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Abstract
The building blocks for secure messaging apps, such as Signal’s X3DH and Double Ratchet (DR) protocols,

have received a lot of attention from the research community. They have notably been proved to meet strong
security properties even in the case of compromise such as Forward Secrecy (FS) and Post-Compromise
Security (PCS). However, there is a lack of formal study of these properties at the application level. Whereas
the research works have studied such properties in the context of a single ratcheting chain, a conversation
between two persons in a messaging application can in fact be the result of merging multiple ratcheting
chains.

In this work, we initiate the formal analysis of secure messaging taking the session-handling layer into
account, and apply our approach to Sesame, Signal’s session management. We first experimentally show
practical scenarios in which PCS can be violated in Signal by a clone attacker, despite its use of the Double
Ratchet. We identify how this is enabled by Signal’s session-handling layer. We then design a formal model
of the session-handling layer of Signal that is tractable for automated verification with the Tamarin prover,
and use this model to rediscover the PCS violation and propose two provably secure mechanisms to offer
stronger guarantees.

1 Introduction

Modern secure messaging apps use intricate cryptographic building blocks to achieve stronger security
guarantees. For instance, the Double Ratchet (DR) protocol is a core component of the Signal protocol
library, and is used by many secure messaging apps including WhatsApp, the Signal App, and Facebook
Secret Conversations.

There is a rich line of research formally analyzing and proving the strong security properties of the
Double Ratchet and its variants, e.g., [1, 2, 4, 10–12, 20, 26]. This includes, for example, proving that the DR
achieves Forward Secrecy (FS) and modern properties like Post-Compromise Security (PCS): even after a
full compromise of a party’s device state, attackers are locked out of the conversation again if the victim can
exchange a few messages with their partner without the attacker interfering [13]. Over time, these models
have been improved in terms of precision, granularity, and threat models, getting closer to real-world DR
implementations.

While these are important results, they focus on a specific building block only, and not on the security
guarantees that users actually get when using a messaging app. In particular, while the Extended Triple-Diffie-
Hellman (X3DH) handshake and the Double Ratchet (DR) have been extensively formally studied, there has
been no formal analysis that includes other layers, such as the session-handling. In fact, several application-
level behaviors of messaging apps were discovered that seem to offer to their end users lower security
guarantees compared to what might be expected from using X3DH and DR protocols, such as [14, 32].

We initiate the formal study of the session-handling layer of secure messaging apps, picking Signal’s
Sesame protocol as a first case study. This is technically challenging, as we would ideally like to model the
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entirety of the session-handling layer with a detailed model of the X3DH and DR protocols. However, the
fact is that state-of-the-art formal approaches struggle to deal with X3DH and DR accurately even without
any additional mechanisms. To make any analysis tractable, we have to devise a reasonable abstraction of the
session-handling layer and its underlying building blocks.

We motivate our work by experimentally showing two scenarios in which Signal Android app v5.40.4
(May 2022) does not achieve PCS despite using the DR protocol. Our core observation that we strive to
formalize is that while a single DR session preserves PCS, this does not propagate to the higher level of
the conversation between two end users as conversations are invisibly constructed from possibly multiple
concurrent sessions that have their own ratcheting chains.

Interestingly, our experiments show that PCS is broken even though our attacker is more restricted in
capabilities than the classical active attacker from the literature AIdeal. However, our attacker model for
the experiments, AExperiment that can compromise at some point the user phone but otherwise follows the
protocol, is stronger than the passive threat model of PCS from Signal’s specification ASignal. Following
this, we systematize different threat models for PCS based on attacker capabilities and level of compromise.
In particular, we consider two meaningful weakened versions of the literature: a) AExperiment, from our
experiments, and b) AFormal, which is the standard model used in state-of-the-art verification tools. It is
on AFormal that we perform our security analysis of the session-handling layer and of some proposed
improvements.

Thus, our work ranges from the applied (real-world experiments on the current Signal app with a clone
attacker) to the foundational (first formal modeling of session-handling layer for secure messaging, and
automated analysis).

Contributions Our main contributions are the following:
• We first show the real-world impact of the session-handling layer: we showcase two practical scenarios

in which the current Signal app does not achieve PCS, despite using the DR protocol, against a clone
attacker.
Our experiments show how guarantees proven for the underlying building blocks (e.g., in [1, 10, 25]) do
not transfer to the application level. We analyze the root causes and determine they derive from design
decisions in Signal’s session-handling layer: the Sesame protocol.

• We initiate the formal study of security properties of secure messaging that take the session-handling
layer into account. We create the first formal model of Signal that includes an abstraction of its
session-handling layer Sesame and the ratcheting mechanisms. Notably, we introduce the notion of
conversation-based Post-Compromise Security (PCS), which lifts the classical PCS property to the
conversation level. Automated analysis of this model using the TAMARIN prover automatically discovers
the scenario in which PCS is violated at the session-handling layer despite using the DR protocol.

• We show that protection against a clone attacker at Signal’s session-handling layer can be improved by
a simple fix, and use our model to formally prove that the fix restores conversation-based PCS. We also
propose a clone detection mechanism for Signal that supports the first fix and which we prove sound in
our models.

We provide our models publicly for inspection and reproduction [15]: they are notably intended for developing
refined Sesame models or as a starting point to model the session-handling of other apps.

Outline We introduce the required background on Signal and its core mechanisms in Section 2. We then
detail two scenarios in which PCS is violated, and their experimental set-up in Section 3. We follow up by
proposing our mechanisms in Section 4. In Section 5 we develop our formal model of Signal’s session-
handling layer. We then use this model to automatically detect property violations, and to prove that our PCS
fix and clone detection mechanism indeed work. In Section 6 we discuss the practicalities of implementing
our proposed solutions. We finally summarize our findings and provide an outlook in Section 7. In addition,
we provide a third scenario that violates PCS in Appendix A.1 (independently reported in [19]), and discuss
some additional security parameters of the implementation in Appendix A.2.

Related work The notion of PCS was introduced and formalized in [13]. Since then, the Double Ratchet
(DR) and Extended Triple Diffie-Hellman (X3DH) protocols have received multiple increasingly fine-grained
analyses [1, 2, 4, 10, 12, 20], and are still subject to active study. In particular, recent studies have proposed
post-quantum secure versions of the X3DH key exchange protocol [7, 8, 17, 23]. Similar to our approach,
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some of the previous analysis relied on formal analysis tools [3, 26]. However, these focused on the two
underlying DR and X3DH protocols, not Sesame. To the best of our knowledge, we are the first to formally
analyze the final security provided by the combination of Sesame and the underlying layers.

In [32], the authors show an attack on Sesame that allows the registration of an attacker’s device capable
of sending and receiving messages. In another work [9] is proposed an alternative to Sesame that opens only
a single channel between two users, while hiding the number of partner’s devices. From the experimental
point of view, the concrete security of Signal under cloning was studied in [14]. In contrast, we show that
compared to their experiment on Signal Android v4.47.7 (August 2019), some security guarantees of Signal
were lost compared to v5.40.4 (May 2022). Previous work on clone detection propose mechanisms that use
third-parties [33] or counters, hashing, and commitments [30] to flag the attacker.

A related work is [19] that proposes a new mechanism to improve Signal’s PCS guarantees. They consider a
PCS property against a fully active attacker while our attacker is inactive during the small healing time-frame
and otherwise active. More importantly, they also only consider a single DR session, while we put the focus
on multiple parallel DR sessions and lift security to conversations. The two core PCS violations we uncover
are due to parallel sessions and are out of scope of [19]. During our experiments, we also independently
rediscovered one of their PCS violations, but since this is orthogonal to our main points, we only describe it
in Appendix A.1. A related work [5] classifies attacker models for PCS and provide PCS variants that depend
on the speed of the recovery. Compared to us, they do not consider out-of-order messages in their properties
nor multiple parallel sessions; this leads them to theoretically claim several variants for PCS for Signal
(see [5, Fig 2, Local Active attacker]) which we illustrate do not hold in practice for users. It is however
natural to link their threat models to ours. They consider three dimensions for the attacker model, the Reach
dimension to specify which sort of keys the attacker can compromise, the Power dimension for whether the
attacker is active or passive, and the Access dimension, for whether the attacker sits on the network or is
even on the server side. Looking forward to Fig. 4, we also consider the Power dimension, but in a more
fine-grained way, as well as the Reach dimension. We do not however consider the Access dimension.

2 Background

2.1 Security properties of messaging protocols

In the following, we give an overview of two security properties achieved by the core Signal protocol DR,
namely forward secrecy and post-compromise security. While both capture session security guarantees with
respect to a compromise, the former talks about previous sessions and the latter about future ones, as shown
in Fig. 1.

Forward Secrecy (FS) FS is the guarantee that compromise of a session does not impact the security
of previous sessions of the protocol [6]. In other words, despite revealing the current session’s state (e.g.
identity key and session key) to an attacker, previous message keys cannot be computed.

In reality, there are subtle variants of FS. One main form relates to the compromise of long-term keys such
as identity keys and an attacker that can at least observe all network traffic. To achieve this variant of FS,
parties can use asymmetric cryptography to derive the session keys from ephemeral asymmetric keys such
that each key is independent of the previous, while the identity keys are used for authentication. In practice
this is usually realized using ephemeral Diffie-Hellman keys or KEMs, but needs a back-and-forth roundtrip
to offer protection. In contrast, if keys were decrypted from network traffic using identity keys, this form of
FS would not be met, as they would for example in basic key transport protocols.

A second form of FS involves attackers that can only reveal session/message keys, and can be achieved
without roundtrips. This can be achieved by encrypting each with a different key, i.e., an attacker knowing the
key of message i, cannot compute the previous message keys [0, i−1]. Instead of encrypting the messages
with the session key, the latter can be used as an input to a key derivation function KDF (i.e., a one-way
function), which outputs a new message key and the forwarded session secret. In the literature, FS can also
be achieved using time-based methods [18] or puncturable encryption [16, 21, 22].

Post-Compromise Security (PCS) PCS is the guarantee a party A has, that security of their conversation
with partner B can be recovered (healed) after the compromise of the latter [13]. In other words, leaking
the partner’s keys does not mean that all future communication can be decrypted. To restore security, the
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parties need a healing phase, during which the attacker does not interfere with the honest communication.
Depending on the type of compromise, a protocol offers two levels of PCS a) via weak or partial compromise
of ephemeral secrets (session keys) or b) via full compromise of the state (both long-term and session keys).

Weak-PCS is achieved when the attacker leaks session-specific keys, but has only temporary access to the
long-term secrets e.g., if the identity keys are stored encrypted in an external device. This means that the
protocol can use the long-term secret (or a token derived from it) to evolve old corrupted session keys and
lock the attacker out. More specifically, the parties can compute the session key sk for run i of the protocol as
ski = KDF(ski−1, token). If the session key is forwarded this way, the attacker cannot compute future keys
without knowing the token, hence security is restored.

In the full compromise case, the attacker knows all the keys at the time of compromise, therefore the
parties need to incorporate new ephemeral secrets in the derivation of the session key. This can be done using
asymmetric cryptography [20, 24, 25], such that enough entropy is introduced in the session key during the
healing phase, e.g., using the Diffie-Hellman output as the token. Having been passive in the healing phase,
the attacker cannot compute the new key.

Figure 1: Forward Secrecy (FS) and Post-Compromise Security (PCS).

2.2 Double Ratchet
Signal’s Double Ratchet (DR) is a widely used protocol to exchange messages between two parties which
guarantees strong security properties such as forward secrecy and post-compromise security. The protocol is
constructed by two parts: a symmetric and an asymmetric ratchet, the latter also referred as the Diffie-Hellman
(DH) ratchet. As a prerequisite, DR expects the parties to authenticate one another and establish a shared key
before the start of the protocol, e.g., Signal uses the Extended Triple Diffie-Hellman (X3DH) protocol [27].

DR is constructed from a hierarchy of three types of keys: a root key which is the shared key between the
parties at the start of the protocol, chain keys derived from the root key, and message keys derived from the
chain keys. When the parties switch their roles, say from sender to receiver they perform the asymmetric
step, and when they maintain the same role they perform the symmetric step. We will shortly summarize
both ratchets below, and refer the reader to the documentation [31] for more details.

Asymmetric Ratchet The core idea of this step is to introduce ephemeral DH keys into the root key, thus
achieving PCS. Consider a party A switching roles, say from receiver to sender. They generate a DH key pair
(a,ga), and get their partners public key gb. Then, A computes the current root key rki and sending chain
key ck0 using a KDF with input the old key and the DH output, i.e., rki,ck0 = KDF(rki−1,gab). The initial
sending chain ck0 serves as input for the symmetric ratchet to derive the actual message keys. A will keep
performing the symmetric ratchet, i.e., send messages sequentially, until interrupted by an incoming message,
signaling role switch with the partner.

Symmetric Ratchet The symmetric step forwards the chain key, using a KDF function, to derive new keys
for each message, thus providing forward secrecy, Resuming the previous example, A can now compute
any message key mki from the chain key, specifically, cki,mki = KDF(cki−1). Then, A uses mki to encrypt
a message and along with the ciphertext sends their public DH key ga. Upon receiving this message, the
partner will compute the same steps and be able to decrypt.

2.3 Sesame: Signal’s session management
Sesame is a session management protocol responsible for managing sessions and multiple devices for
the libsignal library. The protocol enables a user to link several devices to their account and handles the
synchronization of messages sent and received with the devices of their partners. The core idea is to create a
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session between the sending device and every other device of both parties, i.e., a message sent from user A
to B is encrypted for every device of B and all other linked devices of A. This means that Sesame has to
manage a local database containing the records of each partner’s device and their respective open sessions.
To maintain the device list, Sesame depends on the Signal server to inform it of any new or removed devices.
In addition, Sesame uses a mailbox server to store the messages sent to devices until they can retrieve them,
enabling asynchronous communication.

Sesame is also designed to handle multiple sessions between two devices. According to the specification,
this is done to ease the convergence to a single session in cases where two devices are desynchronized.
These cases include: a) parties starting a session simultaneously and hence resulting in different derived keys,
b) one of the parties restoring an old backup, or c) losing their local state. Sesame keeps a list of multiple
sessions per device, and upon receiving a message encrypted from any of them, promotes it as the new active
session, thus making both parties agree on the current state.

Initialize Session Sesame uses a key agreement protocol (i.e., X3DH in Signal) to initialize the sessions
between the sending device and all receiving devices. For this, X3DH needs at least two types of keys: an
identity key and an ephemeral key, called a pre-key bundle. The idea is to use the keys of both parties in
an intricate key derivation algorithm, in which only the two involved participants can derive a common
secret [27]. In Sesame’s implementation, the identity key pair is assigned per user account, and the ephemeral
keys are generated per device and signed by the identity key. This allows for user authentication and
uniqueness of session keys among the devices of the same account. When a device wants to start a new
conversation, they retrieve from the server they prekey bundle and compute a shared key that serves as the
initial root key to the DR algorithm described in Section 2.2.

Multiple Devices End users in Signal can have multiple devices linked to their accounts. The devices
share the user’s identity key but have per-device prekey bundles. The latter is then used during the X3DH
agreement to set up pairwise Signal sessions between them. For example, assume A has m devices and wants
to send a message to their partner B’s n devices. A device of A will start independent sessions with the n
recipient devices of B and their own m−1 linked devices and encrypt the payload using the state of each
session. The states are then stored locally on the device, indexed by the user and device identifiers for which
they should be used. To maintain an updated device list, the users depend on the server to inform them of
new and deleted devices of their partner.

Multiple Sessions In reality, between two devices there are multiple sessions, which are managed by the
Sesame algorithm. From these sessions, one is the current active session used to encrypt messages and the
others are stale sessions kept for synchronization or out-of-order messages. However, Sesame allows the
older sessions to be promoted to active ones. In a nutshell the mechanisms states that, any session which can
decrypt an incoming message becomes the current active session between the two devices. The mechanism
of reactivating older sessions, enables a) the decryption of messages without loss, and b) agreement on a
common session even when the parties are momentarily desynchronized.

Retry Message Another feature of Sesame is to keep a record of sent messages until the sender receives
a valid receipt message. This means that if the partner cannot decrypt any message, they can send an
unencrypted retry request indexed by the message identifier. Upon receiving the request, the sender encrypts
the message with a new key derived from either: a) the current active session (in case it is different from the
one used to encrypt the message previously), or b) establish a new session with the device.

Session Reset and Expiration Sesame also suggests a session expiration policy, however the implemented
mechanism differs from the specification. In the design of Sesame, it is suggested to delete old sessions
depending on their creation timestamp. In practice the app limits the of number sessions (40 sessions) that
are maintained at any time in a FIFO fashion, i.e., anytime it creates a new session it removes the last one in
the pile from the list. In addition, previous versions of the Signal app used to offer a session reset which is not
included in the specification. The idea is that the users can trigger the creation of new sessions themselves
directly from the user interface. However, this was deprecated in Signalapp version v5.25.01. Instead, the

1Signal’s Session Reset Deprecation: link.
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conversation is automatically reset every one hour when the two parties need to establish a new session. This
means the keys used in the conversation are replaced every hour by freshly computed ones. In theory this
could yield increased security for the protocol, however as we will see later, this is not the case in practice.

3 Concrete Signal scenarios violating PCS

In this section, we show two real-world scenarios in which a clone attacker can violate PCS for Signal,
which are consequences of the current design of Signal’s session-handling layer Sesame. In our scenarios,
we consider a so-called clone attacker. The clone compromises the full state of a party, including session
specific keys and long-term identity keys. However, it is limited in using the user interface of the app, instead
of performing complex operations with the compromised secrets. In practical terms, this can be an attacker
gaining temporary access to a device and duplicating its contents to run a parallel app instance. Notably, the
clone does not need to have any knowledge of intricate attack vectors or the inner workings of the protocols.
Our experiments were performed on the Signal Android app version v5.40.4 (May 2022).

Intuitively, we consider the following scenario in attacking the conversation between A and B: At some
point during the message exchange between the honest parties, we compromise A’s device, effectively
cloning it. We then have A and B continue their conversation without the attacker being online, i.e., the
healing phase. From the analyses of the DR protocol, we expect that this heals the conversation. We then
re-activate the clone. The expected behavior now is that the clone should be locked out of the conversation of
A and B.

From a high level point of view, we found the following scenarios that violate this expectation:
1. if an old clone and the honest partner are online, decryption failures on the clone side trigger retry

messages, resulting in a new session agreement and the honest partner resending previous messages to
the clone (Section 3.1), and

2. after a time-triggered reset (creating a new session), a clone can still re-enable an old session (Sec-
tion 3.2).

We did find a third scenario in which PCS is violated: old receiver chains that are still stored can be prolongated
by a clone. We describe this scenario in Appendix A.1, since (a) it exploits the DR implementation, and is
not linked to Sesame’s design, and (b) it was independently reported in [19].

Interestingly, a clone that simply uses the unmodified Signal app is enough to perform these scenarios. In
the following, we show how we were able to exploit emulated clones to produce the attacks on the deployed
Signal app, and explain the attacks using Signal’s log as well as the Sesame/Signal specifications and its
open source code.

Experimental setup We conducted a series of experiments on the Signal application to find potential
weaknesses introduced by Sesame. First, we created two legitimate accounts in the deployed messaging
app (version 5.40.4). To register the users, we modeled two android devices (Android Api 10.0) using
the Genymotion emulator (version 3.2.1). After the two honest parties started a conversation together, we
investigate the consequences of a compromise. Our threat model allows for an attacker to fully compromise
the state of a party and run another instance of the app with the cloned state. To mimic this, we used the
cloning feature of the emulator, which allows to fully duplicate an entire virtual machine. We then explore
the behaviors of the multiple parties by exchanging messages between them, triggering different behaviors
(such as message resend, session reset, etc) potentially leading to violations of properties such as PCS.

To precisely identify the causes of the observed behaviors we downloaded the debug logs provided by the
app.2 From these logs, we can extract the following information:

1. Which chain keys are used for encryption (unique public identifier of the chain key for logging purpose)?
2. When do parties send retry requests?
3. When did the parties initialize a new session?
This allowed us to deduce which actions were triggered to allow messages to be received without any

error in the user interface, which should have otherwise been protected by PCS. In addition, since Signal’s
library is open source, we cross-checked with the implementation and pinpointed the exact parts of the code
that enabled the scenarios.

2Logs are found in the user interface under Settings/Help/Debug Log.
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Notation The experiments are conducted between 3 agents: two honest parties A and B, and A’s clone
(Aclone). When a message is sent from A to B we use the notation A → B and vice versa. To denote that the
parties are exchanging roles between sending and receiving we use A ↔ B, which means A → B and B → A.
Repetition of the message exchange n times is expressed as (A ↔ B)n.

3.1 Abusing the Retry feature
In this scenario, we investigate whether a compromised party can recover the security of the conversation
once all chain keys known by the attacker are deleted from the app’s local memory. The experiment considers
two parties A and B having a conversation, until A is cloned (i.e., the attacker has an identical copy of the
messaging app). The honest parties continue the conversation without interference; in terms of the underlying
DR, this should enable healing. Once the clone’s machine goes online, they check if the clone receives past
messages or can inject new ones in the conversation.

Concretely, we have A and B exchange more than 5 messages in the conversation after the clone to
represent healing, and we check if the clone can still inject their own messages in the conversation. We need
5 or more messages, because, as shown in Appendix A.1, the conversation does not heal due to Signal storing
at any time the latest 5 receiver chains, which can be extended by the clone.

In this experiment, we noticed that B was able to receive all the messages sent from the clone, as long as
the two are online at the same time. This means that PCS is not guaranteed, since the clone can continue the
conversation even after 5 consecutive healings. We will now see how AClone and B resynchronize, abusing
the retry feature of Sesame.

Figure 2: Abusing the retry option upon decryption error on Signal. After parties A and B exchange messages,
A at state ◦A1 is cloned. The clone goes offline (denoted by the dotted line) and the parties exchange
messages to heal their session to ◦A2. A goes offline, while the clone encrypts a message m with the old
session state ◦A1. B cannot decrypt the message, so they initiate a new session marked, respectively, as □
B′

1 and □ A′
1. B can decrypt the message received in the last step.

Concrete steps The scenario can be reproduced as follows:
1. A and B exchange 4 messages: (A ↔ B)4.
2. Duplicate A’s machine and send clone offline.
3. A and B exchange 6 more messages: (A ↔ B)6.
4. A goes offline, and clone goes online.
5. Clone sends 4 consecutive messages to B (AClone → B)4

6. B can decrypt the messages sent by the clone.
Fig. 2 illustrates the scenario described above.

Analysis The experiment shows that the clone can insert their own messages despite the honest parties
having deleted all the compromised chain keys from memory. This is due to Sesame’s feature of retrying
to send a message. Basically, once B receives the clone’s messages sent in step 5), it realizes that it cannot
decrypt them and sends a retry receipt. Once the clone processes the message, it will initiate a new X3DH
key exchange with B and re-encrypt the messages using the new session’s keys. Now, B can derive the new
session keys and decrypt the messages.

We verified with the app’s logs that the clone received the retry receipt from B, followed by fetching
keys from the server and starting a new session. Also, on the receiver’s side in B’s logs, we can observe
the successful decryption in the newly created session. The retry mechanism is described in the Signal
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documentation3 and implementation4. We thus showed how the retry option of the session management
breaks the PCS guarantee offered by the underlying protocol DR, by allowing a clone to continue the
conversation with A’s partner despite the healing phase. In fact, not only can the clone inject messages, but
also have a conversation in parallel to A, as we will show in the next scenario.

3.2 Abusing session reactivation

As the conversation evolves, Signal automatically resets sessions every hour, i.e., the parties generate new
secrets and deprecate the old ones. One would assume that this increases the security of the conversation,
and potentially prevents the scenario from Section 3.1. However, Sesame allows for older sessions to be
reinstated as the main sending session, i.e., the parties will encrypt messages using the latest state of these
sessions. The following example gives an intuition on why this seemingly small feature can break the PCS
security.

Example: Consider the clone of a compromised party as described in Appendix A.1 and Section 3.1. The
two honest parties resetting the session means that all compromised session secrets are replaced by new
ones. From the DR design, this implies that the attacker has no knowledge of the current session keys and
should be locked out of the conversation. However, due to the time-based reset, once the clone goes online
they will start a new session with the partner as well and can continue the conversation. In addition, Sesame
stores previous sessions and promotes any old session as the current active, upon receiving a message from it.
Assume now that the honest party also sends a message from their session. Upon receiving the message, the
partner will switch to the session that it can be decrypted with and reply to the honest party using the keys
stored there. As a result, the victim can also continue the conversation, despite the clone doing the same in
parallel in another session.

Figure 3: Abusing session reactivation, making it possible for A and its clone to have parallel sessions with
B. A and B exchange messages, until A at state ◦A1 is cloned. The clone goes offline (denoted by the dotted
line) and the parties exchange messages until session reset at □A′

1. A goes offline, and when the clone sends
a message, the automatic reset starts a new session △A′′

1 and respectively for △B′′
1 for B. Now, when A sends

a message, B reactivates □B′
1, and △B′′

2 for when the clone does.

Concrete steps The steps for this scenario are:
1. A and B exchange 4 messages: (A ↔ B)4.
2. Duplicate A’s machine and send clone offline.
3. Signal resets the session after 1 hour.
4. A and B exchange 6 more messages: (A ↔ B)6.
5. A goes offline, and clone goes online.
6. Clone sends 4 consecutive messages to B (AClone → B)4

7. B can decrypt the messages sent by the clone and continue the conversation.
8. Clone goes offline, A online. A encrypts 4 messages to B (A → B)4.
9. B can decrypt the messages sent by A.
Fig. 3 shows the scenario described above.

3Sesame’s retry option documentation: link.
4Sesame’s retry option implementation: link.
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Analysis The experiment shows that indeed A and their clone can have parallel conversations with B,
without the conversation ever healing or any of the agents receiving any notification or sign of compromise
in the user interface. The parties exchange 6 messages in step 4) in order to delete any old stored keys. The
previous scenario is excluded, since the time-based reset makes it impossible for the clone to use the old
compromised session. Instead, they are forced by the app to start a new session with B and encrypt their
messages with correct keys. This means that B has no reason to issue a retry request. Note that the clone
interacts only with the user interface, therefore it strictly follows the Signal protocol. The same logic follows
for the real A at step 8), where they send messages with keys B is able to compute, hence no decryption error
is thrown in the app (no need for retry option).

There are two mechanisms intertwined here:
• The reset session between the attacker and A allows for the compromise to continuity.
• The session switching allows for a compromise and honest session to exist in parallel without any

detection.
We could confirm from the logs that a new session was indeed established between the clone and B at step 6.
The logs also confirmed that when receiving a message from an old session, B would log that they “decrypted
with previous session state”, which is also visible in the implementation 5. We thus saw the old session
reactivation at step 8). This could go on like this with B alternating between the compromised and the honest
session, where the latest one used to receive is promoted to be the current active one 6. The victim can never
heal in this case, since on every automatic reset both of them are forced by the app to start two new parallel
sessions with B.

Existing mitigation There is currently a bound on the number of sessions stored (40 sessions). We would
expect this bound to lock the attacker out at some point. However, this is not the case for two reasons.

First, consider the case of a full compromise of both the identity key and the session states, which
corresponds to our previous experiment. Let us assume that the clone stays offline for more than 40 hours,
which is the lifetime of a session before it is deleted7. A and B can then delete enough sessions so that old
ones cannot be reactivated. However, because the clone knows the identity key, it will automatically start a
new session with B when going back online.

Second, consider a weaker threat model where the bound would intuitively be enough: the case of a partial
compromise, where only one session was compromised and the attacker cannot initiate new sessions with B.
Then, it seems that the bound would still not be enough, as an attacker could regularly send messages to B,
so that even if no reset goes through, the compromised session is regularly promoted and stays at the top of
the stored session list, and is thus never dropped. This could be circumvented if the implementation followed
the session’s expiration policy (see Section 2.3). Note that to carry out this experiment, we would however
deviate from an attacker that simply uses the official Signal app.

4 Improving Sesame’s PCS guarantees

Experimental summary Currently, Signal’s session-handling layer allows the following scenarios in
which PCS is violated:

1. After a compromise, the cloned device can initiate new sessions with the partner. The creation of this
new session may either follow a session reset from a timeout as in Section 3.2, or from a retry receipt
Section 3.1.

2. When there are both a malicious session and a valid session running in parallel, the compromise will
continue undetected, as we showed in Section 3.2.

Threat model systematization Our aim is to propose provable fixes in the later sections. We thus need to
clarify the set of relevant threat models, as summarized in Fig. 4.

The threat model considered in Sesame’s specs, which we will refer to as threat model ASignal, is defined
as a passive attacker that has fully compromised the device’s state. Its claims of security against a passive
attacker are derived from the underlying protocols it manages the sessions for, namely DR and X3DH. A
passive attacker is an eavesdropper that does not interfere with the protocol flow or the agents.

5Sesame’s Previous Session Decryption: link.
6Sesame’s Session Reactivation: link.
7Number of stored sessions in Signal: link.
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Figure 4: Signal’s four threat models categorized by attacker capabilities and level of compromise, which are:
the threat model from Signal’s specification (ASignal), the DR’s literature threat model (AIdeal), the experiment
model in this work (AExperiment), and the formal analysis model (AFormal). Full compromise means session
and long-term keys compromise.

In contrast, in the literature it is shown that DR is resilient to a stronger adversary that not only has total
control over the network but can drop, inject and manipulate any message actively. In an ideal world, we
would be able to lift the guarantees from the literature over the DR to Signal, even in this stronger active
attacker threat model. We will refer to an active attacker that can fully compromised the state of an agent as
the threat model AIdeal, the ideal goal. However, Signal has no mechanism to achieve this, since it would
require to refresh the identity keys of compromised agents, which is currently treated as a new registered
user. Achieving PCS for AIdeal would require significant new developments of the protocol.

However, there are two interesting weakenings of AIdeal:
1. Our experiment threat model AExperiment: an attacker that can compromise fully the user, but then strictly

follows the protocol and the features from the app.
2. Our formal analysis threat model AFormal: an active attacker that can however only compromise a single

session and not the identity keys.
AExperiment has been considered in previous work, which proved that Signal could achieve PCS for this

threat model. This is not the case anymore we show in Section 3. Furthermore, we also demonstrate in our
formal analysis that PCS is in fact lost due to design choices in Sesame for AFormal. This in turn makes
it impossible to achieve PCS for AIdeal even with new mechanisms for identity key revocation. Further,
achieving PCS at AIdeal with a key revocation implies to be able to know when we need to revoke keys: there
is the need for clone detection at the lower levels.

Threat models in real-life The threat models discussed in this paper can be tied in multiple ways to real
life scenarios. They all rely on the possibility of compromise of some keys, either long-term or short-term.
There are several scenarios in which this can happen, e.g., malware installed on the phone may be able to
extract the keys from memory, or when a third person has physical access to a device, such as when crossing
a border control point. It is relevant to distinguish long-term and short-term keys, as long-term keys can
be stored inside a safer storage, with a TPM or an enclave, whereas short-term keys are typically easier to
compromise. With this is mind, concrete instantiations of the previous threat models can be:

• ASignal: an attacker that can compromise short-term keys (long-term keys are irrelevant in the passive
case as they must be used to produce signatures), but can only observe traffic and not manipulate it, or
obtain traffic after it happened. While it is reasonable to assume that the attacker cannot interfere with
direct traffic between the phone and the server, it is more surprising to not consider that the attacker can
use the compromised keys to establish its own connections with the server.

• AExperiment: generalizing the previous case, this is the case where the attacker compromises both short-
term and long-term keys and can use them to create new connections with the server, simply using
Signal’s app, but cannot interfere otherwise with later exchanges between the server and the honest phone.
In practice, this is the scenario where an attacker can have physical access to the phone, completely
clone it, and then use the clone to connect to internet. This requires physical access to the phone, but no
particular resources afterwards except an internet connection.

• AIdeal: here we make the attacker fully active, and it can now also interfere with the connections between
the honest phone and the server. In addition to the compromise, this may require in practice active
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surveillance of the global network, or more simply the deployment of malicious wifi hotspots.
• AFormal: This is the transposition of AIdeal, where we assume that long-term keys are stored in a TPM,

and only short term keys can be compromised. This is a natural model for formal verification tools, with
a fully active attacker and where we can precisely define the possible compromises. Developments in
this model pave the way for a full model in AIdeal.

An attack in one of these models may in fact require weaker attacker capabilities, as is the case of our attacks
that are in AExperiment, but do not rely on the long-term keys.

Fixes overview To restore the Sesame PCS in AFormal, our first fix specifies that an outdated session must
only be allowed to receive older messages, and never re-enabled to send new ones. Moreover, our second fix
specifies that receiving a message on an outdated session should trigger a warning message, sent to both
the current and the outdated session, thus enabling for clone detection on the other end. Our first solution is
a minimal fix to restore PCS that does not break the current functionalities and ensures that no messages
are lost. Our second fix requires adding messages to the protocol flow, and is thus slightly more complex to
implement.

In the following, we first precisely describe our fixes, and then show how we prove their security using the
TAMARIN prover. From a high level point of view, we provide four distinct security results:

• We prove that when restricted to a single session between two parties, a model of the Double Ratchet
with idealized cryptography does provide PCS. This also leads to a clear formalization of the best PCS
guarantees that the Double Ratchet can provide.

• We show that when multiple sessions are allowed in parallel, our model is expressive enough that the
scenario of Section 3 is automatically found in TAMARIN.

• We prove that when implementing our first fix, we restore PCS between two parties.
• And finally, we prove that the clone detection fix is sound: it does not raise false positives and cannot be

triggered without an actual compromise.

4.1 Description of fixes

PCS fix As we have seen, PCS is lost because healing one session does not heal others. Subsequently, we
should make sure that after the current active sessions have been healed from a compromise, older sessions
cannot be used again. A first idea would be to instantly fully deprecate older sessions and keys whenever we
create a new one. However, this results in messages being lost because the parties are unable to decrypt out
of order messages. Thus, we instead suggest that:

• sessions must never become active again and used to send messages after they became inactive;
• inactive sessions can still be used to receive messages.

The solution is simple, practical, and preserves the current level of usability with minimal changes to the
code. Notice that in the case of multiple devices in a conversation, all pairwise devices will have their own
sessions. This means that our fix does not affect the normal communication when for example a device is
offline and the conversation’s state has moved forward because either a) the other devices send the messages
using the symmetric ratchet of the same session, or) start new sessions using a new prekey bundle of the
offline device. In both cases, the offline device can compute the new secrets and decrypt all messages.

As we will prove later, our fix allows lifting the precise PCS guarantee provided by a single session to
multiple sessions.

With respect to the specification, our fix is obtained by removing item 4 of section 3.4 from [28]), which
says that upon decryption of a message "if the relevant session is not active it is activated". This step of the
algorithm is responsible for promoting an old session as the current active one.

The issue of Clone detection With our previous fix implemented, we restore PCS in AFormal, but a clone in
AExperiment may never be detected. Indeed, whenever either the clone or the honest party go online, they can
trigger the creation of a fresh session and become the current active session with their partner. This results
in the inactive party to simply not receive any message as long as it does not go online. We thus propose a
mechanism that allows the detection of such behaviors. In particular, assuming that A is talking to B, and
AClone is a clone of A, we need to detect the following two situations:

• A and B share an active session, and B receives a message from AClone in a deprecated session.
• AClone and B share an active session, and B receives a message from A in a deprecated session.
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It is impossible for B to distinguish whether the received message is from a clone or the honest party.
However, B can notify their partner that they received a message from a deprecated session and include in
this warning message some information about that session. This way, the responsibility falls on to the victim
A to decide whether this warning message implies the existence of a clone or not. To cover the two previously
described situations, we need to make sure that A receives the warning message in either case, therefore B
needs to encrypt it for both the outdated and the active session.

There is a core difficulty for the clone detection mechanism: the mechanism should not be activated during
the normal operations of the protocol, i.e., only a cloning behavior should result in a detection. Without this
property, an attacker could trigger false positives, leading to denial of service attacks. This property is called
the soundness of clone detection in [30].

Clone detection mechanism We make three additions to the current flow. First, we specify that when
a new root key rk is computed, both parties derive a root key identifier pk(rk) and a warning key wk =
KDF("warning", rk) and store them in memory. Then, when B with a current active session root key rka
receives a message inside an inactive session with root key rki, B sends to the other party the pair of ciphertexts
(enc(pk(rka),wki),enc(pk(rki),wka)). Finally, whenever a party receives a warning message that decrypts
to pk(rkx), if this identifier is stored in the memory, the warning is ignored, and if this identifier corresponds
to a root key never computed by the other party, the compromise error is raised. Notice that the detection
happens at the pairwise communication level between two devices and uses the causality of starting a session
to detect the clone. This means the mechanism is unrestricted by the number of devices in the conversation.

Attack examples Going back to the initial example of a conversation between two honest clients A and B,
we assumed that a device of A falls temporarily under the control of the attacker e.g., at a border control, or
from malware. The attacker that cloned the state of the device can impersonate A to B. When A goes back
online, they are notified by our clone detection mechanisms that an attacker has reused an old session key to
encrypt messages to B or if they have started a new session on their behalf, leading the victim to decide on
whether to trigger a healing mechanism (see Section 6).

In the cloning attack from [14], the attacker compromises the victim’s state, the honest devices exchange 5
messages to heal their conversation, and then the clone goes back online and encrypts new messages. In our
clone detection mechanism, A needs to go online one more time in order to detect the clone’s activity. The
following two scenarios are possible:

1. The clone started a new session when it was active, so when A goes online it receives a warning message
and detects the new session started by the clone.

2. The clone used the same session state as the honest parties. Here the session is healed thanks to the PCS
guarantee and the clone cannot impersonate A, hence there is no need for detection.

In comparison, the attack found in [5], and rediscovered during our experiments (see Appendix A.1)
considers only a single session, and differently from our work and [14], the honest parties do not exchange
enough messages to heal the conversation. The attacker can send new messages using the stored keys in the
compromised state, because of the slow deletion of keys from state in the implementation. This means that
because of the mismatch between what is considered a healed session in the specification and the actual
implementation, the parties have not healed and the session does not have PCS. As a result, we cannot lift
the security to conversation-PCS or clone detection.

5 Formal Analysis of Secure Messaging with Session-Handling

In this section, we describe our multiple formal models and give the intuition behind their security proofs.
To perform the analysis we rely on the TAMARIN prover, which we introduce in the following along with
its way to model security properties. We summarize our security analysis in Table 1 and show the results
obtained using the TAMARIN prover in Table 2. We only provide here high-level presentations of our models,
and refer the reader to Appendix A.3 and [15] for more details.

5.1 Tamarin
The TAMARIN prover is a tool for formally modeling and analyzing complex cryptographic protocols [29].
TAMARIN works within the symbolic model, meaning that messages are expressed as terms built from
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variables, constants and function symbols. Rules allow modeling the possible protocol steps, or protocol
actions, that can be executed by the multiple parties in parallel, and thus model network inputs, outputs and
computations.

Rules can be labeled with so-called events. The semantics of the rules together with the labels yield the
set of possible executions, i.e., possible behaviors of the protocol sessions in the presence of the adversary.
The security properties are then modeled as guarded first-order logic formulas, and can refer to the events
occurring in a specific trace, e.g.,

∀ userId, key, i. ReceivedPayload(userId, key) @i
⇒¬∃ j. K(key) @ j

Here ReceivedPayload is the event raised whenever the user identified by userId receives a payload
encrypted with key, and K is a builtin TAMARIN event that models that the attacker knows or can compute
the argument. Intuitively, this property states that if a user has received a payload at some timepoint i inside a
trace, there is no point j in the trace where the attacker can compute the decryption key. In other terms, this
is the secrecy of the keys.

The tool has a built-in attacker, the so-called Dolev-Yao attacker, which has control over the network and
can inject, drop and manipulate any traffic. Furthermore, TAMARIN allows the user to add custom equational
theories to model additional attacker capabilities or data structures.

Given a protocol model, a specification of the attacker and a security property, the tool returns either
a proof that the property holds for all traces of the protocol, a counterexample, or it does not terminate
(the underlying problem is undecidable). In case of termination, the user can inspect the proof steps or the
graphical representation of the counterexample in the interactive mode. Moreover, the user can guide the tool
in proof finding, by writing and proving helper lemmas such as invariants of the protocol.

5.2 Formal model with Session-Handling
We first systematize here the points that should ideally be taken into account to perform a formal analysis of
Signal, or any similar application. This corresponds to an ideal goal, that we found is currently out of reach
for existing automated analysis tools such as Proverif or Tamarin. We thus introduce several simplifications
and abstractions in order to perform a first formal analysis of the core mechanism that we aim to improve
here, the multiple session management.

Ideal Goal and limitations In an ideal world, to study the PCS guarantees of Signal a formal model should
capture:

• a model of the X3DH and the DR protocols, including publication of Diffie-Hellman share bundles
signed with identity keys on the server;

• capture the multiple session managements as well as new device registration;
• allow for compromises of all different materials, chain keys, root keys and identity keys.

Verifying such a model is currently out of our reach and its analysis would probably need to rely on modular
result. For instance, the latest Signal analysis using Proverif only considers the X3DH protocol followed by
only three message exchange in the DR [26]. To make this first study of the multiple session management
tractable, we thus performed several simplifications and abstractions. As we will see when discussing the
proofs, they required significant human intervention, even with the following abstractions. We estimate the
human effort to be in the order of a month.

Atomic operations To tame the complexity, we abstracted away the initialization of the sessions, replacing
the X3DH protocol by a single step creating a new session between two given parties. The intuition is
that at our higher level, if X3DH is secure and was successfully completed, then it should be equivalent to
instantiating a fresh shared secret between the two parties. We also simplified the asymmetric ratchet step
of the double ratchet, by collapsing the sending and the receiving steps into a single rule, which instantly
provide the two parties with a new shared secret value to rely on. This is in fact a simplification needed to
capture the PCS property: in our context, healing means that an asymmetric ratchet was fully completed and
that the attacker did not interfere with its execution. As such, the PCS property considers the asymmetric
ratchet, which is the healing step, as an atomic step that the attacker cannot interfere with. If the attacker can
interfere and for instance block the execution of a healing, PCS cannot even be expressed in a meaningful
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fashion. The difficulty of formally verifying PCS against an active adversary is also discussed in [19]: instead
of seeing the asynchronous ratchet as an atomic step that the attacker cannot interfere with, they choose to
base their security definition on an additional recurring authentication mechanism running in parallel that the
attacker must try to cheat.

As a consequence of the two previous simplifications, notice that our model does not need to explicitly
capture Diffie-Hellman exponentiations, as we directly model the resulting fresh secret. This significantly
reduces the complexity of the symbolic analysis, and may be one of the core points that makes the analysis
tractable.

Multiple devices We considered that device registration is a separate operation and that it was reasonable
to not include it in the model. With respect to Sesame and our observed PCS violations, we showed in the
experiments that the attacks were indeed possible even with a single device registered.

Possible compromise scenarios Each possible compromise adds a layer of complexity to the PCS proof, as
it introduces new cases in which the attacker may break the security. In our models, we do not capture the fact
that the attacker can compromise the long term identity keys of a party, similarly to [19]. This is meaningful
because long term identity keys can be stored in a more secure way, and one first needs to consider PCS
against only chain and root key compromise before hoping to achieve it against stronger attackers.

Our formal model and fixes in fact pave the way to aiming for PCS against such strongest forms of
compromise: if we have PCS when everything but the long term keys are compromised, we force the attacker
to use the identity keys to sign new pre-key bundles in order to maintain the compromise, and simple
mechanisms could be set into motion on the honest devices to detect those malicious bundles.

Final Protocol Model Our formal model allows performing the following actions in an atomic fashion:
Initialization - Instantiates a new session with a fresh shared root key between two participants. This
corresponds to reaching the final state of the X3DH in a single step.
Send Message - Symmetric ratchet performed on the sender side.
Receive Message - Symmetric ratchet on the receiver side.
Skip Message - Skip a message and ratchet forward to receive a later one.
Asymmetric Ratchet - In a single step swap sender and receiver roles, giving them a new fresh shared
root key.

Every initialization leads to the creation of a fresh session between the two parties, each party creating a
fresh identifier sidA and sidB to identify this new session. In our core model, the number of parties, the number
of possible sessions between two parties, as well as the number of ratchets (symmetric and asymmetric)
within a given session are all unbounded. By adding restrictions on how parallel sessions are managed, this
first model can then be used to instantiate multiple variants of Sesame.

Threat Model The attacker has full control over the network, can manipulate and build new messages, but
the cryptography is assumed to be perfect. That is, the attacker can see the encrypted sent messages, but can
only decrypt them if it knows the secret key.

In addition, we also consider that the attacker can at any time compromise the currently stored keys
of a party, e.g. learn their sending/receiving keys or root keys. An important point is that due to skipped
messages, a receiving key can be compromised at any time in the future even after asymmetric ratchets. This
corresponds to the behavior of storing old receiving chain keys.

As a consequence of this threat model, remark that if the attacker knows the current key, it can then decide
to trigger an asymmetric step either with the receiver or the sender, which locks out the other party.

Session-based PCS We first define here the classical PCS property, which considers the security of each
session individually, and thus effectively reasons only about a single ratchet chain. Intuitively, whenever
inside a session there was a heal and a message sent afterwards, the attacker cannot learn this message unless
it compromises one of the party again. Conversely, the only way that the attacker can decrypt a message is to
perform a compromise after the latest heal.

We raise the following events to express the session-based PCS property:
• the event Sent(sida,A,B,sck) whenever the agent A over its session sidA sends to agent B a message

encrypted with the encryption key sck;
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• the events Heal(sidA,A,B) and Heal(sidB,B,A) when the two parties perform an asymmetric ratchet,
and thus heal their session;

• and raise Compromise(A,B) whenever the attacker chooses to compromise the cryptographic material
of a session of A talking to B.

Capturing this PCS notion formally using TAMARIN’s first-order logic language, is as follows:

∀ A,B,sidA,sck, i, j,k.
Sent(sidA,A,B,sck)@i & K(sck)@ j &
Heal(sidA,A,B)@k & k < i

⇒
(

∃ l. Compromise(A,B)@l & k < l
∥ ∃ l. Compromise(B,A)@l & k < l

)
This means that if we are in a situation where A sends a message to B using sck key, Sent(sidA,A,B,sck)@i,

and A healed before sending this message, Heal(sidA,A,B)@k & k < i, and the attacker knows the
key K(sck)@ j, then the attacker must have compromised the keys of A talking to B after the heal
Compromise(A,B)@l & k < l, or the keys of B talking to A.

Conversation-based PCS One of the core insights in our formalization is that the app user does not
(cannot) observe PCS per session: messaging apps invisibly merge different sessions with the same peer into
a single displayed conversation. This is also ultimately the reason why the PCS properties proven for the DR
do not seem to hold at the session-handling layer. Instead, at the session-handling layer or higher, we need to
use a different technical definition of PCS that considers the conversation between two agents instead of
sessions. This effectively encodes that from the user’s point of view, multiple sessions are invisibly merged
into a single conversation. Indeed, in all our experiments, the classical per session PCS holds, but the intuitive
notion of PCS over the full conversation shown to the user at the higher level does not. To express this new
goal, we drop the session identifier from the send and heal event. If there is any healing phase during the
conversation, that is, over any of the involved sessions, then any message sent afterwards should be secret
unless there is a new compromise. This yields the following instantiation of conversation-based PCS:

∀ A,B,sck, i, j,k.
Sent(A,B,sck)@i & K(sck)@ j &
Heal(A,B)@k & k < i

⇒
(

∃ l. Compromise(A,B)@l & k < l
∥ ∃ l. Compromise(B,A)@l & k < l

)
While at first glance this property may seem simpler than the session-based property, its proof obligation is
in fact more complex: because the sending and healing are no longer bound to the same session, this property
depends on the scope of healing in relation to messages sent in any session of the sender. As we will see
later, our proof of conversation-based PCS requires us to first prove that session-based PCS holds.

In addition to these two PCS properties, we also model the forward secrecy (FS) properties, which
essentially state that the attacker can only learn messages after it compromised a session. FS is in fact often
an intermediate step towards proving PCS. We only discuss the more interesting PCS proofs in the following
discussions but note that we in all cases also proved the corresponding FS property.

5.3 Single session PCS
We first prove that if we enforce that two parties always use the same session, PCS is obtained. While this is
not a realistic assumption, this is an intermediate step over which we build the proofs for the real use cases.
In this case, session-based PCS and conversation-based PCS collapse.

Proof To perform the PCS proof, it is necessary to answer the question: how could the attacker learn some
key sck. From an intuitive level, the following scenarios are possible:

• the current state of sender or receiver was compromised,
• the sender or the receiver was compromised previously, but still on the same chain, and the attacker just

has to ratchet forward the key to compute sck,
• the sender or the receiver was compromised even before the last asymmetric ratchet, the attacker then

became active, performed an asymmetric ratchet with the sender, and since then the sender is in fact
talking to the attacker.
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Mechanism Source Threat PCS Clone
Model Detection

Double Ratchet [1] AFormal ✓ [1, 4, 10, 12] Implicit
Old Sesame v4.47.0 AExperiment ✓ [14] ✗

ASignal ✓ ✗
v5.40.4 AExperiment ✗ [Section 3, Appendix A.1] ✗Sesame (currently deployed)

AFormal ✗ [Section 5, TAMARIN ] ✗
Sesame with sequential sessions This work AFormal ✓ Implicit
Sesame, sequential sessions + warning message This work AFormal ✓ ✓

Table 1: Security Analysis Summary
Summary of results from our experiments and TAMARIN analysis. Our results cover a single session Double
Ratchet, the older version Sesame studied in a previous work, the currently deployed Sesame mechanism,

and our two proposed incremental fixes.

Mechanism Source Property Result Run Helper
Time (s) Lemmas

Double Ratchet (Sesame with single session) [1] PCS ✓ 25 24
Sesame (currently deployed) v5.40.4 PCS ✗ 2 0
Sesame with sequential sessions This work PCS ✓ 36 27
Sesame, sequential sessions + warning message This work Clone Detection ✓ 31 23

Table 2: TAMARIN Formal Analysis Summary
Results obtained with the TAMARIN prover. Our proofs are obtained by using a so-called oracle to guide

TAMARIN’s proof search, as well as some manually stored proof. The run times are given for TAMARIN to
find the proof automatically and to verify the manual proofs for each lemma. When running the models we

did not include the supplementary proofs, such as forward secrecy. The models were run on a Intel(R)
Xeon(R) CPU E5-4650L 2.60GHz server with 756GB of RAM, and 4 threads per TAMARIN call. We also

provide the number of helper lemmas needed to prove the property.

A core difficulty of the proof is that we model an unbounded number of asymmetric or symmetric ratchet
steps for each session. An attacker may know a sending key because it knew a previous sending key, or
a previous root key, and so on. While the PCS property concerns the sent messages and the sender chain
keys, we see here that the property is in fact interdependent between receiver and sender keys. We must then
consider all the possible keys the attacker can learn or compute instead of only considering the sender chain
key, and reason by induction. Namely, with respect to PCS, we must consider that the attacker may know
a sending key (case 1), a receiver key (case 2), or a root key (case 3), each of them being possible either
because another case happened previously, or because there was a compromise.

This is in fact a generic observation relative to Tamarin proofs. While we want to prove by induction
a formula P1 ⇒ Q, we see that we in fact also need to prove P2 ⇒ Q and P3 ⇒ Q. However, we crucially
cannot prove each of those formulas separately due to their interdependence, and we must prove instead in
one big induction

∧
1≤i≤3(Pi ⇒ Q), or equivalently (P1 ∨P2 ∨P3)⇒ Q.

In our case, we have to prove the following property, corresponding to a strengthening of the original PCS
property:

∀ A,B, rk, rck,sck, i, j,k.
(
(
Sent(A,B,sck)@i & K(sck)@ j &

Heal(A,B)@k & k < i) case1
∨
( Root(A,B, rk)@i & K(rk)@ j &
Heal(A,B)@k & k < i) case2
∨
( Received(A,B, rck)@i & K(rck)@ j &
Heal(A,B)@k & k < i)

)
case3

⇒
(

∃ l. Compromise(A,B)@l & k < l
∨ ∃ l. Compromise(B,A)@l & k < l

)
implied
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Proving this strengthened induction proved to be too difficult for TAMARIN’s current automated heuristics,
and we had to perform it in the interactive mode. However, we relied on TAMARIN automation to prove
many structural properties over the protocol, without which we would have not been able to complete the
proof. To give an example of such a structural property, consider the following formula:

∀ A1,B1,A2,B2, rck, i, j,k.
Received(A1,B1, rck)@i & Sent(B2,A2, rck)@ j
⇒ A1 = A2 & B1 = B2

This formula states that if a receiver and a sender are both agreeing on some secret key rck , then they
are necessarily talking to each other, i.e., A1 = A2 and B1 = B2. This is for instance needed when trying to
prove the previous induction, in the reasoning how the attacker can obtain the receiving chain rck (case 3).
Proving this lemma helps TAMARIN in deducing that compromise of any other party, other than A or B, does
not result in knowing rck, since the receiving chain key is unique per pair of users.

Overall, the proof required 24 such structural helper lemmas, which are proved automatically by TAMARIN
with an oracle. The strengthened PCS with 718 proof steps, had to be selected manually out of the available
proof steps.

5.4 Conversation-based PCS

We model the current design of Sesame by allowing in the previous model any number of sessions between
A and B to run in parallel. In this model, we first describe how TAMARIN rediscovers the scenario trace
corresponding to Section 3.2. Then, we show how we model our fix and prove it secure.

Conversation-based PCS violation We observe on this model that if we consider the full conversation
between two parties, then PCS is lost. This suggests that our model is general enough to capture the
experimentally found scenario. However, we proved previously that for a single session, we have PCS
between two agents. The session-based PCS property still holds for this new model with multiple sessions,
and is essentially a proof that multiple sessions of the DR do not share any cryptographic material and are
independent. Interestingly, we could in this setting mostly reuse the proof made in the single session case to
prove the session-based PCS.

Modeling the fix To introduce a notion of active and inactive session, we specify that whenever a new
session is created for a party, all sending actions and asymmetric ratcheting that would use a previous session
are forbidden. To do so, we rely on so-called restrictions: they are expressed in TAMARIN in the same
language as the security properties, but are used to forbid certain executions.

For instance, we can model that we have an event NewSession(A,sid) raised by party A whenever they
create a new session with identifier sid, and that in addition to the Sent event there is also a SentSID(sid)
event raised whenever A uses sid to send a message. Then, a core feature of our fix is modeled by adding the
following restriction:

¬(∃ A,sid1,sid2, i, j,k.NewSession(A,sid1)@i &
NewSession(A,sid2)@ j & SentSID(sid1)@k & i < j < k)

This restriction expresses that for any execution, A cannot send a message from session sid1, once it has
created a new session sid2. This ensures the deprecation of an old session sid1, once it is replaced by newer
one sid2.

Proof To prove the conversation-based PCS between A and B, we then rely on both the previous per session
proof of PCS and the restrictions modeling our fix. Essentially, if our fix is correct, the restrictions will forbid
all attacks arising from lifting the per session PCS to the conversation-based PCS property. We were indeed
able to carry out this proof in TAMARIN. This proof required 4 additional structural helper lemmas, and the
conversation-based PCS took 146 steps by reusing all the previous proofs.
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5.5 Proof for the clone detection mechanism
With the first fix, we restore the conversation PCS against the AFormal threat model. However, to also add
some security in the case of AExperiment, we also model a clone detection mechanism that would detect
whenever an attacker is initiating new sessions with a compromise identity key.

Modeling the mechanism To model clone detection, we enrich the state of the sessions with the warning
and identifier root keys, as well as the current session identifier, and modify the receive message action so
that whenever a message is received over a deprecated session, it sends out the two corresponding root key
warnings.

We then added the warning process action to the protocol, where a party can receive over its current
active session a warning. This rule executed by agent A decrypts a warning message of the usage of a session
with root key identifier pkro and then raises the event Report(A,pkro). By having each root key creation
also raise the event Rk(A, rk), we express the actual processing of the report by adding the restriction:

∀ A,rk, i. Report(A,pk(rk))@i
⇒ ¬(∃ j. Rk(A,rk)@ j & j < i)

This enforces the soundness of clone detection: A reports an error for some root key identifier only if the
corresponding root key was never computed by A.

Proof Our goal is to prove that the attacker cannot trigger a false positive of our mechanisms, that is, a
report can only be raised if there was a compromise of some agent. An interesting point of the PCS proof is
that the attacker is able to compute a root key of A only if it compromised B or A. So, any warning message
received by A is either:

• from a honest conversation, in which case A will recognize the root key,
• from the attacker, in which case there must have been a compromise.
This mean that proving the clone detection mechanism is equivalent to proving the following two cases: a)

honest warning messages do not trigger the error message, and b) the attacker needs to compromise one of
the agent to compute a valid warning message. The first case is straightforward, and the second has mostly
been done in the previous PCS proofs.

Following this idea, we were able to prove that our proposed mechanism is sound. The proof effort
involved the previous PCS proof, two new helper lemmas proved in 429 steps and 14 steps respectively, and
the final proof done in 115 steps.

6 Practicality of fixes

Memory usage A downside of our clone detection mechanism is that it requires devices to store a long list
of warning root keys in order to correctly report compromises without false positives (soundness of the clone
detection). However, in the full compromise setting, it can be argued that our clone detection mechanism
is stronger than needed: our PCS fix quickly heals all honestly established sessions, and we may not care
about detecting low impact compromise of those sessions. If we only care about detecting the case where the
attacker is using the compromised identity key to initiate a fresh session, our clone detection mechanism can
be adapted so that instead of deriving warning keys from each root key, we only derive warning keys from
the first root key of the session. This solution would then be such that the memory usage is strongly reduced
and cloned sessions are detected.

Device Reset There are cases where we reset the state of a device to a clean blank state or to a backup,
for instance after the original device was lost or there was a state loss. In such cases, our clone detection
mechanism could yield false reports, either after restoring a backup, where the user may receive a report over
a root key computed after the point of the backup, or after a full reset, where the user may receive a report
over a root key corresponding to the older identity key.

To mitigate those false reports, a simple solution is to specify that a device that performed a backup restore
or a reset should ignore any clone detection reports it obtains from a partner that just came online for the
first time since the reset. However, this may lead to an attacker exploiting this small time-frame to avoid
detection, and this mechanism may still let some false positive report be produced in some edge cases.
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Following up on clone detection We do not tackle in our work what should happen after a clone detection
warning. However, because our clone detection is sound, this only happens of the attacker compromised
a long term identity key. To restore trust, the user needs to trigger a full reset on the server side, erasing
all identity keys and bundles, and uploading new identity keys. Since our detection mechanism is sound,
i.e., lack of false detection, apps can automatically trigger a mechanism to refresh the secrets and notify the
victim appropriately or ask for their input in edge cases. Another idea would be to rely on an Out-Of-Band
channel, and leave it to the user to activate the recovery. However, further security and usability studies are
needed on the best mechanism to ensure a secure key replacement and clear communication to the end user.

Implementability of our suggestions An open question is whether our proposed solutions may introduce
unexpected behaviors that could break the correct execution of Signal. Our first improvement only restricts
the set of possible behaviors from the protocols. In theory, this could lead to desynchronization if the head
sessions between two devices do not match. This would never block communication, but a different session
would be used for sending and one for receiving, and each would not be able to ratchet asymmetrically. If
such a situation were to occur, it would be automatically resolved by the session refresh currently happening
every hour. Our second fix adds new message exchanges to the usual flow. According to our Tamarin models,
the warning can only be triggered if a compromise did happen, and thus should not lead to any additional
threat, and cannot be used, e.g., to trigger a denial-of-service. Importantly, while our models did not raise
any unexpected behaviors, issues could come from unexpected places from the complex Signal ecosystem:
testing deployments in real life conditions could help decide this.

7 Conclusion

Our experimental result based on multiple PCS violations on the application level illustrated the need to
consider PCS not at the per-session level but at the conversation level.

We introduced the first formal model that includes the multiple session management layer of a secure
messaging protocol, taking Signal as a first case study. We used this model to show how at the conversation
level PCS is violated by design choices in Sesame, and use our model to prove the correctness of our two
proposed improvements.

As a future direction w.r.t. Signal, our models could be more precise, covering more high-level features like
the addition of new devices, or more low level features like a more precise DR. It is however likely that this
can only be achieved by improving existing verification tools to make such more detailed models tractable.
It would also be valuable to obtain computational guarantees that do consider the conversation-based PCS.
Furthermore, it would be interesting to apply the conversation-based PCS approach to other end-to-end
messaging apps. The closest one is Whatsapp. It would however require significant reverse-engineering
efforts: it relies on libsignal but with code that is not open source, making it difficult to analyze and notably
extract how sessions are managed.

Responsible Disclosure Since Signal’s documentation only considers an attacker that is passive after a
compromise (which could be satisfied with a much simpler protocol), our PCS violations are outside of its
stated threat model. Nevertheless, we contacted the original author of the Sesame specification with our
observations and fix, and they contacted the Signal development team.
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A Appendix

A.1 Additional PCS violation
We describe here the PCS violation we found that is independent of the multiple sessions layer, and was
independently discovered by [19].

This scenario also considers if PCS is achieved in practice by the Signal app. In previous work [14], its
authors showed that Signal (app version v4.47.7) was able to protect past messages and lock an attacker
out of the conversation. The experiment considers A and B having a conversation, until A is cloned. The
honest parties continue the conversation, and once the clone goes online, the experiment checks if the clone
receives past messages or can inject new ones in the conversation. We performed a slight variation of their
experiment, where in addition the parties go offline in order to prevent any other mechanisms from being
triggered. Thus, we focus solely on PCS, and disregard any features that may also come into play, such as
message re-encryption.

The main goal of the experiment is to check whether a fully compromised user can recover security of a
session and prevents its clone from injecting their own messages. This should be achieved by the DR protocol,
since exchange of messages with the partner introduces new entropy in the key derivation. In particular, once
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Figure 5: Abusing stored receiver chain keys on Signal. In the first phase, honest parties A and B exchange
messages until A is cloned. The clone goes offline (denoted by the dotted line) and the parties exchange
messages to heal their session. A and B go offline, and the clone encrypts a message m with the old session
state A1. When, B goes online they can decrypt the message by using the old receiver chain stored at state B1.

the session keys (root, sender, and receiver chain) are ratcheted forward, the attacker should not be able to
recompute them.

Although we expected the same experiment results as in [14], we noticed an unexpected decrease in the
security of Signal. On the positive side, the clone is not able to decrypt past messages exchanged between
the honest parties during the healing phase i.e., when the clone is offline. However, future communication
between the clone and the honest party are not blocked anymore: the clone can send messages that the partner
is able to decrypt without any error or notification shown in the user interface.

Concrete steps The attack of Fig. 5 is obtained when:
1. A and B exchange 4 messages: (A ↔ B)4.
2. Duplicate A’s machine and send clone offline.
3. A and B exchange 4 more messages: (A ↔ B)4.
4. A and B go offline, and clone goes online.
5. Clone sends 4 consecutive messages to B (AClone → B)4

6. Clone goes offline, and B online. B can decrypt the messages sent by the clone.

Analysis The intuition behind the scenario is that B can forward a key from a past state, which they should
have deleted. Notice that the clone follows the protocol acting as an honest user, therefore using only the
local state to compute the next message key. Moreover, since A and B’s devices are offline at the time, the
clone has no external input on the progress of the conversation. On the receiver side, the fact that B is able to
compute the session key means they can go back to a previous receiver chain and compute the next message
key.

Checking the debug logs, we found that the chain key being used to encrypt the clone’s messages was the
same as the one A had used to encrypt their messages at the time of cloning. In addition, we cross-checked
with the implementation of Signal and found that the scenario is indeed possible. In fact, Signal allows for
the parties to store up to 5 receiver chain keys at any time 8. In theory, it should be impossible to extend those
receiver chains, as only the skipped messages before the corresponding asymmetric ratchet should have been
stored. However, the compromised key is still stored in the receiver’s state, and the clone can extend older
chains and use this to send any number of messages impersonating A. This behavior contradicts PCS, as
after the asymmetric ratchet the old compromised material should be useless except for skipped messages.

A.2 Security Parameters in Signal
Signal is deployed with a specific set of parameters that may directly affect the security of the protocol:

1. 25000 forward jumps - Signal allows for the message keys to be forwarded 25000 steps ahead and
stored locally. A message with any counter smaller than the parameter results in the partner storing all
keys up to the message counter. This means that even if the honest parties heal from the compromise,
the attacker can still encrypt messages using the skipped message keys.

2. Reset every 1 hour - The parties perform a new handshake every one hour.

8Signal’s stored receiver chains: link.
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3. 5 stored chains - The 5 latest receiver and sender chains are stored. This allows an attacker to extend
any of these chains with an arbitrary number of new messages.

4. 40 sessions stored - Signal stores 40 sessions per device. A compromise in any of them allows the
attacker to continue undetected the conversation in that session.

A.3 Formal details of the model

We provide here more details on our formal models and refer to [15] for the actual models. TAMARIN uses
multi-set rewriting rules (MSR) to model protocols. Such rules, given a set of currently available facts,
consume them to produce new facts. Each fact can be seen as a local state, and the global state of a protocol
can then be modelled through a set of facts. A protocol step is modelled with one MSR, and TAMARIN relies
on some builtins facts to correctly model protocols:

• the Fr(n) fact must only appear on the left-hand-side of a MSR, and is used to load a new fresh nonce n;
• the In(x) fact can be used on the left-hand-side to model an input from the attacker-controlled network;
• the Out(t) fact on the right-hand-side models an output to the attacker-controlled network.
Our protocol models rely on two main fact, one to model the state of a current sending chain, and one

to model the state of a receiving chain. The fact SndCK(rk,sidA,A,B,ck) tells that agent A currently has a
session with agent B with a local thread identifier sidA on A’s side, the current root key is rk and the chain
key is ck. In a correct execution, it is expected that on B side there is a corresponding receiver chain, stored
in the fact !RcvCK(sidB,rk,B,A,ck). Remark that the receiving fact is prefixed by the ! symbol: this denotes
that this fact is persistent, and an MSR rule will not consume it.

If two agent identities Id(A) and Id(B) were created in an initialisation, this rule creates a new session for
two users:

[Id(A),Id(B),Fr(rk),Fr(sidA),Fr(sidB)]
−[NewSession(A,sidA),NewSession(B,sidB)]→

[SndCK(rk,sidA,A,B,h(rk)), !RcvCK(sidB,rk,B,A,h(rk))]

Here, the first line is the left-hand-side of the MSR that samples the fresh values needed to instantiate the
session, the middle parts corresponds to raising the events used in Section 5 to specify security properties,
and the last line is the right-hand-side effectively creating the two facts corresponding to the state of A and B.
Such a rule is an abstraction of the full X3DH protocol, where we simply say that two identities can suddenly
share a valid fresh root key.

We then use a rule to model the sending of a message, which will only rely on a single agent here as the
communication is over the network.

[SndCK(rk,sidA,A,B,ck),Fr(m)]−[Sent(A,B,ck)]→
[SndCK(rk,sidA,A,B,h(ck)),Out(senc(m,ck))]

This rule given the current state of a sending chain sends a fresh payload m encrypted with the current chain
key ck. In parallel, it raises an event about the sending of the message, and in addition produce the new state
of the chain where the chain key has been ratcheted forward.

On the receive side, the situation is a bit more complex due to skipped messages. A rule directly allows the
receiver to move forward in the chain, and another one to receive a message (this is why we prefix receiving
facts with !):

[!RcvCK(sidB,rk,B,A,ck)]→ [!RcvCK(sidB,rk,B,A,h(ck))]

[!RcvCK(sidB,rk,B,A,ck),In(enc(m,ck))]
−[Received(B,A,ck)]→[]

We need to add in our models a restriction forbidding that the second rule can be triggered twice:

∀ A,B, rck, i, j. Received(A,B, rck)@i
& Received(A,B, rck)@ j ⇒ i = j

Possible compromises must be specified explicitly through a rule, for instance with:

[SndCK(rk,sidA,A,B,ck)]−[Compromise(A,B)]→[Out(ck)]
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A similar rule on the receiver side models its own compromises. The last rule to model a high-level double-
ratchet process is the asymmetric step. In a single rule, two agents can perform an asymmetric step and
obtain a new fresh root key nk. The sending and receiver roles are then swapped:

[SndCK(rk,sidA,A,B,ck),Fr(nk), !RcvCK(sidB,rk,B,A,ck)]
−[Heal(A,B,sidA),Heal(B,A,sidB)]→

[SndCK(nk,sidB,B,A,h(nk)), !RcvCK(sidA,nk,A,B,h(nk))]

Together, these rules abstract a double-ratchet with skipped messages and multiple sessions. This high-level
presentation omits several details of our models, e.g.,:

• many events are added to allow writing helping lemmas;
• bookkeeping facts are also added to ease reasoning;
• more rules are needed to model that an attacker can, e.g., perform an asymmetric ratchet with a user if it

knows the corresponding chain-key;
• some additional restrictions to remove undesirable behaviors, such as an execution where an agent tries

to initiate a session with themselves.
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