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Abstract. Blind signature schemes are the essential element of many
complex information systems such as e-cash and e-voting systems. They
should provide two security properties: unforgeability and blindness. The
former one is standard for all signature schemes and ensures that a valid
signature can be generated only during the interaction with the secret
signing key holder. The latter one is more specific for this class of signa-
ture schemes and means that there is no way to link a (message, signa-
ture) pair to the certain execution of the signing protocol. In the current
paper we discuss the blindness property and various security notions
formalizing this property. We analyze several ElGamal-type blind signa-
ture schemes regarding blindness. We present effective attacks violating
blindness on three schemes. All the presented attacks may be performed
by any external observer and do not require signing key knowledge. One
of the schemes conceivably became broken due to an incorrect under-
standing of blindness property.
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1 Introduction

The blind signature mechanism was originally proposed by Chaum in 1982 in [1]
for e-cash systems. Signature issuing protocol is the interactive protocol that
runs between two parties: a Signer and a Requester. As the result, the Requester
obtains the signature for some message, at that the Signer does not receive any
information about either the message or the signature value. The application of
blind signature schemes includes electronic voting systems, anonymous e-cash
systems, direct anonymous attestation, anonymous credentials, etc.

Blind signature schemes should provide two security properties: unforgeabil-
ity and blindness. The first one is standard for all signature schemes and ensures
that a valid signature can be generated only during the interaction with the
secret signing key holder. The second property is more specific for this class of
signature schemes and provides that a Signer learns no additional information
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during the protocol execution. However, the way to determine this information is
not obvious. Intuitively it seems that the message to be signed should be hidden
from Signer, but it turns out that this is not enough.

In the current paper we discuss the blindness property and analyze several
ElGamal-type blind signature schemes regarding this property. We present at-
tacks violating blindness on schemes introduced in [2–4]. It seems that one of
them [3] became broken due to an incorrect understanding of blindness property.

2 Blindness property

Before talking about blindness we recall the definition of blind signature scheme.
It is determined by three algorithms:

– (sk, pk)← KeyGen( ): a key generation algorithm that outputs a secret key
sk and a public key pk;

– (b, σ) ← 〈Signer(sk), Requester(pk,m)〉: an interactive signing protocol
that is run between a Signer with a secret key sk and a Requester with
a public key pk and a message m; the Signer outputs b = 1 if the interaction
completes successfully and b = 0 otherwise, while the Requester outputs a
signature σ if it terminates correctly, and a fail indicator ⊥ otherwise.

– b ← V erify(pk,m, σ): a (deterministic) verification algorithm that takes a
public key pk, a message m, and a signature σ, and returns 1 if σ is valid on
m under pk and 0 otherwise.

Blindness. Informally, the blind signature scheme provides blindness if there is
no way to link a (message, signature) pair to the certain execution of the signing
protocol. In other words, the blindness is broken if the particular protocol execu-
tion for some fixed message leads to fixing the signature value in an unambiguous
way or at least to significant narrowing the set of possible signature values. In
other words, it means that for each protocol transcription and message there
exists only the small set of valid signature values (and hence, blinding factors
values) that could be produced during such protocol execution.

For deeper understanding we consider the example of using blind signature
schemes in e-voting systems. Suppose, that the authenticated voter performs a
blind signature protocol with the Registrar and receives a signature for his ballot
(the ballot acts as the message in this scenario). Note that in this case the tran-
scription of the protocol is tied to a specific person, his full name and personal
information. After receiving the signature, the voter sends a signed ballot to the
ballot box anonymously. Thus, if one can link the protocol transcription to the
(message, signature) pair, then he can link the ballot to the specific person and
violate anonymity.

Towards formalizing. Let describe the regular blindness security notion intro-
duced in [5, 6]. An adversary acts as a malicious Signer and is powered to run
the signing protocol with the Requester twice. It is assumed that the Requester
behaves correctly (according to the protocol). After two successful interactions
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the Requester outputs two (message, signature) pairs simultaneously. If at least
one of the interactions failed, the Requester outputs fail indicator.

The adversary’s task (threat) is to link the transcription to the correspond-
ing (message, signature) pair with success probability significantly greater than
1/2. A strong and a weak attacks may be also distinguished by the following
criteria [7]:

– by key generation way (weak attack — the adversary generates key pair
according to the protocol, strong — in the malicious way),

– by method of choosing messages, the signature for which the adversary
should distinguish (weak attack — the messages are chosen by the Requester,
strong — by the adversary).

Note that regular blindness assumes that all interactions terminates success-
fully. However, extended security notions, that allow an adversary to initiate
aborts, were also introduced: a-posteriori blindness [8], selective-failure blind-
ness [9]. The latter notion was also extended to the multiple interaction case [10].
A-posteriori blindness originally considers blindness of multiple executions be-
tween the Signer and the Requester, and guarantees unlinkability of execution
with (message, signature) pairs only for non-aborted sessions. An adversary is
powered to control the distribution on the signed messages, but not to choose
them. However, a-posteriori blindness does not imply ordinary blindness and vice
versa [8]. Selective-failure blindness guarantees that adversary could not force
Requester to abort the signing protocol because of a certain property of the
Requester message, which would disclose some information about the message
to the adversary. Selective-failure blindness is a strictly stronger notion than
regular blindness [10].

3 Broken schemes

This section presents three ElGamal-type blind signature schemes that do not
provide blindness and the corresponding attacks. To address specific schemes we
name them by the authors’ initials and the date of paper publication.

All considered schemes are based on the elliptic curve discrete logarithm
problem. If p is a prime number then the set Zp is a finite field with characteristic
p. We assume the canonic representation of the elements in Zp as a natural
number in the interval [0 . . . p − 1].We define Z∗p as the set Zp without zero
element. We denote the group of points of elliptic curve over the field Zp by G,
the order of the prime subgroup of G by q and elliptic curve point of order q by
P . For simplicity we assume that p < q. A key generation algorithm KeyGen in
all schemes involves picking random d from Z∗q (secret signing key) and defining
Q = dP (public verifying key). We denote by H the hash function that maps
binary strings to elements from Zq and assume that all field operations are
performed modulo q.

To avoid trivial attacks we assume that during the signing protocol both the
Signer and the Requester check that field elements are nonzero, points belong
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to the used elliptic curve and are not equal to the zero point. Moreover, the
Requester should always check that the values obtained from the Signer are
valid for its query. If one of these checks fails, the participant should abort the
protocol with fail indicator.

All the proposed attacks are applied in the weak security model:

– key pair is generated correctly;

– Requester chooses the messages for signing on its own;

– an adversary does not need to know secret signing key;

– an adversary does not need to initiate aborts on the Requester side.

In fact, all these attacks may be performed by any external observer, not only
the Signer.

3.1 BS GYP16 schemes

Four blind signature schemes, based on ECDSA, GDSA, KCDSA and DSTU
schemes, were proposed in [2] in 2016. We will now present the definition of
ECDSA-based scheme and attack on it. The attacks on other schemes are con-
structed similarly.

Scheme description. The signing protocol is defined at Figure 1.

The verify procedure for the message m and the signature (r, s) assumes
computing point R = s−1(rQ+eP ), where e = H(m), and verifying the equality
R.x mod q = r.

Attack. We show that for fixed protocol transcription and message there exists
only the small set of valid signature values that could be produced during the
given protocol execution. Indeed, if the protocol transcription (R, e, s) and mes-
sage m are fixed, then the r = R.x mod q and e′ = H(m) values are also fixed.
The line (1) allows to define the r′ component of the signature unambiguously as
r′ = re−1e′ and thus R′ point is fixed up to sign. For each possible R′ value there
exists the unique α value such that R′ = αR. But α values are selected uniformly
at random, so the probability to choose α, such that (αR).x mod q = re−1e′,
during several protocol executions is negligible. Therefore, with overwhelming
probability there exist only one signature with r′ component satisfied the con-
dition in line (1).

Hence, the line (1) provides the criteria to break the blindness property. The
exact transcription (R, e, s) corresponds to the certain message m with signature
(r′, s′) iff the following condition holds:

e = r(r′)−1e′,

where e′ = H(m).
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The signing protocol

Signer(d,Q) Requester(Q,m)

k←$Z∗q
R← kP

R

α←$Z∗q
R′ ← αR

r ← R.x mod q

r′ ← R′.x mod q

e′ ← H(m)

e← r(r′)−1e′ (1)

e

r ← R.x mod q

s← k−1(dr + e)

s

s′ ← sα−1r′r−1

σ ← (r′, s′)

Fig. 1. BS GYP16 scheme: the signing protocol.

3.2 BS R00 scheme

Two blind signature schemes, based on Schnorr and ElGamal (specifically, GOST)
signatures, were proposed in [3] in 2000. Both of them are vulnerable to the same
attack. Let us show it on the GOST-based blind signature example.

Further we assume that elliptic curve points can be represented as binary
strings (corresponding to their coordinates) and therefore may be passed as
input to the hash function H.

Scheme description. The signing protocol is defined at Figure 2.
The verify procedure for the message m and the signature (R, s) assumes

verifying the equality sP = H(R)Q+ eR, where e = H(m).

Attack. Similar to the previous scheme, we show that for fixed protocol tran-
scription and message there exists only few valid signatures that could be pro-
duced during the given protocol execution. Indeed, if the protocol transcription
(R, e, s) and message m are fixed, then the r = H(R) and e′ = H(m) values are
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The signing protocol

Signer(d,Q) Requester(Q,m)

k←$Z∗q
R← kP

r ← H(R)

R

α←$Z∗q
R′ ← αR (1)

r′ ← H(R′) (2)

r ← H(R)

β ← r′r−1 (3)

e′ ← H(m)

e← αβ−1e′ (4)

e

s← ke+ dr

s

s′ ← sβ

σ ← (R′, s′)

Fig. 2. BS R00 scheme: the signing protocol.

also fixed. Consider the line (4) of the protocol keeping in mind the relations
from lines (1)–(3):

e = αβ−1e′ = α(r′r−1)−1e′ = α(r′)−1re′ = αH(αR)−1re′.

The equation e = αH(αR)−1re′ for α has only few roots. However, α values
are selected uniformly at random, so the probability to choose α, that satisfies
the equation above, during several protocol executions is negligible. Therefore,
with overwhelming probability there exist only one signature with R′ = αR
component, for which α satisfies the condition in line (4).

Hence, the criteria for breaking blindness can be constructed from the lines
(1)–(4). The exact transcription (R, e, s) corresponds to the certain message m
with hash-value e′ and signature (R′, s′) iff the following condition holds:

αR = R′,

where α = e(e′)−1H(R′)H(R)−1.
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The attack on Schnorr-based blind signature, proposed in [3], is defined using
the same considerations.

Blindness understanding. The attack seems to become possible due to incorrect
understanding of blindness property. The authors of [3] considered blindness as
the resistance to the attacks that lead to the disclosure of message m after
the protocol execution. However, blindness property is much wider. Indeed, the
protocol transcription may leak information about the signature value that also
may violate blindness.

3.3 BS TNHV18 scheme

The similar attack is applicable to the aggregate blind signature scheme, that was
proposed in 2018 in [4] (more precisely, two cases of Signing protocol differring
on the Requester side were proposed). It is also GOST-based scheme. Without
loss of generality, we omit aggregation property and present the description of
the scheme in case of one Signer. Indeed, the following attack does not need the
secret key knowledge and can be performed by anyone who can view the set of
protocol transcriptions and the set of generated (message, signature) pairs.

Scheme description. The signing protocol is defined at Figure 3.
The verify procedure for message m and signature (r, s) in both cases assumes

computing point R = e−1sP − e−1rQ, where e = H(m), and verifying the
equality R.x = r mod q.

Attack. Consider first case of the scheme. As usual, we show that for fixed pro-
tocol transcription and message there exists only few valid signatures that could
be produced during the given protocol execution. If the protocol transcription
(R, r, e, s) and message m are fixed, then the e′ = H(m) value is also fixed.
Consider the line (4) of the protocol keeping in mind the relations from lines
(1)–(3):

r = r′β−1α = (R′.x mod q)β−1e(e′)−1 = ((βR+ αP ).x mod q)β−1e(e′)−1 =

= ((βR+ e(e′)−1P ).x mod q)β−1e(e′)−1.

The equation
r = ((βR+ e(e′)−1P ).x mod q)β−1e(e′)−1

for β has only few roots. However, β values are selected uniformly at ran-
dom, so the probability to choose β, such that the equation above is satisfied,
during several protocol executions is negligible. Therefore, with overwhelming
probability there exist only one signature with r′ component equal to (βR +
e(e′)−1P ).x mod q, for which β satisfies the condition in line (4).

Hence, lines (1)–(4) provide the following criteria for breaking blindness. The
exact transcription (R, r, e, s) corresponds to the certain message m with hash-
value e′ and signature (r′, s′) iff the following condition holds:

R′.x mod q = r′,
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The signing protocol

Signer(d,Q) Requester(Q,m)

Case 1 Case 2

k←$Z∗q
R← kP

R

α, β←$Z∗q α, β←$Z∗q
e′ ← H(m) e′ ← H(m)

e← αe′ e← βe′ (1)

R′ ← βR+ αP R′ ← α−1R+ P +Q(2)

r′ ← R′.x mod q r′ ← R′.x mod q (3)

r ← r′β−1α r ← αβ(r′ + e′) (4)

r, e

s← ke+ dr

s

s′ ← βα−1s+ αe′ s′ ← β−1α−1s+ e′

σ ← (r′, s′) σ ← (r′, s′)

Fig. 3. BS TNHV18 scheme: the signing protocol.

where R′ = βR+ αP, α = e(e′)−1, β = r′r−1α.
The attack on the second case of the scheme is justified similarly. The exact

transcription (R, r, e, s) corresponds to the certain message m with hash-value
e′ and signature (r′, s′) iff the following condition holds:

R′.x mod q = r′,

where R′ = α−1R+ P +Q, α = rβ−1(r′ + e′)−1, β = e(e′)−1.
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