
Acsesor: A New Framework for Auditable Custodial Secret Storage

and Recovery

Melissa Chase1, Hannah Davis2, Esha Ghosh1, and Kim Laine1

1Microsoft Research
2Seagate∗

{melissac,esha.ghosh,kim.laine}@microsoft.com hannah.e.davis@seagate.com

Abstract

Custodial secret management services provide a con-
venient centralized user experience, portability, and
emergency recovery for users who cannot reliably re-
member or store their own credentials and crypto-
graphic keys. Unfortunately, these benefits are only
available when users compromise the security of their
secrets and entrust them to a third party. This makes
custodial secret management service providers ripe
targets for exploitation, and exposes valuable and
sensitive data to data leaks, insider attacks, and pass-
word cracking, etc. In non-custodial solutions (uti-
lized by some password managers and cryptocurrency
wallets), the users are in charge of a high-entropy se-
cret, such as a cryptographic secret key or a long
passphrase, that controls access to their data. While
these solutions have a stronger security model, the
obvious downside here is the usability: it is very diffi-
cult for people to store cryptographic secrets reliably.

We present Acsesor: a new framework for au-
ditable custodial secret management with decentral-
ized trust. Our framework offers a middle-ground
between a fully custodial and fully non-custodial re-
covery system: it enhances custodial recovery sys-
tems with cryptographically assured access monitor-
ing and a distributed trust assumption. In particular,
the Acsesor framework distributes the recovery pro-
cess across a set of (user-chosen) guardians. How-

∗work done while at Microsoft Research

ever, the user is never required to interact directly
with the guardians during recovery, which allows us
to retain the high usability of centralized custodial
solutions. By allowing the guardians to implement
flexible user-chosen response policies, Acsesor can ad-
dress a broad range of problem scenarios in classical
secret management solutions. Finally, we also instan-
tiate the Acsesor framework with a base protocol built
of standard primitives: standard encryption schemes,
commitment schemes, and privacy-preserving trans-
parency ledgers.

1 Introduction

The problem of secret management is a fundamental
one. When a user wishes to store a secret for later
use, they generally have three options: they can re-
member it themselves, write it down or store it on
a local device, or entrust it to a third-party. Secret
management solutions where the user is responsible
for storing and managing their secret are called non-
custodial (or self-custodial), whereas solutions where
a third-party service manages the secret on the user’s
behalf are called custodial.
Two conflicting feature requirements for any data

management service are colloquially known as the
“hammer” and “toilet” tests: if you want to pre-
vent anyone from accessing your data, can you do
so by intentionally physically destroying your per-
sonal devices? In contrast, if you accidentally de-

1

stroy the same devices, are your digital assets recov-
erable? It is clearly impossible to simultaneously pass
both tests. After all, any data that can be recovered
post-catastrophe by an honest and helpful custodian
can also be recovered by a malicious or compromised
custodian. Worse, when servers are compromised or
their data leaked, users may be unaware that their
credentials have been exposed.
Remembering high-entropy secrets, such as strong

passwords or passphrases, is very challenging for peo-
ple. Writing down such secrets may be an option, but
for high-value secrets may not be reliable or available
enough. Papers and storage devices may go miss-
ing or get stolen, people travelling may be unable
to find any safe place to store their valuable secrets,
and medical conditions or simply advanced age may
make remembering secrets or their locations imprac-
tical. Nevertheless, credentials with immense per-
sonal value [1, 28] and vast amounts of wealth in cryp-
tocurrency wallets [10, 35, 43, 13, 14] are protected by
self-managed passwords, passphrases, and keys, and
often consequently lost. When required to remember
secrets, people mostly resort to using weak passwords
and reusing the same password across multiple ser-
vices. Indeed, in 2019, a survey done by the security
company Avast found that 83% of Americans are us-
ing weak passwords [4]. In the same year, a survey
commissioned by Google found that 52% of Ameri-
cans reuse passwords for multiple accounts, and 13%
reuse the same password for all accounts [22]. A
study in Behavior and Information Technology [40]
identified the convenience-security tradeoff as the pri-
mary motivator of weak password choices.
Many services today offer custodial secret manage-

ment (e.g., password managers, custodial wallets, se-
cure cloud storage). On the upside, these custodial
systems have full control over the user’s account and
can help their users with password reset, an array
of authentication methods, and detecting suspicious
access attempts to the account. On the downside,
the users have to place immense trust on these cus-
todians. Even if such custodians have no malicious
intent, they may be compelled to provide access to
law enforcement under a subpoena, or unwittingly to
hackers in case of a security breach. Thus, custodians
end up becoming valuable targets and single points

of failure for security. For example, recently, in a
security breach in LastPass, an unauthorized party
was able to gain access to some of their customers’
information [29]. For some services, such as cryp-
tocurrency wallets, custodial secret management is
also problematic due to the liability risks and anti-
money laundering regulations that financial servers
need to comply with.

1.1 Acsesor

In this paper, we construct Acsesor: a general frame-
work for auditable custodial secret management with
decentralized trust. Our framework offers a middle-
ground between a fully custodial (centralized) and
fully non-custodial (user-managed/distributed) re-
covery system. It enhances custodial recovery sys-
tems with cryptographically assured access monitor-
ing and a distributed trust assumption. This allows
Acsesor to support the usability, availability and flexi-
bility of a custodial system, with the greater resilience
against attacks that a non-custodial system can pro-
vide.

The Acsesor approach. At a high level, the Acsesor
approach is as follows: the user maintains an account
at a server (or server), which provides a single point
of access. If a user wants to store a secret, they
choose a set of guardians among whom to distribute
trust. For example, users could select a combina-
tion of third-party guardians and their own trusted
devices. The user also chooses a policy stating the
conditions under which the guardians should aid in
secret recovery, for example, a delay period, or a re-
quired second factor. We discuss guardians in Sec-
tion 2.3 and various policies in Section 5. They use
this information to encode their secret, and store the
resulting blob with the server. When the user wants
to recover their secret, they contact the server with
their request; the server authenticates the user and
then passes the request to the appropriate guardians
who aid in the recovery.

To protect against a server that tries to initiate
a recovery attempt without the user’s knowledge or
an attacker that compromises the server’s authenti-
cation, Acsesor requires the server to log all recovery

2

requests. The guardians are responsible for ensuring
that request they are responding to is logged before
responding to it.

Acsesor asks its users (client devices) to periodi-
cally monitor their accounts (using their own devices)
to detect any fraudulent recovery requests. If the user
is logged in on their device, the monitoring is run by
that device automatically; any requests not originat-
ing on that device should result in a notification to
the user. Thus, the user is only alerted when some
suspicious activity is detected, providing a similar in-
terface to the already common “Did you log in from
a new device?” alerts.

This approach is inspired by the recent advances
in logging based transparency technology (e.g., key
transparency, binary transparency, software trans-
parency, credential transparency) in the industry [5,
21, 32, 18, 16], government [45], standardization bod-
ies [25] and academic literature [34, 7, 41, 42, 8,
31, 32]. The philosophy that underpins much of the
growing trust in transparency systems, is that a ser-
vice with transparency guarantees is more account-
able. This enforces better behaviour from the servers,
and increased public trust. Note, also that, it obvi-
ously improves over the current custodial solutions
where in most cases, a compromise is not detected
until the server discloses it.

The ledger. The construction above requires some
way for the guardians and users to ensure that they
are seeing the same view, so that if the guardians
check that a request is logged they can be sure that
that request will still be present later when the user
audits the log. This inherently requires some addi-
tional root of trust; a blockchain, a trusted party,
trusted hardware, etc. In our construction we will
abstract this out as a ledger functionality, which al-
lows the server to record requests and then present
the request history for a given user and convince the
recipient that it is complete. We also summarize two
instantiations based on prior work: one based on a
trusted bulletin board and one based on trusted hard-
ware. This allows us to focus on the aspects of our
protocol that are new and specific to the problem of
secret storage.

Construction overview. The Acsesor framework
consists of a lightweight base protocol with three
phases: registration, secret recovery, and monitor-
ing. The protocol delegates authentication entirely
to the server, so that it may be compatible with any
existing identity systems.

The protocol proceeds roughly as follows, omit-
ting some subtleties which we will discuss in Sec-
tion 3.1. In the registration phase, the user regis-
ters with the Acsesor server. They choose a set of
guardian nodes to share responsibility for securing
the secret. Next, the user chooses a one-time crypto-
graphic key, encrypts their secret under it, and secret-
shares the key; each guardian will have access to one
share. Each share is encrypted under the correspond-
ing guardian’s public key and sent to the server for
storage, along with the encrypted secret. The server
logs the blob it stores, on the ledger. The user verifies
that the blob was correctly logged.

To recover their secrets, the user authenticates
with the server and requests to initiate a recovery, at
which time the server posts a receipt of the request in
the ledger, along with a desired one-time public key
the user has chosen. When the guardians see this re-
quest, they first ensure that it has been logged, then
download the encrypted key pieces from the server,
decrypt them, re-encrypt under the user’s posted
public key, and route them back to the user through
the server. The user downloads the encrypted secret
from the server, as well as the encrypted shares of
their encryption key, reconstructs the key, and de-
crypts the secret. They also check that the posted
public key is correct (i.e., the same as the one they
locally generated). The user will also continuously
monitor their account on the ledger to detect poten-
tial fraudulent recovery attempts done on their be-
half.

Acsesor policies. The most basic application of
Acsesor would have no policy, so the guardians would
immediately reply to any request forwarded to them
by the server, and a corrupt server could easily learn
the user’s secret. Note that this would still be an im-
provement on traditional custodial systems in that it
would provide transparency - the user would be able
to detect when any access had occurred.

3

However, in many cases we would like to pro-
vide stronger guarantees. In those cases it make
sense for the user to set a policy controlling when
the guardians should process a request. What
policy the user should choose depends on secu-
rity/availability/latency needs of the application and
the user’s preferences. For example, to provide
higher security, the policy might require that the
user present a second factor as part of the recovery
request; the guardian would verify this second fac-
tor and only then release the secret. This could be
a strong factor like a hardware token, or something
weaker like a PIN/password that the user would re-
member; in the latter case, we could additionally
have the guardians enforce rate limiting. Alterna-
tively, the policy could require out-of-band confirma-
tion, where the guardian would send a message to
the user through an out of band channel specified in
the policy (e.g. email address or SMS number) and
require that the user respond over the same channel
to confirm the request.
On the other hand, if we want to guarantee that

the secret remains available (assuming the server is
trusted for availability, mode discussion on this in
Section Section 2), the policy might specify that the
guardians wait a certain amount of time from the
time the message was posted on the log to when they
should process the recovery, thus allowing the user
time to respond before their secret is compromised.
Of course, in some cases there isn’t any way for the
user to respond to compromise even given plenty of
warning; in those cases the policy should require a
reasonable second factor on top of the wait time.
The two strategies discussed above could be com-

bined in to one policy as well to allow quick recovery
in most cases, but slower recovery when the user loses
their primary second factor. This flexibility should
allow Acsesor to be tailored for a variety of applica-
tions; we discuss appropriate policies for applications
to password management and cryptocurrency wallets
in Section 6.
In some cases, the user may not want to ever

actually recover their secret, but simply have the
guardians use it for something, such as creating
a digital signature. This is common functionality
with some cryptocurrency wallets, where the wal-

let provider’s servers, and possibly the user’s device,
hold signature key shares that are used in a thresh-
old signature protocol. Acsesor’s guardians can enact
similar threshold signing policies, as long as they do
not require the guardians to interact with each other.
See Section 5 for more discussion.

1.2 Contributions

We summarize our main contributions below.

Acsesor framework. Our first contribution is the
introduction of the new framework (Acsesor) that
combines the usability, availability and flexibility of
a custodial system, with the distributed trust of a
non-custodial system. To the best of our knowledge,
Acsesor is the first system that combines these proper-
ties with strong auditability guarantees. The bene-
fits of this design are the following: Usability: Acsesor
retains the usability of custodial fully centralized sys-
tems, as the user only interacts with the server. The
server can allow authentication via weak secrets like
passwords or pins, and allow account recovery via
SMS or a live customer service call. It can also utilize
state-of-the-art fraud detection mechanisms to deter-
mine when to allow access and when to require addi-
tional authentication.
Flexibility: Because we provide the user flexibility in
choosing the policy, we support a variety of different
applications depending on the security, availability,
and latency requirements of the application and pref-
erences of the user.
Security: We obtain significantly stronger guarantees
than custodial systems, in particular for the case
where the server is corrupt.

Formal definition. Defining the security and pri-
vacy properties of Acsesor is the most involved and
interesting technical aspect of this work. We define
6 security properties (each of them is formalized as a
security game). The security and privacy guarantees
that Acsesor provides, gracefully degrades depending
on the corruption model. In our threat modeling, we
assume that there are always some honest and some
malicious users in the system. The properties are the
following.
User privacy: Malicious users using the system

4

should not be able to learn any information about
the honest users (including, when they make recov-
ery requests).
Confidentiality: Malicious parties should not be able
to get an honest user’s secret.
Policy enforcement: Malicious parties cannot learn
an honest user’s secret unless there is an adversarial
request for which the user’s policy has been satisfied.
Transparency: The adversary cannot learn an honest
user’s secret without logging at least one recovery ac-
cess beyond those corresponding to the honest user’s
recovery requests. In other words, if the adversary
learns the secret, it will be visible to the honest user
when they audit their history.
History consistency: If the user verifies his recovery
history multiple times, the earlier recovery context
lists will always appear as prefixes of the later con-
text lists, even if the user has lost state between the
two checks.
Robustness: The user cannot be convinced that a re-
covery has been successful unless it has correctly pro-
duced the user’s original stored secret.

Acsesor achieves all the security properties listed
above if the server and both guardians are honest.
In the case where all the parties (the server and both
guardians) are potentially malicious, Acsesor achieves
History Consistency and Robustness. This might
seem surprising at first. But Acsesor is able to achieve
these properties even in such a strong corruption set-
ting because it uses the ledger functionality.

The security gradually degrades when some of the
parties are malicious. Acsesor achieves Confidential-
ity if at least the server is honest – one or both of
the guardians can be compromised. If the server
is malicious, but at least one of the guardians is
honest (the other guardian could be compromised),
Acsesor inherently cannot achieve Confidentiality be-
cause the server can make its own recovery requests,
but it still guarantees Policy Enforcement and Trans-
parency. We give a high-level intuition for the secu-
rity games we define to capture each property in Sec-
tion Section 2.2 and defer the formal definitions to
the Appendix.

Protocol. We provide a concrete instantiation of
the Acsesor framework and rigorously prove that it

satisfies the security and privacy definitions discussed
above. Our construction is built from standard cryp-
tographic building blocks: a Public Key Encryption
(PKE) scheme, a symmetric encryption scheme, and
a cryptographic commitment scheme. In addition to
this, our construction uses an ideal Ledger functional-
ity (that we define). We discuss two different instan-
tiations of the Ledger functionality based on existing
works: OPTIKS PAHD [31] and Nimble [2].

Performance. In Table 1 we report performance
numbers of Acsesor, both for an OPTIKS PAHD-
based instantiation, as well as the Nimble-based in-
stantiation, showing that both instatiations are prac-
tical. Generally, the Nimble-based instantiation is
much faster, but both can serve thousands of user
monitoring requests per second. This is necessary,
as monitoring is the most commonly occurring event.
The number of recovery requests these instantiations
support in the hundreds or thousands per second, de-
pending quite strongly on the number of users for the
OPTIKS PAHD-based instantiation. We believe this
to be easily sufficient, as recovery is expected to be
an uncommon event.

Concrete applications and policies. We give
two applications for Acsesor: a password manager
and a crypto wallet. We describe Acsesor-supported
versions for both of these applications in detail and
discuss how that improves security and privacy over
the state-of-the-art for these applications. We also
give concrete instantiations of the policy for these.

2 The Acsesor Framework

We begin by describing the most basic version of
our framework, which we call AcsesorCore. Here we
consider a user who will store their secret using two
guardians, and in this basic scheme, the user can only
store one secret. We will discuss extensions in Sec-
tion 5.

As described above, our protocols will make use
of a ledger functionality; we will briefly describe it
before describing AcsesorCore.A ledger functionality
provides an append-only and tamper-proof dictio-
nary of (label, value) pairs. Only the service provider

5

can add new entries to the dictionary. The server also
gives external parties access permission to lookup cer-
tain labels on the ledger. We discuss the need for a
ledger in Section 1.1, define the functionality more
formally in Section 2.4, and discuss two possible in-
stantiations of it in Section 3.2. Now we are ready to
describe AcsesorCore. The algorithms are described
in detail in Section 2.1.

System Setup. The service provider will run
ServerInit to initialize it’s state and produce pub-
lic parameters (which will include public parame-
ters of an empty ledger). Each guardian will run
GuardianKeyGen to generate it’s own key pair. (See
Section 2.3 for a discussion of how Guardian public
keys could be certified and distributed.)

Storing Secrets. The user will run UserStoreSecret
to generate an encrypted blob encoding their secret
for their choice of guardians, under their choice of
policy. They will upload this blob to the service
provider to be stored under their username. The
service provider will store the blob with the ledger
and send back another blob receipt to the user. The
user will run UserVerifyStorage with receipt to verify
that their secret was indeed stored correctly. While
we assume that they must somehow authenticate to
the service provider, this authentication may not be
cryptographic (e.g., phone authentication), and we
do not model it here.

Recovering Secrets. When the user wants to re-
cover their secret, they will use UserRequestRecovery
to generate a request message msg . They contact the
service provider, authenticate via some potentially
non-cryptographic mechanism, and send this request
message to the service provider.

The service provider will add the recovery request
to the ledger. Then, it will forward each request mes-
sage to the appropriate guardians along with (some
portion of) the user’s stored blob and a handle to find
the request on the ledger.

The guardians will run GuardianResponse to check
that the request was added to the ledger and then
produce a partially decrypted blob.

The responses from all the guardians will be re-
turned to the user who will combine them using

UserCompleteRecovery to reconstruct their secret.
The service provider also returns a handle to the
users so that they can check their recovery request
was added to the ledger and that the response from
the guardians are consistent with the recovery request
message msg and their initial stored blob.

Monitoring the recovery request history. The
user’s device will periodically ask the service provider
to provide a list of all of the access requests that
have been made under their username. Again, we
assume they authenticate with the service provider,
but do not model the authentication here. The ser-
vice provider will provide this list along with a handle
to confirm this list with the ledger. The user will ver-
ify this proof using VerifyRecoveryHistory.

Contexts. So far we have described logging re-
quests, but without specifying what exactly gets
logged. In the rest of our proposal, we denote the in-
formation that gets logged as the ”context” of the re-
quest. This could be simply the time that the request
is made, or it could be some additional information,
like the reason a request was necessary (”new device:
iphone 15”, ”OS reinstall to recover from malware”
etc). The user is responsable for choosing the correct
context when he makes a request, and we will guar-
antee that any adversarial request will be reflected as
an additional context in the user’s recovery history,
which we assume the user will be able to detect. (E.g.
the user sees that there where 2 recovery requests on
a given date, when he only made one, or there is a
”new device: iphone 15” entry when he does not own
such a device.)

For example, if we use time as a context, and we
assume the user runs a recovery history query after
every recovery, then to audit his history later, he need
only 1) check that the contexts list is increasing, 2)
check that there have been no recovery requests since
his latest recovery. This means that instead of having
to remember contexts for all of his recoveries, the user
need only remember the time of his latest recovery.

Availability. Because the service provider provides
a single point of contact for the user, if the service
provider is unavailable (either maliciously or other-
wise), the user will be unable to reconstruct their

6

secret. This may often be worthwhile in exchange for
the usability advantages discussed above.
A more subtle point is that the service provider also

gates access to the ledger: if the service provider does
not respond, then the user will be unable to monitor
the ledger. In this case, the user must consider their
account as potentially compromised. More generally,
systems that do not require a central service provider
to coordinate requests and perform authentication
(such as [37, 26]), provide stronger availability guar-
antees at the cost of weaker security of authentication
or useability.

2.1 The Algorithms

In more detail, our system requires the following
algorithms:
GuardianKeyGen(1k)→ (gpk , gsk): The guardians
will each run this algorithm once to generate a long
term key pair. We assume that the public key comes
along with a certificate that the user can verify, but
that is outside of our model.

ServerInit(1k)→ params: The service provider will
run this before the system starts to initialize its state
stS . params will be available to all clients and will
define the system. params is an implicit input to all
the algorithms below.

UserStoreSecret(s, u, policy , gpk1, gpk2)→ (storedblob, st):
The user will run UserStoreSecret to generate en-
cryption (storedblob) of their secret s to store with
the service provider. u is the user’s username, policy
tells the guardians about any additional conditions
that must be met before decryption, and gpk1, gpk2

are the guardians’ public keys. The policy could, for
example, specify a wait time the guardians must wait
before responding, or an SMS number to contact for
confirmation. These are other policies are discussed
in Section 5.
UserVerifyStorage(st , receipt)→ success/failure: The
service provider sends a receipt to the user; the user
will run UserVerifyStorage(st , receipt) using the state
st output by UserStoreSecret to verify that their
secret was indeed stored correctly.

UserRequestRecovery(u, context)→ (stu,msg): The
user will run this algorithm to prepare a recovery
request message msg . The only information required
is their username u and a context which the user can
later use to recognize this recovery. (See above for
discussion of contexts.) stu is a state that the user
will later use to extract the secret from the response
to their request.

ServerStoreandLog(sts, (u, storedblob))→ (st ′s, receipt):
The service provider runs this algorithm when user
u requests to store secret encoded in storedblob. It
takes as input an initial state sts and produces an
updated state st ′s, and a receipt receipt to be sent
back to the user and which the user will use to verify
that their data has been correctly stored and logged.

ServerProcessRequest(sts, (u,msg))→ (st ′s, servermsg1,
servermsg2, receipt): The service provider runs this
algorithm to update the ledger to include the
additional recovery request (u,msg). The ser-
vice provider’s initial state is sts, and its state
after the update is st ′s. It generates messages
servermsg1, servermsg2 to be sent to guardians 1
and 2 respectively along with the user message
msg . It also generates a receipt receipt which will
be returned to the user along with the guardian
responses; receipt helps the user verify that the
service provider has performed correctly.

GuardianResponse(sk, u,msg , servermsg)→ (policy , decblob)
The guardians run this algorithm to process a user’s
recovery request. It takes as input the guardian’s
secret key sk, the user’s username u, the recovery
request message msg , and the message servermsg
from the server. It produces a policy policy that
must be satisfied before the secret is released, along
with a partially decrypted ciphertext decblob which
will it the guardian will release once it determines
that the policy has been satisfied.

UserCompleteRecovery(stu, decblob1, decblob2, receipt)→ sor⊥:
The user runs this algorithm to complete their recov-
ery and recover the secret. It takes as input the state
the user generated as part of their recovery request,
some auxiliary data produced by the server (to check

7

that the recovery request was correctly logged) and
the partially decrypted ciphertexts produced by the
two guardians. It produces either the secret s, or ⊥
indicating that some error has occurred.

GetUserRecoveryHistory(sts, u)→ (contexts, receipt):
The server runs this algorithm when the user requests
the list of recovery requests for their username. sts
is the server’s state, u is the user’s username. The
output is a list contexts corresponding to recovery
requests against the user’s account and a receipt
that will be returned to the user.

VerifyRecoveryHistory(u, contexts, receipt)→ 0or1:
The user runs this algorithm to verify that they have
received the complete list of recovery requests. u
is the user’s username, contexts is the list of con-
texts that the server claims represents the recovery
requests for the user’s account, and receipt is the
server’s proof that this list is complete.

2.2 Security and Confidentiality
Guarantees

Our system guarantees the following properties. As
discussed in Section 2.4 our instantiation will rely
on a ledger functionality, hence for our construction
the properties below will rely on the trust assump-
tions required for our ledger instantiation as well as
the trust assumptions listed below. We define the
security and privacy properties in our system in the
game based paradigm. Each of the definitions be-
low captures a different security/privacy property of
the Acsesor framework. For each property we give in
brackets the minimum trust assumptions required.
The formal definitions are deferred to Section C.1.

User privacy [honest SP, honest
guardians]. This property aims to capture
the following property: a malicious user using the
system should not be able to learn any information
about the behavior of honest users, if both the
server and guardians are honest. In particular,
while a malicious user may learn that an action has
occurred, they do not learn what action it was nor
who requested it.

To capture this formally, we define a game where
we give the adversary access to an oracle to which
he can submit pairs of users and actions (either new
secret registrations or secret recovery requests on be-
half of users of his choice). Depending on a hidden
bit, the game will either take the first or the second
user/action in every pair. To prevent trivial attacks
the actions are structured so that the adversary can
never produce an invalid sequence of actions. Finally,
we also provide oracles to allow the adversary to in-
teract with the service on behalf of malicious users.
The scheme provides anonymity if the adversary has
negligible advantage in producing the hidden bit.

Confidentiality [honest SP]. This definition cap-
tures the confidentiality Acsesor provides for honest
users’ secrets when either or both of the guardians
are malicious, but the server is honest. The malicious
guardians can collude with the malicious users in the
system as well. Acsesor guarantees that any honest
user’s secret will remain secure. For this definition to
be meaningful, we do assume that the honest server
can effectively authenticate the honest user and de-
tect recovery attempts by adversaries.

In the security game, the adversary has access to
several oracles which let it instruct an honest user to
store a secret or request a recovery. The adversary
also has oracles to store and recover secrets on behalf
of malicious users. The game flips a bit and decides to
either encrypt the honest user’s secret (provided by
the adversary when it invokes the oracle for storing
the honest user’s secret) or encrypt a random string.
The adversary’s goal is to guess the bit. We say that
the adversary wins the game if it can guess the bit
with non-negligible advantage over 1/2.

Policy Enforcement [1 honest guardian]. This
property captures the confidentiality Acsesor can pro-
vide for an honest user’s secret when the server is
malicious and one of the guardians is malicious. The
malicious parties can potentially collude, and they
can collude with malicious users in the system. In
this case, Acsesor guarantees that the adversary can-
not learn an honest user’s secret unless there is an
adversarial request for which the honest guardian de-
termines that the user’s policy has been satisfied.

8

Defining the formal security game to capture this
property is more involved then the confidentiality
property above. As in that previous game, we con-
struct oracles for the adversary which lets it instruct
an honest user to store a secret or request a recovery.
In addition to that, we give the adversary oracles for
observing the honest guardian’s responses (for both
malicious user requests and for honest user’s request,
when the policy is not satisfied). We wish to cap-
ture any policy, including those that cannot easily
be formally modeled, like a wait time, or the out-
of-band confirmation. To do this, we provide two
oracles to capture the honest guardian’ response pro-
cess. First, the adversary gets access to an oracle
where they can submit recovery requests to the hon-
est guardian. In response, the guardian will extract
the policy. Then, the adversary can choose to call a
second oracle through which the guardian will return
its response; this models the case where the guardian
determines that the policy has been satisfied. Of
course, if the adversary can make a malicious request
which satisfies the policy used in the challenge, then
it will be able to trivially learn the secret. Thus,
we constrain the second oracle to return ⊥ when the
request is adversarial and the policy matches that in
the challenge. Note that we no longer need any oracle
for storing secrets for malicious users, as the adver-
sary (which includes the malicious server) could do
that by itself. As in the previous game, the game
decides whether to encrypt the real secret, provided
by the adversary or a random string, depending on a
bit flip. The adversary wins the game if it can guess
the bit with non-negligible advantage over 1/2.

Transparency [1 honest guardian]. This prop-
erty guarantees that the adversary cannot learn an
honest user’s secret without logging at least one ac-
cess beyond those corresponding to the honest user’s
recoveries. This, in turn, implies that if the ad-
versary learns the secret, it will be visible to the
honest user when they audit their recovery history.
Acsesor provides transparency as long as at least one
of the guardians is honest. The server and the other
guardian can be malicious and colluding with mali-
cious users of the system.

Defining the security game for transparency is a bit

involved. To capture the property that the adversary
should not be able to guess the honest user’s secret
(unless the recovery attempt has been logged), we let
the game flip a bit and decide whether to encrypt
the real secret (provided by the adversary through
its oracle calls) or a random string. We also initialize
a game variable caught to 0. We give oracle access to
the adversary which lets it store a secret for an honest
user and instruct that user to request a recovery.

In addition, we give the adversary an oracle to ver-
ify recovery history for the honest user with a list
of recovery contexts. The purpose of this oracle is
to capture the scenario where the adversary’s recov-
ery attempt has been recorded in the list of recovery
contexts. If so, this oracle sets the variable caught to
1.

At the end of the game, the adversary outputs its
guessed bit b′ to indicate its guess about whether the
real secret was stored or a random string. However, if
caught = 1, the adversary will get the secret trivially.
So, in this case, the game outputs a random bit. If
caught = 0, then the adversary should not have access
to the honest user’s secret, so its guess is meaningful.
In this case, the game outputs b′. Transparency is
achieved if the advantage of this game in producing
the bit b is negligible.

History consistency [none]. This property guar-
antees that if the user verifies his recovery history
multiple times, the earlier context lists will always
appear as prefixes of the later context lists. Acsesor
guarantees this property even when the server and
both guardians are malicious. Notice that, this, to-
gether with the Transparency property means that if
the user can recognize the context for his most recent
recovery, when he does a recovery history query he
need only make sure 1) that there is only one such
context in that list and 2) that it appears at the end
of the list. This is nice in that it means the user does
not need to remember context information for all of
his past recoveries, only the most recent one.

The security game for this property is fairly sim-
ple. The adversary is given a single oracle where it
provides a list of contexts, receipts for the target user.
If VerifyRecoveryHistory accepts, this list of contexts
is recorded. If at some point VerifyRecoveryHistory

9

accepts a list that does not contain the previous list
as a prefix, then the adversary wins the game.

Robustness [none]. We already discussed how all
confidentiality is lost when both guardians and the
server are malicious. However, interestingly, we can
still achieve robustness in this case. This property
guarantees that the user cannot be convinced that a
recovery has been successful unless it has correctly
produced the user’s original stored secret.

At a high level, the security game is defined as fol-
lows. We give oracle access to the adversary which
lets it store a secret for an honest user and instruct
that user to verify a recovery. The game stores the
honest user’s stored secret (sent by the adversary
through the oracle call) in a table. If the adversary
is able to make the UserCompleteRecovery algorithm
output a different secret from the one stored in the
game’s table, the adversary wins the game.

2.3 Guardians

The guardians must be trusted not to collude with
the provider or one another. This raises the ques-
tion of who can be trusted to operate guardians. We
propose several possibilities, which may be more or
less suited for specific applications. The guardians
need to store their private keys, and depending on
the kinds of policies they support, possibly a small
amount of information per user (see Section 5 for
more details). The guardians’ operations are limited
to decrypting and re-encrypting key shares and veri-
fying the presence of recovery attempts in the ledger.
Accordingly, guardians are relatively lightweight, and
we imagine they could be run efficiently on even low-
powered devices.

User-managed devices. Letting users run
guardians explicitly places secrets back in their
control. Of course, this also places responsibility for
disaster recovery on the user, and if the guardians
went offline in a burglary, fire, or flood, the secrets
would be destroyed. This could be partially miti-
gated by moving to a threshold design, where there
are n guardians and any t of them are required to
recover the secret.

There are still some advantages over purely user-
managed systems: most of the storage is offloaded
onto the provider, and the threshold architecture
means that secrets could be recoverable even when
one or more devices are offline.

Similarly, the user could consider devices owned
by friends, family members, or administrators; since
Acsesor allows for many guardians, the user could re-
quire a consortium of trusted people, so that no one
person must be granted full trust.

Independent organizations. Users may not trust
a single corporation with their most high-value se-
crets, but they might be more likely to trust a set
of them not to collude. This is especially promis-
ing for enterprise applications, where there is con-
tractual recourse for malicious behavior, and for set-
tings in which organizational, departmental and/or
geographic diversity adds value.

PKI. We assume a public-key infrastructure that
the user can rely on to get authentic and valid public
keys for their chosen guardians. If the guardians are
public entities as in the last option above, this can
be the standard certificate based PKI. In the case of
user devices the user will have to ensure that they
has the appropriate public keys for their devices.

2.4 Ledger

Here we define the Ledger functionality that we al-
luded to before. The functionality accepts the follow-
ing commands. In Section 3.2, we discuss two possi-
ble Ledger instantiations. Here L is a stateful leakage
function used to parameterize the Ledger Function-
ality.

On command Init() from a server Server, the
ledger initializes a key-value store D, and a table
T and records the identity of Server. It returns
params.
On command Store(x, v), if D(x) = ⊥ from
Server, the ledger updates D(x) := v. If D(x) =
v⃗, the ledger updates D(x) := v⃗||v. Delete all
entries in T . It also notifies the adversary that
a successful store command has been performed

10

(but not what the inputs were) and sends the ad-
versary L(Store, x, v).
On command GetLookupHandle(x) from Server,
the ledger generates a handle h, stores
(h, x,D(x)) sends h to the Server.
On command Lookup(h) from P , if (h, x, v⃗) is
stored in T for some x, v⃗, then return x, v⃗. It
also sends L(Lookup, x,D(x)) to P if it is adver-
sarial. Else return ⊥.

3 Our construction

We give an overview of our construction here, and
defer the more detailed description to the Appendix.

3.1 Construction overview

Roughly, our construction proceeds as follows:

System setup. This consists of the guardians gen-
erating their keypair and publishing their public keys
and the server calling ledger Init to get and publish
the public parameters params.

Storing Secrets. We will gradually build up the
protocol.

Attempt 1 : As a first attempt, we can try to di-
rectly create two shares of the client’s secret s, such
that s1 ⊕ s2 = s. Then, the client can encrypt each
share to each guardian along with their username, the
policy under which it should be released and stores
the ciphertexts with the server. But, now, if both
guardians are malicious, they will immediately get
the secret as soon as it gets the ciphertexts from the
server as part of a recovery request. Thus, we will
not be able to achieve confidentiality the secret.

Attempt 2 : To overcome this challenge, we add a
layer of encryption on top of the secret. To store s,
the client first picks a random key sks which it uses to
encrypt the secret s to form cts. Then it creates two
secret shares of sks such that sk1 ⊕ sk2 = sks. Now,
in the case where both guardians are malicious, they
would learn sks if a recovery attempt has been made.
But they still won’t get s as long as they don’t have

the cts stored with the server.

Attempt 3 : There is still another caveat. Even one
malicious guardian can cause the client to decrypt cts
under an incorrect (related) key sk′s = sk′1⊕sk2, where
sk′1 ̸= sk1. This will violate Robustness. One way to
get around this, would be to use a stronger encryp-
tion scheme that is secure under related key attacks.
However, in our scheme, we are already using a ledger
for transparency. We can use another instance of the
same ledger functionality to store cryptographic com-
mitments to the key shares sk1, sk2. The clients can
verify that they got the correct key shares back be-
fore decrypting cts. This eliminates the need for a
stronger encryption scheme. We need hiding crypto-
graphic commitments to ensure that the key shares
are hidden from the server, the ledger and the other
guardian.

Final Attempt : To store s, the client first picks a
random key sks which it uses to encrypt the secret s
to form cts. Then it creates two secret shares of sks
such that sk1 ⊕ sk2 = sks. It also picks randomness
comrand1 and comrand2 to create commitments h1, h2

to the two shares respectively. Then it encrypts one
share to each guardian along with their username,
the policy under which it should be released and
the corresponding commitment randomness, form-
ing ciphertexts ct1, ct2. Finally, it creates blob1 =
(ct1||h1), blob2 = (ct2||h2). The client requests the
server to store storedblob = (blob1||blob2||cts) in the
user’s account.

The server logs the storage under the user’s
account (u||storage) with the ledger using
ServerStoreandLog, gets back a handle from the ledger
and sends it back to the client. The client runs
UserVerifyStorage to check that (blob1||blob2||cts)
was indeed stored in the ledger. This is important,
as otherwise, a malicious server could always store a
fake blob on a user’s account.

Secret Recovery. When the client requests a re-
covery, it chooses a random key pair (pku, sku), and
sends the public key pku and some context string
context (chosen by the user) as the recovery request
and stores (pku, sku, context) in its local state.

The server logs this request (context , pku) with the
ledger under user account u||recovery and gets back

11

handlerecovery. It sends handlerecovery along with blobi
to guardian i, i ∈ {1, 2}.

Each guardian decrypts its share of the random
key and re-encrypts it under the public key pku from
the recovery request. As part of decrypting the share
of the random key, it also gets the user’s username,
the policy under which the response should be re-
leased, and the commitment randomness. It checks
that this policy has been satisfied and that the re-
quest has been properly logged before releasing the
re-encrypted ciphertext.

The server looks up the ledger with u||storage
to get back the handlestorage. It sends back the ci-
phertexts it received from the guardians, along with
handlestorage and handlerecovery to the client.

The client uses handlestorage to get storedblob back
from the ledger, parses it as (ct1||h1, ct2||h2, cts). It
also uses handlerecovery to get back a vector v⃗ of values
from the ledger and checks that (pku, context) ∈ v⃗.
This is important in detecting any potential Meddler-
in-the-Middle (MitM) attack: if a malicious server
tries to use its own public key for decryption, the
client will notice that the logged key does not match
its local key. If the check passes, the client decrypts
the ciphertexts in each of the guardian’s responses
to get back ski, comrandi, i ∈ {1, 2}. It checks that
hi = com(ski, comrandi). If all the checks pass, it
reconstructs sks ← sk1⊕ sk2, and uses sks to decrypt
cts and get s.

Monitoring recovery request history. When
the client wants to monitor the history of recovery
attempts for user u, it pings the server. The server
looks up the ledger for (u||recovery). If it gets back
(handle, v⃗), it sets contexts to be the list of context
fields from the tuples in v⃗ and receipt := handle. It
sends back contexts, receipt to the client. The client
runs VerifyRecoveryHistory to verify the server’s re-
sponse. It looks up the ledger with receipt as the
handle and checks that it gets back u||recovery, v⃗,
where the contexts of the fields in v⃗ match the list
contexts provided as input.

3.2 Instantiating Ledger functional-
ity.

With PAHD from OPTIKS. Privacy-preserving
Authenticated History Dictionary (PAHD) [31] im-
plements the ledger functionality under the assump-
tion that each update is audited by an honest auditor
and there is a trusted bulletin board for posting com-
mitments from each update.

We use the PAHD implementation from [31]. In
this implementation, if Lookup returns (x, v⃗), check-
ing the returned result involves |x⃗| + 1 public key
operations on the verifier side. However, [31] has an
optimization for verifier side caching that reduces this
cost to 1 public key operation. We leverage his op-
timization in our instantiation too. Note that, for
AcsesorCore, we need to invoke Lookup both on the
clients (user devices) and on the guardians. While
caching makes sense for clients, it is undesirable for
the guardians to keep state per user. In order to use
the caching optimization of [31] for guardians, we do
the following. We let the guardians authenticate the
latest state they see per user using aMessage Authen-
tication Code (MAC). They can send this MAC tag
and state to the server that can subsequently send it
back to the guardians as part of a new logging proof.
A malicious server could send a stale state and signa-
ture, but in the worst case this will make the guardian
redo work. In other words, this does not affect the
security or confidentiality properties of AcsesorCore.
Since, we use the instantiation of [31], we also in-

herit its leakage. In particular, the leakages are the
following, where L is a stateful function:
L(Store, x, v): The first time L(Store, ·, ·) is invoked,
the function initializes a counter ctr = 1 and stores
it in its state. On each subsequent call, the counter
value in incremented by 1.

This function outputs x if this was the first update
on x since GetLookupHandle(x) was called. It also
stores (x, v, ctr) in its state.

L(GetLookupHandle, x,D(x)): Say D(x) = v⃗ and c⃗ is
the vector of the corresponding counter values (from
the state). This function outputs c⃗.

With Nimble. Nimble [2] realizes the ledger

12

functionality with Trusted Execution Environment
(TEE). For Nimble, if Lookup returns (x, v⃗), checking
the returned result involves |x⃗| hashes and a constant
number of public key operations on the verifier side
(3, in the Nimble experiments). For this implemen-
tation of the ledger functionality both L(Store, x, v)
and L(GetLookupHandle, x,D(x)) output ⊥.

4 Performance

Here we discuss the performance of Acsesor from the
point of view of the different parties. We consider
two ledger implementations: the OPTIKS PAHD [31]
based on the oZKS library1, and the a ledger built
from Nimble [2] based on the similarly named li-
brary.2

Users’ workload. To store a secret, a user needs
two public key encryptions, a symmetric key encryp-
tion, and compute two commitments (implemented
using hashing with nonce as in [7]). The total cost
of this rarely executed operation is measured in mi-
croseconds on a commodity machine. The symmet-
ric key operations are orders of magnitude cheaper
than the public key encryption. As an example, we
timed the the sealed box encryption in libsodium,
and found it to take only about 143µs on commodity
hardware.

After storing a secret, the user needs to check that
it was added correctly in the ledger by performing
a ledger lookup. For both instantiations of a ledger
(Section 3.2), the lookup validation is limited by a few
public key operations. For example, with OPTIKS
PAHD lookup verification takes just a bit over 100µs.
With Nimble, the user needs to verify three much
slower ECDSA signatures, but still we measured this
to take only 4.9ms. These number are also listed in
Table 1.

The cost of a recovery request involves public key
generation, two public key decryptions, one symmet-
ric key decryption, two hashes (for verifying the com-
mitments), and one lookup to verify that the request
was properly logged. Again, this is overall very cheap,

1https://GitHub.com/Microsoft/oZKS
2https://GitHub.com/Microsoft/Nimble

with the public key decryptions being the dominat-
ing cost, but still only measured in microseconds.
The user also needs to check the ledger to verify that
the recovery request was logged correctly; again, this
takes a few milliseconds at most.

The main cost for the user is in monitoring its re-
covery requests periodically, so it needs to repeatedly
lookup its state from the ledger. However, by keeping
track of its history, it just needs to check the latest
state of its state in the ledger to see that there are no
new or unexpected requests. The cost of this is again
measured in milliseconds.

Guardians’ workload. For a recovery request, the
guardians need to do one public key decryption, one
public key encryption, and at most four MAC op-
erations (including the optimizations mentioned in
Section 3.2 and Section 5). We measured the sealed
box decryption in libsodium, and found it to take
about 101µs on commodity hardware. Thus, both
public key operations take between 100–200µs. The
guardians do need to check the ledger as well, which
may take up to milliseconds depending on the im-
plementation, as was explained above. Nevertheless,
these hardly constitute bottlenecks for the guardians
even if they are serving a vast number of users.

Server’s workload. By far the most interesting
case is the server’s workload, where running the
ledger is by far dominating the complexity. Luck-
ily, both [31] and [2] provide performance numbers
for full-system benchmarks that include a database-
based storage, which in a real-world implementation
is crucial for resilience.

The recovery request and lookup throughput num-
bers for both types of ledgers are summarized in Ta-
ble 1.

A few clarifying comments are in order. The state
in OPTIKS PAHD-based ledger proceeds in epochs.
This means that updates are made in batches of a
customizable size. For example, the numbers in Ta-
ble 1 use a batch size of 1024, resulting in short epoch
times with an interquartile range of 1–5 seconds ([31,
Figure 3a]). In contrast, Nimble proceeds in real time
and can process a single operation at a time.

It is important to use the caching technique men-

13

https://GitHub.com/Microsoft/oZKS
https://GitHub.com/Microsoft/Nimble

Ledger
Recovery
requests
(req/s)

Lookups
(req/s)

Lookup
verifica-
tionOPTIKS PAHD 1,050–250 4,400–2,250 103–105 µs

Nimble 2,600 50,000 4.9 ms

Table 1: Performance results from OPTIKS [31] and
Nimble [2] adapted for use in Acsesor to implement
the ledger functionality. The results include the over-
head of database-backed storage for resilience. For
OPTIKS PAHD we show the ranges when the total
number of recovery requests (entries in the ledger)
grows from 1M to 64M. The Nimble lookup time
comes from our measurement of 3 ECDSA verifi-
cations (from Crypto++) on a commodity machine,
which is what Nimble requires.

tioned in Section 3.2. Otherwise OPTIKS PAHD
will require to perform a full “history query”, whose
cost (computation and communication) scales with
the number of recovery request in the user’s state.
The numbers in Table 1 assume the use of this opti-
mization.

Another important note is that OPTIKS PAHD
uses an internal caching technique to avoid expensive
public key operations. For the Acsesor ledger to be
able to utilize this, it needs to be able to store a pre-
computed hash for each active user in memory, which
seems realistic even with a large number of users. The
numbers in Table 1 assume this to be the case.

Nimble can support both Intel SGX and AMD
SEV-SNP based enclaves. In [2] the authors find the
SGX-based implementation to be significantly slower.
Indeed, their benchmarks with database backed stor-
age are done only with SEV-SNP enclaves, and these
are the numbers we list in Table 1.

5 Policies and Extensions

Here we describe some policies we believe may be
most practical to address real-world problems. We
also describe technical extensions of the Acsesor
system, such as extending to use more guardians,
and using an extra layer of authentication with the
guardians.

Adding more guardians and threshold-
ing. While AcsesorCore uses two guardians for
simplicity, the framework can be easily extended to
support n > 2 guardians. We can extend all the
security and confidentiality guarantees, as long as
some fraction t of the guardians are honest (our
basic construction can be viewed as n = t = 2).
In the construction, we would use t-out-of-n secret
sharing scheme to split the key skS into n shares.
This can be beneficial, if availability or security of
the guardians is questionable. By using threshold
secret sharing, the secret key can be recovered, even
if only a fraction of the guardians are available.

Threshold signatures and decryption. In
AcsesorCore, the user recovers her secret using
UserCompleteRecovery. Usually, the recovered secret
will be used in some other cryptographic scheme,
such as signing or decryption. The Acsesor frame-
work can be extended such that, each guardian per-
forms a partial signature/decryption using their key
share in a privacy-preserving way (using a threshold
signing/decryption scheme). Then, the pieces can be
put together to construct the signature/decrypt us-
ing UserCompleteRecovery. Note that this will not re-
quire additional communication between any parties
if the threshold signing/decryption scheme is non-
interactive (e,g., threshold BLS signatures [6]). Fi-
nally, to ensure security in the case where the server
is honest but both guardians are compromised (the
signature equivalent of the Confidentiality property
defined in Section 2.2), we could have the server op-
erate an additional guardian node itself, and set the
threshold structure to require that that node partic-
ipate in every signature generation.

Storing many secrets. For simplicity, our
AcsesorCore framework lets a user store one secret per
username. The framework can be extended to sup-
port multiple stored secrets per user (under the same
username) by letting the user attach a storagecon-
text string to its storedblob and encrypt it in ct i for
guardian i, along with the respective keyshare, user-
name and policy and the commitment randomness.
The storagecontext string could contain information
about context in which the secret is stored. For ex-

14

ample, the storagecontext string could be name of a
website or wallet app. While a completely different
application, such storagecontext strings were used in
a similar fashion in logging in [8].

Out-of-band confirmation. An important policy
could be adding a second layer of out-of-band con-
firmation for recovery, without changing the authen-
tication flow of AcsesorCore. This could be imple-
mented as follows. The user could encrypt their
phone number or email id in the ciphertext ct i for
guardian i when generating storedblob. The policy
could say that the guardian is supposed to send a
notification to the encoded phone number or email
id and should proceed with the recovery process only
if a confirmation is received through the out-of-band
channel (SMS/email).

Slow and fast recovery. Another important pol-
icy is a user-configurable wait time that the guardians
are expected to wait before releasing their share of the
secret.

To enable emergency recovery, one could set a long
wait time, such as a week or a month, before the se-
cret is released. If the slow recovery is maliciously ini-
tiated by someone who has compromised the server’s
system, or by the server itself, the long wait time will
provide the real user enough time to notice that a
recovery process has been initiated, or at least learn
that the secrets are about to be compromised if a
malicious server blocks the user’s legitimate access
attempts. In this case, the user can secure their ac-
count with the server and potentially change their
secrets (passwords, keys) before they get revealed to
the attacker.

Generally, a long wait time policy can allow a low-
entropy secret (password to the user’s account with
the server) to be the sole secret protecting stronger
secrets. Fast recovery with a short (or no) wait time
can make sense when access to the secrets is needed
immediately, and the main concern is to be able to
reliably monitor recovery requests.

Minimizing storage of guardians for slow re-
covery As described above, if the policy requires a
delayed release, naively, the guardian would have to
hold on to the share until the time period has elapsed

and release it only after that. This would increase the
storage at the guardian. Instead, the guardians could
create a MAC tag on the time they expect to release
its share and send it back to the server along with
the delay time. Once the delay period has elapsed,
the server can send the MAC tag and payload back:
the guardians can check the time and then prepare
decblob.

Second factor. To provide stronger protection
against person-in-the-middle attacks, especially with
fast recovery policies, the Acsesor framework can be
extended to support a second layer of authentication
between the user and the guardians.

Authentication between users and guardians can
be done through a few low-overhead mechanisms: a
password or PIN, a signature-based hardware token,
or a one-time email or SMS-based code. These op-
tions are in addition to any (possibly multi-factor)
authentication performed by the server. For exam-
ple, if the user intends to use a PIN as a second
factor with a particular guardian, they can include
this PIN when they create ct i for that guardian, and
similarly include an encryption of the PIN as part of
their request.

The user would need to set up an independent PIN
with every guardian to avoid a malicious guardian
leaking the PIN. Note this is very different from the
out-of-band policy described above. This second fac-
tor authentication does not require any out-of-band
channel, but does require the user to set up a dif-
ferent PIN per guardian and provide them for each
recovery request.

Finally, the user could choose a policy instructing
the guardian to rate-limit requests (and hence PIN
guesses); as the guardian can see the user’s entire
request history, this is straightforward to enforce.

6 Secret Management with
Acsesor

In this section we describe how to cast many common
secret management scenarios into the Acsesor frame-
work.

15

6.1 Password Management

Existing solutions. Popular web browsers includ-
ing Chrome [20], Firefox [17], Safari [3], and Edge [44]
offer built-in password managers that allow users
to save credentials and back them up in the web
browser’s cloud service. Most of these are custodial
by default, with some exceptions (e.g., [19]). These
custodial managers synchronize the users’ secrets on
all her devices and can use any standard methods for
securing the account, such as 2FA.

Some other password managers, such as 1Pass-
word [1] and LastPass [28], are non-custodial. 1Pass-
word uses a combination of a user-stored crypto-
graphic secret key, as well as a master password, to
protect access to the secrets. LastPass derives an en-
cryption key from a user’s master password and uses
it to encrypt their secrets. Neither of these can re-
store a user’s access to their secrets in case they forget
their password or lose access to their secret key.

Acsesor-based password management. One sim-
ple approach would be to have Acsesor store a cryp-
tographic secret, and then use that to derive individ-
ual passwords locally on the user’s device. Alterna-
tively, one could use Acsesor to store each individual
password - this would give more fine grained access
control and auditability, but the resulting monitoring
might be more complex for the average user. There
are many options for which policies to choose, which
allow for different tradeoffs in security and availabil-
ity.

At one extreme, we could replicate the availability
of custodial password managers with a policy that
requires no second factors or delay. The user’s ac-
count with the server would allow them to log in
from different devices and the server can continue
using standard methods to secure the account, such
as 2FA. Configured with a such a recovery policy it
would allow immediate synchronization of the secrets
to a new device, but unlike existing solutions, the
user would have a cryptographically secured log of
this happening. Thus, no-one – not even the server
itself – would be able to access the user’s secrets with-
out being detected. Thus, this would still provide a
stronger guarantee than in the existing custodial so-

lutions. In 2022 LastPass became a victim of a data
breach [29], where some of their customers’ data was
stolen. With the Acsesor based solution it would be
immediately clear exactly what was stolen.

At the other extreme, to achieve similar security
to non-custodial schemes we could allow short time
recovery with a password/PIN as a second factor.
If the second factor involves a cryptographic secret
key, then the security guarantee would be similar to
that of 1Password, but with the additional benefit
of transparency for access attempts to the password
manager’s cloud storage. In fact, we can do better
with Acsesor. The reason the non-custodial factor
has to be of cryptographic strength, instead of a pass-
word or PIN, is to mitigate the fact that otherwise
the password manager’s servers would create a single
point of failure and, if compromised, could expose all
users’ secrets to brute force attacks. With Acsesor the
second factor can be weaker, because the guardians
can limit guessing attacks through rate limiting. The
server holds only data encrypted with high-entropy
secrets and every guess at the user’s second factor
requires a separate entry in the recovery log, as well
as interaction with the guardians.

We believe one approach that might provide a good
balance would be to allow short time recovery with
a password/PIN second factor, and then to allow
longer time recovery with no second factor. The
short term recovery would have similar security to
non-custodial schemes as discussed above, while the
long term recovery would provide availability even if
the user loses/forgets their password/PIN. This does
leave open the possibility that an adversarial custo-
dian might introduce a fake long term recovery re-
quest in an attempt to regain the secret. But in this
case, this request would be detected immediately by
the user, and they would have time to react. In the
case of passwords it is often possible for a user to
recover from a breach with enough warning (e.g. by
moving to another password manager and changing
all of their individual passwords using each individ-
ual account’s forgotten-password-reset mechanism).
If this is not the case, then we could instead secure
the long term recovery with an out-of-band confirma-
tion as discussed in the wallet setting below.

16

6.2 Cryptocurrency Wallets

Existing solutions One of the primary non-
custodial secret storage scenarios today is cryptocur-
rency wallets. These wallets require that the user
somehow store a cryptographic secret, whether that
is on a hardware device, or on paper, etc. (For ex-
ample the BIP-39 protocol used by the [14, 13, 35,
10] wallets requires that users remember/record a 12-
word recovery passphrase.) This secret can then be
used to derive or encrypt signing keys for each of
their crypto coins. This has major availability issues,
and many users have permanently lost access to their
funds as a result.

An Acsesor-based wallet. A natural approach
would be to use Acsesor to store the cryptographic
secret (e.g. the BIP-39 passphrase) and then gen-
erate all of the individual coin private keys locally
on the user’s device. Again there is the alternative
to store the individual coin private keys separately
in Acsesor for more fine grained access control and
auditing at the cost of more complex monitoring.

To achieve similar security/availability to existing
schemes, we could use a policy which allows short
term recovery with knowledge of a high entropy secret
(e.g. a 12 word passphrase as in BIP-39). This
would be strictly stronger than existing schemes in
that it would guarantee that any accesses are logged,
and the user would learn immediately if their private
keys had been compromised.

However, because of the high cost of losing access
to one’s cryptocurrency secrets, we might also want
a policy that allows for long term recovery. At the
same time, allowing an adversarial server to access
the secret is very dangerous; the server in that case
could steal the funds, and if the user is not storing
their secret locally (e.g. in the case where they are
trying to perform a recovery), they would have no
recourse. This means we need a fairly strong 2nd
factor for the long term recovery as well. At the same
time, this factor needs to be something that the user
is unlikely to lose permanently.

Our proposal is for a policy which allows for short
term recovery with a cryptographic secret/high en-
tropy passphrase, and a long delay policy under

which the guardian will first perform an out-of-band
confirmation, and log the success along with the re-
quest, then wait the prescribed time, and then per-
form a second out-of-band confirmation before reveal-
ing the secret. Access to an out-of-band confirmation
method like email or SMS seems like something a user
is much less likely to lose permanently than a secret
stored in hardware or in human memory. On the
other hand, it maybe vulnerable to compromise (e.g.
if the attacker can hijack the user’s email account or
phone number). This is why we include 2 rounds of
out-of-band confirmation in our proposed policy - if
the user sees that there has been a successful first out-
of-band confirmation for their account, then they will
have time to reclaim and strengthen security on their
out-of-band confirmation method before the second
confirmation occurs.

Finally, to match the functionality of threshold
cryptography based wallets [46, 15, 27] (see Sec-
tion 7 for more discussion on this), the user could
specify a policy where the guardians do not actu-
ally return the key fragments, but instead use them
to (threshold-)sign a transaction provided as a part
of the recovery request as described in Section 5.
This works particularly well with the Ethereum
blockchain, as its BLS threshold signatures requires
no interaction between the guardians.

7 Related Work

Several works have attempted to reduce the burden
of trust on custodians using specialized hardware and
cryptographic mechanism (such as threshold cryptog-
raphy). Acsesor also aims to reduce the trust on
custodians, but without compromising on usability.
Acsesor has two main usability goals – not changing
the authentication flow of traditional custodial sys-
tems (so that the user still needs to interact with a
single entity: the server), and not assuming the user
can store long term secrets. Acsesor also provides log-
ging of recovery requests. This is particularly impor-
tant since a malicious server can act on behalf of the
user. We focus on the most relevant works from the
literature and do not cover more general topics such
as threshold cryptographic techniques for authenti-

17

cation since they typically do not provide logging.
Recently [37] proposed a cloud based secret re-

covery system where the goal is to let the users re-
trieve their secret from the cloud even when they lose
all their authentication credentials. Their system is
implemented using a public blockchain and TEEs.
Their idea is the following: the user has to remember
a public facing id. They post this id along with public
key pku and the servers they will use for recovery, in
a blockchain transaction. Each recovery request has
to be posted on the blockchain and a certain amount
of time will have to elapse before the servers release
the secret. The key insight here is that, if the legit-
imate user did not lose their device, they will still
have the sku corresponding to the pku. If they notice
a recovery request on the blockchain that they did
not make, and still has access to sku, they can use it
to sign and post a signature to deny the request and
stop the release of the secret. To keep the secret pri-
vate from the cloud server, the authors propose using
TEEs hosted by the cloud.
While the functionality has some similarity with

Acsesor, the realization of it using blockchain is much
more expensive. The user’s monitoring cost will be
significantly more compared to Acsesor, since they
have to keep scanning blockchain transactions to per-
form monitoring (the authors do not report any per-
formance numbers). As presented, this scheme will
not be able to achieve the anonymity property of
Acsesor since all the transactions are posted on the
blockchain. Finally, trusting TEE is an additional
assumption: there could be vulnerabilities in TEE
itself which could compromise the confidentiality of
the user’s secret completely, which the authors also
acknowledge. On the other hand, their system allows
users to deny a recovery request in progress, which
our system currently does not. It would be interest-
ing future work to see whether their approach can be
integrated into our system.
LARCH [12] is another recent work that pro-

vides auditability in an authentication framework by
adding a third party logging service. While this sys-
tem is not specifically designed to store and recover
secrets, the goal of logging authentication attempts
is similar to the goal of Acsesor of logging all recov-
ery attempts to detect fraudulent requests. The key

idea in [12] is to split the user’s authentication cre-
dential between the client and the log service. Thus,
each authentication attempt has to involve both the
client and the log service, which enforces that each
attempt is logged. But the entries are encrypted un-
der the user’s key (which the users need to store), so
the log service cannot decrypt it. This is where the
system significantly deviates from Acsesor’s usability
goal of not requiring the user to store any long term
cryptographic secret.

CALYPSO [26] presents an entirely decentral-
ized secret document management system, based on
blockchains and skipchains [36]. The CALYPSO sys-
tem stores secrets among a committee of trustees
(similar to guardians in Acsesor) and provides flex-
ible access control and a private-but-auditable log on
the blockchain. However, CALYPSO does not sat-
isfy either of our main two usability requirements:
CALYPSO users must store several long term pub-
lic/secret key pairs, and they must directly inter-
act with the trustees. Furthermore, since all opera-
tions go through the blockchain it is inherently more
heavyweight.

Next, we discuss cryptocurrency wallets. Fire-
blocks [15] uses threshold signatures within an In-
tel SGX enclave. ZenGo [46] uses distributed key gen-
eration to create and store shares on ZenGo servers
and the user’s device. They utilize biometrics and
user’s third-party cloud storage for emergency recov-
ery. ZeroWallet [27] threshold-shares the secret into
three parts. One part is derived from the user’s pass-
word. Another is cached by the user’s device, and a
third one can be generated from another user pass-
word and a server-managed secret in an interactive
protocol (using OPRF). This approach is practical
for everyday use of a wallet without having to cache
the secret itself: the first password would be required
to reconstruct and use the secret. By instead using
more servers, the ZeroWallet system can allow recov-
ery even if the user loses access to their share and
some of their passwords. However, due to the lack of
a single central server, the user must remember the
identities of their chosen recovery server – or possibly
multiple servers – along with passwords for each of
these. This is a major difference with Acsesor. More-
over, none of these wallets [15, 46, 27] provide any

18

auditability guarantee. unlike Acsesor.
CanDID [33] is a decentralized identity system

which addresses the problem of secret recovery. The
system is significantly different from Acsesor as Can-
DID is built on a decentralized network of nodes in-
stead of a centralized server. The CanDID commit-
tee stores secret-shares of the user’s secret and when
presented with sufficient authentication evidence, the
committee can release the shares to the user. Can-
DID also does not have logging support.
SafetyPin [11] uses Hardware Security Modules

(HSMs) to create a system for mobile device back-
ups. Access to the backups are protected with weak
secrets (PINs) and the HSMs protect the PIN against
guessing attacks. SafetyPin decentralizes the trust
assumption by relying on a large network of HSMs;
their security model provides data confidentiality as
long as a large enough fraction of the HSMs are un-
corrupted. They also add some auditability guaran-
tees. A downside of this approach is the reliance of
special hardware that can be expensive and whose
operation is not transparent.
Tutamen [39] builds a secret-storage system with

fine-grained access control on untrusted hardware by
using a decentralized architecture of access control
servers and storage servers that use threshold tokens
and secret-sharing to distribute trust. Clients in the
Tutamen system hold a long-lived private key and
certificate that they use for authentication. This is a
major difference from Acsesor where the users are not
required to maintain any cryptographic state. Tuta-
men proposes as future work a publicly auditable log
of attempts resembling certificate transparency [30].
The PAD Protocol [38] (Privacy-Preserving Ac-

countable Decryption) presents an access delegation
system based on a decentralized set of trustee and
validator nodes. It uses a transparent log to record
access attempts. While delegation is out of scope for
Acsesor, this system is similar to Acsesor in its goal
of logging access attempts. However, unlike Acsesor,
this system also requires users to store cryptographic
keys. Finally, we note that transparency logs them-
selves have a long history, with numerous construc-
tions and use-cases including key transparency [34, 7,
5, 21, 24, 42, 41, 9, 31], binary transparency [18, 16,
23], credential transparency [8] etc.

8 Conclusion

We have introduced a new framework (Acsesor) for
secret management, where a centralized server takes
the role of a custodian. Instead of having to trust the
server, the users will be given cryptographic proofs
of its correct behavior. To eliminate single points of
trust, Acsesor distributes the recovery process across
a set of guardians the user can choose. But, the
user is never required to interact directly with the
guardians, which allows us to retain the high usabil-
ity of centralized custodial solutions. As long as a
large enough fraction of the guardians behave cor-
rectly, the user can be guaranteed to learn whether
their secrets are being accessed by a malicious party,
including the server. By allowing the guardians to
implement flexible response policies, Acsesor can ad-
dress a broad range of problem scenarios in classical
secret management solutions: we have already out-
lined some promising applications.

References

[1] 1Password. [n. d.] https://1password.com. Accessed on
10/15/2023. ().

[2] Sebastian Angel, Aditya Basu, Weidong Cui, Trent
Jaeger, Stella Lau, Srinath Setty, and Sudheesh Singana-
malla. 2023. Nimble: rollback protection for confidential
cloud services. In 17th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 23),
193–208.

[3] Apple. 2022. ICloud Data Security Overview. https :

//support.apple.com/en- us/HT202303. Accessed on
10/15/2023. (2022).

[4] Avast. [n. d.] 83% of Americans are Using Weak Pass-
words. https://press.avast.com/83-of-americans-ar
e-using-weak-passwords. Accessed on 10/15/2023. ().

[5] Josh Blum et al. 2023. E2e encryption for zoom meet-
ings. White Paper – Github Repository zoom/zoom-e2e-
whitepaper, Version 4.2, https://github.com/zoom/zo
om-e2e-whitepaper/tree/v4.2. (2023).

[6] Dan Boneh, Manu Drijvers, and Gregory Neven. 2018.
Compact multi-signatures for smaller blockchains. In In-
ternational Conference on the Theory and Application
of Cryptology and Information Security. Springer, 435–
464.

19

https://1password.com
https://support.apple.com/en-us/HT202303
https://support.apple.com/en-us/HT202303
https://press.avast.com/83-of-americans-are-using-weak-passwords
https://press.avast.com/83-of-americans-are-using-weak-passwords
https://github.com/zoom/zoom-e2e-whitepaper/tree/v4.2
https://github.com/zoom/zoom-e2e-whitepaper/tree/v4.2

[7] Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and
Harjasleen Malvai. 2019. Seemless: secure end-to-end en-
crypted messaging with less trust. In Proceedings of the
2019 ACM SIGSAC conference on computer and com-
munications security, 1639–1656.

[8] Melissa Chase, Georg Fuchsbauer, Esha Ghosh, and An-
toine Plouviez. 2022. Credential transparency system.
In Security and Cryptography for Networks. Clemente
Galdi and Stanislaw Jarecki, (Eds.) Springer Inter-
national Publishing, Cham, 313–335. isbn: 978-3-031-
14791-3.

[9] Brian Chen, Yevgeniy Dodis, Esha Ghosh, Eli Goldin,
Balachandar Kesavan, Antonio Marcedone, and Merry
Ember Mou. 2022. Rotatable zero knowledge sets: post
compromise secure auditable dictionaries with applica-
tion to key transparency. In Advances in Cryptology -
ASIACRYPT 2022. Full version: https://eprint.ia
cr.org/2022/1264. Springer International Publishing,
Cham.

[10] Coinbase. [n. d.] Coinbase Wallet. https://www.coinba
se.com/wallet. Accessed on 10/15/2023. ().

[11] Emma Dauterman, Henry Corrigan-Gibbs, and David
Mazières. 2020. {Safetypin}: encrypted backups with
{human-memorable} secrets. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 20), 1121–1138.

[12] Emma Dauterman, Danny Lin, Henry Corrigan-Gibbs,
and David Mazières. 2023. Accountable authentication
with privacy protection: The Larch system for universal
login. In 17th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 23). USENIX
Association, Boston, MA, (July 2023), 81–98. isbn: 978-
1-939133-34-2. https://www.usenix.org/conference/o
sdi23/presentation/dauterman.

[13] Electrum. [n. d.] https://electrum.org/. Accessed on
10/15/2023. ().

[14] Exodus. [n. d.] https://www.exodus.com/. Accessed on
10/15/2023. ().

[15] Fireblocks. [n. d.] https://fireblocks.com/. Accessed
on 10/15/2023. ().

[16] Mozilla Foundation. [n. d.] Security/binary trans-
parency. https://wiki.mozilla.org/Security/Bina
ry_Transparency. Accessed on 10/15/2023. ().

[17] Mozilla Foundation. 2022. Where are my logins stored?
https://support.mozilla.org/en-US/kb/where-are-m

y-logins-stored. Accessed on 10/15/2023. (2022).

[18] Google. [n. d.] Binary transparency. https://develope
rs.google.com/android/binary_transparency/overvi

ew. Accessed on 10/15/2023. ().

[19] Google. 2022. Get your bookmarks, passwords & more
on all your devices. https://support.google.com/chro
me/answer/165139. Accessed on 10/15/2023. (2022).

[20] Google. 2022. How Chrome protects your passwords. ht
tps://support.google.com/chrome/answer/10311524.
Accessed on 10/15/2023. (2022).

[21] Google. [n. d.] Key transparency overview. https://gi
thub.com/google/keytransparency/blob/master/docs

/overview.md. Accessed on 10/15/2023. ().

[22] Google. [n. d.] Online Security Survey: Google / Harris
Poll. https://services.google.com/fh/files/blo
gs/google_security_infographic.pdf. Accessed on
10/15/2023. ().

[23] Richard Hansen and Vicente Silveira. 2022. Code ver-
ify: an open source browser extension for verifying code
authenticity on the web. https://engineering.fb.co
m/2022/03/10/security/code- verify/. Accessed on
10/15/2023. (2022).

[24] Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Se-
ung Jin Yang, and Raluca A. Popa. 2021. Merkle2: a
low-latency transparency log system. In 285–303.

[25] IETF. [n. d.] Supply chain integrity, transparency, and
trust (scitt). https://datatracker.ietf.org/wg/scitt
/about/. Accessed on 10/15/2023. ().

[26] Eleftherios Kokoris Kogias, Enis Ceyhun Alp, Linus
Gasser, Philipp Svetolik Jovanovic, Ewa Syta, and
Bryan Alexander Ford. 2021. Calypso: private data man-
agement for decentralized ledgers. Proceedings of the
VLDB Endowment, 14, CONF, 586–599.

[27] Aman Ladia. [n. d.] http://amanladia.com/wp/zerowa
llet/. ().

[28] LastPass. [n. d.] https://lastpass.com. Accessed on
11/16/2022. ().

[29] LastPass. [n. d.] Lastpass security incident. https://bl
og.lastpass.com/2022/11/notice-of-recent-securit

y-incident/. Accessed on 10/15/2023. ().

[30] Ben Laurie, Adam Langley, and Emilia Kasper. 2013.
Certificate Transparency. RFC 6962. (June 2013). doi:
10.17487/RFC6962.

[31] Julia Len, Melissa Chase, Esha Ghosh, Kim Laine, and
Radames Cruz Moreno. 2023. OPTIKS: An Optimized
Key Transparency System. Cryptology ePrint Archive,
Paper 2023/1515. https://eprint.iacr.org/2023/151
5. (2023). https://eprint.iacr.org/2023/1515.

[32] Harjasleen Malvai, Lefteris Kokoris-Kogias, Alberto
Sonnino, Esha Ghosh, Ercan Oztürk, Kevin Lewi, and
Sean Lawlor. 2023. Parakeet: practical key transparency
for end-to-end encrypted messaging. Cryptology ePrint
Archive.

[33] Deepak Maram et al. 2021. Candid: can-do decentralized
identity with legacy compatibility, sybil-resistance, and
accountability. In 2021 IEEE Symposium on Security
and Privacy (SP). IEEE, 1348–1366.

20

https://eprint.iacr.org/2022/1264
https://eprint.iacr.org/2022/1264
https://www.coinbase.com/wallet
https://www.coinbase.com/wallet
https://www.usenix.org/conference/osdi23/presentation/dauterman
https://www.usenix.org/conference/osdi23/presentation/dauterman
https://electrum.org/
https://www.exodus.com/
https://fireblocks.com/
https://wiki.mozilla.org/Security/Binary_Transparency
https://wiki.mozilla.org/Security/Binary_Transparency
https://support.mozilla.org/en-US/kb/where-are-my-logins-stored
https://support.mozilla.org/en-US/kb/where-are-my-logins-stored
https://developers.google.com/android/binary_transparency/overview
https://developers.google.com/android/binary_transparency/overview
https://developers.google.com/android/binary_transparency/overview
https://support.google.com/chrome/answer/165139
https://support.google.com/chrome/answer/165139
https://support.google.com/chrome/answer/10311524
https://support.google.com/chrome/answer/10311524
https://github.com/google/keytransparency/blob/master/docs/overview.md
https://github.com/google/keytransparency/blob/master/docs/overview.md
https://github.com/google/keytransparency/blob/master/docs/overview.md
https://services.google.com/fh/files/blogs/google_security_infographic.pdf
https://services.google.com/fh/files/blogs/google_security_infographic.pdf
https://engineering.fb.com/2022/03/10/security/code-verify/
https://engineering.fb.com/2022/03/10/security/code-verify/
https://datatracker.ietf.org/wg/scitt/about/
https://datatracker.ietf.org/wg/scitt/about/
http://amanladia.com/wp/zerowallet/
http://amanladia.com/wp/zerowallet/
https://lastpass.com
https://blog.lastpass.com/2022/11/notice-of-recent-security-incident/
https://blog.lastpass.com/2022/11/notice-of-recent-security-incident/
https://blog.lastpass.com/2022/11/notice-of-recent-security-incident/
https://doi.org/10.17487/RFC6962
https://eprint.iacr.org/2023/1515
https://eprint.iacr.org/2023/1515
https://eprint.iacr.org/2023/1515

[34] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau,
Edward W. Felten, and Michael J. Freedman. 2015.
CONIKS: bringing key transparency to end users. In
24th USENIX Security Symposium, USENIX Security
2015. USENIX Association, Washington, D.C., (Aug.
2015), 383–398. isbn: 978-1-939133-11-3. https://www
.usenix.org/conference/usenixsecurity15/technica

l-sessions/presentation/melara.

[35] MetaMask. [n. d.] https://metamask.io/. Accessed on
10/15/2023. ().

[36] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jo-
vanovic, Nicolas Gailly, Linus Gasser, Ismail Khoffi,
Justin Cappos, and Bryan Ford. 2017. {Chainiac}:
proactive {software-update} transparency via collec-
tively signed skipchains and verified builds. In 26th
USENIX Security Symposium (USENIX Security 17),
1271–1287.

[37] Chris Orsini, Alessandra Scafuro, and Tanner Verber.
2023. How to recover a cryptographic secret from the
cloud. Cryptology ePrint Archive, Paper 2023/1308. ht
tps://eprint.iacr.org/2023/1308. (2023). https://e
print.iacr.org/2023/1308.

[38] PAD Protocol. [n. d.] https://www.padprotocol.org/.
Accessed on 10/15/2023. ().

[39] Andy Sayler, Taylor Andrews, Matt Monaco, and Dirk
Grunwald. 2016. Tutamen: a next-generation secret-
storage platform. In Proceedings of the Seventh ACM
Symposium on Cloud Computing (SoCC ’16). Associa-
tion for Computing Machinery, Santa Clara, CA, USA,
251–264. isbn: 9781450345255. doi: 10.1145/2987550.2
987581.

[40] Leona Tam, Myron Glassman, and Mark Vandenwau-
ver. 2010. The psychology of password management: a
tradeoff between security and convenience. Behaviour &
IT, 29, (May 2010), 233–244. doi: 10.1080/0144929090
3121386.

[41] Nirvan Tyagi, Ben Fisch, Andrew Zitek, Joseph Bon-
neau, and Stefano Tessaro. 2022. VeRSA: verifiable reg-
istries with efficient client audits from RSA authen-
ticated dictionaries. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communica-
tions Security. ACM.

[42] Ioanna Tzialla, Abhiram Kothapalli, Bryan Parno, and
Srinath Setty. 2022. Transparency dictionaries with suc-
cinct proofs of correct operation. In Proceedings of the
ISOC Network and Distributed System Security Sympo-
sium (NDSS). (Feb. 2022).

[43] Trust Wallet. [n. d.] https://trustwallet.com/. Ac-
cessed on 10/15/2023. ().

[44] Dan Wesley, Saisang Cai, Andrea Courtright, and An-
drea Barr. 2022. Microsoft edge password manager se-
curity. https://learn.microsoft.com/en-us/deployed
ge/microsoft-edge-security-password-manager-sec

urity. Accessed on 10/15/2023. (2022).

[45] Shalanda Young. 2022. Moving the U.S. government to-
ward zero trust cybersecurity principles. https://www.w
hitehouse.gov/wp-content/uploads/2022/01/M-22-09

.pdf. Accessed on 10/15/2023. (2022).

[46] ZenGo. [n. d.] https://zengo.com/security-in-depth
/. Accessed on 10/15/2023. ().

APPENDIX

A Detailed Construction

Our construction is based on a CCA-secure public
key encryption scheme, CCA-secure symmetric key
encryption scheme and a binding and hiding com-
mitment scheme. In more details, the algorithms are
instantiated as follows:

• GuardianKeyGen(1k): Generate and output a
public key pair.

• ServerInit(1k): The server calls Init() for the
ledger functionality, gets back params and re-
turns params.

• UserStoreSecret(s, u, policy , gpk1, gpk2): Gener-
ate a symmetric key sks, and use it to en-
crypt the secret s, forming cts. Secret share
sks into sk1, sk2, i.e., such that sk1 ⊕ sk2 =
sks. Encrypt the two shares for the guardians,
i.e., (sk1, u, policy , comrand1) under gpk1 to get
ct1 and (sk2, u, policy , comrand2) under gpk2 to
get ct2, where comrandi is randomness picked
for a binding and hiding commitment scheme.
Compute h1 = com(sk1, comrand1), h2 =
com(sk2, comrand2). Set blobi = ct i||hi.
Return st = (u, storedblob), storedblob =
(blob1||blob2||cts)

• ServerStoreandLog(sts, (u, storedblob)):
The server saves (u, storedblob) in stu.
It first calls the ledger functionality
with Store(u||storage, storedblob). Then
it calls the ledger functionality with
GetLookupHandle(u||storage) and gets back
handle. It sets receipt = handle.

• UserVerifyStorage(st , receipt): The user parses st
as (u, storedblob) and receipt as handle. Then, it

21

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
https://metamask.io/
https://eprint.iacr.org/2023/1308
https://eprint.iacr.org/2023/1308
https://eprint.iacr.org/2023/1308
https://eprint.iacr.org/2023/1308
https://www.padprotocol.org/
https://doi.org/10.1145/2987550.2987581
https://doi.org/10.1145/2987550.2987581
https://doi.org/10.1080/01449290903121386
https://doi.org/10.1080/01449290903121386
https://trustwallet.com/
https://learn.microsoft.com/en-us/deployedge/microsoft-edge-security-password-manager-security
https://learn.microsoft.com/en-us/deployedge/microsoft-edge-security-password-manager-security
https://learn.microsoft.com/en-us/deployedge/microsoft-edge-security-password-manager-security
https://www.whitehouse.gov/wp-content/uploads/2022/01/M-22-09.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/01/M-22-09.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/01/M-22-09.pdf
https://zengo.com/security-in-depth/
https://zengo.com/security-in-depth/

calls into ledger with command Lookup(handle).
If it gets back (x, v⃗) ̸= ⊥, it does the following
checks: (1) x = u||storage (2) |v⃗| = 1 and (3)
v⃗[0] = storedblob. If all the checks pass, return
success. Else, return failure.

• UserRequestRecovery(u, context): Generate a
public key pair (pku, sku). Output stu =
(u, sku, pku, context) as the state to store and
msg = (pku, context) as the request message to
send to the service provider.

• ServerProcessRequest(sts, (u,msg)):
It first calls the ledger function-
ality with Store(u||recovery,msg).
Then it calls the ledger functional-
ity with GetLookupHandle(u||recovery)
to get handlerecovery and with
GetLookupHandle(u||storage) to get
handlestorage. Finally it looks up the storedblob
associated with u and parses storedblob =
(blob1||blob2||cts). It outputs st ′s = sts,
servermsg1 = (blob1||handlerecovery), servermsg1 =
(blob2||handlerecovery), and receipt =
(storedblob||handlerecovery||handlestorage).

• GuardianResponse(gsk , u,msg , servermsg): The
guardian parses servermsg as blob||handle and
parses blob = ct ||h. It then decrypts ct
using the guardian’s secret key gsk to get
(sk, u′, policy , comrand). If u′ ̸= u it outputs
⊥,⊥. It then calls into the ledger functionality
with command Lookup(handle). If this returns
(x, v⃗) ̸= ⊥, check that x = u||recovery and
msg ∈ v⃗. If the checks do not verify, return ⊥,⊥
and stop. Otherwise it encrypts (sk, comrand)
under the public key pku from the request mes-
sage msg to get ctu. It sets decblob = ctu and
outputs policy ,decblob.

• UserCompleteRecovery(stu, decblob1, decblob2, receipt):
The user parses stu as u, sku, pku and receipt as
storedblob, handlerecovery, handlestorage. It calls the
ledger functionality with Lookup(handlestorage).
If it gets back x, v⃗, it checks if x = u||storage
and v⃗[0] = storedblob. Then it calls the ledger
functionality with Lookup(handlerecovery). If it

gets back x, v⃗, it checks if x = u||recovery and
(context , pku) ∈ v⃗.

If all the checks pass, the user proceeds
to decrypt decblobi using sku to obtain
(ski, comrandi). It parses storedblob as
blob1||blob2||cts, and blobi as ct i||hi. The user
checks if hi = com(ski, comrandi). If all the
checks pass, the user computes sk ← sk1 ⊕ sk2
and uses sk to decrypt cts to get s back.

• GetUserRecoveryHistory(sts, u): The server
calls the ledger API with the command
GetLookupHandle(u||recovery). If it gets
back (handle, v⃗) from the functionality, it sets
contexts := contexts(v⃗) and receipt := handle,
where contexts is the function which outputs a
vector containing the context field in each tuple
in v.

• VerifyRecoveryHistory(u, m⃗sg , receipt):

The user parses receipt as handle and calls the
ledger functionality with Lookup(handle). If it
gets back x, v⃗, it checks that x = u||recovery
and contexts = contexts(v⃗) where contexts is as
described above.

B Security Proof Sketches

We give sketches for the security proofs here and defer
the formal proofs to the next section.

User Privacy. Follows directly from the ledger ab-
straction. We note that in both ledger instantiations
we consider, the leakage and other information that
the adversary sees depends only on the adversarial
user’s actions . Thus, the adversary cannot learn any-
thing about specifically which actions honest users
are requesting, or which honest users are making re-
quests.

Confidentiality. Follows directly from the ledger
abstraction as well. To see this, note that the user’s
secret is only used to form cts, which is stored in the
ledger (as part of storedblob), but not passed to the
guardian. It is then returned to the user, who per-
forms a bunch of checks, then decrypts cts and out-

22

puts the resulting secret. This means that the only
way that an adversarial user or guardian could get in-
formation about the secret is if something about cts
were to leak through the ledger functionality. How-
ever, in both our ledger instantiations, the leakage
is such that the adversary will learn nothing about
the values stored on the ledger unless it is given the
handle to lookup the corresponding label; this never
happens in our construction (as long as the server is
honest) so confidentiality of the secret is preserved.

Transparency. This is based on CCA security of
the PKE, CCA security of the SKE, security (hid-
ing and binding) of the commitment scheme and
by the definition of the ledger functionality. Very
roughly, the ledger functionality guarantees that if
an adversarial recovery request for the honest user’s
secret is given to the guardian and the guardian is
able to verify that it has been logged, then that re-
quest will appear in the list of requests when the
user later does a VerifyRecoveryHistory call. (Again
by the ledger functionality, since the user checks in
UserCompleteRecovery that their requests is correctly
logged, we are guaranteed that all of the user’s re-
quests also appear in the log - this means that any
adversarial request will appear as additional.) CCA
security of the SKE and PKE are used to argue that
the ciphertexts in the honest user’s storedblob and
in the decblob produced by the honest guardian hide
their contents, even when the adversary can poten-
tially pass in malicious values for decryption. The
binding property of the commitment combined with
the fact that storedblob is recorded on the ledger guar-
antees that the user can’t be convinced to use an in-
correct key share (this is important as a decrypting
with an incorrect key share would correspond to a re-
lated key attack), and hiding guarantees that adding
the commitment doesn’t reveal anything about the
key share.

Policy Enforcement. This is based on CCA secu-
rity of the PKE, CCA security of the SKE, security
(hiding and binding) of the commitment scheme and
by the definition of the ledger functionality. As in
Transparency, CCA security of the SKE and PKE
are used to argue that the ciphertexts in the honest

user’s storedblob and in the decblob produced by the
honest guardian hide their contents, even when the
adversary can potentially pass in malicious values for
decryption. Here we also use CCA security of the
PKE to guarantee that either the guardian gets the
correct policy, or he gets a completely unrelated key
share. The binding property of the commitment com-
bined with the fact that storedblob is recorded on the
ledger guarantees that the user can’t be convinced
to use an incorrect key share (this is important as a
decrypting with an incorrect key share would corre-
spond to a related key attack), and hiding guarantees
that adding the commitment doesn’t reveal anything
about the key share.

History consistency. This follows di-
rectly from the Ledger functionality.
VerifyRecoveryHistory(u, contexts, receipt) only
accepts contexts if it is consistent with the latest v⃗
stored in the ledger under u||recovery. According
to the ledger, the v⃗ can only change by having
new elements added to the end . This means that
contexts accepted in earlier queries must be a prefix
of the contexts accepted in later queries. History
consistency follows directly.

Robustness. Follows from binding property of the
commitment scheme, correctness of the SKE encryp-
tion, and the definition of the ledger functional-
ity. The ledger guarantees that if UserVerifyStorage
sees that storedblob has been correctly stored, then
UserCompleteRecovery will see the same storedblob (or
output an error). The binding property of the com-
mitment guarantees that the user will always use the
correct key to decrypt the cts in storedblob (or out-
put an error), and the correctness of the encryption
guarantees that this will produce the correct result.

C Formal Security Definitions
and Proofs

C.1 Security Definitions

Here we formally define the security properties of
Acsesor.

23

C.1.1 User Privacy

User privacy considers the case where both the server
and the guardians are honest, and aims to guaran-
tee that the malicious users learn nothing about the
honest users’ actions.3 To capture this, we give the
adversary access to an oracle to which he can submit
pairs of users and actions (either new secret registra-
tions or secret recovery requests on behalf of users of
his choice), and depending on a hidden bit, the game
with either take the first or the second user/action in
every pair. To prevent trivial attacks the actions are
structured so that the adversary can never produce
an invalid sequence of actions. Finally, we also pro-
vide oracles to allow the adversary to interact with
the service on behalf of malicious users. The scheme
provides anonymity if the adversary has negligible
advantage in producing the hidden bit.

• Pick a bit b← {0, 1}. Initialize empty tables
T1, T2

• OGuardianKeyGen():

– If gpk1, gpk2 ∈ T1 return ⊥.
– Otherwise, run GuardianKeyGen(1λ)→

(gsk1, gpk1) and
GuardianKeyGen(1λ)→ (gsk2, gpk2).

– Store (gsk1, gpk1), (gsk2, gpk2) ∈ T1.

– Return (gpk1, gpk2)

• OServerInit():

– If params ∈ T1, return ⊥.
– Otherwise, run ServerInit(1λ) →

params. Save stS , params in T1 and
return params.

• OUserStoreSecretORUserRequestRecovery((u0, s0, policy0),
(u1, s1, policy1))

– Set u := ub, s := sb, policy := policyb.

3They learn only that an action has occurred, not what
action it was nor who requested it.

– If u /∈ T2, add u to T2 and parse payload
as s, policy .

– Run UserStoreSecret(u, s, policy , gpk1, gpk2)→
(stu, storedblob).

– Run ServerStoreandLog(stS , (u, storedblob)→
(st ′S , receipt).

– Run UserVerifyStorage(stu, receipt).
Let it return answer = success/failure.

– Else, if u ∈ T2:

– Run UserRequestRecovery(u) →
(stu,msg)

– Run ServerProcessRequest(stS , (u,msg))→
(receipt , servermsg1, servermsg2)

– Run GuardianResponse(gsk i, u,msg , servermsgi)→
(policy , decblobi) for i ∈ {1, 2}

– Run UserCompleteRecovery(stu, decblob1,
decblob2, receipt). Let answer = 1 if the
algorithm returns s′ and answer = 0 if
the algorithm returns ⊥.

– Return answer.

• OServerStoreandLog(u, stroredblob) If
u ∈ T2 return ⊥. Otherwise, run
ServerStoreandLog(stS , (u, storedblob) →
(st ′S , receipt). Return receipt .

• OServerProcessRequest(u,msg) If u ∈
T2 return ⊥. Otherwise, run
ServerProcessRequest(stS , (u,msg)) →
(receipt , servermsg1, servermsg2). Then, run
GuardianResponse(gsk i, u,msg , servermsgi)→
(policy , decblobi) for i ∈ {1, 2}. Return
(receipt , decblob1, decblob2).

• OGetUserRecoveryHistory(u) If u ∈
T2 return ⊥. Otherwise, run
GetUserRecoveryHistory(stS , u) →
(m⃗sg , receipt). Return (m⃗sg , receipt).

• OFinalize(b
′) : If b′ = b, the game outputs 1

and stops. Otherwise it outputs 0 and stops.

24

C.1.2 Confidentiality

In this game, we model the confidentiality of the
user’s secret when the server is honest and the
server’s access control can prevent adversarial recov-
ery requests but where both the guardians are mali-
cious. Informally, we want to capture the fact, that,
in the case where the service provider is honest, no-
body (including other malicious users) should be able
to learn a secret stored by an honest user. In the
following game, the adversary has access to the fol-
lowing oracles. Its goal is to guess the bit b which
either encrypts the honest user’s (u∗) real secret, or
encrypts some random string. We say that the ad-
versary wins the game if it can guess the bit with
non-negligible advantage over 1/2.

OInit() (Can be invoked only once):

• Run ServerInit(1k)→ params, sts

• recoveryst = ⊥

• Pick b← {0, 1}

• Output params

OHonestUserStoreSecret(s, u
∗, policy , gpk1, gpk2)

(this can only be run once):

• Store u∗

• If b = 0: UserStoreSecret(s, u∗, policy , gpk1,
gpk2)→ (storedblob∗, st)

• Else if b = 1: r ← {0, 1}∗,
UserStoreSecret(r, u∗, policy , gpk1, gpk2) →
(storedblob∗, st)

• Run ServerStoreandLog(sts, (u
∗, storedblob∗))→

(st ′s, receipt) and set sts = st ′s

• Return UserVerifyStorage(st , receipt).

OMaliciousUserStoreSecret(u, storedblob):

• If u = u∗: return ⊥

• Run ServerStoreandLog(sts, (u, storedblob))→
(st ′s, receipt) and set sts = st ′s

• Return receipt .

OHonestUserRequestRecovery():

• Run UserRequestRecovery(u∗) →
(stu∗ ,msg)

• Run ServerProcessRequest(sts, (u
∗,msg))→

(st ′s, servermsg1, servermsg2, receipt) and set
sts = st ′s

• Store recoveryst = (receipt , stu∗)

• Output msg , servermsg1, servermsg2

OHonestUserCompleteRecovery(decblob1, decblob2):

• If recoveryst = ⊥, return ⊥. Otherwise, set
(receipt , stu∗) = recoveryst. Set recoveryst =
⊥

• Run UserCompleteRecovery(stu, decblob1, decblob2,
receipt)→ s′

• Output s′ == ⊥

OMaliciousUserRequestRecovery(u,msg , gpk1, gpk2):

• Abort if u = u∗

• Run ServerProcessRequest(sts, (u,msg)) →
(st ′s, servermsg1, servermsg2, receipt) and set
st ′s = sts

• Return servermsg1, servermsg2, receipt

C.1.3 Transparency

Next, we want to investigate the security and con-
fidentiality guarantees we gain when the server is
compromised. Clearly, if both guardians are compro-
mised as well, we cannot hope to achieve any security
or confidentiality. Note however, that, as long as a
threshold number of the guardians are honest (i.e., at
least 1 out of the 2), we can ensure that the adversary
cannot get the secret unless the malicious request is
logged.

25

OInit() (Can be invoked only once):

• Run GuardianKeyGen(1k)→ (gpk1, gsk1)

• Initialize empty list L

• b← {0, 1}

• Initialize caught = 0, storagesucceeded = 0,
and recoveryst

• Output gpk1

OHonestUserStoreSecret(s, u
∗, policy , gpk2) (can

only be invoked once):

• Store u∗

• If b = 0: UserStoreSecret(s, u∗, policy , gpk1,
gpk2)→ (storedblob∗, st∗)

• Else if b = 1: r ← {0, 1}∗,
UserStoreSecret(r, u∗, policy , gpk1, gpk2) →
(storedblob∗, st∗)

• Store st∗ and output storedblob∗

OUserVerifyStorage(receipt) (can only be invoked
once, and must be after OHonestUserStoreSecret is in-
voked)

• Set storagesucceeded =
UserVerifyStorage(st∗, receipt).

• Return storagesucceeded

OHonestUserRequestRecovery(context):

• If storagesucceeded = 0, return ⊥

• Run UserRequestRecovery(u∗, context) →
(stu∗ ,msg)

• Record recoveryst = stu∗

• Record context in L

• Output msg

OHonestGuardianResponse(u,msg , servermsg):

• Run GuardianResponse(gsk1, u,msg , servermsg)→
policy , decblob

• Output policy , decblob

OHonestUserCompleteRecovery(decblob1, decblob2, receipt):

• If storagesucceeded = 0 or recoveryst = ⊥,
return ⊥.

• Set st = recoveryst and recoveryst = ⊥.

• Run UserCompleteRecovery(st , decblob1, decblob2,
receipt)→ s′

• Output s′ == ⊥

OHonestVerifyRecoveryHistory(contexts, π) (must be
run exactly once, and must occur after the last
call to OHonestGuardianProcessRequest)

• If contexts ̸⊆ L or recoveryst ̸= ⊥, set
caught = 1

• If VerifyRecoveryHistory(u∗, contexts, π) = 0
set caught = 1

Game output: The game runs the adversary
with the above oracles to obtain bit b′. If
caught = 1, the game outputs a random bit, oth-
erwise it outputs b′.
The scheme provides Transparency if the ad-

vantage of this game in producing the bit b is
negligible.

C.1.4 Policy Enforcement

This is also a property that applies when at least
one guardian is honest, but the server may be ma-
licious. This property captures that the adversary
cannot learn an honest user’s secret unless there is
an adversarial request for which the honest guardian
determines that the user’s policy has been satisfied.

OInit() (Can be invoked only once):

• Run GuardianKeyGen(1k)→ (gpk1, gsk1)

26

• Initialize empty list L, empty vector
Decblobs, counter j = 0, state recoveryst =
⊥, and bit storagesucceeded = 0

• b← {0, 1}

• Output gpk1

OHonestUserStoreSecret(s, u
∗, policy , gpk2) (this can

only be run once):

• Store u∗

• If b = 0: UserStoreSecret(s, u∗, policy , gpk1,
gpk2)→ (storedblob∗, st∗)

• Else if b = 1: r ← {0, 1}∗,
UserStoreSecret(r, u∗, policy , gpk1, gpk2) →
(storedblob∗, st∗)

• Store st∗ and output storedblob∗

OUserVerifyStorage(receipt) (can only be invoked
once, and must be after OHonestUserStoreSecret is in-
voked)

• Set storagesucceeded =
UserVerifyStorage(st∗, receipt).

• Return storagesucceeded

OHonestUserRequestRecovery():

• If storagesucceeded = 0, return ⊥

• Run UserRequestRecovery(u∗) →
(stu∗ ,msg)

• Add msg to L and store recoveryst = stu∗

• Output msg

OHonestGuardianExtractPolicy(u,msg , servermsg):

• Run GuardianResponse(gsk1, u,msg , servermsg)→
policy , decblob

• Store Decblobs[j] = (msg , policy , u, decblob),
set j = j + 1, and output policy , j

OHonestGuardianReleaseResponse(j) (this captures the
case when the guardian determines the policy in
the jth request has been satisfied):

• If Decblobs[j] = ⊥, return ⊥. Otherwise,
parse Decblobs[j] = (msg , policy , u, decblob)

• If msg /∈ L and policy = policy∗ and u = u∗,
return ⊥. (If there is an adversarial request
for the honest user’s secret, for which the
honest guardian determines that the hon-
est user’s policy is satisfied, then we cannot
guarantee any hiding for the secret. In fact,
the adversary would in the be able to triv-
ially win the game just based on the desired
functionality. Thus, we will not allow such
queries.)

• Else, return Decblobs[j]

OHonestUserCompleteRecovery(decblob1, decblob2,msg ,
receipt):

• If storagesucceeded = 0 or if recoveryst = ⊥,
return ⊥

• Set st = recoveryst and set recoveryst = ⊥

• Run UserCompleteRecovery(st , decblob1, decblob2,
receipt)→ s′

• Output s′ == ⊥

C.1.5 Robustness

Robustness ensures that, even when the server and
one or both the guardians are malicious, a user will
either be able to get their secret back, or detect that
the secret was tampered with.

• Initialize empty tables T1, T2, T3

• OHonestUserStoreSecret(s, u, policy , gpk1, gpk2):

– If u ∈ T1: return ⊥. Else, proceed.

27

– Run UserStoreSecret(s, u, policy , gpk1, gpk2)→
(stu, storedblob).

– Save (u, s, stu, storedblob) in T1

– Return storedblob

• OUserVerifyStorage(u, receipt):

– If u ∈ T1: lookup the corresponding
stu. Otherwise, return ⊥.

– Run UserVerifyStorage(stu, receipt).
If it returns success, insert
(u, s, stu, storedblob, success) to T2.
Return success.

– Otherwise, return failure.

• OUserRequestRecovery(u)

– If u /∈ T2 or ∃(u, stu,msg) ∈ T3: return
⊥.

– Otherwise, run
UserRequestRecovery(u) → (stu,msg).
Store (u, stu,msg) in T3.

– Return msg .

• OUserCompleteRecovery(u, decblob1, decblob2, receipt)

– If u /∈ T3: return ⊥ and stop.

– Otherwise, lookup (u, stu,msg) from
T3.

– run UserCompleteRecovery(stu, decblob1,
decblob2, receipt).

– Delete (u, stu,msg) from T3.

– If UserCompleteRecovery returns ⊥,
output ⊥.

– If the above algorithm returns s′,
lookup s corresponding to u from T2.
If s ̸= s′, output 1 and stop.

C.1.6 History consistency

History consistency says that if a user u checks their
recovery at two different times, the list of contexts
given the first time must be a prefix of the list given
the second time.

• Initialize empty table T , error = 0

• OHonestVerifyRecoveryHistory(u, contexts, receipt):

– Run VerifyRecoveryHistory(u, contexts, receipt).
If the output is failure, return ⊥.

– Else, if T [u] = ⊥, set T [u] = contexts
and return 0

– Else, if T [u] is not a prefix of contexts,
set error = 1 and return 1.

– Else, set T [u] = contexts and return 0.

The adversary wins if they can cause error to be
set to 1.

C.2 Security Proofs

User Privacy Calls to
OUserStoreSecretORUserRequestRecovery only respond with
answer, which is 1 bit of information (whether the
request succeeded or failed). For the other oracles,
the adversary calls them with adversarially chosen
users. The responses from those oracles could
potentially leak information about the honest user
updates, used in OUserStoreSecretORUserRequestRecovery,
which could help the adversary win the game. We
first show that for our protocol this is not the case.

Recall that the receipt returned by these oracles,
are, in the real protocol, the handles returned by the
ledger functionality. The ledger functionality could
return some additional leakage to the adversary. The
other output from the oracles (decblobs and m⃗sg) do
not leak any information about the honest user up-
dates.

For the Nimble based ledger instantiation, the
functionality does not have any leakage. For the
PAHD based ledger instantiation, the functionality

28

does have additional leakage. However, the leakage
is completely simulatable from the adversarially cho-
sen users alone (see Section 3.2) except the update
notifications. However, in the game, already knows
the total number of updates, since it equals the num-
ber of calls to OUserStoreSecretORUserRequestRecovery). So,
this leakage does not reveal any information about
the honest user updates.
Finally, we need to argue that the adver-

sary cannot construct a sequence of queries to
OUserStoreSecretORUserRequestRecovery such that the answer
trivially distinguishes between u0 and u1. Note that,
the adversary always has to call the oracle with
s, policy . If this was the first query for the hon-
est userhandle, then the oracle performs the flow
for UserStoreSecret. Otherwise it ignores the input
s, policy and treats it as a recovery request. Hence,
by correctness of our scheme the adversary can never
cause the oracle to output answer ̸= 1. This, the ad-
versary cannot craft a sequence of queries to make
the oracles behave differently for u0 and u1. This
concludes out proof.

Confidentiality

G0 Let G0 be the honest server confidentiality game
as described above for bit b = 0 instantiated with
our protocol as described in Appendix A.

G1 As in G0, but in HonestUserCompleteRecovery,
omit the final step which decrypts cts to get s
and instead output 1 iff all the checks pass.

Since decryption can never produce ⊥, and the
only thing we do with the decrypted value is to
return it and then check whether it is ⊥, this is
identical.

G2 As in G1, but form cts as the encryption of a
random r instead of s.

This is identical if we instantiate the ledger with
either of the two solutions we discuss in Sec-
tion 3.2. Note that, outside of the leakage, the
ledger functionality never reveals anything about
the values stored in v⃗ associated with an x except
on queries for that x. That means that any calls
to the ledger for adversarial users will not reveal

information about the honest user’s storedblob.
The Nimble instantiation has no leakage, so the
equivalence follows directly. As discussed above,
the leakage on queries for the adversarial users
can be simulated given only those queries, their
response, and the update notifications sent by the
ledger. In particular, it is independent of the
values that are stored for the honest user.

G3 Let G0 be the honest server confidentiality game
as described above for bit b = 1 instantiated with
our protocol as described in Appendix A.

This is again identical for the same reason as
G0, G1 above.

Transparency

G0 Let G0 be the transparency game as described
above for bit b = 0 instantiated with our protocol
as described in Appendix A.

G1 As in G0, but store a list Lmsg of
all of the messages msg generated in
HonestUserRequestRecovery. End the game
and set caught = 1 if the adversary
ever submits a message msg /∈ Lmsg for
u = u∗ to HonestGuardianResponse and
the same msg is later generated by ora-
cle HonestUserRequestRecovery, or if the
same msg is generated in two different
HonestUserRequestRecovery calls.

This is indistinguishable by CPA security of the
PKE, which implies that the public key output by
KeyGen must have enough entropy, so this case
will occur with only negligible probability.

G2 As in G1, but if there is a message msg
generated in HonestUserRequestRecovery call
for which the adversary never makes a
Store(u∗||recovery,msg) call, set caught = 1.

We argue that this is identical to the pre-
vious game by definition of the ledger.
Suppose that there is a message msg gen-
erated in HonestUserRequestRecovery call
for which the adversary never makes a

29

Store(u∗||recovery,msg) call. In that case ei-
ther the subsequent HonestUserRequestRecovery
is never called (in which case recoveryst ̸= ⊥ at
the end of the game and caught is set to 1), or
the HonestUserRequestRecovery call will retrieve
(x, v⃗) where either x ̸= u||recovery or msg /∈ v⃗
in which case UserRequestRecovery will output
⊥ and caught will be set to 1.

G3 As in G2, but if the adversary ever sub-
mits a message msg /∈ L for u = u∗ to
HonestGuardianResponse and GuardianResponse
does not output ⊥, set a flag advMsg . If at
the end of the game, advMsg = 1, then set
caught = 1 .

We argue that this is identical to the previ-
ous game, because if at the end of the game
advMsg = 1, then it must be the case in Game
G1 that caught = 1 as well.
By the change in G2, we can focus on the
case where for every message msg generated
in HonestUserRequestRecovery, there is a corre-
sponding Store(u∗||recovery,msg) call. Since
GuardianResponse does not output ⊥ on the
msg /∈ L, this means it retrieves (u||recovery, v⃗)
from the ledger where msg ∈ v⃗. Since the
ledger vectors are append only by definition,
and by the change in G1 we can assume that
msg will never by added to Lmsg ; this means
that the HonestVerifyRecoveryHistory call at the
end of the game will retrieve (x, v⃗) where ei-
ther x ̸= u||recovery or (msg ||Lmsg) ⊆ v⃗.
In the first case VerifyRecoveryHistory will out-
put ⊥ and caught will be set to 1. In
the second case, if contexts(v⃗) ̸= contexts,
again VerifyRecoveryHistory will output ⊥ and
caught will be set to 1. The final case is if
contexts(msg ||Lmsg) ⊆ contexts(v⃗) = contexts.
This means |L| = |Lmsg | = |contexts| − 1. This
means contexts ̸⊆ L and caught is again set to
1.

G4 As in G3, but if the adversary ever sub-
mits a message msg /∈ L for u = u∗ to
HonestGuardianResponse and GuardianResponse
does not output ⊥, then set caught = 1 and

end the game before generating ctu, outputting
a random bit.

Since, by the change in G3, if the adversary ever
submits a message msg /∈ L for u = u∗ to
HonestGuardianResponse and GuardianResponse
does not output ⊥, then caught = 1 and the ad-
versary’s output is ignored. That means that it
is equivalent if as soon as caught = 1 we stop
running the adversary and end the game.

G5 As in G4 but store (sk1, u, policy , comrand1, ct1)
used in UserStoreSecret in OHonestUserStoreSecret

as (sk∗1, u
∗, policy∗, comrand∗1, ct

∗
1). (Note that

u∗, policy∗ match those already stored by the
game.) If ct∗1 appears as part of servermsg
passed to OHonestGuardianResponse, do not de-
crypt, but instead just return use the stored
(sk∗1, u

∗, policy∗, comrand∗1).

This is indistinguishable by correctness of the
symmetric encryption scheme.

G6 As in G5 but replace the ct1 generated as part
of UserStoreSecret in OHonestUserStoreSecret with an
encryption of a random string.

This is indistinguishable by CCA security of the
symmetric encryption scheme.

G7 As in G6, but if ct∗1 appears in the servermsg
passed to OHonestGuardianResponse and the msg used
in that call is in L, store the resulting ctu
as ct∗u. If ct∗u appears in a decblob passed to
OHonestUserCompleteRecovery, do not decrypt, just use
the stored (sk∗1, comrand∗1).

This is indistinguishable by correctness of the
PKE.

G8 As in G7, but if ct∗1 appears in the servermsg
passed to OHonestGuardianResponse and the msg used
in that call is in L, generate the resulting ctu
by encrypting a random message and store it as
ct∗u.

Since msg ∈ L means this is an encryption under
an honestly generated public key, this is indis-
tinguishable by CCA security of the PKE. (This
technically requires hybrids or multi-user secu-
rity, but is straightforward.)

30

G9 As in G7, but if ct∗1 appears in the servermsg
passed to OHonestGuardianResponse, generate the re-
sulting ctu by encrypting a random message and
store it as ct∗u. (Omit the msg ∈ L check.)

Note that the guardian will check whether the
u provided as input matches the stored u∗,
which in turn matches the u∗ in the game. If
GuardianResponse does not output ⊥, but gets as
far as generating ctu, then this check succeeds,
which means that u = u∗, and by the change we
made in game G4, if msg /∈ L we will end the
game before generating ctu. Thus, if we get as
far as generating ctu, it must be the case that
msg ∈ L and so removing the condition changes
nothing.

G10 As in G9, but if the storedblob given as part of
the input receipt in HonestUserCompleteRecovery
is different from that generated in
HonestUserStoreSecret, immediately return
⊥.
This is identical by the ledger functionality.

G11 As in G10 but in HonestUserCompleteRecovery,
instead of checking h1 = com(sk1, randcom1),
check if ctu = ct∗u.

These games are identical. Recall that if ctu =
ct∗u we use the stored values sk∗1, randcom

∗
1 in-

stead of decrypting, and by the change in game
G9, if we reach this check we know h1 = h∗

1. So
in game G8, we check h∗

1 = com(sk∗1, randcom
∗
1)

which is true by construction. Thus, removing
this check makes no diffence.

G12 As in G11, but in HonestUserStoreSecret, replace
h1 with a com(0, randcom′) for freshly chosen
randcom′.

Note that randcom1 is no longer used anywhere
in game G11, so this follows from hiding of the
commitment

G13 As in G12, but store sk2, h2 generated in
HonestUserStoreSecret as sk∗2, h

∗
2. If the checks

pass in HonestUserCompleteRecovery, but the re-
sulting sk2 ̸= sk∗2, abort.

Note that we have already argued that if the
checks pass, storedblob = storedblob∗, and hence
h2 = h∗

2 so this is indistinguishable by binding of
the commitment scheme.

G14 As in G13 but store sk generated
in HonestUserStoreSecret as sk∗. In
HonestUserCompleteRecovery, instead of de-
crypting with sk∗1 ⊕ sk2, decrypt with the stored
sk∗.

Since by the change in G13 we have sk2 = sk∗2,
and by construction of UserStoreSecret we have
sk∗ = sk∗1 ⊕ sk∗2, this is identical.

G15 As in G14 but instead of generating sk∗1, sk
∗
2 as

shares of sk∗, simply sample random sk∗2.

Note that sk∗1 is no longer used anywhere in game
G14, so this is identically distributed.

G16 As in G15, but in HonestUserCompleteRecovery,
if all checks pass up to the point of decrypting
cts, simply return 0 (i.e. s ̸= ⊥)
This is indistinguishable by correctness of the
SKE - decryption will never fail since the cipher-
text was correctly encrypted under sk∗.

G17 As in G16, but in HonestUserStoreSecret, choose
random r and compute cts as an encryption of
r instead of s.

Note that sk is now only used to generate cts, so
the follows from CPA security of the SKE.

G18 to G31 Repeat the above changes in reverse.

G32 The transparency game with b = 1.

Policy Enforcement

G0 Let G0 be the policy enforcement game as de-
scribed above for bit b = 0 instantiated with our
protocol as described in Appendix A.

G1 As in G0, but in GuardianResponse, before com-
puting ctu, check msg /∈ L and policy = policy∗

and u = u∗ and if so, set Decblobs[j] = ⊥,
j = j + 1 and immediately return policy , j.

31

This is identical, since the game will in any case
check this condition in GuardianReleaseResponse
before releasing Decblobs[j] and return ⊥ if it is
not true.

G2 As in G1, but store the ct1 formed in
HonestUserStoreSecret as ct∗1, and in
GuardianResponse, in addition to the checks
added in G1, also check whether ct1 = ct∗1.

This is indistinguishable by the correctness of the
encryption scheme, since we already are checking
whether the decrypted policy = policy∗ and ct∗1
is an encryption of policy∗.

G3 As in G2 but store (sk1, u, policy , comrand1, ct1)
used in UserStoreSecret in OHonestUserStoreSecret

as (sk∗1, u
∗, policy∗, comrand∗1, ct

∗
1). (Note that

u∗, policy∗ match those already stored by the
game.) If ct∗1 appears as part of servermsg
passed to OHonestGuardianResponse, do not de-
crypt, but instead just return use the stored
(sk∗1, u

∗, policy∗, comrand∗1).

This is indistinguishable by correctness of the
symmetric encryption scheme.

G4 As in G3 but replace the ct1 generated as part
of UserStoreSecret in OHonestUserStoreSecret with an
encryption of a random string.

This is indistinguishable by CCA security of the
symmetric encryption scheme.

G5 As in G4, but if ct∗1 appears in the servermsg
passed to OHonestGuardianResponse, store the result-
ing ctu as ct∗u. If ct

∗
u appears in a decblob passed

to OHonestUserCompleteRecovery, do not decrypt, just
use the stored (sk∗1, comrand∗1).

This is indistinguishable by correctness of the
PKE.

G6 As in G5, but if ct∗1 appears in the servermsg
passed to OHonestGuardianResponse, generate the re-
sulting ctu by encrypting a random message and
store it as ct∗u.

Recall that, by the change in G1, before forming
ctu we check that msg ∈ L. This means this is
an encryption under an honestly generated public

key, so G5 and G6 are indistinguishable by CCA
security of the PKE. (This technically requires
hybrids or multi-user security, but is straightfor-
ward.)

G7 As in G6, but if the storedblob given as part of
the input receipt in HonestUserCompleteRecovery
is different from that generated in
HonestUserStoreSecret, immediately return
⊥.
This is identical by the ledger functionality.

G8 As in G7 but in HonestUserCompleteRecovery,
instead of checking h1 = com(sk1, randcom1),
check if ctu = ct∗u.

These games are identical. Recall that if ctu =
ct∗u we use the stored values sk∗1, randcom

∗
1 in-

stead of decrypting, and by the change in game
G7, if we reach this check we know h1 = h∗

1. So
in game G8, we check h∗

1 = com(sk∗1, randcom
∗
1)

which is true by construction. Thus, removing
this check makes no diffence.

G9 As in G8, but in HonestUserStoreSecret, replace
h1 with a com(0, randcom′) for freshly chosen
randcom′.

Note that randcom1 is no longer used anywhere
in game G8, so this follows from hiding of the
commitment

G10 As in G9, but store sk2, h2 generated in
HonestUserStoreSecret as sk∗2, h

∗
2. If the checks

pass in HonestUserCompleteRecovery, but the re-
sulting sk2 ̸= sk∗2, abort.

Note that we have already argued that if the
checks pass, storedblob = storedblob∗, and hence
h2 = h∗

2 so this is indistinguishable by binding of
the commitment scheme.

G11 As in G10 but store sk generated
in HonestUserStoreSecret as sk∗. In
HonestUserCompleteRecovery, instead of de-
crypting with sk∗1 ⊕ sk2, decrypt with the stored
sk∗.

Since by the change in G10 we have sk2 = sk∗2,
and by construction of UserStoreSecret we have
sk∗ = sk∗1 ⊕ sk∗2, this is identical.

32

G12 As in G11 but instead of generating sk∗1, sk
∗
2 as

shares of sk∗, simply sample random sk∗2.

Note that sk∗1 is no longer used anywhere in game
G11, so this is identically distributed.

G13 As in G12, but in HonestUserCompleteRecovery,
if all checks pass up to the point of decrypting
cts, simply return 0 (i.e. s ̸= ⊥)
This is indistinguishable by correctness of the
SKE - decryption will never fail since the cipher-
text was correctly encrypted under sk∗.

G14 As in G13, but in HonestUserStoreSecret, choose
random r and compute cts as an encryption of
r instead of s.

Note that sk is now only used to generate cts, so
the follows from CPA security of the SKE.

G15 to G27 Repeat the above changes in reverse.

G28 The transparency game with b = 1.

Robustness

G0 Same as the Robustness game, where all the al-
gorithms are instantiated with our protocol im-
plementation.

G1 Same as before, except the following: In
UserCompleteRecovery, parse receipt as
storedblob′, handlerecovery, handlestorage. Re-
trieve the row for u from T2 to get storedblob. If
storedblob ̸= storedblob′, abort.

These two games are identical by the ledger L
functionality.

G2 Same as the previous game, except the following:
in UserCompleteRecovery, use storedblob from T2.

These two games are identically distributed.

G3 Same as before, except the following: In
UserStoreSecret, when sk1, sk2 are generated,
store them in T1 and T2 as well. More specif-
ically, store (u, s, sk1, sk2, stu, storedblob) in T1

and (u, s, sk1, sk2, stu, storedblob, success) in T2.

These two games are identically distributed.

G4 Same as before, except the following: In
UserCompleteRecovery, decrypt decblobi using
sku to obtain (sk′i, comrandi) for i ∈ {1, 2}.
Check that hi = com(ski, comrandi). In addi-
tion, check that sk′1 = sk1, sk

′
2 = sk2, where

sk1, sk2 are stored in the row of u in T2.

If an adversary can distinguish between G3 and
G4, this means, we can use it to break the bind-
ing property of the commitment scheme.

G5 Same as above, except the following: In
UserCompleteRecovery, compute sk ← sk1 ⊕ sk2
where sk1, sk2 are stored in the row of u in T2.
Use sk to decrypt cts.

These two games are identically distributed.

G6 Same as above, except the following: instead
of decrypting cts, directly output s where s is
stored in the row of u in Table T2.

These two games are identically distributed by
the correctness of the symmetric encryption
scheme SKE. This concludes our proof.

History Consistency This follows di-
rectly from the Ledger functionality.
VerifyRecoveryHistory(u, contexts, receipt) only
accepts contexts if it is consistent with the latest v⃗
stored in the ledger under u||recovery. According
to the ledger, the v⃗ can only change by having
new elements added to the end . This means that
contexts accepted in earlier queries must be a prefix
of the contexts accepted in later queries. History
consistency follows directly.

33

Property Server Guardians
User Privacy Honest Honest
Confidentiality Honest can be Malicious

Policy-Enforcement can be Malicious ≥ 1 Honest
Transparency can be Malicious ≥ 1 Honest
Robustness can be Malicious can be Malicious

History Consistency can be Malicious can be Malicious

Table 2: This table captures the trust assumptions
for each of the security properties. In all properties
we assume some of the users in the system are mali-
cious and can collude with the malicious parties.

34

	Introduction
	Acsesor
	Contributions

	The Acsesor Framework
	The Algorithms
	Security and Confidentiality Guarantees
	Guardians
	Ledger

	Our construction
	Construction overview
	Instantiating Ledger functionality.

	Performance
	Policies and Extensions
	Secret Management with Acsesor
	Password Management
	Cryptocurrency Wallets

	Related Work
	Conclusion
	Detailed Construction
	Security Proof Sketches
	Formal Security Definitions and Proofs
	Security Definitions
	User Privacy
	Confidentiality
	Transparency
	Policy Enforcement
	Robustness
	History consistency

	Security Proofs

