
Merkle Tree Ladder Mode: Reducing the Size Impact

of NIST PQC Signature Algorithms in Practice

(expanded version)*

Andrew Fregly1 [0000-0002-5760-9197], Joseph Harvey1[0000-0002-9047-9320],

Burton S. Kaliski Jr.1[0000-0002-1233-5380] and Swapneel Sheth1[0000-0002-0075-7914]

1 Verisign Labs, Reston, VA 20190, USA
{afregly,jsharvey,bkaliski,ssheth}@verisign.com

Abstract. We introduce the Merkle Tree Ladder (MTL) mode of operation for

signature schemes. MTL mode signs messages using an underlying signature

scheme in such a way that the resulting signatures are condensable: a set of MTL

mode signatures can be conveyed from a signer to a verifier in fewer bits than if

the MTL mode signatures were sent individually. In MTL mode, the signer sends

a shorter condensed signature for each message of interest and occasionally

provides a longer reference value that helps the verifier process the condensed

signatures. We show that in a practical scenario involving random access to an

initial series of 10,000 signatures that expands gradually over time, MTL mode

can reduce the size impact of the NIST PQC signature algorithms, which have

signature sizes of 666 to 49,856 bytes with example parameters at various

security levels, to a condensed signature size of 248 to 472 bytes depending on

the selected security level. Even adding the overhead of the reference values,

MTL mode signatures still reduce the overall signature size impact under a range

of operational assumptions. Because MTL mode itself is quantum-safe, the mode

can support long-term cryptographic resiliency in applications where signature

size impact is a concern without limiting cryptographic diversity only to

algorithms whose signatures are naturally short.

Keywords: Post-Quantum Cryptography, Digital Signatures, Merkle Trees,

Modes of Operation.

1 Introduction

The transition to post-quantum cryptography under NIST’s leadership [1] has resulted

in a remarkable variety of new, fully specified cryptographic techniques [2] that have

* This article is an expanded version of a contribution to CT-RSA 2023. The changes from the

contribution include (a) incorporating the appendices from the prior version of this ePrint,

updated for consistency; (b) referencing additional related work; and (c) minor editorial

changes. The Version of Record of this contribution was first published in Topics in

Cryptology – CT-RSA 2023, Lecture Notes in Computer Science, vol 13871, pp 415-441, 2023

by Springer Nature, and is available online at https://doi.org/10.1007/978-3-031-30872-7_16

https://doi.org/10.1007/978-3-031-30872-7_16

2 A. Fregly et al.

been assessed, through a public evaluation process, to resist cryptanalysis by both

classical and quantum computers. NIST has also issued recommendations for two

additional post-quantum signature algorithms [3], which are also endorsed (along with

one of the other techniques) in the latest U.S. National Security Systems suite [4]. The

next step in the transition, as the various algorithms are standardized and incorporated

into cryptographic libraries, is to upgrade applications to support them [5]. (NIST has

recently published its initial selections as draft standards [6,7,8].)

Applications of cryptography in the “pre-quantum” era have often been designed

based on the characteristics of the cryptographic techniques available, one of which has

been relatively small signature sizes (by post-quantum standards). Classical signature

sizes range from 64 to 256 bytes in typical examples [9]. The leading post-quantum

signature algorithms in the NIST PQC project, in contrast, have minimum sizes from

666 to 7856 bytes and maximums from 1280 to 49,586 with example parameter sets

(see Tables 8 and 9 in [2]) — an order of magnitude (or more) increase.

Given the increasing sizes of all kinds of data, the relatively large size of the new

signature algorithms won’t necessarily present an obstacle to their adoption. But size

concerns could still present a challenge in some environments, and for the greatest

benefit, it will be helpful to have techniques that reduce the size impact. In addition, it

would be desirable from the perspective of cryptographic diversity if these techniques

could be applied to multiple families of signature algorithms.

Our focus in this paper is on reducing signature size impact in a practical scenario

that we call message series signing. In this scenario, a signer continuously signs new

messages and publishes the messages and their signatures. A verifier then continuously

requests selected messages and verifies their signatures. As examples, the messages

could be web Public-Key Infrastructure certificates [10], Domain Name System

Security Extensions (DNSSEC) records [11] or signed certificate timestamps [12].

We are interested in a way for the signer to convey a set of signatures on messages

of interest to the verifier in fewer bits than if the signatures were sent individually. We

propose to do so through a process we call condensation and reconstitution. We show

how to make a signature scheme condensable through a technique we call Merkle Tree

Ladder (MTL) mode, named for both its relationship with Merkle trees [13] and with

modes of operation of cryptographic techniques pioneered by NIST for encryption

algorithms [14].

In brief, MTL mode constructs an evolving sequence of Merkle tree nodes, which

we call ladders, from the series of messages being signed, then signs each ladder using

the underlying signature scheme. An MTL mode signature has three parts: an

authentication path from a message to a Merkle tree ladder node or “rung”; the ladder;

and the underlying signature on the ladder. A condensed signature conveys the

authentication path; a reference value conveys a ladder and its signature. The signer

sends the verifier a condensed signature and a handle pointing to a reference value; the

verifier computes a reconstituted signature from the condensed signature and a suitable

reference value, requesting a new reference value if needed, and then verifies the

reconstituted signature. The condensation process evolves the authentication paths to

reuse ladders and minimize their size impact.

Merkle Tree Ladder Mode 3

MTL mode improves upon the basic idea of forming a Merkle tree from a fixed set

of messages and then signing the Merkle tree root in two important ways. First, the

message series can expand as the signer continuously signs new messages without

constructing an entirely new tree. Second, both the initial (uncondensed) signature and

the reconstituted signature produced by MTL mode are actual signatures that can be

verified by the MTL mode verification operation. Condensation and reconstitution are

therefore optional upgrades that can be deployed incrementally.

MTL mode, like other Merkle tree techniques, is based only on hash functions. It’s

therefore quantum-safe under the same assumptions as hash-based signatures. In

addition, condensation and reconstitution are public processes: They involve only the

signer’s public key, not its private key. The processes therefore don’t impact the

security of the underlying signature scheme and they can be performed by anyone,

which adds to deployment flexibility.

Summary of Our Contributions. (1) We provide a formal model for condensing

and reconstituting signatures given a suitably constructed signature scheme; (2) We

show how to use Merkle tree ladders to transform an arbitrary underlying signature

scheme into a stateful signature scheme suitable for condensation and reconstitution;

and (3) We demonstrate that the transformation can reduce the size impact of NIST

PQC signature algorithms in practice.

Organization. Section 2 provides preliminary notation and Section 3 introduces

Merkle tree ladders. Section 4 defines MTL mode and Section 5 provides a detailed

security analysis. Section 6 shows how to condense and reconstitute MTL mode

signatures, and Section 7 discusses the practical impact of our techniques on NIST PQC

signature algorithms with DNSSEC as an example use case. Section 8 proposes some

extensions, Section 9 reviews related work, and Section 10 concludes the main body of

the paper. Appendices provide additional details helpful for implementers as well as a

proof of one of the technical claims.

2 Preliminaries

Our specifications use several symbols frequently that we define here for reference:

• ℓ is our security parameter, the length in bits of hash values; a typical minimum

value for security against quantum adversaries is ℓ = 128;

• ℓ𝑐 is the length of the randomizer in our message hashing operation; and

• 𝑆𝐼𝐷 is a series identifier, a value associated with an instance of MTL mode that

provides cryptographic separation from other instances.

We use three families of hash functions: two with fixed input lengths in our Merkle

tree operations and one with a variable input length for message hashing:

• 𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑) ⟶ 𝑉 maps a series identifier 𝑆𝐼𝐷, an index 𝑖, and a ℓ-bit data value

𝑑 to an ℓ-bit hash value 𝑉;

• 𝐻int(𝑆𝐼𝐷, 𝐿, 𝑅, 𝑉left, 𝑉right) ⟶ 𝑉 maps a series identifier 𝑆𝐼𝐷, a node index pair 𝐿

and 𝑅 and two ℓ-bit hash values 𝑉left and 𝑉right to a ℓ-bit hash value 𝑉; and

4 A. Fregly et al.

• 𝐻msg(𝑆𝐼𝐷, 𝑖, 𝑚, 𝑐) ⟶ 𝑑 maps a series identifier 𝑆𝐼𝐷, an index 𝑖, a variable-length

message 𝑚 and a ℓ𝑐-bit randomizer 𝑐 to a ℓ-bit data value 𝑑.

Appendix A proposes instantiations of these functions. The operation RANDOM(ℓ)

returns a random ℓ-bit string.

3 Merkle Tree Ladders

For authenticating an evolving series of messages, instead of a Merkle tree with a single

root, we maintain an evolving set of perfect binary trees according to the binary

representation of N, the number of messages. Consider Fig. 1, which shows how we

would authenticate 14 messages. The binary representation of 14 is 8 + 4 + 2. We

put the first eight messages (bottom row) in a tree with eight leaf nodes (the row above

it). The root of this tree is denoted [1: 8], indicating that it authenticates or spans leaf

nodes 1 through 8. The next four messages go in a tree with four leaf nodes with root

[9: 12]. The last two go into a tree with root [13: 14].
We call the set of root nodes spanning the tree leaves a Merkle tree ladder, which

we envision as a way of “climbing the trees” and reaching the evolving set of roots. We

refer to the tree roots as rungs and the full set of leaf and internal nodes as a Merkle

node set (since it is not necessarily a single tree); we call this particular arrangement of

rungs the binary rung strategy. As new leaf nodes are added to the right, new trees are

formed; rungs are added to the ladder and removed. For instance, when the 15th leaf

node is added, the rung [15: 15] would be added to the ladder. When the 16th is added,

the four previous rungs would be replaced by [1: 16].
As usual in Merkle tree authentication, each node has a hash value that is computed

from the hash values of its descendants. We also include a series identifier 𝑆𝐼𝐷 that

cryptographically separates this node set from other node sets. We denote the hash

value at the node spanning leaf nodes 𝐿 through 𝑅 as 𝑉[𝐿: 𝑅]. When 𝐿 = 𝑅, we have

a leaf node with index 𝑖 = 𝐿 = 𝑅 and we compute

𝑉[𝑖: 𝑖] ∶= 𝑉𝑖 ∶= 𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑)

where 𝑑 is a ℓ-bit data value corresponding to the 𝑖th message. (We will show later how

the data value is computed from the message.) When 𝐿 < 𝑅, we have an internal node

and compute

𝑉[𝐿: 𝑅] ∶= 𝐻int(𝑆𝐼𝐷, 𝐿, 𝑅, 𝑉[𝐿: 𝑀], 𝑉[𝑀 + 1: 𝑅])

where 𝑉[𝐿: 𝑀] and 𝑉[𝑀 + 1: 𝑅] are the hash values of the child nodes of 𝑉[𝐿: 𝑅] and

𝑀 = (𝐿 + 𝑅 − 1)/2.

We compute the 𝑁th ladder, denoted Λ𝑁, as follows. Write 𝑁 = ∑ 2𝜈𝑗𝐵
𝑗=1 , where the

𝜈𝑗 are the indexes of the 1-bits in the binary representation of 𝑁 from highest to lowest,

so that ⌊log2 𝑁⌋ = 𝜈1 > 𝜈2 > ⋯ > 𝜈𝐵 ≥ 0. Λ𝑁 then consists of the hash values

V[𝐿𝑁(1): 𝑅𝑁(1)], … , 𝑉[𝐿𝑁(𝐵): 𝑅𝑁(𝐵)] where we define 𝑅𝑁(0) = 0 and for 𝑗 = 1 to 𝐵,

we set 𝐿𝑁(𝑗) = 𝑅𝑁(𝑗 − 1) + 1 and 𝑅𝑁(𝑗) = 𝑅𝑁(𝑗 − 1) + 2𝜈𝑗 . In the example, the 14th

ladder Λ14 consists of the hash values V[1: 8], V[9: 12] and V[13: 14].

Merkle Tree Ladder Mode 5

We can compute the authentication path from the 𝑖th leaf node to the 𝑁th ladder,

denoted Π𝑖,𝑁, in the usual way by including the sibling nodes from the 𝑖th leaf node to

the root of its tree. In the example, the authentication path Π10,14 for the 10th leaf node

𝑉[10: 10] consists of the sibling hash values 𝑉[9: 9] and V[11: 12] leading to the rung

hash value 𝑉[9: 12]. The position of the rung among the hash values in the ladder is

determined uniquely by 𝑖 and 𝑁.

What’s convenient about the binary rung strategy (and what has made it attractive in

other contexts — see the related work in Section 9) is that it has a backward

compatibility property: An authentication path relative to a new ladder can be verified

using an old ladder. For example, consider the authentication path Π10,16 for the 10th

leaf node relative to the 16th ladder Λ16 = [1: 16]. It consists of sibling hash values

𝑉[9: 9], 𝑉[11: 12], 𝑉[13: 16] and 𝑉[1: 8]. Π10,16 can naturally be authenticated relative

to Λ16. But it can also be authenticated relative to Λ14 (and any other ladder between

Λ10 and Λ16), because the authentication recomputes the old rung hash value 𝑉[9: 12]
as an intermediate step on the way to 𝑉[1: 16].

Node set operations. We define four operations for interacting with a node set:

• Node set initialization. INITNODESET(𝑆𝐼𝐷) ⟶ 𝑇 returns a new node set 𝑇 with the

series identifier 𝑆𝐼𝐷.

 14

Fig. 1. Example of a Merkle tree ladder following a binary rung strategy. Rungs [1: 8],
[9: 12] and [13: 14] collectively authenticate all 14 leaf nodes.

6 A. Fregly et al.

• Leaf node addition. ADDLEAFNODE(𝑇, 𝑑) ⟶ 〈Λ𝑁〉 adds a leaf node corresponding to

a data value 𝑑 to the node set 𝑇 and returns the current ladder Λ𝑁 where 𝑁 is the

current leaf node count.

• Authentication path construction. GETAUTHPATH(𝑇, 𝑖) ⟶ Π𝑖,𝑁 returns the

authentication path Π𝑖,𝑁 from the 𝑖th leaf node in the node set 𝑇 relative to the current

ladder. The operation requires that 1 ≤ 𝑖 ≤ 𝑁.

• Authentication path verification. CHECKAUTHPATH(𝑆𝐼𝐷, 𝑖, 𝑁, 𝑁′, 𝑑, Π𝑖,𝑁 , Λ𝑁′) ⟶ 𝑏

verifies that the 𝑖th leaf node corresponds to a data value 𝑑 using an authentication

path Π𝑖,𝑁 from the 𝑖th leaf node relative to the 𝑁th ladder Λ𝑁, and the 𝑁′th
 ladder

Λ𝑁′ . It returns 𝑏 = TRUE if the authentication path is valid and 𝑏 = FALSE otherwise.

The operation requires that 1 ≤ 𝑖 ≤ 𝑁′ ≤ 𝑁.

Appendix B gives pseudocode for the node set operations.

We can formalize the backward compatibility property as follows:

Backward compatibility. For all positive integers 𝑖, 𝑁, 𝑁′ where 𝑖 ≤ 𝑁′ ≤ 𝑁, if 𝑑𝑖

is the data value corresponding to the 𝑖th leaf node in a node set, Π𝑖,𝑁 is the

authentication path from the 𝑖th leaf node to its associated rung in the 𝑁th ladder and

Λ𝑁′ is the 𝑁′th
 ladder, then

CHECKAUTHPATH(𝑆𝐼𝐷, 𝑖, 𝑁, 𝑁′, 𝑑𝑖 , Π𝑖,𝑁 , Λ𝑁′) = TRUE.

The proof is given in Appendix C.

4 Merkle Tree Ladder Mode

We now describe a general technique that can be applied to any signature scheme 𝒮 to

transform it into a stateful signature scheme that can then be condensed, asymptotically,

to the size of a Merkle tree authentication path. Our basic approach is to construct an

evolving sequence of Merkle tree ladders constructed from the messages that are signed,

and sign each ladder using 𝒮. We call the transformation Merkle Tree Ladder (MTL)

mode and designate a signature scheme 𝒮 in MTL mode as 𝒮-MTL.
MTL mode has the following profile:

• Public key 𝑝𝑘 = 〈𝑝𝑘𝒮 , 𝑆𝐼𝐷〉 where 𝑝𝑘𝒮 is a public key for the underlying scheme 𝒮

and 𝑆𝐼𝐷 is a ℓ-bit series identifier.

• Private key 𝑠𝑘 = 〈𝑠𝑘𝒮 , 𝑆𝐼𝐷, 𝑁, 𝑇〉 where 𝑠𝑘𝒮 is the corresponding private key for 𝒮,

𝑆𝐼𝐷 is the matching series identifier, 𝑁 is number of signatures produced and 𝑇 is

the evolving node set constructed from the messages that have been signed so far.

𝑠𝑘 includes state; the signature operation updates 𝑠𝑘 in place.

• Signature σ = 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑁, 𝑁′, Π𝑖,𝑁 , Λ𝑁′ , σ𝑁′
𝒮 , 𝑑𝑖

∗〉 where 𝑆𝐼𝐷 is the series identifier,

𝑐𝑖 is a randomizer, 𝑖, 𝑁 and 𝑁′ are indexes, Π𝑖,𝑁 is an authentication path to the

ladder, Λ𝑁′ is the ladder, σ𝑁′
𝒮 is a signature on the ladder under 𝒮 and 𝑑𝑖

∗ is an optional

data value.

Merkle Tree Ladder Mode 7

We reference the components of the keys as 𝑠𝑘. 𝑆𝐼𝐷, 𝑠𝑘. 𝑁, etc. Note that other than

the underlying private key 𝑠𝑘𝒮 , none of the values in the private key 𝑠𝑘 needs to be

kept secret; they are just included as part of the state. Indeed, all of them including the

node set can be reconstructed from the signatures that are generated.

Scheme operations. The mode’s operations are detailed in Fig. 2. In brief:

• Key pair generation. KEYGEN generates a key pair for 𝒮, initializes a Merkle tree

node set, and forms an MTL mode key pair from the foregoing.

• Signature generation. SIGN hashes the message with a randomizer, adds a leaf node

corresponding to the resulting data value to the private key’s node set, signs the

current Merkle tree ladder using 𝒮, and forms a signature from the authentication

path to the ladder, the ladder and the underlying signature.

• Signature verification. VERIFY verifies the underlying signature on the Merkle tree

ladder using 𝒮, re-hashes the message with the randomizer, and verifies the leaf node

corresponding to the resulting data value using the authentication path and the

ladder.

SIGN only produces signatures with 𝑖 = 𝑁 = 𝑁′ (hence the 𝑖, 𝑖, 𝑖 triple in the initial

signature format). However, VERIFY can verify signatures with 𝑖 ≤ 𝑁′ ≤ 𝑁 due to the

backward compatibility property (see Section 3). The difference is the basis for the

condensation and reconstitution operations we describe in Section 6. (We do not

KEYGEN(1ℓ) ⟶ ⟨𝑝𝑘, 𝑠𝑘⟩:

⟨𝑝𝑘. 𝑝𝑘𝒮 , 𝑠𝑘. 𝑠𝑘𝒮⟩ ∶= 𝒮. KEYGEN(1ℓ).

𝑆𝐼𝐷 ∶= RANDOM(ℓ).

𝑝𝑘. 𝑆𝐼𝐷 ∶= 𝑠𝑘. 𝑆𝐼𝐷 ∶= 𝑆𝐼𝐷.

𝑠𝑘. 𝑁 ∶= 0.

𝑠𝑘. 𝑇 ∶= INITNODESET(𝑆𝐼𝐷).

Return ⟨𝑝𝑘, 𝑠𝑘⟩.

SIGN(𝑠𝑘, 𝑚) ⟶ 𝜎:

𝑖 ∶= 𝑠𝑘. 𝑁 + 1.

𝑆𝐼𝐷 ∶= 𝑠𝑘. 𝑆𝐼𝐷.

𝑐𝑖: = RANDOM(ℓ𝑐).

𝑑𝑖 ∶= 𝐻msg(𝑆𝐼𝐷, 𝑖, 𝑚, 𝑐𝑖).

Λ𝑖 ∶= ADDLEAFNODE(𝑠𝑘. 𝑇, 𝑑𝑖).

Π𝑖,𝑖 ∶= GETAUTHPATH(𝑠𝑘. 𝑇, 𝑖).

σ𝑖
𝒮 ∶= 𝒮. SIGN(𝑠𝑘. 𝑠𝑘𝒮 , 〈𝑆𝐼𝐷, 1, 𝑖, Λ𝑖〉).

σ ⟸ 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑖, 𝑖, Π𝑖,𝑖 , Λ𝑖 , σ𝑖
𝒮 , 𝑑𝑖〉.

𝑠𝑘. 𝑁 ∶= 𝑖.
Return 𝜎.

Fig. 2. MTL mode’s key pair generation, signature generation and signature verification

operations (see text for discussion).

VERIFY(𝑝𝑘, 𝑚, 𝜎) ⟶ 𝑏:

σ ⟹

 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑁, 𝑁′, Π𝑖,𝑁 , Λ𝑁′ , σ𝑁′
𝒮 , 𝑑𝑖

∗〉.

Check 𝑆𝐼𝐷 = 𝑝𝑘. 𝑆𝐼𝐷.

𝑏𝒮 ≔ 𝒮. VERIFY

 (𝑝𝑘. 𝑝𝑘𝒮 , 〈𝑆𝐼𝐷, 1, 𝑁′, Λ𝑁′〉, σ𝑁′
𝒮).

If 𝑏𝒮 = FALSE then return FALSE.

𝑑𝑖 ≔ 𝐻msg(𝑆𝐼𝐷, 𝑖, 𝑚, 𝑐𝑖).

𝑏 ≔ CHECKAUTHPATH

 (𝑆𝐼𝐷, 𝑖, 𝑁, 𝑁′, 𝑑𝑖 , Π𝑖,𝑁 , Λ𝑁′).

Return 𝑏.

8 A. Fregly et al.

consider these signatures forgeries; rather, they are alternative representations of the

same signature. MTL mode is a malleable signature scheme in this sense, with the

caveats that come from this property — see the related work in Section 9.)

5 Security Analysis

We now give two detailed security proofs of MTL mode. Our terminology and notation

generally follows XMSS-T [15]. We adopt the common security goals of existential

unforgeability against chosen message attacks (EU-CMA) and random message attacks

(EU-RMA); and multi-target, multi-function second preimage resistance (MM-SPR).

InSec denotes the maximum success probability that an adversary breaks a specific

security goal within a certain number of queries (and running time).

Our analysis assumes the series identifier 𝑆𝐼𝐷 is different for every instance of MTL

mode. The analysis thus scales to the multi-user setting, as every invocation of the

scheme’s hash functions will have different inputs. MTL mode’s key pair generation

operation generates 𝑆𝐼𝐷 as a random string, but it could also include a unique identifier.

Fluhrer’s proof for LMS [16] models the possibility of 𝑆𝐼𝐷 collisions and could be

adapted here.

5.1 Random Oracle Model Proof

We start with a basic proof in the random oracle model against classical adversaries.

Motivated by Fluhrer’s and Katz’s [17] proofs for LMS, we model all three hash

functions as random oracles. (Fluhrer also observes the importance of ensuring

appropriate interaction with hash function’s compression function; we defer such

details to specific instantiations.)

Theorem 1. 𝒮-MTL is EU-CMA in the random oracle model if:

• 𝒮 is EU-CMA in the random oracle model;

• 𝐻msg, 𝐻leaf and 𝐻int are modeled as independent random oracles; and

• the random oracles are independent of one another and any assumed in the security

analysis of 𝒮.

In particular, we have for classical adversaries,

InSecEU-CMA(𝒮-MTL; ξ) ≤ InSecEU-CMA(𝒮; ξ) +
(𝑞 + 1)

2ℓ
+

𝑞

2ℓ𝑐
 ,

where 𝑞 is the total number of oracle queries to 𝐻msg, 𝐻leaf and 𝐻int made by the

adversary and ξ is the adversary’s running time.

Proof. We engage the adversary 𝒜 in the following EU-CMA experiment:

1. Generate a key pair 〈𝑝𝑘, 𝑠𝑘〉 by calling 𝒮-MTL.KEYGEN.

2. Generate 𝑞S ℓ-bit data values 𝑑1, … , 𝑑𝑞S
 at random, where 𝑞S is a bound on the

number of signatures requested by the adversary.

Merkle Tree Ladder Mode 9

3. Give 𝒜 the public key 𝑝𝑘, access to 𝒮-MTL.SIGN and oracle access to 𝐻msg, 𝐻leaf

and 𝐻int (and any oracles in 𝒮).

─ We modify the call to 𝐻msg from within SIGN as follows: When SIGN calls

𝐻msg(𝑆𝐼𝐷, 𝑖, 𝑚𝑖 , 𝑐𝑖), where 𝑚𝑖 is the message provided by 𝒜 in the 𝑖th SIGN

query, we program 𝐻msg so that 𝐻msg(𝑆𝐼𝐷, 𝑖, 𝑚𝑖 , 𝑐𝑖) = 𝑑𝑖 .

4. Await a forgery from 𝒜.

Now suppose that 𝒜 succeeds in producing a forgery 〈�̂�, σ̂〉 with �̂� ≠ 𝑚𝑖. Parse

σ̂ ⇒ 〈𝑆𝐼𝐷, �̂�, 𝑖, 𝑁, 𝑁′, Π̂, Λ̂, σ�̂� , 𝑑∗̂〉 and set �̂� = 𝐻msg(𝑆𝐼𝐷, 𝑖, �̂�, �̂�) and �̂� =

𝐻leaf(𝑆𝐼𝐷, 𝑖, �̂�). Further assume for the moment that 𝒜 hasn’t queried 𝐻msg for any

(𝑆𝐼𝐷, 𝑗,∗, 𝑐𝑗) prior to the 𝑗th SIGN query. 𝒜 then can’t detect the reprogramming; the

values produced in the signing operations will all be random to 𝒜. Let �̅� =
{〈𝐿, 𝑅, 𝑉[𝐿: 𝑅]〉} and Λ̅ be the nodes and ladders produced during the signing operations.

The forgery will fall into one of the following cases:

• 𝓢 forgery. If Λ̂ ∉ Λ̅, then, with 𝒜’s assistance, we’ve produced a signature forgery

〈Λ̂, σ�̂�〉 against 𝒮. Because our experiment interacts with 𝒮 only through its KEYGEN

and SIGN operations, it’s achieved EU-CMA success against 𝒮.

• 𝑯𝐢𝐧𝐭 second preimage. If Λ̂ ∈ Λ̅ but 〈𝑖, 𝑖, �̂�〉 ∉ �̅�, then 𝒜 has found a 𝐻int second

preimage in the evaluation of the authentication path Π̂ from the 𝑖th leaf node to its

associated rung in Λ̂: 𝐻int(𝑆𝐼𝐷, 𝐿, 𝑅, 𝑉left
̂ , 𝑉right̂) = 𝐻int(𝑆𝐼𝐷, 𝐿, 𝑅, 𝑉left, 𝑉right) at some

node position [𝐿: 𝑅] but (𝑉left
̂ , 𝑉right̂) ≠ (𝑉left, 𝑉right).

• 𝑯𝐥𝐞𝐚𝐟 second preimage. If 〈𝑖, 𝑖, �̂�〉 ∈ �̅� but �̂� ≠ 𝑑𝑖, then 𝒜 has found a 𝐻leaf second

preimage: 𝐻leaf(𝑆𝐼𝐷, 𝑖, �̂�) = 𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑𝑖).

• 𝑯𝐦𝐬𝐠 second preimage. If �̂� = 𝑑𝑖, then 𝒜 has found a 𝐻msg second preimage:

𝐻msg(𝑆𝐼𝐷, 𝑖, �̂�, �̂�) = 𝐻msg(𝑆𝐼𝐷, 𝑖, 𝑚𝑖, 𝑐𝑖).

The probability that any adversary produces a 𝒮 forgery is bounded by

InSecEU-CMA(𝒮; ξ). The probability that 𝒜 finds a 𝐻int second preimage with any single

query to the oracle is at most 1/2ℓ. (The logic is as follows: only queries of the form

𝐻int(𝑆𝐼𝐷, 𝐿, 𝑅,∗,∗) can target the node at position [𝐿: 𝑅]; �̅� includes only one node value

at this position; so each 𝐻int query has probability at most 1/2ℓ of yielding a second

preimage.) The probabilities for 𝐻leaf and 𝐻msg are each 1/2ℓ by similar logic. As the

oracles are independent of any in the security analysis of 𝒮, we can add the bounds to

InSecEU-CMA(𝒮; ξ). We then add the probability that 𝒜 has queried 𝐻msg for some

(𝑆𝐼𝐷, 𝑗,∗, 𝑐𝑗) prior to the 𝑗th SIGN query, which is at most 𝑞/2ℓ𝑐, and the probability

1/2ℓ that the adversary has simply guessed a message that happens match a hash value

target without making an oracle query, and the result follows. ∎

10 A. Fregly et al.

5.2 (Mostly) Standard Model Proof for a “Robust” Variant

We now offer an alternative proof that is in the standard model (without random

oracles) for two underlying hash functions. To do so, we define a variant of MTL mode

called MTLr mode, where the 𝐻int and 𝐻leaf computations embed challenge preimages,

following XMSS-T’s design (and SPHINCS+’s terminology; the “r” is for “robust”).

Adapting the design to our notation and framework, we use two additional families of

fixed-input-length hash functions and two families of pseudorandom functions which

we model as random oracles:

• 𝐻leaf
′ (𝑘leaf, 𝑚leaf) ⟶ 𝑉 maps a ℓ-bit key 𝑘leaf and a ℓ-bit message 𝑚leaf to a ℓ-bit

hash value;

• 𝐻int
′ (𝑘int, 𝑚int) ⟶ 𝑉 maps a ℓ-bit key 𝑘int and a 2ℓ-bit message 𝑚 to a ℓ-bit hash

value;

• 𝐹leaf
′ (𝑆𝐼𝐷, 𝑖) ⟶ 〈𝑘leaf, 𝑟leaf〉 maps a ℓ-bit series identifier 𝑆𝐼𝐷 and a leaf index 𝑖 to a

ℓ-bit key 𝑘leaf and a ℓ-bit mask 𝑟leaf; and

• 𝐹int
′ (𝑆𝐼𝐷, 〈𝐿, 𝑅〉) ⟶ 〈𝑘int, 𝑟int〉 maps a ℓ-bit series identifier 𝑆𝐼𝐷 and a node index

pair 〈𝐿, 𝑅〉 to a ℓ-bit key 𝑘int and a 2ℓ-bit mask 𝑟int.

In MTLr mode, 𝐻int and 𝐻leaf are defined as

• 𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑𝑖) = 𝐻leaf
′ (𝑘leaf, 𝑑𝑖 ⊕ 𝑟leaf); and

• 𝐻int(𝑆𝐼𝐷, 𝐿, 𝑅, 𝑉left, 𝑉right) = 𝐻int
′ (𝑘int, (𝑉left ∥ 𝑉right) ⊕ 𝑟int),

where 〈𝑘leaf, 𝑟leaf〉 = 𝐹leaf
′ (𝑆𝐼𝐷, 𝑖) and 〈𝑘int, 𝑟int〉 = 𝐹int

′ (𝑆𝐼𝐷, 〈𝐿, 𝑅〉). We denote the

application of MTLr mode to 𝒮 as 𝒮-MTLr. We are now ready for our second theorem.

Theorem 2. 𝒮-MTLr is EU-CMA in the random oracle model if:

• 𝒮 is EU-CMA in the random oracle model;

• 𝐻msg is a modeled as a random oracle;

• 𝐻leaf
′ and 𝐻int

′ are multi-target multi-function second-preimage-resistant hash

function families;

• 𝐹leaf
′ and 𝐹int

′ are modeled as random oracles; and

• the random oracles are independent of one another and any assumed in the security

analysis of 𝒮.

In particular, we have

InSecEU-CMA(𝒮-MTLr; ξ) ≤ InSecEU-CMA(𝒮; ξ) + InSecMM-SPR(𝐻leaf
′ ; ξ)

+InSecMM-SPR(𝐻int
′ ; ξ) +

(𝑞 + 1)

2ℓ
+

𝑞

2ℓ𝑐

for classical adversaries and

InSecEU-CMA(𝒮-MTLr; ξ) ≤ InSecEU-CMA(𝒮; ξ) + InSecMM-SPR(𝐻leaf
′ ; ξ)

Merkle Tree Ladder Mode 11

+InSecMM-SPR(𝐻int
′ ; ξ) +

8(𝑞 + 𝑞S + 2)2

2ℓ
+ 3𝑞S

√
𝑞 + 𝑞S + 1

2ℓ𝑐
 .

for quantum adversaries, where ξ is the adversary’s running time, 𝑞 is the number of

queries to the MTLr mode oracles and 𝑞S is a bound on the number of signatures

requested by the adversary. (For simplicity, we ignore queries to 𝒮’s oracles, if any.)

Proof. Observe that 𝒮-MTLr (as well as 𝒮-MTL) employs a hash-and-sign

construction; denote its internal fixed-message-length signature scheme (the processing

of the data value 𝑑) as 𝒮-MTLr#. Grilo et al. [18] recently gave a general bound for this

construction in the quantum random oracle model for the case that the fixed-message-

length scheme is EU-RMA. Dropping the present schemes (and notation) into their

bound, we get

InSecEU-CMA(𝒮-MTLr; ξ) ≤ InSecEU-RMA(𝒮-MTLr#; ξ)

+
8𝑞S(𝑞 + 𝑞S + 2)2

2ℓ
+ 3𝑞S

√
𝑞 + 𝑞S + 1

2ℓ𝑐
 .

Improving a proof by Bos et al. [19], the authors of [18] also gave a tighter bound

for the case that the fixed-message-length scheme is EU-CMA, each signature is

associated with a separate nonce, and the nonce is also input to 𝐻msg. The tighter bound,

which they detailed for XMSS-T, removes the 𝑞S factor in the first term (due to the

nonce) and halves the factor of 3 (due to the move to EU-CMA). Like XMSS-T’s

internal fixed-message-length scheme, 𝒮-MTLr# also associates each signature with

separate nonce (the index 𝑖), and the nonce is also input to 𝐻msg in 𝒮-MTLr. We argue

that the factor of 𝑞S can be removed from the first term for 𝒮-MTLr for the same reason

(but the factor of 3 in the second term remains).

Our remaining task is to analyze the security of 𝒮-MTLr# against a random message

attack. Motivated by the proofs for XMSS-T and SPHINCS+, we engage the 𝒮-MTLr#

adversary 𝒜# in the following experiment which also interacts with MM-SPR

challengers for 𝐻leaf
′ and 𝐻int

′ :

1. Generate a key pair 〈𝑝𝑘, 𝑠𝑘〉 by calling 𝒮-MTLr#’s KEYGEN operation.

2. Generate 𝑞S ℓ-bit data values 𝑑1, … , 𝑑𝑞S
 at random.

3. Call 𝒮-MTLr#’s SIGN operation on each data value 𝑑1, … , 𝑑𝑞S
 in succession,

producing signatures σ1
#, … , σ𝑞S

.

─ We modify the calls to 𝐻leaf and 𝐻int from within SIGN as follows:

o When SIGN calls 𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑𝑖) and 𝐻leaf calls 𝐹leaf
′ (𝑆𝐼𝐷, 𝑖), we call the MM-

SPR challenger for 𝐻leaf
′ to get a new challenge (𝑘leaf, 𝑚leaf) then program 𝐹leaf

′

so that 𝐹leaf
′ (𝑆𝐼𝐷, 𝑖) = 〈𝑘leaf, 𝑟leaf〉 where 𝑟leaf = 𝑑𝑖 ⊕ 𝑚leaf; 𝐻leaf will then

compute 𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑𝑖) = 𝐻leaf
′ (𝑘leaf, 𝑑𝑖 ⊕ 𝑟leaf) = 𝐻leaf

′ (𝑘leaf, 𝑚leaf), thus

embedding the challenge preimage.

o When SIGN calls 𝐻int(𝑆𝐼𝐷, 𝐿, 𝑅, 𝑉left, 𝑉right) and 𝐻int calls 𝐹int
′ (𝑆𝐼𝐷, 〈𝐿, 𝑅〉), we

call the MM-SPR challenger for 𝐻int
′ to get a new challenge (𝑘int, 𝑚int) then

12 A. Fregly et al.

program 𝐹int
′ so that 𝐹int

′ (𝑆𝐼𝐷, 〈𝐿, 𝑅〉) = 〈𝑘int, 𝑟int〉 where 𝑟int = (𝑉left ∥ 𝑉right) ⊕

𝑚int.

4. Give 𝒜# the public key 𝑝𝑘, the data values 𝑑1, … 𝑑𝑞S
, the signatures σ1

#, … , σ𝑞S

, and

oracle access to 𝐹int
′ and 𝐹leaf

′ (and any oracles in 𝒮).

5. Await a forgery from 𝒜#.

As in Theorem 1, let �̅� = {〈𝐿, 𝑅, 𝑉[𝐿: 𝑅]〉} and Λ̅ be the nodes and ladders produced

during the signing operations. Now suppose that 𝒜# succeeds in producing a forgery

〈�̂�, σ#̂〉 with �̂� ≠ 𝑑𝑖 . Parse σ#̂ ⇒ 〈𝑆𝐼𝐷, 𝑖, 𝑁, 𝑁′, Π̂, Λ̂, σ�̂� , 𝑑∗̂〉 and set �̂� =

𝐻leaf(𝑆𝐼𝐷, 𝑖, �̂�). The forgery will fall into one of the following cases, which are

comparable to those in Theorem 1 but in the standard model (and without 𝐻msg):

• 𝓢 forgery. If Λ̂ ∉ Λ̅, then with 𝒜#’s assistance, we’ve produced a signature forgery

〈Λ̂, σ�̂�〉 against 𝒮.

• 𝑯𝐢𝐧𝐭
′ second preimage. If Λ̂ ∈ Λ̅ but 〈𝑖, 𝑖, �̂�〉 ∉ �̅�, then 𝒜# has found a 𝐻int second

preimage: 𝐻int(𝑆𝐼𝐷, 𝐿, 𝑅, 𝑉left
̂ , 𝑉right̂) = 𝐻int(𝑆𝐼𝐷, 𝐿, 𝑅, 𝑉left, 𝑉right). Expanding 𝐻int,

we get 𝐻int
′ (𝑘int, (𝑉left

̂ ∥ 𝑉right̂) ⊕ 𝑟int) = 𝐻int
′ (𝑘int, (𝑉left ∥ 𝑉right) ⊕ 𝑟int) where

〈𝑘int, 𝑟int〉 = 𝐹int
′ (𝑆𝐼𝐷, 〈𝐿, 𝑅〉). The right-hand inputs to 𝐻int

′ are one of the MM-SPR

challenges, so the left-hand inputs are a 𝐻int
′ second preimage.

• 𝑯ileaf
′ second preimage. If 〈𝑖, 𝑖, �̂�〉 ∈ �̅� but �̂� ≠ 𝑑𝑖, then 𝒜# has found a 𝐻leaf second

preimage: 𝐻leaf(𝑆𝐼𝐷, 𝑖, �̂�) = 𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑𝑖). Expanding, we get 𝐻leaf
′ (𝑘leaf, �̂� ⊕

𝑟leaf) = 𝐻leaf
′ (𝑘leaf, 𝑑𝑖 ⊕ 𝑟leaf) where 〈𝑘leaf, 𝑟leaf〉 = 𝐹leaf

′ (𝑆𝐼𝐷, 𝑖); the left-hand inputs

are a 𝐻leaf
′ second preimage.

The probability of a 𝒮 forgery is bounded by InSecEU-CMA(𝒮; ξ). The probability that

𝒜# finds a 𝐻int
′ second preimage is at most InSecMM-SPR(𝐻int

′ ; ξ) and the probability of

a 𝐻leaf
′ second preimage is similarly InSecMM-SPR(𝐻leaf

′ ; ξ). As the oracles are

independent of any in the security analysis of 𝒮, we can again add the bounds to get

InSecEU-CMA(𝒮-MTLr; ξ).

Because the programming of 𝐹leaf
′ and 𝐹int

′ occurs before the signatures are given to

𝒜# and 𝒜# does not have access to the SIGN operation, the programming does not affect

our bounds (except that 𝐹leaf
′ and 𝐹int

′ must be modeled as random oracles). Adding the

terms from Grilo et al.’s reduction, the result for quantum adversaries follows.
For classical adversaries, we simply add the two final terms from Theorem 1 instead

of their quantum random oracle counterparts.∎

5.3 Bit Security of MTL Mode

We can now estimate the bit security of MTL (and MTLr) mode. As usual, we are

interested in determining the log of the number of hash function queries for which the

adversary’s success probability equals 1. Because we don’t necessarily know the bit

security of the underlying scheme 𝒮, however, we focus instead on the incremental

success probability due to MTL mode’s components and estimate the number of queries

for which this probability reaches 1/2 (leaving the other 1/2 for the underlying

Merkle Tree Ladder Mode 13

scheme). For brevity, we focus our analysis on the security parameter ℓ = 256 and

initially assume ℓ = ℓ𝑐.

For the fully random model proof in Theorem 1 against classical adversaries, the

incremental success probability is 𝑞 2ℓ⁄ + 𝑞 2ℓ𝑐⁄ . This gives us a classical security level

of 254 bits: 2254 2256⁄ + 2254 2256⁄ = 1 2⁄ .

For the mostly standard model proof in Theorem 2, we assume the bounds on generic

attacks for MM-SPR given in [15]. This gives us a classical security level of 253 bits.

For quantum adversaries, we need to set the bound on the number of signatures 𝑞S. (The

number doesn’t directly affect the classical bit security bounds.) Following [15], we

initially consider two cases, 𝑞S = 220 and 𝑞S = 260; for both, we get 125 bits quantum

security. The quantum security level begins to decline around 𝑞S ≈ 2ℓ/4 = 264 if ℓ =
ℓ𝑐 = 256; at that point, the second term in the reduction begins to dominate the first.

We can maintain the quantum security level by then increasing the size of the

randomizer as in [15]. For example, for 𝑞S = 264 and ℓ𝑐 = 259, we get 125 bits

quantum security. Adding in the adversary’s cost of evaluating the hash functions, MTL

mode with these parameters arguably reaches NIST’s security level V [20] where the

attack difficulty is comparable to 256-bit exhaustive key search.

We can also target NIST’s security level I, comparable to 128-bit exhaustive key

search. With ℓ = ℓ𝑐 = 128 and 𝑞S = 220 or 𝑞S = 260, we get 125 bits classical and 61

bits quantum security. In summary, MTL mode does not significantly reduce the bit

security of the underlying scheme 𝒮.

6 Condensing and Reconstituting MTL Mode Signatures

We now show how a signer can convey multiple MTL mode signatures to a verifier in

fewer bits than if the signatures were sent individually. Our approach is based on the

backward compatibility property: once the signer has provided a ladder Λ𝑁′ to the

verifier (signed with the underlying signature scheme), the verifier can verify any

message 𝑚𝑖 where 𝑖 ≤ 𝑁′ given an authentication path Π𝑖,𝑁 constructed relative to any

ladder Λ𝑁 where 𝑖 ≤ 𝑁′ ≤ 𝑁. As a result, the amount of information required to convey

multiple MTL mode signatures to a verify is essentially one authentication path per

message, plus a signed ladder when needed.

We formalize our approach as follows (see Fig. 3):

• (Condensation.) For each signature of interest to the verifier, the signer computes,

from the initial (uncondensed) signatures produced by the MTL mode signature

operation, a condensed signature ς and a reference value handle χ. The signer sends

these values instead of the initial signature σ. The handle refers to a reference value

υ that the signer provides to the verifier separately.

• (Reconstitution.) The verifier computes a reconstituted signature σ′ from the

condensed signature and a reference value. If the verifier doesn’t have a suitable

reference value, it requests one based on the handle. The reference value may or may

not be the same one referred to by the handle. The verifier can then verify the

reconstituted signature using the MTL mode verification operation.

14 A. Fregly et al.

For MTL mode, the relevant values are:

• Initial signature σ = 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑖, 𝑖, Π𝑖,𝑖, Λ𝑖 , σ𝑖
𝒮 , 𝑑𝑖〉.

• Condensed signature ς = 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑁, Π𝑖,𝑁〉 where 𝑐𝑖 is a randomizer and Π𝑖,𝑁 is the

authentication path from the 𝑖th leaf node to the 𝑁th ladder.

• Reference value handle χ = 𝑁 where 𝑁 is the index of the ladder.

• Reference value υ = 〈𝑁′, Λ𝑁′ , σ𝑁′
𝒮 〉 where Λ𝑁′ is a ladder and σ𝑁′

𝒮 is the underlying

signature on the ladder.

• Reconstituted signature σ′ = 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑁, 𝑁′, Π𝑖,𝑁 , Λ𝑁′ , σ𝑁′
𝒮 , ∅〉, combining

elements of the 𝑖th condensed signature relative to the 𝑁th ladder with the 𝑁′th

ladder. (The final element, the data value, is not needed for signature verification.)

A set of condensation and reconstitution operations for MTL mode are presented in

Fig. 4. They follow a generalized condensation scheme 𝒞𝒮 with five operations:

• Initialization. CONDENSEINIT(𝑝𝑘) ⟶ ⟨𝑠𝑡⟩ returns a new condensation state 𝑠𝑡

relative to the public key 𝑝𝑘.

• Signature incorporation. ADDINITSIG(𝑠𝑡, σ) incorporates the next previously

generated initial signature σ into the state 𝑠𝑡.

• Condensed signature production. GETCONDENSEDSIG(𝑠𝑡, 𝑖) ⟶ 〈ς, χ〉 condenses the

𝑖th signature in the state and returns the condensed signature ς and an associated

reference value handle χ.

• Reference value production. GETREFVAL(𝑠𝑡, χ) ⟶ ⟨υ⟩ returns the reference value υ

associated with the handle χ.

• Signature reconstitution. RECONSTSIG(ς, υ) ⟶ ⟨σ′⟩ reconstitutes a signature σ′ from

a condensed signature ς and a reference value υ. (Appendix E proposes an alternative

stateful set of reconstitution operations that includes a check for reference value

compatibility.)

The operations involve access only to the signer’s public key so they don’t affect the

security analysis in the previous section. Moreover, the operations can be performed by

anyone who has access to the signatures / reference values, not just the signer or verifier.

Fig. 3. Condensation and reconstitution processes applied to a signature scheme.

Merkle Tree Ladder Mode 15

The scheme state 𝑠𝑡 is a tuple 〈𝑆𝐼𝐷, 𝑁, 𝑇, 𝑐̅, Λ̅, Σ𝒮〉 where 𝑆𝐼𝐷 is a series identifier, 𝑁

is the number of initial signatures incorporated into the state, 𝑇 is the node set, and 𝑐̅,
Λ̅ and Σ𝒮 are respectively the series of randomizers, ladders and underlying signatures

in the initial signatures. We reference the components of the state as 𝑠𝑡. 𝑆𝐼𝐷, 𝑠𝑡. 𝑁, etc.

We denote the 𝑖th randomizer in 𝑐̅ as 𝑐̅[𝑖] and similarly define Λ̅[𝑖] and Σ𝒮[𝑖].
For correctness, we need to show that if a signature is reconstituted from a new

condensed signature Π𝑖,𝑁 and a previous reference value Λ𝑁′ , the reconstituted

signature can still be verified. This follows from the backward compatibility property

of the binary rung strategy. Because CHECKAUTHPATH can verify the authentication path

Π𝑖,𝑁 using any ladder Λ𝑁′ where 𝑖 ≤ 𝑁′ ≤ 𝑁, it follows that for any reconstituted

signature σ′ on a message 𝑚𝑖 produced through the condensation / reconstitution

process defined here, VERIFY(𝑝𝑘, 𝑚𝑖 , σ′) = TRUE.

Condensation and reconstitution can also be applied directly to hash-based signature

schemes, as illustrated in Appendix D.

7 Practical Impact

We now show that MTL mode can reduce the size impact of the NIST PQC signature

algorithms and other signature schemes with large signature sizes in practice.

CONDENSEINIT(𝑝𝑘) ⟶ 𝑠𝑡:

𝑠𝑡. 𝑆𝐼𝐷 ∶= 𝑝𝑘. 𝑆𝐼𝐷.

𝑠𝑡. 𝑁 ∶= 0.

𝑠𝑡. 𝑇 ∶= INITNODESET(𝑆𝐼𝐷).

𝑠𝑡. 𝑐̅ ∶= ∅.

𝑠𝑡. Λ̅ ∶= ∅.

𝑠𝑡. Σ𝒮 = ∅.

Return 𝑠𝑡.

ADDINITSIG(𝑠𝑡, σ):

𝑠𝑡. 𝑁 ∶= 𝑠𝑡. 𝑁 + 1.

σ ⟹ 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑖, 𝑖, Π𝑖,𝑖 , Λ𝑖 , σ𝑖
𝒮 , 𝑑𝑖〉.

Λ𝑖
∗ ∶= ADDLEAFNODE(𝑠𝑡. 𝑇, 𝑑𝑖).

𝑠𝑡. 𝑐̅ ∶= 𝑠𝑡. 𝑐̅ ∥ 𝑐𝑖.

𝑠𝑡. Λ̅ ∶= 𝑠𝑡. Λ̅ ∥ Λ𝑖.

𝑠𝑡. Σ𝒮 ∶= 𝑠𝑡. Σ𝒮 ∥ σ𝑖
𝒮 .

[optional checks]

[Check 𝑆𝐼𝐷 = 𝑠𝑡. 𝑆𝐼𝐷.]

[Check 𝑖 = 𝑠𝑡. 𝑁.]

[Check Λ𝑖 = Λ𝑖
∗.]

Fig. 4. MTL mode’s condensation scheme operations (see text for discussion).

GETCONDENSEDSIG(𝑠𝑡, 𝑖) ⟶ 〈ς, χ〉:
Check 1 ≤ 𝑖 ≤ 𝑠𝑡. 𝑁.

Π𝑖,𝑁 ∶= GETAUTHPATH(𝑠𝑡. 𝑇, 𝑖).

ς ⟸ 〈𝑠𝑡. 𝑆𝐼𝐷, 𝑠𝑡. 𝑐[𝑖], 𝑖, 𝑠𝑡. 𝑁, Π𝑖,𝑁〉.

χ ∶= 𝑠𝑡. 𝑁.

Return 〈ς, χ〉.

GETREFVAL(𝑠𝑡, χ) ⟶ υ:

𝑁′ ∶= χ.

Check 1 ≤ 𝑁′ ≤ 𝑠𝑡. 𝑁.

υ ⟸ 〈𝑁′, 𝑠𝑡. Λ̅[𝑁′], 𝑠𝑡. Σ𝒮[𝑁′]〉.
Return υ.

RECONSTSIG(ς, υ) ⟶ σ′:
ς ⟹ 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑁, Π𝑖,𝑁〉.

υ ⟹ 〈𝑁′, Λ𝑁′ , σ𝑁′
𝒮 〉.

σ′ ⟸

 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑁, 𝑁′, Π𝑖,𝑁 , Λ𝑁′ , σ𝑁′
𝒮 , ∅〉.

Return σ′.

16 A. Fregly et al.

For simplicity, we divide our operations into iterations, and we assume that prior to

the first iteration, the signer has signed an initial message series with 𝑁0 messages and

the verifier has received the reference value υ𝑁0
. We further assume that during each

iteration, the signer signs α additional messages and the verifier requests condensed

signatures on ρ messages, where the signatures of interest are randomly and

independently chosen among the signatures generated up to and including that iteration.

If the verifier is interested in a signature on message 𝑚𝑖 and 𝑖 ≤ 𝑁0, then because of

MTL mode’s reference value compatibility, the verifier can produce a valid

reconstituted signature from a newly received condensed signature corresponding to 𝑚𝑖

and the reference value υ𝑁0
. If 𝑖 > 𝑁0, however, then the verifier will need to request a

new reference value.

7.1 Condensed Signatures Per Reference Value

Under our operational assumptions, the probability that a verifier doesn’t need to

request a new reference value during any of the first κ iterations is the product

∏ (
𝑁0

𝑁0 + 𝑡𝛼
)

𝜌κ

𝑡=1

= ∏ (
1

1 + 𝑡𝛼/𝑁0

)
𝜌κ

𝑡=1

 .

Assuming 𝑁0 is much larger than 𝜌 and 𝛼, we can approximate this probability as:

∏ exp(− 𝑡αρ 𝑁0⁄)

κ

𝑡=1

≈ exp(− 𝜅2αρ 2𝑁0⁄) .

(The analysis is similar to the Birthday Paradox.) Accordingly, we can estimate the

number of iterations until the probability reaches 1/2 as κ ≈ √2 ln 2 √𝑁0/αρ. It

follows that we can estimate the number of condensed signatures until the verifier will

need to request a new reference value as 𝐾 = κρ ≈ √2 ln 2 √𝑁0ρ/α.

7.2 Impact on Example PQC Signature Algorithms

We now consider the reduction in signature overhead for five NIST PQC signature

algorithms with example parameters given in Table 1. The table shows the shortest and

largest example signature sizes in the published specifications of the algorithms; other

sizes may also be supported. Note that the maximum number of signatures can vary for

the fourth and fifth algorithms, which can give them an advantage particularly over the

others that are designed to meet a NIST requirement of a 264 maximum.

For our analysis, we set 𝑁0 = 10,000, so our ladders include up to 14 hash values

and our authentication paths include up to 13. We targeted level V (which is supported

by all five algorithms) and selected ℓ = ℓ𝑐 = 256 for MTL mode’s parameters. The

sizes of the various MTL mode components in bytes can be computed as follows:

Merkle Tree Ladder Mode 17

• Initial signature σ = 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑖, 𝑖, Π𝑖,𝑖, Λ𝑖 , σ𝑖
𝒮 , 𝑑𝑖〉 is 16 + 32 + 4 + 4 + 4 + 13 ∙

32 + 14 ∙ 32 + 32 = 956 plus the size of the underlying signature σ𝑖
𝒮 .

• Condensed signature ς = 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑁, Π𝑖,𝑁〉 is 16 + 32 + 4 + 4 + 13 ∙ 32 = 472.

• Reference value υ = 〈𝑁′, Λ𝑁′ , σ𝑁′
𝒮 〉 is 4 + 14 ∙ 32 = 452 plus the size of σ𝑁′

𝒮 .

Here, we’ve ignored the overhead of the reference value handle χ as well as protocol

overheads such as algorithm and public key identifiers that would also be needed in the

underlying signature scheme.

We define the effective signature size as

𝜙(𝐾, 𝐾′) = |ς| +
𝐾′

𝐾
|υ|;

where 𝐾 is the number of condensed signatures received, 𝐾′ is the number of reference

values received, |ς| is the size in bits of a condensed signature and |υ| is the size in bits

of a reference value. The effective signature size thus reflects the average number of

bits that the signer sends per signature of interest. (We’ve assumed that the sizes |ς| and

|υ| are the same for all signatures for simplicity.)

Signature Algorithm /

Parameters
Security Level

Signature Size

(bytes)

Max.

Signatures
Ref.

CRYSTALS–Dilithium II 2420 264
[21]

CRYSTALS–Dilithium V 4595 264

FALCON-512 I 666 264
[22]

FALCON-1024 V 1280 264

SPHINCS+-128s I 7856 264
[23]

SPHINCS+-256f V 49,856 264

HSS/LMS (ParmSet 15) V* 1616 215
[24]

HSS/LMS (ParmSet 25/15) V* 3652 240

XMSS^MT (SHA2_20/2_256) V* 4963 240
[25]

XMSS^MT (SHA2_60/12_256) V* 27,688 260

Table 1. NIST PQC signature algorithms with shortest and largest example signature sizes

in published specifications. Security Level indicates the level specified in NIST’s selection

criteria [20] as stated by the submitters of the first three algorithms. Level I is comparable

to 128-bit exhaustive key search, Level II to 256-bit hash function collision search and

Level V to 256-bit exhaustive key search. The fourth and fifth algorithms have been

classified based on their security proofs, hence the *. Max. signatures is a security analysis

parameter for the first three algorithms. The fourth and fifth use one-time signatures so

their maximum is a functional (and security) limit. (XMSS^MT also has optional examples

at a higher security level and NIST SP 800-208 includes parameterizations at a lower

security level that are not listed here.) CRYSTALS-Dilithium and SPHINCS+ are being

standardized in the draft FIPS 204 [7] and FIPS 205 [8] respectively.

18 A. Fregly et al.

Fig. 5 shows the effective signature size 𝜙(𝐾, 1) as a function of 𝐾 for the five level

V examples. We’ve set 𝐾′ = 1, given that only the initial reference value has been

received up until this point. The effective signature size becomes smaller than the

underlying signature size when 𝐾 = 3 for FALCON and 𝐾 = 2 for the other examples.

Fig. 6 shows the expected value of 𝐾 as a function of ρ for three values of α (10,
100, 1000). Under nearly all of this range of operational assumptions, except when ρ

is near its low end and α is at its high end, it is reasonable to expect that 𝐾 will be large

enough that the effective signature size will be less than the underlying signature size

for all five examples. We expect the ongoing effective signature size to be even less

than our estimate because the signature series is expanding, thus increasing 𝐾.

We’ve focused on security level V. MTL mode could also be parameterized at the

lower security levels with further reduction in condensed signature size. For

applications where level I is acceptable, we could reduce our parameters to ℓ = ℓ𝑐 =
128. Maintaining 𝑁0 = 10,000, MTL mode would then have a condensed signature

size of 248 bytes, comparable to RSA-2048 today.

7.3 Example Use Case: DNSSEC

The Domain Name System (DNS) [26] is the core protocol for translating human-

readable names to internet protocol (IP) addresses. DNSSEC adds digital signatures to

DNS records. This use case has been the core motivator for our research because of the

size constraints of DNS responses.

In brief, DNS involves a hierarchy of name servers that provide authoritative

responses to requests for information about domain names, e.g., for the Internet

Protocol (IP) address of a server such as www.example.com. Because the DNS

records returned in response to a given request are generally predetermined, the

accompanying DNSSEC signatures, conveyed in RRSIG records, can typically be

generated in advance of the request, and independent of the requester. This arrangement

works well for MTL mode: the name server can provide a condensed signature (and a

reference value handle) in an RRSIG record, in place of an initial signature, and

requester can look up the corresponding reference value, if needed, perhaps from the

same name server. (Indeed, the fact that DNS is by nature an online lookup service

makes the DNSSEC use case particularly amenable to MTL mode.)

Data analysis. To estimate the potential benefits of MTL mode on effective

signature size for DNSSEC, we analyzed published sample files of DNS requests to

and responses from authoritative name servers. A conventional DNSSEC signature

scheme was used by these servers. We considered how the same request / response flow

might be processed if MTL mode condensed signatures were used instead.

The DNS Operations, Analysis, and Research Center (DNS-OARC) provides a

platform for researchers to share and analyze DNS data, including the annual Day In

The Life of the Internet (DITL) collection [27]. We focused our analysis on the 2015

DITL raw data provided to DNS-OARC by NZRS, the registry operator for the .NZ

top-level domain (TLD). We selected this data set because it includes both DNS

requests and responses. (All analysis was performed on DNS-OARC’s servers except

for the final formatting of the results graph, which involved only summary statistics.)

http://www.example.com/

Merkle Tree Ladder Mode 19

Each sample file included a series of DNS request / response pairs processed during

a specified time period. We considered just the middle 24-hour “day” in the data set

(April 14, 2015, 00:00–23:59 UTC) and filtered the request / response pairs to include

only those where the response contained an RRSIG record from the .NZ TLD. For

simplicity, we also limited our analysis to the common DNS scenario where the traffic

was exchanged via the User Datagram Protocol over Internet Protocol version 4. We

then organized the RRSIG-containing pairs according to the requester’s IP address and

the key identifier of the private key that generated the signature (the signer name and

key tag in DNSSEC terminology). For each combination of requester IP address and

key identifier, we then produced the following time series in chronological order:

(𝑡1, start1), (𝑡2, start2), ⋯ , (𝑡𝐾 , start𝐾)

where 𝑡𝑖 is the time at which the request / response pair was processed by the name

server, start𝑖 is the time at which the signature in the RRSIG record in the response

became valid, and 𝐾 is the number of requests / response pairs. Let RRSIG𝑖 denote the

RRSIG record associated with the 𝑖th response in the series.

We then measured how often the start value reached a new maximum. We use this

“high-water mark” as a proxy for how frequently a requester may need to request a new

reference value in MTL mode if the server had used MTL mode condensed signatures.

Our rationale is as follows. Assume for simplicity that every RRSIG record

published by an authoritative name server has a different start value and that RRSIG

records are signed in increasing order of start value. (For the case start𝑖 = start𝑗, we

assume that an MTL mode signer would wait until all of the RRSIG records that share

a start value have been signed then publish them all at once. The reference value for the

Fig. 5. Effective signature size in bytes for five post-quantum signature algorithms with

NIST level V parameters as a function of number of signatures received per reference value.

20 A. Fregly et al.

last one would then cover them all, so a new reference value wouldn’t be needed if the

start values match.)

Now suppose that start𝑖 is not a new maximum. Then there is an index 𝑗 < 𝑖 such

that start𝑖 < start𝑗 . In MTL mode, to have reconstituted and verified RRSIG𝑗 at time

𝑡𝑗, the requester would have at some point obtained a reference value that covers

RRSIG𝑗. Such a reference value would also cover any RRSIG record generated before

RRSIG𝑗, including RRSIG𝑖. If start𝑖 < start𝑗, then the requester would have enough

information at time 𝑡𝑖 to verify RRSIG𝑗 without requesting a new reference value. The

number of high-water marks thus provides an upper bound on 𝐾′, the number of new

reference values the requester would have needed to obtain.

Results. We estimate the average endurance of a reference value that would be sent

to a requester in MTL mode as the ratio (number of high-water marks) / (number of

RRSIG responses) for the requester’s IP address. Fig. 7 plots estimated endurance vs.

number of RRSIG responses received for each of the requester IP addresses we

analyzed. The up-and-to-the-right trend confirms the hypothesis in our model that

higher request rates result in higher endurance. Because we didn’t have access to the

rate 𝛼 at which new signatures were generated, we couldn’t confirm the parameters of

the relationship between endurance, the number of records signed, 𝛼 and the request

rate 𝜌. Nevertheless, what stands out in the plotted data is that reference value

endurance is consistently over 10 except for the most slowly querying requesters (fewer

than 1000 requests in the 24-hour measurement period; they represent just over a third

of all signatures received), and over 100 for the fastest querying requesters. Regardless

of query rate, no requester would have looked up more than 29 new reference values

in the 24 hours analyzed. MTL mode would therefore significantly reduce the size

impact of PQC signatures on these exchanges.

Fig. 6. Expected number of condensed signatures per reference value as a function of request

rate and new signature rate.

Merkle Tree Ladder Mode 21

7.4 Compute, Storage and State Requirements

MTL mode is very efficient. If a node set has 𝑁 nodes, then the authentication path and

the ladder will include at most ~ log2 𝑁 hash values. Verifying a signature thus takes

at most ~ log2 𝑁 hash operations to verify the authentication path, plus the hash on the

message and the underlying signature verification. Generating a signature likewise

takes at most ~ log2 𝑁 hash operations to construct a new authentication path, plus the

hash on the message and the underlying signature generation.

A node set with 𝑁 leaf nodes has at most 𝑁 − 1 internal nodes, so the storage cost

for a party performing signature condensation is at most two hash values per message,

plus any underlying signatures it maintains as part of reference values. The signer,

meanwhile, only needs to keep the nodes in the current ladder and authentication path,

as these are sufficient to compute the next ladder and authentication path.

Only the signer in MTL mode needs to maintain state as part of generating initial

signatures. The verifier doesn’t need to do so to verify signatures, unless the verifier is

performing reconstitution operations itself. In the DNSSEC use case, a resolver that

interacts with name servers on behalf of a collection of clients could perform

reconstitution operations on their behalf and provide reconstituted signatures to its

clients. (The size constraints on DNS exchanges between resolvers and clients may not

be as significant operationally as those between resolvers and authoritative name

servers.) A verifier could also perform its own reconstitution operations, in which case

a reference value would just be another item for the verifier to keep in its cache, along

with local copies of DNS records and DNSSEC public keys.

Fig. 7. Estimated endurance of reference values vs. number of signatures received if MTL

mode were applied to one of the sample DNS data sets from DNS-OARC’s DITL collection.

22 A. Fregly et al.

8 Extensions

The example just given illustrates one practical scenario and one mode of operation.

Other modes may also be helpful in this and other scenarios. A few suggestions follow:

• Multiple node sets. We can reduce the condensed signature size (and/or

accommodate more messages) by arranging messages into multiple node sets. So

that we don’t need additional key pairs, rather than initializing a single node set

during MTL mode key pair generation, we could extend MTL mode so that a new

node set can be added to an existing key pair. Each such node set would be associated

with a separate series identifier, which could be derived from a common seed and a

per-series tag. Such an arrangement may be convenient for a signer that has a high

message volume and wants to perform signature generation in parallel. (We’d want

the sizes of each node set to stay large enough that the ladders maintain a high

endurance.)

• Batch signing and verification. When multiple messages are signed during an

iteration, it is possible to “batch” the signing and reduce the number of underlying

signatures by signing just a single updated ladder that spans all the newly signed

messages. The initial signatures produced for these messages would then be relative

to this single ladder rather than per-message ladders. The verifier can also effectively

batch verification if the underlying signatures are verified as reference values are

received. MTL mode may therefore also improve signing and verification

performance compared to the underlying signature scheme.

• Hybrid signature schemes. MTL mode can help make hybrid signature schemes

[28,29,30] more practical. In these schemes, the signer employs two or more

signature schemes in parallel. If the underlying signature scheme itself is a hybrid

scheme, then MTL mode can be applied to it directly. Alternatively, a variant MTL

mode of operation could be defined in terms of multiple underlying signature

schemes, where the evolving Merkle tree ladder is signed using each of the schemes.

Either way, the additional signatures involved would only increase the size of the

reference values, not the condensed signatures.

9 Related Work

The binary rung strategy appears under different names in other cryptographic

constructions based on Merkle trees. Champine defines a binary numeral tree [31] with

similar structure (the successive perfect binary subtrees are called eigentrees) and also

specifies additional operations on the tree such as a proof that leaf nodes are

consecutively ordered. Champine also references related constructions including

Certificate Transparency [12]. The earlier constructions also include Crosby and

Wallach’s history trees [32] and Todd’s Merkle mountain ranges [33]. Bünz et al. [34]

provide a formal definition and analysis of the latter.

Cryptographic accumulators [35] have a similar structure to condensation and

reconstitution in that a common accumulator value (viz, reference value) helps a

Merkle Tree Ladder Mode 23

verifier authenticate multiple elements, each of which has a witness relative to the

accumulator value (viz, condensed signature). Reyzin and Yakoubov’s accumulator

[36], applying a binary rung strategy-like construction, also achieves an “old-

accumulator compatibility” property comparable to backward compatibility property

of the binary rung strategy.

Verkle trees, proposed by Kuszmaul [37] and further elaborated by Buterin [38]

replace the hash function that authenticates pairs of subtrees in a conventional Merkle

tree construction with a vector commitment scheme [39] that authenticates a large

number of subtrees. With the proposed construction, the size of the authentication path

can be significantly reduced. However, the construction is based on pre-quantum

techniques. Peikert, Pepin and Sharp [40] propose a post-quantum vector commitment

scheme, but the size of its authentication path is on the same order as for a conventional

Merkle tree. Buterin [38] suggests Scalable Transparent ARguments of Knowledge

(STARKs) [41] as a future post-quantum alternative for Verkle trees.

Aggregate signatures convert multiple signatures into a shorter common value. In

Boneh et al.’s original construction [42], a verifier can authenticate each signed

message based only on the aggregate signature, provided that the verifier also has

access to the other messages that were signed. Aggregate signatures can thus reduce the

size impact of the signature scheme to which they’re applied when the verifier has a

large number of messages to verify. Khaburzaniya et al. show how to aggregate hash-

based signatures using hash-based constructions [43]. Goyal and Vaikuntanathan [44]

propose an improved scheme where the signatures can be made “locally verifiable”

such that the verifier only needs access to specific messages of interest. However, their

constructions are based on pre-quantum techniques (bilinear maps, RSA).

Merkle tree constructions are applied to the problem in authenticating an evolving

or “streaming” data series by Li et al. [45]. Papamanthou et al. propose an authenticated

data structure for a streaming data series [46] that uses lattice-based cryptography rather

than traditional hash functions. The construction provides additional flexibility and

efficiency, as well as another potential path toward post-quantum cryptography.

Stern et al. [47] define signature malleability in the limited sense we have adopted

here. Chase et al. [48], building on work by Ahn et al. [49] and Attrapadung, Libert and

Peters [50] broaden the definition to include the ability to produce a new signature on

a message related in a specified way to a message that has already been signed. MTL

mode only requires the narrower property. Decker and Wattenhofer [51] analyze claims

that the bankruptcy of the MtGox exchange was a result of an attack involving signature

malleability. They concluded that while signature malleability is a concern for the

Bitcoin network, there is little evidence of such attacks prior to MtGox’s bankruptcy.

Focusing on the Transport Layer Security protocol, Sikeridis, Kampanakis and

Devetsikiotis anticipate that the TLS certificate chain and the server’s signature in the

TLS handshake would become the “bottleneck of [post-quantum] authentication” from

a size and processing perspective [52]. Their observations further motivate TLS

protocol extensions where the server omits any certificates that the client already has.

Sikeridis et al. [53] propose an efficient signaling technique for determining which

intermediate certificates to omit or “suppress.” Suppression is complementary to

24 A. Fregly et al.

condensation in that it reduces communication cost when the client already has a given

certificate, whereas condensation helps when the client has a different certificate.

Benjamin [54] proposes the use of Merkle trees to batch the signing operations for

multiple server signatures in a TLS handshake; such an optimization would decrease

the server’s computational overhead but would not necessarily reduce the

communications cost, as both the Merkle tree authentication path and the underlying

signature are sent to each verifier. Benjamin, O’Brien and Westerbaan [55] combine

Merkle trees and Certificate Transparency concepts [12] into a “Merkle tree certificate”

type, where signing operations for multiple certificates are batched using Merkle trees

similarly to [54]. In [55], the authentication path is sent in the TLS handshake while the

underlying signature is provided out of band via a transparency service. Aguilar-

Melchor et al. [56] analyze and provide formal security proofs for these and other batch

signature techniques.

Kudinov et al. [57] propose several techniques for reducing the size of SPHINCS+

signatures, including an example with 20% savings. Baldimtsi et al. [58] describe a

general framework for reducing the size of cryptographic outputs using brute-force

“mining” techniques, estimating 5% to 12% savings. Such techniques are also

complementary to condensation as they reduce the size of the underlying signature

whereas condensation reduces the need to send full underlying signatures at all.

Internet-Drafts specifying MTL mode [59] and its use with DNSSEC [60] have

recently been published by the authors of this paper.

10 Conclusion

We have shown that MTL mode can help reduce signature size impact in practical

application scenarios. We suggest this mode, or another mode with similar properties,

can be a standard way to use NIST PQC signature algorithms in message series-signing

applications where signature size impact is a concern.

We plan to develop a more detailed, interoperable specification for MTL mode and

its implementation choices (parameter values, functions 𝐻msg, 𝐻leaf, 𝐻int, signature and

reference value formats, algorithm identifiers, etc.). We also intend to model the

operational characteristics of MTL mode for various underlying signature schemes and

operational assumptions.

In addition, we plan to consider how MTL mode can be integrated into applications

such as those involving web PKI, DNSSEC and Certificate Transparency. As an initial

approach, we imagine a “semi-indirect” format where a signer conveys a condensed

signature ς together with information on how the verifier may resolve the associated

handle χ into a reference value, such as a uniform resource identifier (URI) or a domain

name where the reference value is stored, or from which it may be obtained. (Some

information about how to resolve a handle or access condensation scheme operations

may also be conveyed in the representation of the public key and/or in the format for

an uncondensed signature.)

NIST recently announced a call for additional signature candidates with shorter

signature sizes and more cryptographic diversity than the current NIST PQC signature

Merkle Tree Ladder Mode 25

algorithms [61]. The call complements our suggestion of modes of operation. Indeed,

even if a new algorithm with a much shorter signature size were introduced, MTL mode

may still be helpful because it can be applied to any of the current algorithms, thereby

maintaining diversity.

Modes of operation have historically provided a way to realize additional capabilities

from an underlying cryptographic technique, such as a block cipher in the case of

NIST’s classic modes. We hope that modes of operation such as MTL mode can offer

a way to achieve additional capabilities from post-quantum signature schemes as well.

Acknowledgments. We thank our Verisign colleagues for reviewing drafts of this

paper and discussing its concepts, with particular appreciation to Duane Wessels for

guidance on the selection of data sources for Section 7.3 and assistance with the data

analysis. Thanks also to DNS-OARC for providing access to their data sets and servers.

Finally, the paper would not have reached its final form without the improvements

encouraged by the anonymous CT-RSA reviewers. We thank them for their generous

commitment to the peer review process.

References

1. Post-Quantum Cryptography Standardization, NIST, https://csrc.nist.gov/projects/post-

quantum-cryptography/post-quantum-cryptography-standardization, last accessed

2024/01/02.

2. Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J., et al.: NIST IR 8413-upd1:

Status Report on the Third Round of the NIST Post-Quantum Cryptography Standardization

Process. NIST (2022); includes updates as of 2022/09/26.

https://doi.org/10.6028/NIST.IR.8413-upd1.

3. Cooper, D.A., D. Apon, Q.H. Dang, Davidson, M.S., Dworkin, M.J., Miller, C.A.: NIST

Special Publication 800-208: Recommendation for Stateful Hash-Based Signature Schemes.

NIST (2020). https://doi.org/10.6028/NIST.SP.800-208.

4. Announcing the Commercial National Security Algorithm Suite 2.0, National Security

Agency, https://media.defense.gov/2022/Sep/07/2003071834/-1/-

1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF, last accessed 2024/01/02.

5. Migration to Post-Quantum Cryptography. NIST National Cybersecurity Center of

Excellence, https://www.nccoe.nist.gov/crypto-agility-considerations-migrating-post-

quantum-cryptographic-algorithms, last accessed 2024/01/02.

6. FIPS 203: Module-Lattice-Based Key-Encapsulation Mechanism Standard. National

Institute of Standards and Technology, US Department of Commerce, initial public draft,

dated 2023/08/24. https://doi.org/10.6028/NIST.FIPS.203.ipd.

7. FIPS 204: Module-Lattice-Based Digital Signature Standard. National Institute of Standards

and Technology, US Department of Commerce, initial public draft, dated 2023/08/24.

https://doi.org/10.6028/NIST.FIPS.204.ipd.

8. FIPS 205: Stateless Hash-Based Digital Signature Standard. National Institute of Standards

and Technology, US Department of Commerce, initial public draft, dated 2023/08/24.

https://doi.org/10.6028/NIST.FIPS.205.ipd.

9. Wouters, P., Sury, O: RFC 8624, Algorithm Implementation Requirements and Usage

Guidance for DNSSEC. IETF (2019). https://doi.org/10.17487/RFC8624.

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/NIST.SP.800-208
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://www.nccoe.nist.gov/crypto-agility-considerations-migrating-post-quantum-cryptographic-algorithms
https://www.nccoe.nist.gov/crypto-agility-considerations-migrating-post-quantum-cryptographic-algorithms
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.205.ipd
https://doi.org/10.17487/RFC8624

26 A. Fregly et al.

10. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: RFC 5280, Internet

X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.

IETF (2008). https://doi.org/10.17487/RFC5280.

11. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: DNS Security Introduction and

Requirements. IETF (2005). https://doi.org/10.17487/RFC4033.

12. Laurie, B., Messeri, E., Stradling, R.: RFC 9162: Certificate Transparency Version 2.0. IETF

(2021). https://doi.org/10.17487/RFC9162.

13. Merkle, R.: Secrecy, Authentication, and Public Key Systems. Ph.D. thesis, Stanford

University (1979). http://www.ralphmerkle.com/papers/Thesis1979.pdf, last accessed

2024/01/02.

14. FIPS PUB 81: DES Modes of Operation. National Bureau of Standards, U.S. Department of

Commerce (1980). https://doi.org/10.6028/NBS.FIPS.81.

15. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based signatures.

In: Cheng, C.M.., Chung, K.M., Persiano, G., Yang, B.Y. (eds) Public-Key Cryptography

— PKC 2016, LNCS, vol. 9614, pp. 387–416. Springer, Berlin, Heidelberg, 2016.

https://doi.org/10.1007/978-3-662-49384-7_15.

16. Fluhrer, S.: Further Analysis of a Proposed Hash-Based Signature Standard. In: Cryptology

ePrint Archive, Paper 2017/553, https://eprint.iacr.org/2017/553, last accessed 2024/01/02.

17. Katz, J.: Analysis of a Proposed Hash-Based Signature Standard. In: Chen, L., McGrew, D.,

Mitchell, C. (eds) Security Standardisation Research. SSR 2016. LNCS, vol. 10074.

Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49100-4_12.

18. Grilo, A.B., Hövelmanns, K., Hülsing, A., Majenz, C.: Tight adaptive reprogramming in the

QROM. In: Tibouchi, M., Wang, H. (eds) Advances in Cryptology — ASIACRYPT 2021,

LNCS, vol. 13090, pp. 637–667. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-

92062-3_22.

19. Bos, J.W., Hülsing, A., Renes, J., van Vredendaal, C.: Rapidly Verifiable XMSS Signatures,

Cryptology ePrint Archive, Paper 2020/898, https://eprint.iacr.org/2020/898, last accessed

2024/01/02.

20. Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography

Standardization Process, NIST, https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-

Cryptography/documents/call-for-proposals-final-dec-2016.pdf, last accessed 2024/01/02.

21. Bai, S., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P. et al.: CRYSTALS-

Dilithium Algorithm Specifications and Supporting Documentation (Version 3.1), dated

2021/02/08, https://pq-crystals.org/dilithium/data/dilithium-specification-round3-

20210208.pdf, last accessed 2024/01/02.

22. Fouque, P.-A., J. Hoffstein, P. Kirchner, Lyubashevsky, V., Pornin, T., Prest, T., et al.:

Falcon: Fast-Fourier Lattice-based Compact Signatures over NTRU Specification v1.2,

dated 2020/01/10, https://falcon-sign.info/falcon.pdf, last accessed 2024/01/02.

23. Aumasson, J.-P., D.J. Bernstein, W. Beullens, Dobraunig, C., Eichlseder, M., Fluhrer, S., et

al.: SPHINCS+ Submission to the NIST Post-Quantum Project, v.3.1, dated 2022/06/10,

https://sphincs.org/data/sphincs+-r3.1-specification.pdf, last accessed 2024/01/02.

24. McGrew, D., Curcio, M., Fluhrer, S.: RFC 8554, Leighton-Micali Hash-Based Signatures.

IETF (2019). https://doi.org/10.17487/RFC8554.

25. Huelsing, A., Butin, D., Gazdag, S., Rijneveld, J., Mohaisen, A.: RFC8391, XMSS:

eXtended Merkle Signature Scheme. IETF (2018). https://doi.org/10.17487/RFC8391.

26. Mockapetris, P.: RFC 1034, Domain Names - Concepts and Facilities. IETF (1987).

https://doi.org/10.17487/RFC1034.

27. Day In The Life of the Internet Traces, DNS-OARC, https://www.dns-

oarc.net/oarc/data/catalog, last accessed 2024/01/02.

https://doi.org/10.17487/RFC5280
https://doi.org/10.17487/RFC4033
https://doi.org/10.17487/RFC9162
http://www.ralphmerkle.com/papers/Thesis1979.pdf
https://doi.org/10.6028/NBS.FIPS.81
https://doi.org/10.1007/978-3-662-49384-7_15
https://eprint.iacr.org/2017/553
https://doi.org/10.1007/978-3-319-49100-4_12
https://doi.org/10.1007/978-3-030-92062-3_22
https://doi.org/10.1007/978-3-030-92062-3_22
https://eprint.iacr.org/2020/898
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://falcon-sign.info/falcon.pdf
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://doi.org/10.17487/RFC8554
https://doi.org/10.17487/RFC8391
https://doi.org/10.17487/RFC1034
https://www.dns-oarc.net/oarc/data/catalog
https://www.dns-oarc.net/oarc/data/catalog

Merkle Tree Ladder Mode 27

28. Barker, W., Polk, W., Souppaya, M.: Getting Ready for Post-Quantum Cryptography:

Exploring Challenges Associated with Adopting and Using Post-Quantum Cryptographic

Algorithms, NIST Cybersecurity White Paper, 2021/04/28.

https://doi.org/10.6028/NIST.CSWP.04282021.

29. Driscoll, F.: Terminology for Post-Quantum Traditional Hybrid Schemes,

https://datatracker.ietf.org/doc/draft-ietf-pquip-pqt-hybrid-terminology/, last accessed

2024/01/02. Work in progress.

30. Bindel, N., Hale, B.: A Note on Hybrid Signature Schemes. In: Cryptology ePrint Archive,

Paper 2023/423. https://eprint.iacr.org/2023/423, last accessed 2024/01/02.

31. Champine, L.: Streaming Merkle Proofs within Binary Numeral Trees. In: Cryptology ePrint

Archive, Paper 2021/038. https://eprint.iacr.org/2021/038, last accessed 2024/01/02.

32. Crosby, S., Wallach, D.: Efficient data structures for tamper-evident logging. In:

Proceedings of the 18th USENIX Security Symposium, pp. 317–334. USENIX Association

(2009). https://dl.acm.org/doi/abs/10.5555/1855768.1855788.

33. Todd, P.: Merkle Mountain Ranges, https://github.com/opentimestamps/opentimestamps-

server/blob/master/doc/merkle-mountain-range.md, last accessed 2024/01/02.

34. Bünz, B., Kiffer, L., Luu, L., Zamani, M.: FlyClient: Super-light clients for cryptocurrencies.

In: 2020 IEEE Symposium on Security and Privacy (SP), pp. 928–946. IEEE (2020),

https://doi.org/10.1109/SP40000.2020.00049.

35. Benaloh, J., de Mare, M.: One-way accumulators: A decentralized alternative to digital

signatures. In: Helleseth, T. (ed.) Advances in Cryptology — EUROCRYPT ’93, LNCS,

vol. 765, pp. 274–285. Springer, Berlin, Heidelberg (1993). https://doi.org/10.1007/3-540-

48285-7_24.

36. Reyzin, L., Yakoubov, S.: Efficient asynchronous accumulators for distributed PKI. In:

Zikas, V., De Prisco, R. (eds) Security and Cryptography for Networks, SCN 2016, LNCS,

vol. 9841, pp. 292–309. Springer, Cham, 2016. https://doi.org/10.1007/978-3-319-44618-

9_16.

37. Kuszmaul, J.: Verkle Trees,

https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf, last

accessed 2024/01/02.

38. Buterik, V.: Verkle Trees, https://vitalik.ca/general/2021/06/18/verkle.html, dated

2022/06/18, last accessed 2023/02/13.

39. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K.,

Hanaoka, G. (eds.) Public-Key Cryptography — PKC 2013, LNCS, vol. 7778, pp. 55–72.

Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5.

40. Peikert, C., Pepin, Z., Sharp, C.: Vector and functional commitments from lattices. In:

Nissim, K., Waters, B. (eds.) Theory of Cryptography, TCC 2021, LNCS, vol. 13044, pp.

480–511. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2_16.

41. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, Transparent, and Post-

Quantum Secure Computational Integrity. In: Cryptology ePrint Archive, Paper 2018/046,

https://eprint.iacr.org/2018/046, last accessed 2024/01/02.

42. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted

signatures from bilinear maps. In: Biham, E. (ed.) Advances in Cryptology —

EUROCRYPT 2003, LNCS, vol. 2656, pp. 416–432. Springer, Berlin, Heidelberg (2003).

https://doi.org/10.1007/3-540-39200-9_26.

43. Khaburzaniya, I., Chalkias, K., Lewi, K., Malvai, H.: Aggregating and thresholdizing hash-

based signatures using STARKs. In: Proceedings of the 2022 ACM Asia Conference on

Computer and Communications Security, pp. 393–407. ACM, New York (2022).

https://doi.org/10.1145/3488932.3524128.

https://doi.org/10.6028/NIST.CSWP.04282021
https://datatracker.ietf.org/doc/draft-ietf-pquip-pqt-hybrid-terminology/
https://eprint.iacr.org/2023/423
https://eprint.iacr.org/2021/038
https://dl.acm.org/doi/abs/10.5555/1855768.1855788
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://doi.org/10.1109/SP40000.2020.00049
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/978-3-319-44618-9_16
https://doi.org/10.1007/978-3-319-44618-9_16
https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf
https://vitalik.ca/general/2021/06/18/verkle.html
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-030-90456-2_16
https://eprint.iacr.org/2018/046
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1145/3488932.3524128

28 A. Fregly et al.

44. Goyal, R., Vaikuntanathan, V.: Locally Verifiable Signature and Key Aggregation, In: ,

Dodis, Y., Shrimpton, T. (eds), Advances in Cryptology — CRYPTO 2022, LNCS, vol.

13508, pp. 761–791. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-

4_26.

45. Li, F., Yi, K., Hadjieleftheriou, M., Kollios, G.: Proof-infused streams: Enabling

authentication of sliding window queries on streams. In: Proceedings of the 33rd

International Conference on Very Large Data Bases, pp. 147–158. VLDB Endowment

(2007). https://dl.acm.org/doi/10.5555/1325851.1325871.

46. Papamanthou, C., Shi, E., Tamassia, R., Yi, K.: Streaming authenticated data structures. In:

Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology – EUROCRYPT 2013, LNCS,

vol. 7881, pp. 353–370. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-

642-38348-9_22.

47. Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying proof

methodologies to signature schemes. In: Yung, M. (ed.) Advances in Cryptology —

CRYPTO 2002, LNCS, vol. 2442, pp. 93–110. Springer, Berlin, Heidelberg (2002).

https://doi.org/10.1007/3-540-45708-9_7.

48. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable signatures: New

definitions and delegatable anonymous credentials. In: 2014 IEEE 27th Computer Security

Foundations Symposium, pp. 199–213. IEEE (2014). https://doi.org/10.1109/CSF.2014.22.

49. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Computing

on authenticated data. Journal of Cryptology 28(2), 351–395 (2015).

https://doi.org/10.1007/s00145-014-9182-0.

50. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: New privacy

definitions and constructions. In: Wang, X., Sako, K. (eds) Advances in Cryptology —

ASIACRYPT 2012, LNCS, vol. 7658, pp. 367–385. Springer, Berlin, Heidelberg (2012).

https://doi.org/10.1007/978-3-642-34961-4_23.

51. Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and MtGox. In: Kutyłowski,

M., Vaidya, J. (eds.) Computer Security — ESORICS 2014, LNCS, vol. 8713, pp. 313–326.

Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1_18.

52. Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Post-quantum authentication in TLS 1.3: a

performance study. In: Network and Distributed Systems Security (NDSS) Symposium

2020. The Internet Society (2020). https://dx.doi.org/10.14722/ndss.2020.24203.

53. Sikeridis, D., Huntley, S., Ott, D., Devetsikiotis, M.: Intermediate certificate suppression in

post-quantum TLS: An approximate membership querying approach, In: CoNEXT ’22:

Proceedings of the 18th International Conference on Emerging Networking EXperiments

and Technologies, pp. 35–42. ACM (2022).

https://dl.acm.org/doi/abs/10.1145/3555050.3569127.

54. Benjamin, D.: Batch Signing for TLS, https://datatracker.ietf.org/doc/draft-davidben-tls-

batch-signing/, last accessed 2024/01/02. Work in progress.

55. Benjamin, D., O’Brien, D., Westerbaan, B.: Merkle Tree Certificates for TLS,

https://datatracker.ietf.org/doc/draft-davidben-tls-merkle-tree-certs, last accessed

2024/01/02. Work in progress.

56. Aguilar-Melchor, C., Albrecht, M.R., Bailleux, T., Bindel, N., Howe, J., Hülsing, A., Joseph,

D., Manzano, M.: Batch Signatures, Revisited. In: Cryptology ePrint Archive, Paper

2023/492, https://eprint.iacr.org/2023/492, last accessed 2024/01/02.

57. Kudinov, M., Hülsing, A., Ronen, E. Yogev, E., SPHINCS+C: Compressing SPHINCS+

With (Almost) No Cost, In: Cryptology ePrint Archive, Paper 2022/778,

https://eprint.iacr.org/2022/778, last accessed 2024/01/02.

https://doi.org/10.1007/978-3-031-15979-4_26
https://doi.org/10.1007/978-3-031-15979-4_26
https://dl.acm.org/doi/10.5555/1325851.1325871
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/3-540-45708-9_7
https://doi.org/10.1109/CSF.2014.22
https://doi.org/10.1007/s00145-014-9182-0
https://doi.org/10.1007/978-3-642-34961-4_23
https://doi.org/10.1007/978-3-319-11212-1_18
https://dx.doi.org/10.14722/ndss.2020.24203
https://dl.acm.org/doi/abs/10.1145/3555050.3569127
https://datatracker.ietf.org/doc/draft-davidben-tls-batch-signing/
https://datatracker.ietf.org/doc/draft-davidben-tls-batch-signing/
https://datatracker.ietf.org/doc/draft-davidben-tls-merkle-tree-certs
https://eprint.iacr.org/2023/492
https://eprint.iacr.org/2022/778

Merkle Tree Ladder Mode 29

58. Baldimtsi, F., Chalkias, K., Chatzigiannis, P., Kelkar, M.: Truncator: Time-space Tradeoff

of Cryptographic Primitives, In: Cryptology ePrint Archive, Paper 2022/1581,

https://eprint.iacr.org/2022/1581, last accessed 2024/01/02.

59. Harvey, J., Kaliski, B., Fregly, A., Sheth, S.: Merkle Tree Ladder Mode (MTL) Signatures,

https://datatracker.ietf.org/doc/draft-harvey-cfrg-mtl-mode/, last accessed 2024/01/02.

Work in progress.

60. Fregly, A.M., Harvey, J., Kaliski, B., Wessels, D.: Stateless Hash-Based Signatures in

Merkle Tree Ladder Mode (SLH-DSA-MTL) for DNSSEC,

https://datatracker.ietf.org/doc/draft-fregly-dnsop-slh-dsa-mtl-dnssec, last accessed

2024/01/02. Work in progress.

61. Draft Call for Additional Digital Signature Schemes for the Post-Quantum Cryptography

Standardization Process, NIST, https://csrc.nist.gov/csrc/media/Projects/pqc-dig-

sig/documents/call-for-proposals-dig-sig-sept-2022.pdf, updated October 2022, last

accessed 2023/12/11.

62. FIPS PUB 180-4: Secure Hash Standard. NIST (2015).

https://doi.org/10.6028/NIST.FIPS.180-4.

63. Sloane, N.J.A.: The ruler function: 2^a(n) divides 2n. Or, a(n) = 2-adic valuation of 2n. In:

The On-Line Encyclopedia of Integer Sequences, Entry A001511, https://oeis.org/A001511,

last accessed 2024/01/02.

64. Sloane, N.J.A., Wilks, A.: a(n) = a(floor(n/2)) + n; also denominators in expansion of

1/sqrt(1-x) are 2^a(n); also 2n - number of 1’s in binary expansion of 2n. In: The On-Line

Encyclopedia of Integer Sequences, Entry A005187, https://oeis.org/A005187, last accessed

2024/01/02.

https://eprint.iacr.org/2022/1581
https://datatracker.ietf.org/doc/draft-harvey-cfrg-mtl-mode/
https://datatracker.ietf.org/doc/draft-fregly-dnsop-slh-dsa-mtl-dnssec
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://doi.org/10.6028/NIST.FIPS.180-4
https://oeis.org/A001511
https://oeis.org/A005187

30 A. Fregly et al.

Appendices

A Hash Function Instantiations

MTL mode uses three hash functions as noted in Section 2:

• 𝐻msg(𝑆𝐼𝐷, 𝑖, 𝑚, 𝑐) ⟶ 𝑑 maps a series identifier 𝑆𝐼𝐷, an index 𝑖, a variable-length

message 𝑚 and a ℓ𝑐-bit randomizer 𝑐 to a ℓ-bit data value 𝑑;

• 𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑) ⟶ 𝑉 maps a series identifier 𝑆𝐼𝐷, an index 𝑖 and a ℓ-bit data value

𝑑 to a ℓ-bit leaf hash value 𝑉; and

• 𝐻int(𝑆𝐼𝐷, 𝐿, 𝑅, 𝑉left, 𝑉right) ⟶ 𝑉 maps a series identifier 𝑆𝐼𝐷, a node index pair 𝐿

and 𝑅 and two ℓ-bit hash values 𝑉left and 𝑉right to a ℓ-bit hash value 𝑉.

We want the functions to be cryptographically separate from one another and also

from any hash functions involved in the underlying signature scheme 𝒮. Because the

example underlying signature schemes instantiate their own hash functions in different

ways, we find it more practical to propose custom instantiations of the three hash

functions for each scheme than to construct a generic set for use across all schemes.

While we’ve adopted a concatenate-then-hash style for our instantiations, the flexibility

gives the option to move to a different style, e.g., mask-then-hash, to align better with

the security proofs for the underlying schemes. An implementation of MTL mode can

use the same underlying hash function as the underlying signature scheme or a different

hash function.

In the following, let 𝐻 be a cryptographic hash function with security level at least

ℓ (e.g., SHA-256 [62] for the case ℓ = 128). We assume the hash function output is

represented as an octet string as per the hash function’s specification, e.g., Section 3 of

[62]; ℎ𝐿𝑒𝑛 denotes the length of the octet string (e.g., ℎ𝐿𝑒𝑛 = 32 for SHA-256). We

also adopt the following notation: [𝑥]𝑤 converts a non-negative integer 𝑥 to its 𝑤-octet

unsigned representation, most significant octet first; 𝑥〈1: 𝑤〉 returns the first 𝑤 octets

of an octet string 𝑥 (we start our numbering with octet 1); and 𝟶x denotes a hexadecimal

representation.

The next sections propose instantiations for the five underlying post-quantum

signature schemes mentioned in the paper. While Section 7 focuses on specific

parameter sets for analysis, the instantiations are more general and could be applied to

other parameter sets as well.

A.1 HSS/LMS Instantiations

HSS/LMS defines its hash functions by formatting their inputs into input strings to the

underlying hash function 𝐻; the values of the 21st and 22nd octets provide separation

between the different uses (see Section 9.1 of [24]). We take a similar approach for

MTL mode’s uses and propose

Merkle Tree Ladder Mode 31

𝐻msg(𝑆𝐼𝐷, 𝑖, 𝑚, 𝑐) ∶= 𝐻(𝑆𝐼𝐷 ∥ [𝑖]4 ∥ 𝐷MTLM ∥ 𝑐 ∥ 𝑚)〈1: ℓ/8 〉;

𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑) ∶= 𝐻(𝑆𝐼𝐷 ∥ [𝑖]4 ∥ 𝐷MTLL ∥ 𝑑)〈1: ℓ/8 〉; and

𝐻int(𝑆𝐼𝐷, 𝐿, 𝑅, 𝑉left, 𝑉right) ∶= 𝐻(𝑆𝐼𝐷 ∥ [𝐿]4 ∥ 𝐷MTLI ∥ [𝑅]4 ∥ 𝑉left ∥ 𝑉right)〈1: ℓ/8 〉.

To align with HSS/LMS’s formats, we place these constraints on our MTL mode

implementation: 𝑆𝐼𝐷 must be a 16-octet string and 𝑖, 𝐿 and 𝑅 must be at most 232 − 1.

We suggest 𝐷MTLM = 𝟶x𝟿0𝟿0, 𝐷MTLL = 𝟶x𝟿1𝟿1, and 𝐷MTLI = 𝟶x𝟿2𝟿2, contrasting

with HSS/LMS’s identifiers which either start with 𝟶x8 or have most significant bit 𝟶.

In addition, so that the boundary between 𝑐 and 𝑚 is unambiguous, we require that the

randomizer has a fixed length. We suggest ℓ𝑐 = 2ℓ bits, the same length as HSS/LMS’s

own message randomizer (see Section 7.1 of [24]), even though a shorter ℓ𝑐 is sufficient

(see Section 5.3 above). When ℓ = 128 and 𝐻 is SHA-256, the input to the hash

function in 𝐻leaf is at most 38 octets long, which, after padding, fits within a single

SHA-256 compression function call. 𝐻int takes two calls, matching its counterpart in

HSS/LMS.

With these instantiations, up to 232 − 1 messages can be associated with a given

series identifier and up to 2160 − 2128 messages can be signed in MTL mode with a

given HSS/LMS key pair. The latter limit is greater than the total number of messages

supported by any of the recommended HSS/LMS parameter sets (i.e., 240; see Section

6.4 of [24]). Note that while our inputs generally follow HSS/LMS’s formats, our

outputs are half the size, ℓ/8 vs. ℎ𝐿𝑒𝑛 octets following the security proof in Section 5.

A.2 Instantiations for Other Underlying Signature Schemes

We now provide some suggestions on how one might instantiate the four hash functions

when MTL mode is applied to the other underlying schemes.

XMSS^MT. Like HSS/LMS, XMSS^MT separates its hash functions by

distinguishing certain octets in the inputs to 𝐻; here, the first ℎ𝐿𝑒𝑛 octets vary (see

Section 5.1 of [25]). Following this approach, we propose

𝐻msg(𝑆𝐼𝐷, 𝑖, 𝑚, 𝑐) ∶= 𝐻(𝐷MTLM ∥ 𝑆𝐼𝐷 ∥ [𝑖]4 ∥ 𝑐 ∥ 𝑚)〈1: ℓ/8〉;

𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑) ∶= 𝐻(𝐷MTLL ∥ 𝑆𝐼𝐷 ∥ [𝑖]4 ∥ 𝑑)〈1: ℓ/8〉; and

𝐻int(𝑆𝐼𝐷, 𝐿, 𝑅, 𝑉left, 𝑉right) ∶= 𝐻(𝐷MTLI ∥ 𝑆𝐼𝐷 ∥ [𝐿]4 ∥ [𝑅]4 ∥ 𝑉left ∥ 𝑉right)〈1: ℓ/8〉.

We suggest 𝐷MTLM = [256]ℎ𝐿𝑒𝑛, 𝐷MTLL = [257]ℎ𝐿𝑒𝑛, 𝐷MTLI = [258]ℎ𝐿𝑒𝑛 and

𝐷MTLS = [259]ℎ𝐿𝑒𝑛, contrasting with XMSS^MT’s identifiers which involve integers

in the range 0–3. For consistency with our HSS/LMS instantiations and make to the

formats unambiguous, we again constrain 𝑆𝐼𝐷 to be a 16-octet string and 𝑖, 𝐿 and 𝑅 to

be at most 232 − 1. However, the instantiations could be redefined with different

lengths. As above, with these constraints up to 2160 − 2128 messages can be signed in

MTL mode with a given XMSS^MT key pair, a limit that again is greater than the total

number of messages supported by any of the recommended parameter sets (i.e., 260;

see Section 5.4.1 of [25]).

Note that we’ve maintained the concatenate-then-hash style of our HSS/LMS

instantiations. We could instead follow XMSS^MT’s mask-then-hash style where

32 A. Fregly et al.

bitmasks are derived from “address” components such as 𝑆𝐼𝐷, 𝐿 and 𝑅 and exclusive-

ored with other inputs. We could also adjust the formatting to align with the boundaries

of the hash function’s internal compression function, as XMSS^MT does.

(Notational comment: the 𝐻msg we define here is the MTL mode function, not

XMSS^MT’s H_msg; and the 𝐻 we use here is the underlying hash function, e.g.,

SHA-256, not XMSS^MT’s H.)

SPHINCS+ (now being standardized as FIPS 205 [7]). A 32-octet address field

separates different uses of the underlying hash function for this scheme (see Sections

7.2 and 2.7.3 of [23]). The first four octets are the layer address. SPHINCS+’s own

layer addresses are in the range 0–6, so we again suggest the range 256–259 for the

MTL mode functions. The other inputs would be formatted to align with SPHINCS+’s

formats (e.g., padding the first field to the length of the compression function). We

could also adopt a mask-then-hash style in addition to the concatenate-then-hash style

as SPHINCS+ does in its “robust” variant. The instantiations could impose the same

constraints as the other instantiations above, or they could move to larger sizes (e.g.,

eight-octet indexes), given that SPHINCS+ is stateless and therefore doesn’t have a

built-in limit on the number of messages that can be signed. A detailed “SPHINCS+-

friendly” instantiation along similar lines as described here is proposed in [59].

FALCON’s only internal use of a hash function is for mapping a 320-bit salt and a

message to a polynomial; the scheme uses SHAKE-256, where the input is the

concatenation of the salt and the message (see Section 3.9.1 of [22]). FALCON’s own

instantiation thus doesn’t directly provide a way to separate other uses of the underlying

hash function, and it doesn’t support SHA-256 (it requires an extendable-output

function (XOF)). Given that we don’t have an opportunity to separate from MTL

mode’s uses from FALCON’s, any of the instantiations for the other schemes seems an

equally reasonable choice.

CRYSTALS–Dilithium (now being standardized as FIPS 204 [8]) also uses a hash

function for several purposes (see Section 5.3 of [21]). Like FALCON, it doesn’t directly

provide a way to separate other uses from its own. Again, any of the previous

instantiations would seem to be equally reasonable.

A.3 Hash Function Usage Outside Signature Schemes

As evidenced above, two of the five example post-quantum signature schemes

considered don’t provide a direct way to separate their uses of an underlying hash

function from other uses outside the signature scheme.

Given that a signature scheme will often be combined with other uses of the same

hash function in an application, it would be worthwhile to have a common convention

for using a hash function within a signature scheme that does provide for such

separation. The convention would be another aspect of the ongoing improvements in

multi-user / multi-target security [15], where a design goal is to limit each of the

adversary’s hash function queries to a specific context.

Merkle Tree Ladder Mode 33

B Binary Rung Strategy Operations

We now give example pseudocode for the Merkle tree ladder operations in the binary

rung strategy described in Section 3, which is the basis for the MTL mode operations

in Section 4. The pseudocode takes an iterative approach where the authentication paths

and ladders are constructed with “for” loops, following the tree structure from leaf to

ladder. An alternative would be a recursive approach where the components are

constructed with recursive calls that proceed from ladder to leaf. Arrays are indexed

starting with 1.

Signature-generation-only optimizations. MTL mode’s signature generation

operation calls ADDLEAFNODE to add a leaf node corresponding to a message being

signed and to obtain a ladder spanning the leaf nodes added so far. The operation then

calls GETAUTHPATH to obtain an authentication path from the newly added leaf node to

the newly produced ladder. The mode’s condensation operations (Section 6) likewise

call ADDLEAFNODE to add a leaf node corresponding to the signature being incorporated,

but in contrast, call GETAUTHPATH to obtain an authentication path from an arbitrary

leaf node to the current ladder. An implementation such as a hardware security module

that is intended only to support signature generation, not condensation, only needs to

maintain enough hash values to produce the next ladder and the authentication path to

it from the newly added leaf node. The pseudocode below covers the general case and

requires storage for 𝑂(𝑁) hash values, where 𝑁 is the number of leaf nodes in the node

set. The notes suggest optimizations for the signature-generation-only case which

require storage for only 𝑂(log 𝑁) hash values.

B.1 Node Set Representation

A node set 𝑇 includes three parts: the series identifier, denoted 𝑇. 𝑆𝐼𝐷; the number of

leaf nodes, denoted 𝑇. 𝑁; and zero or more node hash values, each denoted 𝑇. 𝑉[𝐿: 𝑅]
where 𝐿 and 𝑅 are the index pair that uniquely identifies the node.

We assume a suitable data structure for mapping the index pair to the hash value.

For instance, an implementation could maintain a lookup table (𝐿, 𝑅) → 𝑉, which

would effectively serve as a sparse representation for an expanding 𝑇. 𝑁 × 𝑇. 𝑁 array.

Alternatively, an implementation could map the index pair to a single index 𝑍

corresponding to the order in which the value 𝑇. 𝑉[𝐿: 𝑅] is computed by ADDLEAFNODE,

and keep the value at this index in a one-dimensional array.

For the binary rung strategy, the (𝐿, 𝑅) → 𝑍 mapping could take the form

𝑍 ∶= 2𝑅 − 𝐵(𝑅) − 𝜈𝐵(𝑅) + 𝑘(𝐿, 𝑅).

where 𝐵(𝑅) is the number of ones bits in the binary representation of 𝑅, 𝜈𝐵(𝑅) is the

index of the lowest ones bit in the representation (where bits are indexed starting at 0),

and 𝑘(𝐿, 𝑅) is the unique integer such that 𝐿 = 𝑅 − 2𝑘 + 1 (if such an integer exists;

otherwise (𝐿, 𝑅) is not a valid index pair for the binary rung strategy).

To see this, consider that the hash values added during the 𝑅th call to ADDLEAFNODE,

i.e., when 𝑖 = 𝑅, are those with right index 𝑅 and left index 𝐿 = 𝑅 − 2𝑘 + 1 for each

34 A. Fregly et al.

value of 𝑘 between 0 and 𝜈𝐵(𝑅); they’re added in increasing order of 𝑘. To determine

the one-dimensional index 𝑍, then, we only need to know how many hash values are

added up to and including the 𝑅th call.

The index of the lowest ones bit in an the binary representation of an integer 𝑥, plus

one, i.e., 𝜈𝐵(𝑥) + 1, is the ruler function of the integer 𝑥 [63]. The total number of hash

values added up to and including the 𝑅th call, i.e., ∑ (𝜈𝐵(𝑥) + 1)𝑅
𝑥=1 , thus equals the

sequential sum of the ruler function up to 𝑅, which is 2𝑅 − 𝐵(𝑅) [64]. It follows that

the overall order in which the hash value 𝑇. 𝑉[𝐿: 𝑅] is added is 2𝑅 − 𝐵(𝑅) − 𝜈𝐵(𝑅) +
𝑘(𝐿, 𝑅). This order can then be used as an index to a one-dimensional array for storing

and retrieving 𝑇. 𝑉[𝐿: 𝑅].
Another way to see the result is to consider that the ladder after the 𝑅th call will

include 𝐵(𝑅) perfect, adjacent binary trees spanning the 𝑅 leaf nodes. A perfect binary

tree has one fewer internal nodes than leaf nodes, so collectively, the 𝐵(𝑅) trees have

𝑅 − 𝐵(𝑅) internal nodes and 2𝑅 − 𝐵(𝑅) total nodes. These are the only nodes whose

hash values will have been added up to and including this call. A node set with 𝑁 leaf

nodes can therefore be represented with 2𝑁 − 𝐵(𝑁) ≤ 2𝑁 − 1 hash values.

Signature-generation-only case. If GETAUTHPATH and ADDLEAFNODE will be used

only for signature generation, then the node set representation only needs to maintain

enough hash values to produce the next ladder and authentication path. In this case, the

node set has four parts: 𝑇. 𝑆𝐼𝐷; 𝑇. 𝑁; the current ladder, denoted 𝑇. Λ; and the current

authentication path, denoted 𝑇. Π. The node set representation would include 𝐵(𝑁) +
𝜈𝐵(𝑁) hash values (corresponding to the number of hash values in the ladder and in the

authentication path); the sum is at most the number of bits in the binary representation

of 𝑁. It follows that the storage requirement in the signature-only case is at most

⌊log2𝑁⌋ + 1 hash values.

B.2 Node Set Initialization

INITNODESET(𝑆𝐼𝐷) ⟶ 𝑇 returns a new node set 𝑇 associated with the series identifier

𝑆𝐼𝐷.

1. Create a new, empty node set 𝑇.

2. Set 𝑇. 𝑆𝐼𝐷 ∶= 𝑆𝐼𝐷 and 𝑇. 𝑁 ∶= 0. The initial node set will include no node hash

values.

3. Return 𝑇.

Signature-generation-only case. Step 2 also sets 𝑇. Λ and 𝑇. Π to empty arrays.

B.3 Leaf Node Addition

ADDLEAFNODE(𝑇, 𝑑) ⟶ 〈Λ𝑁〉 adds a leaf node corresponding to a data value 𝑑 to the

node set 𝑇 and returns the current ladder Λ𝑁 where 𝑁 is the current leaf node count.

1. Set 𝑆𝐼𝐷 ∶= 𝑇. 𝑆𝐼𝐷.

2. Set 𝑖 ∶= 𝑇. 𝑁 + 1.

3. Set 𝑇. 𝑁 ≔ 𝑖.

Merkle Tree Ladder Mode 35

4. Compute 𝑉 ∶= 𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑).

5. Set 𝑇. 𝑉[𝑖: 𝑖] ∶= 𝑉, adding the new leaf node to the node set.

6. Write 𝑖 = ∑ 2𝜈𝑗𝐵
𝑗=1 where the 𝜈𝑗 are the indexes of the ones bits in the binary

representation of 𝑖 from highest to lowest.

7. For 𝑘 from 1 to 𝜈𝐵 do:

a. Compute 𝑉 ∶= 𝐻int(𝑆𝐼𝐷, 𝑖 − 2𝑘 + 1, 𝑖, 𝑇. 𝑉[𝑖 − 2𝑘 + 1: 𝑖 − 2𝑘−1], 𝑉).

b. Set 𝑇. 𝑉[𝑖 − 2𝑘 + 1: 𝑖] ∶= 𝑉, adding the new internal node to the node set.

8. Create a new empty array Λ𝑁.

9. Set 𝑅 ∶= 0.

10. For 𝑗 from 1 to 𝐵 do:

a. Set 𝐿 ∶= 𝑅 + 1 and 𝑅 ∶= 𝑅 + 2𝜈𝑗.

b. Set Λ𝑁[𝑗] ∶= 𝑇. 𝑉[𝐿: 𝑅], adding this rung hash value to the ladder.

11. Return Λ𝑁, which will be an array of 𝐵 hash values.

Step 7 computes the new ladder rung [𝑖 − 2𝜈𝐵 + 1: 𝑖] from leaf to ladder. As also

noted in Appendix C, Step 7 computes this rung from the last 𝜈𝐵 rungs of Λ𝑁−1, so the

rung is their ancestor. Step 10 then assembles the rungs into the ladder.

Signature-generation-only case. Instead of retrieving 𝑇. 𝑉[𝑖 − 2𝑘 + 1: 𝑖 − 2𝑘−1]
from the set of node hash values during the call to 𝐻int, Step 7a selects the rung

𝑇. Λ[𝐵 + 𝜈𝐵 − 𝑘] from the current ladder. Instead of storing the new hash value, Step

7b copies the selected rung to the current authentication path by setting 𝑇. Π[𝑘] ∶=
𝑇. Λ[𝐵 + 𝜈𝐵 − 𝑘]. A new step before Step 8 then copies the newly computed final rung

to the current ladder by setting 𝑇. Λ[𝐵] ∶= 𝑉. In addition, instead of retrieving 𝑇. 𝑉[𝐿: 𝑅]
from the set of node hash values, Step 10b sets Λ𝑁[𝑗] ∶= 𝑇. Λ[𝑗]. Steps 5, 9 and 10a are

omitted.

B.4 Authentication Path Construction

GETAUTHPATH(𝑇, 𝑖) ⟶ Π𝑖,𝑁 returns the authentication path Π𝑖,𝑁 from the 𝑖th leaf node

in the node set 𝑇 relative to the current ladder. The operation requires that 1 ≤ 𝑖 ≤ 𝑁.

1. Set 𝑆𝐼𝐷 ∶= 𝑇. 𝑆𝐼𝐷.

2. Set 𝑁 ∶= 𝑇. 𝑁.

3. If 𝑖 < 1 or 𝑖 > 𝑁 then return “index out of range.”

4. Write 𝑁 = ∑ 2𝜈𝑗𝐵
𝑗=1 where the 𝜈𝑗 are the indexes of the ones bits in the binary

representation of 𝑁 from highest to lowest.

5. Set 𝑅 ∶= 0.

6. For 𝑗 from 1 to 𝐵 do:

a. Set 𝐿 ∶= 𝑅 + 1 and 𝑅 ∶= 𝑅 + 2𝜈𝑗.

b. If 𝑖 ≤ 𝑅 then break.

7. Set Δ ∶= 𝑖 – 𝐿.

8. Write Δ = ∑ 𝛿𝑘2𝑘−1𝜈𝑗

𝑘=1 where the 𝛿𝑘 are the bits of the binary representation of Δ

from lowest to highest.

9. Create a new empty array Π.

10. For 𝑘 from 1 to 𝜈𝑗 do:

36 A. Fregly et al.

a. If 𝛿𝑘 = 0 then set Π[𝑘] ∶= 𝑇. 𝑉[𝐿 + Δ + 2𝑘−1: 𝐿 + Δ + 2𝑘 − 1].
b. Else (𝛿𝑘 = 1) set Π[𝑘] ∶= 𝑇. 𝑉[𝐿 + Δ − 2𝑘−1: 𝐿 + Δ − 1] and Δ ∶= Δ − 2𝑘−1.

11. Return Π, which will be an array of 𝜈𝑗 hash values.

Step 6 determines which rung of the ladder spans the leaf node, and Step 10 then

constructs the authentication path from leaf to ladder, based on the binary

representation of Δ, the relative position of the leaf node within the ladder rung span.

(Recall that each rung spans a perfect binary tree.)

Signature-generation-only case: Step 3 instead checks if 𝑖 ≠ 𝑁, given that this case

assumes that the authentication path is from the newly added leaf node to the newly

produced ladder only. Steps 5–10 are replaced by a loop that copies 𝑇. Π[𝑘] to Π[𝑘] for

𝑘 from 1 to 𝜈𝐵. (In Step 11, we have 𝜈𝑗 = 𝜈𝐵.)

B.5 Authentication Path Verification

CHECKAUTHPATH(𝑆𝐼𝐷, 𝑖, 𝑁, 𝑁′, 𝑑, Π𝑖,𝑁 , Λ𝑁′) ⟶ 𝑏 verifies that the 𝑖th leaf node

corresponds to the data value 𝑑 using an authentication path Π𝑖,𝑁 from the 𝑖th leaf node

relative to the 𝑁th ladder Λ𝑁, and the 𝑁′th
 ladder Λ𝑁′ . It returns 𝑏 = TRUE if the

authentication path is valid and 𝑏 = FALSE otherwise. The operation requires that 1 ≤
𝑖 ≤ 𝑁′ ≤ 𝑁.

1. If 𝑖 < 1 or 𝑖 > 𝑁′ or 𝑁′ > 𝑁 then return “index out of range.”

2. Write 𝑁′ = ∑ 2𝜈𝑗𝐵
𝑗=1 where 𝜈1, … , 𝜈𝐵 are the indexes of the ones bits in the binary

representation of 𝑁′ from highest to lowest.

3. If Λ is an array of fewer than 𝐵 hash values then return “ladder too short.”

4. Set 𝑅 ∶= 0.

5. For 𝑗 from 1 to 𝐵 do:

a. Set 𝐿 ∶= 𝑅 + 1 and 𝑅 ∶= 𝑅 + 2𝜈𝑗.

b. If 𝑖 ≤ 𝑅 then break.

6. If Π is an array of fewer than 𝜈𝑗 hash values then return “authentication path too

short.”

7. Set Δ ∶= 𝑖 – 𝐿.

8. Write Δ = ∑ 𝛿𝑘2𝑘−1𝜈𝑗

𝑘=1
 where the 𝛿𝑘 are the bits of the binary representation of Δ

from lowest to highest.

9. Compute 𝑉 ∶= 𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑).

10. For 𝑘 from 1 to 𝜈𝑗 do:

a. If 𝛿𝑘 = 0 then compute 𝑉 ∶= 𝐻int(𝑆𝐼𝐷, 𝐿 + Δ, 𝐿 + Δ + 2𝑘 − 1, 𝑉, Π[𝑘]).

b. Else (𝛿𝑘 = 1) compute 𝑉 ∶= 𝐻int(𝑆𝐼𝐷, 𝐿 + Δ − 2𝑘−1, 𝐿 + Δ + 2𝑘−1 −
1, Π[𝑘], 𝑉) and set Δ ∶= Δ − 2𝑘−1.

11. If 𝑉 == Λ[𝑗] then return TRUE else return FALSE.

Step 5, similar to the previous operation, selects the rung of the ladder to match. The

rung may be reached by just a portion of the authentication path, given that the

operation allows 𝑁′ and 𝑁 to be different. Step 10 then evaluates the authentication

Merkle Tree Ladder Mode 37

path from leaf to ladder based on the binary representation of Δ, similar to the previous

operation.

C Proof of Backward Compatibility Property

Claim. For all positive integers 𝑖, 𝑁, 𝑁′ where 𝑖 ≤ 𝑁′ ≤ 𝑁, if 𝑑𝑖 is the data value

corresponding to the 𝑖th leaf node in a node set assembled using the binary rung

strategy, Π𝑖,𝑁 is the authentication path from the 𝑖th leaf node to its associated rung in

the 𝑁th ladder and Λ𝑁′ is the 𝑁′th
 ladder, then

CHECKAUTHPATH(𝑆𝐼𝐷, 𝑖, 𝑁, 𝑁′, 𝑑𝑖 , Π𝑖,𝑁 , Λ𝑁′) = TRUE.

Proof. If 𝑁 = 1 then the result is trivial. Suppose 𝑁 > 1 and consider the binary

representation of 𝑁 − 1. We write

𝑁 − 1 = ∑ 2𝜈𝑗

𝐵

𝑗=1

− 1 = ∑ 2𝜈𝑗

𝐵−1

𝑗=1

+ (2𝜈𝐵 − 1) = ∑ 2𝜈𝑗

𝐵−1

𝑗=1

+ ∑ 2𝑘−1

𝜈𝐵

𝑘=1

 .

The first 𝐵 − 1 ones bits of 𝑁 are the same as the first 𝐵 − 1 ones bits of 𝑁 − 1, while

the last ones bit of 𝑁 is replaced by 𝜈𝐵 consecutive lower-order ones bits of 𝑁 − 1. The

first 𝐵 − 1 rungs in Λ𝑁 are thus the same as the corresponding rungs in Λ𝑁−1 and the

last rung in Λ𝑁 is an ancestor of each of the last 𝜈𝐵 rungs in Λ𝑁−1 (compare Step 10 in

Appendix B.5 where 𝜈𝑗 = 𝜈𝐵). Each of the rungs in Λ𝑁−1 is therefore either the same

as or a descendant of one of the rungs in Λ𝑁. By induction, the same holds for each of

the rungs in Λ𝑁′ for every 𝑁′ such that 1 ≤ 𝑁′ ≤ 𝑁.

The evaluation of the authentication path from the 𝑖th leaf node to its associated rung

in ladder Λ𝑁 recomputes the rung as well as every descendant of the rung whose span

includes 𝑖. Because the rungs in each ladder have non-overlapping sets of descendants,

it follows that the rung in Λ𝑁′ that spans the 𝑖th leaf node is either the same as or a

descendant of the rung in Λ𝑁that spans the 𝑖th leaf node. CHECKAUTHPATH can therefore

verify Π𝑖,𝑁 using Λ𝑁′ . ∎

D Condensing and Reconstituting Hash-Based Signatures

The three hash-based signature schemes among the NIST PQC signature algorithms,

with certain parameter sets, all support a modest amount of condensation.

We consider three of the parameterizations given in Section 7 as examples:

• SPHINCS+-128s

• HSS/LMS (ParmSet 25/15)

• XMSS^MT (SHA2_20/2_256)

All three parameterizations involve multiple layers of Merkle trees; their signatures

include multiple sets of one-time signatures and authentication paths. Condensation can

38 A. Fregly et al.

be achieved by treating the one-time signature and authentication path for the top-layer

tree as a reference value and the rest of each signature as a condensed signature. The

SPHINCS+ example has seven layers of trees, so its condensed signature size would be

roughly 86% of its initial (i.e., uncondensed) signature size. The HSS/LMS and

XMSS^MT examples have two; their condensed signature sizes would be roughly 50%

of their uncondensed signature sizes.

The handle returned by GETCONDENSEDSIG would resolve to the top layer of the

signature, which is common to all signatures involving the same leaf of the top-layer

tree. A verifier would only need to obtain a new reference value when a new top-level

leaf is encountered.

In the XMSS^MT example, the top-layer tree has 210 leaf nodes. As a result, the

number of reference values needed is at most 1024 regardless of 𝐾, leading to an upper

bound on the effective signature size of

𝜙(𝐾, 𝐾′) ≤ |ς| +
1024

𝐾
|υ|.

If 𝐾 is more than about 1024 × 2 = 2048 for two-layer XMSS^MT, the effective

signature size will be lower than the initial signature size and thereafter will continue

to decrease, converging to the 50% ratio above. In the HMS/LMS example, the top-

layer tree has 225 leaf nodes, however, so the transition point is much higher. In the

SPHINCS+ example, the top-layer tree has 29 = 512 leaf nodes and the transition point

is around 512 × 7 = 3584.

The actual transition points for all three examples may be lower in practice because

not every top-layer leaf will necessarily be involved in the first 𝐾 signatures, especially

for HSS/LMS and XMSS^MT which exhaust each top-layer leaf node before moving

to the next one. If we want to reduce further, faster, and for non-hash-based signature

schemes, however, we need a different approach such as MTL mode.

E Stateful Reconstitution Operations

Just as the condensation operations are stateful, we could similarly restructure

RECONSTSIG so that it maintains state between operations, e.g., with operations such as

the following:

• Initialization. RECONSTINIT(𝑝𝑘) ⟶ 𝑠𝑡 returns a new reconstitution state 𝑠𝑡 relative

to the public key 𝑝𝑘.

• Condensed signature incorporation. ADDCONDENSEDSIG(𝑠𝑡, ς, χ) ⟶ 〈𝑖, 𝑏〉
incorporates a condensed signature ς associated with a handle χ into the state 𝑠𝑡 and

returns the signature index 𝑖 for this signature and a flag 𝑏 indicating whether a new

reference value is needed.

• Reference value incorporation. ADDREFVAL(𝑠𝑡, χ, υ) ⟶ 𝑠𝑡′ incorporates a reference

value υ associated with a handle χ into the state 𝑠𝑡.

• Reconstituted signature production. GETRECONSTSIG(𝑠𝑡, 𝑖) ⟶ 〈σ′〉 reconstitutes the

𝑖th signature in the state 𝑠𝑡 and returns the reconstituted signature σ′.

Merkle Tree Ladder Mode 39

By returning the flag, ADDCONDENSEDSIG automates the process of determining

whether a suitable reference value is available mentioned in Section 6. If the flag is

TRUE, then the verifier requests a new reference value and incorporates it with

ADDREFVAL. Otherwise, the verifier proceeds directly to GETRECONSTSIG. With the

stateless version of RECONSTSIG, the application would need to do the reference value

compatibility check itself. While this is straightforward in a mode based on the binary

rung strategy (just compare 𝑖 ≤ 𝑁′ ≤ 𝑁), the check may be more complex in general

(e.g., when directly condensing and reconstituting hash-based signatures as proposed

in Appendix D).

F Caching Condensed Signatures

In Section 7, we assumed that each condensed signature ς received by the verifier was

produced relative to a reference value υ𝑁 that was newer than the reference value υ𝑁0

held by the verifier, i.e., 𝑁0 ≤ 𝑁. The assumption was the basis for our use of the

backward compatibility property of the binary rung strategy. It enabled the verifier to

reconstitute a signature provided that the message index 𝑖 satisfied 𝑖 ≤ 𝑁0. As a result,

the verifier only needed to request a new reference value when 𝑖 > 𝑁0.

Our assumption may be realistic when the verifier interacts directly with a signer or

intermediary that performs condensation operations. However, it may not be realistic

when the verifier interacts with a responder that merely holds condensed signatures

obtained from other parties. Indeed, a condensed signature held by such a responder

will be associated with a reference value υ𝑁 that was available when the responder itself

obtained the condensed signature. That reference value may be older than the one held

by the verifier, i.e., we may have 𝑁 < 𝑁0. If so, the backward compatibility property

won’t necessarily apply and special processing may be required, potentially increasing

the effective signature size and diminishing the benefit of MTL mode.

We refer to a responder that holds but does not produce condensed signatures as a

condensed signature caching server. Two examples of such a responder include:

• A recursive DNS server that requests and holds signed resource record sets (RRsets)

on behalf of its clients. The condensed signatures on the resource record sets would

previously have been produced by an authoritative DNS server or its provisioning

system (or by an intermediary that performs condensation operations). A DNS RRset

has a time to live (TTL) value indicating how long the RRset should be held before

requesting a new version from the authoritative name server. The reference value

associated with a condensed signature returned by the recursive DNS server will thus

generally be at most as old as the authoritative name server’s maximum TTL, e.g.,

on the order of a day. The validity period for the signature can be much longer, on

the order of weeks or months. The new signed version of the RRset can thus include

a new condensed version of the same initial signature of the RRset (if the RRset

hasn’t changed).

• A web server that holds certificates for the websites it serves and provides these

certificates to its clients. Here, the condensed signatures on the certificates would

previously have been produced by a certification authority (or, again, by an

40 A. Fregly et al.

intermediary). A web PKI certificate doesn’t have an independent TTL, however;

the certificate is simply held until the end of its validity period. Thus, the reference

value associated with a condensed signature returned by a web server could be as

old as the certificate itself, e.g., on the order of a year.

Given the importance of caching for application performance, it’s worth considering

how to mitigate the effect of caching on effective signature size for clients of these

servers, e.g., for an browser or other application that validates a condensed signature

on a resource record set or certificate. For this purpose we need to look more closely at

how a verifier processes condensed signatures.

F.1 Processing Condensed Signatures with Caching

As a starting point, let’s review a typical approach by which a verifier may process a

condensed signature in MTL mode, taking caching into account.

Expanding on Section 7, we assume that the verifier already holds a set of reference

values υ
𝑁0

(1) , υ
𝑁0

(2), …, where the reference value υ
𝑁0

(𝑏) includes the 𝑁0
(𝑏)

th Merkle tree

ladder and an underlying signature on the ladder. The processing may involve the

following steps. (We omit the public key 𝑝𝑘 and the series identifier 𝑆𝐼𝐷 for

simplicity.)

1. The verifier obtains a condensed signature ς on a message 𝑚𝑖 with index 𝑖, and

a reference value handle χ. The condensed signature ς includes an authentication

path Π𝑖,𝑁 relative to the 𝑁th ladder where 1 ≤ 𝑖 ≤ 𝑁; the reference value handle

χ = 𝑁.

2. If there exists a 𝑏 such that 𝑖 ≤ 𝑁0
(𝑏)

≤ 𝑁, then the verifier reconstitutes a

signature from ς and υ
𝑁0

(𝑏) . Note that there can be more than 𝑏 for which this

condition holds.

3. If there doesn’t exist a 𝑏 such that 𝑖 ≤ 𝑁0
(𝑏)

, then the verifier requests the

reference value υ𝑁 and reconstitutes a signature from ς and υ𝑁. The verifier then

adds the reference value υ𝑁 to its set of reference values.

4. If there exists a 𝑏 such that (a) 𝑁 < 𝑁0
(𝑏)

 and (b) 𝑖, 𝑁 and 𝑁0
(𝑏)

 are compatible

(in the sense defined below), then the verifier reconstitutes a signature from ς

and υ
𝑁0

(𝑏).

5. If there doesn’t exist a 𝑏 such that (a) and (b) in Step 4 hold (the only remaining

possibility), then the verifier performs special processing as discussed below.

Note that if 𝑁0
(𝑏)

≤ 𝑁 for all 𝑏 (as we effectively assumed in Section 7), then only

Steps 1–3 are needed. Steps 4 and 5 occur as a result of the 𝑁 < 𝑁0 case associated

with caching condensed signatures.

We say that 𝑖, 𝑁 and 𝑁′ are compatible in a rung strategy if the authentication path

from the 𝑖th leaf node to its associated rung in the 𝑁th ladder can be verified using the

𝑁′th
 ladder. Appendix C shows that 𝑖, 𝑁 and 𝑁′ are compatible if 𝑖 ≤ 𝑁′ ≤ 𝑁; this is

Merkle Tree Ladder Mode 41

the basis for reconstitution in Step 2 above. We can also show that 𝑖, 𝑁 and 𝑁′ are

compatible if 𝑖 ≤ 𝑁 < 𝑁′ and 𝑁′ < 𝑅 + 2𝑣 where 𝑅 = 2𝑣 is the (unique) integer

between 𝑖 and 𝑁 that is divisible by the largest power of 2; this is the basis for Step 4.

(To see this, consider that 𝑅 is also the unique integer with this property between 𝑖 and

𝑁′ and that [𝑅 − 2𝑣 + 1: 𝑅] is the rung associated with both Π𝑖,𝑁 and Π𝑖,𝑁′ — so the

authentication paths are the same.) Special processing is therefore required when 𝑁′ ≥
𝑅 + 2𝑣.

The effective signature size for conveying a signature following Steps 1–5 includes

the condensed signature size from Step 1, the overhead of the occasional reference

value in Step 3, and the overhead of the occasional special processing in Step 5. We

can mitigate the effect of caching on effective signature size by reducing the impact of

special processing and/or the likelihood that special processing is performed. We may

also be able to mitigate the effect of caching by changing to a different rung strategy.

The next three subsections go into further detail on each of these mitigations.

F.2 Reducing Impact of Special Processing

A straightforward way to implement the special processing in Step 5 is for the verifier

to request the reference value υ𝑁 and then reconstitute a signature from ς and υ𝑁.

However, this approach would involve the overhead of sending a full underlying

signature (and a ladder) every time special processing is performed.

A more efficient approach is for the verifier instead to request the current version ς′
of the condensed signature on 𝑚𝑖, and then reconstitute a signature from ς′ and υ

𝑁0
(𝑏) ,

where υ
𝑁0

(𝑏) is any one of its reference values. The signer or another intermediary could

fulfill requests for the current version of the condensed signature by providing an

externally accessible interface to GETCONDENSEDSIG in the same way that it fulfills

requests for reference values via an interface to GETREFVAL. This approach would

involve only the overhead of sending a condensed signature.

An even more efficient approach is for the verifier to request the difference between

ς and the current version of the condensed signature. We suggest the following

additional condensation scheme operations for this purpose:

• GETEXTVAL𝑝𝑘(τ, 𝑖, χ, 𝑠𝑡) ⟶ 〈β, 𝑠𝑡′〉 produces an extension value β that can be used

to transform a condensed signature associated with the tag τ and the handle χ to a

condensed signature relative to the current reference value. It returns 𝛽 and the

updated state 𝑠𝑡′.

• EXTENDCONDENSEDSIG𝑝𝑘(τ, χ, ς, β) ⟶ ς′ transforms a condensed signature ς

associated with the tag τ and the handle χ into a condensed signature ς′ relative to τ

and the reference value associated with the extension value 𝛽, and returns ς′.

In this approach, the verifier would request the extension value β for τ, 𝑖 and χ, then

call EXTENDCONDENSEDSIG to obtain a condensed signature ς′ relative to the current

reference value. The verifier could then reconstitute a signature from ς′ and any of its

reference values. As above, the signer or another intermediary would provide an

external interface to GETEXTVAL. This approach would involve only the overhead of the

42 A. Fregly et al.

extension value, which in MTL mode would include the missing sibling nodes in the

authentication path. The combined overhead of ς and β would thus be comparable to

the current condensed signature ς′.

F.3 Reducing Likelihood of Special Processing

Intuitively, the reason that special processing may be required is that a condensed

signature received from a caching server is “too short” relative to the verifier’s

reference values — it’s missing one or more sibling nodes. Therefore, a natural way to

reduce the need for special processing is to refresh each condensed signature

periodically to add the missing sibling hash nodes. Following the discussion above,

assume that a condensed signature for index 𝑖 is first added to the cache when 𝑁 is the

current number of leaf nodes, and that the condensed signature’s authentication path is

associated with the rung [𝑅 − 2𝑣 + 1: 𝑅] in the current reference value’s ladder. A new

sibling node will then need to be added whenever the number of leaf nodes reaches a

multiple of a larger power of 2, i.e., at 𝑅 + γ1, 𝑅 + γ2, 𝑅 + γ3, etc., where

γ𝑗 = {
γ0 + 2𝜈𝐵−𝑗+1 if 1 ≤ 𝑗 ≤ 𝐵;

2⌊log2 𝑅⌋+𝑗−𝐵 if 𝑗 > 𝐵,

with γ0 = 0 and where 𝜈1, … , 𝜈𝐵 are the indexes of the ones bits in the binary

representation of 2⌊log2 𝑅⌋+1 − 𝑅 from highest to lowest:

2⌊log2 𝑅⌋+1 − 𝑅 = ∑ 2𝜈𝑗

𝐵

𝑗=1

 .

Because 2𝑣 is the largest power of 2 dividing 𝑅, we have γ1 = 2𝜈𝐵 = 2𝜈 .
The TTL on a cache entry will automatically lead to a refresh. However, a sibling

node may already need to be added before a typical TTL is reached. Consequently, it

may be helpful to set the TTL on the condensed signature in proportion to the time

expected until the next sibling node would be added. Because the rate at which leaf

nodes are added may be hard to predict, a time-based approach for refreshing condensed

signatures may provide inconsistent results as a mitigation for the likelihood of special

processing. An approach based on the number of leaf nodes may be more effective.

We suggest the following tactic: When a responder receives a condensed signature

relative to reference value newer than any others it has encountered, say the 𝑁′th

reference value, or otherwise learns that there are 𝑁′ (or more) leaf nodes, it invalidates

any condensed signature in the cache that is based on an authentication path Π𝑖,𝑁 where

𝑖, 𝑁 and 𝑁′ are incompatible. The responder then either proactively refreshes the

condensed signature or waits until the associated record is requested by a client, and

then refreshes. By updating condensed signatures based on newly encountered

reference values, the responder then stays ahead of any verifier that relies on the same

source of reference values. It may not be necessary to stay this far ahead, e.g., the

verifier may be able to verify Π𝑖,𝑁 with the reference values it holds, but it’s sufficient.

Merkle Tree Ladder Mode 43

(A full treatment would require modeling the evolution of the set of reference values

held by a verifier.)

F.4 Changing Rung Strategy

The extended binary rung strategy makes the following enhancement to the binary rung

strategy: In addition to the 𝐵 rungs in the ladder corresponding to the ones bits of the

binary representation of 𝑁, the ladder also includes ⌊log2 𝑁⌋ + 1 − 𝐵 rungs

corresponding to the zero bits. The span of each such rung is the same as it was the

previous time the binary representation had a one bit in the corresponding position (say,

the 2𝑣 position). The rung is thus “extended” for an additional 2𝑣 leaf nodes compared

to the binary rung strategy (the number of leaf nodes until the position next has a one

bit). (Only rungs corresponding to ones bits are used for constructing authentication

paths, which are the same as in the binary rung strategy.)

The extended binary rung strategy shares the binary rung strategy’s 𝑂(log 𝑁)

authentication path and ladder sizes as well as its general path verification property.

Due to the extension of the rungs, the extended binary rung strategy also has a lower

likelihood of incompatibility in the 𝑖 ≤ 𝑁 < 𝑁′ case. In particular, a new sibling node

will not need to be added until the number of leaf nodes reaches 𝑅 + 2γ1, 𝑅 + 2γ2, 𝑅 +
2γ3, etc. — a doubling of the distance from 𝑅.

The extension can offer a significant advantage in refresh timing over the binary rung

strategy for the following reason. In the binary rung strategy, rungs are removed from

the ladder immediately after they’ve been in use as selected rungs for producing new

authentication paths. Moreover, multiple rungs may be removed at the same time

Consider the example in Fig. 1: When the number of leaf nodes in the tree reaches 16,

all three rungs shown, [1: 8], [9: 12] and [13: 14], will no longer be used for producing

new authentication paths and all three will be removed from the ladder. The addition of

a leaf node may therefore trigger many condensed signature refreshes at the same time.

Indeed, although the average number of condensed signatures that need to be refreshed

for each leaf node added is 𝑂(log 𝑁), some leaf node additions may trigger as many as

𝑁 − 1 refreshes. For instance, all 14 authentication paths leading to the three rungs

shown in the example (as well as the one leading to [15: 15]) will need to be refreshed

when the number of leaf nodes in the tree reaches 16.

In the extended binary rung strategy, in contrast, rungs remain in the ladder for an

extended period during which they are still available for verifying previous

authentication paths. Condensed signature refreshes for authentication paths relative to

a rung can therefore be staggered. Returning to Fig. 1, [1: 8] will no longer be used for

producing new authentication paths when the number of leaf nodes reaches 16, but it

won’t be removed until the number reaches 24. For the eight authentication paths

associated with [1: 8], then, we would have eight leaf node additions in which to make

the refresh. Put another way, although a sibling node doesn’t need to be added until

𝑅 + 2γ𝑗, it can be added as early as 𝑅 + γ𝑗. As a result, we can schedule the refreshes

so that there are 𝑂(log 𝑁) refreshes for each and every new leaf node added, not just

on average, thus distributing the workload more evenly than in the binary rung strategy.

