
On Side-Channel and CVO Attacks

against TFHE and FHEW

Michael Walter

Zama, France

December 14, 2022

Abstract

The recent work of Chaturvedi et al. (ePrint 2022/685) claims

to observe leakage about secret information in a ciphertext of TFHE

through a timing side-channel on the (untrusted) server. In (Chatur-

vedi et al., ePrint 2022/1563) this is combined with an active attack

against TFHE and FHEW. The claims in (Chaturvedi et al., ePrint

2022/685) about the non-trivial leakage from a ciphertext would have

far-reaching implications, since the server does not have any secret

inputs. In particular, this would mean a weakening of LWE in general,

since an adversary could always simulate a server on which there is

side channel leakage.

In this short note, we show that the claims made in the two afore-

mentioned works with regards to the leakage through the timing side

channel are false. We demonstrate that the active attack, a stan-

dard attack against IND-CPA secure LWE-based encryption, can be

mounted just as e�ciently without the �side channel information�.

1 Introduction

The paper [CCCM22b] claims an e�cient key-recovery attack on TFHE [CGGI20]

and FHEW [DM15] i.e., an attack in which the server can e�ciently recover

the secret key of the client. Considering the typical usecase of FHE, this

seems devastating. The attack consists of two parts, which we will discuss

in this note.

1

1) The server is provided a Ciphertext Veri�cation Oracle (CVO), which

means it may submit arbitrary ciphertexts to the client and in some

way learns if the ciphertext decrypted correctly or not. This oracle

can be used to extract the noise in the ciphertexts. Using noise-free

ciphertexts it is straight-forward to recover the secret key.

2) Building on work from [CCCM22a], the server may use a timing side

channel on itself during the execution of homomorphic operations to

learn some non-trivial information about the noise in the ciphertext.

This is meant to speed up the attack in 1).

We brie�y (and informally) recall some basic security notions: encryption

schemes secure against Chosen Plaintext Attacks (CPA) are secure against

attackers that may obtain encryptions of arbitrary plaintexts, but do not

have access to a decryption oracle; i.e., attackers that only observe cipher-

texts of plaintexts of their choice and try to learn some information from

them. It is well known that in practice, IND-CPA security is generally

not su�cient. Rather, one should deploy encryption schemes that are also

secure against attackers, which may tamper with ciphertexts and obtain

decryptions of them. Such attacks are called Chosen Ciphertext Attacks

(IND-CCA2, where the 2 indicates that the attacker may choose its queries

adaptively). There are generic transforms from IND-CPA secure schemes

to IND-CCA2 secure schemes; e.g., [FO99]. Unfortunately, none of them

apply to FHE schemes, since the transformation will destroy the homomor-

phic properties of the scheme. In fact, it is easy to see that no FHE scheme

can possibly be IND-CCA2 secure.1

Take-aways It is not hard to see that a CVO oracle yields a CCA2-style at-

tack and is indeed devastating to IND-CPA secure LWE-based encryption.

This attack serves as a stark reminder that for deployment, FHE needs to

be securely embedded into a higher level protocol that ensures security of

participants against realistic attackers.

On the other hand, we show below that there is no evidence that there is

any leakage of the noise on the server side and any insinuation that TFHE

or FHEW could be weakened by some side channel on the server should be

considered unsubstantiated.

1Whether e�cient FHE schemes can be IND-CCA1 secure (against non-adaptive chosen

ciphertext attacks) is unclear. See [FHR22] for an overview of the current state of a�airs.

2

2 CVO Attack on LWE

We �rst give a description of the basic attack from [CCCM22b].

Basic LWE Encryption Consider a typical LWE ciphertext (a, b = ⟨a, s⟩ +
µ+ e) with ciphertext modulus q ∈ Z and key length n ∈ Z, where

� a
$← Zn

q ;

� s ← Ψ where Ψ is some distribution over Zn
q with large enough en-

tropy;

� e← χ, where χ is some distribution on Z concentrated around 0 and

with standard deviation σ;

� µ ∈ Zq is an encoding of a message m ∈ {0, 1} such that m can be

recovered from µ+ e.

The reader may think of µ = q
2
m and recovering the message as outputting

m = 1 if µ + e ∈ [q/4, 3q/4] and 0 otherwise. Recall that the standard

deviation σ of the noise e is crucial for security: if σ was 0, an attacker with

knowledge of m could recover the secret key s from many �encryptions� of

m simply by solving a linear system over Zq. The larger σ the more secure

the cryptosystem. For large enough σ, LWE-based encryption is considered

to be IND-CPA secure. How large σ needs to be exactly for a certain

level of security depends on the other parameters, in particular the secret

distribution Ψ and dimension n and the ciphertext modulus q. A useful tool

to quickly evaluate the security of LWE parameters is the lattice estimator

[APS15].2 Of course, σ cannot be set arbitrarily large, since it needs to be

possible to recover the message despite the noise. In the example setting

above, note that the noise needs to be smaller than q/4 in absolute value in

order for the decoding of µ+ e to be correct. In other words, the standard

deviation allows controlling the trade-o� between security (in combination

with other parameters) and correctness of the scheme.

In the following we will concentrate on parameters in the typical TFHE

setting, since the attack mainly focuses on TFHE, which are q = 232,

n = 630, Ψ is the uniform distribution over binary vectors and χ is a

�Gaussian-like� distribution centered around 0 with σ = 217. The message

encoding is slightly di�erent and changes during homomorphic operations,

2https://github.com/malb/lattice-estimator

3

https://github.com/malb/lattice-estimator

but for simplicity we consider the above encoding. Everything here easily

generalizes to other encodings.

CVO Attack Assume an attacker has a CVO oracle at its disposal, which

allows to check for any δ and ciphertext (a, b) encrypting m if (a, b + δ)

still encrypts m. It is then straight-forward to recover the noise e in the

ciphertext using binary search: check if (a, b + q/4) still encrypts m. If

it does, the noise e was negative, otherwise positive. Depending on the

outcome, check if (a, b + 5q/8) or (a, b + q/8) still encrypts m to narrow

down the noise further, etc. So with log2(q/2) queries to the oracle the

attacker may obtain the noise of a ciphertext and thus remove it and obtain

an noise-free ciphertext. If, for example, q = 232 as in TFHE, then the noise

can be recovered using 31 queries. An attacker may repeat this for n many

ciphertexts, which allows to recover the key using linear algebra. This is

the attack proposed in [CCCM22b].

We can actually improve on this attack. Note that above the speci�c

distribution χ of the noise e is ignored, even though the attacker typically

knows it. The attack can easily be adapted to require only ⌈log2(2B)⌉
queries per ciphertext if the noise can be bounded as |e| < B. For exam-

ple, for the �Gaussian-like� distribution in TFHE with standard deviation

σ = 217 and centered around 0, we can put a bound on the size of the noise

such that n ciphertexts have noise within this bound with high probability.

Making the heuristic assumption that χ approximately behaves like a stan-

dard Gaussian distribution with standard deviation 217, the probability

that a single sample from χ exceeds 24 ·σ is less than erfc(
√
2 · 24) < 2−740,

so we can set B = 24 ·σ = 221. This shows that only 22 queries are required

to recover the noise of a ciphertext.

If the attacker has some additional knowledge about the implementation

of the sampling algorithm used in the encryption software, it can do even

slightly better. Assume, for example, that the implementation uses the

Box�Muller transform to draw the noise using 32-bit numbers. Then one

can show that the size of the noise will never be larger than 7 · σ, because
the uniform variates that are input to Box�Muller cannot be arbitrarily

close to 0. In this case the noise may be recovered using 21 queries.

4

3 Timing Side Channel on the Server

In the paper [CCCM22a] the authors claim that they can infer information

about the noise of ciphertexts just by measuring the execution time of

homomorphic gates, which, in this case, can be thought of as a simple

addition of two ciphertexts. The claim is that since the ciphertexts depend

on the noise, the execution time of the addition of two ciphertexts also

depends on the noise and this dependence can be exploited in a so-called

template attack. If this were true, it is easy to see how this might be

useful in the above CVO attack, since it would allow narrowing down the

range of the noise of a speci�c ciphertext by measuring the execution time

of homomorphic addition. This is exactly what [CCCM22b] attempts to

do. The result is that using techniques from [CCCM22a] they are able

to recover the noise using 22 to 23 queries per ciphertext. This is quite

underwhelming given that we already showed how to do that without the

timing side channel. It suggests that there might be less information leakage

than the authors claim. In fact, we claim that neither [CCCM22a] nor

[CCCM22b] shows evidence of any information leakage on the server side

whatsoever.

The high level idea in [CCCM22a] is to have the server mount a template

attack: it builds a template by using a large number of ciphertexts it creates

itself (and thus knows the noise) and measures the execution time of adding

two ciphertexts. The resulting noise values are then clustered into buckets

according to the measured execution time. This precomputation results

in the template. During the online phase, when the server receives two

ciphertexts, it adds them and measures the execution time. It then checks

the bucket corresponding to the measured time and assumes the noise of

the ciphertext will be in the same range; i.e., between the minimum and

the maximum noise in the bucket. (The paper actually makes a distinction

between positive and negative noise values, but this is irrelevant for our

discussion here.)

The authors of [CCCM22b] provided some source code3 and an exam-

ple of a template they constructed that allows to reproduce their results.

Figure 1 shows a depiction of the example template. Indeed, the noise is

spread much further apart when the execution time is short, which might

suggest that longer execution times allow to decduce a smaller noise range.

But there are many more data points for the buckets with small execution

time. So it seems the machine which this template was build on, ran on

3https://github.com/SEAL-IIT-KGP/CVO-TFHE

5

https://github.com/SEAL-IIT-KGP/CVO-TFHE

10000 20000 30000 40000 50000 60000
t

600000

400000

200000

0

200000

400000

600000

800000

error

Figure 1: Plot of noise vs execution time in template

average relatively fast and occasionally took a little longer. This suggests

a more natural explanation for the di�erent noise ranges: the more often a

Gaussian is sampled, the further the minimum and maximum of the sam-

ples will be apart. Intuitively, the more samples are drawn the more likely

we will see outliers. So conditioning on the execution time does not actu-

ally change the marginal distribution, the template only re�ects how often

the execution time fell into a speci�c bucket.

We tested this hypothesis by simulating a template: we simply replaced

each data point in each bucket of the given template with an i.i.d. sample

from the (discrete) Gaussian with the appropriate (�xed) standard devia-

tion and thus built a simulated template. The result is shown in Figure 2,

which allows to verify at least visually that the simulated template has

similar properties as the �real� template. To validate if this is indeed the

case, we replaced the template in the authors' attack code by our simulated

one and ran their attack. It turns out that our simulated template allowed

recovering the key in the same amount of time.4 If a template attack works

with a simulated template that does not take any execution time measure-

ments into account, we believe it is fair to say that the template is useless

4We had to slightly modify the code since the number of recovered noise values was

hardcoded into the equation solver script and our template actually resulted in more

recovered values, causing the script to crash.

6

10000 20000 30000 40000 50000 60000
t

600000

400000

200000

0

200000

400000

600000

800000

error

Figure 2: Plot of noise vs execution time in template (blue) and simulated

template (red)

in the given attack and it does not demonstrate any leakage about the noise

on the server side.

Discussion The authors of [CCCM22a] and [CCCM22b] claim that TFHE

and FHEW might be weakend by side-channel analysis on the server side.

But in both cases the server does not have any secret information and the

attack does not even consider the bootstrapping keys. Note that TFHE and

FHEW ciphertexts are proven IND-CPA secure under the LWE assumption

(with di�erent secret distributions). So claiming that TFHE and/or FHEW

can be weakened using only public information (and not the bootstrapping

keys), be it a template or any other side-channel attack on the server, is

equivalent to claiming that the versions of LWE that TFHE and/or FHEW

rely on are weak. This is because an adversary could simulate the machine

being analyzed and mount such an attack. Given the current status of our

understanding of LWE, this is an extraordinary claim.

References

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the

concrete hardness of learning with errors. J. Math. Cryptol.,

7

9(3):169�203, 2015.

[CCCM22a] Bhuvnesh Chaturvedi, Anirban Chakraborty, Ayantika Chat-

terjee, and Debdeep Mukhopadhyay. Error leakage using tim-

ing channel in FHE ciphertexts from TFHE library. Cryptol-

ogy ePrint Archive, Report 2022/685, 2022. https://eprint.

iacr.org/2022/685.

[CCCM22b] Bhuvnesh Chaturvedi, Anirban Chakraborty, Ayantika Chat-

terjee, and Debdeep Mukhopadhyay. A practical full key re-

covery attack on TFHE and FHEW by inducing decryption

errors. Cryptology ePrint Archive, Report 2022/1563, 2022.

https://eprint.iacr.org/2022/1563.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika

Izabachène. TFHE: Fast fully homomorphic encryption over

the torus. Journal of Cryptology, 33(1):34�91, January 2020.

doi:10.1007/s00145-019-09319-x.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping

homomorphic encryption in less than a second. In Elisabeth

Oswald and Marc Fischlin, editors, EUROCRYPT 2015,

Part I, volume 9056 of LNCS, pages 617�640. Springer, Hei-

delberg, April 2015. doi:10.1007/978-3-662-46800-5_24.

[FHR22] Prastudy Fauzi, Martha Norberg Hovd, and Håvard Rad-

dum. On the IND-CCA1 security of FHE schemes. Cryptogr.,

6(1):13, 2022.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of

asymmetric and symmetric encryption schemes. In Michael J.

Wiener, editor, CRYPTO'99, volume 1666 of LNCS, pages

537�554. Springer, Heidelberg, August 1999. doi:10.1007/

3-540-48405-1_34.

8

https://eprint.iacr.org/2022/685
https://eprint.iacr.org/2022/685
https://eprint.iacr.org/2022/1563
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34

	Introduction
	CVO Attack on LWE
	Timing Side Channel on the Server

