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The Simeck family of lightweight block ciphers was proposed by Yang et al.
in 2015, which combines the design features of the NSA-designed block ciphers
Simon and Speck. Linear cryptanalysis using super-rounds was proposed by
Almukhlifi and Vora to increase the efficiency of implementing Matsui’s second
algorithm and achieved good results on all variants of Simon. The improved
linear attacks result from the observation that, after four rounds of encryption,
one bit of the left half of the state of the cipher depends on only 17 key bits
(19 key bits for the larger variants of the cipher). Furthermore, due to the
similarity between the design of Simon and Simeck, we were able to follow
the same attack model and present improved linear attacks against all variants
of Simeck. In this paper, we present attacks on 19-rounds of Simeck 32/64,
28-rounds of Simeck 48/96, and 33-rounds of Simeck 64/128, often with the
direct recovery of the full master key without repeating the attack over multiple
rounds. We also verified the results of linear cryptanalysis on 8, 10, and 12
rounds for Simeck 32/64.

1 Introduction

Lightweight cryptography is one of the most active areas in the cryptographic
community. In the last decade, several lightweight block ciphers have been
designed that aim to work efficiently in constrained environments. Simeck is a
family of lightweight block ciphers that combines design features from Simon
and Speck, so it makes a slightly modified round function of Simon and uses
Speck key schedule. Hence, the similar round function makes it vulnerable
to most attacks applied on Simon, one of these attacks is the improved linear
attack proposed in [1]. Due to the similarity between the design of Simeck
round function and Simonround function, we have the same observation that
enables us to apply the super-round technique. After four rounds of Simeck
32/64 encryption, one bit of the left half of the state depends on only 16 key
bits, which is equal to the size of one round key. In the right half, one bit of the
state depends only on 7 key bits. Therefore, we are able to construct a super
round in a similar way to the case of Simon.
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In this paper, we present the improved linear cryptanalysis on all variants
of Simeck applying the super-rounds technique, which was newly proposed in
[1] to improve the linear attacks on Simon-like ciphers.

1.1 Comparison with other work

We compare our results with Bagheri’s [2] results which are currently the best
results obtained using the classical linear Matsui’s second algorithms, without
recourse to linear hull results.

Bagheri presented two results, one for Matsui’s first algorithm and the second
set of results were for Mastui’s second algorithm. Hence, we only compare
with their key recovery best results which were achieved using Matsui’s second
algorithm.

Moreover, we had to make changes to how the data complexity was computed
in his work for a fair comparison. Finally, since we are using multiple linear
approximations, we apply the capacity model [3] in both our work and his.

Also, we did compute both the average case complexity and the worst case.
The average case was a result of counting key bits involved in the XOR as a
half bit. Where the worst case, the key bits are counted as a single bit as it
has done in the literature. Therefore, we present two comparison tables.In both
computations, we were able to go deeper in all variants of Simeck.

Table 1: Comparison of previous results using Matsui’s second algorithm and
multiple linear cryptanalysis (without recourse to linear hull) on Simeck.

Average Case Computations

Simeck
Number of

Rounds
Data Complexity Time Complexity Presented In

32/64
20-round 230 258.5 8.3

18-round 224 261.5 [2]

48/96
29-round 247.42 292.5 D

23-round 241.42 295 [2]

64/128
34-round 261 2112 E

27-round 249 2104 [2]
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Table 2: Comparison of previous results using Matsui’s second algorithm and
multiple linear cryptanalysis (without recourse to linear hull) on Simeck.

Worst Case Computations

Simeck
Number of

Rounds
Data Complexity Time Complexity Presented In

32/64
19-round 230 259 8.2

18-round 224 272 [2]

48/96
28-round 247.42 293 D

23-round 241.42 2108 [2]

64/128
34-round 261 2126.58 E

27-round 253 2134 [2]

1.2 Organization

The organization of this paper as follows. Section 2 summarizes the Simeck
cipher, and Section 3 describes related work. Section 4 presents the idea of
the super round and the super key components and Section 6 presents the
linear approximations we used in this paper. Section 7 presents experimental
verification, and Section 8 projected results. We conclude in Section 10.

We present the linear attacks on Simeck 48 in appendices A and B. Also,
appendices C and D contain the linear attacks of Simeck 64.

2 Simeck

2.1 Notations

We do use the same notations as it been used in [1].
Xj input to the j-th round beginning with 0
Xi i-th bit of X beginning with 0
XLj the left half inputs to the j-th cipher round
XRj the right half inputs to the j-th cipher round

kji the i-th bit of the j-th round key
PL left plaintext half
PR right plaintext half
CL left ciphertext half
CR right ciphertext half
⊕ bitwise exclusive OR (XOR)
& bitwise AND

X ≪ z cycle shift to the left by z bits
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2.2 Description of Simeck

There are three versions of Simeck, which is denoted by Simeck2n/mn, where
n is the word size, m is the number of key words and 2n is the block size.
The following table 3 shows the specification of other variants.

Table 3: Simeck parameters.

Block Size 2n Key Size mn Word Size n Key Words m Number of Rounds

Simon 32 64 16 4 32
Simeck 48 96 24 4 36
Simon 64 128 32 4 44

The round function (see Figure 1). is defined as:

(XLj+1, XRj+1) = Rkj (XLj , XRj) = (XRj ⊕ F (XLj) ⊕ kj , XLj). (1)

where:
F (XLj) = [(XLj)&(XLj ≪ 5)] ⊕XLj ≪ 1) (2)

Figure 1: Simeck round function.

The key schedule takes the master key K as an input and generates r subkeys
k0, k1, ....kr−1. The initial states of the feedback shift registers (t2, t1, t0, k0) are
initialized with the master key words. Then, they apply the round function
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to update the registers and generate the round keys. The updating process is
defined as follows:

ki+1 = ti , ti+3 = ki ⊕ f(ti)⊕C ⊕ (zj)i, where 0 ≤ i ≤ T − 1, C = 2n − 4, n
is the word size, (zj)i is the i-th bit of zj .

The sequence zj for Simeck32/64 and Simeck48/96 is generated by the
primitive polynomial X5 + X2 + 1 with the initial states (1, 1, 1, 1, 1). For
Simeck 64/128, the zj is generated by the primitive polynomial X6 + X + 1
with the initial states (1, 1, 1, 1, 1, 1).

3 Related Work

Due to the similarity between the design of Simon and Simeck, most of the
attacks that have been used against Simon, is applicable on Simeck. Hence,
the designers of Simeck have analyzed the security of the cipher against linear
and differential cryptanalysis using the best attacks that have been presented
on Simon. In [10], they evaluate the security of Simeck and conclude with
the possibility of launching differential attack covers 19, 20, and 26 rounds of
Simeck32/64, 48 and 128 respectively. Similarly, they present linear cryptanal-
ysis and introduce attacks on 12, 15, and 19 rounds of Simeck32/64, 48, and
128, respectively.

Bagheri [2] applied the classical linear attacks, which are also considered
the best results using the classical linear cryptanalysis. Applying Matsui’s first
algorithm, they were able to attack 14, 19, and 23 rounds of Simeck 32/64,
48/96, and 64/128, respectively. Moreover, they successfully present attacks
against 18, 24, and 27 rounds using Matsui’s second algorithm.

In 2016, Kölbl et al. [5], presented a comparison between Simon and Simeck
in terms of the upper bounds of the linear and differential trails . Additionally,
they present differential attacks against 19, 26 and 33 rounds on Simeck 32,
Simeck 48, and Simeck 64 respectively.

Soon later, Qiao et al. [7], successfully were able to present differential
attacks using a new technique named dynamic key guessing to attack 22, 28
and 35 rounds on Simeck 32, Simeck 48, and Simeck 64 respectively.

Chin et al. [8] evaluated the security of Simeck against linear hull cryptanal-
ysis, which is considered the best linear results on Simeck had been achieved
using the linear hull approach. They were able to attack 23, 30 and 37 rounds
on Simeck 32, Simeck 48, and Simeck 64 respectively.

Moreover, there have been more results using other cryptanalysis techniques
such as zero-correlation and integral attacks.

One of the powerful attack methods recently proposed is zero-correlation
linear cryptanalysis [4] which relies on using linear trails with a probability of
0.5. In 2018, Zhang et al. [11] evaluate the security of Simeck against such an
attack. Hence, they present attacks on 20-rounds, 24-rounds and 27-rounds of
Simeck 32, Simeck 48, and Simeck 64 respectively.

Moreover, Bagheri and Sadeghi [9] improved these results and presented
better attacks using zero-correlation linear trails on Simeck48 and Simeck64.
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They were able to attack 27-round Simeck48 and 31-round Simeck64.

4 Linear Cryptanalysis with Super Rounds

Linear cryptanalysis is one of the most powerful attacks on iterative block ci-
phers. In 2020, Almuhlifi and Vora proposed an improved linear attack to
significantly increase the recovery attack efficiency using Matsui’s second al-
gorithm. The super-round technique essentially works by partitioning the key
into smaller parts. The efficiency of this technique depends on reducing the
number of key bits require to guess. The standard technique to extend a lin-
ear approximation by one round decryption is usually achieved by guessing the
full last round key. Hence, the proposed improved technique takes advantage
of the fact that one bit depends on only 16 key bits; instead of extending the
linear approximation by one round, it can be extended by four rounds with the
same cost. Therefore, we apply the super-round technique to recover multiple
rounds keys, including the master key for all variants of Simeck, and attack
more rounds using Matsui’s second algorithm.

The general method of applying Matsui’s second algorithm using super
rounds as described in [1], is by deriving linear approximations that have a
single bit of input —XL4

i or XR4
i , and multiple bits of the ciphertexts (see

Figure 2).
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Figure 2: General form of linear attack with super rounds.

In the following, we illustrate the general principles of super rounds. For
more details, we refer the readers to [1]’s work.

4.1 The Super Round

The term super round defined in [1] as a function of block cipher representing
s-rounds of encryption of the cipher. In the case of Simeck, it represents a
four-round encryption.

In the case of Simeck 32/64, there are two super-rounds, as it is shown in
Figure 3. There is a super-round that represents the first four rounds, which
requires a super key for the left half of size 16 bits and has as a output a single
bit of the left half of the cipher text. A similar super round that requires a
super key for the right half of size 7 bits shown on the right side of Figure 3.
In the case of the other variants Simeck48/96 and Simeck64/128, even though
they correspond to larger block and key size, the construction of super-rounds
with the exact size of the super keys is applicable.
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Figure 3: The super rounds.

5 Linear Cryptanalysis with Super Rounds on
Simeck

Here, we describe the construction of super rounds and the derivation of super
keys for Simeck32/64.

5.1 The Construction of Super Rounds and Derivations
of Super Keys

In this section, we demonstrate the construction of the super rounds of Simeck
32/64.

Recall equation (1), describing the round function of Simeck:

(XLj+1, XRj+1) = Rkj (XLj , XRj) = (XRj ⊕ F (XLj) ⊕ kj , XLj)

which implies that:

XLj+1
i = XRj

i ⊕ Zj
i ⊕ kji

= XLj−1
i ⊕ Zj

i ⊕ kji

= XLj−3
i ⊕ Zj−2

i ⊕ kj−2
i ⊕ Zj

i ⊕ kji

And hence that:

XL4
i = XL0

i ⊕ Z1
i ⊕ k1i ⊕ Z3

i ⊕ k3i = PLi ⊕ Z1
i ⊕ k1i ⊕ Z3

i ⊕ k3i

Similarly,
XRj+1

i = XLj
i

= XLj−2
i ⊕ Zj−1

i ⊕ kj−1
i

= XRj−3
i ⊕ Zj−3

i ⊕ kj−3
i ⊕ Zj−1

i ⊕ kj−1
i
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and hence that:

XR4
i = XR0

i ⊕ Z0
i ⊕ k0i ⊕ Z2

i ⊕ k2i = PRi ⊕ Z0
i ⊕ k0i ⊕ Z2

i ⊕ k2i

Now recall equation (2):

F (XLj) = [(XLj)&(XLj ≪ 5)] ⊕XLj ≪ 1)

which implies that:
Zj
i = (XLj

i&XLj
i+5) ⊕XLj

i+1

giving us:

Z0
i = (PLi&PLi+5) ⊕ PLi+1

Z1
i = [(Z0

i ⊕ k0i ⊕ PRi)&(Z0
i+5 ⊕ k0i+5 ⊕ PRi+5)] ⊕ (Z0

i+1 ⊕ k0i+1 ⊕ PRi+1)

Z2
i = [(Z1

i ⊕ k1i ⊕XR1
i )&(Z1

i+5 ⊕ k1i+5 ⊕XR1
i+5)] ⊕ (Z1

i+1 ⊕ k1i+1 ⊕XR1
i+1)

= [(Z1
i ⊕ k1i ⊕ PLi)&(Z1

i+5 ⊕ k1i+5 ⊕ PLi+5)] ⊕ (Z1
i+1 ⊕ k1i+1 ⊕ PLi+1)

Z3
i = (v1&v2) ⊕ v3

where:

v1 = Z2
i ⊕ k2i ⊕XR2

i = Z2
i ⊕ k2i ⊕XL1

i = Z2
i ⊕ Z0

i ⊕ k0i ⊕ PRi ⊕ k2i

v2 = Z2
i+5 ⊕ k2i+5 ⊕XR2

i+5 = Z2
i+5 ⊕ k2i+5 ⊕XL1

i+5 = Z2
i+5 ⊕ Z0

i+5 ⊕ k0i+5 ⊕ PRi+5 ⊕ k2i+5

v3 = Z2
i+1 ⊕ k2i+1 ⊕XR2

i+1 = Z2
i+1 ⊕ k2i+1 ⊕XL1

i+1 = Z2
i+1 ⊕ Z0

i+1 ⊕ k0i+1 ⊕ PRi+1 ⊕ k2i+1

Finally,

XL4
i = Z3

i ⊕ k3i ⊕XR3
i = Z3

i ⊕ k3i ⊕XL2
i = Z3

i ⊕ k3i ⊕ Z1
i ⊕ k1i ⊕ PLi

XR4
i = XL3

i = XL1
i ⊕ Z2

i ⊕ k2i = PRi ⊕ k0i ⊕ Z0
i ⊕ Z2

i ⊕ k2i

5.2 The Super Key

There is a super key corresponding for each of the super rounds depicted in
Figure 3. The following table lists the components of the left and the right
super keys, according to the equations described in section 5.1.
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Super-key of the left-half Super-key of the right-half

k0i ⊕ k0i+2 ⊕ k1i+1 ⊕ k2i k0i+1 ⊕ k1i
k0i+5 ⊕ k0i+7 ⊕ k1i+6 ⊕ k2i+5 k0i+6 ⊕ k1i+5

k0i+1 ⊕ k1i k0i
k0i+6 ⊕ k1i+5 k0i+1

k0i+11 ⊕ k1i+10 k0i+6

k0i+2 ⊕ k1i+1 k0i+5

k0i+7 ⊕ k1i+6 k0i+10

k0i+1

k0i
k0i+2

k0i+5

k0i+6

k0i+7

k0i+10

k0i+11

k0i+15

Table 4: Super Keys

From the table above, it can be seen that the super key of the left half
contains nine bits of k0, in the form k0i+m for m = 0, 1, 2, 5, 6, 7, 10, 11, 15. In
addition to five bits comes from the super key of the right half, in the form k0i+m

for m = 0, 1, 5, 6, 10. As a result of this redundancy, we will get nine copies, five
copies of each bit of k0, for every super key of the left half and right half of the
state, respectively.

As a result of determining the sixteen bits of XL4 and XR4, we obtain:

• 14 copies of k0s

• 7 copies of k0s ⊕ k1s+1

• 2 copies of k0s ⊕ k0s+2 ⊕ k1s+1 ⊕ k2s

for s = 0, 1, 2, ..., 15.
Thus, obtaining the sixteen super keys for the left and right halves of

Simeck32/64, we can estimate 48 independent key bits, consisting of k0,k1,
and k2. However, in [1], they use the majority vote to determine the value of
the individual key bits. Hence, the final estimation of each bit is one of the three
states, correctly determined bits, incorrectly determined bits, and undetermined
bits.

6 Linear Approximations for Simeck 32/64

In this section, we describe 8-round, 10-round, and 12-round attacks using super-
rounds of Simeck32/64. These attacks are similar to previous work [1] done on
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Simon. At first, we discuss how to derive the required linear approximations.
Note that the only non-linear expression in Simeck round function is the bit-
wise AND [2]. Thus, we can approximate the result of the bit-wise AND by 0
with a probability of 0.75. Hence, there are four equivalent approximations can
be used:

Approximation1 : Pr[F (XLj+1
i ) = XLj

i+1] =
3

4

Approximation2 : Pr[F (XLj+1
i ) = XLj

i+1 ⊕XLj
i ] =

3

4

Approximation3 : Pr[F (XLj+1
i ) = XLj

i+1 ⊕XLj
i+5] =

3

4

Approximation4 : Pr[F (XLj+1
i ) = XLj

i+1 ⊕XLj
i ⊕XLj

i+5] =
1

4

6.1 8-round Attack

Following the attack procedure of Simon presented in [1], we need to derive two
linear approximations for the left and the right half inputs. The approximations
have a single bit of the input related to a few output bits after four rounds.

Deriving a 4-round linear approximation that relates a single bit of the in-
put; hence we use the super rounds to obtain a single bit of input and then
concatenate it with the approximation. Figure 4 depicts the 8-round attack.

Given Approximation 1, we extract a 4-round linear approximation for the
left half with bias 2−5 as the following:

PLi = XL0
i = XR1

i

= F (XR2)i ⊕XL2
i ⊕ k1i

≈ XR2
i+1 ⊕XL2

i ⊕ k1i

= XR2
i+1 ⊕XL2

i ⊕ k1i

= F (XR3)i+1 ⊕XL3
i+1 ⊕ k2i+1 ⊕XR3

i ⊕ k1i

≈ XR3
i+2 ⊕XL3

i+1 ⊕ k2i+1 ⊕XR3
i ⊕ k1i

= XR3
i,i+2 ⊕XL3

i+1 ⊕ k2i+1 ⊕ k1i

= F (XR4)i,i+2 ⊕XL4
i,i+2 ⊕ k3i,i+2 ⊕XR4

i+1 ⊕ k2i+1 ⊕ k1i

≈ XR4
i+1,i+3 ⊕XR4

i+1 ⊕XL4
i,i+2 ⊕ k3i,i+2 ⊕ k2i+1 ⊕ k1i

= XR4
i+3 ⊕XL4

i,i+2 ⊕ k3i,i+2 ⊕ k2i+1 ⊕ k1i

(3)

Similarly, we extract a 4-round linear approximation that relates a single bit
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of the right half input with bias=2−6:

PRi = XR0
i = F (XR1)i ⊕XL1

i ⊕ k0i

≈ XR1
i+1 ⊕XL1

i ⊕ k0i

= F (XR2)i+1 ⊕XL2
i+1 ⊕ k1i+1 ⊕XR2

i ⊕ k0i

≈ XR2
i+2 ⊕XL2

i+1 ⊕ k1i+1 ⊕XR2
i ⊕ k0i

= XR2
i,i+2 ⊕XL2

i+1 ⊕ k1i+1 ⊕ k0i

= F (XR3)i,i+2 ⊕XL3
i,i+2 ⊕ k2i,i+2 ⊕XL2

i+1 ⊕ k1i+1 ⊕ k0i

≈ XR3
i+1,i+3 ⊕XL3

i,i+2 ⊕ k2i,i+2 ⊕XR3
i+1 ⊕ k1i+1 ⊕ k0i

= XR3
i+3 ⊕XL3

i,i+2 ⊕ k2i,i+2 ⊕ k1i+1 ⊕ k0i

= F (XR4)i+3 ⊕XL4
i+3 ⊕ k3i+3 ⊕XR4

i,i+2 ⊕ k2i,i+2 ⊕ k1i+1 ⊕ k0i

= XR4
i,i+2,i+4 ⊕XL4

i+3 ⊕ k3i+3 ⊕ k2i,i+2 ⊕ k1i+1 ⊕ k0i

(4)

Figure 4: 8-Round Linear Attack

Now, we can append the super round to the 4-round approximations Equa-
tions (3) and (4) to relate the plaintext to the single bit of super round output.
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Thus we obtain an approximate relationship between plaintext, ciphertext, and
super key bits. This extension enables up to attack up to eight rounds without
reducing the bias further. This gives us the following expressions:

XL4
i ⊕XR8

i+3 ⊕XL8
i,i+2 = k7i,i+2 ⊕ k6i+1 ⊕ k5i (5)

XR4
i ⊕XR8

i,i+2,i+4 ⊕XL8
i+3 = k7i+3 ⊕ k6i,i+2 ⊕ k5i+1 ⊕ k4i (6)

6.2 10-Round Attack

Adding two rounds of decryption at the end of the 8-round attack and get a
10-round attack. This extension comes at the cost of guessing a few bits of the
last round key. Figure 5 depicts the 10-round linear attack.

Figure 5: 10-Round Linear Attack
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Single-round decryption can be expressed with the following equation [1]:

XLj = XRj+1

XRj = F (XRj+1) ⊕XLj+1 ⊕ kj ,

so, the two rounds decryption can be written as following:

XLj = F (XRj+2) ⊕XLj+2 ⊕ kj+1

XRj = F (F (XRj+2) ⊕XLj+2 ⊕ kj+1) ⊕XRj+2 ⊕ kj ,

Recall Equation 7:

XL4
i ⊕XR8

i+3 ⊕XL8
i,i+2 = k7i,i+2 ⊕ k6i+1 ⊕ k5i (7)

Rewrite X8 in terms of X10, which gives us:

XL8 = F (XR10) ⊕XL10 ⊕ k9

XR8 = F (F (XR10) ⊕XL10 ⊕ k9) ⊕XR10 ⊕ k8
(8)

Substitute the expression of XL8 and XR8, we got:

XL4
i ⊕XR8

i+3 ⊕XL8
i,i+2 = k7i,i+2 ⊕ k6i+1 ⊕ k5i

XL4
i ⊕ F (XR9

i+3) ⊕XL9
i+3 ⊕ k8i+3 ⊕XR9

i,i+2

= k7i,i+2 ⊕ k6i+1 ⊕ k5i

XL4
i ⊕ (XR9

i+3&XR9
i+8) ⊕XR9

i+4 ⊕XL9
i+3 ⊕ k8i+3 ⊕XR9

i,i+2

= k7i,i+2 ⊕ k6i+1 ⊕ k5i

Hence, the 10-round expression for the left-half is:

XL4
i ⊕ (F (XR10

i+3) ⊕XL10
i+3 ⊕ k9i+3&F (XR10

i+8) ⊕XL10
i+8 ⊕ k9i+8) ⊕ F (XR10

i+4) ⊕XL10
i+4

= k9i+4 ⊕XR10
i+3 ⊕ k8i+3 ⊕ F (XR10

i,i+2) ⊕XL10
i,i+2 ⊕ k9i,i+2 = k7i,i+2 ⊕ k6i+1 ⊕ k5i

(9)

Following the same approach, we extend the 4-round linear approximation
for the right half, and add two rounds decryption:

XR4
i ⊕XR8

i,i+2,i+4 ⊕XL8
i+3 = k7i+3 ⊕ k6i,i+2 ⊕ k5i+1 ⊕ k4i

XR4
i ⊕ F (XR9

i,i+2,i+4) ⊕XL9
i,i+2,i+4 ⊕ k8i,i+2,i+4 ⊕XR9

i+3 = k7i+3 ⊕ k6i,i+2 ⊕ k5i+1 ⊕ k4i
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XR4
i ⊕ (XR9

i &XR9
i+5) ⊕ (XR9

i+2&XR9
i+7) ⊕ (XR9

i+4&XR9
i+9) ⊕XR9

i+1,i+3,i+5 ⊕XL9
i,i+2,i+4⊕

k8i,i+2,i+4 ⊕XR9
i+3 = k7i+3 ⊕ k6i,i+2 ⊕ k5i+1 ⊕ k4i

XR4
i ⊕ (XR9

i &XR9
i+5) ⊕ (XR9

i+2&XR9
i+7) ⊕ (XR9

i+4&XR9
i+9) ⊕XR9

i+1,i+5 ⊕XR10
i,i+2,i+4 =

k8i,i+2,i+4 ⊕ k7i+3 ⊕ k6i,i+2 ⊕ k5i+1 ⊕ k4i

Thus, the 10-round linear expression for the right half is:

XR4
i ⊕ (F (XR10

i ) ⊕XL10
i ⊕ k9i &F (XR10

i+5) ⊕XL10
i+5 ⊕ k9i+5)⊕

(F (XR10
i+2) ⊕XL10

i+2 ⊕ k9i+2&F (XR10
i+7) ⊕XL10

i+7 ⊕ k9i+7)⊕
(F (XR10

i+4) ⊕XL10
i+4 ⊕ k9i+4&F (XR10

i+9) ⊕XL10
i+9 ⊕ k9i+9)⊕

F (XR10
i+1,i+5) ⊕XL10

i+1,i+5 ⊕ k9i+1,i+5 ⊕XR10
i,i+2,i+4 =

k8i,i+2,i+4 ⊕ k7i+3 ⊕ k6i,i+2 ⊕ k5i+1 ⊕ k4i

(10)

In addition to the 16 and 7 key bits required to get the input bits for the left
and the right half, respectively, there are extra key bits required to evaluate the
Equations 9 and 10. There are two key bits k9i+3 and k9i+8 to evaluate Equation
9 and six key bits k9i , k9i+5, k9i+2, k9i+7, k9i+4, and k9i+9 to evaluate Equation 10.

6.3 12-Round Attack

Here, we extend the 4-round linear approximations Equations 3 and 4 into 7-
round linear approximations Equations 11 and 12 for the left and the right half
with biases 2−10 and 2−12 respectively (see Tables 10 and 11 for the derivation):

PLi ⊕XR7
i,i+4 ⊕XL7

i+1 = k6i+1 ⊕ k5i,i+2,i+4 ⊕ k4i+3 ⊕ k3i,i+2 ⊕ k2i+1 ⊕ k1i (11)

PRi ⊕XL7
i,i+4 = k6i,i+4 ⊕ k5i+1 ⊕ k4i,i+2,i+4 ⊕ k3i+3 ⊕ k2i,i+2 ⊕ k1i+1 ⊕ k0i (12)

Thus, we obtain the 11-round linear trails by appending the super round at
the beginning of Equations 11 and 12, as follows:

XL4
i ⊕XR11

i,i+4 ⊕XL11
i+1 = k10i+1 ⊕ k9i,i+2,i+4 ⊕ k8i+3 ⊕ k7i,i+2 ⊕ k6i+1 ⊕ k5i

(13)

XR4
i ⊕XL11

i,i+4 = k10i,i+4 ⊕ k9i+1 ⊕ k8i,i+2,i+4 ⊕ k7i+3 ⊕ k6i,i+2 ⊕ k5i+1 ⊕ k4i (14)

Then, we add one more round of decryption at the end of the 11-round trails
and get the following 12-round trails for the left-half:
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XL4
i ⊕XR11

i,i+4 ⊕XL11
i+1 = k10i+1 ⊕ k9i,i+2,i+4 ⊕ k8i+3 ⊕ k7i,i+2 ⊕ k6i+1 ⊕ k5i

XL4
i ⊕ F (XR12

i,i+4) ⊕XL12
i,i+4 ⊕ k11i,i+4 ⊕XR12

i+1 ⊕ k10i+1 ⊕ k9i,i+2,i+4 ⊕ k8i+3 ⊕ k7i,i+2 ⊕ k6i+1 ⊕ k5i

XL4
i ⊕ (XR12

i &XR12
i+5) ⊕ (XR12

i+4&XR12
i+9) ⊕XR12

i+5 ⊕XL12
i,i+4 = k11i,i+4 ⊕ k10i+1 ⊕ k9i,i+2,i+4

⊕ k8i+3 ⊕ k7i,i+2 ⊕ k6i+1 ⊕ k5i
(15)

Similarly, for the 11-round linear approximation for the right half:

XR4
i ⊕XL11

i,i+4 = k10i,i+4 ⊕ k9i+1 ⊕ k8i,i+2,i+4 ⊕ k7i+3 ⊕ k6i,i+2 ⊕ k5i+1 ⊕ k4i

XR4
i ⊕XR12

i,i+4 = k10i,i+4 ⊕ k9i+1 ⊕ k8i,i+2,i+4 ⊕ k7i+3 ⊕ k6i,i+2 ⊕ k5i+1 ⊕ k4i
(16)
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Figure 6: 12-Round Linear Attack

7 Experimental Verification

We implement several experiments to verify the attacks presented in section 6
and provide the experimental results in this section.

Recall the super keys bits shown in Table 4, which comes in three forms k0i ,
k0i+2 ⊕ k1i , or k0i ⊕ k0i+4 ⊕ k1i+2 ⊕ k2i . Note, we reuse the notations that appeared
in [1], for Bit1, Bit2, Bit3 and Bit4. These four bits are determined using the
following Equation (17).
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k0i = Bit1i

k1i = Bit2i ⊕Bit1i+2

k2i = Bit1i ⊕Bit2i+2 ⊕Bit3i

k9i = Bit4i

(17)

7.1 8-Round Key Recovery Attack

To determine the required data for conducting the experiments, we follow Mat-
sui’s rule [6], which suggests using some multiple of bais−2. Thus, the required
data complexity for the 8-round attack is a multiple of 2−6∗−2. Therefore, we
conducted 14 experiments with 214 plaintext and ciphertext pairs.

It can be seen in Table 5 that the estimates contributed from evaluating the
linear approximation of the right half do not improve the overall results. This
is because of the low bias approximations used in this case. We notice that
as the number of copies of Bit1, Bit2, and Bit3 increased as the accuracy of
the estimation results increased. Thus, the estimates of Bit1 are more accurate
than those of Bit2 and Bit3.
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Table 5: Comparison of 8-round attack results using the left half only and using
both halves.

Bits Correctly No. of
Number of Rounds Super Key Bits Estimated Guessed Experiments

(out of 16 Bits) (out of 14)

8-round

Bit1 16 14
Bit2 16 10

average no. bits guessed correctly = 15.7 15 4

(left half)
Bit3

15 3

average no. bits guessed correctly =12.6

14 2
13 2
12 2
11 3
10 2

8-round

Bit1 16 14

Bit2 16 10
15 3

average no. bits guessed correctly = 15.6 14 1

(left and right halves)
Bit3

15 3

average no. bits guessed correctly = 12.7

14 2
13 3
12 2
11 2
10 2

7.2 10-round Key Recovery Attack

Similar to the previous attack, we implement the 10-round attack with 14 keys
chosen at random and 214 P/C pairs. We can deduce from Table 6 that com-
pared to the results obtained in the 8-round attack, we have a different observa-
tion. The votes contributed from the approximations of the right half improved
the overall results. Especially in the estimations of k9; hence every bit of k9

received six copies from the right half evaluation, where only two copies from
the left half.
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Table 6: Comparison of 10-round attack results using the left half only and
using both halves.

Bits Correctly No. of
Number of Rounds Super Key Bits Estimated Guessed Experiments

(out of 16 Bits) (out of 14)

10-round

Bit1 16 14

Bit2 16 10
average no. bits guessed correctly = 15.7 15 4

(left half)

Bit3

16 2

average no. bits guessed correctly = 12.6

14 4
13 1
11 5
10 2

Bit4

16 1

average no. bits guessed correctly = 13

15 1
14 3
13 4
12 3
11 2

10-round

Bit1 16 14

Bit2
16 11

average no. bits guessed correctly =15.7
15 2
14 1

(left and right halves)

Bit3
16 2

average no. bits guessed correctly = 12.6

14 4
13 1
11 5
10 2

Bit4
16 9

average no. bits guessed correctly = 15.5
15 3
14 2

7.3 12-Round Key Recovery Attack

Due to the time limitation, we only implement three experiments of the 12-
round attack using 224 P/C pairs with keys chosen at random. Table 7 shows
similar results to the results of 8-round attack. The combined estimation from
both halves (left and right) did not enhance the results using only the left half
estimations.
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Table 7: Comparison of 12-round attack results using the left half only and
using both halves.

Bits Correctly No. of
Number of Rounds Super Key Bits Estimated Guessed Experiments

(out of 16 Bits) (out of 3)

12-round

Bit1 16 3

Bit2 16 3

(left half)
Bit3 15 1

average no. bits guessed correctly = 14.3 14 2

12-round

Bit1 16 3

Bit2 16 3

(left and right halves)
Bit3 15 1

average no. bits guessed correctly = 14.3 14 2

7.4 Experimental Results of 8-round Attack Without Ap-
proximations

Since Simeck is designed based on the Feistel structure, and one of the essen-
tial features of this design is that the same algorithm is used for encryption
and decryption; hence an equivalent super-round of 4-rounds decryption is es-
tablished as well. We can launch a meet-in-the-middle attack on 8-round linear
cryptanalysis of Simeck 32/64 without any approximations, which is the same
attack that has been applied on Simon in the previous work [1].

Figure 7 depicts how the two super-rounds are connected to attack eight
rounds of Simeck 32/64. We start with one super-round in the forward direction
and the second super-round in the backward direction; hence we efficiently apply
the meet-in-the-middle technique.

The first super-round FS1 starts with a plaintext and 17 key bits K1 to
produce a single bit of 4-rounds encryption XL4

i . Then, the second super-
round FS2 takes the ciphertext, and 8 key bits K2 and generates a single bit of
4-rounds decryption. Following the procedure described in [1], we compute FS1

and FS2, for all possible values of the encryption and decryption super-keys, for
every bit i.

We conduct two experiments using only 48 plaintext and ciphertext pairs;
hence, we were able to retrieve the correct value of the 112 bits we are trying
to recover.
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Figure 7: 8-Round Attack Without Approximations

7.5 Summary of Projected Results

Here we provide a summary of our experimental results.

Table 8: Summary of the Experimental Results.

Experimental Super Key Bits Master Key Bits Data Time Success

Results Recovered Recovered Complexity Complexity Probability

8-round 46–48 bits 46–48 bits 214 234.0028 93%

10-round 62–64 bits 56–62 bits 214 236.044 93.4%

12-round 46–48 bits 46–48 bits 224 244.0028 96.45%

8-round without 112 bits 64 bits 25.58 230.58 100%

approximations
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8 Projected Results Using Multiple Linear Crypt-
analysis

This section presents two projected linear attacks; the first uses a single super-
round, and the second is a new class of attacks where we use multiple super-
rounds.

8.1 20-round Linear Attack Using a Single Super-Round

Here, we present a 20-round linear attack by extending the 12-round linear
approximations Equation (18) and append a single super round of four rounds
encryption and add four rounds of decryption.

We extend the 7-round linear characteristics Equations (11) and (12) into
the following 12-round linear approximations for the left and the right sides with
biases=2−18 and 2−19 respectively.

PLi ⊕ CRi+3 ⊕ CLi,i+2,i+4 = k11i,i+2,i+4 ⊕ k10i+1 ⊕ k9i,i+4 ⊕ k7i,i+4 ⊕ k6i+1 ⊕ k5i,i+2,i+4

⊕ k4i+3 ⊕ k3i,i+2 ⊕ k2i+1 ⊕ k1i

PRi ⊕ CRi,i+2 ⊕ CLi+3 = k11i+3 ⊕ k10i+2,i,i+4 ⊕ k9i+1 ⊕ k8i,i+4 ⊕ k6i,i+4 ⊕ k5i+1 ⊕ k4i,i+2,i+4

⊕ k3i+3 ⊕ k2i,i+2 ⊕ k1i+1 ⊕ k0i
(18)

Following the approach presented in [1], first, we compute the capacity for
the system of approximations.

c2 = 4 × 16 × 2−18×2 = 26 × 2−182 = 2−30

Appending the super round costs on average 11.5 and 4.5 for the left and the
right half, respectively. Moreover, appending four rounds of decryption costs
guessing on average 16 key bits and 18.5 key bits for the left and right half
approximations respectively.

There are 23 key bits (16 bits on average) required guessing for the left half
approximations:

• 14 bits of k19i for i = 3, 8, 13, 4, 2, 7, 9, 14, 0, 5, 10, 12, 1, 6, each counted as
a half bit

• 7 bits of the sum:k19i+1 ⊕ k18i for i = 5, 13, 2, 7, 3, 58.

• 2 bits of the sum:k19i,i+2 ⊕ k18i+1 ⊕ k17i , for i = 3, 8

There are 25 key bits (18.5 bits on average) required guessing for the right
half approximations:

• 13 bits of k19i for i = 0, 5, 8, 10, 1, 6, 15, 11, 2, 7, 12, 3, 13, each counted as a
half bit
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• 8 bits of the sum : k19i+1 ⊕ k18i for i = 0, 5, 10, 2, 7, 12, 1, 6.

• 4 bits of the sum: k19i,i+2 ⊕ k18i+1 ⊕ k17i , for i = 0, 5, 2, 7

Thus, the time complexity for evaluating the approximations for left half is
16 × 230 × 211.5 × 216 = 261.5. In addition to the complexity to evaluate the
approximations for the right half = 16×230×24.5×218.5 = 257. Thus, the total
time complexity is 261.56.

8.2 Improved Linear Approximations for Simeck 32/64

The approximations used in the attack presented in 8.1 have a single bit of the
input mask due to the constraint of incorporating only a single super-round.
This constraint is relaxed in this work. We can improve the overall attack
efficiency by deriving a linear approximation with multiple input masks, which
means we can employ multiple super-rounds.

Therefore, we are able to derive this improved 13-round approximation with
bias equal to 2−18. (see 12 for the derivation).

PLi+3 ⊕ PRi,i+2 ⊕XR13
i+1 ⊕XL13

i,i+4 ⊕ k10i,i+4 ⊕ k9i+1 ⊕ k8i,i+2,i+4 ⊕ k7i+3 ⊕ k6i,i+2 ⊕ k5i+1 ⊕ k4i

⊕ k2i ⊕ k1i+1 ⊕ k0i,i+2

(19)

8.3 20-round Linear Attacks Using Multiple Super-Rounds

Incorporating multiple super rounds enables us to enhance the time complexity
of the attack. Thus, we extend the 13-round linear trail Equation 19 into a 20-
round linear attack by appending six rounds, four rounds of encryption (three
super-rounds), and three rounds of decryption.

The system of approximations has the capacity of:

c2 = 4 × 16 × 2−18×2 = 26 × 2−182 = 2−30

Hence, the data complexity for this attack is 230.
The three super-rounds require guessing three super-keys which consist of:

• 14 bits of the last round key k0i for i = 10, 5, 14, 9, 4, 8, 3, 2, 13, 0, 1, 6, 7, 12

• 9 bits of the sum k0i+1 ⊕ k1i for i = 9, 4, 13, 8, 3, 0, 5, 2, 7

• 2 bits of the sum k0i,i+2 ⊕ k1i+1 ⊕ k2i for i = 3, 8

There are 7 key bits required guessing for adding three rounds of decryption
(see ?? for details):

• 5 bits of k19i for i = 0, 5, 10, 1, 6, each counted as a half bit

• 4 bits of the sum:k19i+1 ⊕ k18i for i = 0, 5.
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The average cost for appending three super-rounds is to guess 18 key bits,
in addition to 6.5 key bits to add three rounds of decryption; thus, the time
complexity for this attack is 24 × 230 × 218 × 26.5 = 258.5.

Thus, the time complexity for evaluating the approximations for left half
is 24 × 230 × 218 × 26.5 = 258.5. In addition to the complexity to evaluate the
approximations for the right half = 16×230×24.5×218.5 = 257. Thus, the total
time complexity is 258.58.

Table 9 summarize our results of Simeck 32/64 and compares it with the
best results presented in [2]. We are able to go deeper by two rounds.

Average Case Computations

Simeck
Number of

Rounds
Data Complexity Time Complexity

32/64

Using Single Super-Round Presented in Section 8.1
17-round 230 260.5

Using Multiple Super-Rounds Presented in Section 8.3
20-round 230 258.58

Projections from data in [2]
18-round 224 260.5

Table 9: Comparison results on Simeck 32

9 The Effect of Super Rounds on Larger Vari-
ants of Simeck

Contrary to Simon, the larger versions of Simeck have the same super keys
of the same size. Therefore, incorporating multiple super-rounds instead of
one super-round still yields better results on all versions of Simeck than one
super-round.

For Simeck 48, we derived a 20-round linear approximation that has three
active bits in the input mask and one bit of the output mask. We employ this
approximation to attack 29-rounds of Simeck 48 by adding three super rounds
(four rounds of encryption) at the beginning and five rounds of decryption at
the end. This comes at the cost of guessing 41 key bits on average.

For Simeck 64, we derived a 25-round and added nine rounds at both ends.
Four rounds of encryption and five rounds of decryption cost guessing 49 key
bits on average. Hence, we attack up to 34-round of this version of Simeck.

10 Conclusions

This paper presents the results of applying the novel notion of super rounds
presented in [1] on all versions of the Simeck lightweight block cipher. Hence,
we got very similar results on Simeck 32 and better results on Simeck48 and
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Simeck64. We presented experimental results on 8-round, 10-round, and 12 -
rounds attacks on Simeck 32, and we recovered a large number of the master key
bits with high accuracy. Theoretically, we present a 20-round on Simeck 32, 29-
rounds on Simeck 48 and 35-rounds on Simeck 64. Applying the super-rounds
model of linear cryptanalysis on Simeck 32 results in similar attacks to what has
been presented in [1]. Thus, we improved the complexity of applying the super-
rounds by relaxing the constraint of using only the linear approximations with
one active input mask; this enables us to derive linear trails with higher bias.
As a result, we are able to attack a significant number of rounds of Simeck48
and Simeck 64.

26



A The Deduction of k3 from k9

Simeck key schedule generates r-4 more round keys from the 64-bit master key.
Therefore, we are able to write the round keys in terms of the master key bits
k0, k1, k2, and k3.

k9 is generated as in equation 20, which is expressed in terms of the master
key bits in equation (21).

k9 = k5 ⊕ F (k6) ⊕ c⊕ (z0)5 (20)

Hence, k3 may be expressed in terms of k0, k1, k2, and k9 as follows:

k9 = k1 ⊕ F (k2) ⊕ F (k2 ⊕ f(k3)) ⊕ C ⊕ (Z0)1 ⊕ C ⊕ (Z0)2 ⊕ C ⊕ (Z0)5 (21)

Recall the round function f :

F (XLj) = [(XLj)&(XLj ≪ 5)] ⊕XLj ≪ 1)

It is clear that f consists of the non-invertible bitwise AND, hence we assume
the output of f is Zero:

F (X) = (0n ⊕XLj ≪ 1)

= XLj ≪ 1
(22)

where 0n denotes a zero vector of n-bits.
We can write the inverse function as:

F−1(X) = X ≪ 1 (23)

Therefore, to write k9 in terms of the master key, we apply 23 in 21:

k9 = k1 ⊕ f−1(k2) ⊕ f−1(k2 ⊕ f−1(k3))C ⊕ (Z0)1 ⊕ C ⊕ (Z0)2 ⊕ C ⊕ (Z0)5

= k1 ⊕ (k2 ≪ 1) ⊕ (k2 ≪ 1) ⊕ (k3 ≪ 2) ⊕ C ⊕ (Z0)1 ⊕ C ⊕ (Z0)2 ⊕ C ⊕ (Z0)5
(24)
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B Derive 13-round Linear Approximations for
Simeck 32/64

Table 10: The sequence of approximations used to derive 13-rounds linear trails
for the left-half of Simeck 32.

Active Bits in the Left Side Active Bits in the Right Side Used Approximation Number of Approximations

0 -

- 0 1 1

0 1 1 1

1 0,2 1;1 2

0,2 3 1 1

3 0,2,4 3;1;1 3

0,2,4 1 1 1

1 0,4 3;1 2

0,4 0

0,4 3;1 2

0,4 1 1 1

1 0,2,4 3;1;1 3

0,2,4 3

Table 11: The sequence of approximations used to derive 13-rounds for the
right-half of Simeck 32.

Active Bits in the Left Side Active Bits in the Right Side Used Approximation Number of Approximations

- 0 1 1

0 1 1 1

1 0,2 1:1 2

0,2 3 1 1

3 0,2,4 3;1;1 3

0,2,4 1 1 1

1 0,4 3;1 2

0,4 -

0,4 3;1 2

0,4 1 1 1

1 0,2,4 3;1;1 3

0,2,4 3 1 1

3 0,2
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C Derive an improved 13-round Linear Approx-
imations for Simeck 32/64

Table 12: The sequence of approximations used to derive 13-rounds linear trails
of Simeck 32.

Active Bits in the Left Side Active Bits in the Right Side Used Approximation Number of Approximations

3 0, 2 1:1 2

0,2 1 1 1

1 0 1 1

0 -

0 1 1 1

0 1 1

1 0,2 1;1 2

0,2 3 1 1

3 0,2,4 3;1;1 3

0,2,4 1 1 1

1 0,4 3;1 2

0,4 -

0.4 3;1 2

0,4 1

D Linear Cryptanalysis of Simeck 48/96 Using
Multiple Super-Rounds

Here, we continue using multiple super-rounds, so we extend the 13-round linear
approximation Equation (19) into a 20-round approximation with bias=2−27

(see 13 for detailed derivation).

PLi+3 ⊕ PRi,i+2 ⊕XR20
i = k18i ⊕ k17i+1 ⊕ k16i,i+2 ⊕ k15i+3 ⊕ k14i,i+2,i+4 ⊕ k10i,i+4⊕

k9i+1 ⊕ k8i,i+2,i+4 ⊕ k7i+3 ⊕ k6i,i+2 ⊕ k5i+1 ⊕ k4i ⊕ k2i ⊕ k1i+1 ⊕ k0i,i+2

(25)
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D.1 28-round and 29-round Linear Attacks of Simeck 48/96

Here, we describe an improved linear attack of 28-round of Simeck 48/96. We
append the super rounds of four rounds encryption and four rounds of decryption
to the 20-round linear approximation.

The system of approximations has the capacity of:

c2 = 4 × 24 × 2−27×2 = 26 × 2−272 = 2−47.42

The components of three super-keys, a total of 26 key bits:

• 15 bits of the last round key k0i for i = 10, 5, 14, 9, 4, 8, 3, 2, 18, 13, 0, 1, 6, 7, 12

• 9 bits of the sum k0i+1 ⊕ k1i for i = 9, 4, 13, 8, 3, 0, 5, 2, 7

• 2 bits of the sum k0i,i+2 ⊕ k1i+1 ⊕ k2i for i = 3, 8

There is a single bit of the output mask represents one bit of the right half,
hence we can use our super-round to add four rounds of decryption. Therefore,
adding four rounds of decryption requires guessing 16 key bits:

• 9 bits of the last round key k19i for i = 7, 2, 11, 6, 1, 5, 0, 15, 10

• 5 bits of the sum k19i+1 ⊕ k18i for i = 6, 1, 10, 5, 0

• 2 bits of the sum k19i,i+2 ⊕ k18i+1 ⊕ k17i for i = 0, 5

Thus, the time complexity for this attack is 24 × 247.42 × 225 × 216 = 293.
In the average-case complexity, we can add one more round decryption to

the 28-round linear attack; hence we attack up to 29 rounds of Simeck 48/96.
The cost of adding five rounds of decryption, a total of 28 key bits (22 bits on
average):

• 12 bits of the last round key k28i for i = 0, 5, 10, 1, 6, 15, 11, 2, 7, 16, 12, 20,
each counted as a half bit

• 9 bits of the sum k28i+1 ⊕ k27i for i = 7, 2, 11, 6, 1, 5, 0, 15, 10

• 5 bits of the sum k28i,i+2 ⊕ k27i+1 ⊕ k26i for i = 6, 1, 10, 5, 0

• 2 bits of the sum k28i+3 ⊕ k27i,i+2 ⊕ k26i+1 ⊕ k25i for si = 0, 5

The cost of appending four rounds of encryption on average reduced to guess
18.5 key bits. The average time complexity is 24× 247.42 × 218.5 × 222.5 = 292.5.
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Table 13: The sequence of approximations used to derive 20-rounds linear trails
of Simeck 48.

Active Bits in the Left Side Active Bits in the Right Side Used Approximation Number of Approximations

3 0, 2 1:1 2

0,2 1 1 1

1 0 1 1

0 -

0 1 1 1

0 1 1

1 0,2 1;1 2

0,2 3 1 1

3 0,2,4 1;1;1 3

0,2,4 1 1 1

1 0,4 1;1 2

0,4 -

0.4 1;1 2

0,4 1 1 1

1 0,2,4 3;1;1 3

0,2,4 3 1 1

3 0,2 1;1 2

0,2 1 1 1

1 0 1 1

0 -

- 0

Tables 14 and 15 summarize our results of Simeck 48/96 and compares it
with the best results presented in [2]. We are able to attack seven more rounds,
and five more rounds in the average-case complexity and worst-case complexity
receptively.

Average Case Computations

Simeck
Number of

Rounds
Data Complexity Time Complexity

Using Multiple Super-Rounds Presented in Section D
29-round 247.42 292.5

Projections from Data in [2]
23-round 241.42 295

Table 14: Summary of the average case analysis of our results on Simeck 48
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Worst Case Computations

Simeck
Number of

Rounds
Data Complexity Time Complexity

Using Multiple Super-Rounds Presented in Section D
28-round 247.42 293

Projections from Data in [2]
23-round 241.42 2108

Table 15: Summary of the worst case analysis of our results on Simeck 48

E Linear Cryptanalysis of Simeck 64/128 Using
Multiple Super-Rounds

In this section, we try to improve the results obtained using a single-super round
by using multiple super-rounds.

E.1 Improved Linear Approximation for Simeck 64/128

We extend the 20-round linear approximation 19 into a 25-round linear approx-
imation with bias=2−35 (see 16 for derivation).

PLi+3 ⊕ PRi,i+2 ⊕XR25
i+1 ⊕XL25

i,i+2,i+4 = k24i,i+2,i+4 ⊕ k23i+3 ⊕ k22i,i+2 ⊕XR23
i+1 ⊕ k20i ⊕ k18i

⊕ k17i+1 ⊕ k16i,i+2 ⊕ k15i+3 ⊕ k14i,i+2,i+4 ⊕ k10i,i+4 ⊕ k9i+1 ⊕ k8i,i+2,i+4 ⊕ k7i+3 ⊕ k6i,i+2 ⊕ k5i+1

⊕ k4i ⊕ k2i ⊕ k1i+1 ⊕ k0i,i+2

(26)

E.2 33-round and 34-round Linear Attacks of Simeck 64/128
Using Multiple Super-Rounds

We extend the 25-round linear trail 26, and add four rounds of encryption and
four rounds of decryption, hence we are able to attack up to 33-round of Simeck
64/128.

The capacity of the 25-round linear trail is:

c2 = 4 × 32 × 2−35×2 = 27 × 2−352 = 2−63

Thus, the required data complexity is 263.
The cost of adding four rounds of encryption, the components of three super-

keys, a total of 26 key bits:

• 14 bits of the last round key k0i for i = 10, 5, 14, 9, 4, 8, 3, 2, 18, 13, 0, 1, 6, 7, 12

• 9 bits of the sum k0i+1 ⊕ k1i for i = 9, 4, 13, 8, 3, 0, 5, 2, 7

• 2 bits of the sum k0i,i+2 ⊕ k1i+1 ⊕ k2i for i = 3, 8
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The cost of adding four rounds of decryption, a total of 22 key bits (see ??
for details):

• 13 bits of the last round key k32i for i = 7, 2, 11, 6, 1, 5, 0, 15, 10, 14, 3, 4, 9

• 7 bits of the sum k32i+1 ⊕ k31i for i = 1, 6, 11, 0, 5, 4, 9

• 2 bits of the sum k32i,i+2 ⊕ k31i+1 ⊕ k30i for i = 1, 6

The time complexity for this attack is 25 × 263 × 225 × 222 = 2115.
In the average-case complexity, we extend the 33-round attack by one more

round and present a 34-round linear attack. Thus, we add five rounds of de-
cryption. The cost of adding five rounds of decryption, a total of 39 key bits
(30.5 bits on average):

• 17 bits of the last round key k33i for i = 1, 6, 11, 16, 2, 7, 12, 21, 17, 0, 5, 10, 15, 4, 9, 14, 19,
each counted as a half bit

• 13 bits of the sum k33i+1 ⊕ k32i for i = 7, 2, 11, 6, 1, 5, 0, 15, 10, 14, 3, 4, 9

• 7 bits of the sum k33i,i+2 ⊕ k32i+1 ⊕ k30i for i = 1, 6, 11, 0, 5, 4, 9

• 2 bits of the sum k33i+3 ⊕ k32i,i+2 ⊕ k31i+1 ⊕ k30i for si = 1, 6

The average time complexity for this attack is 25×263×218×230.5 = 2116.5.
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Table 16: The sequence of approximations used to derive 25-rounds linear trails
of Simeck 64.

Active Bits in the Left Side Active Bits in the Right Side Used Approximation Number of Approximations

3 0, 2 1:1 2

0,2 1 1 1

1 0 1 1

0 -

0 1 1 1

0 1 1

1 0,2 1;1 2

0,2 3 1 1

3 0,2,4 1;1;1 3

0,2,4 1 1 1

1 0,4 1;1 2

0,4 -

0.4 1;1 2

0,4 1 1 1

1 0,2,4 3;1;1 3

0,2,4 3 1 1

3 0,2 1;1 2

0,2 1 1 1

1 0 1 1

0 -

- 0 1 1

0 1 1 1

1 0,2 1;1 2

0,2 3 1 1

3 0,2,4 3;1;1 3

0,2,4 1

Tables 17 and 18 summarize our results of Simeck 64/128 and compares
it with the best results presented in [2]. We are able to attack seven more
rounds, and six more rounds more efficiently in both cases of time complexity
receptively.
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Average Case Computations

Simeck
Number of

Rounds
Data Complexity Time Complexity

Using Multiple Super-Rounds Presented in Section E
34-round 263 2116.5

Projections from Data in [2]
27-round 249 2107

Table 17: Summary of the average case analysis of our results on Simeck 64

Worst Case Computations

Simeck
Number of

Rounds
Data Complexity Time Complexity

Using Multiple Super-Rounds Presented in Section E
33-round 263 2115

Projections from Data in [2]
27-round 253 2134

Table 18: Summary of the worst case analysis of our results on Simeck 64
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