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Abstract. The Meet-in-the-Middle (MitM) attack has been widely ap-
plied to preimage attacks on Merkle-Damg̊ard (MD) hashing. In this
paper, we introduce a generic framework of the MitM attack on sponge-
based hashing. We find certain bit conditions can significantly reduce the
diffusion of the unknown bits and lead to longer MitM characteristics.
To find good or optimal configurations of MitM attacks, e.g., the bit
conditions, the neutral sets, and the matching points, we introduce the
bit-level MILP-based automatic tools on Keccak, Ascon and Xoodyak. To
reduce the scale of bit-level models and make them solvable in reason-
able time, a series of properties of the targeted hashing are considered
in the modelling, such as the linear structure and CP-kernel for Keccak,
the Boolean expression of Sbox for Ascon. Finally, we give an improved
4-round preimage attack on Keccak-512/SHA3, and break a nearly 10
years’ cryptanalysis record. We also give the first preimage attacks on
3-/4-round Ascon-XOF and 3-round Xoodyak-XOF.

Keywords: MitM · Automatic Tool · Keccak/SHA3 · Ascon· Xoodyak

1 Introduction

The Meet-in-the-Middle (MitM) attack proposed by Diffie and Hellman in 1977
[22] is a generic technique for cryptanalysis of symmetric-key primitives. The
essence of the MitM attack is actually an efficient way to exhaustively search
a space for the right candidate based on the birthday attack, i.e., dividing the
whole space into two independent subsets (also known as neutral sets) and then
finding matches from the two subsets. Suppose EK(·) to be a block cipher whose
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size is n-bit such that C = EK(P ) = FK2
(FK1

(P )), where K = K1∥K2 has
n bits, and K1 and K2 are independent key materials of n/2 bits. For a given
plaintext-ciphertext pair (P,C), a naive exhaust search attack needs a time
complexity 2n to find the key. However, the birthday-paradox based MitM at-
tack computes independently FK1

(P ) and F−1
K2

(C) with independent guesses of

K1 and K2, and searches collision between FK1
(P ) and F−1

K2
(C) to find the

K with a time complexity about 2n/2. In the past decades, the MitM attack
has been widely applied to the cryptanalysis on block ciphers [50,30,12,40] and
hash functions [58,2,34]. In the meantime, various techniques have been intro-
duced to improve the framework of MitM attack, such as internal state guessing
[30], splice-and-cut [2], initial structure [58], bicliques [11], 3-subset MitM [12],
indirect-partial matching [2,58], sieve-in-the-middle [15], match-box [32], dissec-
tion [24], differential-aided MitM [41,31,14], nonlinear constrained neutral words
[28], etc. Till now, the MitM attack and its variants have broken MD4 [44,34],
MD5 [58], KeeLoq [39], HAVAL [4,59], GOST [40], GEA-1/2 [7,1], etc.

At CRYPTO 2011 and 2016, several ad-hoc automatic tools [13,19] were pro-
posed for MitM attacks. At IWSEC 2018, Sasaki [56] introduced MILP-based
MitM attacks on GIFT block cipher. At EUROCRYPT 2021, Bao et al. [5] intro-
duced the MILP-based automatic search framework for MitM preimage attacks
on AES-like hashing, whose compression function is built from AES-like block
cipher or permutations. At CRYPTO 2021, Dong et al. [28] further extended
Bao et al.’s model into key-recovery and collision attacks. At CRYPTO 2022,
Schrottenloher and Stevens [60] simplified the language of the automatic model
and applied it in both classic and quantum settings. Bao et al. [6] considered the
MitM attack in a view of the superposition states.

When applying to hash functions, most of the MitM attacks targeted on
Merkle-Damg̊ard [51,17] domain extender, whose compression function is usu-
ally built from a block cipher and PGV hashing modes [54], such as Davies-Meyer
(DM), Matyas-Meyer-Oseas (MMO) and Miyaguchi-Preneel (MP). The goal of
the MitM attack is to find a sequence of internal states which satisfy a closed
computational path: there is a relation between the value before the first round
and the value after the last round in previous applications of MitM attacks. For
example, when attacking block-cipher based hashing modes (DM, MMO, MP,
etc.), the closed computation path is computed across the first and last rounds
via the feed-forward mechanism of the hashing modes. While when attacking
block ciphers, the closed computation path is linked via an encryption/decryp-
tion oracle. As shown in Figure 1, one starts by separating the path in two
chunks (splice-and-cut): the backward chunk and the forward chunk depending
on different neutral sets. Both chunks form independent computation paths. One
then finds a partial match between them at certain round.

When considering the new hashing mode, i.e., sponge-based hashing, there
is no feed-forward mechanism anymore, e.g. Keccak. We have to try novel ways
to build the so-called closed computational path for MitM attack. Most preim-
age attacks on sponge-based hashing focus on the analysis on Keccak/SHA-3
with linearization technique. At ASIACRYPT 2016, Guo et al. [35] introduced
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Fig. 1: The closed computation path of the MitM attack

the linear structure technique to linearise several rounds of Keccak and derived
upto 4-round preimage attacks. Later, Guo et al.’s attacks were improved by the
cross-linear structure [46] at ToSC 2017 and allocating approach [45] at EURO-
CRYPT 2019. Further improvements in this line were proposed in [55,37,48,47].
At EUROCRYPT 2021, Dinur [23] gave the preimage attacks on Keccak by
solving multivariate equation systems. Additionally, theoretical preimage attacks
marginally better than exhaustive attacks were studied in [8,52].

At INDOCRYPT 2011, an MitM attack on 2-round Keccak is given by Naya-
Plasencia et al. [53]. However, their MitM attack is different from what we are
considering. In [53], after computing the inverse of one round Keccak from the
target, partial internal states are known. Then, Naya-Plasencia et al. divide the
message block into many independent parts and compute forward independently
for each part until the known internal states, and filter the messages. Naya-
Plasencia et al.’s attack is more like a divide-and-conquer and the birthday
attack is not used.

Our Contributions.

We apply the birthday-paradox based MitM attack∗, which has been widely
used to attack Merkle-Damg̊ard [51,17] hashing with PGV modes as well as
block ciphers, to the sponge-based hash functions. Additionally, by applying bit
conditions, the diffusion of the two neutral sets can be controlled and reduced,
and therefore lead to longer MitM characteristics. Finally, we propose a generic
MitM framework with conditions for sponge-based hash functions.

To apply our framework to Keccak, Ascon-XOF and Xoodyak-XOF, we have
to search sound configurations for MitM attack, including the choice of the two
neutral sets, the bit conditions, the matching points etc. As Keccak, Ascon are
bit-level hashing, we introduce the bit-level MILP-based automatic tools to de-
tect those configurations. Different from the previous byte-level MitM MILP
models [5,28,60], the bit-level modelling usually leads to huge scale MILP mod-
els and makes it hard to solve in reasonable time. Therefore, we explore detailed
properties of dedicated ciphers to reduce the models. For Keccak, we apply the
linear structures in starting states and CP-kernel properties in matching phase.

∗The Demirci-Selçuk MitM attacks [18,29,20,21,10] are not considered in this paper,
which is a quite different technique.
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For Ascon, the Boolean expressions of the Sbox are explored in the starting
states and matching points. In previous modellings [5,28], cells depending on
both two neutral sets are always regarded as useless and unknown in the MitM
attack. The unknown cells can significantly reduce the number of known cells
when propagating (somewhat like polluting), since any known cells will become
unknown by operating with the unknown cells. Inspired by the indirect-partial
matching technique [2,58], the cells depending on the additions of the two neu-
tral sets are also useful and should not be regarded as unknown in the automatic
searching models. Therefore, we introduce new constraints for those kinds of cells
and reduce the polluting speed of the unknown cells.

At last, we derive a better 4-round preimage attack on Keccak/SHA3-512

than Morawiecki et al.’s rotational cryptanalysis [52] at FSE 2013, that breaks
their nearly 10 years’ record. While previous preimage attack on Keccak-512

with linear structure techniques [35] (including improvements with various tech-
niques [48,36,55]) only reaches 3 rounds. For Ascon-XOF, the first 3-round and
4-round preimage attacks are given. For Xoodyak-XOF, the first 3-round preimage
attack is given. A summary of the related results are given in Table 1.

Table 1: A Summary of the Attacks. Lin. Stru.: Linear Structure. MitM: MitM
Attack. Diff.: Differential. †: this attack ignores the padding bits.

Target Attacks Methods Rounds Time Memory Ref.

Keccak-512 Preimage

Lin.Stru. 2 2384 - [35]
Lin.Stru. 2 2321 - [55]
Lin.Stru. 2 2270 - [48]
Lin.Stru. 2 2252 - [36]
Lin.Stru. 3 2482 - [35]
Lin.Stru. 3 2475 - [55]
Lin.Stru. 3 2452 - [48]
Lin.Stru. 3 2426 - [36]
Rotational 4 2506 - [52]
MitM 4 2504.58 2108 Sect. 4.3

Collision
Diff. 2 Practical - [53]
Diff. 3 Practical - [25]

Xoodyak-XOF Preimage
Neural 1 - - [49]
MitM 3 2125.06 297 Sect. 5.2

Ascon-XOF
Preimage

Cube-like 2 2103 - [27]
MitM 3 2120.58 239 Sect. E
MitM 4 2124.67 254 Sect. 6.2

Algebraic† 6 2127.3 - [27]

Collision Diff. 2 2103 - [33]
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Comparison to Schrottenloher and Stevens’s MitM attack. At CRYPTO 2022,
Schrottenloher and Stevens [60] introduced preimage attacks on SPHINCS+-Haraka
[3], which is sponge-based hashing with permutation Haraka [43]. Their MitM
attack computes from the two ends, i.e., the known inner part and the target,
to the middle matching part. Combining with the guess-and-determine tech-
nique, they derived a 3.5-round (out of 5 rounds) quantum preimage attack on
SPHINCS+-Haraka. As stated in [60, Section 3.1], their frameworks do not lead
to interesting results on Ascon [27]. The reason may be that for Keccak or Ascon
the inverse of one round is not as easy as Haraka. Our framework mainly uses
the forward computation, and leads to novel results on both Keccak and Ascon.

2 Preliminaries

In the section, we give some brief descriptions of the Meet-in-the-Middle attack,
the sponge-based hash function, the Keccak-f permutation, Ascon-Hash and
Ascon-XOF, Xoodyak and Xoodoo permutation.

2.1 The Meet-in-the-Middle Attack

Since the pioneering works on preimage attacks on Merkle–Damg̊ard hashing,
e.g. MD4, MD5, and HAVAL [44,58,2,34], techniques such as splice-and-cut [2], initial
structure [58] and indirect-partial matching have been invented to significantly
improve the MitM approach. As shown in Figure 1, in the MitM attack, the
compression function is divided at certain intermediate rounds (initial structure)
into two chunks. One chunk is computed forward (named as forward chunk),
and the other is computed backward (named as backward chunk). One of them
is computed across the first and last rounds via the feed-forward mechanism
of the hashing mode, and they end at a common intermediate round (partial
matching point) and form a closed computation path of the MitM attack. In
each of the chunks, the computation involves at least one distinct message word
(or a few bits of it), such that they can be computed over all possible values of
the involved message word(s) independently from the message word(s) involved
in the other chunk (the distinct words are called neutral words). In the initial
structure, the two chunks overlapped and the neutral words for both chunks
appear simultaneously, but still, the computations of the two chunks on the
neutral words are independent. The highlevel framework is in Figure 1, which
can be divided into three configurations:

1. The chunk separation – the positions of initial structure and matching points.
2. The neutral sets – the selection on the two neutral sets (denoted as or

sets), which determines the degree of freedom (DoF) for each chunk.
3. The matching – the deterministic relation used for matching, which deter-

mines the filtering ability (degree of matching, DoM).

After setting up the configurations, the basic attack procedure goes as follows.
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1. Choose constants for the initial structure.
2. For all 2d1 values of neutral set, compute backward from the initial struc-

ture to the matching points to generate a table L1, whose indices are the
values for matching, and the elements are the values of neutral set.

3. Similarly, build L2 for 2d2 values of neutral set with forward computation.
4. Check whether there is an m-bit match on indices between L1 and L2.
5. For the pairs surviving the partial match, check for a full-state match. Steps

1-5 will be repeated until we find a full match.

The attack complexity. Denote the size of the target by h, and the number of
bits for the match by m. An MitM episode is performed with time 2max(d1,d2) +
2d1+d2−m and the total time complexity of the attack is:

2h−(d1+d2) · (2max(d1,d2) + 2d1+d2−m) ≃ 2h−min(d1,d2,m). (1)

To illustrate how the MitM attack works, we detail the 7-round attack on AES-
hashing of Sasaki [57] in Supplementary Material A as an example.

2.2 The Sponge-based Hash Function

The sponge construction [9] shown in Figure 2 takes a variable-length message
as input and produces a digest of any desired length. The b-bit internal state
is composed of an outer part of r bits and an inner part of c bits, where r is
the rate and c is the capacity. To evaluate the sponge function, one proceeds in
three phases with an inner permutation f :

1. Initialization: Initialize the b-bit state with the given value (all 0’s for
Keccak) before proceeding the message blocks.

2. Absorbing: The message is padded and split into blocks of r bits. Absorb
each r-bit block Mi by XORing into the internal state.

3. Squeezing: Produce the digest.

We named the hash functions with sponge construction as the sponge-based hash
functions, e.g. Keccak [9], Ascon [27], Xoodyak [16], to name a few.

Absorbing phase Squeezing phase

M1

c bits

r bits

f

M2

f

M3

f

M4

f

h1

f

h2

f

h3

Fig. 2: The sponge construction
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Fig. 3: The Keccak state
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2.3 The Keccak-f Permutations

The Keccak hash function family [9] specifies 7 Keccak permutations, denoted
Keccak-f [b], where b ∈ {25, 50, 100, 200, 400, 800, 1600} is the width of the per-
mutation. In this paper, we focus on Keccak-f [1600], where the state A is ar-

ranged as 5× 5 64-bit lanes as depicted in Figure 3. Let A
(r)
{x,y,z} denote the bit

located at the x-th column, y-th row and z-th lane in the round r (r ≥ 0), where
0 ≤ x ≤ 4, 0 ≤ y ≤ 4, 0 ≤ z ≤ 63. For Keccak in the rest of this paper, all
the coordinates are considered modulo 5 for x and y and modulo 64 for z. The
function Keccak-f [1600] consists of 24 rounds which consists of five operations
ι ◦ χ ◦ π ◦ ρ ◦ θ. Denote the internal states of round r as

A(r) θ−→ θ(r)
ρ−→ ρ(r)

π−→ π(r) χ−→ χ(r) ι−→ A(r+1).

Operations in each round are:

θ : θ
(r)

{x,y,z} = A
(r)

{x,y,z} ⊕
∑4

y′=0
(A

(r)

{x−1,y′,z} ⊕A
(r)

{x+1,y′,z−1}),

ρ : ρ
(r)

{x,y,z} = θ
(r)

{x,y,z−γ[x,y]},

π : π
(r)

{y,2x+3y,z} = ρ
(r)

{x,y,z},

χ : χ
(r)

{x,y,z} = π
(r)

{x,y,z} ⊕ (π
(r)

{x+1,y,z} ⊕ 1) · π(r)

{x+2,y,z},

ι : A(r+1) = χ(r) ⊕RCr,

(2)

where γ[x, y]’s are constants given in Table 2 of Supplementary Material B, RCr

is round-dependent constant.

The Keccak and SHA3 Hash Function. The Keccak hash function fol-
lows the sponge construction. For Keccak[r, c, d], the capacity is c, the bitrate
is r and the diversifier is d. NIST standardized four SHA3-l versions (l ∈
224, 256, 384, 512), where c = 2l and r = 1600 − 2l. The only difference of
Keccak and SHA3 is the padding rule. The padding rule for Keccak is padding
the message with ‘10∗1’, which is a single bit 1 followed by the minimum num-
ber of 0 bits followed by a single bit 1, to make the whole length to a multiple
of (1600 − 2l). For SHA3, the message is padded with ‘0110∗1’. However, the
padding rule does not affect the final time complexity of our attack.

2.4 Ascon-Hash and Ascon-XOF

The Ascon family [27] includes the hash functions Ascon-Hash and Ascon-Hasha

as well as the extendable output functions Ascon-XOF and Ascon-XOFa with
sponge-based modes of operations.

Ascon Permutation. The inner permutation applies 12 round functions to a

320-bit state. The state A is split into five 64-bit words, and denote A
(r)
{x,y}

to be the x-th (column) bit of the y-th (row) 64-bit word, where 0 ≤ y ≤ 4,
0 ≤ x ≤ 63. The round function consists of three operations pC , pS and pL.

Denote the internal states of round r as A(r) pS◦pC−−−−→ S(r) pL−−→ A(r+1).
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– Addition of Constants pC : A
(r)
{∗,2} = A

(r)
{∗,2} ⊕RCr.

– Substitution Layer pS: For each x, this step updates the columns A
(r)
{x,∗}

using the 5-bit Sbox. Assume the S-box maps (a0, a1, a2, a3, a4) ∈ F5
2 to

(b0, b1, b2, b3, b4) ∈ F5
2, where a0 is the most significant bit. The algebraic

normal form (ANF) of the Sbox is as follows:

b0 = a4a1 + a3 + a2a1 + a2 + a1a0 + a1 + a0,

b1 = a4 + a3a2 + a3a1 + a3 + a2a1 + a2 + a1 + a0,

b2 = a4a3 + a4 + a2 + a1 + 1,

b3 = a4a0 + a4 + a3a0 + a3 + a2 + a1 + a0,

b4 = a4a1 + a4 + a3 + a1a0 + a1.

(3)

– Linear Diffusion Layer pL:

A
(r+1)
{∗,0} ← S

(r)
{∗,0} ⊕ (S

(r)
{∗,0} ≫ 19)⊕ (S

(r)
{∗,0} ≫ 28),

A
(r+1)
{∗,1} ← S

(r)
{∗,1} ⊕ (S

(r)
{∗,1} ≫ 61)⊕ (S

(r)
{∗,1} ≫ 39),

A
(r+1)
{∗,2} ← S

(r)
{∗,2} ⊕ (S

(r)
{∗,2} ≫ 1)⊕ (S

(r)
{∗,2} ≫ 6),

A
(r+1)
{∗,3} ← S

(r)
{∗,3} ⊕ (S

(r)
{∗,3} ≫ 10)⊕ (S

(r)
{∗,3} ≫ 17),

A
(r+1)
{∗,4} ← S

(r)
{∗,4} ⊕ (S

(r)
{∗,4} ≫ 7)⊕ (S

(r)
{∗,4} ≫ 41).

Ascon-Hash and Ascon-XOF. The state A is composed of the outer part with 64
bits A{∗,0} and the inner part 256 bits A{∗,i} (i = 1, 2, 3, 4). For Ascon-Hash, the
output size is 256 bits, and the security claim is 2128. For Ascon-XOF, the output
can have arbitrary length and the security claim against preimage attack is
min(2128, 2l), where l is the output length. In this paper, we target on Ascon-XOF

with a 128-bit hash value and a 128-bit security claim against preimage attack.

2.5 Xoodyak and Xoodoo Permutation

x

y

z 0

1

2

0 1 2 3

Fig. 4: Toy version of the Xoodoo state. The order in y is opposite to Keccak

Internally, Xoodyak makes use of the Xoodoo permutation [16], whose state

(shown in Figure 4) bit denoted by A
(r)
{x,y,z} is located at the x-th column, y-th
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row and z-th lane in the round r, where 0 ≤ x ≤ 3, 0 ≤ y ≤ 2, 0 ≤ z ≤ 31. For
Xoodoo, all the coordinates are considered modulo 4 for x, modulo 3 for y and
modulo 32 for z. The permutation consists of the iteration of a round function
R = ρeast ◦ χ ◦ ι ◦ ρwest ◦ θ. The number of rounds is a parameter, which is 12 in
Xoodyak. Denote the internal states of the round r as

A(r) θ−→ θ(r)
ρwest−−−→ ρ(r)

ι−→ ι(r)
χ−→ χ(r) ρeast−−−→ A(r+1).

θ : θ
(r)

{x,y,z} = A
(r)

{x,y,z} ⊕
∑2

y′=0
(A

(r)

{x−1,y′,z−5} ⊕A
(r)

{x−1,y′,z−14}),

ρwest : ρ
(r)

{x,0,z} = θ
(r)

{x,0,z}, ρ
(r)

{x,1,z} = θ
(r)

{x−1,1,z}, ρ
(r)

{x,2,z} = θ
(r)

{x,2,z−11},

ι : ι
(r)

{0,0,z} = ρ
(r)

{0,0,z} ⊕RCr, where RCr is round-dependent constant,

χ : χ
(r)

{x,y,z} = ι
(r)

{x,y,z} ⊕ (ι
(r)

{x,y+1,z} ⊕ 1) · ι(r){x,y+2,z},

ρeast : A
(r+1)

{x,0,z} = χ
(r)

{x,0,z}, A
(r+1)

{x,1,z} = χ
(r)

{x,1,z−1}, A
(r+1)

{x,2,z} = χ
(r)

{x−2,2,z−8}.

(4)

Xoodyak can serve as a XOF, i.e. Xoodyak-XOF, which offers arbitrary output
length l. The preimage resistance is min(2128, 2l). We target on Xoodyak-XOF

with output of 128-bit hash value and 128-bit absorbed message block.

3 Meet-in-the-Middle Attack on Sponge-based Hashing

h

(a) MITM on DM

c

h

(b) MITM on Sponge

Fig. 5: Differences in MitM attack on PGV and sponge hash functions

The essence of the Meet-in-the-Middle attack is actually an efficient way to
exhaustively search a space for the right one based on the birthday attack. Taken
the MitM attack on DM construction (Figure 5(a)) as an example, suppose
the size of the internal state is n, the size of the output is h (n ≥ h). In the
perspective of exhaust search attack, one chooses a random internal state to
verify if it leads to the given h-bit target. After searching a space of 2h internal
states, one will find the preimage. In the MitM attacks, as shown in Figure
5(a), the attacker starts from the internal state in the middle, which is divided
into two independent forward and backward chunks (marked in red and blue,
respectively). One computes the two chunks independently until the matching
point to filter the wrong internal states. The details are given in Section 2.1.

When considering the sponge-based hashing, if we start from some similar
internal states in the middle (as shown in Figure 5(b)) to search preimage with
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the given target, the internal state has to satisfy not only the target in forward
computation, but also the c-bit inner part in backward computation. In other
words, we have to search a space with 2(h+c) internal states to meet the target
and the inner part. Taking the complexity of exhaustive search (i.e., 2h) into
consideration, it may be not a good idea to search a (h+ c)-bit space even with
MitM. For sponge-based hashing, we do not follow the conventional start-from-
the-middle way to drive the MitM attack. We try to search a more compact
space to find the preimage. In fact, we choose to search the r-bit outer part.
With the known c-bit inner part, a search of h-bit subspace of the outer part
(if r > h) with MitM method is enough to find the preimage. The highlevel
framework of the MitM approach is shown in Figure 6 and highlighted in the
green box. Since we start from the outer part and try to satisfy the h-bit target,
only forward computations are involved. Like the MitM attack in Section 2.1,
we need to specify the configurations: the two neutral sets of the outer part, the
two independent forward computation chunks, the matching points. We may
partially solve the inverse of the permutation from the h-bit target to get some
internal bits. Thereafter, by forward computing the two independent chunks
until those internal bits, the deterministic relations on the two neutral sets were
established, which act as the matching point.

3.1 The Conditions in the MitM Attack

The key point of the MitM is to extend the number of rounds of the independent
computation path for blue or red neutral words. For Keccak, we have χ : bi =
ai ⊕ (ai+1 ⊕ 1) · ai+2. Supposing ai+1 is blue neutral word and ai is red neutral
word, then bi depends on both blue and red neutral words if ai+2 = 1, otherwise
bi only depends on the red neutral words ai. That is what we called “conditions”.

Setting conditions to control the characteristic can trace back to Wang et al.’s
collision attacks with message modification techniques [61,62]. Then, conditions
are applied to enhance the probability of the differentials, i.e., the conditional
differential cryptanalysis [42]. Later, conditions are used to reduce the diffusion
of the cube variables in dynamic cube attack [26] and conditional cube attacks
[38]. In MitM attack, the conditions were used to build MitM attacks [58,2]
on MD/SHA hashing with ARX structure. For modular addition X + Y = Z
(X,Y, Z ∈ F32

2 ), particularly the computation of i-th and (i+1)-th bits, assume
that the carry from (i− 1)-th bit to i-th bit is 0. Then, the (i+1)-th bit of Z is
computed as Z{i+1} = X{i+1}⊕Y{i+1}⊕X{i} ·Y{i}. When X{i+1} is blue neutral
word and Y{i} is red neutral word, the idea of making X{i} = 0 as a condition
so that Z{i+1} is only affected by blue neutral word.

In this paper, we try to apply conditions to reduce the diffusion of the
red/blue neutral words, and expect to find longer MitM characteristics. In our
MitM attack on sponge-based hashing, the conditions usually depend on bits
from both inner part (capacity) and outer part (rate). In order to modify cer-
tain conditions, we have to modify bits from the inner part. Therefore, as shown
in Figure 6, we place the MitM attack in the processing of the last message block
and modify the conditions determined by inner part by randomly changing the
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first several message blocks (e.g. M1 in Figure 6). Suppose there are µ condi-
tions only determined by the inner part†, the probability to find one right M1

satisfying all the conditions is about 2−µ.

condition

condition

r

c

M1 M2

match

h
MITM

Fig. 6: Framework of the MitM attack on sponge-based hashing

Once we find one right M1, we assign arbitrary values to all bits except those
neutral bits for M2. Then, an MitM episode is performed:

1. Suppose the two neutral sets of the outer part are of 2d1 and 2d2 values,
respectively, which are marked by the and color. For each of 2d1 values,
compute forward to the matching points.

2. For each of 2d2 values, compute forward to the matching points.

3. Compute backward with the known h-bit target to the matching points to
derive an m-bit matching.

4. Filter states.

The complexity of the MitM episode is 2max(d1,d2)+2d1+d2−m, which actually
checks 2d1+d2 M2. In order to find a preimage of h, we have to repeat the
episode for 2h−(d1+d2) times. After the conditions in inner part are satisfied,
suppose there are 2η non-neutral bits in M2 that provide 2η MitM episodes. If
η+d1+d2 < h, we have to find 2h−(η+d1+d2) M1, which all satisfy the conditions
in the inner part of the last permutation. The total time complexity is

2h−(η+d1+d2) · 2µ + 2h−(d1+d2) · (2max(d1,d2) + 2d1+d2−m). (5)

4 MitM Preimage Attack on Keccak

This section first gives some techniques and properties in previous preimage
attacks on Keccak. Then we propose our MILP model for the MitM attack on
Keccak. As an application, we mount a 4-round preimage attack on Keccak-512.

†Note that, if the conditions are determined by both outer part and inner part,
then for given inner part, it is possible to change the message block (i.e., M2 in Figure
6) to modify the conditions.
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4.1 Preliminaries on Keccak

Most previous preimage attacks on Keccak/SHA3 are with the linearization tech-
nique. The linear structure technique allows to linearize the underlying permuta-
tion of Keccak for several rounds. In our attack, we also apply the linear structure
technique proposed by Guo et al. [35] to linearize one round of Keccak, in order
to speed up the search.

Linear Structure. We give an example to explain the linear structure tech-
nique. As shown in Fig. 7, the variables v0,z and v1,z (0 ≤ z ≤ 63) are allocated as

A
(0)
{0,0,z} = v0,z, A

(0)
{0,1,z} = v0,z⊕c0,z, A

(0)
{2,0,z} = v1,z, A

(0)
{2,1,z} = v1,z⊕c1,z, where

c0,z and c1,z (0 ≤ z ≤ 63) are constants. After the θ operation, the variables will
not diffuse. After the π operation, any two variables are not adjacent in a row,
and all outputs of A(1) are linear. To further reduce the diffusion of the variables
in χ operation, one can add restricted constraints to the value of constant bits.

For example, for the row π
(0)
{∗,0,z}, setting two bit conditions π

(0)
{1,0,z} = 0 and

π
(0)
{4,0,z} = 1, the other bits except A

(1)
{0,0,z} in A

(1)
{∗,0,z} will be constants. Those

conditions can be satisfied by modifying the message block and inner part.

constant linear =1 =0

0,0

0,1

0,2

0,3

0,4

1,0

1,1

1,2

1,3

1,4

2,0

2,1

2,2

2,3

2,4

3,0

3,1

3,2

3,3

3,4

4,0

4,1

4,2

4,3

4,4

A(0)

0,0

0,1

0,2

0,3

0,4

1,0

1,1

1,2

1,3

1,4

2,0

2,1

2,2

2,3

2,4

3,0

3,1

3,2

3,3

3,4

4,0

4,1

4,2

4,3

4,4

θ(0)

0,0

0,1

0,2

0,3

0,4

1,0

1,1

1,2

1,3

1,4

2,0

2,1

2,2

2,3

2,4

3,0

3,1

3,2

3,3

3,4

4,0

4,1

4,2

4,3

4,4

π(0)

θ π ◦ ρ

Fig. 7: The linear structure of 1-round Keccak-512

Properties of the Sbox χ. Guo et al. proposed several properties of the Sbox
χ, which help to mount preimage attacks on Keccak [35]. Those properties can be
also applied in our MitM attack, so we give a brief introduction in the following.
Assume χ : F5

2 → F5
2 maps (a0, a1, a2, a3, a4) to (b0, b1, b2, b3, b4) as

bi = ai ⊕ (ai+1 ⊕ 1) · ai+2, (6)

where all indices are modulo 5. The inverse operation χ−1 is

ai = bi ⊕ (bi+1 ⊕ 1) · (bi+2 ⊕ (bi+3 ⊕ 1) · bi+4). (7)

Property 1. [35] When there are three known consecutive output bits, two linear
equations of the input bits can be constructed. E.g., assuming that (b0, b1, b2)
are known, two linear equations on (a0, a1, a2, a3) are constructed as

b0 = a0 ⊕ (b1 ⊕ 1) · a2, b1 = a1 ⊕ (b2 ⊕ 1) · a3. (8)

4.2 MILP Model of the MitM Preimage Attack on Keccak

In previous MILP models [5,28] of the MitM attack, each bit can take one of the
four colors ( , , , and ). Generally, the bits depending on both and ,
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are unknown and useless in the MitM attack. In our model, bits whose Boolean
expression depending on the addition of and (not multiplied) can also be used
in our MitM attack, which is known as the indirect-partial matching technique
[58,2] and ignored by previous automatic models [5,28]. Therefore, we introduce
another color, i.e., . In our MILP models, there are five colors ( , , , , and
). We first introduce a new efficient encoding scheme of those colors. Applying

the linear structure technique, we can skip the first round and construct the
model from the second round. Then we model the attribute propagation of the
five colors over the five operations in each round of Keccak. We also model the
matching phase with the CP-kernel for Keccak. With all above works, we build
an automatic MILP model for the MitM preimage attack on Keccak.

Encoding Scheme. Since there are 5 colors to encode in the MILP model,
the previous 2-bit encoding method [5,28] is not suitable and we introduce a
new 3-bit encoding scheme, i.e., each bit is represented by three 0-1 variables
(ω0, ω1, ω2):

– Gray : (1, 1, 1), global constant bits,

– Red : (0, 1, 1), bits determined by bits and bits of starting state,

– Blue : (1, 1, 0), bits determined by bits and bits of starting state,

– Green : (0, 1, 0), bits determined by bits, bits and bits, but the
expression does not contain the product of and bits,

– White : (0, 0, 0), bits dependent on the product of and bits.

We set ω1 to 0 for and to 1 for any other color ( , , , ). So bit can be
quickly detected by the value of ω1. Then we set ω0 to 1 for ( , ) and to 0 for
other color ( , , ). Similarly for ω2.

Modelling the Starting State with the Linear Structure Technique.
In the starting state, each of the 1600 bits takes one color of , and . We
allocate variables α{x,y,z} and β{x,y,z} for the bit with index {x, y, z}, where
α{x,y,z} = 1 if and only if the bit is and β{x,y,z} = 1 if and only if the bit is .
Therefore, we can compute the initial DoF by λB =

∑
α{x,y,z}, λR =

∑
β{x,y,z}.

For Keccak, we apply the 1-round restricted linear structure as the example
given in Section 4.1. Denote the starting state after XORing message block

by A(0). The bits in A
(0)
{0,0,z}, A

(0)
{0,1,z}, A

(0)
{2,0,z} and A

(0)
{2,1,z} can be colored as

or . And the remaining bits of A(0) need to be . In order to control the

diffusion of θ operation, A
(0)
{0,0,z} and A

(0)
{0,1,z} should be the same color and the

A
(0)
{0,0,z} ⊕ A

(0)
{0,1,z} should be constant, which consumes one degree of freedom.

Similarly for A
(0)
{2,0,z} and A

(0)
{2,1,z}. Thereafter, the coloring pattern keeps the

same over the first θ operation. Then with the conditions set in π(0) as introduced
in Section 4.1, we can omit the first χ operation and construct the model from
A(1) only considering the linear operation π ◦ ρ from A(0).
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Modelling the Attribute Propagation. The round function of Keccak con-
sists of five operations θ, ρ, π, χ and ι. The linear operations ρ and π only change
the position of each bit of the state. The operation ι can be ignored because it
will not change the coloring pattern.

Modelling the θ operation. At first, we give the rule of XOR with an arbitrary num-
ber of inputs under the new coloring scheme. We name the rule of by XOR-RULE,
which involves five rules:

1. XOR-RULE-1: If the inputs have (0,0,0) bit , the output is .
2. XOR-RULE-2: If the inputs are all (1,1,1) bits , the output is .
3. XOR-RULE-3: If the inputs have (1,1,0) (≥ 1) and (≥ 0) bits, the output

will be without consuming DoF, or by consuming one DoF of .
4. XOR-RULE-4: If the inputs have (0,1,1) (≥ 1) and (≥ 0) bits, the output

will be without consuming DoF, or by consuming one DoF of .
5. XOR-RULE-5: If the inputs have (0,1,0) bits, or have at least two kinds of

, and bits:
(a) the output can be without consuming DoF.
(b) the output can be (or ) by consuming one DoF of (or ).
(c) the output can be by consuming one DoF of and one DoF of .

*
*
*
*

⊕ ⊕ ⊕ ⊕

-1

⊕ ⊕

-1

⊕ ⊕

-1

⊕

-1

⊕

-1

⊕

-1

⊕

-1
-1

Fig. 8: 5-XOR-RULE (“*” represents the bit can be any color)

We give some valid coloring patterns of 5 inputs of XOR, which are named by
5-XOR-RULE, as shown in Figure 8. Similar to previous MitM attacks [5], we can
use some new variables to identify which rule is applied in different cases. We
define three 0-1 variables νi (i ∈ {0, 1, 2}), where ν0 = 1 if and only if all the
ω0’s of the 5 input bits are 1, similar to the cases i = 1, 2. The above five rules
can be represented by (ν0, ν1, ν2):

1. (ν0, ν1, ν2) = (∗, 0, ∗), XOR-RULE-1 is applied.
2. (ν0, ν1, ν2) = (1, 1, 1), XOR-RULE-2 is applied.
3. (ν0, ν1, ν2) = (1, 1, 0), XOR-RULE-3 is applied.
4. (ν0, ν1, ν2) = (0, 1, 1), XOR-RULE-4 is applied.
5. (ν0, ν1, ν2) = (0, 1, 0), XOR-RULE-5 is applied.

Taking (ν0, ν1, ν2) = (1, 1, 0) as an example. ν1 = 1 means that all the ω1’s of
the input bits are 1 and there is no bit. ν0 = 1 means that there only may
have the or . ν2 = 1 means that there must have or or . Based on the
above analysis, we can deduce that when (ν0, ν1, ν2) = (1, 1, 0), there only have
and and the number of is greater than or equal to one, where XOR-RULE-3
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is applied. Denote the output bit as (ωO
0 , ωO

1 , ωO
2 ) and the consumed DoF of

bits and bits are (δR, δB), we can derive
ωO
0 − ν0 ≥ 0, − ωO

0 + ν1 ≥ 0,

ωO
1 − ν1 = 0,

ωO
2 − ν2 ≥ 0, − ωO

2 + ν1 ≥ 0,

δR − ωO
0 + ν0 = 0,

δB − ωO
2 + ν2 = 0.

(9)

In the θ operation, the expression of the output bit is XORing 11 input bits.
If we directly compute the XORing value of the 11 input bits, we may dou-
ble counting the consumption of DoF. For example, given (x, z), we compute

θ
(r)
{x,0,z} and θ

(r)
{x,1,z} by θ

(r)
{x,y,z} = A

(r)
{x,y,z} ⊕

∑4
y′=0 (A

(r)
{x−1,y′,z} ⊕A

(r)
{x+1,y′,z−1}).

If bits in the common formula
∑4

y′=0 (A
(r)
{x−1,y′,z} ⊕A

(r)
{x+1,y′,z−1}) are only de-

termined by bits, and A
(r)
{x,0,z}, A

(r)
{x,1,z} are bits, we can let the summation

bit of
∑4

y′=0 (A
(r)
{x−1,y′,z} ⊕A

(r)
{x+1,y′,z−1}) be by consuming only one DoF of .

Thereafter, the two output bits θ
(r)
{x,0,z}, θ

(r)
{x,1,z} will be . However, if we directly

set the two output bits θ
(r)
{x,0,z}, θ

(r)
{x,1,z} to be by the XOR-RULE individually, we

have to consume 2 DoF of . To solve this problem, we depose the θ operation
to three steps in our model, as described in the following expressions:

C
(r)
{x,z} = A

(r)
{x,0,z} ⊕A

(r)
{x,1,z} ⊕A

(r)
{x,2,z} ⊕A

(r)
{x,3,z} ⊕A

(r)
{x,4,z},

D
(r)
{x,z} = C

(r)
{x−1,z} ⊕ C

(r)
{x+1,z−1},

θ
(r)
{x,y,z} = A

(r)
{x,y,z} ⊕D

(r)
{x,z}.

At first, we compute the coloring pattern of C
(r)
{x,z}. Then, we compute the col-

oring pattern of D
(r)
{x,z} and compute θ

(r)
{x,y,z} at last.

Modelling the χ operation. For the χ operation in the round 0, we add conditions
to control the diffusion of the or and the first χ is omitted. For the χ operation
from round 1, we build the SBOX-RULE. The χ operation maps (a0, a1, a2, a3, a4)
to (b0, b1, b2, b3, b4). According to Equ. (6), bi = ai⊕ (ai+1⊕ 1) · ai+2. Hence, for
each output bit bi, we determine its color by (ai, ai+1, ai+2):

1. If there are bits in (ai, ai+1, ai+2), the output is .
2. If there are all bits, the output is .
3. If there are only (≥ 1) and (≥ 0) bits, the output will be .
4. If there are only (≥ 1) and (≥ 0) bits, the output will be .
5. If there are , or more than two kinds of , and bits in (ai, ai+1, ai+2):

(a) if ai+1 and ai+2 are all (or ), the output is .
(b) if ai+1 or ai+2 is , the output is .
(c) if ai+1 and ai+2 are of arbitrarily two kinds of , , , the output is .

The rules SBOX-RULE restrict the coloring pattern of (ai, ai+1, ai+2, bi) to the
subset of F12

2 , which is described by the linear inequalities by using the convex
hull computation. Some valid coloring patterns are shown in Figure 9.
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* *
ai+1ai ai+2

bi

ai+1ai ai+2

bi

ai+1ai ai+2

bi

ai+1ai ai+2

bi

ai+1ai ai+2

bi

ai+1ai ai+2

bi

ai+1ai ai+2

bi

ai+1ai ai+2

bi

ai+1ai ai+2

bi

ai+1ai ai+2

bi

Fig. 9: SBOX-RULE for Keccak (“*” represents the bit can be any color)

Modelling the Matching Phase. Suppose the first 512 bits of A(r+1) are the
hash value. In order to attack more rounds, we try to compute certain bits or
relations in A(r) by the hash value in A(r+1), to act as the matching points.

Leaked linear relations of A(r). From the 512-bit hash, we know A
(r+1)
{∗,0,∗} and

the first 3 lanes of A
(r+1)
{∗,1,∗}. From A

(r+1)
{∗,0,∗}, we deduce π

(r)
{∗,0,∗} from Equ. (7).

Applying the inverse of the operations ρ and π to π
(r)
{∗,0,∗}, we can deduce

θ
(r)

{x,x,z} = π
(r)

{x,0,z+γ[x,x]}, ∀ 0 ≤ x ≤ 4, 0 ≤ z ≤ 63. (10)

In addition, according to Equ. (8), two linear equations can be deduced from

the first three bits of each row of A
(r+1)
{∗,1,∗}, which are given as

A
(r+1)

{0,1,z} = π
(r)

{0,1,z} ⊕ (A
(r+1)

{1,1,z} ⊕ 1) · π(r)

{2,1,z},

A
(r+1)

{1,1,z} = π
(r)

{1,1,z} ⊕ (A
(r+1)

{2,1,z} ⊕ 1) · π(r)

{3,1,z}.

Then applying the inverse of ρ and π, the linear equations are transformed to

A
(r+1)

{0,1,z} = θ
(r)

{3,0,z−γ[3,0]} ⊕ (A
(r+1)

{1,1,z} ⊕ 1) · θ(r){0,2,z−γ[0,2]},

A
(r+1)

{1,1,z} = θ
(r)

{4,1,z−γ[4,1]} ⊕ (A
(r+1)

{2,1,z} ⊕ 1) · θ(r){1,3,z−γ[1,3]}.
(11)

With the known value θ
(r)
{x,x,z} (0 ≤ x ≤ 4, 0 ≤ z ≤ 63) by (10), we add the same

known values (underlined) to both sides of (11), which are

A
(r+1)

{0,1,z} ⊕ θ
(r)

{3,3,z−γ[3,0]} ⊕ (A
(r+1)

{1,1,z} ⊕ 1) · θ(r){0,0,z−γ[0,2]}

= θ
(r)

{3,0,z−γ[3,0]} ⊕ θ
(r)

{3,3,z−γ[3,0]} ⊕ (A
(r+1)

{1,1,z} ⊕ 1) · (θ(r){0,2,z−γ[0,2]} ⊕ θ
(r)

{0,0,z−γ[0,2]})

A
(r+1)

{1,1,z} ⊕ θ
(r)

{4,4,z−γ[4,1]} ⊕ (A
(r+1)

{2,1,z} ⊕ 1) · θ(r){1,1,z−γ[1,3]}

= θ
(r)

{4,1,z−γ[4,1]} ⊕ θ
(r)

{4,4,z−γ[4,1]} ⊕ (A
(r+1)

{2,1,z} ⊕ 1) · (θ(r){1,3,z−γ[1,3]} ⊕ θ
(r)

{1,1,z−γ[1,3]}).

(12)

According to the CP-kernel property [9] of operation θ, we deduce

θ
(r)

{3,0,z−γ[3,0]} ⊕ θ
(r)

{3,3,z−γ[3,0]} = A
(r)

{3,0,z−γ[3,0]} ⊕A
(r)

{3,3,z−γ[3,0]},

θ
(r)

{0,2,z−γ[0,2]} ⊕ θ
(r)

{0,0,z−γ[0,2]} = A
(r)

{0,2,z−γ[0,2]} ⊕A
(r)

{0,0,z−γ[0,2]},

θ
(r)

{4,1,z−γ[4,1]} ⊕ θ
(r)

{4,4,z−γ[4,1]} = A
(r)

{4,1,z−γ[4,1]} ⊕A
(r)

{4,4,z−γ[4,1]},

θ
(r)

{1,3,z−γ[1,3]} ⊕ θ
(r)

{1,1,z−γ[1,3]} = A
(r)

{1,3,z−γ[1,3]} ⊕A
(r)

{1,1,z−γ[1,3]}.

(13)
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Combining (12) and (13), there are linear relations on bits in A(r) with the
known hash value of A(r+1), which will be used in our matching points:

A
(r)

{3,0,z−γ[3,0]}⊕A
(r)

{3,3,z−γ[3,0]}⊕(A
(r+1)

{1,1,z} ⊕ 1)·(A(r)

{0,2,z−γ[0,2]}⊕A
(r)

{0,0,z−γ[0,2]})

=A
(r+1)

{0,1,z}⊕θ
(r)

{3,3,z−γ[3,0]}⊕(A
(r+1)

{1,1,z} ⊕ 1)·θ(r){0,0,z−γ[0,2]},
(14)

A
(r)

{4,1,z−γ[4,1]}⊕A
(r)

{4,4,z−γ[4,1]}⊕(A
(r+1)

{2,1,z}⊕1)·(A(r)

{1,3,z−γ[1,3]}⊕A
(r)

{1,1,z−γ[1,3]})

=A
(r+1)

{1,1,z}⊕θ
(r)

{4,4,z−γ[4,1]}⊕(A
(r+1)

{2,1,z} ⊕ 1)·θ(r){1,1,z−γ[1,3]}.
(15)

Observation 1 (Conditions in Matching Points of Keccak) In (14), if four

bits (A
(r)
{3,0,z−γ[3,0]}, A

(r)
{3,3,z−γ[3,0]}, A

(r)
{0,2,z−γ[0,2]}, A

(r)
{0,0,z−γ[0,2]}) in A(r) satisfy

the following two conditions, there is a 1-bit filter:

(1) There has no in (A
(r)
{3,0,z−γ[3,0]}, A

(r)
{3,3,z−γ[3,0]}, A

(r)
{0,2,z−γ[0,2]}, A

(r)
{0,0,z−γ[0,2]}).

(2) (A
(r)
{3,0,z−γ[3,0]}, A

(r)
{3,3,z−γ[3,0]}) is of ( , ), ( , ), ( , ), ( , ), or ( , ), or

opposite order .

We introduce a binary variable δM to represent whether there is a filtering.
Similarly to the XOR-RULE, we add three 0-1 variables νi (i ∈ {0, 1, 2}), where
νi = 1 (i = 0, 2) if and only if all ωi’s of (A

(r)
{3,0,z−γ[3,0]}, A

(r)
{3,3,z−γ[3,0]}) are 1,

and ν1 = 1 if and only if all ω1’s of (A
(r)
{3,0,z−γ[3,0]}, A

(r)
{3,3,z−γ[3,0]}, A

(r)
{0,2,z−γ[0,2]},

A
(r)
{0,0,z−γ[0,2]}) are 1. We can derive

{
ν1 − δM ≥ 0, − ν0 − δM + 1 ≥ 0, − ν2 − δM + 1 ≥ 0,

ν0 − ν1 + ν2 + δM ≥ 0.

The Objective Function. Let lR, and lB be the accumulated consumption
of DoF of and , i.e., lR =

∑
δR and lB =

∑
δB. Therefore, we can get

DoFR = λR − lR, DoFB = λB − lB. We also have DoM =
∑

δM. According
to the time complexity given by Equ. (1), we need to maximize the value of
min{DoFR,DoFB,DoM} to find the optimal attacks. We introduce an auxiliary
variable vobj , impose the following constraints, and maximize vobj ,

{vobj ≤ DoFR, vobj ≤ DoFB, vobj ≤ DoM}. (16)

4.3 MitM Preimage Attack on 4-Round Keccak-512

We follow the framework in Figure 6 to perform the attack with two message
blocks (M1,M2). The MitM attack is placed at the 2nd block. We construct
an MILP model for Keccak-512 following Section 4.2. The source code is given
in https://github.com/qly14/MITM-Preimage-Attack.git. By solving with
our MILP model, we mount a 4-round MitM preimage attack on Keccak-512,
shown in Figure 10,16,17,18, which contains 3 additional symbols:

– , : there consumes one degree of freedom of to let the bit be or .
– : there consumes one degree of freedom of to let the bit be .
– m : bits used for matching.

https://github.com/qly14/MITM-Preimage-Attack.git
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Conditions in the Linear Structure. State A(0) contains 16 bits and 216
bits. We take the similar strategy with [48] to get 1-round linear structure

of Keccak. We introduce 116 binary variables v = {v0, v1, · · · , v115} and 116
binary variables c = {c0, c1, · · · , c115}. Those variables vi’s and ci’s are placed
at the 16 + 216 = 232 and bits in A(0) in Figure 10,16,17,18. For example,

we set A
(0)
{0,0,0} = v0 and A

(0)
{0,1,0} = v0 ⊕ c0. When we choose c ∈ F116

2 to be

arbitrary constant, the θ operation will act as identity with regard to the and
bits in A(0). To reduce the diffusion of χ in round 0, we need to set some bits

conditions in π(0) to be constants. According to (6), if ai+1 is or , we need to
set ai+2 = 0 and ai = 1. So there are totally 232 × 2 = 464 conditions on π(0).
After the inverse of ρ ◦ π, we determine the positions of bit conditions in θ(0).

Taking the state θ
(0)
{∗,∗,1} as an example, there are six bit conditions as

θ
(0)

{1,0,1} = 1, θ
(0)

{1,2,1} = 0, θ
(0)

{1,4,1} = 1, θ
(0)

{3,1,1} = 0, θ
(0)

{3,2,1} = 0, θ
(0)

{4,4,1} = 1. (17)

Above conditions can be converted to those on A(0). The bits in A(0) can be
divided into two parts: the bits determined by the outer part (i.e., they can be
modified by directly changing the absorbed M2), and the bits determined by
inner part. The equations in Equ. (17) can be transformed to

A
(0)
{1,0,1}⊕c2⊕A

(0)
{0,2,1}⊕A

(0)
{0,3,1}⊕A

(0)
{0,4,1}⊕c1⊕A

(0)
{2,2,0}⊕A

(0)
{2,3,0}⊕A

(0)
{2,4,0} =1,

A
(0)
{1,2,1}⊕c2⊕A

(0)
{0,2,1}⊕A

(0)
{0,3,1}⊕A

(0)
{0,4,1}⊕c1⊕A

(0)
{2,2,0}⊕A

(0)
{2,3,0}⊕A

(0)
{2,4,0} =0,

A
(0)
{1,4,1}⊕c2⊕A

(0)
{0,2,1}⊕A

(0)
{0,3,1}⊕A

(0)
{0,4,1}⊕c1⊕A

(0)
{2,2,0}⊕A

(0)
{2,3,0}⊕A

(0)
{2,4,0} =1,

A
(0)
{3,1,1}⊕c3⊕A

(0)
{2,2,1}⊕A

(0)
{2,3,1}⊕A

(0)
{2,4,1}⊕A

(0)
{4,0,0}⊕A

(0)
{4,1,0}⊕A

(0)
{4,2,0}⊕A

(0)
{4,3,0}⊕A

(0)
{4,4,0} =0,

A
(0)
{3,2,1}⊕c3⊕A

(0)
{2,2,1}⊕A

(0)
{2,3,1}⊕A

(0)
{2,4,1}⊕A

(0)
{4,0,0}⊕A

(0)
{4,1,0}⊕A

(0)
{4,2,0}⊕A

(0)
{4,3,0}⊕A

(0)
{4,4,0} =0,

A
(0)
{4,4,1}⊕A

(0)
{3,0,1}⊕A

(0)
{3,1,1}⊕A

(0)
{3,2,1}⊕A

(0)
{3,3,1}⊕A

(0)
{3,4,1}⊕c0⊕A

(0)
{0,2,0}⊕A

(0)
{0,3,0}⊕A

(0)
{0,4,0} =1,

(18)

where c0=A
(0)

{0,0,0}⊕A
(0)

{0,1,0}, c1=A
(0)

{2,0,0}⊕A
(0)

{2,1,0}, c2=A
(0)

{0,0,1}⊕A
(0)

{0,1,1}, c3=A
(0)

{2,0,1}⊕

A
(0)

{2,1,1}. Given an inner part, the 464 conditions on state A(0) will be a linear
system of the 576 − 116 = 460 variables of M2 (marked by bold). We compute
the rank of the coefficient matrix of the linear system is 250. In other words,
through some linear transformations, there are 214 equations out of the total
464 only determined by the bits of inner part. For example, combining the 2nd
and 3rd equations in Equ. (18), we can deduce an equation between two inner

part bits A
(0)
{1,2,1} ⊕A

(0)
{1,4,1} = 1. We have to randomly test 2214 M1 to compute

the inner part satisfying the 214 equations. Then for a right inner part, there
are 2460−250 = 2210 solutions of M2, which make all the 464 equations hold. For
each solution of M2, the and c ∈ F116

2 in the outer part will be fixed. Then
with the fixed inner part, we can conduct the MitM episodes to filter states.

Consumed Degrees of Freedom. As shown in Figure 10,16,17,18, after
adding 464 conditions and consuming 108 and 8 degrees of freedom in round
0, we can derive the coloring pattern in A(1). The remaining degrees of freedom
for and are 108 and 8, respectively. We give two examples to explain the
consumption of degrees of freedom in the computation from A(1) to A(3).
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1. For θ
(1)
{0,0,12} marked by in Figure 11 (part of Figure 10), we set an equation

of to a constant, which means consuming one DoF of to let θ
(1)
{0,0,12} be

, as listed below:

A
(1)

{0,0,12}⊕A
(1)

{4,0,12} ⊕A
(1)

{4,1,12} ⊕A
(1)

{4,2,12} ⊕A
(1)

{4,3,12} ⊕A
(1)

{4,4,12}

⊕A
(1)

{1,0,11} ⊕A
(1)

{1,1,11} ⊕A
(1)

{1,2,11} ⊕A
(1)

{1,3,11} ⊕A
(1)

{1,4,11} = const.,
(19)

where the bits marked by red are and others marked by black are .

2. For θ
(2)
{1,3,5} marked by in Figure 12, we set an equation of to a constant,

which means consuming one DoF of to let θ
(2)
{1,3,5} be . Since there have

θ
(2)

{1,3,5} =A
(2)

{1,3,5} ⊕D
(2)

{1,5} = A
(2)

{1,3,5} ⊕ C
(2)

{0,5} ⊕ C
(2)

{2,4},

C
(2)

{0,5} =A
(2)

{0,0,5} ⊕A
(2)

{0,1,5} ⊕A
(2)

{0,2,5} ⊕A
(2)

{0,3,5} ⊕A
(2)

{0,4,5},

C
(2)

{2,4} =A
(2)

{2,0,4} ⊕A
(2)

{2,1,4} ⊕A
(2)

{2,2,4} ⊕A
(2)

{2,3,4} ⊕A
(2)

{2,4,4}.

We can set all the involved to be constant:

A
(2)

{1,3,5} ⊕A
(2)

{0,0,5} ⊕A
(2)

{0,1,5} ⊕A
(2)

{0,3,5} ⊕A
(2)

{0,4,5}

A
(2)

{2,0,4} ⊕A
(2)

{2,1,4} ⊕A
(2)

{2,2,4} ⊕A
(2)

{2,3,4} ⊕A
(2)

{2,4,4} = const.
(20)

Then, we have θ
(2)
{1,3,5} = A

(2)
{0,2,5} ⊕ const.

A
(1)
{∗,∗,11}

∑

C
(1)
{∗,11}

A
(1)
{∗,∗,12}

∑

C
(1)
{∗,12} D

(1)
{∗,12}⊕

θ
(1)
{∗,∗,12}

Fig. 11: Example (1) of consumed DoF

A
(2)
{∗,∗,4}

∑

C
(2)
{∗,4}

A
(2)
{∗,∗,5}

∑

C
(2)
{∗,5} D

(2)
{∗,5}⊕

θ
(2)
{∗,∗,5}

Fig. 12: Example (2) of consumed DoF

There are totally 100 and in internal states between A(1) and θ(2), which
means that the accumulated consumed degree of freedom of is 100. Denote the
100-bit constants (i.e. constants such as (19) and (20)) as cR ∈ F100

2 . At last,
the numbers of remaining degrees of freedom for and are both 8 bits.

Matching Strategy with Green Bits. According to Obs. 1, we can use A(3)

to count the number of matching equations, i.e. m = 8. We give an example
matching Equ. (21) (marked by m in A(3) with z = 2 and z = 41 in Figure 10)
according to Equ. (15), which satisfies the matching conditions of Obs. 1:

A
(3)
{4,1,2} ⊕A

(3)
{4,4,2} ⊕ (A

(4)
{2,1,22} ⊕ 1) · (A(3)

{1,3,41} ⊕A
(3)
{1,1,41})

⊕A
(4)
{1,1,22} ⊕ θ

(3)
{4,4,2} ⊕ (A

(4)
{2,1,22} ⊕ 1) · θ(3){1,1,41} = 0.

(21)
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With known bits in A(4) and θ(3), the left part of Equ. (21) can be written
as Boolean expression (denoted as fM) on , and bits of the starting state.
Therefore, denote fM = fR⊕fB⊕fG , where fR only contains monomials on /
bits, fB contains monomials on / bits, and fG contains monomials on bits and
constants. With the given bits, we can compute the value fR ⊕ fG = f ′

M with
forward computing Keccak permutation by setting all the bits as 0. Similarly,
we get fB ⊕ fG = f ′′

M by setting bits as 0. By setting all and bits as 0, we
get fG = f ′′′

M. Therefore, we compute fR = f ′
M⊕ f ′′′

M and fB = f ′′
M⊕ f ′′′

M. Then,
we can derive the matching equation from Equ. (21) as fR = fB ⊕ fG .

MitM Attack on 4-round Keccak-512. In our attack Algorithm 1 in Figure
10,16,17,18, we first precompute inversely from the target A(4) to A(3), and
derive 128 Boolean equations with similar form with Equ. (21). Among them, 8
Boolean equations act as the matching points in the MitM phase, and the other
120 Boolean equations are used to further filter the partial matched states.

Following the framework in Figure 6, we use two message blocks (M1,M2)
to build the attack as Algorithm 1. In Line 5, once we find solutions of M2, we
can perform 2100 MitM episodes in Line 14 to 25 for each of the 2210 solutions.
For each MitM episode, 28 × 28 internal states are exhausted. Suppose there
needs 2x possible values of M1. To find a 512-bit target preimage, we need
2x−214+210+100+16 = 2512, i.e., x = 400. The steps of Alg. 1 are analyzed below:

– In Line 4, the time complexity is 2400 4-round Keccak and 2400 × 4643 bit
operations to solve the linear system (the time to solve a system of n linear
equations is about O(n3)).

– In Line 9, the time complexity is 2400−214+210 × 1
4 = 2394 4-round Keccak.

– We describe the way to use Equ. (21) as the matching point. In the concrete
Keccak attack, we can not set the 108 bits to be 0 when computing fB +
fG = f ′′

M and fG = f ′′′
M. This is because, the actual size of the and

neutral sets is both 28, not 2108. The 100 consumed DoF of bits of A(1) are
used to make 100 internal bits (denoted as cR ∈ F100

2 ) to be / , so that
the remaining set of size 28 can be computed independent to the set.
We detail the method to derive similar matching equation like “fR = fB⊕fG”
or “fB = fR ⊕ fG” for the two 28 / sets. With fixed bits in A(1) and
cR ∈ F100

2 , there are 28 bits stored in U [cR], which is derived in Line 10 of
Algorithm 1 following Dong et al.’s method [28]. Setting in A(1) as 0, for
each element of U [cR], compute forward the Keccak permutation to the 8
matching bit equations (e.g. Equ. (21)) to get 8 f ′

M = fR⊕fG for matching.
Randomly pick an element e of U [cR] and set in A(1) as 0, to compute the
8 matching equations f ′′′

M = fG+Const(e), where Const(e) is determined by
e. That is, for each of the 28 , compute f ′′

M = fB+fG+Const(e) by setting
the 108 A(1) bits as e. Therefore, we get f ′′

M + f ′′′
M = fB = fR ⊕ fG = f ′

M
as filter. To dive into details, we refer the readers to Line 10 to Line 25.
In Line 10, the time complexity is 2396+108× 2

4 = 2503 4-round Keccak, since

only two rounds from A(1) to A(3) are needed to compute to derive the /
bits and the matching points.
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Algorithm 1: Preimage Attack on 4-round Keccak-512

1 Precompute inversely from the target to A(3), and derive 128 Boolean
equations of similar form with Equ. (21)

2 /* Among them, 8 Boolean equations act as the matching points in

the MitM phase. The other 120 Boolean equations are used to

further filter the partial matched states. */

3 for 2x values of M1 do
4 Compute the inner part of the 2nd block and solve the system of 464

linear equations
5 if the equations have solutions /* with probability of 2−214 */

6 then
7 for each of the 2210 solutions of M2 do
8 /* With x = 400, there are 2400−214+210 = 2396 iterations */

9 Compute the bits in A(1)

10 Traversing the 2108 values of in A(1) while fixing as 0, compute
forward to determine 100-bit / bits (denoted as cR ∈ F100

2 ),
and the 8-bit matching point, e.g., in (21), i.e., compute eight
f ′
M = fR ⊕ fG . Build the table U and store the 108-bit bits of
A(1) as well as the 8-bit matching point in U [cR].

11 /* This method to solve the nonlinear constrained neutral

words is borrowed from Dong et al. [28]. */

12 for cR ∈ F100
2 do

13 Randomly pick a 108-bit e ∈ U [cR], and set in A(1) as 0,
compute to the matching point to get eight
f ′′′
M = fG + Const(e)

14 for 28 values in U [cR] do

15 Restore the values of of A(1) and the corresponding
matching point (i.e., eight fR ⊕ fG = f ′

M) in a list L1

(indexed by matching point)
16 end
17 for 28 values of do

18 Set the 108-bit in A(1) as e. Compute to the matching
point to get eight f ′′

M = fB + fG + Const(e). Together
with f ′′′

M, compute fB = f ′′
M + f ′′′

M and store in L2

indexed by matching point.
19 end
20 for values matched between L1 and L2 do

21 Compute A(3) from the matched and bits

22 if A(3) satisfy the 120 precomputed Boolean
equations /* Probability of 2−120 */

23 then
24 if it leads to the given hash value then
25 Output the preimage
26 end

27 end

28 end

29 end

30 end

31 end

32 end
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– In Line 13, the time complexity is 2396+100 × 2
4 = 2495 4-round Keccak.

– In Line 15, this step is just to retrieve U [cR] to restore it in L1 with matching
point as index. Suppose one access to the table is equivalent to one Sbox
application. The time complexity is 2396+100+8 × 1

4×320 = 2493.36 4-round
Keccak, since there are 4× 320 Sboxes for 4-round Keccak.

– In Line 18, the time complexity is 2396+100+8 × 2
4 = 2503 4-round Keccak.

– In Line 21, the time is 2396+100+8+8−8 × 2
4 = 2503 4-round Keccak.

– In Line 22, A(3) is checked against the 120 Boolean equations precomputed
in Line 1, which acts as a filter of 2−120. After the filter, the time of the final
check against the target h is 2396+100+8−120 = 2384 4-round Keccak.

The total complexity is 2400 +2400 × 4643 +2394 +2503 +2495 +2493.36 +2503 +
2503 + 2384 ≈ 2504.58 4-round Keccak. The memory to store U is 2108. We also
give an experiment of 3-round Keccak-512 in the Supplementary Material C.

Remark on padding rule. The last message block has at least 2-bit padding (i.e.,
‘11’) for Keccak and 4-bit padding (i.e., ‘0111’) for SHA3. Therefore, we have
x = 402 for Keccak-512 and x = 404 for SHA3-512. However, it only increases
the negligible part 2400 × 4643 in Line 4 to 2402 × 4643 for Keccak-512 and
2404 × 4643 for SHA3-512. Therefore the final time complexity is still 2504.58

4-round Keccak-512 or SHA3-512 considering the padding. The memory is 2108.

5 MitM Preimage Attack on Xoodyak-XOF

In this section, we list the differences in the MILP model with the model for
Keccak in Section 4.2, and give an MitM preimage attack on 3-round Xoodyak-XOF.

5.1 MILP Model of the MitM Preimage Attack on Xoodyak-XOF

For Xoodyak, without the help of the linear structure technique, the situations of
adding conditions to the state before the Sbox χ are more complex. We give the
details of the condition rules and the matching rule for Xoodyak in the following.

Modelling the χ operation with conditions in Round 0. The Sbox χ
of Xoodyak is different from that of Keccak at the sizes of inputs and outputs,

which acts on a column A
(r)
{x,∗,z}. Assume χ operation maps (a0, a1, a2) ∈ F3

2 in

to (b0, b1, b2) ∈ F3
2 as bi = ai ⊕ (ai+1 ⊕ 1) · ai+2. In round 0, all the operations

between the starting state A(0) and χ are linear, thus the inputs only have , ,
and . We can add conditions on bits to control the diffusion. The different

rules from the SBOX-RULE for Keccak are listed below:

1. If there are two bits and one / / bit in (a0, a1, a2), we can add one or two
conditions to make one or two outputs to be . Without losing generality,
suppose ai is or or and both ai+1 and ai+2 are bits:
(a) the color of bi is always same with ai.
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(b) ai+2=1, bi+1 will be ; otherwise, the color of bi+1 will be same with ai.
(c) ai+1=0, bi+2 will be ; otherwise, the color of bi+2 will be same with ai.

2. If there is only one bit and the other two are among ( , )/( , )/( , ),
we add conditions to reduce the number of in the output. If ai is :
(a) bi is always be .
(b) ai=0, the color of bi+1 will be same with ai+1 and bi+2 will be .
(c) ai=1, bi+1 will be and the color of bi+2 will be same with ai+2.
(d) without conditions on ai, both bi+1 and bi+2 will be .

The rules can be described by a system of linear inequalities by using the convex
hull computation. Some valid coloring patterns are shown in Figure 13.

a1

a0

a2 χ

a0=0
b1

b0

b2

a1

a0

a2 χ

a0=1
b1

b0

b2

a1

a0

a2 χ

a1=0
a2=1

b1

b0

b2

a1

a0

a2 χ

a0=0
b1

b0

b2

a1

a0

a2 χ

a2=0
b1

b0

b2

a1

a0

a2 χ

a1=1
b1

b0

b2

a1

a0

a2 χ

No cond. b1

b0

b2

Fig. 13: Some valid coloring patterns with conditions for χ

Modelling the Matching Phase. Suppose the 128 bits in the top plane

A
(r+1)
{∗,2,∗} of A(r+1) is the hash value. We can easily compute the top plane of

state χ
(r)
{∗,2,∗} by the inverse of ρeast. Each bit of χ

(r)
{∗,2,∗} is computed by b2 =

a2 ⊕ (a0 ⊕ 1) · a1, where (a0, a1, a2) comes from the input column of each Sbox
in ι(r). Hence, we deduce the deterministic relations of ι(r) to count the DoMs.

Observation 2 (Conditions in Matching Points of Xoodyak) If (a0, a1, a2)
satisfy the following conditions, we say there is a 1-bit matching:

1. There is no bit in (a0, a1, a2).
2. There is no the product of and , concretely, (a0, a1) should not be ( , )

or ( , ) or ( , ) or ( , ), or opposite order.
3. In fact, (a0, a1, a2) should be ( , ∗, ) or (∗, , ) or ( , , ) or ( , , ) or

( , , ) or ( , , ), where ‘∗’ is or or or . We exclude several cases
such as ( , , ), since it is a filter if = 1, but not for = 0.

5.2 MitM Preimage Attack on 3-round Xoodyak-XOF

We also follow the similar framework in Figure 6 and perform the attack with two
message blocks (M1,M2), where M2 has two padding bits ‘10’. The MitM attack
is placed in the 2nd block. Solving with our MILP model for Xoodyak, we get a 3-
round MitM preimage attack as shown in Figure 23 in Supplementary Material
D. The starting state A(0) contains 4 bits and 97 bits. There are totally
53 conditions on bits of ι(0), which are listed in Table 5 in Supplementary
Material D. In the computation from A(0) to ι(2), the accumulated consumed
degree of freedom of is 93 and there is no DoF of consumed. Therefore,
DoFB = 4, DoFR = 97 − 93 = 4. The degree of matching is counted by the
deterministic relations of ι(2) according to Obs. 2, we get DoM = 4, where

χ
(2)

{2,2,4}= ι
(2)

{2,2,4}⊕(ι
(2)

{2,0,4}⊕1)·ι(2){2,1,4}, χ
(2)

{1,2,10}= ι
(2)

{1,2,10}⊕(ι
(2)

{1,0,10}⊕1)·ι(2){1,1,10},

χ
(2)

{1,2,19}= ι
(2)

{1,2,19}⊕(ι
(2)

{1,0,19}⊕1) ·ι(2){1,1,19}, χ
(2)

{2,2,22}= ι
(2)

{2,2,22}⊕(ι
(2)

{2,0,22}⊕1)·ι(2){2,1,22}.

(22)
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In the starting state A(0), there are 25 bits which can be modified by
changing M2. The 53 conditions can form a linear system taking the 25 bits
of M2 as variables and the 256 bits inner part as constants. The rank of the
coefficient matrix is 13. Therefore, we have to randomly test 2(53−13) = 240

M1 to satisfy the 40 equations only determined by the inner part. Then for a
right inner part, there are 225−13 = 212 solutions of M2, which make all the 53
equations hold. The attack is similar to the attack on Keccak, and we list it in
the Algorithm 2 in Supplementary Material D. The total complexity is 2125.06

3-round Xoodyak-XOF, and the memory to store U is 297.

6 MitM Preimage Attack on Ascon-XOF

In this section, we list the details of the MILP model for Ascon-XOF different
from that for Keccak, and give an MitM preimage attack on 4-round Ascon-XOF.

6.1 MILP Model of the MitM Preimage Attack on Ascon-XOF

The Sbox of Ascon is much more complex than Keccak. In round 0, we add the
conditions to the starting state to control the diffusion over the pS operation.

Modelling the Starting State with Conditions. In the starting state A(0),
the 64-bit outer part can be or bits, while the last 256-bit inner part is of
. Assume pS maps (a0, a1, a2, a3, a4) to (b0, b1, b2, b3, b4), where the a0 is in the

outer part and (a1, a2, a3, a4) are in the inner part. When a0 is and others are
, all the output bits excluding b2 should be according to Equ. (3) (case 1 in

Figure 14). However, if we add some conditions on (a1, a2, a3, a4), for example
a1 = 1 and a3 + a4 = 1, then according to Equ. (3), b0 and b3 can also be
(case 2 in Figure 14). We add conditions on the bits in the inner part of A(0) to
control the diffusion of and over pS . We name the rule by CondSBOX-RULE:

1. Condition on a1: when a1 = 1, b0 is and the color of b4 is the same with
a0; when a1 = 0, b4 is and the color of b0 is the same with a0.

2. Condition on a3 + a4: when a3 + a4 = 1, b3 is ; when a3 + a4 = 0, the color
b3 is the same with a0.

Some valid coloring patterns of CondSBOX-RULE are shown in Figure 14.
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b1
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b1

b2

b3

b4
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a1

a2

a3

a4
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b0

b1

b2

b3

b4
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a3
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b0

b1
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b3

b4

Fig. 14: Some valid red coloring patterns of CondSBOX-RULE (Similar to blue bits)

Modelling the Sbox of Ascon. We also build the Sbox operation without
conditions, which is applied from round 1. According to Equ. (3), for each output
bit bi, we determine its color by all the five inputs (a0, a1, a2, a3, a4) and build
the constraints independently. Taking b0 as an example, b0 = a4a1+a3+a2a1+
a2 + a1a0 + a1 + a0, we determine its color according to the following rules:
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1. If there are bits in (a0, a1, a2, a3, a4), b0 is .
2. If there are all bits, b0 is .
3. If there are only (≥ 1) and (≥ 0) bits, b0 will be .
4. If there are only (≥ 1) and (≥ 0) bits, b0 will be .
5. If there are , or more than two kinds of , and bits in (a0, a1, a2, a3, a4):

(a) if (a0, a1, a2, a4) are only and (or and ), b0 is .
(b) if a1 is or (a0, a2, a4) are , b0 is .
(c) if one of the three pairs (a1, a4), (a1, a2) and (a0, a1) is ( , ) or ( , ) or

( , ) or ( , ), or opposite order, b0 is .

Those rules for b0 can be described by linear inequalities using the convex hull
computation. The rules for b1, b2, b3 and b4 can be constructed by the same way.

Modelling the Matching Phase. We target on Ascon-XOF with a 128-bit hash

value, which needs two output blocks. Suppose the 64-bit word A
(r+1)
{∗,0} of A(r+1)

is the first 64-bit hash value of the first output block. We can easily compute the
first 64 bits of state S(r) from the hash value by the inverse of pL. Each bit of the
first 64 bits of S(r) is computed by b0 = a4a1 + a3 + a2a1 + a2 + a1a0 + a1 + a0
by Equ. (3), where (a0, a1, a2, a3, a4) comes from the inputs of each Sbox in
A(r). Hence, we deduce the deterministic relations of A(r) to count the degree of
freedom of matching.

Observation 3 (Conditions in Matching Points of Ascon) If (a0, a1, a2, a3, a4)
satisfy the following conditions, we say there is a 1-bit matching:

1. There is no bit in (a0, a1, a2, a3, a4).
2. There have and bits, or bit in (a0, a1, a2, a3, a4).
3. There is no product of and , concretely, (a1, a4) should not be ( , ) or

( , ) or ( , ) or ( , ), or opposite order, and same to (a1, a2) and (a0, a1).

6.2 MitM Preimage Attack on 4-round Ascon-XOF

Applying the MILP model, we find a 4-round MitM preimage attack as shown
in Figure 24 in Supplementary Material E. The starting state A(0) contains 4
bits and 54 bits. There are totally 44 conditions on of A(0), which are listed
in Table 6 in Supplementary Material E. In the computation from A(0) to A(3),
the accumulated consumed degrees of freedom of is 50 and there is no DoF of
consumed. Therefore, DoFB = 4, DoFR = 54− 50 = 4. The four matching bit

equations (DoM = 4) are derived by A(3) with Observation 3, which are:



A
(3)

{15,4} ·A
(3)

{15,1}+A
(3)

{15,3}+A
(3)

{15,2} ·A
(3)

{15,1}+A
(3)

{15,2}+A
(3)

{15,1} ·A
(3)

{15,0}+A
(3)

{15,1}+A
(3)

{15,0}=S
(3)

{15,0},

A
(3)

{25,4} ·A
(3)

{25,1}+A
(3)

{25,3}+A
(3)

{25,2} ·A
(3)

{25,1}+A
(3)

{25,2}+A
(3)

{25,1} ·A
(3)

{25,0}+A
(3)

{25,1}+A
(3)

{25,0}=S
(3)

{25,0},

A
(3)

{47,4} ·A
(3)

{47,1}+A
(3)

{47,3}+A
(3)

{47,2} ·A
(3)

{47,1}+A
(3)

{47,2}+A
(3)

{47,1} ·A
(3)

{47,0}+A
(3)

{47,1}+A
(3)

{47,0}=S
(3)

{47,0},

A
(3)

{57,4} ·A
(3)

{57,1}+A
(3)

{57,3}+A
(3)

{57,2} ·A
(3)

{57,1}+A
(3)

{57,2}+A
(3)

{57,1} ·A
(3)

{57,0}+A
(3)

{57,1}+A
(3)

{57,0}=S
(3)

{57,0}.

(23)
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Following the framework in Figure 6, we choose (M1,M2) to make the 44
conditions hold, and perform the MitM attack on the message block M3. The
4-round attack is given in Algorithm 3 in Supplementary Material E. The time
complexity is 2124.67 4-round Ascon and the memory is 254. In addition, we also
give a 3-round MitM preimage attack on Ascon-XOF in Supplementary Material
E with time complexity of 2120.58 3-round Ascon and memory complexity of 239.
An experiment on the MitM episode is given in Supplementary Material F.

7 Conclusion and Discussion

In this paper, we give the framework of the MitM attack on sponge-based
hashing. To find good attacks, we build bit-level MILP based automatic tools
for MitM attacks on Keccak-512, Ascon-XOF, and Xoodyak-XOF. Although the
birthday-paradox MitM attack has been widely applied to block ciphers or MD-
based hash functions since 1977, this is the first attempt to apply it to Keccak,
etc. Our attacks lead to improved or first preimage attacks on reduced-round
Keccak-512, Ascon-XOF, and Xoodyak-XOF.

Similar to previous preimage attacks [35,45], our attack on Keccak also uses
the linearization-based techniques. In previous linearization-based preimage at-
tacks [35,45], all the variables should not be multiplied with each other. In our
MitM attack, the variables can be multiplied with each other within each set.
For Keccak, to attack more rounds, we use a one-round linear structure to skip
the MILP programming of the first round and accelerate the MILP model. It
should be noted that the linear structure used in this paper is just a technique
to accelerate the search. Moreover, by using the linear structure, the search only
covers a small fraction of the whole space of the solutions, which may be not the
optimal MitM attack at all. For other instances of Keccak, it is open problem
to apply one or two-round linear structures in the search for MitM attacks.
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Supplementary Material

A An Example of the MitM Attack

We take the MitM preimage attack on 7-round AES-hashing in [57] as an exam-
ple.

k−1

AK

MC(−1) k0
AK
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Fig. 15: The MitM preimage attack on 7-round AES-hashing.

Denote the internal states of round r as

A(r) SB−−→ SB(r) SR−−→ SR(r) MC−−→MC(r) AK−−→ A(r+1).

A
(r)
{i} represents the i-th (0 ≤ i ≤ 15) byte of state A(r) numbered from up to

bottom, left to right. A
(r)
{i−j} represents the i-th byte to j-th byte of state A(r).

Chunk Separation: As shown in Figure 15, the initial structure involves a

few consecutive starting steps, i.e. {MC(3), A(4), SB(4), SR(4)}. The MC
(3)
{0−3}
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are chosen as neutral bytes (marked by blue) for the forward chunk and the

SR
(4)
{1−6,8,9,11,12,14,15} (marked by red) are chosen as neutral bytes for the back-

ward chunk. Results from two chunks will match at SR(1) and MC(1) for a
partial match.

Constraints on Initial Structure: To make the initial structure work, one

needs to add 3 constraints on the neutral bytes for the forward chunk MC
(3)
{0−3}

to avoid the impacts on the backward chunk. The bytes SR
(3)
{1,2,3} can be pre-

determined constant values as follows:




c0 = 9 ·MC
(3)
{0} ⊕ e ·MC

(3)
{1} ⊕ b ·MC

(3)
{2} ⊕ d ·MC

(3)
{3}

c1 = d ·MC
(3)
{0} ⊕ 9 ·MC

(3)
{1} ⊕ e ·MC

(3)
{2} ⊕ b ·MC

(3)
{3}

c2 = b ·MC
(3)
{0} ⊕ d ·MC

(3)
{1} ⊕ 9 ·MC

(3)
{2} ⊕ e ·MC

(3)
{3}



. (24)

There are 28 values of MC
(3)
{0−3} when the constants c0, c1, c2 are determined.

Similarly, adding 8 constraints on the neutral bytes for the backward chunk to

avoid the impacts on 8 bytes MC
(4)
{0,2,5,7,8,10,13,15}.

Matching through MC: According to the property of the MC operation, the
match is tested column by column. There are totally five bytes known in each
column of SR(1) and MC(1). So there has one byte matching for each column.

Taking the match for first column as an example. The SR
(1)
{0,2} are deduced in the

forward computation and MC
(1)
{1,2,3} are deduced in the backward computation.

There has

d · SR(1)
{0} ⊕ e · SR(1)

{2}

=d · (b ·MC
(1)
{1} ⊕ d ·MC

(1)
{2} ⊕ 9 ·MC

(1)
{3})⊕ e · (9 ·MC

(1)
{1} ⊕ e ·MC

(1)
{2} ⊕ b ·MC

(1)
{3}).

(25)

Forward and Backward Computation: The forward computation list con-
tains the blue neutral bits in MC(3) to SR(1). When accounting for the con-
straints, one can compute the neutral bytes in the forward chunk by traversing

28 possible values of MC
(3)
{0−3}. Then store MC

(3)
{0−3} in table L1 indexed by the

value of SR(1) as the left part of Equ. (25) (i.e. d · SR(1)
{0} ⊕ e · SR(1)

{2}). Simi-

larly, the backward computation list contains the red neutral bits in SR(4) to
MC(1). Store them in table L2 indexed by the value of MC(1) as the right part
of Equ. (25). Then one can use L1 and L2 for a 32-bit partial match on the
indices.
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B Figures of 4-round MitM Preimage Attack on
Keccak-512

The offset γ[x, y] in Keccak round function is given in Table 2.

x = 0 x = 1 x = 2 x = 3 x = 4

y = 0 0 1 62 28 27
y = 1 36 44 6 55 20
y = 2 3 10 43 25 39
y = 3 41 45 15 21 8
y = 4 18 2 61 56 14

Table 2: The offset γ[x, y] in the ρ operation for Keccak

The figures of the 4-round MitM attack on Keccak-512 are given as Figure
16,17,18.

C An Experiment on 3-round Keccak-512

We give an experimental attack on 3-round Keccak-512 in Figure 19,20,21,22
to verify our method. In the attack, the starting state A(0) have 16 and 16
bits, which are given in Table 3. The consumes of degree of freedom happen at
the first θ operation due to the linear structure, which consuming 8 and 8 .
Therefore, DoFB = 16−8 = 8, DoFR = 16−8 = 8. In Table 4, there are totally
64 conditions on θ(0). The degree of matching is counted by the deterministic
relations of A(2) according to Observation 1, we get DoM = 11 and list the
equations for filtering as Equ. (26).

red bit
A

(0)

{0,0,2}, A
(0)

{0,1,2}, A
(0)

{2,0,13}, A
(0)

{2,1,13}, A
(0)

{0,0,17}, A
(0)

{0,1,17}, A
(0)

{2,0,32}, A
(0)

{2,1,32},

A
(0)

{2,0,37}, A
(0)

{2,1,37}, A
(0)

{2,0,40}, A
(0)

{2,1,40}, A
(0)

{0,0,48}, A
(0)

{0,1,48}, A
(0)

{0,0,63}, A
(0)

{0,1,63}

blue bit
A

(0)

{0,0,8}, A
(0)

{0,1,8}, A
(0)

{0,0,9}, A
(0)

{0,1,9}, A
(0)

{0,0,13}, A
(0)

{0,1,13}, A
(0)

{0,0,41}, A
(0)

{0,1,41},

A
(0)

{2,0,45}, A
(0)

{2,1,45}, A
(0)

{2,0,49}, A
(0)

{2,1,49}, A
(0)

{2,0,62}, A
(0)

{2,1,62}, A
(0)

{2,0,1}, A
(0)

{2,1,1}

Table 3: The red bits and blue bits in A(0) of 3-round experiment on Keccak-512
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θ
(0)

{1,1,4} = 0, θ
(0)

{1,1,19} = 0, θ
(0)

{1,1,22} = 0, θ
(0)

{1,1,28} = 0, θ
(0)

{1,1,29} = 0, θ
(0)

{1,1,33} = 0,

θ
(0)

{1,1,37} = 0, θ
(0)

{1,1,61} = 0, θ
(0)

{1,2,3} = 0, θ
(0)

{1,2,10} = 0, θ
(0)

{1,2,25} = 0, θ
(0)

{1,2,28} = 0,

θ
(0)

{1,2,34} = 0, θ
(0)

{1,2,35} = 0, θ
(0)

{1,2,39} = 0, θ
(0)

{1,2,43} = 0, θ
(0)

{3,1,5} = 0, θ
(0)

{3,1,8} = 0,

θ
(0)

{3,1,20} = 0, θ
(0)

{3,1,39} = 0, θ
(0)

{3,1,44} = 0, θ
(0)

{3,1,47} = 0, θ
(0)

{3,1,52} = 0, θ
(0)

{3,1,56} = 0,

θ
(0)

{3,2,13} = 0, θ
(0)

{3,2,18} = 0, θ
(0)

{3,2,21} = 0, θ
(0)

{3,2,26} = 0, θ
(0)

{3,2,30} = 0, θ
(0)

{3,2,43} = 0,

θ
(0)

{3,2,46} = 0, θ
(0)

{3,2,58} = 0,

θ
(0)

{1,0,3} = 1, θ
(0)

{1,0,6} = 1, θ
(0)

{1,0,18} = 1, θ
(0)

{1,0,37} = 1, θ
(0)

{1,0,42} = 1, θ
(0)

{1,0,45} = 1,

θ
(0)

{1,0,50} = 1, θ
(0)

{1,0,54} = 1, θ
(0)

{1,4,9} = 1, θ
(0)

{1,4,28} = 1, θ
(0)

{1,4,33} = 1, θ
(0)

{1,4,36} = 1,

θ
(0)

{1,4,41} = 1, θ
(0)

{1,4,45} = 1, θ
(0)

{1,4,58} = 1, θ
(0)

{1,4,61} = 1, θ
(0)

{4,0,8} = 1, θ
(0)

{4,0,11} = 1,

θ
(0)

{4,0,17} = 1, θ
(0)

{4,0,18} = 1, θ
(0)

{4,0,22} = 1, θ
(0)

{4,0,26} = 1, θ
(0)

{4,0,50} = 1, θ
(0)

{4,0,57} = 1,

θ
(0)

{4,4,3} = 1, θ
(0)

{4,4,27} = 1, θ
(0)

{4,4,34} = 1, θ
(0)

{4,4,49} = 1, θ
(0)

{4,4,52} = 1, θ
(0)

{4,4,58} = 1,

θ
(0)

{4,4,59} = 1, θ
(0)

{4,4,63} = 1.

Table 4: Bit conditions in θ(0) of 3-round experiment on Keccak-512

A
(2)
{3,0,36} ⊕ A

(2)
{3,3,36} ⊕ (A

(3)
{1,1,0} ⊕ 1) · (A

(2)
{0,2,61} ⊕ A

(2)
{0,0,61}) ⊕ A

(3)
{0,1,0} ⊕ θ

(3)
{3,3,36} ⊕ (A

(3)
{1,1,0} ⊕ 1) · θ

(2)
{0,0,61} = 0,

A
(2)
{3,0,58} ⊕ A

(2)
{3,3,58} ⊕ (A

(3)
{1,1,22} ⊕ 1) · (A

(2)
{0,2,19} ⊕ A

(2)
{0,0,19}) ⊕ A

(3)
{0,1,22} ⊕ θ

(3)
{3,3,58} ⊕ (A

(3)
{1,1,22} ⊕ 1) · θ

(2)
{0,0,19} = 0,

A
(2)
{3,0,2} ⊕ A

(2)
{3,3,2} ⊕ (A

(3)
{1,1,30} ⊕ 1) · (A

(2)
{0,2,27} ⊕ A

(2)
{0,0,27}) ⊕ A

(3)
{0,1,30} ⊕ θ

(3)
{3,3,2} ⊕ (A

(3)
{1,1,30} ⊕ 1) · θ

(2)
{0,0,27} = 0,

A
(2)
{3,0,27} ⊕ A

(2)
{3,3,27} ⊕ (A

(3)
{1,1,55} ⊕ 1) · (A

(2)
{0,2,52} ⊕ A

(2)
{0,0,52}) ⊕ A

(3)
{0,1,55} ⊕ θ

(3)
{3,3,27} ⊕ (A

(3)
{1,1,55} ⊕ 1) · θ

(2)
{0,0,52} = 0,

A
(2)
{4,1,1} ⊕ A

(2)
{4,4,1} ⊕ (A

(3)
{2,1,21} ⊕ 1) · (A

(2)
{1,3,40} ⊕ A

(2)
{1,1,40}) ⊕ A

(3)
{1,1,21} ⊕ θ

(3)
{4,4,1} ⊕ (A

(3)
{2,1,21} ⊕ 1) · θ

(2)
{1,1,40} = 0,

A
(2)
{4,1,4} ⊕ A

(2)
{4,4,4} ⊕ (A

(3)
{2,1,24} ⊕ 1) · (A

(2)
{1,3,43} ⊕ A

(2)
{1,1,43}) ⊕ A

(3)
{1,1,24} ⊕ θ

(3)
{4,4,4} ⊕ (A

(3)
{2,1,24} ⊕ 1) · θ

(2)
{1,1,43} = 0,

A
(2)
{4,1,5} ⊕ A

(2)
{4,4,5} ⊕ (A

(3)
{2,1,25} ⊕ 1) · (A

(2)
{1,3,44} ⊕ A

(2)
{1,1,44}) ⊕ A

(3)
{1,1,25} ⊕ θ

(3)
{4,4,5} ⊕ (A

(3)
{2,1,25} ⊕ 1) · θ

(2)
{1,1,44} = 0,

A
(2)
{4,1,17} ⊕ A

(2)
{4,4,17} ⊕ (A

(3)
{2,1,37} ⊕ 1) · (A

(2)
{1,3,56} ⊕ A

(2)
{1,1,56}) ⊕ A

(3)
{1,1,37} ⊕ θ

(3)
{4,4,17} ⊕ (A

(3)
{2,1,37} ⊕ 1) · θ

(2)
{1,1,56} = 0,

A
(2)
{4,1,20} ⊕ A

(2)
{4,4,20} ⊕ (A

(3)
{2,1,40} ⊕ 1) · (A

(2)
{1,3,59} ⊕ A

(2)
{1,1,59}) ⊕ A

(3)
{1,1,40} ⊕ θ

(3)
{4,4,20} ⊕ (A

(3)
{2,1,40} ⊕ 1) · θ

(2)
{1,1,59} = 0,

A
(2)
{4,1,41} ⊕ A

(2)
{4,4,41} ⊕ (A

(3)
{2,1,61} ⊕ 1) · (A

(2)
{1,3,16} ⊕ A

(2)
{1,1,16}) ⊕ A

(3)
{1,1,61} ⊕ θ

(3)
{4,4,41} ⊕ (A

(3)
{2,1,61} ⊕ 1) · θ

(2)
{1,1,16} = 0,

A
(2)
{4,1,43} ⊕ A

(2)
{4,4,43} ⊕ (A

(3)
{2,1,63} ⊕ 1) · (A

(2)
{1,3,18} ⊕ A

(2)
{1,1,18}) ⊕ A

(3)
{1,1,63} ⊕ θ

(3)
{4,4,43} ⊕ (A

(3)
{2,1,63} ⊕ 1) · θ

(2)
{1,1,18} = 0.

(26)

Experiments. We use two message blocks (M1,M2) to conduct the MitM
experiment on 3-round Keccak-512. For message block M2, we randomly choose
its values, and set A{0,0,z} = A{0,1,z} and A{2,0,z} = A{2,1,z} for the and bits
listed in Table 3 due to the linear structure. To make the experiment simple,
we carefully set the inner part to make the 64 bit conditions in Table 4 satisfied
directly, and only test the MitM episodes. We pre-compute the hash value as
the target. We only test one MitM episode, where the other bits exclude and
bits in A(0) keep unchanged with the above settings. Similar with Algorithm 1,
28 × 28 values of and bits are exhausted and filtered with Equ. (26) in
the episode. We make the experiment for 10 times with different M2 and pre-
computed targets, and the right values for and bits will remain among the
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28 × 28 × 2−11 = 25 matched states. The details of the code are provided at
https://github.com/qly14/MITM-Preimage-Attack.git.

D The Attack Algorithm of 3-round Xoodyak-XOF

The 3-round MitM preimage attack is shown in Figure 23. Similar to Keccak,

we decompose the θ operation into three steps, where C
(r)
{x,z} =

∑2
y′=0 A

(r)
{x,y′,z},

D
(r)
{x,z} = C

(r)
{x−1,z−5}⊕C

(r)
{x−1,z−14}, and θ

(r)
{x,y,z} = A

(r)
{x,y,z}⊕D

(r)
{x,z}.] The starting

state A(0) contains 4 bits and 97 bits. There are totally 53 conditions on
bits of ι(0), which are listed in Table 5. In the computation from A(0) to ι(2), the
accumulated consumed degree of freedom of is 93 and there is no DoF of
consumed. Therefore, DoFB = 4, DoFR = 97− 93 = 4. The degree of matching
is 4, which is listed in Equ. (22).

ι
(0)

{0,0,3} = 0; ι
(0)

{0,1,3} = 1; ι
(0)

{1,0,3} = 0; ι
(0)

{2,0,3} = 0; ι
(0)

{3,1,4} = 1; ι
(0)

{3,2,5} = 1;

ι
(0)

{2,0,6} = 0; ι
(0)

{2,1,6} = 1; ι
(0)

{3,0,6} = 0; ι
(0)

{3,1,6} = 1; ι
(0)

{2,0,7} = 1; ι
(0)

{3,1,7} = 0; ι
(0)

{3,2,7} = 1;

ι
(0)

{2,2,8} = 0; ι
(0)

{2,0,8} = 1; ι
(0)

{3,0,10} = 0; ι
(0)

{3,0,11} = 0; ι
(0)

{3,1,11} = 1; ι
(0)

{1,0,12} = 0; ι
(0)

{1,1,12} = 1;

ι
(0)

{0,0,13} = 0; ι
(0)

{0,1,13} = 1; ι
(0)

{3,0,13} = 0; ι
(0)

{3,1,13} = 1; ι
(0)

{2,0,14} = 0; ι
(0)

{2,0,15} = 0;

ι
(0)

{3,0,15} = 0; ι
(0)

{3,1,15} = 1; ι
(0)

{0,1,19} = 1; ι
(0)

{3,0,19} = 0; ι
(0)

{2,1,20} = 0; ι
(0)

{3,0,20} = 0; ι
(0)

{3,1,20} = 1;

ι
(0)

{0,0,21} = 1; ι
(0)

{2,2,21} = 0; ι
(0)

{3,1,21} = 0; ι
(0)

{3,2,21} = 1; ι
(0)

{2,0,22} = 1; ι
(0)

{2,2,22} = 0; ι
(0)

{3,1,22} = 0;

ι
(0)

{1,0,23} = 0; ι
(0)

{1,1,23} = 1; ι
(0)

{0,0,28} = 0; ι
(0)

{3,0,28} = 0; ι
(0)

{0,0,29} = 0; ι
(0)

{0,1,29} = 1;

ι
(0)

{3,0,29} = 0; ι
(0)

{3,1,29} = 1; ι
(0)

{0,0,30} = 0; ι
(0)

{2,2,30} = 0; ι
(0)

{2,0,31} = 1; ι
(0)

{2,2,31} = 0; ι
(0)

{3,1,31} = 0

Table 5: Bit Conditions in 3-round Attack on Xoodyak-XOF

In the starting state A(0), there are 128−2−97−4 = 25 bits which can be
modified by changing M2. Similar to the conditions of Keccak, the 53 conditions
can form a linear system taking these 25 bits of M2 as variables and the 256
bits inner part as constants. The rank of the coefficient matrix is 13. Therefore,
we have to randomly test 2(53−13) = 240 M1 to satisfy the 40 equations only
determined by the inner part. Then for a right inner part, there are 225−13 = 212

solutions of M2, which make all the 53 equations hold. The attack is similar to
the attack on Keccak, and we list it in the Algorithm 2. In the MitM episode in
Line 10 to 22, a space of 24+4 is searched. In order to search a 128-bit preimage,
we have to search a space of 2x−40+12+93+8 = 2128, i.e., x = 55. Each step of
Algorithm 2 is analyzed below:

– In Line 2, the time complexity is 255 × 533 = 272.2 bit operations and 255

3-round Xoodyak.
– In Line 7, the time complexity is 227+97 × 128+128+4

128×3 = 2123.44 3-round

Xoodyak. The fraction 128+128+4
128×3 is because that in the last round only 4

Sboxes with matching points are computed, while there are totally 128 × 3
Sboxes applications in the 3-round Xoodyak.

https://github.com/qly14/MITM-Preimage-Attack.git
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– In Line 9, the time is 227+93 × 128+128+4
128×3 = 2119.44 3-round Xoodyak.

– In Line 11, the time is 227+93+4 × 1
320 = 2115.68 3-round Xoodyak. This step

is just to retrieve the values U [cR] and restore it in L1. Assuming one table
access is about one Sbox application, we get the fraction 1

320 .
– In Line 14, the time is 227+93+4 × 128+128+4

128×3 = 2123.44 3-round Xoodyak.

– In Line 17, the time complexity is 227+93+4 × 2
3 = 2123.42 3-round Xoodyak.

– In Line 18, we only compute 5 Sboxes with ι(2) to gain a filter of 2−5, whose
time complexity is 227+93+4 × 5

128×3 = 2117.74 3-round Xoodyak.
– In Line 21, we check the remaining states with the remaining 128−4−5 = 119

Sboxes, which is 227+93+4−5 × 119
384 = 2117.31 3-round Xoodyak.

The total complexity of the 3-round attack is 272.2 + 255 + 2123.44 + 2119.44 +
2115.68 + 2123.44 + 2123.42 + 2117.74 + 2117.31 ≈ 2125.06 3-round Xoodyak-XOF, and
the memory to store U is 297.

E MitM Preimage Attack on Round-Reduced Ascon-XOF

E.1 The Attack Algorithm on 4-round Ascon-XOF

The 4-round MitM preimage attack as shown in Figure 24. There are 44 condi-
tions in the starting state, which are listed in Table 6.

The 4-round attack is given in Algorithm 3. In Line 12 to Line 26, a subspace
of 24+4 is traversed. In Algorithm 3, to find a 128-bit preimage, we exhaust
2x−44+4+50+8 = 2128, i.e., x = 110. The steps of Algorithm 3 are analyzed
below:

– In Line 3, the time complexity is 2110 × 2 = 2111 4-round Ascon.
– In Line 6, there are 4 free bits in M3 by excluding the 2-bit padding, 54-bit

and 4-bit bits.
– In Line 9, the way to use Equ. (23) is same with that for Keccak. For each

of the 254 bits in A(0), we need to compute 54 + 56 + 30 = 140 out of the
total 64× 4 = 256 Sbox applications (4 rounds) to build U . Hence, the time
of Line 9 is 2110−44+4+54 × 140

256 = 2123.13 4-round Ascon.
– In Line 11, the time is 2110−44+4+50 × 140

256 = 2119.13 4-round Ascon.
– As U stores red values and matching points, in Line 13, building L1 is just to

retrieve the values in U [cR]. If one table access is about one Sbox application,
the time of Line 13 is 2110−44+4+50+4 × 1

256 = 2116 4-round Ascon.

– In Line 16, given bits of A(0), the time to compute the matching points
is 4 + 14 + 22 = 40 Sbox applications. Therefore, the time of Line 16 is
2110−44+4+50+4 × 40

256 = 2121.32 4-round Ascon.

– In Line 19, we need to compute the first two Sboxes of A(3), i.e., 5× 2 = 10
bits. For the linear layer, each output bit depends on 3 input bits. Therefore,
to compute the 10 bits of A(3), we have to know 10 × 3 = 30 bits of S(2),
which are assumed to be involved in 30 Sboxes of S(2). We totally have to
compute 58+64+30+2 = 154 Sboxes to compute the first 2 Sboxes of S(3).
The time of Line 19 is 2110−44+4+50+4 × 154

256 = 2123.27 4-round Ascon.
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Algorithm 2: Preimage Attack on 3-round Xoodyak-XOF

1 for 2x values of M1 do
2 Compute the inner part of the 2nd block and solve the system of 53 linear

equations
3 if the equations have solutions /* with probability of 2−40 */

4 then
5 for each of the 212 solutions of M2 do
6 /* With x = 55, there are 255−40+12 = 227 iterations */

7 Traversing the 297 values of in A(0) while fixing as 0, compute
forward to determine 93-bit / bits (denoted as cR ∈ F93

2 ), and
the 4-bit matching point in Equ. (22), i.e., compute four bits
f ′
M = fR ⊕ fG . Build the table U and store the 97-bit bits of
A(0) as well as the 4-bit matching point in U [cR].

8 for cR ∈ F93
2 do

9 Randomly pick a 97-bit e ∈ U [cR], and set in A(0) as 0,
compute to the matching point to get 4 bits
f ′′′
M = fG + Const(e)

10 for 24 values in U [cR] do

11 Restore the values of of A(0) and the corresponding
matching point (i.e., 4 fR ⊕ fG = f ′

M) in a list L1

(indexed by matching point)
12 end
13 for 24 values of do

14 Set the 97-bit in A(1) as e. Compute to the matching
point to get 4 f ′′

M = fB + fG + Const(e). Together with
f ′′′
M, compute fB = f ′′

M + f ′′′
M and store in L2 indexed by

matching point.
15 end
16 for values matched between L1 and L2 do

17 Compute ι(2) from the matched and cells

18 if ι(2) satisfy the first 5 Sbox /* Probability of 2−5.

This step is to avoid computing all Sboxes of

ι(2) and only use partial Sboxes to filter first.

*/

19 then

20 Check ι(2) against the remaining 119 Sboxes
21 if it leads to the given hash value then
22 Output the preimage
23 end

24 end

25 end

26 end

27 end

28 end

29 end
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A
(0)

{0,1} = 0, A
(0)

{0,3} +A
(0)

{0,4} = 1;A
(0)

{4,1} = 1, A
(0)

{4,3} +A
(0)

{4,4} = 1;A
(0)

{5,1} = 0;A
(0)

{7,1} = 0;A
(0)

{8,1} = 0;

A
(0)

{10,1} = 0;A
(0)

{11,1} = 1;A
(0)

{15,1} = 0;A
(0)

{17,1} = 1, A
(0)

{17,3} +A
(0)

{17,4} = 1;A
(0)

{18,1} = 1;

A
(0)

{20,1} = 1;A
(0)

{21,1} = 1;A
(0)

{22,1} = 1, A
(0)

{22,3} +A
(0)

{22,4} = 1;A
(0)

{24,1} = 0, A
(0)

{24,3} +A
(0)

{24,4} = 1;

A
(0)

{27,1} = 1;A
(0)

{29,1} = 0, A
(0)

{29,3} +A
(0)

{29,4} = 1;A
(0)

{32,1} = 0, A
(0)

{32,3} +A
(0)

{32,4} = 1;

A
(0)

{36,1} = 1, A
(0)

{36,3} +A
(0)

{36,4} = 1;A
(0)

{37,1} = 0;A
(0)

{39,1} = 0;A
(0)

{40,1} = 0;

A
(0)

{42,1} = 0;A
(0)

{43,1} = 1;A
(0)

{47,1} = 0;A
(0)

{49,1} = 1, A
(0)

{49,3} +A
(0)

{49,4} = 1;A
(0)

{18,1} = 1;

A
(0)

{52,1} = 1;A
(0)

{53,1} = 1;A
(0)

{54,1} = 1, A
(0)

{54,3} +A
(0)

{54,4} = 1;

A
(0)

{56,1} = 0, A
(0)

{56,3} +A
(0)

{56,4} = 1;A
(0)

{59,1} = 1;A
(0)

{61,1} = 0, A
(0)

{61,3} +A
(0)

{61,4} = 1.

Table 6: Bit Conditions in 4-round Attack on Ascon-XOF

– In Line 23, the time is 2110−44+4+50+4−2 = 2122 4-round Ascon.

The total time complexity is 2111+2123.13+2119.13+2116+2121.32+2123.27+2122 ≈
2124.67 4-round Ascon. The memory is 254 to store U .

E.2 The Attack on 3-round Ascon-XOF

Solving with our MILP model for Ascon, we get a 3-round MitM preimage attack
as shown in Figure 25. We follow similar framework in Figure 6 and perform the
attack with three message blocks (M1,M2,M3), where M3 has two padding bits
‘10’. The MitM attack is placed in the 3rd block. The starting state A(0) contains
10 bits and 39 bits. There are totally 54 conditions on bits of A(0), which
are listed in Table 7. In the computation from A(0) to A(2), the accumulated
consumed degree of freedom of is 29 and there is no DoF of consumed.
Therefore, DoFB = 10, DoFR = 39 − 29 = 10. The degree of matching is
counted by the deterministic relations of A(2) according to Observation 3, we
get DoM = 10.

Before the MitM attack, we need to find a right (M1,M2) to make the 54 con-
ditions in Table 7 hold with probability of 2−54. Once we find a right (M1,M2),
we search the space of M3 with MitM method to find the preimage, whose size is
262 (there are 2 padding bits fixed). Therefore, to find a 128-bit target preimage,
we need 2128−62 = 266 right (M1,M2), which need 266+54 = 2120 time complex-
ity to find. Then we call Algorithm 4 to perform the MitM preimage attack on
the 3-round Ascon.

In Line 7, the time complexity is 2120 × 2−54 × 213 × 239 = 2118. The time of
one MitM episode between Line 9 to 17 is about 210 3-round Ascon. The total
time is 2120 + 2118 + 2120−54+13+29 × 210 = 2120.58. The memory to store U is
239.

F An Experiment on 3-round Ascon-XOF

We give an experimental test of the MitM episode on 3-round Ascon-XOF in
Figure 26 to verify our method. In the attack, the starting state A(0) have 7
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Algorithm 3: Preimage Attack on 4-round Ascon-XOF

1 Inversely precompute S
(3)

{∗,0} with the 64-bit hashing value

2 for 2x values of (M1,M2) do
3 Compute the inner part of the 3rd block
4 if the conditions in Table 6 are satisfied /* probability of 2−44 */

5 then
6 for 264−4−54−2 = 24 values of the bits in M3

7 /* There are 4 free bits and 2 padding bits in M3 */

8 do

9 Traversing the 254 values for in A(0) while fixing as 0, compute
the 50-bit / bits as cR ∈ F50

2 , and 4-bit matching point, e.g.,
in (23), i.e., compute four f ′

M = fR ⊕ fG . Build the table U and
store the 54-bit of A(0) as well as the 4-bit matching point in
U [cR].

10 for cR ∈ F50
2 do

11 Randomly pick a 54-bit e ∈ U [cR], and set in A(0) as 0,
compute to the matching point to get four
f ′′′
M = fG + Const(e)

12 for 24 values in U [cR] do

13 Restore the 54-bit of A(0) and the corresponding 4-bit
matching point (i.e., four fR ⊕ fG = f ′

M) in a list L1

indexed by the matching point
14 end
15 for 24 values of do

16 Set the 54-bit in A(0) as e. Compute to the matching
point to get 4 f ′′

M = fB + fG + Const(e). Together with
f ′′′
M, compute fB = f ′′

M + f ′′′
M and store in L2 indexed by

the matching point
17 end
18 for values matched between L1 and L2 do

19 Compute the first 2 Sboxes of S(3)

20 if the 2 Sboxes satisfy the precomputed S
(3)

{∗,0}
21 /* probability of 2−2. This step is to avoid

computing all Sboxes of S(3) and only use

partial Sboxes to filter first. */

22 then
23 if it leads to the given hash value then
24 Output the preimage
25 end

26 end

27 end

28 end

29 end

30 end

31 end
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A
(0)

{0,1} = 1;A
(0)

{2,1} = 0;A
(0)

{5,1} = 1;A
(0)

{7,1} = 1, A
(0)

{7,3} ⊕A
(0)

{7,4} = 1;A
(0)

{8,1} = 1;

A
(0)

{11,1} = 1;A
(0)

{12,1} = 1; A
(0)

{14,1} = 1;A
(0)

{15,1} = 1, A
(0)

{15,3} ⊕A
(0)

{15,4} = 1;

A
(0)

{18,1} = 1, A
(0)

{18,3} ⊕A
(0)

{18,4} = 1;A
(0)

{19,1} = 1; A
(0)

{21,1} = 0, A
(0)

{21,3} ⊕A
(0)

{21,4} = 1;

A
(0)

{22,1} = 1;A
(0)

{23,1} = 1, A
(0)

{23,3} ⊕A
(0)

{23,4} = 1;A
(0)

{24,1} = 1;

A
(0)

{26,1} = 0, A
(0)

{26,3} ⊕A
(0)

{26,4} = 1;A
(0)

{29,1} = 1, A
(0)

{29,3} ⊕A
(0)

{29,4} = 1;A
(0)

{30,1} = 1;

A
(0)

{33,1} = 0; A
(0)

{36,1} = 0, A
(0)

{36,3} ⊕A
(0)

{36,4} = 1;A
(0)

{37,1} = 0, A
(0)

{37,3} ⊕A
(0)

{37,4} = 1;

A
(0)

{38,1} = 1;A
(0)

{39,1} = 0; A
(0)

{41,1} = 0;A
(0)

{42,1} = 0, A
(0)

{42,3} ⊕A
(0)

{42,4} = 1;A
(0)

{43,1} = 0;

A
(0)

{44,1} = 1;A
(0)

{48,1} = 0; A
(0)

{49,1} = 1, A
(0)

{49,3} ⊕A
(0)

{49,4} = 1;

A
(0)

{50,1} = 1, A
(0)

{50,3} ⊕A
(0)

{50,4} = 1;A
(0)

{51,1} = 0;A
(0)

{52,1} = 0;

A
(0)

{53,1} = 1, A
(0)

{53,3} ⊕A
(0)

{53,4} = 1;A
(0)

{54,1} = 1, A
(0)

{54,3} ⊕A
(0)

{54,4} = 1;

A
(0)

{55,1} = 0, A
(0)

{55,3} ⊕A
(0)

{55,4} = 1; A
(0)

{56,1} = 0;A
(0)

{58,1} = 0;

A
(0)

{61,1} = 1, A
(0)

{61,3} ⊕A
(0)

{61,4} = 1

Table 7: Bit Conditions in 3-round Attack on Ascon-XOF

Algorithm 4: Preimage Attack on 3-round Ascon-XOF

1 for 2120 values of (M1,M2) do
2 Compute the inner part of the 3rd block
3 if the conditions of Table 7 are satisfied /* probability of 2−54 */

4 then

5 for 213 values of in A(0) /* 64-2-10-39=13 */

6 do

7 Traversing the 239 values for in A(0) while fixing as a random
constant, build the table U with the index of cR ∈ F29

2 .
8 for cR ∈ F29

2 do
9 for 210 values in U [cR] do

10 Compute to the matching point, store them in a list L1

11 end
12 for 210 values of do
13 Compute to the matching point L2

14 end
15 for values matched between L1 and L2 do
16 if it leads to the given hash value then
17 Output the preimage
18 end

19 end

20 end

21 end

22 end

23 end
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and 5 bits. The consumes of degree of freedom happen at the second linear
layer, which consuming 2 . Therefore, DoFB = 5, DoFR = 7−2 = 5. In Table 8,
there are totally 20 conditions on A(0). The degree of matching is counted by
the deterministic relations of A(2) according to Observation 3, we get DoM = 5
and list the equations for filtering as Equ. (27).

A
(0)

{5,1} = 1;A
(0)

{8,1} = 1, A
(0)

{8,3} ⊕A
(0)

{8,4} = 1;A
(0)

{11,1} = 1, A
(0)

{11,3} ⊕A
(0)

{11,4} = 1;

A
(0)

{13,1} = 1, A
(0)

{13,3} ⊕A
(0)

{13,4} = 1;A
(0)

{16,1} = 0, A
(0)

{16,3} ⊕A
(0)

{16,4} = 1;

A
(0)

{19,1} = 0, A
(0)

{19,3} ⊕A
(0)

{19,4} = 1;A
(0)

{26,1} = 1, A
(0)

{16,3} ⊕A
(0)

{26,4} = 1;A
(0)

{28,1} = 0;

A
(0)

{31,1} = 0;A
(0)

{35,1} = 1;A
(0)

{50,1} = 1, A
(0)

{50,3} ⊕A
(0)

{50,4} = 1;A
(0)

{57,1} = 1;

A
(0)

{57,3} ⊕A
(0)

{57,4} = 1.

Table 8: Bit Conditions in 3-round Experiment on Ascon-XOF



A
(3)

{4,4} ·A
(3)

{4,1}⊕A
(3)

{4,3}⊕A
(3)

{4,2} ·A
(3)

{4,1}⊕A
(3)

{4,2}⊕A
(3)

{4,1} ·A
(3)

{4,0}⊕A
(3)

{4,1}⊕A
(3)

{4,0}=S
(3)

{4,0},

A
(3)

{7,4} ·A
(3)

{7,1}⊕A
(3)

{7,3}⊕A
(3)

{7,2} ·A
(3)

{7,1}⊕A
(3)

{7,2}⊕A
(3)

{7,1} ·A
(3)

{7,0}⊕A
(3)

{7,1}⊕A
(3)

{7,0}=S
(3)

{7,0},

A
(3)

{36,4} ·A
(3)

{36,1}⊕A
(3)

{36,3}⊕A
(3)

{36,2} ·A
(3)

{36,1}⊕A
(3)

{36,2}⊕A
(3)

{36,1} ·A
(3)

{36,0}⊕A
(3)

{36,1}⊕A
(3)

{36,0}=S
(3)

{36,0},

A
(3)

{39,4} ·A
(3)

{39,1}⊕A
(3)

{39,3}⊕A
(3)

{39,2} ·A
(3)

{39,1}⊕A
(3)

{39,2}⊕A
(3)

{39,1} ·A
(3)

{39,0}⊕A
(3)

{39,1}⊕A
(3)

{39,0}=S
(3)

{39,0},

A
(3)

{43,4} ·A
(3)

{43,1}⊕A
(3)

{43,3}⊕A
(3)

{43,2} ·A
(3)

{43,1}⊕A
(3)

{43,2}⊕A
(3)

{43,1} ·A
(3)

{43,0}⊕A
(3)

{43,1}⊕A
(3)

{43,0}=S
(3)

{43,0},

(27)

Experiments. To make the experiment simple and only test the MitM episode,
we carefully set the inner part to make the 20 bit conditions in Table 8 satisfied
directly, and only test the MitM episodes. We pre-compute the hash value as
the target. We only test one MitM episode, where the other bits exclude and
bits in A(0) keep unchanged with the above settings. Similar with Algorithm 3,
we need to compute a table of solutions indexed by 2-bit of A(2), 25 × 25

values of and bits are exhausted and filtered with Equ. (27) in the episode.
We make the experiment for 32 times with different message blocks and pre-
computed targets, and the right values for and bits always remain among
the 25× 25× 2−5 = 25 matched states. The details of the code are also provided
at https://github.com/qly14/MITM-Preimage-Attack.git.

https://github.com/qly14/MITM-Preimage-Attack.git
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