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Abstract. In data-intensive private computing applications various relations ap-

pear as or can be reduced to matrix relations. In this paper we investigate two 

problems related to constructing the zero-knowledge argument (ZKA) protocols 

for matrix relations (in commit-and-prove paradigm).  

In the first part, we establish the ZKA for some bilinear matrix relations over 

Fp. The relations in consideration include (1) general forms of bilinear relations 

with two witness matrices and some most important special cases. (2) some 

special forms of bilinear relations with three or four witness matrices. (3) ei-

genvalue relation. In private computing tasks various important relations are in-

stances or special cases of these relations, e.g., matrix multiplicative relation, 

inverse relation, similarity relation, some structure decomposition relation and 

some isomorphic relations for lattices and graphs, etc. Instead of applying the 

general linearization approach to dealing with these non-linear relations, our 

approach is matrix-specific. The matrix equation is treated as a tensor identity 

and probabilistic-equivalent reduction techniques (amortization) are widely ap-

plied to reduce non-linear matrix relations to vector nonlinear relations. With 

the author’s knowledge, currently there are no other systematic works on ZKA 

for nonlinear matrix relations. Our approach significantly outperforms the gen-

eral linearization approach in all important performances, e.g., for n-by-t matrix 

witnesses the required size of c.r.s (only used as the public-key for commit-

ment) can be compressed by 2nt times and the number of rounds, group and 

field elements in messages are all decreased by ~1/2 for large-size matrix.    

In the second part, we enhance knowledge-soundness of ZKA for the linear ma-

trix relation over the ground field Fp. By treating the matrix in 𝐹𝑝
𝑛×𝑡𝑑  as a nt-

dimensional vector over the d-th extended field over Fp and applying appropri-

ate reductions, we decrease the knowledge-error of the original ZKA over Fp 

from O(1/p) down to O(1/pd). This is comparable to the general parallel repeti-

tion approach which improves knowledge-error to the same degree, but our ap-

proach (matrix-specific) at the same time significantly improves other perfor-

mances, e.g., smaller-sized c.r.s., fewer rounds and shorter messages.   
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1 Introduction   

1.1 Motivations and Related Works      

Efficient zero-knowledge proofs for various relations are crucial techniques to support 

multiparty private computing tasks[1-5]. In data-intensive private computation, lots of 

data relations appear in the form of high dimensional vector or large-size matrix equa-

tions[3][4] and efficient zero-knowledge proof protocols (ZKP) with low message 

complexity are highly valuable to support these applications in complicated network 

environment or transformation into non-interactive schemes.   

   Recently, some innovative techniques have been developed in [6][7] to construct 

highly efficient ZKPs for linear vector relation aT
u = b and inner product relation uT

v 

= w over finite field. The constructed ZKPs have message complexity of only O(logn) 

were n is the dimension of witness space, significantly improving previous works in 

performance. This approach was further developed in [8] to construct ZKP for quad-

ratic relation uT
Au + b

T
u = c over finite field with logarithmic message complexity 

and lots of other improvements in performance. This approach was also applied to 

constructing ZKPs with logarithmic message complexity for bilinear relations on 

groups with pairing structure[9][10] and partial-knowledge proof protocols[11]. 

   After succeeding in developing efficient ZKPs for linear vector relations over fi-

nite field, it is natural to establish efficient ZKPs for nonlinear relations over finite 

field and other arithmetic systems, e.g., finite rings ZM or integer ring Z. In this direc-

tion, bilinear relation is the simplest non-linear relation which efficient ZKP construc-

tion was partially solved, e.g., [6][8] has established the protocols with logarithmic 

message complexity in some special cases. More specifically, the protocols construct-

ed in [6][7] are only for inner-product relation, and the protocols in [8] are only for 

quadratic relation with rank-1 coefficient matrix. So far with the author’s knowledge 

there are no direct and systematic works on non-linear vector or matrix relations. In 

addition, although any (linear or non-linear) matrix relation can be dealt with by 

simply treating the matrix as a vector, some more direct, matrix-oriented approach 

may be still necessary to significantly improve the performance relative to the general 

approach. For non-linear relations, currently the most common and effective approach 

is linearization[12]. In this approach, any relation over the finite field can be equiva-

lently transformed into a (maybe very high dimensional) linear relation through se-

crete-sharing techniques. On the other hand, as indicated in [9], the compilation from 

nonlinear to linear relation comes at the price of losing conceptual simplicity and 

modularity in protocol design. Therefore, developing direct approach for specific non-

linear relation is still valuable in theory and applications. [9][10][11] are heuristic 

examples in this direction.  

        In many situations, parallel repetition is a simple and effective way to enhance 

the interactive proof/argument protocols’ knowledge-soundness. Recently [21] proved 

that t-fold parallel repetition of any special-sound multi-round public-coin interactive 

proof/argument indeed (and optimally) reduces the knowledge-error from κ down to 

κt. This elegant result is general, particularly valuable for those public-coin protocols 

operating over relatively small challenge spaces. However, in some special situations 
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is there any simpler way to (flexibly and significantly) decrease the knowledge-error 

just in a single protocol invocation? Another motivation to investigate this problem is 

due to the fact recently proved in [22]: when applying Fiat-Shamir transform to t-fold 

parallel repetition of a (k1,…,kµ)-special-sound interactive proof/argument to get the 

non-interactive scheme, there exists an attack resulting a security loss ~Qμ/μμ+t in 

knowledge-error (Q is the number of oracle-queries by the attacker) , while the trans-

form of one-invocation of the protocol only suffers a loss linearly in Q. Therefore, the 

method to significantly decrease knowledge-error other than by parallel-repetition 

will be helpful for constructing efficient non-interactive proof/argument schemes in 

practice. In the second part of this work we present a positive and efficient solution to 

this question for linear matrix relations over Fp.  

1.2 Contributions      

In the first part of this paper, we establish the zero-knowledge argument (ZKA) pro-

tocols for a family of bilinear matrix relations over Fp. The investigated matrix rela-

tions include:  

(1)  General forms of bilinear relations with two witness matrices and some most 

important special cases: 

U
T
QV + V

 T
RU + AUB + CVD = S, UQV + VRU + AUB + CVD = S 

where U and V are witnesses (sec.3.1~3.4).  

(2)   Some special forms of bilinear relations with three or four witness matrices:  

U
T
QW = W

T
RV+S, UQW = WRV+S, U1

T
QU2 = V1

T
RV2 + S 

where U,V,W or U1,U2,V1,V2 are witnesses (sec. 3.5~3.6). 

(3)   Eigenvalue relation Ux = λx where U and x are witnesses (sec.3.7). 

In private computing tasks various important relations are instances or special 

cases of these matrix relations, e.g., the isomorphic relation between two lattices is a 

special case of relation UT
QV = S (sec.3.1) with U = V while Q and S being the Gra-

ham matrices of the lattices; the multiplicative and inverse relations of matrices U and 

V are special cases of UQV = S(sec.3.2) when Q = In and Q = S = In  respectively; the 

similarity relation between matrices U and V is a special case of UQW = WRV+S 

(sec.3.5) when S = O and Q = R = In . The relation with four witness matrices dis-

cussed in sec.3.6 is useful for proving some matrix decomposition with special struc-

tural features, e.g., diagonalization, upper/lower triangular decomposition, etc. where 

all factor matrices are in privacy.  

        Instead of applying the general linearization approach to dealing with nonlinear 

relations, our approach is matrix-specific. In our approach a nonlinear matrix equation 

is regarded as a tensor identity and probabilistic-equivalence reduction techniques 

(amortization) are widely applied to reduce these relations to a simple vector bilinear 

relation uT
Dv = y in a space of higher dimension where u, v are vector witnesses,  D, y 

are public and D is diagonal. On basis of the ZKA protocol for this vector bilinear 

relation, all the investigated matrix relations can be completely established.    

With the author’s knowledge, currently there is no other direct and systematic 

works on ZKA for nonlinear matrix relations. Compared with the general linearization 

approach, important performances of these ZKA protocols for matrix bilinear rela-

tions constructed in our approach are significantly improved, as indicated by table 2 
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and 3. For example, for n-by-t matrix witnesses the required size of c.r.s (only used as 

the public-key for commitment) can be compressed by 2nt times; when n >> t or 

t>>n, the number of rounds, group and field elements in messages are all decreased 

by ~ 1/2; when n ~ t >>1 (e.g., square witnesses) these are also decreased by ~1/2.  In 

summary, our approach significantly outperforms the general linearization approach 

in all aspects, a result of making use of specific features of matrix algebra. 

In the second part of this work (sec.5), by extending the tensorization technique 

used in sec.3 we present a simple method to flexibly and significantly decrease the 

knowledge-error of the ZKA for matrix relation over Fp just in a single protocol invo-

cation. As the most fundamental relation, we investigate the linear matrix relation 

over Fp with matrix witness in 𝐹𝑝
𝑁×𝑡𝑑(d determined by the target knowledge-error). 

Compared with the general parallel repetition approach, (with the same knowledge-

error ~ 1/pd) our approach outperforms it with the number of rounds decreased by 

2logd, total number of Fp elements decreased by dlogd and G elements decreased by 

2dlogd. Also the size of c.r.s in our approach is reduced by d times. Although specific 

to linear matrix relation, this positive result is interesting and it is worthwhile to in-

vestigate non-linear matrix relations in the same direction in future works.    

2 Preliminaries   

Notations and Conventions  λ usually represents the security parameter, poly(λ) 

represents a polynomial in λ. A function ε(λ) is called asymptotically negligible or 

simply negligible if  lim𝜆→∞ 𝑝𝑜𝑙𝑦(𝜆)ε(λ) = 0.   

P.P.T. means Probabilistic Polynomial Time.  

u
 R
←J means a random variable u is sampled on a set J under uniform distribution. 

Two random variable ensembles {Xλ} and {Yλ} are called statistically indistin-

guishable if the differences of their distribution is negligible:   

 ∑ |𝑃[𝑋𝜆 = 𝑢] − 𝑃[𝑌𝜆 = 𝑢]|𝑢  ≤ ε(λ)  

{Xλ} and {Yλ} are called computationally indistinguishable if for any P.P.T. algo-

rithm A the following inequality holds where the function ε(λ) is negligible.  

|P[A(Xλ)=1] – P[A(Yλ)=1]| ≤ ε(λ)  

 

2.1 Zero-knowledge Proofs/Arguments      

A binary relation R is NP-class if there exists a polynomial-time algorithm A to de-

cide whether (x,w) is in R. LR ≡ { x: there exists (x,w) ∊ R}.   

In an interactive proof system (P,V) where P and V are P.P.T prover and verifier, 

σ represents the common reference string(c.r.s.), x represents the public information 

for P and V, w represents the private information only for P, i.e., the witness, 

<P(w);V>σ(x) represents the output of V valued in {0,1} after the interaction with P 

on input x and c.r.s. σ, Tr<P,V>σ(x) the trace during the interaction between P and V.  

These notations have the same meaning for any interactive algorithms A and B.  
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Definition 1 (Zero-knowledge Proof)  For a relation R and some given function κ(λ), 

an interactive proof system (P,V) is defined as a zero-knowledge proof of  knowledge 

for R, ZKPoK hereafter, if it has all the following properties: 

(1) Complete  For any (x,w)∊R there holds P[<P(w);V>σ(x) = 1] = 1.  

(2) Knowledge-sound with knowledge-error κ(λ)  There exists a polynomial q(.) 

and an algorithm Ext (called extractor) with expected polynomial time complexity, 

such that for any (maybe dishonest) prover P* which can be rewound by Ext there 

holds  

P[w*←ExtP*(σ, x, Tr<P*,V>σ(x)): (x,w*)∊R] ≥ (μ(x) - κ(|x|))/q(|x|) 

where μ(x) ≡ P[<P*;V>σ(x)=1] ≥ κ(|x|).   

(3) Zero-knowledge  There exists a P.P.T. algorithm S, called simulator, such that for 

any (maybe dishonest) verifier V*, the output of S(σ,x) and Tr<P,V*>σ(x) are statisti-

cally indistinguishable for any x∊LR.  

For knowledge soundness, there is an equivalent definition ([18] sec. 4.7) that on 

input of x and Tr<P*,V>σ(x) with <P*,V>σ(x)=1 and Ext can rewind P*, Ext outputs a 

witness w*: (x,w*)∊R with the expected time at most q(|x|)/(μ(x)-κ(|x|)).  

If knowledge soundness only holds for P.P.T. prover P*, the proof system is 

called knowledge argument, notated by ZKAoK hereafter.   

Definition 2 (∑-Protocol and generalized ∑-Protocol)  An interactive proof system 

(P,V) for relation R is called a ∑-protocol, if it has 3 rounds with the first message 

from P to V and the second message just being a random coin from V to P independ-

ent of the session context.  

An interactive proof system (P,V) for relation R is called a generalized ∑-

protocol, if it has 2k+1 rounds with the first message from P to V and any messages 

from V to P just being random coins independent of each other and session context.  

A generalized ∑-protocol for relation R is called special honest verifier zero-

knowledge (SHVZK) if there exists a P.P.T. algorithm S such that for any verifier V*, 

the real trace Tr<P,V*>σ(x) and the output of S on input (σ,x;e1,…,ek) have the same 

distribution for any x∊LR and  independent random coins e1,…,ek .  

Definition 3 ((μ1,…, μk)-special soundness and session-tree for a generalized ∑-

Protocol)  A (μ1,…, μk)-session-tree, denoted by Tσ(x), for the proof system of rela-

tion R with c.r.s. σ is a tree in which:  

(1) Each node is associated with a message instance from P to V in the interaction 

between P and V with public information x, in particular the root is with the first 

message in the interaction.  

(2) Each edge is a random coin from V to P.  

(3) At level-i (the root being at level-1) each node α has μi edges and the random 

coin instances eα/1,…, eα/μi associated with these edges are distinct. The down-

stream node of each edge is associated with the message instance of P in response 

to the random coin.  

Each integer μi is called the soundness factor of the i-th round. 
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   Obviously, each path from the root to a leaf in the tree Tσ(x) is a complete session 

instance, i.e., a trace. The number of paths in a tree Tσ(x) is μ1… μk. If the verifier V 

outputs 1 on all these paths, the tree Tσ(x) is called accepting.  

A generalized ∑-protocol is called (μ1,…, μk)-special sound, if there exists a 

P.P.T. algorithm (extractor) which with overwhelming probability outputs a witness 

w*: (x,w*)∊R on input of σ, x and the accepting tree Tσ(x).   

Recently [13] proved a fundamental fact that (μ1,…, μk)-soundness implies 

knowledge soundness, a general fact without imposing any restrictions on the chal-

lenge set where the random coins are sampled.  

 

2.2 Commitment Scheme      

Definition 4 (Commitment Scheme) A Commitment scheme CS ≡ (CGen, Cmt, 

Cvf) is composed of three P.P.T. algorithms with the following properties: 

(1) Complete  For any message x there holds  

P[pk←CGen(λ); (c,d)←Cmt(pk|x): Cvf(pk|c,x,d)=1]=1 

(2) Binding   There exists a negligible function ε(λ) s.t. for any P.P.T. algorithm A:  

P[pk←CGen(λ);(c,x1,x2,d1,d2)←A(pk):Cvf(pk|c,x1,d1)=1˄Cvf(pk|c,x2,d2)=1˄x1≠x2]≤ε(λ) 

(3) Hiding  For any pk generated by CGen and any messages x1, x2 in the same size, 

the variables  c1 : (c1,d1)←Cmt(pk|x1) and c2 : (c2,d2)←Cmt(pk|x2) has the same distri-

bution. 

   

2.3 Discrete Logarithm Hardness and Pedersen Commitment Scheme      

This paper deals with zero-knowledge arguments for linear algebraic relations over 

finite fields on basis of discrete logarithm problem(DLP)’s hardness. More exactly, all 

our ZKAoK protocols are established on the ensemble of groups {Gλ} where each Gλ 

is a cyclic group of prime order and there exists a negligible function ε(λ) s.t. for any 

P.P.T. algorithm A there holds  

    P[g,h 
 R
← Gλ; u ← A(g,h): h = gu ] ≤ ε(λ)  

For n-dimensional vector u ≡ (u1,…, un) over finite field Fp and n-tuple g ≡ 

(g1,…, gn) over group G, we frequently denote the expression 𝑔1
𝑢1…𝑔𝑛

𝑢𝑛 as g[u]; for 

scalar e in Fp, we denote 𝑔1
𝑒…𝑔𝑛

𝑒 as g[e]. With this notation, DLP hardness is equiva-

lent to the following hardness statement where 1 is the unit element in group G, A is 

any P.P.T. algorithm and <Gλ> is the information encoded for the operations on Gλ:  

P[g 
 R
← Gλ; u ← A(<Gλ>, g): g[u] = 1 and u≠0 mod |Gλ|]  ≤  ε(λ) 

Frequently we say “group G with DLP-hardness property” instead of  the above 

exact but long statement. Under this statement, Pedersen commitment scheme [19] 

has all properties specified in definition 4. In Pedersen scheme, CGen(λ) outputs pk = 

(h,g) and Cmt(pk,(r,u)) outputs (c,d) where c = hr
g[u] and d = (r,u). 
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Besides the security properties, the algebraic homeomorphism properties of 

Pedersen scheme are also fundamental to all our ZKAoK protocol constructions.  

Generalization to Matrix Commitment Pedersen scheme can be straightforwardly general-

ized to committing to the matrix.  Formally, let:  

        CGen(λ) outputs the public-key pk = (h,g) as a system of randomly independent 

elements in G where:  

g = [gij: i=1,…,n, j=1,…,t]  

Cmt(pk|U,r) outputs (c,d) on input of the matrix U = [u1,…,ut]∈ 𝐹𝑝
𝑛×𝑡 and ran-

domness r where:  

c = hr∏ ∏ 𝑔
𝑖𝑗

𝑈𝑖𝑗𝑛
𝑗=1

𝑛
𝑖=1 , d = (U,r)                                  (2.1) 

         Cmt(pk|c,U,d) outputs 1 if  the equality (2.1) holds for (pk, c, U, d).  

Note that there is a bijective correspondence between a matrix U = [u1,…,ut] ∈ 𝐹𝑝
𝑛×𝑡 

and a column vector  

u
* = [

𝒖1
:
𝒖𝑡
] ∈ 𝐹𝑝

𝑛𝑡                                          (2.2) 

i.e., uk
* = Uij with the bijective correspondence between each {1,…,nt}∋k = i-1+(j-1)n and (i,j): 

i = 1,…,n, j=1,…,t. On basis of this fact and the correspondence gk
* = gij, we have : 

Cmt(pk|U,r) = Cmt(pk*|(u*,r)                                 (2.3) 

It’s easy to prove that generalized commitment scheme is perfect-hiding and computa-

tional-binding. Properties (2.1)~(2.3) will be widely used in subsequent derivations. 

Both notations Cmt(pk|U,r) and Cmt(pk*|(u*,r) will be used inter-changeably.  

2.4 Probabilistic Equivalence Reduction       

Two relations R(α|x;u) and S(β|y;v) are called probabilistically equivalent to each 

other if there exists negligible functions ε1(λ) and ε2(λ) such that  

P[ R(α|x;u) | S(β|y;v)] ≥ 1- ε1(λ)  and  P[ S(β|y;v) | R(α|x;u)] ≥ 1- ε2(λ) 

This equivalence is denoted by R(α|x;u)
 P 
↔S(β|y;v). In sections 3 and 5 probabilistic 

equivalence reductions are widely used where frequently one of ε1(λ) or ε2(λ) is 0, i.e., 

the reduction is deterministic in one direction but probabilistic in the other.  

       Let the reduction from R to S is deterministic, i.e., P[S(β|y;v)| R(α|x;u)]=1, while 

on the other direction it is probabilistic: P[R(α|x;u) | S(β|yρ;vρ)] ≥ 1- ε1(λ) where ρ is 

the random variable. If there exists a P.P.T. algorithm A which can compute the wit-

ness u of R from at most m witnesses vρ1,…, vρm of S with overwhelming probability,  

we say this reduction has soundness factor m and denote this by R 
 P/𝑚 
↔  S. 

Some detailed analysis and useful examples of probabilistic reduction in zero-

knowledge proofs can be seen in [12].  
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3 Equivalence Reductions for Bilinear Matrix Relations 

In this section we reduce a family of bilinear matrix relations over Fp to the bilinear 

vector relation uT
Dv = y where u, v are vector witnesses, D and y are public and D is 

diagonal. Many frequently appeared important relations in private computations are 

instances or special cases of these matrix relations, e.g., the isomorphic relation be-

tween two lattices is a special case of relation UT
QV = Y (sec.3.1) with U = V while 

Q and Y being the Graham matrices of the lattices; the multiplicative and inverse 

relations of matrices U and V are special cases of UQV = Y(sec.3.2) when Q = In and 

Q = Y = In  respectively; the similarity relation between matrices U and V is a special 

case of UQW = WRV+S (sec.3.5) when S = O and Q = R = In .  

          We work in the commit-and-prove paradigm that all commitments to witnesses 

are published prior to running any protocols. Since the commitments are independent 

of specific parameter values used by any protocol instance, they can be reused in dif-

ferent protocol invocation when necessary.  

3.1 Equivalence Reduction for  U
T
QV = Y    

Consider the bilinear matrix relation:   

 U
T
QV = Y                                               (3.1) 

where U,V∈ 𝐹𝑝
𝑛×𝑡, Q ∈ 𝐹𝑝

𝑛×𝑛, Y∈ 𝐹𝑝
𝑡×𝑡, n and t are any integer. U and V are witnesses 

while Q and Y are public.  

         For simplicity, Q is assumed diagonal in this and next section. However, this 
assumption is not essential.  Non-diagonal case will be dealt with in sec. 3.3.  

         Note that for t = 1, (3.1) is just a bilinear vector relation over Fp. For t = 2, i.e., 

𝐹𝑝
𝑛×2 ∋U ≡ [u1,u2] and V ≡ [v1,v2] with ui,vi ∊𝐹𝑝

𝑛, (3.1) has the form: 

[
𝒖𝟏
T

𝒖𝟏
T
]𝐐[v1,v2] = [

𝑦11 𝑦12
𝑦21 𝑦22

]                                 (3.2) 

or equivalently ˄𝑖,𝑗=1
2  ui

T
Qvj

 = yi,j. Given any ρ 
𝑅
← Fp randomly sampled by the verifi-

er, this relation is equivalent with probability > 1-3/p to the following bilinear equa-

tion: 

(u1+ρu 2)
T
Q(v1+ρ2

v2) = y11+ρy21+ρ2y12+ρ3y22 ≡ yρ                 

which is furthermore equivalent to: 

[u1
T, u2

T] [
𝐐 𝜌2𝐐

𝜌𝐐 𝜌3𝐐
] [
𝒗𝟏
𝒗𝟐
] = yρ                                            (3.3) 

Let u*,v*∈ 𝐹𝑝
2𝑛 and Qρ

*∈ 𝐹𝑝
2𝑛×2𝑛 be the vectors and matrix in (3.3), i.e.:  
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u
* ≡ [

𝒖1
𝒖2
] = 

[
 
 
 
 
 
𝒖1(1)
:

𝒖1(𝑛)
𝒖2(1)
:

𝒖2(𝑛)]
 
 
 
 
 

,  v* ≡ [
𝒗1
𝒗2
] = 

[
 
 
 
 
 
𝒗1(1)
:

𝒗1(𝑛)
𝒗𝟐(1)
:

𝒗2(𝑛)]
 
 
 
 
 

,  Qρ
* ≡ [

𝐐 𝜌2𝐐

𝜌𝐐 𝜌3𝐐
]  

As a result, the bilinear matrix relation (3.1) is reduced to a bilinear vector relation 

(3.3). 

For any t>1, i.e., 𝐹𝑝
𝑛×𝑡 ∋U ≡ [u1,…,ut] and v ≡ [v1,…,vt] with ui, vi ∊𝐹𝑝

𝑛, applying 

the above approach (probabilistic-equivalently) reduces (3.1) to: 

u
*T

Qρ
*
v

* = yρ                                                                         (3.4) 

where u*,v*∈ 𝐹𝑝
𝑡𝑛,Qρ

*∈ 𝐹𝑝
𝑡𝑛×𝑡𝑛:  

u
*≡[

𝒖1
⋮
𝒖𝑡

]=

[
 
 
 
 
 
 
𝒖1(1)
:

𝒖1(𝑛)
:
:

𝒖𝑡(1)
:

𝒖𝑡(𝑛)]
 
 
 
 
 
 

,  v*≡[

𝒗1
⋮
𝒗𝑡

]=

[
 
 
 
 
 
 
𝒗1(1)
:

𝒗1(𝑛)
:
:

𝒗𝑡(1)
:

𝒗𝑡(𝑛)]
 
 
 
 
 
 

 , Qρ
* ≡ 

[
 
 
 
 𝐐     𝜌𝒕𝐐 … 𝜌(𝒕−𝟏)𝒕𝐐

𝜌𝐐 𝜌𝒕+𝟏𝐐 … 𝜌(𝒕−𝟏)𝒕+𝟏𝐐

⋮ ⋮
𝜌𝒕−𝟏𝐐 𝜌𝟐𝒕−𝟏𝐐 …

⋮

𝜌𝒕
𝟐−𝟏𝐐 ]

 
 
 
 

 (3.5) 

The above reductions also indicate that committing to vectors u
*,v* is a reasonable 

way to commit to the matrix witnesses U and V, so the generalized scheme for matrix 

specified in sec.2.4 is used here and hereafter. Formally, we set the c.r.s σ ≡ [G, g, h, 

h, p] with g ≡ (g1,1,…, gt,n) and h ≡ (h1,1,…, ht,n), compute the commitment W to wit-

nesses (U,V) as: 

W = Cmt(σ|U,V;r) ≡ Cmt(σ|u*,v*;r) 

 ≡ hrg1,1[u1(1)]…gt,n[ut(n)]h1,1[v1(1)]…ht,n[vt(n)]                                            (3.6) 

          In order to construct the efficient ZKA protocol for (3.4), Qρ
*’s diagonality is 

important. However, in general Qρ
* is not diagonal even  Q is. This issue can be han-

dled in the following way with the observation that it is actually a tensor product: 

Qρ
* = Δ(ρ)⨶Q                                                                         (3.7) 

where: 

Δ(ρ) ≡ [ρ(t), ρt
ρ(t), ρ2t

ρ(t),…, ρt(t-1)
ρ(t)] ∈ 𝐹𝑝

𝑡×𝑡,  ρ(t)T ≡ [1, ρ, ρ2,…, ρt-1] ∈ F𝑝
𝑡  

According to the general theory on quadratic forms over arbitrary fields[20], 

there exist non-singular matrices Φρ, Ψρ∊𝐹𝑝
𝑡×𝑡  and a diagonal matrix Dρ all of which 

can be efficiently computed such that ( called Smith form):  

Δ(ρ) = Φρ
T
DρΨρ                                              (3.8) 

Combining (3.8)~(3.9) and the well-known tensor identity (AB)⨶(CD) = 

(A⨶C)(B⨶D), one can obtain the diagonal decomposition of  Qρ
* as: 
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Qρ
* = (Φρ⨶In)T(Dρ⨶Q)(Ψρ⨶In)                              (3.9) 

In summary, not only can Qρ
* be diagonalized but also its diagonalization complexity 

only depends on that of diagonalizing  a relatively small matrix Δ(ρ). Note that Δ(ρ) is 

of rank 1 so its Smith form has only one non-zero entry and its diagonalization can be 

even pre-computed off-line by the verifier.  

        Now we use simplified notations to represent (3.9) as: 

Qρ
* = ΦT

DQΨ                                               (3.10) 

where DQ ∊𝐹𝑝
𝑛𝑡×𝑛𝑡 is diagonal. Let the new witnesses �̅� and �̅� be:   

�̅� = Φu
*, �̅� = Ψv

*                                            (3.11) 

Simple calculations demonstrate:  

u
*T

Qρ
*
v

*
 = �̅�T

DQ�̅�                                              (3.12) 

                                   �̅�[�̅�] = g[u*], �̅�[�̅�] = h[v*]                                         (3.13) 

where:                  �̅�𝜇 = ∏ 𝑔𝜈
𝛷−1(𝜇,𝜈)𝑛𝑡

𝜈=1 ,  ℎ̅𝜇  = ∏ ℎ𝜈
𝛹−1(𝜇,𝜈)𝑛𝑡

𝜈=1                               (3.14) 

μ, ν =1,…,nt, each μ=i-1+(j-1)n one-to-one corresponds to (i,j): i=1,…,n, j=1,…,t and 

similarly for ν. Note that if DLP is hard for (g,h,h) so is it for (�̅�,�̅�, ℎ), which means 

both of them are valid public-keys for the commitment scheme (or c.r.s.). Therefore 

the bilinear relation (3.4) with witnesses u
* and v

* is probabilistic-equivalently re-

duced to a relation with witnesses �̅�, �̅� and diagonal coefficient matrix DQ:  

�̅�T
DQ�̅�

 = yρ                                                   (3.15) 

As a result, the bilinear matrix relation (3.1) is equivalently reduced with probabil-

ity > 1- nt/p to a bilinear vector relation in space Fp
nt.  More formally:  

Theorem 1   Define the bilinear matrix relation over Fp as (variables in the frame are 

witnesses):  

MBLR
I(σ|W,Y,Q; r,U,V): W = Cmt(σ|U,V;r) ˄ UT

QV = Y          (3.16) 

where Cmt is the Pedersen commitment scheme with public-key σ ≡ [G, g, h, h, p] 

(also used as c.r.s.), 𝐹𝑝
𝑛×𝑡 ∋U ≡ [u1,…,ut] and V ≡ [v1,…,vt] with ui, vi ∊𝐹𝑝

𝑛,Q∊𝐹𝑝
𝑛×𝑛  

is diagonal, Y∊𝐹𝑝
𝑡×𝑡, then MBLR

I is probabilistic-equivalent to the following relation 

with soundness factor nt:  

VBLR
I(�̅�|�̅�, yρ, DQ; r, �̅�, �̅�):  �̅�= Cmt(�̅�|�̅�, �̅�; r) ˄ �̅�T

DQ�̅�
 = yρ       (3.17) 

where ρ is a randomness sampled by the verifier, �̅�, �̅�∊Fp
tn, yρ ≡ ∑ 𝑦𝑖,𝑗

𝑡
𝑖,𝑗=1 𝜌𝑖−1+(𝑗−1)𝑡, 

diagonal DQ =Dρ⨶Q is specified in (3.10), σ̅ ≡ [G, �̅�,�̅�,h,p] with �̅� and �̅� computed 

via (3.14), W  = �̅�. The witnesses of MBLRI and VBLRI are computationally related 

via (3.11) and (3.5).  



11 

3.2 Equivalence Reduction for  UQV = Y   

Consider the relation with witnesses U,V∊𝐹𝑝
𝑛×𝑛 and Q∈ 𝐹𝑝

𝑛×𝑛 diagonal:  

UQV = Y                                               (3.18) 

which component-wise form is:   

∑ 𝑄𝑘𝑙
𝑛
𝑘,𝑙=1 𝑈𝑖𝑘𝑉𝑙𝑗  = yij       i, j = 1,…,n                                       (3.19) 

Given any random element ρ sampled in the field, by multiplying each equality on 

both sides with ρi-1+(j-1)n and then making a summation, one has:  

∑ 𝜌𝑖−1+(𝑗−1)𝑛𝑄𝑘𝑙
𝑛
𝑘,𝑖,𝑙,𝑗=1 𝑈𝑖𝑘𝑉𝑙𝑗  = Yρ                                       (3.20) 

where                                        Yρ ≡ ∑ 𝑦𝑖𝑗  𝜌
𝑖−1+(𝑗−1)𝑛𝑛

𝑖,𝑗=1                                  (3.21) 

         In summary, bilinear matrix relation (3.18) is equivalent with probability > 1-
n2/p  to a bilinear vector relation:  

u
*T𝐐�̃�v

* = Yρ                                                              (3.22) 

where the square �̃�ρ of order n2 has its entries: 

(�̃�ρ)il,kj ≡ Qklρ
i-1+(j-1)n   k, l, i, j =1,…,n  

Each double index il, kj is correspondent with the single index in the way specified in 

(2.2). Note that  

�̃�ρ = QT⨶Δ(ρ)                                                                  (3.23) 

So with the same method presented in sec.3.1 to diagonalize �̃�ρ, the relation (3.22) 

can be furthermore reduced to a bilinear vector relation with n2-dimensional witnesses 

and diagonal coefficient matrix, a result similar as that of theorem 1.  

3.3 The Case of Non-diagonal Matrix Q    

In matrix relations UT
QV=Y or UQV=Y, usually a non-diagonal Q has some other 

algebraic feature such as symmetry: QT =Q. According to the general theory on quad-

ratic forms over arbitrary fields[20], there exist non-singular matrix W ∊𝐹𝑝
𝑛×𝑛  and 

diagonal matrix DQ which can be efficiently computed such that:  

Q = WT
DQW 

   As an example, for the relation UT
QV=Y we set the new witness matrices �̃�,�̃�: 

�̃� = WU, �̃� = WV and simple calculation shows that: 

U
T
QV = �̃�T

DQ𝐕
   

and                                        Cmt(σ|U,V;r) = Cmt(σ̌|�̃�,𝐕;r) 

where the original c.r.s. σ = [G,g,h,p] and the new one σ̌ = [G,�̃�,�̌�,p] are related by:  

�̃�kj =∏ 𝑔𝑖𝑗
𝑊−1(𝑖,𝑘)𝑛

𝑖=1 , �̃�kj =∏ ℎ𝑖𝑗
𝑊−1(𝑖,𝑘)𝑛

𝑖=1   k,j=1,…, n              (3.24) 
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         Even if Q is non-symmetric, we can still apply the diagonalization method in 

sec.3.1 to diagonalize Q as:  

Q = WT
DQM 

where W and M are both non-singular. Set the new witness matrices �̃�, �̃�: �̃� = WU, 

�̃� = WV, then UT
QV = �̃�DQ𝐕 and the commitments are still unchanged. The c.r.s. σ̌ 

is still computed by (3.24) with a slight modification that W(i,k) in the expression of  

�̃�kj is replaced by M(i,k). 

         Since Q is public, the above pre-processing  can be done off-line by the verifier. 

As a result, the relation MBLR
I(σ|W,Y,Q; r,U,V) with arbitrary matrix Q is equiva-

lent to the relation MBLR
I(σ̃|W,Y,DQ; r,�̃�,�̃�) with diagonal DQ. This transformation 

keeps the dimension of witness so the message complexity is not changed.   

 For relation UQV=Y, the pre-processing can be done in a similar way as the 

above:  make diagonalization  Q = WDQM and set new witnesses �̃�=UW, �̃�=MV. As 

a result UQV = �̃�DQ𝐕
 and Cmt(σ|U,V;r) = Cmt(σ̌|�̃�,𝐕;r) where G-elements in σ̌ is 

computed by:  

�̃�kj =∏ 𝑔𝑘𝑖
𝑊−1(𝑗,𝑖)𝑛

𝑖=1 , �̃�kj=∏ ℎ𝑖𝑗
𝑀−1(𝑖,𝑘)𝑛

𝑖=1                           (3.25) 

3.4 Equivalence Reduction for  General Bilinear Relation with Two Witnesses  

Consider the general bilinear relation with two witness matrices U, V ∊𝐹𝑝
𝑛×𝑛:  

U
T
QV + VT

RU + AUB + CVD = S                              (3.26) 

where Q,R,S,A,B,C,D are public and have appropriate orders. Following the methods 

in sec.3.1, it can be probabilistic-equivalently reduced to a bilinear vector relation:  

u
*T

 Qρ
*
v

* + v*T
 Rρ

*
u

* + mρu
* + kρv

* = sρ 

where matrices Qρ
*, Rρ

* are computed similarly as in (3.7), mρ ≡ [ρi-1+(j-1)n]T(A⨶B)ρ, 

kρ ≡ [ρi-1+(j-1)n]T(C⨶D)ρ,  sρ ≡ ∑ 𝑆𝑖𝑗  𝜌
𝑖−1+(𝑗−1)𝑡𝑡

𝑖,𝑗=1 . This can be also represented as :  

[u*T, v*T] [
𝐎 𝐐𝜌

∗

𝐑𝜌
∗ 𝐎

] [𝒖
∗

𝒗∗
]+[mρ

T, kρ
T][
𝒖∗

𝒗∗
] = sρ  

Let w* T ≡ [u*T, v*T] ∊𝐹𝑝
2𝑛𝑡 so this equation becomes:  

                                                        w
*T

Ωρw
* + χρ

T
w

* = sρ
                                                        (3.27) 

and is also equivalent to the symmetric quadratic form1: 

w
*T

(Ωρ+Ωρ
T)w*+2χρ

T
w

* = 2sρ
                                               (3.28) 

With the diagonalization method similar as in sec.3.3, (3.28) is equivalent to a bilinear 

relation with diagonal D𝛒 :  

�̅�T
Dρ𝒘 ̅̅ ̅+2�̅�ρ

T�̅� = Sρ                                                            (3.29) 

                                                        
1  w*T

Ωρw
*
= w

*T
Ωρ

T
w

* and w*T
χ=χ

T
w

* so (3.27) and (3.28) implies each other. 
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where Ωρ+Ωρ
T=W𝛒 

T
D𝛒 W𝛒 and W𝛒  is non-singular. Let the new witness 𝒘 ̅̅ ̅ ∈ 𝐹𝑝

2𝑛𝑡be:  

𝒘 ̅̅ ̅≡ W𝛒 w
*                                                 (3.30) 

and let σ ≡ [G, g, h, h, p] be the c.r.s. with 1+2nt G-elements used as the public-key to 

commit to matrices U,V (actually commit to the vector w*):  

 Cmt(σ|U,V;r) ≡ Cmt(σ|w*;r) = hr
g[u*]h[v*] 

Note that  

Cmt(σ̅|�̅�;r) = Cmt(σ|w*;r)  

and  σ̅ ≡ [G,�̅�,�̅�,h,p] can be computed from Mρ and σ by (3.24).  

        The bilinear form with witness sqaures U,V ∈ 𝐹𝑛×𝑛:  

UQV + VRU + AUB + CVD = S  

 can be reduced in a similar way as in sec.3.2 and the above.   

3.5 Equivalence Reduction for  Bilinear Relations with Three Witness Matrices  

In this section we consider two classes of bilinear relations with three witness matri-

ces, i.e., UT
QW = WT

RV+S and UQW = WRV+S.  

Reduction for the Relation U
T
QW = WT

RV+S    

U
T
QW = WT

RV + S                                               (3.31) 

In this relation the witnesses U, V, W∈ 𝐹𝑝
𝑛×𝑡, public matrices Q, R∈ 𝐹𝑝

𝑛×𝑛, S∈ 𝐹𝑝
𝑡×𝑡. 

Let U = [u1,…,ut],V = [v1,…,vt], W = [w1,…,wt] with columns ui,vi,wi ∈ 𝐹𝑝
𝑛 and let u*, 

v
*, w*be vectors corresponding to these matrices  respectively (see e.g. (3.5)). (3.31) 

can be reduced to a bilinear relation with the 3nt-dimensional vector witness 

ξ
T ≡ [u*T,v*T,w*T]                                                  (3.32) 

Indeed, on basis of the component-wise form of (3.31): 

∑ 𝑄𝑘𝑙
𝑛
𝑘,𝑙=1 𝑈𝑘𝑖𝑊𝑙𝑗 = ∑ 𝑅𝑘𝑙

𝑛
𝑘,𝑙=1 𝑊𝑘𝑖𝑉𝑙𝑗+Sij       i, j = 1,…,t            (3.33) 

Given any randomness ρ multiplying these equalities by ρi-1+(j-1)t on both sides and 

then making a summation, one has: 

∑ ∑ 𝜌𝑖−1+(𝑗−1)𝑡(𝑙,𝑗 𝑄𝑘𝑙𝑘,𝑖 𝑈𝑘𝑖𝑊𝑙𝑗 −𝑅𝑘𝑙𝑊𝑘𝑖𝑉𝑙𝑗) = Sρ ≡ ∑ 𝑆𝑖𝑗  𝜌
𝑖−1+(𝑗−1)𝑡𝑡

𝑖,𝑗=1    (3.34) 

 The reduction from (3.31) to (3.34) has probability > 1-nt/p and (3.34) also has a 

form:  

 [u*T,v*T,w*T] [

𝐎 𝐎 𝐐𝜌
𝐎 𝐎 𝐎
𝐎 −𝐑𝜌 𝐎

][
𝒖∗

𝒗∗

𝒘∗
] = Sρ                                            (3.35) 

where the squares Qρ and Rρ of order nt has their entries as:     
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(Qρ)ki,lj ≡ Qlkρ
i-1+(j-1)t ,  (Rρ)ki,lj ≡ Rlkρ

i-1+(j-1)t    k, l =1,…,n; i, j = 1,…,t 

Each double-index ki, lj one-to-one corresponds to the single-index as specified in 

(2.1). Let the coefficient matrix in (3.35) denoted by Ωρ, ξ be the 3nt-dimensional 

vector defined in (3.32), then the bilinear matrix equation (3.31) is probabilistic-

equivalently reduced to a vector quadratic relation: 

ξ
T
Ωρξ

 = Sρ                                                                            (3.36) 

This relation is furthermore equivalent to a symmetric one 2: 

ξ
T(Ωρ+Ωρ

T)ξ = 2Sρ                                                                   (3.37) 

Let σ ≡ [G, g,h,k,h,p] be the c.r.s with 1+3nt G-elements and used as the public-

key to commit to the witness matrices U,V,W:   

Cmt(σ|U,V,W;r) ≡ Cmt(σ|ξ;r) = hr
g[u*]h[v*]k[w*] 

Diagonalizaing Ωρ+Ωρ
T in the method as in sec.3.1, (3.37) is equivalently transformed 

to be: 

�̅�T
Dρ𝝃 ̅= Sρ                                                                               (3.38) 

where Ωρ+Ωρ
T = M𝛒 

T
D𝛒 M𝛒 , D𝛒  is diagonal and M𝛒  is non-singular. Set the new 

witness 𝝃 ̅ ∈ 𝐹𝑝
3𝑛𝑡 to be: 

𝝃 ̅≡ M𝛒 ξ                                                       (3.39) 

Its commitment is related with the original commitment by:  

Cmt(σ̅|�̅�;r) = Cmt(σ|ξ;r)  

where the new c.r.s. σ̅ ≡ [G,�̅�,�̅�,�̅�,h,p] is computed from Mρ and σ by an algorithm 

similar as (3.24). Formally:    

Theorem  2   Define the bilinear matrix relation over Fp as (variables in the frame are 

witnesses):  

MBLR
II(σ|K,S,Q,R;r,U,V,W): K=Cmt(σ|U,V,W;r)˄U

T
QW=W

T
RV+S    (3.40) 

where Cmt is the Pedersen commitment scheme with public-key σ ≡ [G, f, h, p] (also 

used as c.r.s.) with 1+3nt G-elements in f, 𝐹𝑝
𝑛×𝑡 ∋U ≡ [u1,…,ut], V ≡ [v1,…,vt], W ≡ 

[w1,…,wt] with columns ui, vi, wi ∊ 𝐹𝑝
𝑛, matrix Q, R∊𝐹𝑝

𝑛×𝑛, S∊𝐹𝑝
𝑡×𝑡, then MBLR

II is 

probabilistic-equivalent to the following relation with soundness factor nt:  

VBLR
II(σ̃|�̅�, Sρ, Dρ; r, 𝝃 ̅): �̅� = Cmt(�̃�|�̅�; r) ˄ �̅�T

Dρ�̅� = Sρ          (3.41) 

where ρ is a randomness sampled by the verifier, �̅�∊Fp
3tn, Sρ, Dρ are specified in (3.34) 

and (3.38) , G-elements in σ̃ are computed from σ by the algorithm in (3.24), �̅� = K  

and �̅� is computationally  related with (U,V,W) by (3.32) and (3.39).  

Reduction for the Relation UQW = WRV+S    

                                                        
2  ξT

Ωρξ = ξT
Ωρ

T
ξ

  so (3.36) and (3.37) implies each other.  
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UQW = WRV + S                                             (3.42) 

In this relation the witnesses U, V, W∈ 𝐹𝑝
𝑛×𝑛 and public matrices Q, R, S∈ 𝐹𝑝

𝑛×𝑛. The 

same method as in the above can reduce this relation to  

[u*T,v*T,w*T] [

𝐎 𝐎 𝐎
𝐎 𝐎 −𝐑𝜌

𝑇

𝐐𝜌
𝑇 𝐎 𝐎

][
𝒖∗

𝒗∗

𝒘∗
] = Sρ                                          (3.43) 

and furthermore a similar result as in Theorem 2 can be obtained. 

3.6 Equivalence Reduction for  U1
T
QU2 = V1

T
RV2 + S   

Here we consider a bilinear relation with four witness matrices, which instances and 

special cases can be used for proving some matrix structural decompositions with all 

factors in privacy:  

U1
T
QU2 = V1

T
RV2 + S                                          (3.44) 

where Ui,Vi ∈ 𝐹𝑝
𝑛×𝑡 are witnesses while Q, R∊𝐹𝑝

𝑛×𝑛  and S∊𝐹𝑝
𝑡×𝑡  are public. Given 

any randomness ρ in Fp, for i,j = 1,…,t; k, l = 1,…,n let: 

 Sρ ≡ ∑ 𝑆𝑖𝑗  𝜌
𝑖−1+(𝑗−1)𝑡𝑡

𝑖,𝑗=1 ∊ Fp  

(Qρ)ki,lj ≡ Qlkρ
i-1+(j-1)t,  (Rρ)ki,lj ≡ Rlkρ

i-1+(j-1)t                                   (3.45) 

   

In the same techniques as before, the relation (3.44) is equivalent with probability > 1 

– nt/p to the relation:  

                                             u1
*T

Qρu2
* = 

v1
*T

Rρv2
* + Sρ                                    (3.46) 

which also has the form: 

ξ
T[
𝐐𝜌 𝐎

𝐎 −𝑹𝜌
]η = Sρ  

where ξT ≡ [u1
*T,v1

*T], ηT ≡ [u2
*T,v2

*T]. The relation (3.46) is a bilinear vector relation 

in space Fp
2nt with witnesses (ξ,η) which commitment is also used as the commitment 

to witness matrices (U1,U2,V1,V2) in relation (3.44). By diagonalization techniques 

this relation can be further reduced to a bilinear one with diagonal coefficient matrix. 

In private computing applications, one of the important usage of relation (3.44) 

is to prove structural decomposition of some private matrix A while all factors U, D, 

V must be kept in secrecy: 

A = UDV                                                  (3.47) 

When U and V are non-singular, this decomposition can be expressed as   

WA = DV                                                   
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which is a special case of (3.44). Usually D is some canonical form of A and should 

be proved having some structural feature, e.g., diagonal (in Smith decomposition), 

upper/lower triangle (in Schur decomposition), etc. This structure features may be 

represented via some additional equations, fro example, diagonality of D can be rep-

resented by a family of linear relations: 

eki
*T

d
* = 0, k ≠ i   

where eki
* is the vector corresponding to the standard base matrix Eki. With probability 

≥ 1-(n2-n)/p > n2/p  and soundness factor n(n-1), these linear equations can be further 

reduced to a single linear equation: 

           ∑ 𝜌𝑖−1+(𝑘−1)𝑛𝑛
𝑖,𝑘=1,𝑖≠𝑘 di-1+(j-1)n = 0                          

As a result, the diagonalization  relation (3.47) can be reduced to a bilinear vector 

relation together with a linear relation in (3.48).  

         Another interesting special case of relation (3.44) is Schur decomposition, 

which can be  reduced to a bilinear vector relation with an additional linear relation 

as: 

∑ 𝜌𝑖−1+(𝑘−1)𝑛𝑛
𝑖,𝑘=1,𝑖>𝑘 di-1+(j-1)n = 0   

3.7 Equivalence Reduction for  Eigenvalue Relation  Ux = λx 

Consider the eigenvalue relation over Fp:  

Ux = λx                                                  (3.48) 

where U∈ 𝐹𝑝
𝑛×𝑛 and x∈ 𝐹𝑝

𝑛 are witnesses while λ is public (If U is public then the 

proof will be trivial since both x and λ can be efficiently computed from U; on the 

other hand if x and λ are public then this relation is just linear). Let: 

                                                  x
*T ≡ [x1,…,x1,…,xn,…,xn]                                    (3.49) 

which is the n2-dimensional vector corresponding to x, u* be the vector corresponding 

to matrix U = [u1,…,un] in the way specified in (2.2) and  b* the vector corresponding 

to matrix B ≡ U –λIn = [b1,…,bn]. Note that (3.48) is equivalent to the form: 

 [x1In,…,xnIn]b
* = ∑ 𝑥𝑖𝒃𝑖

𝑛
𝑖=1  = 0  

Given any randomness ρ, left-multiplying the above equality with ρ(n)T ≡ [1, ρ, ρ2,…, 

ρn-1] on both sides leads to: 

                                                                xρ
T 

b
* = 0                                               (3.50) 

where xρ
T ≡ [x1ρ(n),…,xnρ(n)]. (3.50) is an inner-product relation and the commitment 

to witness U and x on the public-key σ ≡ [G, g, h, h, p] is: 

Cmt(σ | U, x; r) ≡ Cmt(σ | u
*, x*; r) = hr∏ 𝑔𝑖𝑗

𝑥𝑖𝑛
𝑖,𝑗=1 ∏ ℎ

𝑖𝑗

𝑈𝑖𝑗𝑛
𝑖,𝑗=1  

Note that: 
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    Cmt(σ̅| b
*, xρ

*; r) = Cmt(σ | u
*, x*; r)(∏ ℎ𝑖𝑖

−1𝑛
𝑖=1 )𝜆 

where σ̅ ≡ [G, �̅�, �̅�, h, p] is computed by:  

𝑔𝑖𝑗̅̅ ̅̅  ≡ 𝑔𝑖𝑗
𝜌𝑖−𝑗

, ℎ𝑖𝑗̅̅ ̅̅  ≡ hij  i, j = 1,…,n                               (3.51) 

In summary, the eigenvalue relation with witness matrix U∈ 𝐹𝑝
𝑛×𝑛 and eigenvec-

tor x∈ 𝐹𝑝
𝑛:  

Ux = λx ˄ W = Cmt(σ |U,x; r)  

is probabilistic-equivalent to a bilinear relation with witness b* and xρ
*∈ 𝐹𝑝

𝑛2:  

                                  xρ
T 

b
* = 0 ˄ W(∏ ℎ𝑖𝑖

−1𝑛
𝑖=1 )𝜆 = Cmt(σ̅| b

*, xρ
*; r)                   (3.52) 

where  σ̅  is computed by (3.51). 

4 Complete ZKA Construction and Performances  

Now we can complete the ZKA protocols construction for all the relations in sec.3 on 

basis of the efficient ZKA protocol for the bilinear vector relation uT
Dv = y where D 

is diagonal. It is shown in sec.3 that various bilinear matrix relations can be reduced 

to this relation. Table 1 presents performances of such a protocol constructed by line-

arization method[12].  
 

Table 1．Performances of ZKA for uT
Dv = y: u,v∊𝐹𝑝

𝑘, D diagonal  

  Linearization Approach[12] 

# G-elements in c.r.s.  4k+3  

# G-elements in commitment 1  

# Rounds 2log(3k+5)+7 

Message complexity # G: 2log(3k +5) 

# Fp: log(3k +5)+9 

 

         Currently there are no other works on ZKA for matrix bilinear relations over 

Galois fields comparable, so we make a comparison between our results and the gen-

eral linearization approach which compiles any non-linear arithmetic relation (circuit) 

into a linear one via secret-sharing techniques (see Sec.6 in [12] for details). In the 

following tables, performance results of linearization approach are straightforwardly 

derived from the results in [12] while the performance results about our approach is 

from combination of the above results (table.1) on ZKA protocol for vector bilinear 

relation and the reduction results in sec.3 with (considering the costs in reduction) at 

most 2 extra Fp-elements and 1 message added.  
As demonstrated in table 2 and 3, for n-by-t matrix witnesses the required size of 

c.r.s can be compressed by 2tn times. As demonstrated in table 4, when n >> t or t>>n, 

the number of rounds, group and field elements in messages for our approach are all 

decreased by ~ 1/2; when n ~ t >> 1(e.g., square witnesses) these are also decreased 
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by ~1/2.  In summary, the matrix-oriented approach significantly outperforms the 

general linearization approach in all aspects, a result of making use of special features 

of matrix algebra.   
 
 

Table 2．Performances of  ZKA for UT
QV=Y: U, V ∊𝐹𝑝

𝑛×𝑡  

  Linearization Approach[12] Our Approach (3.17) 

# G-elements  

in c.r.s. 
 4n2t2+3   2nt +1 

# G-elements in 

   Commitment 
1         1  

# Rounds 2log(n2+(1+2n2)t2+4)+7 

~ 2log(n2+t2+2n2t2)  

8+2log(4nt+5) 

~ 2logn + 2logt  

 

Message  

Complexity 

# G:  2log(n2+(1+2n2)t2+4) 

~ 2 log(n2+t2+2n2t2) 

# Fp:  log(n2+(1+2n2)t2+4)+9 

~ log(n2+t2+2n2t2)  

# G:  2log(3nt+5)   

~ 2logn + 2logt 

# Fp:  log(3nt+5)+10 

~ logn + logt 

 

Table 3．Performances of  ZKA for UT
QW= W

T
RV+S: U ,V,W∊𝐹𝑝

𝑛×𝑡 

  Linearization Approach[12] Our Approach (3.41) 

# G-elements in c.r.s.  8n2t2+3     3nt +1 

# G-elements in 

commitment 
1          1  

# Rounds 
2log(2n2+(1+4n2)t2+4)+7 

~ 2 log(2n2+t2+4n2t2) 

8+2log(9nt+5) 

~ 2logn + 2logt  

 

Message 

Complexity 

# G: 2log(2n2+(1+4n)t2+4) 

~ 2log(2n2+t2+4n2t2) 

# Fp: log(2n2+(1+4n)t2+4)+9 

~ log(2n2+t2+4n2t2) 

# G: 2log(9nt+5)  

~ 2logn + 2logt  

 # Fp:  log(9nt+5)+9 

~ logn + logt  

 

Table 4．Asymptotic performances of ZKA for bilinear relations with witness matrices in 𝐹𝑝
𝑛×𝑡 

  Linearization Approach Our Approach 

# Rounds 

n ~ t >> 1 ~ 8logn ~ 4logn 

n >> t  ~ 4logn ~ 2logn 

t >> n  ~ 4logt ~ 2logt 

 

 # G  

elements 

n ~ t >> 1 ~ 8logn ~ 2logn 

n >> t  ~ 4logn ~ 2logn 

t >> n  ~ 4logt ~ 2logt 

 

# Fp  

elements 

n ~ t >> 1 ~ 4logn ~ 2logn 

n >> t  ~ 2logn ~ logn 

t >> n  ~ 2logt ~ logt 
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5 Decreasing Knowledge-Error via Operations on Extended 

Field: Arguments for Linear Matrix Relations    

We now present a approach to enhancing knowledge-soundness of the ZKA’s for 

matrix relations over the ground field Fp. In this approach, we treat any matrix U in 

𝐹𝑝
𝑛×𝑡𝑑 equivalently as a nt-dimensional vector over the d-th extended field GF(p,d) ≡ 

Fp[X]/(f(X)) and then, by appropriate reductions, we can decrease the knowledge-error 

of the original ZKA over Fp from O(1/p) down to O(1/pd) while significantly improv-

ing other performances.   

GF(p,d) ≡ Fp[X]/(f(X)) is a finite field which elements are polynomials of degree 

< d in Fp[X] and f(X) is a monic irreducible polynomial of degree d. In particular, 

GF(p,d) is of cardinality pd. All analysis and results in the following does not depend 

on any special selection of the extension degree d or f(X). In practice, d can be com-

pletely determined by the target knowledge-error ε (approximately by p-d < ε ). 

      

5.1 Generalized Pedersen Scheme for Vectors over Extended Galois Field   

At first we generalize the Pedersen commitment scheme from committing to Fp-

vectors to committing to GF(p,d)-vectors. Let G be a cyclic group of order p with 

DLP-hardness property, cmtσ(w; r): 𝐹𝑝
𝑛 × 𝐹𝑝 → G be the Pedersen commitment 

scheme for any n-dimensional Fp-vector w, S be the extended Galois field GR(p,d), u 

be any n-dimensional S-vector, i.e.,  

u = [

𝑢1(𝑋)
:
:

𝑢𝑛(𝑋)

] =  [

𝑢1(1)
:
:

𝑢1(𝑛)

] + [

𝑢2(1)
:
:

𝑢2(𝑛)

]𝑋 + ⋯+ [

𝑢𝑑(1)
:
:

𝑢𝑑(𝑛)

]𝑋𝑑−1 ∈ 𝑆𝑛         (5.1) 

with each  ui(k) in Fp,  k=1,…, n. define  

Cmt(σ|u; r) ≡ [

cmt𝜎(𝑢1(1),… , 𝑢1(𝑛); 𝑟1)
:
:

cmt𝜎(𝑢𝑑(1),… , 𝑢𝑑(𝑛); 𝑟𝑑)

] ∈ 𝐺𝑑: Sn×Fp
d →Gd    (5.2) 

as the commitment to the vector u. More explicitly, given the public-key σ ≡ [G, g, h, 

p] with g ≡ (g1,…, gn), gi and h being group elements,  the commitment to u is  

Cmt(σ|u; r) = 

[
 
 
 
 ℎ
𝑟1𝑔1

𝑢1(1)…𝑔𝑛
𝑢1(𝑛)

:
:

ℎ𝑟𝑑𝑔1
𝑢𝑑(1)…𝑔𝑛

𝑢𝑑(𝑛)]
 
 
 
 

∈ 𝐺𝑑                                                   (5.3) 

As before we frequently denote  𝑔1
𝑤1…𝑔𝑛

𝑤𝑛 as g[w] and 𝑔1
𝑒…𝑔𝑛

𝑒 as g[e] to simplify 

the expressions.  

         For any matrix 𝐹𝑝
𝑛×𝑡𝑑 ∋U ≡ [U1,…,Ut] with each block Ui in 𝐹𝑝

𝑛×𝑑  we associate 

a S-vector u* with U as:    
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  u* ≡ [

𝑼1
:
:
𝑼𝑡

]

[
 
 
 
 
1
𝑋
𝑋2

：
𝑋𝑑−1]

 
 
 
 

 ϵ 𝑆𝑡𝑛                                          (5.4) 

On basis of this association (which is obviously one-to-one) and given the public-key 

σ ≡ [G, g, h, p] with g ≡ (gij) =(g11,…, gn,t), we define the commitment to matrix U as 

the commitment to the nt-dimensional vector u*:  

Cmt(σ|U; r) ≡ Cmt(σ|u
*; r)                                         (5/5)  

More explicitly, for the matrix:  

U =  [

𝑢11(1), … , 𝑢1𝑑(1), … , 𝑢𝑡1(1),… , 𝑢𝑡𝑑(1)
:
:

𝑢11(𝑛),… , 𝑢1𝑑(𝑛),… , 𝑢𝑡1(𝑛),… , 𝑢𝑡𝑑(𝑛)

] ∈ 𝐹𝑝
𝑛×𝑡𝑑       (5.6) 

its associated S-vector is:  

              u
* = 

[
 
 
 
 
 
 
𝑢11(1) + 𝑢12(1)𝑋 +⋯+ 𝑢1𝑑(1)𝑋

𝑑−1

:
𝑢11(𝑛) + 𝑢12(𝑛)𝑋 +⋯+ 𝑢1𝑑(𝑛)𝑋

𝑑−1

:
𝑢𝑡1(1) + 𝑢𝑡2(1)𝑋 + ⋯+ 𝑢𝑡𝑑(1)𝑋

𝑑−1

:
𝑢𝑡1(𝑛) + 𝑢𝑡2(𝑛)𝑋 +⋯+ 𝑢𝑡𝑑(𝑛)𝑋

𝑑−1 ]
 
 
 
 
 
 

 ∈ 𝑆𝑛𝑡  

and the commitment is computed as:  

Cmt(σ|U; r)  =  [

𝑐𝑚𝑡𝜎(𝑢11(1),… , 𝑢11(𝑛),… , 𝑢𝑡1(1), … , 𝑢𝑡1(𝑛))
:
:

𝑐𝑚𝑡𝜎(𝑢1𝑑(1),… , 𝑢1𝑑(𝑛),… , 𝑢𝑡𝑑(1),… , 𝑢𝑡𝑑(𝑛))

] ∈ 𝐺𝑑    (5.7) 

Note that this definition of commitment to matrix is consisted with the definition in 

(2.2)-(2.3) in case of d = 1.  

       Both generalized commitment schemes for vectors over GF(p,d) and matrices 

over Fp are perfect-hiding and computational-binding. Hiding property is easy to con-

firm. To prove binding property of the scheme for GF(p,d)-vectors, suppose some 

P.P.T. algorithm A can output u and v such that  u ≠ v but Cmt(σ|u;r) = Cmt(σ|v;s). 

By (5.2), this implies that there is some k such that (𝑢𝑘(1), … , 𝑢𝑘(𝑛))  ≠  

(𝑣𝑘(1),… , 𝑣𝑘(𝑛))  but their commitments (the k-th component of Cmt(σ|u;r) and 

Cmt(σ|v;s) are equal to each other:  

cmt𝜎(𝑢𝑘(1),… , 𝑢𝑘(𝑛); 𝑟𝑘) = cmt𝜎(𝑣𝑘(1),… , 𝑣𝑘(𝑛); 𝑠𝑘) 

which ruins (computational) binding property of the underlying Pedersen commitment 

scheme cmtσ(.), a contradiction. Similar analysis can prove that binding-property 

holds for matrix commitment scheme (5.5).  
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It is also straightforward to show that these generalized schemes have the usual 

homomorphism properties. In addition, the scheme Cmt(σ|.;.): Sn×Fp
d → Gd  has an 

algebraic property helpful in protocol construction. 

Lemma 1   Let e be in Galois field S=GF(p,d)≡Fp[X]/(f(X)) and Me∈ 𝐹𝑝
𝑑×𝑑  be its 

associated  multiplicative matrix, i.e., for any  

u = u1+u2X+u3X
2 +…+ udX

d-1 ∈ S 

there holds  

eu = ∑ (∑ 𝑀𝑒
𝑑
𝑗=1 (𝑖, 𝑗)𝑢𝑗)𝑋

𝑖−1𝑑
𝑖=1                                    (5.8) 

Also let the commitment to u be: 

Cmt(σ|u; r) = [

𝐶1
.
.
𝐶𝑑

] ∈ 𝑆𝑑 

and u be the S-vector in (5.1), then :   

Cmt(σ|eu; s) = 

[
 
 
 
 ∏ 𝐶𝑗

𝑀𝑒(1,𝑗)𝑑
𝑗=1  

.

.

∏ 𝐶𝑗
𝑀𝑒(𝑑,𝑗)𝑑

𝑗=1 ]
 
 
 
 

,  𝒔 = 𝐌𝑒𝒓, i. e. , 𝑠𝑙 = ∑ 𝑀𝑒(𝑙, 𝑗)𝑟𝑗
𝑑
𝑗=1  l=1,…,d  (5.9) 

Equality (5.9) is denoted by Cmt(σ|eu;s) = Cmt(σ|u;r)e.   

Proof   For each k =1,…, n let u’s k-th component be:  

uk = ∑ 𝑢𝑗
𝑑
𝑗=1 (𝑘)𝑋𝑗−1 

so by (5.8) one has  euk =  ∑ (∑ 𝑀𝑒
𝑑
𝑗=1 (𝑖, 𝑗)𝑢𝑗(𝑘))𝑋

𝑖−1𝑑
𝑖=1 , hence  

eu = 

[
 
 
 
∑ (∑ 𝑀𝑒

𝑑
𝑗=1 (𝑖, 𝑗)𝑢𝑗(1))𝑋

𝑖−1𝑑
𝑖=1

:
:

∑ (∑ 𝑀𝑒
𝑑
𝑗=1 (𝑖, 𝑗)𝑢𝑗(𝑛))𝑋

𝑖−1𝑑
𝑖=1 ]

 
 
 

  

= 

[
 
 
 
∑ 𝑀𝑒(1, 𝑗)𝑢𝑗(1), …… , ∑ 𝑀𝑒(𝑑, 𝑗)𝑢𝑗(1)

𝑑
𝑗=1

𝑑
𝑗=1

:
:

∑ 𝑀𝑒(1, 𝑗)𝑢𝑗(𝑛), …… ,
𝑑
𝑗=1 ∑ 𝑀𝑒(𝑑, 𝑗)𝑢𝑗(𝑛)

𝑑
𝑗=1 ]

 
 
 
[

1
𝑋
:

𝑋𝑑−1

]    

    = [
𝑢1(1) ⋯ 𝑢𝑑(1)
⋮ ⋱ ⋮

𝑢1(𝑛) ⋯ 𝑢𝑑(𝑛)
] [
𝑀𝑒(1,1) ⋯ 𝑀𝑒(𝑑, 1)
⋮ ⋱ ⋮

𝑀𝑒(1,𝑑) ⋯ 𝑀𝑒(𝑑, 𝑑)
] [

1
𝑋
:

𝑋𝑑−1

] = W[

1
𝑋
:

𝑋𝑑−1

] mod f(X) 

where U ≡ [
𝑢1(1) ⋯ 𝑢𝑑(1)
⋮ ⋱ ⋮

𝑢1(𝑛) ⋯ 𝑢𝑑(𝑛)
] ∈ 𝐹𝑝

𝑛×𝑑 and the Fp-matrix W = U𝐌𝑒
𝐓 = [u1,…,ud]𝐌𝑒

𝐓 

≡ [w1,…,wd] with column vectors wk: 
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                                             wk = ∑ 𝑀𝑒
𝑑
𝑗=1 (𝑘, 𝑗)uj    k=1,…, d                             (5.10) 

By Pedersen scheme cmtσ’s homomorphism property, the k-th component of 

Cmt(σ|eu) is (for simplicity we omit the randomness expressions):  

        Cmt(σ|eu)k = cmtσ(wk) = cmtσ(∑ 𝑀𝑒
𝑑
𝑗=1 (𝑘, 𝑗)uj) = ∏ 𝑐𝑚𝑡𝜎

𝑑
𝑗=1 (𝒖𝒋)

𝑀𝑒(𝑘,𝑗)  

i.e.,  Cmt(σ|eu)k = ∏ 𝐶𝑚𝑡𝑑
𝑗=1 (𝜎|𝒖)𝑗

𝑀𝑒(𝑘,𝑗) 

which proves the first equality in (5.9). The second equality 𝒔 = 𝐌𝑒𝒓 is easy to be 

confirmed by the same calculation. 

Remark 1  For any e in S and Fp-matrix U ∈ 𝐹𝑝
𝑛×𝑑  this proof also shows that 

Cmt(σ|U𝐌𝑒
𝐓) = Cmt(σ|U)e.  

Remark 2  According to the equality between randomness r, e and s in (5.9) and the 

fact that Me is non-singular (actually 𝐌𝑒
−1 = 𝐌𝒆−𝟏 for any e ≠ 0), r is uniformly dis-

tributed over Fp
d if and only if s is uniformly distributed over Fp

d .  

 

5.2 Knowledge-Soundness Enhanced ZKA for Linear Matrix Relations over Fp    

Consider the linear matrix relation AU = B over Fp with matrix witness U ∊𝐹𝑝
𝑁×𝑑 and 

public matrices A∊𝐹𝑝
𝑙×𝑁, B ∊𝐹𝑝

𝑙×𝑑. To construct the efficient argument protocol for 

this relation with commitment to Fp-matrix U and operations on S = GF(p,d), the first 

step is to establish a relation over S which is equivalent to the given linear matrix 

relation over Fp.  

For S ≡ Fp[X]/(f(X)) = GF(p,d) with degree-d irreducible monic polynomial f(X) 

and matrix A ∊𝐹𝑝
𝑙×𝑁, define a S-linear operator:  

LA: SN → Sl: LA(u)i ≡ ∑ 𝑎𝑖𝑘
𝑁
𝑘=1 𝑢𝑘(𝑋) mod f(X), i = 1,…, l      (5.11) 

where uk(X) ∊ S is the k-th component of vector u in SN. 

For Fp-matrices  

U = [
𝑢1(1) ⋯ 𝑢𝑑(1)
⋮ ⋱ ⋮

𝑢1(𝑁) ⋯ 𝑢𝑑(𝑁)
] ,   B = [

𝑏1(1) ⋯ 𝑏𝑑(1)
⋮ ⋱ ⋮

𝑏1(𝑙) ⋯ 𝑏𝑑(𝑙)
]               (5.12) 

and each i = 1,…, l, k = 1,…, N, let:  

bi(X) ≡  ∑ 𝑏𝑗(𝑖)
𝑑
𝑗=1 𝑋𝑗−1 = 𝑏1(𝑖) + 𝑏2(𝑖)𝑋 +⋯+ 𝑏𝑑(𝑖)𝑋

𝑑−1 

uk(X) ≡ 𝑢1(𝑘) + 𝑢2(𝑘)𝑋 +⋯+ 𝑢𝑑(𝑘)𝑋
𝑑−1    

Regard U and B as vectors with components uk(X)’s and bi(X)’s in S, their corre-

sponding S-vectors are: 

                u *= [

𝑢1(𝑋)
.
.

𝑢𝑛(𝑋)

] = 𝐔 

[
 
 
 
 
1
𝑋
𝑋2

:
𝑋𝑑−1]

 
 
 
 

 ∈ 𝑆𝑁,  b* = [

𝑏1(𝑋)
:
:

𝑏𝑙(𝑋)

] = 𝐁 

[
 
 
 
 
1
𝑋
𝑋2

:
𝑋𝑑−1]

 
 
 
 

 ∈ 𝑆𝑙     (5.13) 
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Then for the S-vector u* corresponding to Fp-matrix U in (5.12) one has, for each i:  

LA(u*)i = ∑ 𝑎𝑖𝑘
𝑁
𝑘=1 𝑢𝑘(𝑋) = ∑ (∑ 𝑎𝑖𝑘

𝑁
𝑘=1 𝑢𝑗

𝑑
𝑗=1 (𝑘))𝑋𝑗−1 mod f(X)  

As a result, there is the fact that:   

LA(u*) = b* over S  

              if and only if ∑ 𝑎𝑖𝑘𝑢𝑗
𝑁
𝑘=1 (𝑘) = bj(i) for all i, j, i.e., AU = B over Fp     (5.14) 

        Based on the fact (5.14), the problem of constructing a ZKA protocol for the 

linear matrix relation over Fp can be transformed into a problem of constructing a 

ZKA protocol for a linear relation over the extended field S.  

Let S ≡ GR(p,d), σ be the public-key of the S-vector commitment scheme and 

used as c.r.s. of the argument protocol, the linear relation SLR on space SN is defined 

as (variables in the frame are witnesses):    

SLR(σ|U, b, LA; r, u)): U = Cmt(σ|u; r) ˄ LA(u) = b  

where LA is defined in (5.11) with A∊𝐹𝑝
𝑙×𝑁, b∊𝑆𝑙 ; witnesses u is a N-dimensional S-

vector, r is a random vector in Fp
d.  The commitment to S-vector u is:  

U=Cmt(σ|u;r)=Cmt(σ|[
𝑢1(1) ⋯ 𝑢𝑑(1)
⋮ ⋱ ⋮

𝑢1(𝑁) ⋯ 𝑢𝑑(𝑁)
], [

𝑟1
.
.
𝑟𝑑

])=[

cmt𝜎(𝑢1(1),… , 𝑢1(𝑁); 𝑟1)
.
.

cmt𝜎(𝑢𝑑(1), … , 𝑢𝑑(𝑁); 𝑟𝑑)

](5.15) 

which is also the commitment to a Fp-matrix U, i.e., U = Cmt(σ|U; r) (see (5.5)). This 

reduction is the starting point to construct ZKA protocol for linear matrix relation 

over Fp. Formally, the linear matrix relation over Fp :  

                              MLR(σ|U, B, A; r, U ):U = Cmt(σ|U;r) ˄ AU = B                  (5.16) 

with U∊𝐹𝑝
𝑁×𝑑(witness), A∊𝐹𝑝

𝑙×𝑁, B∊𝐹𝑝
𝑙×𝑑 is equivalent to the linear relation over Gal-

ois field S = GF(p,d) ≡ Fp[X]/(f(X)):  

SLR(σ|V, b, LA; r, u*): V = Cmt(σ|u*;r) ˄ LA(u*) = b*             (5.17) 

where u*∊SN(witness), LA is the linear operator defined in (5.11), b*
i=∑ 𝑏𝑗

𝑑
𝑗=1 (𝑖)𝑋𝑗−1 

and V = U.  These two relations’ witnesses are related by  the first equality in (5.13). 

Note that LA(u) = b in (5.17) is a system of l linear equations in S which can be 

further reduced to only one linear equation via the standard amortization technique, 

i.e., given any randomness ρ sampled by the verifier, with probability > 1 – lp-d the 

vector equation LA(u) = b is equivalent to the scalar equation: 

∑ (LA(𝒖)i − 𝑏i)
𝑙
i=1 𝜌i−1  = 0  

Obviously this reduction has soundness factor l. In summary, we have:  

Theorem 5  Linear matrix relation MLR(σ|U, B, A; r, U) in (5.16) is probabilistical-

ly equivalent to the linear relation (5.18) with soundness factor l:  

sl-R(σ|U, bρ, lA,ρ; r, u*): U = Cmt(σ|u*;r) ˄ lA,ρ(u
*) = bρ             (5.18) 
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where u*∊SN, ρ is a randomness sampled by the verifier, bρ≡ ∑ 𝑏𝑖
∗𝜌𝑖−1 ∈𝑙

𝑖=1  S and the 

S-linear functional  lA,ρ  is defined as:   

lA,ρ(w) ≡ ∑ ∑ 𝑎𝑖𝑘
𝑁
𝑘=1 𝑤𝑘

𝑙
𝑖=1 𝜌𝑖−1: SN → S  

        The efficient ZKA protocol for linear matrix relation (5.16) over Fp can now be 

constructed equivalently for the linear vector relation (5.18) over the extended field S  

via compressed techniques in [6][7][12]. For example, [12] presented such a protocol 

framework with logarithmic message complexity and provided complete analysis 

about its completeness, zero-knowledge and knowledge soundness properties. The 

protocol will not be repeated here. The only modification is that in our approach all 

arithmetic operations are in the extended field S so for any e in S and U≡(U1,…,Ud) 

in Gd, Ue is computed by(see (5.9) in lemma 1):  

 𝑈𝑒 =

[
 
 
 
 ∏ 𝑈𝑗

𝑀𝑒(1,𝑗)𝑑
𝑗=1  

.

.

∏ 𝑈𝑗
𝑀𝑒(𝑑,𝑗)𝑑

𝑗=1 ]
 
 
 
 

                                          (5.19) 

and all multiplications on Gd is component-wise.  

In general, for any t > 1: U ≡ [U1,…,Ut] ∈ 𝐹𝑝
𝑛×𝑡𝑑, A∈ 𝐹𝑝

𝑙×𝑛, B ≡ [B1,…,Bt] ∈

𝐹𝑝
𝑙×𝑡  and AU = B we can apply the efficient ZKA protocol construction to the equiva-

lent linear relation A*
U

*
 = B

*, i.e.,  

 [
𝐀 . . 𝑶
. . . . . .
𝑶 . . 𝑨

] [
𝑼1
…
𝑼𝑡

] =  [
𝑩1
…
𝑩𝑡

],  U* ≡ [
𝑼1
…
𝑼𝑡

] ϵ𝐹𝑝
𝑡𝑛×𝑑                (5.20) 

with 1+nt group elements in c.r.s. σ and the commitment to U (equivalently, to U
*):   

Cmt(σ|U)j = cmtσ([uj
(1)T,…, uj

(t)T])∈G,  j = 1,…, d               (5.21) 

where each Fp-vector uj
(k) is the j-th column in Uk. The corresponding S-linear relation 

of (5.20) is specified on space Snt (see (5.18)).  

         Table 5 summaries the performance comparisons between our approach and the 

d-fold parallelism one. Both approaches use the same ZKA protocol with logarithmic 

message complexity.  

In our approach the protocol operates over the extended field S = GF(p,d) with a 

nt-dimensional witness vector over S and only 1 running instance, while in the paral-

lel repetition approach the protocol operates over the ground field Fp with d running 

instances in parallel and each with a ntd-dimensional witness vector (actually a n-by-

td matrix) over Fp. The cardinality of challenge space in our approach is pd while in 

parallel repetition approach is p. Since both protocols have exactly the same 

(3,3,…,3)-special-soundness property, according to the general result in [21], our 

protocol has the knowledge-error(theorem 3 in sec.3 of [21]):   

κ(ours) = 1–∏ (1−
2

𝑝𝑑
)

𝜇
𝑗=𝑡  ~ 2μ/pd  with μ = log(nt)                       (5.21) 

while the d-fold parallel repetition approach has its knowledge-error (theorem 4 [21]):  
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κ(para.rept.) = [1–∏ (1−
2

𝑝
)𝜇

𝑗=𝑡 ]𝑑 ~ (2μ/p)d with μ= log(ntd)                  (5.22) 

In particular, for squares of order-n (in this case t = n/d) we have the simpler and 

more explicit result that:  

κ(ours) ~ (4logn–2logd)/pd,  κ(para.rept.) ~ (4logn/p)d                       (5.23) 

Since n is poly(logp), we have κ(ours) ~ 1/pd  ~ κ(para.rept.).  

Remark 3 By the inequality 1–(1–x1)…(1–xN) < x1+…+xN for any xi in [0,1], all the 

terms on the right sides of (5.21~23) are upper-bounds of their left sides respectively.   

Communication performances of both approaches are evaluated via the same 

statement (e.g., theorem 2 in [12]). Note that due to reduction one extra message and 

one S-element should be added in our approach.   

 In our approach, the objects under operations are polynomials of (d–1)-degree 

with coefficients in Fp which can be processed equivalently and efficiently as d-

dimensional vectors over Fp, and the commitments are valued in Gd, so the total num-

ber of G and S elements are d times those over Fp. For the parallel repetition ap-

proach, the same d factor also appears but due to d-fold parallelism. On the other 

hand, since our approach is for the linear relation on nt-dimensional space (over S) 

while the parallel repetition approach is for the relation on ntd-dimensional space 

(over Fp), the number of rounds in our approach is decreased by logd. It is interesting 

that due to the gap in dimensions our approach outperforms the parallel repetition one 

by 2logd in number of rounds, dlogd in total number of Fp elements and 2dlogd in 

total number of G elements.  

        Our approach needs d G-elements for commitment, d times more than the paral-

lel one while the latter needs larger-sized c.r.s than ours by d times.  

In summary, compared with the general parallel repetition approach, our ap-

proach (matrix-specific) to linear relation can reach the knowledge-error O(1/pd) with 

almost the same computational complexity while significantly improving communica-

tion performances, i.e., smaller c.r.s., fewer rounds and shorter messages in total.  

Table 5. Performances of different approaches for linear matrix relation AU=B: UϵF𝑝
𝑛×𝑡𝑑 

 d-fold parallel repetition 

over Fp  

single invocation  

over  GF(p,d)  

 Both with knowledge error ~ p-d 

#of G-elements  

in c.r.s. 
1+ntd  1+nt  

# of G-elements  

for commitment 
                           1 d  

# of rounds 2logn + 2logt + 2logd – 1 2logn + 2logt   

# of G elements 

in message  
(2log(ntd) – 2)d  (2log(nt)–2)d   

# of Fp elements 

in message  
(1+log(ntd))d   (2+log(nt))d  
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Table 6 presents the special case of  table 5 where U is a square with n = td.  

Table 6. Performance of different approaches for linear matrix relation AU=B: UϵF𝑝
𝑛×𝑛 

 d-fold parallel repetition 

over Fp  

single invocation  

over  GF(p,d) 

Improvement 

in fraction 

 Both with knowledge error ~ p-d ≈  

#of G-elements  

in c.r.s. 
1+n2  1+n2/d  d  

# of G-elements  

for commitment. 
                           1 d  1/d 

# of rounds 4logn  – 1 4logn – 2logd   logd/2logn  

# of G elements 

in message  
(4logn – 2)d  (4logn–2logd–2)d   logd/2logn  

# of Fp elements 

in message  
(1+2logn)d   (2+2logn–logd)d  logd/2logn 

 

5.3 More  Linear Matrix Relations  

Relation AUB
T = C  Consider the linear relation over Fp for matrix A,B,C,U ∈ 𝐹𝑝

𝑛×𝑛 

where U is the witness, n = td is a power of 2 and d is the extension degree of Galois 

field S ≡ GR(p,d) which value is determined by the target knowledge-error. Let:  

U = [U1,…,Ut], C = [C1,…,Ct] with each Ui, Ci ∊𝐹𝑝
𝑛×𝑑    

U
* ≡ [

𝐔1
⋮
𝐔t

], C* ≡ [
𝐂1
⋮
𝐂t

] ∊𝐹𝑝
𝑛𝑡×𝑑                             

Both U* and C* can be regarded as the matrices with row-index (kl) and column-

index h for k=1,…,n, l=1,…,t, h=1,…,d: 

U*
kl,h = Uk,(l-1)d+h,  C

*
kl,h = Ck,(l-1)d+h    

        By reformulating the indices, the component-wise form of the equation AUB
T = 

C can be represented as:     

Ci, (j-1)d+q  = ∑ ∑ ∑ A𝑖𝑘
𝑑
ℎ=1

𝑡
𝑙=1

𝑛
𝑘=1 B(𝑗−1)𝑑+𝑞,(𝑙−1)𝑑+ℎU𝑘,(𝑙−1)𝑑+ℎ 

i =1,…,n, j = 1,…,t, q = 1,…,d 

i.e.,  �̃� =  Ω(A,B)U*                                          (5.22) 

where �̃� ∊ 𝐹𝑝
𝑛2×𝑑 has the entry �̃�𝑖𝑞𝑗  ≡ Ci,(j-1)d+q  and Ω∊𝐹𝑝

𝑛2×𝑛𝑡  has its entry:   

                             Ωijq, klh ≡ AikB(j-1)d+q, (l-1)d+h   i, k=1,…,n;  j,l =1,…,t                   (5.23) 

In summary, the relation AUB
T = C with witness U ∈ 𝐹𝑝

𝑛×𝑛 is equivalent to the 

relation (5.22) with witness U*∈ 𝐹𝑝
𝑛𝑡×𝑑. The ZKA protocol for the former relation can 
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be equivalently constructed for the latter with the method presented in sec.5.2, with 

the same performances indicated in tab.6.   

Relation  AU + UB
T
 = C  Consider the linear relation over residue ring Zm for matrix 

A,B,C,U ∈ 𝐹𝑝
𝑛×𝑛 where U is the witness, n = td is a power of 2 and d is the extension 

degree of S ≡ GF(p,d) over Fp which value is determined by the target knowledge-

error.  

Let U* and C* be specified as before, obviously in the same way as before equa-

tion AU + UB
T = C is equivalent to the equation  

 �̃� = (Ω(A,In) + Ω(In,B))U*                                   (5.24) 

where Ω(A,B) is specified in (5.23) for any given matrix A and B. The ZKA protocol 

for AU + UB
T = C can be equivalently constructed for (5.24) with the method pre-

sented in sec.5.2, which performances are the same as in tab.6.   

 

Relation  A1UB1
T
 +…+AkUBk

T
 = C   On basis of the above methods, the efficient 

ZKA protocol for this general linear relation can be also constructed which perfor-

mances are the same as indicated in tab. 6.  

Remark 4  Since any relation over Fp can be reduced to a linear relation (via lineari-

zation), as a result any relation which can be reduced to a linear matrix relation can be 

enhanced in knowledge-error by the above result.  

Remark 5  The same approach can apply to some non-linear matrix relations, e.g., 

bilinear matrix relation UT
QV = Y but will be more technically complicated, which 

will be completed in future works.  
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