2). Due to the
unique database identifier, Clipaha’s salts are secure
against collisions even across systems using the same
salt calculation method. Confronted with systems us-
ing different ways of choosing their salt, it is unlikely

that salts will collide since Clipaha prefixes the unique
database identifier with its size as a 32-bit integer.
For normal usage, i.e., with database identifiers under
65536 bytes, the size prefix will contain a sequence of
two consecutive null bytes. Such a sequence is uncom-
mon in text strings and would appear randomly with
probability 2−16. If we tackle the full string, the prob-
ability of a full match on a random string is 232+8∗n

where n is the length in bytes of the database identifier.
To avoid timing side-channels leading to User enu-

meration attacks (RQ-S2), an implementation should
perform all extra server-side steps, even if the pass-
word is wrong. Similarly, an attacker may detect
changes in password hashing parameters or salts pro-
vided by the server for a specific user. Consequently,
an approach must ensure all provided data is either
global and not depending on the username or constant
for a specific username during the whole database life.
Regarding the first attack solving it will always de-
pend on the way the system is implemented. Clipaha
minimizes the risk of this issue by choosing Argon2id
which masks the side-channels by first doing a data-
independent pass. Also, we take the issue into account
when designing the scenarios and clearly explain how
to implement them avoiding timing side-channels. As
for the second attack, Clipaha only uses globally pub-
lic parameters and user-provided inputs without any
server-side processing as described in Subsection 4.2
and is, consequently, not affected by it.

In Pass-the-hash attacks (RQ-S3), the (offline) at-
tacker tries to use the already hashed credential stored
in the breached server database. Clipaha avoids this
by adding an additional lightweight hash on the server
side. As a result, the attacker would still need to revert
this hash to be able to use the credentials stored in
the database. Since the result of Argon2 should be
indistinguishable from a random string, this means the
attacker will need to perform on average 2n−1 guesses
where n is the length in bits of the Argon2 computa-
tion. We provide a performance measure of such an
extra hash in Eval-2.

Credential bruteforcing becomes significantly
more difficult when using modern password hashing al-
gorithms like Argon2 (RQ-S4). This is a consequence
of increasing significantly the amount of resources,
i.e., CPU time and memory amount and bandwidth,
needed for each guess attempt. Argon2 explicitly tar-
gets optimizations and TMTOs (Hatzivasilis, 2017)
to ensure that the guess time does not depend on the
attacker’s ability to use accelerators. With Clipaha,
online attackers now have to perform the computation
themselves instead of moving it to the authentication
server. Offline attackers still have to perform the com-
putation themselves and, since all the hash parameters

would be known beforehand, could try to precompute
valid outputs (Bernstein and Lange, 2013).

An offline attacker trying to precompute password
hashes will see a reduction of the actual, i.e., wall, time
needed to perform the attack since the attacker could
create beforehand a hash table mapping hash function
outputs to inputs. Nevertheless, the CPU time, memory
bandwidth and amount, and long term storage costs
for an attacker would be raised significantly. First,
the attacker would need to target a specific, i.e., linear,
number of usernames as the unique salt would increase
the cost of the attack with the number of targeted user-
names. Similarly, even for the single username case,
the attacker will need to calculate the hash for all the
password guesses.

Finally, Clipaha provides a reference library (RQ-
F1)1 with an easy-to-use API and pre-defined security
levels to minimize implementation mistakes by soft-
ware developers and make Clipaha readily deployable.

6.2 Microcontroller proof-of-concept

To show the feasibility of deploying our approach,
we created a proof-of-concept in MicroPython tar-
geting the login and registration processes on an
ESP8266 (Espressif Systems, 2020) with only 80 KiB
of SRAM available. Thus, we could successfully show
that the server side of Clipaha can run even on such
constrained hardware.

Next, we benchmarked two versions of our code.
The first uses an additional locally executed hash func-
tion, SHA256, to avoid pass-the-hash attacks (RQ-S3).
The second performs a raw string comparison with a
locally stored password.

We performed 1000 measurements of the time it
took to hash and securely compare the encrypted pass-
word on the device along with the time it took to
process a login request without the local hash. We
measured that the hash measured for 3.7% of the
time it took to perform the request with a median of
735.425 µs for the hash and 19604.25 µs for the full
requests. Requests without the hash had a median of
19005.1 µs in comparison. As expected, with server
relief, the code on the server side is fast even when run
on a microcontroller (less than 20 ms).

6.3 WebAssembly vs JavaScript

Our client implementation of Clipaha uses WebAssem-
bly and only falls back to JavaScript when necessary,
as the latter is very slow. With Eval-3, we compare the
native speeds on a desktop, a Core i7-4710HQ with
16 GiB of RAM, with WebAssembly and Javascript.
As seen in Table 5, on a Desktop, WebAssembly incurs

slowdowns of around 2-3.5x compared to native code,
while JavaScript imposes a less consistent penalty of
30-130x. WebAssembly’s penalty may be caused by
optimization choices when compiling the middle code,
the lack of native SIMD support, and other minor over-
heads. The JavaScript one is consistent with the ex-
pected impact of using an interpreted language.

6.4 Baseline Performance Comparison

Clipaha moves the complexity to the client-side. We
have shown in Eval-2 that IoT devices can handle
the remaining computation at the server side. In this
section we focus on the complexity for the client-side
devices, which we expect to be: mobile phones, tablets,
and computers, with the aim to investigate Clipaha’s
portability and ability to run on them. This allows us
to validate the security levels presented in Table 3.

We also use this opportunity to compare Clipaha
with the similar libsodium (see Section 2). In par-
ticular we are comparing the benchmarks against a
similar implementation using lisodium.js (Denis et al.,
2020). We chose libsodium.js because it is the only
library providing Argon2id support that we could find
available for browsers.2

We run Clipaha and libsodium on a total of 21
devices, using different combinations of browsers and
devices. This resulted in the 35 different benchmarks
summarized in Table 6, where we roughly grouped the
results based on the capability of the hardware. On
the phone category, devices ranged from a Fairphone
2 with a Sanpdragon 801 CPU and 2 GiB of RAM to a
Samsung S10+ with an Exynos 9820 CPU and 8 GiB
of RAM. On the tablet category, devices ranged from
an iPad with an A12 Bionic CPU and 3 GiB of RAM
to a Surface Pro with a Core i5-7300U CPU and 8 GiB
of RAM. Finally, on the computer category, device
CPUs ranged from a Core i7-4710HQ CPU to a Core
i5-9400T, including also an AMD Ryzen7 4700U and
an ARM M1, while RAM amounts varied from 8 GiB
to 24 GiB.

We see that phones are up to ten times slower than
computers. Such a difference may be caused by slower
phone memory, a slower processor, or worse code
optimization by phone-based browsers. Aiming at the
best intercompatibility, we can appreciate that low,
which improves on currently used defaults, did work

2During benchmarking we found that Internet Explorer
11 and Edge are unable to run the libsodium.js code in-
side a dedicated web worker because the cryptographic
getRandomValues API is not exposed. Since libsodium.js
does not use this API when computing Argon2id hashes, we
provided a trivial polyfill returning the input TypedArray to
be able to proceed.

Table 5: Native speed versus WebAssembly and JavaScript on a Core i7-4710HQ with 16 GiB of RAM. “Factor” is normalized
for the first row with native code. Chromium version is 85.0.4183.83 while Firefox version is 68.12.0esr.

Browser Impl. low medium high ultra
Time (s) Factor Time (s) Factor Time (s) Factor Time (s) Factor

Native AVX2 0.653 1 1.446 1 2.083 1 4.068 1

Chromium WebAssembly 1.873 2.87 3.181 2.20 5.269 2.53 10.845 2.67
JavaScript 80.507 123.29 133.685 92.45 215.930 103.66 422.795 103.93

Firefox WebAssembly 2.228 3.41 3.770 2.61 6.040 2.90 11.912 2.93
JavaScript 29.109 44.58 47.909 33.13 77.254 37.09 151.300 37.19

Table 6: Benchmark results summary. Number of failures (F), minimum (Min) and maximum (Max) seconds taken to run are
presented for each security level, device type and library. Only devices with at least a success are considered. Each security
level was tested 5 times per device and browser.

Device
type Total Library low medium high ultra

F Max Min F Max Min F Max Min F Max Min

Phone 15 clipaha 0 19.134 7.362 1 31.571 12.228 13 25.900 20.012 13 54.175 41.648
libsodium 0 33.313 12.611 2 54.887 21.076 13 48.320 34.648 13 100.377 69.114

Tablet 2 clipaha 0 2.279 2.015 0 4.048 3.739 0 7.689 5.940 1 17.674 17.674
libsodium 0 4.287 3.440 0 7.253 5.739 1 11.913 11.913 1 25.857 25.857

Computer 18 clipaha 0 3.032 1.126 0 4.979 1.873 0 8.054 3.328 0 15.717 6.124
libsodium 0 6.654 1.993 0 11.097 3.348 0 18.010 5.464 0 34.015 11.080

on a vast majority of devices, providing delays of up
to 20 s. Although this may look long (see RQ-P1),
we find it acceptable as it allows even fairly obsolete
clients to benefit from the security provided by Argon2.
With caching the hashed credentials (see Eval-5), this
could also be a one-time cost amortized over a larger
number of logins. Given the relatively low failure
rate, medium is well suited for most modern mobile
devices with 3 GiB of RAM or more where such large
allocations can be performed. Finally, high and ultra
are restricted to browsers like Firefox which do not
limit allocation size. These two security levels also
require either a high-end mobile device with enough
RAM or a desktop system.

We also observe that Clipaha is 25 to 50% faster
than libsodium.js. This difference may be caused by
additional overhead in libsodium.js, or by Clipaha’s
use of fixed Argon2 parameters allowing the compiler
to produce faster code. Clipaha also completed the
benchmarks on certain devices on which libsodium.js
failed, probably because of the early allocation of
memory made by Clipaha to avoid fragmentation.

6.5 Real Scenarios

Our final evaluation of Clipaha is concerned with its
suitability for the many contexts where passwords are
used (RQ-F2). While most systems will need a pro-
cess for users to log in and, maybe, register and change
their passwords, more complex requirements may also
arise. As with any other authentication approach, im-
plementing these requirements carelessly may result

Table 7: An overview of the 8 evaluated scenarios.

Type Description

Server Registration, Login,
Password change

Client Client-side caching, Password
managers, Non-human authentication

Support Password-Authenticated Key
Exchange, Multi-Factor Authentication

in new security problems. To address this risk and
ensure that Clipaha is deployed in such systems, we
provide implementation scenarios with an analysis of
those security issues that Clipaha cannot solve.

As shown in Table 7, we consider: three sever-side
authentication scenarios; three purely client-side sce-
narios; and two orthogonal techniques that can be used
in conjunction with Clipaha: Password-Authenticated
Key Exchange and Multi-Factor Authentication.

Registration During the registration of a new user,
the server sends the database identifier to the client.
The client then sends the password in plain text and
hashed.3 The server validates all fields, including that
the plaintext password matches the password policy.4

3We assume that communications between client and
server are secure. One example of such a channel is a TLS
connection. This avoids eavesdropping attacks.

4We assume that the client can be trusted to send the
hashed password matching the sent plaintext password. If
these were different, the client could bypass the password
policy verification by sending instead a policy-breaking
hashed password. Since this would only impact the user

If all went well, the server inserts the password hash
along with the new user in the database (and proceeds
with any further steps). If the verification fails, the
server returns an error to the client. To avoid user
enumeration, if the user is already present, we notify
the user through an alternative communication channel
without showing a different error message. Also, the
timing of the insertion and any operations done after-
wards must be the same whether the user is present or
not.

Login The client is provided with the database iden-
tifier and processes and sends the resulting hash and
the username to the server. The server verifies the
hash against the database. The user is allowed in if
the username exists and the hash matches. To avoid
user enumeration, the same message, e.g., Invalid user-
name or password, must be displayed whether the user
does not exist or the provided password is incorrect.
Also, to avoid timing side-channel attacks, the verify
operation should take the same amount of time if the
user does not exist or the password is incorrect.

Password change To change passwords, the server
sends the database identifier and the current session’s
username. The client then asks for the original pass-
word and the new password and hashes both. The
client sends both passwords in plaintext3 and their cor-
responding hashes to the server. The server proceeds
to verify that the old password hash matches the one
of the current user. If it does not, it returns an error
message to the client. Otherwise, it checks that the
new password plaintext complies with the password
policy. If all goes through correctly, the server updates
the database using the new password.

A Cross-Site Request Forgery (CSRF) (Watkins,
2001; KirstenS, 2020) attack allows an attacker to
change the password to take over an account when the
old password is not requested and verified. In such a
case, appropriate measures must be taken, like using
a CSRF token. Because this process depends on an
authenticated session being already in place and will
only affect the user, other security issues, e.g., user
enumeration, are not a direct concern.

purposefully trying to break the policy and would be against
the user’s interest, the risk of this issue should be deemed
low. Despite that, this could be avoided by either computing
the hash on the server or, alternatively, by delegating this
computation to a trusted and more powerful server. The
server would then ensure the hashes match the ones sent.
Given the resources needed to compute the hash, this may
open the server for a DoS attack if clients repeatedly send
requests.

Client-side caching To save resources (RQ-P1),
client-side code using Clipaha may decide to cache
the password hash computation. This may indeed be
the case for obsolete devices as the login process oth-
erwise can take almost 20 s (see Eval-4).

Since cached entries would be returned almost in-
stantly, attackers with access to the shared cache could
use a timing side-channel to see which entries it con-
tains. Therefore, to avoid timing side-channels, caches
should ensure the cached results are only provided
once the same amount of time it initially took to cal-
culate the hash has elapsed. Similarly, the keys and
the contents of the cache could be used to impersonate
users. Therefore, caches should be careful with data
remanence and remove old entries periodically.

Password managers Password managers can inter-
act with the client-side code using Clipaha and provide,
along with the plaintext password, the already hashed
password and the parameters used. The client can then
use this hash to avoid doing the calculation. Similarly,
the client-side code can send new hashes, along with
the input parameters, to the manager for later retrieval.

To avoid pass-the-hash attacks, the manager must
store the hashed passwords using the same security
measures used for the plaintext. Similarly, the manager
should also use the same access policies it would use
for the plaintext password.

Non-human authentication Services using Clipaha
may need to be available to embedded devices that
try to authenticate themselves. Assuming accounts
are not shared, such devices could replace the hashed
password with a hash-length, i.e., 256-bit, token sam-
pled from a good random source and registered during
provisioning. The token would replace the Clipaha
hashed password during verification. From a security
perspective, this approach will work well if the token
is stored securely and protected from physical access
attacks and access by other domains or applications
running on the device.

Password-Authenticated Key Exchange integration
Clipaha is compatible with Password-Authenticated
Key Exchange (PAKE), where a cryptographic key is
negotiated using the password. Several steps must be
done in constant time to avoid timing side-channels,
even if the user does not exist. If the PAKE is well
designed, it will also not be possible for the attacker
to use server verifiers to impersonate the client.

Multi-Factor Authentication integration If Multi-
Factor Authentication (MFA) is in place, the client

should provide its codes before verification along with
the hashed password. These codes would be validated
during verification. If extra actions from the server
are required for MFA, they have to be performed after
verification succeeds but before any further actions
are carried out. Additional server actions and MFA
value validation should be in constant time and look
the same even when the user has no MFA or does not
exist in order to prevent side-channels attacks.

7 Conclusions

This paper introduces Clipaha, an scheme for server
relief. Clipaha allows using modern password hash-
ing functions with high security parameters even on
resource constrained IoT devices by moving the com-
putation away from them and into the client.

We test Cliapaha’s performance, security, and
readiness to be deployed. We specify and analyze
the security of eight authentication-related scenarios
which leverage this scheme and publicly release an
implementation1.

From the security analysis, we conclude that Cli-
paha is a key solution to help build more secure authen-
tication systems since it is resistant to salt collisions
and user enumeration attacks as opposed to prior work.

The deployability tests show that Clipaha is ready
to be used for web-based authentication. Clipaha’s
server-side is lightweight enough to work even on an
ESP8266 with only 80 KiB of RAM. The benchmarks
show that client-side, Clipaha performs over two times
faster than the closest baseline: libsodium.js. Also,
thanks to Clipaha’s four security levels and the bench-
marks we have performed, developers can balance
between security and running Clipaha on most devices
from the last five years while addressing any compati-
bility issues caused by their technical limitations.

In conclusion, Clipaha has the potential to im-
pact embedded systems like SoHo network appliances
and IoT gateways which are resource constrained and
rarely require flows more complex than registration
(during provisioning) and authentication.

ACKNOWLEDGEMENTS

This paper and most of the artifacts associated with
it have been developed as part of the the Resilient
IoT project and under a grant from The Swedish Civil
Contingencies Agency (MSB).

The first author would like to acknowledge the
feedback received from Vicent Nos and Ignacio
Bedoya during his tenure as CISO for Lescovex when

the ideas behind this paper started taking shape. The
first author also would like to acknowledge the co-
founders of Garmer Technologies OÜ for believing
that his research could have commercial use.

Finally, the authors would like to acknowledge the
benchmark data contributions from some members
of the Networks and Systems unit at Chalmers and
some individual members. The authors would like to
specially thank the contributions from Carlo Brunetta
(benchmarks on most Apple devices) and Elaine Mon-
teagudo Sánchez (benchmarks on most browsers using
her Xiaomi Redmi Note 8T and her Core i7-8750H
laptop).

REFERENCES

Alwen, J. and Blocki, J. (2017). Towards practical attacks
on argon2i and balloon hashing. In EuroS&P.

Andrade, E. R., Simplicio, M. A., Barreto, P. S., and dos
Santos, P. C. (2016). Lyra2: Efficient password hashing
with high security against Time-Memory Trade-Offs.
IEEE Transactions on Computers, 65(10).

Aumasson, J.-P. et al. (2013). Password hashing competition
(phc).

Bai, W. and Blocki, J. (2021). Dahash: Distribution aware
tuning of password hashing costs. In FC.

Bauman, E., Lu, Y., and Lin, Z. (2015). Half a century of
practice: Who is still storing plaintext passwords? In
ISPEC.

Bernstein, D. J. and Lange, T. (2013). Non-uniform cracks
in the concrete: The power of free precomputation. In
ASIACRYPT.

Biryukov, A., Dinu, D., and Khovratovich, D. (2016). Ar-
gon2: New generation of memory-hard functions for
password hashing and other applications. In EuroS&P.

Biryukov, A., Dinu, D., and Khovratovich, D. (2017). Ar-
gon2: the memory-hard function for password hashing
and other applications. Technical report, Password
Hashing Competition.

Blanchard, E., Coquand, X., and Selker, T. (2019). Moving
to client-side hashing for online authentication. In
STAST.

Corbató, F. J. (1963). The Compatible Time-Sharing System:
A Programmer’s Guide. The MIT Press.

Denis, F. (2019). Libsodium documentation: Password hash-
ing.

Denis, F. et al. (2020). libsodium.js: README.
Eliasen, M. (2019). Developers, its 2019, hash passwords

accordingly.
Espressif Systems (2020). ESP8266EX datasheet. Datasheet,

Espressif Systems.
Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman,

M., Gohman, D., Wagner, L., Zakai, A., and Bastien, J.
(2017). Bringing the web up to speed with WebAssem-
bly. In PLDI.

https://resilient-iot.se/
https://resilient-iot.se/
https://www.msb.se/
https://www.msb.se/
https://lescovex.com/
https://garmer.tech

Hatzivasilis, G. (2017). Password-hashing status. Cryptog-
raphy, 1(2).

KirstenS (2020). Cross site request forgery (csrf).
Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Werner,

H., Hamburg, M., Lipp, M., Mangard, S., Prescher, T.,
Schwarz, M., and Yarom, Y. (2019). Spectre attacks:
Exploiting speculative execution. In S&P.

Lee, J. A. N., Rosin, R., Corbató, F. J., Fano, R. M., Green-
berger, M., Licklider, J. C., Ross, D. T., and Scherr,
A. L. (1992). The Project MAC interviews. IEEE
Annals of the History of Computing, 14(2).

Morris, R. and Thompson, K. (1979). Password security: A
case history. Communications of the ACM, 22(11).

Ntantogian, C., Malliaros, S., and Xenakis, C. (2019). Eval-
uation of password hashing schemes in open source
web platforms. Computers & Security, 84.

Oechslin, P. (2003). Making a faster cryptanalytic time-
memory trade-off. In Boneh, D., editor, CRYPTO.

Pierron, N. B., Scholz, F., and Kettner, P. (2020). Rangeerror:
invalid array length.

Rossberg, A. et al. (2018). Simd proposal for webassembly.
Saad, E. and Mitchell, R. (2020). Testing for account enu-

meration and guessable user account.
Security, D. (2019). Salted password hashing - doing it right.
Skowron, P. et al. (2021). Brute force attack.
Smith, B. et al. (2020). Memory64 proposal for webassem-

bly.
Van Acker, S., Hausknecht, D., and Sabelfeld, A. (2017).

Measuring login webpage security. In SAC.
van Kesteren, A. (2020). Safely reviving shared memory.
Watkins, P. (2001). Cross-site request forgeries (re: The

dangers of allowing users to post images).
Wijayarathna, C. and Arachchilage, N. A. G. (2018). Why

johnny can’t store passwords securely? a usability
evaluation of bouncycastle password hashing. In EASE.

Wilkes, M. V. (1968). Time-sharing computer systems. Num-
ber 5 in Computer monographs. American Elsevier,
New York, NY, USA.

Zakai, A. (2011). Emscripten: an LLVM-to-JavaScript com-
piler. In OOPSLA.

Zakai, A. (2017). What can cause the size of the .js.mem file
increase?

