
An algorithm for efficient detection of (N,N)-splittings
and its application to the isogeny problem in dimension 2

Maria Corte-Real Santos1 ∗, Craig Costello2, and Sam Frengley3 †

1 University College London, London, UK
maria.santos.20@ucl.ac.uk

2 Microsoft Research, Redmond, USA
craigco@microsoft.com

3 University of Cambridge, Cambridge, UK
stf32@cam.ac.uk

Abstract. We develop an efficient algorithm to detect whether a superspecial genus 2 Jaco-
bian is optimally (N,N)-split for each integer N ≤ 11. Incorporating this algorithm into the
best-known attack against the superspecial isogeny problem in dimension 2 (due to Costello
and Smith) gives rise to significant cryptanalytic improvements. Our implementation shows
that when the underlying prime p is 100 bits, the attack is sped up by a factor of 25; when
the underlying prime is 200 bits, the attack is sped up by a factor of 42; and, when the
underlying prime is 1000 bits, the attack is sped up by a factor of 160.

Keywords: Isogeny-based cryptography, genus 2, superspecial, cryptanalysis.

1 Introduction

Let C and C ′ be genus 2 curves with superspecial Jacobians. The general dimension 2 superspecial
isogeny problem asks us to find an isogeny

ϕ : Jac(C)→ Jac(C ′),

of principally polarised (p.p.) abelian surfaces, where Jac(C) and Jac(C ′) are the Jacobians of C
and C ′ respectively.

We say that the Jacobian Jac(C) of a genus 2 curve C is split (over K) if there exists a
separable (polarised) K-isogeny of p.p. abelian surfaces Jac(C) → E1 × E2 where E1/K and
E2/K are elliptic curves.

The best known algorithm for solving the superspecial isogeny problem is due to Costello
and Smith [14]. It consists of two stages. The first stage computes pseudorandom walks away
from the two input Jacobians to find paths to products of two supersingular elliptic curves, i.e.,
φ : Jac(C) → E1 × E2 and φ′ : Jac(C ′) → E′

1 × E′
2. Assuming the pseudorandom walks quickly

converge to the uniform distribution, the first stage runs in Õ(p) classical bit operations, since the
proportion of superspecial abelian surfaces that are isomorphic to a product of elliptic curves is
O(1/p). The second stage calls the Õ(p1/2) Delfs-Galbraith algorithm [17] to find paths between
E1 and E

′
1 and between E2 and E

′
2. These are then glued together to obtain the path π : E1×E2 →

E′
1 × E′

2 connecting φ and φ′ in order to output the full solution ϕ := φ̂′ ◦ π ◦ φ. It follows that

the entire algorithm runs in Õ(p) classical bit operations on average, with the cost dominated by
the first step: finding paths to products of elliptic curves.

Isogeny-based cryptography in dimension 2. The product-finding algorithm [14] that we
accelerate in this work solves the general superspecial isogeny problem, which underlies the security
of various isogeny-based protocols in dimension 2. An example of such a scheme is the dimension

∗Supported by the UK EPSRC grant EP/S022503/1.
†Funded by the Woolf Fisher and Cambridge Trusts.

2 analogue of the Charles-Goren-Lauter hash function [11], which was proposed by Takashima [54]
and later extended by Castryck, Decru and Smith [10].

The 2022 breaks of SIDH and SIKE [9,43,46] revealed that understanding higher dimensional
isogenies is essential to navigate the isogeny graphs in dimension 1. More recently there has
been a line of works leveraging the techniques used in the attacks to propose new cryptosystems
that exploit isogeny computations in higher dimensions [16,1,12]. Although the hard problems
underlying these schemes are not directly impacted by the algorithm that is optimised in this
paper, we believe the trend towards instantiating schemes in higher dimensions will only make the
dimension 2 supersingular isogeny problem more relevant to practitioners as the field of isogeny-
based cryptography continues to mature.

Based on the present knowledge of attacks in dimension 2, we believe it is reasonable to
speculate that the complexity of the product-finding algorithm may eventually be used as an upper-
bound on the classical hardness of attacking many schemes that are currently conceivable, even
when the underlying instances of the isogeny problem are special cases of its general formulation
(provided no superior algorithm for the special problem is found, of course). For example, consider
the dimension 2 analogue of the Sigma protocol that proves knowledge of an isogeny of a specified
degree (see [20] for the latest on this protocol). In dimension 1, the best known classical attack on
this protocol is the van Oorschot–Wiener (vOW) meet-in-the-middle algorithm [56]. In dimension

2, however, the Õ(p) product-finding algorithm will solve the general problem at least as fast as
the van Oorschot–Wiener meet-in-the-middle algorithm [56], and is likely to become the preferred
algorithm4 for large enough p.

Contributions. We begin with an implementation of the algorithm described above for finding
paths to products of elliptic curves. This includes a streamlined version of the Takashima–Yoshida
algorithm [55, §5.5] for computing chains of Richelot isogenies. With this optimised algorithm, we
provide a toolbox for exploring the (2, 2)-isogeny graph. The expansion properties of the (2, 2)-
isogeny graph are not well understood and our implementation is well suited to exploring this.
For example one could hope to provide evidence towards [24, Conj. 4.10]. Understanding the
expansion properties of this graph is crucial to gaining a deeper insight into the hardness of the
general isogeny problem in dimension 2.

This lays the foundation for the main contribution of this work: a new algorithm that speeds
up the search for paths to products of elliptic curves. At the heart of our algorithm is the work
of Kumar [38], who gives explicit parametrisations of the moduli space of genus 2 curves whose
Jacobians are split by an (N,N)-isogeny. When we step to a new node in the Richelot isogeny
graph, these parametrisations allow us to efficiently test whether any of the (N,N)-isogenous
neighbours are isomorphic to a product of supersingular elliptic curves without computing any
expensive (N,N)-isogenies. For example, over a field whose characteristic is a 100-bit prime, an
optimised Richelot isogeny (see Section 3) requires 1176 Fp-multiplications. This is the cost of
taking a single step in the Richelot isogeny graph, which reveals only one neighbour and is thus
the per-node cost of running the attack described in [14]. However, using the new algorithm
we describe in Section 5 with N = 3, we are able to test whether any of the (3, 3)-isogenous
neighbours are split with a total of 767 Fp-multiplications. Since there are 40 such neighbours,
the per-node cost of simultaneously searching these neighbours is less than 20 Fp-multiplications
each. The upshot is that when attacking an instance of the superspecial isogeny problem, we can
sift through a larger proportion of superspecial Jacobians per unit time, thus reaching an elliptic
curve product with fewer Fp-multiplications.

In Section 7 we report on a number of experiments conducted over both small primes (where
instances of the superspecial isogeny problem can be solved) and large primes of cryptographic
size. Applying our accelerated algorithm to find paths to elliptic products when p = 231 − 1, we

4For a fixed memory bound w and single processor, taking n = p3/4 [25, §4.1] in [56, Equation 4] gives
an asymptotic runtime of O(p9/8) on a single core. Moreover, parallel processors running vOW must read
from, and write to, the huge central storage database (which hampers parallel performance in practice),
while product-finding is memory-free and parallelises perfectly.

solve 10 instances of the problem using an average of 233.0 multiplications in Fp for an average wall
time of 216.3 seconds. Our optimised version of the original algorithm from [14] requires an average
of 236.8 multiplications in Fp for an average runtime of 220.5 seconds to solve the same 10 instances.
In Table 1 we give a snapshot of the improvements that were observed in our implementation for
a number of large primes of varying bitlength. We see that the relative speedup improves as the
prime p grows in size (see Section 7 for more details).

Walks in Γ2(2; p) Walks in Γ2(2; p)

without additional searching with split searching in Γ2(N ; p)

[14] (optimised in §3) This work

p Fp muls set Fp muls improv.

(bits) per node N ∈ {. . . } per node factor

50 579 {2, 3} 35 16.5x

100 1176 {2, 3} 48 24.5x

150 1575 {3, 4} 54 29.2x
...

...
...

...
...

950 9772 {4, 6} 69 141.6x

1000 11346 {4, 6} 71 159.8x

Table 1. An abbreviated version of Table 5. See Section 7 for further explanation.

Indeed, for primes of at least 150 bits, we argue in Section 6.3 that (heuristically) Algorithm 4
requires an expected number of(

14 log2(p) + 34490

5 · 664

)
p+O(log2(p))

Fp-multiplications before encountering a product of elliptic curves. Under the same heuristics,

our optimised version of the algorithm in [14] would require a larger expected
(

12 log2(p)+129
5

)
p+

O(log2(p)) Fp-multiplications.
All of the source code accompanying this paper is written in Magma [3] and can be found at

https://github.com/mariascrs/SplitSearcher.

Finally, we note that our algorithm for detecting (N,N)-splittings may be of interest outside
of our target application of the dimension 2 superspecial isogeny problem. For example, it answers
a question posed by Castryck and Decru [9, §11] for N ≤ 11.

Related work. At a high level, our improvements to the dimension 2 superspecial isogeny attack
can be viewed as an analogue of those recently given by Corte-Real Santos, Costello and Shi [13]
to the Delfs–Galbraith attack [17] in dimension 1. Indeed, both attacks use random walks to find
special nodes in the graph to reduce the (remainder of the) algorithm to a comparatively easier
isogeny problem: the special nodes in the Delfs–Galbraith algorithm are the isomorphism classes
of elliptic curves defined over Fp, while the special nodes in the Costello–Smith algorithm are
the isomorphism classes of products of elliptic curves. The key to the improvements in [13] was
an efficient method for determining whether modular polynomials have subfield roots without
computing any such roots explicitly. This allows many nodes to be simultaneously searched over
without being visited by means of expensive isogeny computations. The key to the improvements
in this paper stem from Kumar’s parametrisations of the moduli space of genus 2 curves whose
Jacobians are split by an (N,N)-isogeny [38]. In a similar vein to [13], we show that these can be
used to simultaneously search over many neighbours without visiting the corresponding nodes in
the isogeny walks.

https://github.com/mariascrs/SplitSearcher

It is worth noting that, relatively speaking, the improvements found in this work are signifi-
cantly larger than the improvements reported in [13] in the dimension 1 case. At first glance of
Section 5, it seems our batch (N,N)-split searching requires a lot more computation than the
analogous batch N -isogenous subfield curve searching in [13]. However, in dimension 2 we are
processing O(N3) neighbours simultaneously (see Equation (1)), while the subfield search in di-
mension 1 is batch testing O(N) neighbours each time. For primes of size 50 to 800 bits, [13, Table
6] report speedups ranging from 3.2× to 17.6×, while the speedups we found for primes of these
same sizes (see Table 5) range from 16.5× to 116.3×.

Outline. After giving the necessary background in Section 2, we detail our optimised version of
the original Γ2(2; p) walk from [14] in Section 3. In Section 4 we recall standard results concerning
moduli spaces for genus 2 curves with split Jacobians and Kumar’s formulae [38]. In Section 5
we present the main contribution of this work: an efficient algorithm to detect (N,N)-splittings.
We give the full algorithm and discuss our implementation in Section 6. Finally, we present the
experimental results in Section 7 before we conclude by mentioning some possible avenues for
improving the algorithm.

2 Background

We give a brief account of abelian surfaces and fix notation. Readers looking for an in-depth dis-
cussion of higher dimensional abelian varieties and their application in isogeny based cryptography
are encouraged to consult [10], [14], and [25].

Let A be an abelian surface (i.e., an abelian variety of dimension 2) defined over a field K

and write Â for the dual abelian variety. A pair (A, λ) is said to be a polarised abelian surface if

λ : A → Â is an isogeny (i.e., a surjective finite morphism of group varieties). We say that (A, λ)
is principally polarised (p.p.) if λ is an isomorphism.

If C/K is a smooth projective curve we write Jac(C)/K for the Jacobian of C, the abelian
variety whose points parametrise degree zero divisors on C up to linear equivalence. Throughout
the article we will suppress the implicit choice of (principal) polarisation on A. In particular, when
A = Jac(C) is the Jacobian of a (smooth projective) curve then A is equipped with the (canonical)
principal polarisation arising from the theta divisor and when A = E1×E2 is a product of elliptic
curves then A is equipped with the product polarisation.

Let (A, λ) and (A′, λ′) be p.p. abelian surfaces. An isogeny ϕ : A→ A′ is said to be an isogeny

of p.p. abelian surfaces if there exists an integer m ≥ 1 such that ϕ̂ ◦ λ′ ◦ ϕ = [m]λ. If N ≥ 2 is
an integer coprime to the characteristic of K, then for any abelian variety A we have the N -Weil
pairing A[N] × Â[N] → µN . When A is equipped with a principal polarisation this gives rise to
the N -Weil pairing

eN : A[N]×A[N]→ µN .

We say that a subgroup G ⊆ A[N] is isotropic (with respect to the N -Weil pairing) if eN (P,Q) = 1
for all P,Q ∈ G. We say G is maximal isotropic if moreover there is no isotropic subgroup G′ with
G ⊊ G′ ⊆ A[N].

Given a maximal isotropic subgroup G ⊆ A[N], the abelian surface A′ = A/G comes equipped
with a principal polarisation λ′ such that ϕ : A → A′ is an isogeny of p.p. abelian surfaces and
ϕ∗λ′ = [m]λ for some integer m. We say that a subgroup G ⊆ A[N] is an (N,N)-subgroup if it
is maximal isotropic (with respect to eN) and isomorphic (as an abstract group) to (Z/NZ)2. In
this case we say that ϕ is an (N,N)-isogeny. The number of (N,N)-subgroups of A[N] is equal to

DN := N3
∏

primes
ℓ|N

1

ℓ3
(ℓ+ 1)(ℓ2 + 1). (1)

In particular, when N is prime we have DN = (N2 + 1)(N + 1). See e.g., [8, Lemma 2] (see also
[14, Lemma 2] and [25, Proposition 3(2)] when N is a prime or prime power, respectively).

2.1 Superspecial abelian surfaces

As discussed by Castryck, Decru, and Smith [10, §2], for cryptographic applications the most natu-
ral generalisation of the set of supersingular elliptic curves to dimension 2 is the set of superspecial
p.p. abelian surfaces.

Definition 1. We say a p.p. abelian surface A/Fp is supersingular if the Newton polygon of A is a
line of slope 1

2 . We say A is superspecial if the Hasse-Witt matrix M ∈ F2×2
p vanishes identically.

If A is superspecial, then it is supersingular. The converse is not necessarily true when dim(A) ≥ 2.
The condition for superspeciality is a natural generalisation of the fact that when p > 3 an
elliptic curve is supersingular if and only if it has trace of Frobenius congruent to 0 modulo p. An
alternative characterisation is that A is isomorphic (as an abstract abelian variety) to a product
of supersingular elliptic curves.

It can be shown that every superspecial p.p. abelian surface A/Fp is Fp-isomorphic (as a p.p.
abelian variety) to a p.p. abelian surface defined over Fp2 (see [30, Theorem 1]) and moreover this
abelian surface may be chosen to have full Fp2-rational 2-torsion when p is odd (see [10, §2]).

The dimension 2 superspecial isogeny problem may be stated precisely as:

Problem 1 (Dimension 2 superspecial isogeny problem). Given a pair of superspecial p.p. abelian
surfaces A and A′ defined over Fp2 , find an Fp-isogeny A→ A′.

2.2 The superspecial isogeny graph

We now describe the superspecial isogeny graph, and re-frame Problem 1 as a path finding problem.
Let S2(p) denote the set of Fp-isomorphism classes of superspecial p.p. abelian surfaces. Since

every superspecial p.p. abelian surface admits a model over Fp2 , the set S2(p) is finite. In fact, it
can be shown that it has size O(p3) [10, Theorem 1]. For each integer N coprime to p, we define
Γ2(N ; p) as the directed weighted multigraph on vertex set S2(p), whose edges are Fp-isomorphism
classes of (N,N)-isogenies (weighted by the number of distinct kernels yielding isogenies in the
class). The graph Γ2(N ; p) is DN -regular, where DN is given by Equation (1) (taking into account
multiplicities of each edge).

Though primitives constructed using superspecial p.p. abelian surfaces, such as the Castryck–
Decru–Smith hash function [10], assume the rapid convergence of random walks in the graphs
Γ2(N ; p) to the uniform distribution, it is important to note that these expansion properties are
not well understood. The superspecial isogeny graph is connected (see e.g., [45,34]), however, as
discussed by Florit and Smith [24, §4.3], the graphs Γ2(N ; p) do not fit into the definition of an
expander graph as they are directed multigraphs. However, one can still obtain upper bounds
on the eigenvalues of these graphs to determine whether Γ2(N ; p) is Ramanujan, i.e, has optimal
expansion. Jordan–Zaytman [34] give the first counterexample: Γ2(2; 11) is not Ramanujan. Florit–
Smith provide evidence that the same behaviour occurs for Γ2(2; p) where 11 ≤ p ≤ 201, therefore
suggesting that the superspecial (2, 2)-isogeny graph fails to be Ramanujan [24, Appendix A]. It
would also be interesting to study the expansion properties of Γ2(N ; p) for N > 2. Despite the
lack of optimal expansion, Florit–Smith conjecture [24, Conjecture 4.10] that Γ2(N ; p) still has
good enough expansion for cryptographic purposes.

Every p.p. abelian surface is isomorphic to either the Jacobian of a curve of genus 2, or to
a product of two elliptic curves with the product polarisation. In the latter case, if the abelian
surface is superspecial, then the elliptic curves will be supersingular. Therefore, S2(p) is equal to
the disjoint union of the following two sets:

J2(p) := {A ∈ S2(p) : A ∼= Jac(C) for some genus 2 curve C} and
E2(p) := {A ∈ S2(p) : A ∼= E1 × E2 for some E1, E2 ∈ S1(p)},

where the isomorphisms are of p.p. abelian varieties over Fp. It can be shown that #J2(p) =
1

2880p
3 + O(p2) and #E2(p) = 1

288p
2 + O(p) (combine [53, Theorem V.4.1(c)] with [4, Theo-

rem 3.10(b)] or [31, Theorem 3.3], see [10, Theorem 1] for details). In particular #E2(p)/#S2(p) =
10/p+O(1/p2).

Important to our work will be the ratio of nodes A ∈ E2(p) to nodes visited while performing
a random walk on Γ2(N ; p). A natural first guess would be that this ratio matches the proportion
of such nodes in the entire graph, i.e., ∼ 10/p. However, Florit–Smith show that all but O(p) of
the products of elliptic curves have reduced automorphism group of order 2, and deduce that the
expected proportion of products in a random walk is ∼ 1

2 ·
10
p = 5

p [24, §6.2].
As in the dimension 1 case, we can view the dimension 2 isogeny problem as a path finding

problem in the superspecial isogeny graph.

Problem 2. Given superspecial p.p. abelian surfaces A and A′ defined over Fp2 , find a walk in
Γ2(N ; p) connecting them (when p ∤ N).

2.3 Attacking the general isogeny problem in dimension 2

The best known algorithm for solving Problem 2 exploits the properties of the subset E2(p) ⊆ S2(p)
and is depicted in Algorithm 1. Given two (Fp-isomorphism classes of) p.p. abelian surfaces A and
A′ ∈ J2(p), Steps 1 and 2 find paths φ : A → E1 × E2 and φ′ : A′ → E′

1 × E′
2, where both

E1 × E2 ∈ E2(p) and E′
1 × E′

2 ∈ E2(p). As #J2(p) = O(p3) and #E2(p) = O(p2), we expect to

complete both of these steps using Õ(p) operations in Fp. Steps 3 and 4 then solve the dimension 1
isogeny problem on input of E1 and E

′
1 and on input of E2 and E

′
2 to output the paths ψ1 : E1 → E′

1

and ψ2 : E2 → E′
2 in the supersingular elliptic curveN -isogeny graph. Both of these steps terminate

using on average Õ(
√
p) operations in Fp [17]. If length(ψ1) ≡ length(ψ2) mod 2, we can use these

to construct a product path π : E1 × E2 → E′
1 × E′

2, as described in [14, Lemma 3]. The desired

path between A and A′ is then ϕ := φ̂′ ◦ π ◦ φ.5 Overall, the cost of the algorithm is Õ(p) bit
operations.

For the rest of this paper we focus on improving the concrete complexity of Steps 1 and 2 of
this attack, i.e., on finding paths to the product surfaces, since this is the bottleneck step that
determines the concrete complexity of Algorithm 1.

Algorithm 1 Computing isogeny paths in Γ2(N ; p) [14]

Input: A and A′ in S2(p)
Output: A path ϕ : A→ A′ in Γ2(N ; p)

1: Find a path φ from A to some E1 × E2 in E2(p)
2: Find a path φ′ from A′ to some E′

1 × E′
2 in E2(p)

3: Find a path ψ1 : E1 → E′
1 using (elliptic curve) path finding

4: Find a path ψ2 : E2 → E′
2 using (elliptic curve) path finding

5: if length(ψ1) ̸≡ length(ψ2) (mod2) then
6: return ⊥
7: else
8: Construct a path π : E1 × E2 → E′

1 × E′
2 using ψ1, ψ2 as in [14, Lemma 3]

9: return the path ϕ := φ̂′ ◦ π ◦ φ from A to A′

10: end if

Applications to cryptanalysis. In the security analysis of their hash function [10], Castryck–
Decru–Smith correctly argue that, since the steps taken by their hash function correspond entirely
to “good extensions” (see Section 3.2), the path returned by [14, Algorithm 1] (which does not
only consist of good extensions) is therefore not a valid preimage [10, Footnote 11]. However, more
recent work by Florit and Smith [24, §6.2 - 6.4] shows that collisions in the Castryck–Decru–Smith

5If length(ψ1) ̸≡ length(ψ2) mod 2, we fail and return ⊥. Note, however, only three runs of Algorithm 1
are required to successfully return path ϕ. Indeed, if we instead run Algorithm 1 to find paths ψ1 : E1 → E′

1,
ψ2,1 : E2 → E, and ψ2,2 : E → E′

2, where E : y2 = x3 + x has an endomorphism of degree 2, say τ , then
we can set ψ2 = ψ2,2 ◦ ψ2,1 if length(ψ1) ≡ length(ψ2,1 ◦ ψ2,2) mod 2 and ψ2 = ψ2,2 ◦ τ ◦ ψ2,1, otherwise.

hash function can be constructed once a walk to an elliptic product is known. So long as we assume
our walks approximate the random distribution on Γ2(2; p) (more on this in Remark 1), then we
consider it prudent to use the complexity of the product-finding algorithms to classify the security
of a given instance of the CDS hash function, even if preimage resistance is the governing security
property.

As will become apparent in Section 6, our acceleration of the Costello–Smith algorithm will
return a (2nN, 2nN)-isogeny (for some n). However, for many cryptographic protocols in isogeny-
based cryptography, the secret isogeny will be of a specified degree, usually a prime power ℓk.
Though an algorithm that transforms a (2nN, 2nN)-isogeny to a (ℓk, ℓk)-isogeny has yet to be
developed, for example by generalising the KLPT algorithm [36] to dimension 2, we find it prudent
to conjecture such an algorithm exists, rather than betting the security of primitives on the
converse.

3 Optimised product finding in Γ2(2; p)

In this section we describe an optimised instantiation of the product finding algorithm from [14]
in the case of dimension 2.

Our instantiation uses pseudo-random walks in the superspecial subgraph of the Richelot
isogeny graph [23, Definition 1] and exploits a streamlined version of Takashima and Yoshida’s
Richelot isogeny algorithm [55] to take efficient steps therein.

3.1 Taking a step in Γ2(2; p)

We start by deriving a streamlined version of Takashima and Yoshida’s Richelot isogeny algo-
rithm [55, Algorithm 2] that will be used as the basis for pseudo-random walks in the superspecial
subgraph of Γ2(2; p). On input of the six-tuple a = (a0, . . . , a5) ∈ (Fp2)6 defining6 the genus 2
curve

C/Fp2 : y2 = (x− a0) · · · (x− a5),

the algorithm outputs the six-tuple a′ = (a′0, . . . , a
′
5) ∈ (Fp2)6 that defines

C ′/Fp2 : y2 = (x− a′0) · · · (x− a′5),

where ϕ : Jac(C)→ Jac(C ′) is the Richelot isogeny whose non-trivial kernel is precisely the three
points ((x− ai)(x− ai+1), 0) in Jac(C) with i ∈ {0, 2, 4}.

The main modifications we have made to their algorithm are:

– We assume that both the equations for C and C ′ are indeed given by the sextic polynomi-
als whose six roots are rational elements of Fp2 . This avoids the case distinctions made by
Takashima and Yoshida that allow for quintic inputs and outputs (i.e., one of the ai and/or a

′
j

being at infinity), which are unnecessary for our purposes (they occur with negligible proba-
bility, and after a change of coordinates we may assume that C and C ′ are defined by sextics).

– We do not keep track of the leading coefficient of the sextic, since this merely determines which
quadratic twist we are on, which is irrelevant for our application because twists correspond to
the same node in Γ2(2; p). This means we avoid the final inversion in Line 33 of [55, Algorithm
2].

– Each of the three iterations of their main loop involve separate inversion and square root
computations. In each case we merge the inversion and square root into one combined inverse-
and-square-root computation (see Line 7 of Algorithm 2) using the trick described in [47].

6For odd p, superspecial abelian surfaces always have full Fp2 -rational 2-torsion (cf. [10, §2]), which in
particular implies that the ai are defined over Fp2 .

On top of a small, fixed, number of field multiplications, Algorithm 2 computes a Richelot isogeny
using 3 calls to InvSqrt, which is essentially the same cost as a square root in Fp2 (i.e., 2 exponen-
tiations in Fp). This means our streamlined version saves all of the four additional Fp2 inversions
reported by Takashima and Yoshida [55, §5.5]. Otherwise, the notation and description of the
algorithm is essentially unchanged: the indices in Line 3 of Algorithm 2 are taken modulo 6, and
the indices in Line 5 are taken modulo 3.

Algorithm 2 RIsog(): A Richelot isogeny in the general case

Input: a = (a0, . . . , a5) ∈ (Fp2)
6 defining C/Fp2 : y

2 = (x− a0) · · · (x− a5).
Output: a′ = (a′0, . . . , a

′
5) ∈ (Fp2)

6 defining C′/Fp2 : y
2 = (x−a′0) · · · (x−a′5), where ϕ : Jac(C)→ Jac(C′)

is a Richelot isogeny whose kernel corresponds to the three quadratic splittings (x − ai)(x − ai+1) for
i = 0, 2, 4; and split, a boolean that is true if the image of ϕ is in E2(p).
1: Initialise λ← [a[0] · a[1],a[2] · a[3],a[4] · a[5]], θ ← [], a′ ← []
2: for j = 0 to 2 do
3: ρ← [a[2j + 2]− a[2j + 4],a[2j + 3]− a[2j + 5],a[2j + 2]− a[2j + 5],a[2j + 3]− a[2j + 4]]4: θ[j]← ρ[0] + ρ[1]
5: ν ← λ[j + 1]− λ[j + 2]
6: δ ← ρ[0] · ρ[1] · ρ[2] · ρ[3].
7: (µ, κ)← InvSqrt(θj , δ)
8: (a′[2j],a′[2j + 1])← ((ν + κ) · µ, (ν − κ) · µ)
9: end for
10: split← (λ[0] · θ[0] + λ[1] · θ[1] + λ[2] · θ[2]) = 0
11: return (a′, split)

Alternatives for computing (2n, 2n)-isogenies. There are numerous ways to compute chains
of (2, 2)-isogenies that would be fit for our purposes, but we are yet to find one that can appreciably
outperform repeated calls to Algorithm 2. Recall that each such call computes a (2, 2)-isogeny using
a fixed number of Fp-multiplications on top of three calls to the merged inversion-and-square root
computation (i.e., InvSqrt). Castryck and Decru’s multiradical variant of a Richelot isogeny also
requires at least three square root computations in Fp2 [8, §4.2], so the most we could expect to
gain using their formulae is in the constant number of additional Fp-operations (assuming any
field inversions required in their case can also be absorbed into the square root calls). Kunzweiler’s
efficient (2n, 2n)-isogeny algorithm [39] could also be used in our scenario, but in testing this
algorithm against ours we observed that, on average, ours performs between 3x and 5x faster
for the two primes considered by Kunzweiler. Note, Kunzweiler’s formulae were derived with a
different target application (i.e., G2SIDH) in mind, meaning computing a chain of (2, 2)-isogenies
of fixed length n is most efficient when 2n | p+ 1. In our algorithm, we compute chains of length
much larger than any such n and, as a result, this comparison is unfair to [39]. Our comparison is
to ensure that we are not sacrificing efficiency in our context.

3.2 Walking in the superspecial subgraph of Γ2(2; p)

We now turn to describing walks in the superspecial subgraph of Γ2(2; p) that take steps using
the RIsog algorithm developed above. To ensure that these walks are non-backtracking and avoid
short cycles, the output of RIsog must first be permuted so that the quadratic splitting implicit to
its ordering (see §3.1) corresponds to a good extension of the previous (2, 2)-isogeny (i.e., a (2, 2)-
isogeny whose kernel intersects trivially with the kernel of the dual of the previous (2, 2)-isogeny).

Kernel permutations corresponding to good extensions. Following Castryck, Decru and
Smith [10], there are 8 non-equivalent permutations of our ai which correspond to good extensions

of the previous (2, 2)-isogeny. Our walks are deterministically defined by pseudorandom bitstrings.
Each step uses three bits to choose which of the 8 good extensions defines our next (2, 2)-isogeny.
Using [10, Proposition 3], we define the function a← PermuteKernel(a, bits) by

a←

(a[0],a[2],a[1],a[4],a[3],a[5]) , bits = 0|0|0;
(a[0],a[2],a[1],a[5],a[3],a[4]) , bits = 0|0|1;
(a[0],a[3],a[1],a[4],a[2],a[5]) , bits = 0|1|0;
(a[0],a[3],a[1],a[5],a[2],a[4]) , bits = 0|1|1;
(a[0],a[4],a[1],a[2],a[3],a[5]) , bits = 1|0|0;
(a[0],a[4],a[1],a[3],a[2],a[5]) , bits = 1|0|1;
(a[0],a[5],a[1],a[3],a[2],a[4]) , bits = 1|1|0;
(a[0],a[5],a[1],a[2],a[3],a[4]) , bits = 1|1|1.

Remark 1. Under a mild conjecture on the associated eigenvalues, Florit and Smith [24] show
that despite Richelot isogeny graphs not having optimal expansion, walks of length O(log p) still
approximate the stationary distribution on Γ2(2; p) [24, Theorem 6.1]. This statement is implicitly
assuming that walks are unrestricted, i.e., that each step can take any one of the 15 outgoing
Richelot isogenies. In choosing to restrict each step in Γ2(2; p) to the 8 good edges with the
aim of avoiding fruitless cycles, we are under the implicit assumption that these walks also rapidly
approximate the stationary distribution. All of our experiments over small primes produced results
that support this assumption (see Section 7), and Florit and Smith also comment in its favour [24,
§6.4]. Nevertheless, if future research provides evidence to the contrary, modifying our walks to
include the 6 other extensions is straightforward. In this case we could either aim to prohibit
certain sequences of isogenies that cycle back to prior nodes, or (since we abandon walks after a
small number of steps – see below) simply tolerate the possibility of revisiting prior nodes. Even if
a walk did cycle back and hit a prior node, in general we would have a 14−n chance of continuing
along the same path for n steps thereafter.

Pseudorandom walks in the superspecial subgraph of Γ2(2; p). A given step of our pseu-
dorandom walk can now be defined as a← Step(a, bits), where the function Step is simply given
by

Step(a, bits) = RIsog(PermuteKernel(a, bits)).

Recall (from Lines 1 and 2 of Algorithm 1) that our goal is to find a path φ from A ∈ S2(p) to
some E1 × E2 ∈ E2(p). In principle, one could continue walking deterministically from the input
node A ∈ S2(p) for as long as it takes to find the splitting E1 ×E2 ∈ E2(p), but the length of this
path would be O(p). To ensure a compact description of the solution, we instead take a relatively
small number of steps from A ∈ S2(p) before abandoning a walk, returning back to A ∈ S2(p),
and starting again.

Our implementation uses Magma’s inbuilt function SHA1 : {0, 1}∗ → {0, 1}160 to generate pseu-
dorandom walks consisting of 160 Richelot isogeny steps as follows. We start by setting H0 :=
StartingSeed(a), where a ∈ (Fp2)6 defines the input node A ∈ S2(p), and where StartingSeed merely
concatenates and parses the 12 Fp components of a in order to be fed as input into SHA1. We then
define the function Hash : {0, 1}∗ → {0, 1}480 as Hash : s 7→ SHA1(s)||SHA12(s)||SHA13(s), where
SHA12(s) denotes SHA1(SHA1(s)), etc. Our first walk in Γ2(2; p) is defined by H1 = Hash(H0);
these 480 bits are used (three bits at a time) to give 160 steps away from A ∈ S2(p), at which point
we return back to A ∈ S2(p) and repeat the process by using Hi+1 = Hash(Hi) for i = 1, 2, . . . ,
until one of our calls to RIsog returns split = true, at which point our walks have hit a node in
E2(p). To proceed to the elliptic curve path finding in Steps 3 and 4 of Algorithm 1, the j-invariants
of the elliptic curves in the product of the final (2, 2)-isogeny are determined using [10, §6.2]. This
concludes the description of our implementation of the generic product finding algorithm from [14]
that works entirely in Γ2(2; p).

Choice of Optimisations. In our search for product curves we use optimised walks in Γ2(2; p),
rather than adopting Castryck and Decru’s multiradical isogenies [8] to walk in Γ2(3; p). Indeed,

their hash function built from multiradical (3, 3)-isogenies between superspecial genus 2 Jacobians
outperforms its (2, 2)-counterpart by a factor ≈ 9. We first note that the bulk of the Castryck–
Decru speedup comes from their hash function processing 3 trits of entropy per (3, 3)-isogeny,
rather than 3 bits of entropy processed by a (2, 2)-isogeny. In our application, however, entropy is
irrelevant and we are only interested in the raw cost of taking one step in the graph. Nevertheless,
Castryck and Decru still report a ≈ 2.7× speedup for a multiradical (3, 3)-isogeny (which is
dominated by 3 cube roots over Fp2) compared to a multiradical (2, 2)-isogeny (which is dominated
by 3 square roots over Fp2), with this factor coming directly from the relative performance of cube
roots and square roots in Fp2 in Magma. In our implementation, we optimised explicit computation
of the square roots in Fp2 in terms of Fp exponentiations and multiplications using the tricks in [47,
§5.3], and we are unaware of analogous (or any) tricks in the cube root case that could outperform
the square root computation.

Furthermore, we use walks in Γ2(2; p) that do not store or recycle any information from previous
steps. Indeed, we could not see an obvious way to (re)use any of the three square roots in Line 7 of
Algorithm 2 to compute the other 7 good extensions. We remark that this is a feature of our choice
to walk using only good extensions, and we could in fact recycle these square roots to compute
some of the bad extensions. If it turns out that there is a way to compute all 8 of the image tuples
a in appreciably fewer operations than calling the RIsog algorithm on all 8 kernels individually,
then one could define an octonary tree in an analogous fashion to the binary tree from [13].

4 Explicit moduli spaces for genus 2 curves with split Jacobians

We give a brief review of some well known facts about genus 2 curves with split Jacobians and
their moduli. The reader wishing for a more in-depth discussion is encouraged to consult e.g., [6,
§2], [27], [37], or [38].

4.1 The Igusa–Clebsch invariants of a genus 2 curve

Let K be a field of characteristic not equal to 2. Let M2 denote the variety whose points [C] ∈
M2(K) correspond to the K-isomorphism classes of genus 2 curves C/K.

From the invariant theory of the binary sextic, we may associate to any genus 2 curve C/K its
Igusa–Clebsch invariants I2(C), I4(C), I6(C), and I10(C) (here the subscript denotes the weight
of the invariant). Moreover the isomorphism class of C/K is uniquely determined by its Igusa–
Clebsch invariants (see e.g., [32,44]).

This induces a birational K-morphismM2 ↪→ P(2, 4, 6, 10) given by associating to a class [C]
its Igusa–Clebsch invariants [I2(C) : I4(C) : I6(C) : I10(C)].

Explicitly, if C/K is a genus 2 curve given by a Weierstrass equation

C : y2 = (x− a0) · · · (x− a5)

where a0, . . . a5 ∈ K, we define:

I2(C) :=
∑
15

(01)2(23)2(45)2, I4(C) :=
∑
10

(01)2(12)2(20)2(34)2(45)2(53)2,

I6(C) :=
∑
60

(01)2(12)2(20)2(34)2(45)2(53)2(03)2(14)2(25)2, and

I10(C) :=
∏
i<j

(ai − aj)2,

where, for any permutation σ ∈ S6, we let (ij) denote the difference (aσ(i)− aσ(j)). Here the sums
are taken over all distinct expressions in the ai as σ ranges over S6; the subscripts denote the
number of expressions in each sum.

4.2 Optimal splittings of Jacobians of a genus 2 curves

Let C be a curve of genus 2 defined over a field K. Recall that we say the Jacobian Jac(C) of
C is split (over K) if there exists a (polarised) separable K-isogeny ϕ : Jac(C)→ E1 × E2 where
E1/K and E2/K are elliptic curves7.

To work explicitly with subvarieties of M2 which parametrise genus 2 curves with split Ja-
cobians, we will restrict our focus to Jacobians which are split by an (N,N)-isogeny. However,
without imposing further conditions on the isogeny, our subvarieties will not be irreducible. Fol-
lowing Bruin–Doerksen [6, §2], we make the following definition:

Definition 2. Let K be a field, C/K be a curve of genus 2, and E/K be an elliptic curve. We
say that a cover ψ : C → E of degree N is optimal if N is coprime to the characteristic of K and
ψ does not factor through a non-trivial unramified covering.

We say that a polarised separable isogeny ϕ : Jac(C) → E1 × E2 is an optimal (polarised)
(N,N)-splitting if ϕ is an (N,N)-isogeny and the covering C → E1 induced by ϕ and the Abel–
Jacobi map is optimal. In this case Jac(C) is said to be optimally (N,N)-split.

In our application N will be an integer ≤ 11 and K will be the finite field Fp2 for some prime
number p≫ 11, so the assumption that ϕ is separable will be automatically satisfied.

In fact every splitting factors through an optimal (N,N)-splitting, more precisely:

Proposition 1. If Jac(C) is split (over K) then there exists an integer N ≥ 2 such that Jac(C)
is optimally (N,N)-split (over K).

Proof. We closely follow [6, Proposition 2.8]. Since Jac(C) is split, there exists a separable K-
isogeny ϕ : Jac(C) → E1 × E2 where E1/K and E2/K are elliptic curves. Since ϕ is separable,
there exists an elliptic curve D1/K such that the morphism C → E1 induced by the Abel–Jacobi
map and ϕ factors through an optimal cover ψ : C → D1. By [6, Lemma 2.6], ψ gives rise to an
optimal (N,N)-splitting Jac(C)→ D1 ×D2, where D2 is an elliptic curve and N is the degree of
ψ. ⊓⊔

4.3 The surfaces L̃N and LN

We write L̃N for the surface whose K-points parametrise (K-isomorphism classes of) pairs (C, ϕ)
where C is a curve of genus 2 and ϕ : Jac(C)→ E1 × E2 is an optimal (N,N)-splitting.

Replacing ϕ with its composition with the natural isomorphism E1 × E2 → E2 × E1 gives
an involution on L̃N . We write LN for the quotient of L̃N by this involution. The natural map
L̃N −→M2, given by (C, ϕ) 7−→ [C], factors via L̃N → LN .

Kumar [38] gave explicit models of the surface L̃N for each integer N ≤ 11. In this range the
surfaces LN are rational (i.e., birational to A2), and they give an explicit model for the surface

L̃N as a double cover of LN together with the moduli interpretation of LN . More specifically,
they compute rational functions I2(r, s), I4(r, s), I6(r, s), I10(r, s) which (after an appropriate
projective rescaling) may be taken to lie in Z[r, s] and for which the following diagram commutes

A2 P(2, 4, 6, 10)

LN M2

φN

Here the maps on the left and right are birational and the rational map φN is given by (r, s) 7→
[I2(r, s) : I4(r, s) : I6(r, s) : I10(r, s)].

We will employ the following lemma to detect whether a Jacobian Jac(C) is optimally (N,N)-
split over K.

7The convention that ϕ is separable contrasts with, e.g., [6, Definition 2.1].

Lemma 1. The Jacobian of a genus 2 curve C/K is split over K if and only if there exists an
integer N ≥ 2 such that the point [C] ∈M2(K) lies in the image of LN →M2.

Proof. If Jac(C) is split, then it is optimally (N,N)-split for some integer N ≥ 2 by Proposition 1.

In this case, the corresponding point on L̃N maps to [C] on M2. Conversely, suppose [C] lies

in the image of LN → M2. Since the morphism L̃N → LN is a surjection on K-points, there
exists an optimal degree N cover ϕ : C → E such that the preimage of [C] under this morphism

is (C, ϕ) ∈ L̃N (K). Hence Jac(C) is split. ⊓⊔
Remark 2. Genus 2 curves with split Jacobians, and their moduli, have appeared many times
elsewhere in the literature. Indeed, when N = 2, 3 and 4, generic families of genus 2 curves
with optimally (N,N)-split Jacobians were known classically from work of Legendre, Jacobi, Her-
mite, Grousat, Burkhardt, Brioschi, and Bolza (see the introduction of [38] for a more in-depth
discussion).

More recently, the surfaces L̃N for 2 ≤ N ≤ 5 have been computed by exploiting the fact that
if Jac(C) is optimally (N,N)-split then there exist degree N morphisms C → E1 and C → E2.
Kuhn [37] revisited this problem when N = 3 and Shaska [48] gave a method for general N for

computing the surface L̃N together with a curve C/K(L̃N) such that Jac(C) is (N,N)-isogenous to
a product E1×E2. This was extended to explicit computations when N = 3, 5 in [49] with further
partial results when N = 7. When 2 ≤ N ≤ 5, similar results also appear in various joint works of
Shaska together with Magaard, Volklein, Wijesiri, Wolf, and Woodland [51,50,52,42] and the work
Gaudry–Schost [28] of Bröker–Lauter–Howe–Stevenhagen [5] and Djukanović [19,18] when N = 3.

If a product of elliptic curves E1 × E2 is (N,N)-isogenous over K to the Jacobian of a genus
2 curve then there exists a Galois equivariant isomorphism between their N -torsion subgroups
which is anti-symplectic with respect to the Weil pairing (see e.g., [6, Proposition 2.8]). This

description was employed by Bruin–Doerksen [6] to compute the surface L̃4. Indeed, this implies

that the surface L̃N is birational to the modular diagonal quotient surface Z(N,−1) constructed by
Kani and Schanz [35]. The surfaces Z(N,−1) have been computed for several values of N > 11. In
particular Fisher [21,22] computed Z(13,−1) and Z(17,−1) and Frengley [26] computed Z(12,−1).
However, while these models recover the image E1 ×E2 of the splitting, they do not immediately
give the genus 2 curve C. It would be interesting to give the degree 2 map Z(N,−1)→M2 which

recovers the moduli description of L̃N .

4.4 The image of the morphism LN → M2

Recall that we have a map LN → M2 → P(2, 4, 6, 10) given by the Igusa–Clebsch invariants.
The (Zariski closure of) the image of this map is a projective surface given by the vanishing of a
polynomial FN ∈ Z[I2, I4, I6, I10] which is homogeneous with respect to the weights.

If K is a field of characteristic coprime to 2N , the Jacobian of a genus 2 curve C/K is optimally
(N,N)-split over K if and only if

FN (I2(C), I4(C), I6(C), I10(C)) = 0.

For 2 ≤ N ≤ 5 the polynomial FN was computed by Bruin–Doerksen [6,7, Theorem 1.2] and
Shaska, Magaard, Volklein, Wijesiri, Wolf, and Woodland [50,52,42].

Such equations may be computed from Kumar’s formulae [38]. For each N ≤ 5 we interpo-
late the image of φN modulo a small number of primes of approximately 128 bits. Lifting these
equations to characteristic zero with the LLL algorithm gives a candidate for FN .

Since FN is an irreducible polynomial and the image of φN is an irreducible variety, we verify
the result in Magma by checking that FN vanishes at the equations defining φN . These polynomials
are available in the code accompanying this article, and their properties are summarised in Table 2.

Remark 3. As pointed out to us by Benjamin Smith, for a generic genus 2 curve C : y2 = (x −
a0) . . . (x− a5) the polynomial F2(I2(C), I4(C), I6(C), I10(C)) is (up to a scaling factor) equal to
the square of the product of the determinants of the 15 Richelot kernels. This gives a connection
to the classical work of Bolza [2, p. 51] where this is the invariant which Bolza calls R2.

N Weighted degree of FN
Number of

monomials in FN

Average bitlength of the

coefficients of FN

2 30 34 ∼ 16.6

3 80 318 ∼ 64.3

4 180 2699 ∼ 197

5 480 43410 ∼ 617

Table 2. The number of monomials in the defining equation FN for the image of LN in P(2, 4, 6, 10) and
the total number of bytes required to (naively) store the coefficients of each FN .

5 Efficient detection of (N,N)-splittings

In this section we present an algorithm to efficiently detect whether, at each step, the p.p. abelian
surface Jac(C) is (N,N)-isogenous (over Fp) to a product of elliptic curves, without ever computing
an (N,N)-isogeny. In this way we are able to use resultants and gcd computations, rather than
inefficient computations of (N,N)-isogenies, therefore avoiding all N th-root calculations and the
need to work in extension fields when the N -torsion is not fully Fp2-rational.

A natural starting point to perform this detection is to exploit the equations FN for the image
of the morphism LN → P(2, 4, 6, 10) (see Section 4.4). Indeed, if a genus 2 curve C/Fp2 is (N,N)-
split, then FN (I2(C), I4(C), I6(C), I10(C)) = 0. However, as demonstrated in Table 2, both the
number of monomials in FN and the bitlength of its coefficients grow rapidly with N . As a result,
computing and storing FN for N > 5 is challenging. Instead, we will use techniques in elimination
theory to determine whether [C] lies on the (Zariski closure of) the image of φN . Indeed, even
for N ≤ 5, evaluating the image at the Igusa–Clebsch invariants of C will not outperform this
method.

Lemma 2. Let N ≥ 2 be an integer and C/K be a genus 2 curve defined over a field K of
characteristic not dividing 2N . Suppose that the Igusa–Clebsch invariants I2(C), I4(C), I6(C),

and I10(C) are non-zero. Write α1(C) =
I4(C)
I2(C)2 , α2(C) =

I2(C)I4(C)
I6(C) , and α3(C) =

I4(C)I6(C)
I10(C) . If

there exist r0 ∈ K ∪ {∞} and s0 ∈ K satisfying
α1(C) =

I4(r0,s0)
I2(r0,s0)2

,

α2(C) =
I2(r0,s0)I4(r0,s0)

I6(r0,s0)
,

α3(C) =
I4(r0,s0)I6(r0,s0)

I10(r0,s0)

then Jac(C) is optimally (N,N)-split over K. Here Iw(r, s) are as in Section 4.3.

Proof. The rational map ψ : P(2, 4, 6, 10) 99K A3 given by [I2 : I4 : I6 : I10] 7→
(

I4
I2
2
, I2I4I6

, I4I6I10

)
is birational with inverse (α1, α2, α3) 7→

[
1 : α1 : α1

α2
:

α2
1

α2α3

]
. Moreover on the open subvariety of

P(2, 4, 6, 10) where I2, I4, I6, and I10 are nonzero the map ψ restricts to an isomorphism onto its
image. The claim follows from the discussion preceding the lemma. ⊓⊔

Remark 4. It is common in the literature (e.g., [6,33]) to choose the affine patch with coordinates

the absolute invariants
6(I2

2−16I4)

I2
2

,
−12(5I3

2−176I2I4+384I6)

I3
2

, and 3888I10
I5
2

. Our choice is ad hoc and

made to optimise the algorithms in Section 5.2. In particular, the choice in Lemma 2 yields
polynomials Pi,j in Lemma 3 of smaller degree. Choosing an affine patch of P(2, 4, 6, 10) so that
the analogous polynomials to Pi,j in Lemma 3 have minimal degree would likely lead to improved
performance of our algorithm.

Remark 5. In the code accompanying this article we provide a function InvariantsFromWeierstrass-
Points that, on input of the 6-tuple a = (a0, . . . , a5) ∈ (Fp2)6 of Weierstrass points, computes
the 3-tuple α(C) = (α1(C), α2(C), α3(C)) ∈ (Fp2)3 using a total of 291 multiplications and one
(merged) inversion in Fp. This is the first step of Algorithm 4.

Define polynomials fk(r, s) ∈ Z[α1, α2, α3][r, s] by

f1(r, s) = I4(r, s)− α1I2(r, s)2,
f2(r, s) = I2(r, s)I4(r, s)− α2I6(r, s),
f3(r, s) = I4(r, s)I6(r, s)− α3I10(r, s).

The following proposition follows immediately from Lemma 2.

Proposition 2. Suppose that C/K is a genus 2 curve with non-zero Igusa–Clebsch invariants. If
there exist r0 ∈ K ∪ {∞} and s0 ∈ K such that for each w ∈ {2, 4, 6, 10} we have Iw(r0, s0) ̸= 0
and fk(r0, s0) = 0, then Jac(C) is optimally (N,N)-split over K.

In Section 5.2 we describe a method for determining whether, given a genus 2 curve C/Fp with
superspecial Jacobian, there exists a point P ∈ A2(Fp) such that the polynomials fk(r, s) vanish
at P . Moreover, we determine lower bounds on their costs in terms of Fp-multiplications for each
N ∈ {2, 3, . . . , 11}.

5.1 The resultants of fj and fk

Fix an integer 2 ≤ N ≤ 11. For each distinct pair i, j ∈ {1, 2, 3}, define polynomials8

Ri,j(s) := resr(fi(r, s), fj(r, s)) ∈ Z[α1, α2, α3][s].

If C/K is a genus 2 curve then, since resultants are invariant under ring homomorphisms, by the
elimination property of the resultant (see e.g., [15, §3.6 Lemma 1]) the specialisations (Ri,j)[C](s) ∈
K[s], given by evaluating the coefficients of Ri,j(s) at α1(C), α2(C), and α3(C), vanish at the
s-coordinate of any common solution to the specialised polynomials (fj)[C](r, s).

However, these resultants (generically) have factors which correspond to unwanted solutions
(i.e., where one of the polynomials Iw vanishes). We make this more precise in the following lemma.

Lemma 3. Let L = Q(α1, α2, α3). When i ̸= j, there exist polynomials Qi,j ∈ Z[α1, α2, α3][s]
dividing Ri,j with the following property: for each pair r0, s0 ∈ L such that fk(r0, s0) = 0 for
k = 1, 2, 3 and Qi,j(s0) = 0, then Iw(r0, s0) = 0 for some w ∈ {2, 4, 6, 10}.

Moreover, the polynomials Pi,j =
Ri,j

Qi,j
∈ Z[α1, α2, α3][s] are coprime.

Proof. This follows from a direct calculation in Magma. ⊓⊔

Applying [15, §3.6 Corollary 7] we have:

Proposition 3. Let C/K be a genus 2 curve such that Iw(C) ̸= 0 for each w ∈ {2, 4, 6, 10}.
If there exist r0, s0 ∈ K such that (fi)[C](r0, s0) = 0 for each i = 1, 2, 3 then the degree of
gcd((P1,2)[C], (P2,3)[C]) is at least 1.

Conversely if s0 ∈ K is a root of gcd((P1,2)[C], (P2,3)[C]) then there exist r0, r
′
0 ∈ K ∪ {∞}

such that (f1)[C](r0, s0) = (f2)[C](r0, s0) = 0 and (f1)[C](r
′
0, s0) = (f2)[C](r

′
0, s0) = 0.

In the electronic data attached to this article we give the polynomials Pi,j ∈ Z[α1, α2, α3][s]
for each pair j ̸= k.

5.2 An algorithm to detect (N,N)-split Jacobians

We now present our algorithm to efficiently detect whether the Jacobian of a genus 2 curve C/Fp2

is (N,N)-split for some integer 2 ≤ N ≤ 11. In Proposition 4 we then give an upper bound on the
number of Fp-multiplications required by the algorithm.

8If necessary, we swap the roles of Kumar’s r and s so that the polynomials Pi,j from Lemma 3
are of lowest degree (as noted in the accompanying code). It would be interesting to find a birational
transformation of A2 which minimises degPi,j .

Precomputation step. We reduce the coefficients of the polynomials P1,2, P2,3 ∈ Z[α1, α2, α3][s]

from Lemma 3 modulo p to obtain polynomials P̃1,2, P̃2,3 ∈ Fp[α1, α2, α3][s], which are stored.

Evaluation and gcd step. Our approach is summarised in Algorithm 3. To test a given
genus 2 curve C/Fp2 with superspecial Jacobian, we specialise the coefficients of P̃1,2, P̃2,3 at
α(C) = (α1(C), α2(C), α3(C)), by running the algorithm EvalCoeffs, to obtain the polynomials

(P̃1,2)[C], (P̃2,3)[C] ∈ Fp2 [s]. The EvalCoeffs algorithm takes as input P̃i,j and the invariants α(C),
and evaluates the coefficients of the polynomial at these invariants (see the proof of Proposition 4
for more details).

We then compute the gcd of (P̃1,2)[C] and (P̃2,3)[C] using the “inversion-free gcd” algorithm
InvFreeGCD from [13, Algorithm 1], modified to output the gcd explicitly, rather than a boolean.

If this gcd has degree ≥ 1 then it has a root s0 ∈ Fp and (by Proposition 3) there exist r0, r
′
0 ∈

Fp∪{∞} such that (f1)[C](r0, s0) = (f2)[C](r0, s0) = 0 and (f1)[C](r
′
0, s0) = (f2)[C](r

′
0, s0) = 0. By

Proposition 2 to verify that Jac(C) is (N,N)-split it suffices to show that we may take r0 = r′0
such that Iw(r0, s0) ̸= 0 for each w ∈ {2, 4, 6, 10}. We verify the first condition by computing the
gcd of (f1)[C](r, s0), (f2)[C](r, s0), (f3)[C](r, s0), and if it has degree ≥ 1 computing a root r0 ∈ Fp.
We verify the second condition by checking that Iw(r0, s0) ̸= 0 for each w ∈ {2, 4, 6, 10} – we
abbreviate this to the function IgNonzero.

Remark 6. If Jac(C) is optimally (N,N)-split then Algorithm 3 will return true with high prob-
ability. In this case [C] is an Fp2-point on LN . Since φN : A2 99K LN is birational (over Fp) it
is an isomorphism outside a closed Fp-subvariety X ⊆ LN of dimension 1. But from the Weil
conjectures #LN (Fp2) = O(p4) and #X(Fp2) = O(p2). In particular except in O(1/p2) of cases

there exist r0, s0 ∈ Fp satisfying the conditions of Proposition 3.

Algorithm 3 IsSplit(α(C), P̃1,2, P̃2,3, N):

Input: A tuple α(C) = (α1(C), α2(C), α3(C)), the polynomials P̃1,2, P̃2,3 ∈ Fp[α1, α2, α3][r], and an
integer 2 ≤ N ≤ 11.
Output: A boolean which is true if Jac(C) is optimally (N,N)-split.

1: (P̃1,2)[C] ← EvalCoeffs(P̃1,2,α(C))

2: (P̃2,3)[C] ← EvalCoeffs(P̃2,3,α(C))

3: g ← InvFreeGCD((P̃1,2)[C], (P̃2,3)[C])
4: if deg g ≥ 1 then
5: s0 ← ComputeRoot(g)

6: (f̃1)[C] ← EvalCoeffs(f̃1,α(C))

7: (f̃2)[C] ← EvalCoeffs(f̃2,α(C))

8: (f̃3)[C] ← EvalCoeffs(f̃3,α(C))

9: h← InvFreeGCD(InvFreeGCD((f̃1)[C](r, s0), (f̃2)[C](r, s0)), (f̃3)[C](r, s0))
10: if deg h ≥ 1 then
11: r0 ← ComputeRoot(h)
12: bool← IgNonzero(r0, s0)
13: if bool == true then
14: return true

15: end if
16: end if
17: end if
18: return false

The cost of Algorithm 3. We now determine an upper bound for the number of Fp-multiplications
required for the online part of this method (i.e., ignoring the cost of precomputation). In the anal-

ysis that follows we assume that Karatsuba multiplication is used in Fp2 , hence we cost one
Fp2 -multiplication as three Fp-multiplications.

Proposition 4. Let N ∈ {2, . . . , 11} be an integer, and let mons(N) be the set of monomials

in α1, α2, α3 appearing in the coefficients of P̃1,2 and P̃2,3 (which lie in Fp[α1, α2, α3]). For each
i = 1, 2, 3, let

di(N) = max({degree of αi in m | m ∈ mons(N)}).
The cost of steps 1–3 in Algorithm 3 (with input N) is at most

3(d1(N) + d2(N) + d3(N)) + 6m(N) + 2M(N) +
3

2
(dP (N) + 2)(dP (N) + 3)− 27

Fp-multiplications, where dP (N) = deg P̃1,2 + deg P̃2,3, m(N) = #mons(N), and M(N) is the

number of monomials in α1, α2, α3 appearing in the coefficients of P̃1,2 and P̃2,3 counting repeti-
tions.

Proof. We first evaluate the coefficients of P̃1,2, P̃2,3 ∈ Fp2 [α1, α2, α3][s] at the normalised invari-
ants α1(C), α2(C), α3(C) ∈ Fp2 using our evaluation algorithm EvalCoeffs on each polynomial. This

runs as follows. We first compute powers α1(C)
2, . . . , α1(C)

d1(N) where d1(N) is the maximum
degree of α1 appearing in mons(N) (as defined in the statement of the proposition). Similarly we
compute powers of α2(C) and α3(C) up to d2(N) and d3(N) respectively. This step is performed
using d1(N) + d2(N) + d3(N)− 3 multiplications in Fp2 .

From these powers, we obtain the monomials appearing in the coefficients of (P̃1,2)[C](s) and

(P̃2,3)[C](s) in at most 2m(N) Fp2-multiplications, where m(N) = #mons(N). We then require

2M(N) Fp-multiplications (and 2M(N) additions) to construct the coefficients of (P̃1,2)[C] and

(P̃2,3)[C].

The final step computes the gcd of (P̃1,2)[C] and (P̃2,3)[C] using InvFreeGCD. This requires
3
2 (dP (N) + 2)(dP (N) + 3)− 18 Fp-multiplications by [13, Proposition 2]. ⊓⊔

The cost from Proposition 4 depends only on N . Therefore, for each 2 ≤ N ≤ 11, we can
determine the total number of Fp-multiplications required for the detection per node revealed in
S2(p) for any prime p. We give these costs in Table 3.

Noting that, when N ̸= N ′ we may have non-empty intersection mons(N) ∩ mons(N ′), our
implementation of Algorithm 4 stores all evaluated monomials to avoid repeated computations.
In particular, the upper bound in Proposition 4 is often not sharp.

N d1(N) d2(N) d3(N) m(N) M(N) dP (N)
Total #Fp

mults.

Total #Fp mults.

per node revealed

2 1 2 1 6 23 6 175 12.5

3 2 3 2 11 97 16 767 19.2

4 6 8 6 78 1136 35 4882 46.9

5 6 10 6 64 2500 92 18818 120.6

6 7 11 7 91 4118 114 29188 52.1

7 10 14 10 190 24779 294 182641 456.6

8 16 24 16 433 73454 340 325606 395.2

9 12 16 12 271 69648 540 582474 539.3

10 24 32 24 1005 260178 606 1082007 495.4

11 28 38 28 1345 669432 1120 3237198 2211.2

Table 3. Values of d1(N), d2(N), d3(N), m(N),M(N), and dP (N) for N ∈ {2, . . . , 11}. The final columns
respectively list the number of Fp-multiplications in Proposition 4 and the ratio of multiplications to the
number of (N,N)-isogenous p.p. abelian surfaces.

Remark 7. We note that, in practice, when our algorithm enters the if loop on Line 4 in Algo-
rithm 3, we have yet to encounter a case where Steps 5–14 fail to return true. In these cases
the bound in Proposition 4 yields a bound on the cost of Algorithm 3. It is however possible to
construct examples of polynomials for which they would be necessary – e.g., f1(r, s) = r − 1,
f2(r, s) = s− r(r + 1)(r − 1), and f3(r, s) = r + 1. It would be interesting to put this observation
on rigorous footing by showing that with overwhelming probability the roots r0 and r′0 guaranteed
by Proposition 3 are equal.

Alternative approach for N = 10 and 11. When N = 10, 11, several megabytes are required
to store the coefficients of the polynomials P̃i,j . Rather than computing the resultants R1,2 and
R2,3 and dividing out by the generic factors described in Lemma 3 to obtain P1,2, P2,3 as a
precomputation, the approach we pursued was to instead perform these two steps during the online
phase. Even still, our experiments (which were reinforced by the cost analysis above) revealed that
performing the detection for N = 10, 11 is suboptimal in our application to SplitSearcher (shown
in Algorithm 4) and slows the overall search down, even when the characteristic of the field is very
large. Thus, we leave the further optimisation of these computations as future work.

6 The full algorithm

In Section 3 we discussed our optimised implementation of the product-finding attack [14] that
works entirely in the Richelot isogeny graph Γ2(2; p). In this section, we present SplitSearcher,
which leverages our efficient detection of (N,N)-splittings from Section 5.2 to improve on the
concrete complexity of product-finding when solving the dimension 2 isogeny problem.

6.1 SplitSearcher

Each time we take a step using a Richelot isogeny, we will use the methods from the previous
section to detect whether the current node is (N,N)-isogenous to a product of elliptic curves, for
some subset of integers in 2 ≤ N ≤ 11. Using the algorithm from Section 5.2 makes this check
much more efficient than, say, walking in Γ2(N ; p); each node we step to would require computing
an (N,N)-isogeny which, at minimum, requires three N -th roots in Fp2 [8].

Each time we take a step and arrive at a new abelian surface, A, we are in one of two cases:
either A is isomorphic to a product of elliptic curves, in which case the algorithm terminates,
or A is isomorphic to the Jacobian of a genus 2 curve C/Fp2 . In the latter case, SplitSearcher
calls Algorithm 3 to detect whether A is (N,N)-split for certain 2 ≤ N ≤ 11. The set of N ’s for
which this detection is performed is chosen to minimise the number of Fp-multiplications per node
revealed (either by stepping on them in Γ2(2; p) or inspecting them via our splitting detection)
in S2(p). Since it only depends on the prime p, determining this optimal list of N ’s is performed
during precomputation.

If Algorithm 3 determines that A is (N,N)-split, the elliptic curves E1 and E2 can be recovered
by applying [41, Algorithm 4] to compute all (N,N)-isogenies from A (alternatively, E1 and E2

may be recovered from Kumar’s equations [38] by solving for r0 and s0 in Proposition 2). As both
of these costs are negligible and do not affect the cost of finding such a splitting, we may view this
as a post-computation step and exclude it from our multiplication counts.

A precise formulation of the full algorithm for finding paths to elliptic curve products is given
by Algorithm 4. Along with the target abelian surface A ∈ S2(p), the auxiliary inputs into the

algorithm are the polynomials P̃1,2, P̃2,3 ∈ Fp[α1, α2, α3][r] (see Lemma 3), and the optimal set
N ⊆ {2, . . . , 11} (see Section 6.2). The hash function on Line 4 is assumed to be of the form
Hash : {0, 1}∗ → {0, 1}3ℓ, where ℓ is a positive integer, since we use three bits of entropy each time
we call the Richelot isogeny (i.e., Step algorithm) in Line 16. In practice we choose ℓ to be large
enough that we can expect to find an elliptic product in walks of ℓ steps, but not too large, since
storing walks of up to ℓ steps requires more storage on average. Once the 3ℓ bits of entropy have

been consumed, the hash function is called again and the walk is restarted from astart (more on
this in Remark 8). The output returned by Algorithm 4 is of the form (path, N), where path is a
sequence of 3k bits (with k ≤ ℓ) and N is an integer: the 3k bits define a sequence of k Richelot
isogenies and the integer N specifies the final (N,N)-isogeny whose image is in E2(p).

Algorithm 4 SplitSearcher: finding paths to elliptic curve products

Input: astart = (a0, . . . , a5) ∈ (Fp2)
6 defining a genus 2 curve C/Fp2 with superspecial Jacobian, and a

set N ⊆ {2, 3, . . . , 11}.
Output: A pair (path, N) where path is a path φ : Jac(C) → Jac(C′) in Γ2(2; p) and N is an integer
such that Jac(C′) is optimally (N,N)-split.

1: split← false

2: H ← StartingSeed(astart) §3.1
3: while not split do

4: (H, i, path,a)← (Hash(H), 0, {∅},astart)
5: while i < ℓ and not split do

6: if N ≠ ∅ then

7: α(C)← InvariantsFromWeierstrassPoints(a) Remark 5

8: for N ∈ N do

9: split← IsSplit(α(C), P̃1,2, P̃2,3, N) Algorithm 3

10: if split then

11: return (path, N)
12: end if

13: end for

14: end if

15: bits← H[3i] ∥H[3i+ 1] ∥H[3i+ 2]
16: a, split← Step(a, bits) §3.2
17: path← path ∥ bits
18: i← i+ 1
19: end while

20: end while

21: return (path, 2)

Remark 8. In a real-world attack, we would expect to return to Line 4 of Algorithm 4 an expo-
nential number of times before the algorithm terminates. Thus, there are a number of ways one
could recycle information computed in the early stages of each walk to avoid recomputing them
over and over again. One solution that is easy to implement in view of Algorithm 4 would be to
store a hash table whose entries each correspond to the (hash of the) Igusa–Clebsch invariants of
any node that is visited and checked for (N,N)-splittings. Upon returning to a given node and
finding a collision in the hash table, the walk could simply avoid the tests for (N,N)-splittings
between Lines 8 and 11. Another approach would be to build a table of the six-tuples a that are
computed after the first t Richelot steps have been taken, alongside the label of the 3t-bit string
that took us there. Each time we return back to Line 4 and iterate the hash function, we simply
check to see if the first 3t bits are already in the table and, if so, we can skip straight to a.

Finally, as is mentioned in [14], parallelising the search for product curves is trivial. For P
processors, we would simply compute P unique short walks from our target surface A ∈ S2(p) and
send each of the corresponding image surfaces A1, . . . , AP to a unique processor as its assigned
input surface.

6.2 Determining the optimal set N .

Recall that, when we step to a new p.p. abelian surface A ∈ S2(p), we want to determine if
it is (N,N)-split for a set N ⊆ {2, . . . , 11} of N . We wish to determine the optimal subset

N ⊆ {2, . . . , 11}, i.e., the subset which minimises the number of Fp-multiplications per node
revealed in the graph. The first step towards determining this ‘multiplications-per-node’ ratio is
to count the number of nodes in S2(p) that are inspected inside the for loop of Algorithm 4 with a
finite set of integers N ⊆ Z≥2. A first attempt would be to simply count the number of neighbours
a node A ∈ S2(p) has in Γ (N ; p), i.e., DN given by Equation (1) in Section 2. However, this is an
overcount as we now detail.

Suppose we take a non-backtracking walk

A0
ϕ0−→ A1

ϕ1−→ · · · ϕn−1−−−→ An
ϕn−−→ · · · (2)

in Γ2(2; p) and we inspect (N,N)-splittings for N ∈ N . If 0 ≤ m ≤ n are integers, let ϕm,n denote

the (2n−m, 2n−m)-isogeny ϕm−1 ◦ · · · ◦ ϕn and let ϕn,m denote ϕ̂m,n.

Firstly, if both N and 2kN are contained in N (for k ≥ 1), then any abelian surfaces (N,N)-
isogenous to An are automatically (2kN, 2kN)-isogenous to An+k. Therefore, we restrict to only
considering subsets N which do not contain pairs of integers M ̸= N with N = 2kM .

This restriction is not sufficient to stop double-counting nodes. Indeed, suppose N ∈ N with
N = 2M . Then any abelian surface (N,N)-isogenous to An will be (M,M)-isogenous to An+1.
In particular such an abelian surface will also be (N,N)-isogenous to An+2. To rule out such
scenarios, we introduce the following restriction on our paths.

Definition 3. Let N ⊆ Z≥2 be a finite set of integers and let P be a walk of (2, 2)-isogenies in
Γ2(2; p) as in (2).

Let M,N ∈ N and suppose that there exist integers m,n ≥ 0 and (M,M)- and (N,N)-
isogenies ψM : Am → B and ψN : An → B. We say that P resists collisions for M,N if there
exists an integer i ≥ 0 and an isogeny Ψ : Ai → B such that ψM = Ψ ◦ ϕm,i and ψN = Ψ ◦ ϕn,i.

We say that P resists collisions for N if it resists collisions for every pair M,N ∈ N .

We are now able to state precisely the number of nodes checked between Lines 8–11 of Algo-
rithm 4, assuming our paths resist collisions for the set N .

Lemma 4. Let N ⊆ Z≥2 be a finite set of integers such that if N is non-empty, then there do
not exist distinct M,N ∈ N with N = 2kM for any k ≥ 1.

Let P be a path in Γ2(2; p) which resists collisions for N . The number of nodes inspected per
step by running Algorithm 4 in P is at least

nodesN :=

{∑
N∈N D′

N if N contains a power of 2,∑
N∈N D′

N + 1 otherwise

where

D′
N = DN −

∑
1≤k

2k|N

DN/2k

and DN is the number of neighbours of a node in Γ2(N ; p), given in Equation (1). Equality holds
for steps taken after maxN∈N (2 log2(N)) steps.

Remark 9. It is important to note that the assumption that P resists collisions for N is mild in
practice. Indeed, when N contains only odd integers the assumption simplifies to requiring that,
in a walk in the (2, 2)-isogeny graph, any abelian surface (N,N)-isogenous to An is not (M,M)-
isogenous to Am for some m. The set N will consist only of integers ≤ 11 and our walks have
length O(log(p)). A collision of this sort therefore implies that An has an endomorphism of degree
O(log(p)). Heuristically there should be very few such abelian surfaces. Indeed in the dimension
1 case, by Proposition B.3 in the unpublished appendix to [40], the proportion of supersingular
elliptic curves with an endomorphism of degree at most O(log(p)) is O(log(p)3/2/p).

Proof. Suppose we have taken the following walk in Γ2(2; p)

A0 → A1 → · · · → An → An+1 → · · · ,

applying Algorithm 4.
First note that if N contains a power of 2, then each successive p.p. abelian surface Ai is known

not to be a product of elliptic curves. By hypothesis, there do not exist distinct M,N ∈ N with
N = 2kM for any k ≥ 1. Therefore, since P resists collisions for N , for each distinct M,N ∈ N
the p.p. abelian surfaces (M,M)-isogenous to Am are not (N,N)-isogenous to An for all m,n ≥ 0.
In particular it suffices to show that the number of p.p. abelian surfaces (N,N)-isogenous to Ai,
but not (N,N)-isogenous to Aj for each j < i, is equal to D′

N .
The claim follows immediately when N is odd, since the walk takes place in Γ2(2; p). If N is

even, write N = 2ℓM where ℓ ≥ 1 and M is odd. In this case, for each 1 ≤ k ≤ ℓ, any p.p. abelian
surface (2ℓ−kM, 2ℓ−kM)-isogenous to An−k is (N,N)-isogenous to both An−2k and An. Therefore,
DN/2k surfaces (N,N)-isogenous to An are (N,N)-isogenous to An−2k.

The claim follows by summing over 1 ≤ k ≤ ℓ. Note that equality holds if n− 2k ≥ 0 for each
1 ≤ k ≤ ℓ, i.e., we have taken at least 2ℓ steps. ⊓⊔

We use the lemma above to determine, for each prime p, an optimal set N for which we perform
the detection of (N,N)-splittings during Algorithm 4.

Let cstep be the number of Fp-multiplications required to take a step in Γ2(2; p) using Al-
gorithm 2, and let cig be the number of Fp-multiplications required to compute α(C) using In-
variantsFromWeierstrassPoints (see Remark 5). Finally, letting csplit(N) be the total number of
Fp-multiplications required by Algorithm 3 (see Proposition 4 and Remark 7), we obtain the
following lemma.

Lemma 5. For a subset N ⊆ {2, 3, . . . , 11}, the number of Fp-multiplications required to run
Steps 7-18 of Algorithm 4 is at most

costN :=

{
cstep + cig +

∑
N∈N csplit(N) if N ̸= ∅,

cstep otherwise.

Proof. Given input defining a genus 2 curve C/Fp2 if N = ∅ then Steps 7-18 of Algorithm 4 require
a single call to Step(a, bits), taking cstep Fp-multiplications.

Otherwise, Step 7 calls InvariantsFromWeierstrassPoints taking cig multiplications in Fp. For
each N ∈ N , the contents of the for-loop (i.e., Steps 8-11) require csplit(N) multiplications in Fp.
Finally Steps 15-18 call Step(a, bits), again requiring cstep Fp-multiplications. ⊓⊔

We consider subsets of {2, . . . , 11} satisfying the hypotheses of Lemma 4. As a precomputation,
amongst these subsets we determine the optimal set N for Algorithm 4 by choosing N to minimise
the number of Fp-multiplications per node revealed (either visited by the Richelot walk or revealed
by IsSplit). That is, we choose the N that minimises the ratio costN

nodesN
.

6.3 A bound on the cost of the SplitSearcher algorithm.

We now discuss a heuristic upper bound for the concrete cost of finding a splitting of a genus 2
Jacobian using the SplitSearcher algorithm combined with an optimised walk in Γ2(2; p).

First recall that our function InvariantsFromWeierstrassPoints terminates with 291 Fp-multiplications
and 1 Fp inversion. Bounding this inversion by 2 log2(p) Fp-multiplications (i.e., by the worst case
where the binary expansion of the exponent consists only of 1’s), we have cig ≤ 291 + 2 log2(p).

We now assume that the cost of IsSplit is bounded by the cost of its first 3 steps (see Propo-
sition 4 and Table 3 bounds depending only on N , and Remark 7 for a justification). Finally
RIsog requires 63 Fp-multiplications and 3 calls to InvSqrt which costs at most 22 + 4 log2(p) Fp-
multiplications (with the log2(p) terms arising from 2 exponentiations). In particular, RIsog costs
at most 129 + 12 log2(p) Fp-multiplications.

For primes of at least 150 bits, the set N = {4, 6} is the optimal set discussed in Section 6.2,
and we obtain an upper bound of

14 log2(p) + 34490

664
(3)

Fp-multiplications per node revealed (assuming the heuristics from Remarks 6 and 9). If we assume
that the proportion of product nodes (among nodes inspected by Algorithm 4) is equal9 to 5/p
we would expect that Algorithm 4 requires(

14 log2(p) + 34490

5 · 664

)
p+O(log2(p)) (4)

Fp-multiplications before encountering a product node.

7 Experimental results

We conducted experiments over both small and large primes, and the results are reported in
Tables 4 and 5, respectively.

The small prime experiments were conducted so that we could run multiple instances of the full
Õ(p) search for product curves to completion. The four Mersenne primes of the form p = 2m − 1
with m ∈ {13, 17, 19, 31} were chosen as the field characteristics, and instances of the product-
finding problem were generated by taking a chain of 40 randomised Richelot isogenies away from
the superspecial abelian surface10 corresponding to C/Fp : y

2 = x5 + x. For the three smaller
primes, 256 instances were generated, while for p = 231 − 1, we generated 10 such instances; each
instance is specified by a 6-tuple of Weierstrass points (see Section 3.1). All of the instances were
solved once using the original walk in Γ2(2; p) described in Section 3. and again using our improved
SplitSearcher algorithm described in Section 6. For all four of these primes, the set N = {2, 3}
was optimal for use in SplitSearcher. In Table 4 we report the average number of steps taken in
Γ2(2; p) for both algorithms, as well as the average number of Fp-multiplications required to solve
the problem. In the case of SplitSearcher, we additionally report the average number of nodes
searched. This includes both the nodes that were walked on and those that were inspected using
our (N,N)-splitting detection11. As we might expect, this is always relatively close to the number
of steps taken in the Richelot-only walk.

For cryptographically sized primes, we are unable to solve the product-finding problem, which
is why Table 5 instead reports the number of nodes that were searched when the number of
Fp-multiplications was bounded at 108. The main trend to highlight (in both tables) is that
the speedup is increasing steadily as the prime grows in size: the number of Fp-multiplications
required for a single Richelot isogeny is proportional to the bitlength of p (due to the square root
computations), while the number of Fp-multiplications required to inspect the (N,N)-isogenous
neighbours (after computing the Igusa–Clebsch invariants) remains fixed as p grows. This is also
predicted by Equation 3, where the coefficient of the dominating log2(p) term is 14/664 versus 12.

Interestingly, as shown in Table 5 the set N = {2, 3} is optimal for the 50- and 100-bit primes,
the set N = {3, 4} is optimal for the 150-bit prime, while the set N = {4, 6} takes over and reigns
supreme for all other reported bitlengths. Our implementation can be used to obtain the same
data for any other prime of interest, and the number of Fp-multiplications used per node can be

9This is the expected proportion of product nodes in a random walk in Γ2(2, p), see [24, §6.2]. How-
ever, preliminary experiments (see Table 4) indicate that in our walk (taking only good extensions) the
proportion may be closer to 1/p.

10The shapes of the primes chosen in both tables is of little consequence: we merely made consistent
choices of the prime shape so that the same form of superspecial starting surface could be used throughout
the experiments.

11Throughout this section we assume that the number of nodes revealed by SplitSearcher after s steps
is equal to s · nodesN . Indeed, as discussed in Remarks 6 and 9 an overcount should occur with very low
probability. In particular, after O(p) steps we would expect to overcount at most o(p) nodes. This heuristic
is also supported by the experiments reported in Table 4.

Walks in Γ2(2; p) Walks in Γ2(2; p)

without additional searching with SplitSearcher in Γ2(N ; p)

[14] (optimised in §3) This work

prime no. inst. av. steps av. Fp av. steps av. nodes av. Fp imprv.

p solved taken muls taken covered muls factor

213 − 1 256 6531 1839209 122 6536 188015 9.8x

217 − 1 256 101812 33538079 2154 116305 3474579 9.7x

219 − 1 256 475300 168095438 8593 464008 14104408 11.9x

231 − 1 10 238694656 118336348672 4856252 262237639 8787389743 13.4x

Table 4. Solving the product-finding problem using Richelot isogeny walks in Γ2(2; p) only (left) vs. using
Richelot isogeny walks in Γ2(2; p) together with SplitSearcher in Γ2(N ; p) (right).

Walks in Γ2(2; p) Walks in Γ2(2; p)

without additional searching w. SplitSearcher in Γ2(N ; p)

[14] (optimised in §3) This work

prime bits nodes per Fp muls set nodes per Fp muls imprv.

p p 108 muls per node N ∈ {. . . } 108 muls per node factor

211 · 324 − 1 50 172712 579 {2, 3} 2830951 35 16.5x

244 · 335 − 1 100 85034 1176 2076517 48 24.5x

227 · 377 − 1 150 63492 1575 {3, 4} 1858912 54 29.2x

2144 · 335 − 1 200 42088 2376

{4, 6}

1802816 55 43.2x

2181 · 343 − 1 250 34083 2934 1771608 56 52.4x

5 · 2193 · 366 − 1 300 29317 3411 1745712 57 59.8x

2201 · 394 − 1 350 25581 3909 1719152 58 67.4x

2231 · 3106 − 1 400 22753 4395 1694584 59 74.5x

2204 · 3155 − 1 450 20729 4824 1672672 60 80.4x

2113 · 3244 − 1 500 20239 4941 1667360 60 82.4x

2293 · 3162 − 1 550 16835 5940 1619552 62 95.8x

5 · 2299 · 3188 − 1 600 15679 6378 1599632 63 101.2x

2404 · 3155 − 1 650 13848 7221 1562448 64 112.8x

283 · 3389 − 1 700 14530 6882 1580376 63 109.2x

2477 · 3172 − 1 750 12046 8301 1517960 66 125.7x

2107 · 3437 − 1 800 13228 7560 1548504 65 116.3x

2166 · 3431 − 1 850 11968 8355 1515304 66 126.6x

2172 · 3459 − 1 900 11427 8751 1500032 67 130.6x

2536 · 3261 − 1 950 10233 9772 1443592 69 141.6x

2721 · 3176 − 1 1000 8814 11346 1403752 71 159.8x

Table 5. The approximate number of multiplications required to search a single node using Richelot
isogeny walks in Γ2(2; p) only (left) vs. using Richelot isogeny walks in Γ2(2; p) together with SplitSearcher
in Γ2(N ; p) (right).

combined with the (average) number of nodes one expects to search through in order to get a very
precise estimate on the concrete classical security of the superspecial isogeny problem.

Possible improvements. There have been a number of choices made throughout this paper
which open up possible avenues for improvement. We conclude by giving a non-exhaustive list of
such improvements.

1. The parametrisation of LN given by Kumar [38] may be altered through composition with
a birational transformation of A2. There may be better choices of parametrisations for our
purposes, i.e., ones which minimise the degree of Pi,j . Furthermore, as detailed in Remark 4,
there are many ways to normalise the Igusa–Clebsch invariants, though it is unclear to us
which normalisations minimise the degrees that arise in the resultant computations.

2. Since the Weierstrass points of genus 2 curve with superspecial Jacobian are all Fp2 -rational,
it may be desirable to work with the Rosenhain invariants which may be computed more
efficiently. To use our methods one would need to compute a birational model for the surface
LN (2) whose points parametrise optimally (N,N)-split Jacobians with full level 2 structure.
One approach is described in [29].

3. It may be possible to improve the complexity of the evaluations performed by EvalCoeffs (see
Section 5.2) by taking longer walks in the (2, 2)-graph and then batching the evaluations using
multi-point evaluation.

4. Knowledge of explicit equations for the surface LN for larger N would allow us to perform
efficient detection of (N,N)-splittings beyond N = 11. It may be possible to derive these from
the pre-existing equations for the surfaces Z(N,−1) (which parametrise pairs of elliptic curves
(N,N)-isogenous to a genus 2 Jacobian) in [21, Theorem 2.4], [22, Theorem 1.2], and [26,
Theorem 1.1], or by extending Kumar’s computations.

5. As was pointed out to us by Thomas Decru, it is possible to detect (2N, 2N)-splittings more
efficiently by taking partial steps in the (2, 2)-isogeny graph. Let C/Fp2 be a genus 2 curve
given by a Weierstrass equation y2 = (x− a0) · · · (x− a5). While we cannot take a full step in
Γ2(2; p) (recovering the factorisation of the Weierstrass sextic for each of the (2, 2)-isogenous
curves) without computing square roots, we can compute the Igusa–Clebsch invariants of all
the neighbours of Jac(C) using only a small number of Fp-multiplications and a single batched
inversion. In this case we may detect (2N, 2N)-splittings of Jac(C) by applying IsSplit to each
of the (2, 2)-neighbours of Jac(C). In the code attached to this article, this optimisation can
be enabled by setting split after 22 flag = true. In our implementation of this idea, and
for the primes ranging between 50 and 1000 bits reported in Table 5, we observed additional
improvement factors ranging between 1.3-1.6.

Acknowledgements

We thank Thomas Decru, Tom Fisher, and Benjamin Smith for helpful comments on earlier
versions of this paper. We also thank Thomas Decru for mentioning to us improvement 5 in
Section 7.

References

1. A. Basso, L. Maino, and G. Pope. Festa: Fast encryption from supersingular torsion attacks. In
Jian Guo and Ron Steinfeld, editors, Advances in Cryptology – ASIACRYPT 2023, pages 98–126,
Singapore, 2023. Springer Nature Singapore.

2. O. Bolza. On binary sextics with linear transformations into themselves. Amer. J. Math., 10(1):47–70,
1887.

3. W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. J. Symbolic
Comput., 24(3-4):235–265, 1997. Computational algebra and number theory.

4. B. Brock. Superspecial curves of genera two and three. PhD thesis, Princeton University, 1994.

5. R. Bröker, E. W. Howe, K. E. Lauter, and P. Stevenhagen. Genus-2 curves and Jacobians with a
given number of points. LMS J. Comput. Math., 18(1):170–197, 2015.

6. N. Bruin and K. Doerksen. The arithmetic of genus two curves with (4, 4)-split Jacobians. Canad. J.
Math., 63(5):992–1024, 2011.

7. N. Bruin and K. Doerksen. Electronic resources. http://www.cecm.sfu.ca/~nbruin/splitigusa/,
2011. Accessed Septemeber 2022.

8. W. Castryck and T. Decru. Multiradical isogenies. Arithmetic, Geometry, Cryptography, and Coding
Theory 2021, 779:57, 2022.

9. W. Castryck and T. Decru. An efficient key recovery attack on SIDH. In EUROCRYPT 2023, volume
14008 of Lecture Notes in Computer Science, pages 423–447. Springer, 2023.

10. W. Castryck, T. Decru, and B. Smith. Hash functions from superspecial genus-2 curves using Richelot
isogenies. Journal of Math. Crypt., 14(1):268–292, 2020.

11. D. X. Charles, K. E. Lauter, and E. Z. Goren. Cryptographic hash functions from expander graphs.
Journal of Cryptology, 22(1):93–113, 2009.

12. M. Chen and A. Leroux. SCALLOP-HD: group action from 2-dimensional isogenies. IACR Cryptol.
ePrint Arch., page 1488, 2023.

13. M. Corte-Real Santos, C. Costello, and J. Shi. Accelerating the Delfs–Galbraith algorithm with fast
subfield root detection. In Annual International Cryptology Conference, pages 285–314. Springer,
2022.

14. C. Costello and B. Smith. The supersingular isogeny problem in genus 2 and beyond. In PQ Crypto,
pages 151–168. Springer, 2020.

15. D. A. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms. Undergraduate Texts in
Mathematics. Springer, 2015.

16. P. Dartois, A. Leroux, D. Robert, and B. Wesolowski. SQISignHD: New Dimensions in Cryptography.
IACR Cryptol. ePrint Arch., page 436, 2023.

17. C. Delfs and S. D. Galbraith. Computing isogenies between supersingular elliptic curves over Fp.
Designs, Codes and Cryptography, 78(2):425–440, 2016.

18. M. Djukanović. Split Jacobians and Lower Bounds on Heights. PhD thesis, Leiden University and
L’Université de Bordeaux, 11 2017. https://hdl.handle.net/1887/54944.

19. M. Djukanović. Families of (3,3)-split Jacobians. arXiv e-prints arXiv:1811.10075, November 2018.
20. L. De Feo, S. Dobson, S. D. Galbraith, and L. Zobernig. SIDH proof of knowledge. In ASIACRYPT.

Springer, 2022.
21. T. Fisher. On families of 13-congruent elliptic curves. arXiv e-prints arXiv:1912.10777, December

2019.
22. T. Fisher. On pairs of 17-congruent elliptic curves. arXiv e-prints arXiv:2106.02033, June 2021.
23. E. Florit and B. Smith. An atlas of the Richelot isogeny graph. Cryptology ePrint Archive, Paper

2021/013, 2021.
24. E. Florit and B. Smith. Automorphisms and isogeny graphs of abelian varieties, with applications to

the superspecial Richelot isogeny graph. In Arithmetic, Geometry, Cryptography, and Coding Theory
2021, 2021.

25. E. V. Flynn and Y. B. Ti. Genus two isogeny cryptography. In PQ Crypto, pages 286–306. Springer,
2019.

26. S. Frengley. On 12-congruences of elliptic curves. arXiv e-prints arXiv:2208.05842, August 2022. To
appear in Int. J. Number Theory.

27. G. Frey and E. Kani. Curves of genus 2 covering elliptic curves and an arithmetical application. In
Arithmetic algebraic geometry (Texel, 1989), volume 89 of Progr. Math., pages 153–176. Birkhäuser
Boston, Boston, MA, 1991.

28. P. Gaudry and É. Schost. On the invariants of the quotients of the Jacobian of a curve of genus 2.
In Applied algebra, algebraic algorithms and error-correcting codes (Melbourne, 2001), volume 2227 of
Lecture Notes in Comput. Sci., pages 373–386. Springer, Berlin, 2001.

29. D. Gruenewald. Computing Humbert surfaces and applications. In Arithmetic, geometry, cryptography
and coding theory 2009, volume 521 of Contemp. Math., pages 59–69. Amer. Math. Soc., Providence,
RI, 2010.

30. T. Ibukiyama and T. Katsura. On the field of definition of superspecial polarized abelian varieties
and type numbers. Compositio Math., 91(1):37–46, 1994.

31. T. Ibukiyama, T. Katsura, and F. Oort. Supersingular curves of genus two and class numbers.
Compositio Math., 57(2):127–152, 1986.

32. J. Igusa. Arithmetic variety of moduli for genus two. Ann. of Math. (2), 72:612–649, 1960.
33. J. Igusa. On Siegel modular forms of genus two. Amer. J. Math., 84:175–200, 1962.

http://www.cecm.sfu.ca/~nbruin/splitigusa/
https://hdl.handle.net/1887/54944

34. B. W. Jordan and Y. Zaytman. Isogeny graphs of superspecial abelian varieties and generalized Brandt
matrices. arXiv preprint arXiv:2005.09031, 2020.

35. E. Kani and W. Schanz. Modular diagonal quotient surfaces. Math. Z., 227(2):337–366, 1998.
36. D. Kohel, K. Lauter, C. Petit, and J. Tignol. On the quaternion-isogeny path problem. LMS Journal

of Computation and Mathematics, 17(A):418–432, 2014.
37. R. M. Kuhn. Curves of genus 2 with split Jacobian. Trans. Amer. Math. Soc., 307(1):41–49, 1988.
38. A. Kumar. Hilbert modular surfaces for square discriminants and elliptic subfields of genus 2 function

fields. Research in the Mathematical Sciences, 2(1):1–46, 2015.
39. S. Kunzweiler. Efficient computation of (2n, 2n)-isogenies. Cryptology ePrint Archive, Paper 2022/990,

2022.
40. Jonathan Love and Dan Boneh. Supersingular curves with small noninteger endomorphisms. Open

Book Series, 4(1):7–22, 2020. Appendices available at https://arxiv.org/pdf/1910.03180.pdf.
41. D. Lubicz and D. Robert. Fast change of level and applications to isogenies. In ANTS-XV, 2022.
42. K. Magaard, T. Shaska, and H. Völklein. Genus 2 curves that admit a degree 5 map to an elliptic

curve. Forum Math., 21(3):547–566, 2009.
43. L. Maino, C. Martindale, L. Panny, G. Pope, and B. Wesolowski. A direct key recovery attack on

SIDH. In EUROCRYPT 2023, volume 14008 of Lecture Notes in Computer Science, pages 448–471.
Springer, 2023.

44. J. Mestre. Construction de courbes de genre 2 a partir de leurs modules. In Effective methods in
algebraic geometry, volume 94 of Progr. Math., pages 313–334. Springer, 1990.

45. Frans Oort. A stratification of a moduli space of abelian varieties. In Moduli of abelian varieties
(Texel Island, 1999), volume 195 of Progr. Math., pages 345–416. Birkhäuser, Basel, 2001.

46. D. Robert. Breaking SIDH in polynomial time. In EUROCRYPT 2023, volume 14008 of Lecture
Notes in Computer Science, pages 472–503. Springer, 2023.

47. M. Scott. A note on the calculation of some functions in finite fields: Tricks of the trade. Cryptology
ePrint Archive, 2020.

48. T. Shaska. Curves of genus 2 with (n, n) decomposable Jacobians. Journal of Symbolic Computation,
31(5):603–617, 2001.

49. T. Shaska. Curves of genus two covering elliptic curves. University of Florida, 2001.
50. T. Shaska. Genus 2 fields with degree 3 elliptic subfields. Forum Math., 16(2):263–280, 2004.
51. T. Shaska and H. Völklein. Elliptic subfields and automorphisms of genus 2 function fields. In Algebra,

arithmetic and geometry with applications, pages 703–723. Springer, 2004.
52. T. Shaska, G. S. Wijesiri, S. Wolf, and L. Woodland. Degree 4 coverings of elliptic curves by genus 2

curves. Albanian J. Math., 2(4):307–318, 2008.
53. Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics.

Springer, Dordrecht, second edition, 2009.
54. K. Takashima. Efficient algorithms for isogeny sequences and their cryptographic applications. In

Mathematical modelling for next-generation cryptography, pages 97–114. Springer, 2018.
55. K. Takashima and R. Yoshida. An algorithm for computing a sequence of Richelot isogenies. Bulletin

of the Korean Mathematical Society, 46(4):789–802, 2009.
56. P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic applications. J.

Cryptol., 12(1):1–28, 1999.

https://arxiv.org/pdf/1910.03180.pdf

	An algorithm for efficient detection of (N,N)-splittings and its application to the isogeny problem in dimension 2

